Use of a Tea Infuser to Submerge Low-Density Dry Ice
ERIC Educational Resources Information Center
Fictorie, Carl P.; Vitz, Ed
2004-01-01
A simple tea infuser is obtained and been used as a container for the dry ice to simulate the effect from high-density dry ice. The tea infuser is a simple, low cost device to allow instructors with access to dry ice makers to effectively use the interesting demonstration.
NASA Technical Reports Server (NTRS)
Barnett, Donald M.
1995-01-01
Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system components include: a dry ice pellet supply, a non-reactive propellant gas source, a pellet and propellant metering device, and a media transport and acceleration hose and nozzle arrangement. Dry ice cleaning system operating parameters include: choice of propellant gas, its pressure and temperature, dry ice mass flow rate, dry ice pellet size and shape, and acceleration nozzle configuration. These parameters may be modified to fit different applications. The growth of the dry ice cleaning industry will depend upon timely data acquisition of the effects that independent changes in these parameters have on cleaning rates, with respect to different surface coating and substrate combinations. With this data, optimization of cleaning rates for particular applications will be possible. The analysis of the applicable range of modulation of these parameters, within system component mechanical constraints, has just begun.
Small-Scale Production of High-Density Dry Ice: A Variant Combination of Two Classic Demonstrations
ERIC Educational Resources Information Center
Flowers, Paul A.
2009-01-01
Easily recoverable, thumb-sized pieces of high-density dry ice are conveniently produced by deposition of carbon dioxide within a test tube submerged in liquid nitrogen. A carbon dioxide-filled balloon sealed over the mouth of the test tube serves as a gas reservoir, and further permits a dramatic demonstration of both the gas-to-solid phase…
Evaluation of a Novel Artificial Tear in the Prevention and Treatment of Dry Eye in an Animal Model.
She, Yujing; Li, Jinyang; Xiao, Bing; Lu, Huihui; Liu, Haixia; Simmons, Peter A; Vehige, Joseph G; Chen, Wei
2015-11-01
To evaluate effects of a novel multi-ingredient artificial tear formulation containing carboxymethylcellulose (CMC) and hyaluronic acid (HA) in a murine dry eye model. Dry eye was induced in mice (C57BL/6) using an intelligently controlled environmental system (ICES). CMC+HA (Optive Fusion™), CMC-only (Refresh Tears(®)), and HA-only (Hycosan(®)) artificial tears and control phosphate-buffered saline (PBS) were administered 4 times daily and compared with no treatment (n = 64 eyes per group). During regimen 1 (prevention regimen), mice were administered artificial tears or PBS for 14 days (starting day 0) while they were exposed to ICES, and assessed on days 0 and 14. During regimen 2 (treatment regimen), mice exposed to ICES for 14 days with no intervention were administered artificial tears or PBS for 14 days (starting day 14) while continuing exposure to ICES, and assessed on days 0, 14, and 28. Corneal fluorescein staining and conjunctival goblet cell density were measured. Artificial tear-treated mice had significantly better outcomes than control groups on corneal staining and goblet cell density (P < 0.01). Mice administered CMC+HA also showed significantly lower corneal fluorescein staining and higher goblet cell density, compared with CMC (P < 0.01) and HA (P < 0.05) in both regimens 1 and 2. The artificial tear formulation containing CMC and HA was effective in preventing and treating environmentally induced dry eye. Improvements observed for corneal fluorescein staining and conjunctival goblet cell retention suggest that this combination may be a viable treatment option for dry eye disease.
Gieseler, Henning; Lee, Geoffrey
2008-02-01
To determine the effects of vial packing density in a laboratory freeze dryer on drying rate profiles of crystalline and amorphous formulations. The Christ freeze-drying balance measured cumulative water loss, m(t), and instantaneous drying rate, m(t), of water, mannitol, sucrose and sucrose/BSA formulations in commercial vials. Crystalline mannitol shows drying rate behaviour indicative of a largely homogeneous dried-product layer. The drying rate behaviour of amorphous sucrose indicates structural heterogeneity, postulated to come from shrinkage or microcollapse. Trehalose dries more slowly than sucrose. Addition of BSA to either disaccharide decreases primary drying time. Higher vial packing density greatly reduces drying rate because of effects of radiation heat transfer from chamber walls to test vial. Plots of m(t) versus radical t and m(t) versus layer thickness (either ice or dried-product) allow interpretation of changes in internal cake morphology during drying. Vial packing density greatly influences these profiles.
NASA Astrophysics Data System (ADS)
Litwin, K. L.; Beyeler, J. D.; Polito, P. J.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G. C.
2009-12-01
The tensile strength of ice bedrock on Titan should strongly influence the effectiveness of the erosional processes responsible for carving the extensive fluvial drainage networks and other surface features visible in images returned by the Cassini and Huygens probes. Recent measurements of the effect of temperature on the tensile strength of low-porosity, polycrystalline ice, without impurities, suggest that ice bedrock at the Titan surface temperature of 93 K may be as much as five times stronger than ice at terrestrial surface temperatures. However, ice bedrock on Titan and other outer solar system bodies may have significant porosity, and impurities such silicates or polymers are possible in such ices. In this laboratory investigation we are exploring the dependence of tensile strength on the density and concentration of impurities, for polycrystalline ice across a wide range of temperatures. We use the Brazilian tensile splitting test to measure strength, and control temperature with dry ice and liquid nitrogen. The 50 mm diameter ice cores are made from a log-normally distributed seed crystal mixture with a median size of 1.4 mm. To control ice density and porosity we vary the packing density of the seed grains in core molds and vary the degree of saturation of the matrix with added near-freezing distilled water. We also vary ice density by blending in a similarly-sized mixture of angular fragments of two types of impurities, a fine-grained volcanic rock and a polyethylene polymer. Because both types of impurities have greater tensile strength than ice at Earth surface temperatures, we expect higher concentrations of impurities to correlate with increased strength for ice-rock and ice-polymer mixtures. However, at the ultra-cold temperatures of the outer planets, we expect significant divergence in the temperature dependence of ice tensile strength for the various mixtures and resulting densities. These measurements will help constrain the range of possible ice tensile strengths that might occur on Titan and other solar system bodies.
NASA Astrophysics Data System (ADS)
Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.
2016-08-01
We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.
49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2010 CFR
2010-10-01
... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...
49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2013 CFR
2013-10-01
... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...
49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2012 CFR
2012-10-01
... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...
49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2011 CFR
2011-10-01
... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...
49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2014 CFR
2014-10-01
... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...
49 CFR 173.217 - Carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...
49 CFR 173.217 - Carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...
49 CFR 173.217 - Carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...
49 CFR 173.217 - Carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...
49 CFR 173.217 - Carbon dioxide, solid (dry ice).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...
Dynamic Ocular Surface and Lacrimal Gland Changes Induced in Experimental Murine Dry Eye
Xiao, Bing; Wang, Yu; Reinach, Peter S.; Ren, Yueping; Li, Jinyang; Hua, Shanshan; Lu, Huihui; Chen, Wei
2015-01-01
Dry eye disease can be a consequence of lacrimal gland insufficiency in Sjögren’s Syndrome or increased tear film evaporation despite normal lacrimal gland function. To determine if there is a correlation between severity effects in these models and underlying pathophysiological responses, we compared the time dependent changes in each of these parameters that occur during a 6 week period. Dry eye was induced in 6-week-old female C57BL/6 mice by exposing them to an Intelligently Controlled Environmental System (ICES). Sixty mice were housed in ICES for 1, 2, 4 and 6 weeks respectively. Twelve were raised in normal environment and received subcutaneous injections of scopolamine hydrobromide (SCOP) 3 times daily for 5 days. Another sixty mice were housed in a normal environment and received no treatment. Corneal fluorescein staining along with corneal MMP-9 and caspase-3 level measurements were performed in parallel with the TUNEL assay. Interleukin-17(IL-17), IL-23, IL-6, IL-1, TNF-α, IFN-γ and TGF-β2 levels were estimated by real-time PCR measurements of conjunctival and lacrimal gland samples (LGs). Immunohistochemistry of excised LGs along with flow cytometry in cervical lymph nodes evaluated immune cell infiltration. Light and transmission electron microscopy studies evaluated LGs cytoarchitectural changes. ICES induced corneal epithelial destruction and apoptosis peaked at 2 weeks and kept stable in the following 4 weeks. In the ICES group, lacrimal gland proinflammatory cytokine level increases were much lower than those in the SCOP group. In accord with the lower proinflammatory cytokine levels, in the ICES group, lacrimal gland cytosolic vesicular density and size exceeded that in the SCOP group. ICES and SCOP induced murine dry eye effects became progressively more severe over a two week period. Subsequently, the disease process stabilized for the next four weeks. ICES induced local effects in the ocular surface, but failed to elicit lacrimal gland inflammation and cytoarchitectural changes, which accounts for less dry eye severity in the ICES model than that in the SCOP model. PMID:25590134
Dynamic ocular surface and lacrimal gland changes induced in experimental murine dry eye.
Xiao, Bing; Wang, Yu; Reinach, Peter S; Ren, Yueping; Li, Jinyang; Hua, Shanshan; Lu, Huihui; Chen, Wei
2015-01-01
Dry eye disease can be a consequence of lacrimal gland insufficiency in Sjögren's Syndrome or increased tear film evaporation despite normal lacrimal gland function. To determine if there is a correlation between severity effects in these models and underlying pathophysiological responses, we compared the time dependent changes in each of these parameters that occur during a 6 week period. Dry eye was induced in 6-week-old female C57BL/6 mice by exposing them to an Intelligently Controlled Environmental System (ICES). Sixty mice were housed in ICES for 1, 2, 4 and 6 weeks respectively. Twelve were raised in normal environment and received subcutaneous injections of scopolamine hydrobromide (SCOP) 3 times daily for 5 days. Another sixty mice were housed in a normal environment and received no treatment. Corneal fluorescein staining along with corneal MMP-9 and caspase-3 level measurements were performed in parallel with the TUNEL assay. Interleukin-17(IL-17), IL-23, IL-6, IL-1, TNF-α, IFN-γ and TGF-β2 levels were estimated by real-time PCR measurements of conjunctival and lacrimal gland samples (LGs). Immunohistochemistry of excised LGs along with flow cytometry in cervical lymph nodes evaluated immune cell infiltration. Light and transmission electron microscopy studies evaluated LGs cytoarchitectural changes. ICES induced corneal epithelial destruction and apoptosis peaked at 2 weeks and kept stable in the following 4 weeks. In the ICES group, lacrimal gland proinflammatory cytokine level increases were much lower than those in the SCOP group. In accord with the lower proinflammatory cytokine levels, in the ICES group, lacrimal gland cytosolic vesicular density and size exceeded that in the SCOP group. ICES and SCOP induced murine dry eye effects became progressively more severe over a two week period. Subsequently, the disease process stabilized for the next four weeks. ICES induced local effects in the ocular surface, but failed to elicit lacrimal gland inflammation and cytoarchitectural changes, which accounts for less dry eye severity in the ICES model than that in the SCOP model.
Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.
Geidobler, R; Winter, G
2013-10-01
In the scientific community as well as in commercial freeze-drying, controlled ice nucleation has received a lot of attention because increasing the ice nucleation temperature can significantly reduce primary drying duration. Furthermore, controlled ice nucleation enables to reduce the randomness of the ice nucleation temperature, which can be a serious scale-up issue during process development. In this review, fundamentals of ice nucleation in the field of freeze-drying are presented. Furthermore, the impact of controlled ice nucleation on product qualities is discussed, and methods to achieve controlled ice nucleation are presented. Copyright © 2013 Elsevier B.V. All rights reserved.
Unusual radar echoes from the Greenland ice sheet
NASA Technical Reports Server (NTRS)
Rignot, E. J.; Vanzyl, J. J.; Ostro, S. J.; Jezek, K. C.
1993-01-01
In June 1991, the NASA/Jet Propulsion Laboratory airborne synthetic-aperture radar (AIRSAR) instrument collected the first calibrated data set of multifrequency, polarimetric, radar observations of the Greenland ice sheet. At the time of the AIRSAR overflight, ground teams recorded the snow and firn (old snow) stratigraphy, grain size, density, and temperature at ice camps in three of the four snow zones identified by glaciologists to characterize four different degrees of summer melting of the Greenland ice sheet. The four snow zones are: (1) the dry-snow zone, at high elevation, where melting rarely occurs; (2) the percolation zone, where summer melting generates water that percolates down through the cold, porous, dry snow and then refreezes in place to form massive layers and pipes of solid ice; (3) the soaked-snow zone where melting saturates the snow with liquid water and forms standing lakes; and (4) the ablation zone, at the lowest elevations, where melting is vigorous enough to remove the seasonal snow cover and ablate the glacier ice. There is interest in mapping the spatial extent and temporal variability of these different snow zones repeatedly by using remote sensing techniques. The objectives of the 1991 experiment were to study changes in radar scattering properties across the different melting zones of the Greenland ice sheet, and relate the radar properties of the ice sheet to the snow and firn physical properties via relevant scattering mechanisms. Here, we present an analysis of the unusual radar echoes measured from the percolation zone.
NASA Astrophysics Data System (ADS)
Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian
2011-10-01
Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al 2O 3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.
Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds
Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon
2013-01-01
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908
Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.
Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon
2013-12-17
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.
Poly(Amide-imide) Aerogel Materials Produced via an Ice Templating Process
Gawryla, Matthew D.; Arndt, Eric M.
2018-01-01
Low density composites of sodium montmorillonite and poly(amide-imide) polymers have been created using an ice templating method, which serves as an alternative to the often-difficult foaming of high temperature/high performance polymers. The starting polymer was received in the poly(amic acid) form which can be cured using heat, into a water insoluble amide-imide copolymer. The resulting materials have densities in the 0.05 g/cm3 range and have excellent mechanical properties. Using a tertiary amine as a processing aid provides for lower viscosity and allows more concentrated polymer solutions to be used. The concentration of the amine relative to the acid groups on the polymer backbone has been found to cause significant difference in the mechanical properties of the dried materials. The synthesis and characterization of low density versions of two poly(amide-imide) polymers and their composites with sodium montmorillonite clay are discussed in the present work. PMID:29401663
Poly(Amide-imide) Aerogel Materials Produced via an Ice Templating Process.
Gawryla, Matthew D; Arndt, Eric M; Sánchez-Soto, Miguel; Schiraldi, David A
2018-02-03
Low density composites of sodium montmorillonite and poly(amide-imide) polymers have been created using an ice templating method, which serves as an alternative to the often-difficult foaming of high temperature/high performance polymers. The starting polymer was received in the poly(amic acid) form which can be cured using heat, into a water insoluble amide-imide copolymer. The resulting materials have densities in the 0.05 g/cm³ range and have excellent mechanical properties. Using a tertiary amine as a processing aid provides for lower viscosity and allows more concentrated polymer solutions to be used. The concentration of the amine relative to the acid groups on the polymer backbone has been found to cause significant difference in the mechanical properties of the dried materials. The synthesis and characterization of low density versions of two poly(amide-imide) polymers and their composites with sodium montmorillonite clay are discussed in the present work.
A New Method for the Determination of Annual Sediment Fluxes from Varved Lake Sediments
NASA Astrophysics Data System (ADS)
Francus, P.; Massa, C.; Lapointe, F.
2013-12-01
Calculation of sediment mass accumulation rates instead of thickness accumulation is preferable for paleoclimatic reconstruction as it eliminates the effects of dilution and compaction. Annually laminated lake sediment sequences (varved) theoretically allow for the estimation of sediment fluxes at annual scale, but the calculation is limited by discrete bulk density measurements, often carried out at a much lower resolution (usually 1 cm) than the varves (ranging from 0.07 to 27.3 mm, average 1.84 mm according to Ojala et al. 2012). Since many years the development of automated logging instruments made available continuous and high resolution sediment property data, in a non-destructive fashion. These techniques can easily be used to extract the physical and chemical parameters of sediments at the varve scale (down to 100 μm). Here we present a robust method to calculate annual sediment fluxes from varved lake sediments by combining varves thickness measurements to core logging data, and provide an example for its applications. Several non-destructive densitometric methods applied to the Strathcona Lake sediment, northern Ellesmere Island, Canada (78°33'N; 82°05'W) were compared: Hounsfield Units from a CT-Scan, coherent/incoherent ratio and X-ray radiography (of both split core and sediment slabs, from an Itrax core Scanner), and gamma ray attenuation density. Core logging data were statistically compared to 400 discrete measurements of dry bulk density, wet bulk density and water content performed at 2 mm contiguous intervals. A very strong relationship was found between X-ray grey level on sediment slab and dry bulk density. Relative X-ray densities, at 100μm resolution, were then successfully calibrated against real densities. The final step consisted in binning the calibrated densities to the corresponding varve thickness and then to calculate the annual mass accumulation rates by multiplying the two parameters for each varve year. Strathcona Lake is located directly downstream of the Agassiz ice cap and contains laminated sediments whose accumulation is directly related to hydrological inputs generated by the melting of the ice cap. Over the last 65 years, annual sediment accumulation rates in Strathcona Lake documented an increase in high-energy hydrologic discharge events from 1990 to 2009. This timing is in agreement with evidence for an increase in the amount of melt on the adjacent Agassiz Ice Cap, as recorded in ice cores. A good correspondence was also found between annual mass accumulation rates and Eureka air temperature records, suggesting that temperature changes affected the extent of summer melting on the Agassiz Ice Cap, leading to high sediment yield to Strathcona Lake. Ojala, A.E.K., Francus, P., Zolitschka, B., Besonen, M. and Lamoureux, S.F. (2012) Characteristics of sedimentary varve chronologies - A review. Quaternary Science Reviews, 43, 45-60.
Bench Remarks: Carbon Dioxide.
ERIC Educational Resources Information Center
Bent, Henry A.
1987-01-01
Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)
49 CFR 173.196 - Category A infectious substances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... refrigerated or frozen (ice, pre-frozen packs, dry ice). Ice, dry ice, or other refrigerant must be placed... the secondary packaging must maintain their integrity at the temperature of the refrigerant used, as...
2013-06-11
Serina Diniega, JPL Systems Engineer, describes the discovery that Martian gullies that end in pits rather than fan deltas are likely caused by block of frozen carbon dioxide (dry ice) sliding down slopes on a cushion of carbon dioxide gas. The pits are formed as the "dry ice" sublimates away.
Collisions with ice-volatile objects: Geological implications
NASA Technical Reports Server (NTRS)
Wilde, P.; Quinby-Hunt, M. S.; Berry, W. B. N.
1988-01-01
The collision of the Earth with extra-terrestrial ice-volatile bodies is proposed as a mechanism to produce rapid changes in the geologic record. These bodies would be analogs of the ice satellites found for the Jovian planets and suspected for comets and certain low density bodies in the Asteroid belt. Five generic end-members are postulated: (1) water ice; (2) dry ice: carbon-carbon dioxide rich, (3) oceanic (chloride) ice; (4) sulfur-rich ice; (5) ammonia hydrate-rich ice; and (6) clathrate: methane-rich ice. Due to the volatile nature of these bodies, evidence for their impact with the Earth would be subtle and probably best reflected geochemically or in the fossil record. Actual boloids impacting the Earth may have a variable composition, generally some admixture with water ice. However for discussion purposes, only the effects of a dominant component will be treated. The general geological effects of such collisions, as a function of the dominant component would be: (1) rapid sea level rise unrelated to deglaciation, (2) decreased oceanic pH and rapid climatic warming or deglaciation; (3) increased paleosalinities; (4) increased acid rain; (5) increased oceanic pH and rapid carbonate deposition; and (6) rapid climatic warming or deglaciation.
Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.
Goshima, Hiroshika; Do, Gabsoo; Nakagawa, Kyuya
2016-06-01
It has been known that the sublimation kinetics of a freeze-drying product is affected by its internal ice crystal microstructures. This article demonstrates the impact of the ice morphologies of a frozen formulation in a vial on the design space for the primary drying of a pharmaceutical freeze-drying process. Cross-sectional images of frozen sucrose-bovine serum albumin aqueous solutions were optically observed and digital pictures were acquired. Binary images were obtained from the optical data to extract the geometrical parameters (i.e., ice crystal size and tortuosity) that relate to the mass-transfer resistance of water vapor during the primary drying step. A mathematical model was used to simulate the primary drying kinetics and provided the design space for the process. The simulation results predicted that the geometrical parameters of frozen solutions significantly affect the design space, with large and less tortuous ice morphologies resulting in wide design spaces and vice versa. The optimal applicable drying conditions are influenced by the ice morphologies. Therefore, owing to the spatial distributions of the geometrical parameters of a product, the boundary curves of the design space are variable and could be tuned by controlling the ice morphologies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Neptune's Triton: A moon rich in dry ice and carbon
NASA Technical Reports Server (NTRS)
Prentice, A. J. R.
1989-01-01
The encounter of the spacecraft Voyager 2 with Neptune and its large satellite Triton in August 1989 will provide a crucial test of ideas regarding the origin and chemical composition of the outer solar system. In this pre-encounter publication, the possibility is quantified that Titron is a captured moon which, like Pluto and Charon, originally condensed as a major planetesimal within the gas ring that was shed by the contracting protosolar cloud at Neptune's orbit. Ideas of supersonic convective turbulence are used to compute the gas pressure, temperature and rat of catalytic synthesis of CH4, CO2, and C(s) within the protosolar cloud, assuming that all C is initially present as CO. The calculations lead to a unique composition for Triton, Pluto, Charon: each body consists of, by mass, 18 1/2 percent solid CO2 ice, 4 percent graphite, 1/2 percent CH4 ice, 29 percent methanated water ice and 48 percent of anhydrous rock. This mix has a density consistent with that of the Pluto-Charon system and yields a predicted mean density for Triton of 2.20 + or - 0.5 g/cu cm, for satellite radius equal to 1,750 km.
Mobility of icy sand packs, with application to Martian permafrost
Durham, W.B.; Pathare, A.V.; Stern, L.A.; Lenferink, H.J.
2009-01-01
[1] The physical state of water on Mars has fundamental ramifications for both climatology and astrobiology. The widespread presence of "softened" Martian landforms (such as impact craters) can be attributed to viscous creep of subsurface ground ice. We present laboratory experiments designed to determine the minimum amount of ice necessary to mobilize topography within Martian permafrost. Our results show that the jammed-to-mobile transition of icy sand packs neither occurs at fixed ice content nor is dependent on temperature or stress, but instead correlates strongly with the maximum dry packing density of the sand component. Viscosity also changes rapidly near the mobility transition. The results suggest a potentially lower minimum volatile inventory for the impact-pulverized megaregolith of Mars. Furthermore, the long-term preservation of partially relaxed craters implies that the ice content of Martian permafrost has remained close to that at the mobility transition throughout Martian history. Copyright 2009 by the American Geophysical Union.
Centuries of intense surface melt on Larsen C Ice Shelf
NASA Astrophysics Data System (ADS)
Bevan, Suzanne L.; Luckman, Adrian; Hubbard, Bryn; Kulessa, Bernd; Ashmore, David; Kuipers Munneke, Peter; O'Leary, Martin; Booth, Adam; Sevestre, Heidi; McGrath, Daniel
2017-12-01
Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula (AP), Larsen C Ice Shelf (LCIS) has become the focus of ongoing investigation regarding its future stability. The ice shelf experiences surface melt and commonly features surface meltwater ponds. Here, we use a flow-line model and a firn density model (FDM) to date and interpret observations of melt-affected ice layers found within five 90 m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal dry compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice measured in two boreholes in Cabinet Inlet, which is close to the Antarctic Peninsula mountains - a region affected by föhn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flow-line model shows that, whilst preconditioning of the snow began in the late 1960s, it was probably not until the early 1990s that the modern period of ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, at 61 m in one of our Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, at 69 m in a mid-shelf borehole, formed at the same time on the edge of the pond area. Further south, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west-east and north-south gradient in the past melt distribution resembles current spatial patterns of surface melt intensity.
Gao, Yang; Couwenberg, John
2015-02-01
Ice-wedge polygon peatlands contain a substantial part of the carbon stored in permafrost soils. However, little is known about their long-term carbon accumulation rates (CAR) in relation to shifts in vegetation and climate. We collected four peat profiles from one single polygon in NE Yakutia and cut them into contiguous 0.5 cm slices. Pollen density interpolation between AMS (14)C dated levels provided the time span contained in each of the sample slices, which--in combination with the volumetric carbon content--allowed for the reconstruction of CAR over decadal and centennial timescales. Vegetation representing dry palaeo-ridges and wet depressions was reconstructed with detailed micro- and macrofossil analysis. We found repeated shifts between wet and dry conditions during the past millennium. Dry ridges with associated permafrost growth originated during phases of (relatively) warm summer temperature and collapsed during relatively cold phases, illustrating the important role of vegetation and peat as intermediaries between ambient air temperature and the permafrost. The average long-term CAR across the four profiles was 10.6 ± 5.5 g C m(-2) yr(-1). Time-weighted mean CAR did not differ significantly between wet depression and dry ridge/hummock phases (10.6 ± 5.2 g C m(-2) yr(-1) and 10.3 ± 5.7 g C m(-2) yr(-1), respectively). Although we observed increased CAR in relation to warm shifts, we also found changes in the opposite direction and the highest CAR actually occurred during the Little Ice Age. In fact, CAR rather seems to be governed by strong internal feedback mechanisms and has roughly remained stable on centennial time scales. The absence of significant differences in CAR between dry ridge and wet depression phases suggests that recent warming and associated expansion of shrubs will not affect long-term rates of carbon burial in ice-wedge polygon peatlands. © 2014 John Wiley & Sons Ltd.
Abdussamad, A M; Gauly, M; Holtz, W
2015-01-01
Two experiments were conducted. The purpose of Experiment 1 was to investigate whether viability of bovine semen stored in liquid nitrogen (-196°C) will be adversely affected by temporary exposure to dry ice (-79°C). It was convincingly shown that post thaw-motility was not affected, regardless whether semen was thawed immediately or after being returned to liquid nitrogen. Shipping or temporary storage on dry ice, thus, is a viable option. In Experiment 2, refreezing of frozen-thawed semen was attempted. The proportion of motile spermatozoa was reduced by a factor of ten to between 6.0 % and 7.4 %, regardless whether thawing occurred directly after removal from liquid nitrogen or after an interim period on dry ice. When semen was refrozen on dry ice before being returned to liquid nitrogen, motility rates were significantly improved (13.0 % to 17.0 %, P<0.05). In both experiments sperm cells that remained motile displayed vigorous forward movement and normal morphological appearance.
The effects of storing and transporting cryopreserved semen samples on dry ice.
Til, David; Amaral, Vera L L; Salvador, Rafael A; Senn, Alfred; Paula, Thais S de
2016-12-01
This study aimed to test the effects on sperm viability of transporting cryopreserved semen samples on dry ice. Twenty normozoospermic semen samples were cryopreserved and divided into five groups. The samples in Group 1 were immersed in liquid nitrogen throughout the experiment in cryogenic storage tanks; the cryopreserved straws in Group 2 were placed in a Styrofoam box containing dry ice and kept under these conditions for 48 hours; the samples in Group 3 were kept for 48 hours on dry ice under the same conditions as the Group 2 samples, and were then moved to a storage tank filled with liquid nitrogen; Group 4 samples were also kept for 48 hours in dry ice storage, and the Styrofoam box containing the samples was shipped by plane to assess the effects of shipping; the samples in Group 5 were shipped together with the Group 4 samples and were placed in a storage tank with liquid nitrogen after spending 48 hours stored on dry ice. After thawing, sperm parameters were analyzed for viability, vitality, and motility; spermatozoa were also tested for mitochondrial activity. Significant decreases in motility recovery rates (P=0.01) and vitality (P=0.001) were observed in all groups when compared to the control group. Mitochondrial activity was significantly decreased only in Group 5 (P=0.04), as evidenced by greater numbers of sperm cells not stained by reagent 3,3'-diaminobenzidine. Transportation did not affect the quality of cryopreserved semen samples, but dry ice as a means to preserve the samples during transportation had detrimental effects upon the sperm parameters assessed in this study.
Application of ozonated dry ice (ALIGAL™ Blue Ice) for packaging and transport in the food industry.
Fratamico, Pina M; Juneja, Vijay; Annous, Bassam A; Rasanayagam, Vasuhi; Sundar, M; Braithwaite, David; Fisher, Steven
2012-05-01
Dry ice is used by meat and poultry processors for temperature reduction during processing and for temperature maintenance during transportation. ALIGAL™ Blue Ice (ABI), which combines the antimicrobial effect of ozone (O(3)) along with the high cooling capacity of dry ice, was investigated for its effect on bacterial reduction in air, in liquid, and on food and glass surfaces. Through proprietary means, O(3) was introduced to produce dry ice pellets to a concentration of 20 parts per million (ppm) by total weight. The ABI sublimation rate was similar to that of dry ice pellets under identical conditions, and ABI was able to hold the O(3) concentration throughout the normal shelf life of the product. Challenge studies were performed using different microorganisms, including E. coli, Campylobacter jejuni, Salmonella, and Listeria, that are critical to food safety. ABI showed significant (P < 0.05) microbial reduction during bioaerosol contamination (up to 5-log reduction of E. coli and Listeria), on chicken breast (approximately 1.3-log reduction of C. jejuni), on contact surfaces (approximately 3.9 log reduction of C. jejuni), and in liquid (2-log reduction of C. jejuni). Considering the stability of O(3), ease of use, and antimicrobial efficacy against foodborne pathogens, our results suggest that ABI is a better alternative, especially for meat and poultry processors, as compared to dry ice. Further, ABI can potentially serve as an additional processing hurdle to guard against pathogens during processing, transportation, distribution, and/or storage. © 2012 Institute of Food Technologists®
Microbiological quality of cuttlefish (Sepia pharaonis) fillets stored in dry and wet ice.
Jeyasekaran, G; Jeya Shakila, R; Sukumar, D
2012-10-01
Microbiological quality of cuttlefish (Sepia pharaonis) fillets stored in three different ice conditions was studied. Fillets stored in wet ice at a ratio of 1:1 (package III) were sensorially acceptable for only 18 h, while that stored in dry ice at 1:1 (package I) and combination of dry ice and wet ice at 1:0.2:0.5 (package II) were in acceptable condition up to 24 h without re-icing and thus there was an extension of shelf life by about 33%. Total bacterial load was 7 log₁₀ cfu/g at the end of the storage period. Total psychrophilic population increased from zero to 7 log₁₀ cfu/g while total lactic acid bacteria from zero to 5 log₁₀ cfu/g. H₂S producers were detected only at 18 h, with a count of 1 log₁₀ cfu/g. Sulphite-reducing Clostridia increased gradually from zero to 110 most probable number count/g. Fresh cuttlefish fillets carried a bacterial flora of Micrococcus, Planococcus, Streptococcus, Moraxella, Proteus and Aeromonas. Pseudomonas was dominant in wet ice pack, while Aeromonas was dominant in both the dry ice and combination pack. Immediately after packing, the temperatures recorded in packages I, II and III were 10.5, 1.2 and 3.0 °C, respectively, which drastically decreased in 1 h and then maintained and finally increased gradually. The results indicate that use of combination of dry ice and wet ice is economical and very much useful to seafood industries, as this package considerably reduced the cost of air freight, as well as improved the quality and shelf life of cuttlefish.
The effects of storing and transporting cryopreserved semen samples on dry ice
Til, David; Amaral, Vera L L; Salvador, Rafael A; Senn, Alfred; de Paula, Thais S
2016-01-01
Objective This study aimed to test the effects on sperm viability of transporting cryopreserved semen samples on dry ice. Methods Twenty normozoospermic semen samples were cryopreserved and divided into five groups. The samples in Group 1 were immersed in liquid nitrogen throughout the experiment in cryogenic storage tanks; the cryopreserved straws in Group 2 were placed in a Styrofoam box containing dry ice and kept under these conditions for 48 hours; the samples in Group 3 were kept for 48 hours on dry ice under the same conditions as the Group 2 samples, and were then moved to a storage tank filled with liquid nitrogen; Group 4 samples were also kept for 48 hours in dry ice storage, and the Styrofoam box containing the samples was shipped by plane to assess the effects of shipping; the samples in Group 5 were shipped together with the Group 4 samples and were placed in a storage tank with liquid nitrogen after spending 48 hours stored on dry ice. After thawing, sperm parameters were analyzed for viability, vitality, and motility; spermatozoa were also tested for mitochondrial activity. Results Significant decreases in motility recovery rates (P=0.01) and vitality (P=0.001) were observed in all groups when compared to the control group. Mitochondrial activity was significantly decreased only in Group 5 (P=0.04), as evidenced by greater numbers of sperm cells not stained by reagent 3,3'-diaminobenzidine. Conclusions Transportation did not affect the quality of cryopreserved semen samples, but dry ice as a means to preserve the samples during transportation had detrimental effects upon the sperm parameters assessed in this study. PMID:28050956
Searles, J A; Carpenter, J F; Randolph, T W
2001-07-01
The objective of this study was to determine the influence of ice nucleation temperature on the primary drying rate during lyophilization for samples in vials that were frozen on a lyophilizer shelf. Aqueous solutions of 10% (w/v) hydroxyethyl starch were frozen in vials with externally mounted thermocouples and then partially lyophilized to determine the primary drying rate. Low- and high-particulate-containing samples, ice-nucleating additives silver iodide and Pseudomonas syringae, and other methods were used to obtain a wide range of nucleation temperatures. In cases where the supercooling exceeded 5 degrees C, freezing took place in the following three steps: (1) primary nucleation, (2) secondary nucleation encompassing the entire liquid volume, and (3) final solidification. The primary drying rate was dependent on the ice nucleation temperature, which is stochastic in nature but is affected by particulate content and the presence of ice nucleators. Sample cooling rates of 0.05 to 1 degrees C/min had no effect on nucleation temperatures and drying rate. We found that the ice nucleation temperature is the primary determinant of the primary drying rate. However, the nucleation temperature is not under direct control, and its stochastic nature and sensitivity to difficult-to-control parameters result in drying rate heterogeneity. Nucleation temperature heterogeneity may also result in variation in other morphology-related parameters such as surface area and secondary drying rate. Overall, these results document that factors such as particulate content and vial condition, which influence ice nucleation temperature, must be carefully controlled to avoid, for example, lot-to-lot variability during cGMP production. In addition, if these factors are not controlled and/or are inadvertently changed during process development and scaleup, a lyophilization cycle that was successful on the research scale may fail during large-scale production.
A Bridge Too Far: Suppressing Frost Using an Out-of-Plane Dry Zone
NASA Astrophysics Data System (ADS)
Spohn, Corey; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan
2017-11-01
It has recently been shown that ice can suppress the formation of any nearby condensation or frost on a substrate. However, these in-plane dry zones require the hygroscopic ice features to be placed on the same surface they are helping to keep dry, which makes it impossible to achieve complete anti-frosting. Here, we create an out-of-plane dry zone by holding two aluminum surfaces parallel to each other, where a uniform sheet of frost was grown on one surface to keep the other surface completely dry. The critical separation required to keep the test surface dry was found to be a function of the ambient supersaturation. We also show that inter-droplet ice bridging, now known to be a primary mechanism for in-plane frost growth, can be similarly extended to an out-of-plane configuration. We freeze a droplet on a hydrophobic surface and suspend a water droplet above it, such that an ice bridge grows toward the water droplet. More generally, these findings show that the recently discovered phenomena of dry zones and ice bridging can be extended to out-of-plane scenarios, which could lead to a better understanding of the behavior of mixed-phase systems. This work was supported by the National Science Foundation (CBET-1604272) and by the 3M Company (Non-Tenured Faculty Award).
Prediction of dry ice mass for firefighting robot actuation
NASA Astrophysics Data System (ADS)
Ajala, M. T.; Khan, Md R.; Shafie, A. A.; Salami, MJE; Mohamad Nor, M. I.
2017-11-01
The limitation in the performance of electric actuated firefighting robots in high-temperature fire environment has led to research on the alternative propulsion system for the mobility of firefighting robots in such environment. Capitalizing on the limitations of these electric actuators we suggested a gas-actuated propulsion system in our earlier study. The propulsion system is made up of a pneumatic motor as the actuator (for the robot) and carbon dioxide gas (self-generated from dry ice) as the power source. To satisfy the consumption requirement (9cfm) of the motor for efficient actuation of the robot in the fire environment, the volume of carbon dioxide gas, as well as the corresponding mass of the dry ice that will produce the required volume for powering and actuation of the robot, must be determined. This article, therefore, presents the computational analysis to predict the volumetric requirement and the dry ice mass sufficient to power a carbon dioxide gas propelled autonomous firefighting robot in a high-temperature environment. The governing equation of the sublimation of dry ice to carbon dioxide is established. An operating time of 2105.53s and operating pressure ranges from 137.9kPa to 482.65kPa were achieved following the consumption rate of the motor. Thus, 8.85m3 is computed as the volume requirement of the CAFFR while the corresponding dry ice mass for the CAFFR actuation ranges from 21.67kg to 75.83kg depending on the operating pressure.
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.
Optimal cooling strategies for players in Australian Tennis Open conditions.
Lynch, Grant P; Périard, Julien D; Pluim, Babette M; Brotherhood, John R; Jay, Ollie
2018-03-01
We compared the utility of four cooling interventions for reducing heat strain during simulated tennis match-play in an environment representative of the peak conditions possible at the Australian Open (45°C, <10% RH, 475W/m 2 solar radiation). Nine trained males undertook four trials in a climate chamber, each time completing 4 sets of simulated match-play. During ITF-mandated breaks (90-s between odd-numbered games; 120-s between sets), either iced towels (ICE), an electric fan (FAN dry ), a fan with moisture applied to the skin (FAN wet ), or ad libitum 10°C water ingestion only (CON) was administered. Rectal temperature (T re ), mean skin temperature (T sk ), heart rate (HR), thermal sensation (TS), perceived exertion (RPE) and whole body sweating (WBSR) were measured. After set 3, T re was lower in ICE (38.2±0.3°C) compared to FAN dry (38.7±0.5°C; p=0.02) and CON (38.5±0.5°C; p=0.05), while T re in FAN wet (38.2±0.3°C) was lower than FAN dry (p=0.05). End-exercise T re was lower in ICE (38.1±0.3°C) and FAN wet (38.2±0.4°C) than FAN dry (38.9±0.7°C; p<0.04) and CON (38.8±0.5°C; p<0.04).T sk for ICE (35.3±0.8°C) was lower than all conditions, and T sk for FAN wet (36.6±1.1°C) was lower than FAN dry (38.1±1.3°C; p<0.05). TS for ICE and FAN wet were lower than CON and FAN dry (p<0.05). HR was suppressed in ICE and FAN wet relative to CON and FAN dry (p<0.05). WBSR was greater in FAN dry compared to FAN wet (p<0.01) and ICE (p<0.001). Fan use must be used with skin wetting to be effective in hot/dry conditions. This strategy and the currently recommended ICE intervention both reduced T re by ∼0.5-0.6°C and T sk by ∼1.0-1.5°C while mitigating rises in HR and TS. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Pitting from Sublimation of Underlying Dry-Ice Layer
2011-04-21
NASA Mars Reconnaissance Orbiter took these images of an area near Mars south pole where coalescing or elongated pits are interpreted as signs of an underlying deposit of frozen carbon dioxide, or dry ice.
NASA Astrophysics Data System (ADS)
Lines, A.; Elliott, J.; Ray, L.; Albert, M. R.
2017-12-01
Understanding the surface mass balance (SMB) of the Greenland ice sheet is critical to evaluating its response to a changing climate. A key factor in translating satellite and airborne elevation measurements of the ice sheet to SMB is understanding natural variability of firn layer depth and the relative compaction rate of these layers. A site near Summit Station, Greenland was chosen to investigate the variation in layering across a 100m by 100m grid using a 900 MHz and a 2.6 GHz ground penetrating radar (GPR) antenna. These radargrams were ground truthed by taking depth density profiles of five 2m snow pits and five 5m firn cores within the 100m by 100m grid. Combining these measurements with the accumulation data from the nearby ICECAPS weekly bamboo forest measurements, it's possible to see how the snow deposition from individual storm events can vary over a small area. Five metal reflectors were also placed on the surface of the snow in the bounds of the grid to serve as reference reflectors for similar measurements that will be taken in the 2018 field season at Summit Station. This will assist in understanding how one year of accumulation in the dry snow zone impacts compaction and how this rate can vary over a small area.
Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.
Patel, Sajal M; Bhugra, Chandan; Pikal, Michael J
2009-01-01
A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure Ice Fog Technique" is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.
Ice Accretions and Icing Effects for Modern Airfoils
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.
2000-01-01
Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.
The jammed-to-mobile transition in frozen sand under stress
NASA Astrophysics Data System (ADS)
Durham, W. B.; Pathare, A.; Stern, L. A.; Lenferink, H. J.
2009-12-01
We conducted laboratory deformation experiments on sand-rich mixtures of sand + ice under sufficient confinement to inhibit macroscopic dilation. Dry sand packs constrained not to dilate when they are under a shearing load reach an immobile or “jammed” state, as load-supporting “force chains” of sand particles form after a small amount of strain and cannot be broken without volume expansion. Our research objective here was to find the minimum volume fraction of ice required to overcome the jammed state. The result surprised us: the required volume fraction is not a fixed number, but depends on the packing characteristics of the sand in question. Experiments were carried out in a triaxial gas deformation rig at confining pressures (60 - 200 MPa) always at least twice the level of differential stresses (11 - 50 MPa) in order to suppress dilatancy. Run temperatures were 223 - 243 K. We used two kinds of quartz sand, one well-sorted, with a maximum dry packing density (MDPD) of about 0.68 sand by volume, and the other a mixture of two sizes, having a higher MDPD of 0.75. Ice volume fraction ranged from well below saturation (where unfilled porosity necessarily remained) to slightly greater than the value of porosity at MDPD. We tested these frozen sands in compression under constant applied differential stress (creep). Strain rates were very low at these conditions, and runs took days or weeks to complete. The amount of strain required to reach the jammed state in ice-undersaturated samples was approximately 0.04, and did not show an obvious dependence on ice content. For both sands, the onset of mobility occurred at approximately 5% above the value of pore volume at MDPD. Furthermore, viscosity of mobile frozen sand near the transition point was extremely sensitive to ice fraction, which implies that at geologic strain rates, far slower than we can reach in the lab, the ice fraction at transition may lie closer to that at MDPD. Cryogenic scanning electron microscopy shows that fracturing of sand grains occurs in ice-undersaturated samples, but gradually disappears as saturation is reached. There are no fractured sand grains in deforming mobile frozen sand packs. One application of this work is to the regolith of Mars at mid-latitudes and poleward, where significant ice is expected to be present. Partially relaxed (“softened”) landforms such as craters require the presence of ice, but also suggest strengths far higher than that of ice. The extreme sensitivity of viscosity to ice content near the mobility boundary, and the near coincidence of mobility and saturation at MDPD together suggest a plausible explanation for partial landform softening on Mars that does not require a fortuitous ice content or an unrealistically brief period of saturation; namely, that the water content of the Martian regolith lies at or near saturation. If true, we can estimate the historical water content of the Martian regolith for reasonable soil densities as being between 120 and 240 global meters of water for the upper kilometer of crust. This is somewhat lower than previous estimates.
Formation of Pluto's moons: the fission hypothesis revisited
NASA Astrophysics Data System (ADS)
Prentice, A. J.
2015-12-01
I re-examine the fission hypothesis for the formation of Pluto's moons within the framework of a gas ring model for the origin of the solar system (Prentice 1978 Moon Planets 19 341; 2015 LPSC, abs. 2664). It is supposed that the planetary system condensed from a concentric family of orbiting gas rings. These were cast off by the proto-solar cloud (PSC) as a means for disposing of excess spin angular momentum during gravitational contraction. If contraction is homologous, the mean orbital radii R(n) (n = 0,1,2,3,..) of the rings form a nearly geometric sequence. The temperatures T(n) of the rings scale roughly as T(n) = A/R(n) and the gas pressures p(n) on the gas ring mean orbits scale as p(n) = B/R(n)^4. The constants A & B are chosen so that (1) the geometric mean of the ratio R(n+1)/R(n) of successive gas ring radii from Jupiter to Mercury matches the observed mean ratio of planetary distances and (2) that the metal mass fraction at Mercury's orbit, namely 0.70, yields a planet whose mean density equals the observed value (Prentice 2008, LPSC abs. 1945.pdf). I assume that proto-Pluto (PPO) condensed within the n = 0 gas ring shed by the PSC at the orbit of Quaoar (43.2 AU). Here T(0) = 26.3 K and p(0) = 1.3 x 10^(-9) bar. The condensate consists of anhydrous rock (mass fraction 0.5255), graphite (0.0163), water ice (0.1858), dry ice (0.2211), and methane ice (0.0513). The RTP rock density is 3.662 g/cc. I assume that melting of the ices in the PPO took place through the decay of short-lived radioactive nuclides, causing internal segregation of rock & graphite. If rotational fission did occur and Pluto's moons formed from ejected liquid water and CO2, we get a Charon mean density of 1.24 g/cc. This is much lower than the observed value. Perhaps some of the rock and graphite became entrained in the fissioned liquid, so yielding a dense core for Charon of mass fraction ~0.4? In any event, the surfaces of all of the moons should have initially been football-shaped, very smooth and consist solely of water ice. As there is no outward migration of the major planets in the gas ring model, the risk of impact bombardment is minimal. Most likely, subsequent tidal action between Pluto and Charon produced the chasms that girdle the equator of Charon (Barr & Collins 2015). I predict that New Horizons will detect dry ice in those parts of Hydra that have been gouged by impacts.
Mars: Periglacial Morphology and Implications for Future Landing Sites
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer L.; Schurmeier, Lauren; McKay, Christopher; Davila, Alfonso; Stoker, Carol; Marinova, Margarita; Wilhelm, Mary Beth
2015-01-01
At the Mars Phoenix landing site and in much of the Martian northern plains, there is ice-cemented ground beneath a layer of dry permafrost. Unlike most permafrost on Earth, though, this ice is not liquid at any time of year. However, in past epochs at higher obliquity the surface conditions during summer may have resulted in warmer conditions and possible melting. This situation indicates that the ice-cemented ground in the north polar plains is likely to be a candidate for the most recently habitable place on Mars as near-surface ice likely provided adequate water activity approximately 5 Myr ago. The high elevation Dry Valleys of Antarctica provide the best analog on Earth of Martian ground ice. These locations are the only places on Earth where ice-cemented ground is found beneath dry permafrost. The Dry Valleys are a hyper-arid polar desert environment and in locations above 1500 m elevation, such as University Valley, air temperatures do not exceed 0 C. Thus, similarly to Mars, liquid water is largely absent here and instead the hydrologic cycle is dominated by frozen ice and vapor phase processes such as sublimation. These conditions make the high elevation Dry Valleys a key Mars analog location where periglacial processes and geomorphic features can be studied in situ. This talk will focus on studies of University Valley as a Mars analog for periglacial morphology and ice stability. We will review a landing site selection study encompassing this information gleaned from the Antarctic terrestrial analog studies plus Mars spacecraft data analysis to identify candidate landing sites for a future mission to search for life on Mars.
2017-01-24
NASA Mars Reconnaissance Orbiter spies a layer of dry ice covering Mars south polar layer. In the spring, gas created from heating of the dry ice escapes through ruptures in the overlying seasonal ice, entraining material from the ground below. The gas erodes channels in the surface, generally exploiting weaker material. The ground likely started as polygonal patterned ground (common in water-ice-rich surfaces), and then escaping gas widened the channels. Fans of dark material are bits of the surface carried onto the top of the seasonal ice layer and deposited in a direction determined by local winds. http://photojournal.jpl.nasa.gov/catalog/PIA11706
Ice nucleation temperature influences recovery of activity of a model protein after freeze drying.
Cochran, Teresa; Nail, Steven L
2009-09-01
The objective of this study was to determine whether a relationship exists between ice nucleation temperature and recovery of activity of a model protein, lactate dehydrogenase, after freeze drying. Aqueous buffer systems containing 50 microg/mL of protein were frozen in vials with externally mounted thermocouples on the shelf of a freeze dryer, then freeze dried. Various methods were used to establish a wide range of ice nucleation temperatures. An inverse relationship was found between the extent of supercooling during freezing and recovery of activity in the reconstituted solution. The data are consistent with a mechanism of inactivation resulting from adsorption of protein at the ice/freeze-concentrate interface during the freezing process.
2014-09-30
Institution The Scottish Association for Marine Science tmaksym@whoi.edu Phil.Hwang@sams.ac.uk LONG-TERM GOALS This DRI TECHNICAL PROGRAM (Emerging...jpw28@bas.ac.uk tmaksym@whoi.edu Co-PRINCIPAL INVESTIGATOR: Byongjun (Phil) Hwang The Scottish Association for Marine Science Phil.Hwang@sams.ac.uk 2
Forces Generated by High Velocity Impact of Ice on a Rigid Structure
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Padula, Santo A., II; Revilock, Duane M.; Melis, Matthew E.
2006-01-01
Tests were conducted to measure the impact forces generated by cylindrical ice projectiles striking a relatively rigid target. Two types of ice projectiles were used, solid clear ice and lower density fabricated ice. Three forms of solid clear ice were tested: single crystal, poly-crystal, and "rejected" poly-crystal (poly-crystal ice in which defects were detected during inspection.) The solid ice had a density of approximately 56 lb/cu ft (0.9 gm/cu cm). A second set of test specimens, termed "low density ice" was manufactured by molding shaved ice into a cylindrical die to produce ice with a density of approximately 40 lb/cu ft (0.65 gm/cu cm). Both the static mechanical characteristics and the crystalline structure of the ice were found to have little effect on the observed transient response. The impact forces generated by low density ice projectiles, which had very low mechanical strength, were comparable to those of full density solid ice. This supports the hypothesis that at a velocity significantly greater than that required to produce fracture in the ice, the mechanical properties become relatively insignificant, and the impact forces are governed by the shape and mass of the projectile.
Specimen Collection and Submission Manual
2016-06-01
immunoassays Specimen: tissue or bone marrow (100 mg); Whole EDTA blood or serum (0.5 ml) Nasopharyngeal or throat swab, dry or in transport medium; Sputum... Syndrome Coronavirus (MERS-CoV) – detection in clinical samples Methodology: molecular Specimen: If possible collect 3 specimen types (lower...guidelines-clinical-specimens.html) Shipping: ship cold on wet ice or ice packs. For delays exceeding 72 hours, ship frozen on dry ice. Turnaround: 1-2
Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Hongbin Zhang; Phil Sharpe
2010-06-01
Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be builtmore » at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.« less
Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone
NASA Astrophysics Data System (ADS)
Cooper, Matthew G.; Smith, Laurence C.; Rennermalm, Asa K.; Miège, Clément; Pitcher, Lincoln H.; Ryan, Jonathan C.; Yang, Kang; Cooley, Sarah W.
2018-03-01
We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l.) supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland ice sheet. We find low-density (0.43-0.91 g cm-3, μ = 0.69 g cm-3) ice to at least 1.1 m depth below the ice sheet surface. This near-surface, low-density ice consists of alternating layers of water-saturated, porous ice and clear solid ice lenses, overlain by a thin (< 0.5 m), even lower density (0.33-0.56 g cm-3, μ = 0.45 g cm-3) unsaturated weathering crust. Ice density data from 10 shallow (0.9-1.1 m) ice cores along an 800 m transect suggest an average 14-18 cm of specific meltwater storage within this low-density ice. Water saturation of this ice is confirmed through measurable water levels (1-29 cm above hole bottoms, μ = 10 cm) in 84 % of cryoconite holes and rapid refilling of 83 % of 1 m drilled holes sampled along the transect. These findings are consistent with descriptions of shallow, depth-limited aquifers on the weathered surface of glaciers worldwide and confirm the potential for substantial transient meltwater storage within porous low-density ice on the Greenland ice sheet ablation zone surface. A conservative estimate for the ˜ 63 km2 supraglacial catchment yields 0.009-0.012 km3 of liquid meltwater storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas of the Greenland ice sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface lowering observations from airborne and satellite altimetry, and supraglacial runoff processes.
Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance
2014-09-30
During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (SeaState DRI
NASA Technical Reports Server (NTRS)
Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.
2003-01-01
The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.
Heterogeneous ice nucleation of α-pinene SOA particles before and after ice cloud processing
NASA Astrophysics Data System (ADS)
Wagner, Robert; Höhler, Kristina; Huang, Wei; Kiselev, Alexei; Möhler, Ottmar; Mohr, Claudia; Pajunoja, Aki; Saathoff, Harald; Schiebel, Thea; Shen, Xiaoli; Virtanen, Annele
2017-05-01
The ice nucleation ability of α-pinene secondary organic aerosol (SOA) particles was investigated at temperatures between 253 and 205 K in the Aerosol Interaction and Dynamics in the Atmosphere cloud simulation chamber. Pristine SOA particles were nucleated and grown from pure gas precursors and then subjected to repeated expansion cooling cycles to compare their intrinsic ice nucleation ability during the first nucleation event with that observed after ice cloud processing. The unprocessed α-pinene SOA particles were found to be inefficient ice-nucleating particles at cirrus temperatures, with nucleation onsets (for an activated fraction of 0.1%) as high as for the homogeneous freezing of aqueous solution droplets. Ice cloud processing at temperatures below 235 K only marginally improved the particles' ice nucleation ability and did not significantly alter their morphology. In contrast, the particles' morphology and ice nucleation ability was substantially modified upon ice cloud processing in a simulated convective cloud system, where the α-pinene SOA particles were first activated to supercooled cloud droplets and then froze homogeneously at about 235 K. As evidenced by electron microscopy, the α-pinene SOA particles adopted a highly porous morphology during such a freeze-drying cycle. When probing the freeze-dried particles in succeeding expansion cooling runs in the mixed-phase cloud regime up to 253 K, the increase in relative humidity led to a collapse of the porous structure. Heterogeneous ice formation was observed after the droplet activation of the collapsed, freeze-dried SOA particles, presumably caused by ice remnants in the highly viscous material or the larger surface area of the particles.
Insights into the effects of patchy ice layers on water balance heterogeneity in peatlands
NASA Astrophysics Data System (ADS)
Dixon, Simon; Kettridge, Nicholas; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike
2017-04-01
Peatlands in boreal and sub-arctic settings are characterised by a high degree of seasonality. During winter soils are frozen and snow covers the surface preventing peat moss growth. Conversely, in summer, soils unfreeze and rain and evapotranspiration drive moss productivity. Although advances have been made in understanding growing season water balance and moss dynamics in northern peatlands, there remains a gap in knowledge of inter-seasonal water balance as layers of ice break up during the spring thaw. Understanding the effects of ice layers on spring water balance is important as this coincides with periods of high wildfire risk, such as the devastating Fort McMurrary wildfire of May, 2016. We hypothesise that shallow layers of ice disconnect the growing surface of moss from a falling water table, and prevent water from being supplied from depth. A disconnect between the evaporating surface and deeper water storage will lead to the drying out of the surface layer of moss and a greater risk of severe spring wildfires. We utilise the unsaturated flow model Hydrus 2D to explore water balance in peat layers with an impermeable layer representing ice. Additionally we create models to represent the heterogeneous break up of ice layers observed in Canadian boreal peatlands; these models explore the ability of breaks in an ice layer to connect the evaporating surface to a deeper water table. Results show that peatlands with slower rates of moss growth respond to dry periods by limiting evapotranspiration and thus maintain moist conditions in the sub-surface and a water table above the ice layer. Peatlands which are more productive continue to grow moss and evaporate during dry periods; this results in the near surface mosses drying out and the water table dropping below the level of the ice. Where there are breaks in the ice layer the evaporating surface is able to maintain contact with a falling water table, but connectivity is limited to above the breaks, with limited lateral transfer of water above the ice. Conceptually this means that peatlands which tend to have lower rates of growth are largely unaffected by the presence of a shallow ice layer in the early growing season, and are able to maintain moist sub-surface conditions in the absence of precipitation. They will thus be more resistant to severe wildfire. Conversely, peatlands which tend towards higher levels of moss productivity are able to maintain moss growth during dry periods. In the presence of an ice layer this greater productivity leads to a disconnection from deep water sources, extensive drying out of moss above the ice, and a greater susceptibility to severe wildfires. Our study gives important insights into the mechanisms behind heterogeneity in burning and depth of burn in northern peatland wildfires, as well as into burn heterogeneity within peatland microtopography.
Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.
2014-01-01
Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions.
Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.
2014-01-01
Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing conditions
2010-03-10
In the winter a layer of carbon dioxide ice dry ice covers the north polar sand dunes as shown by NASA Mars Reconnaissance Orbiter. In the spring the sublimation of the ice going directly from ice to gas causes a host of uniquely Martian phenomena.
Miller, L.G.; Aiken, G.R.
1996-01-01
Perennially ice-covered lakes in the McMurdo Dry Valleys have risen several meters over the past two decades due to climatic warming and increased glacial meltwater inflow. To elucidate the hydrologic responses to changing climate and the effects on lake mixing processes we measured the stable isotope (??18O and ??D) and tritium concentrations of water and ice samples collected in the Lake Fryxell watershed from 1987 through 1990. Stable isotope enrichment resulted from evaporation in stream and moat samples and from sublimation in surface lake-ice samples. Tritium enrichment resulted from exchange with the postnuclear atmosphere in stream and moat samples. Rapid injection of tritiated water into the upper water column of the make and incorporation of this water into the ice cover resulted in uniformly elevated tritium contents (> 3.0 TU) in these reservoirs. Tritium was also present in deep water, suggesting that a component of bottom water was recently at the surface. During summer, melted lake ice and stream water forms the moat. Water excluded from ice formation during fall moat freezing (enriched in solutes and tritium, and depleted in 18O and 2H relative to water below 15-m depth) may sink as density currents to the bottom of the lake. Seasonal lake circulation, in response to climate-driven surface inflow, is therefore responsible for the distribution of both water isotopes and dissolved solutes in Lake Fryxell.
Bryce, Sharon; Taylor, Fiona; Shaw, Warwick
2010-08-01
The objective was to document a Process Validation on the packaging of human tissue grafts using polystyrene boxes containing dry ice for short term storage. The aim was to give a high degree of assurance that the processed grafts would be maintained at -20 degrees C for a period of time to allow distribution to customers. This study was designed to comply with the Australian GMP-Human Blood and Tissues and AATB Standards for Tissue Banking (Ed 12) American Association of Tissue Banks Section E4.141-Storage Conditions for Commonly Transplanted Human Tissue. Four Eskies were packed with 1, 4, 10 & 20 "dummy" allografts with thermocouples and Data Loggers attached with 3.5, 7, 15 and 20 kg of dry ice packed around the "dummy" allografts, respectively. All Eskies were weighed six times over a 48 h period and temperatures recorded. The results showed that one allograft in an Esky with 3.5 kg of dry ice was able to be stored for up to 31 h and fifteen allografts in an Esky containing 20 kg dry ice lasted 48 h.
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-05-01
Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.
Slip resistance of winter footwear on snow and ice measured using maximum achievable incline
Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff
2016-01-01
Abstract Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear–surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established. PMID:26555738
The association of Antarctic krill Euphausia superba with the under-ice habitat.
Flores, Hauke; van Franeker, Jan Andries; Siegel, Volker; Haraldsson, Matilda; Strass, Volker; Meesters, Erik Hubert; Bathmann, Ulrich; Wolff, Willem Jan
2012-01-01
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0-2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m(-2) in summer and autumn, and 2.7 individuals m(-2) in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0-2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0-2 m layer were higher than corresponding values from the 0-200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0-200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change.
The Association of Antarctic Krill Euphausia superba with the Under-Ice Habitat
Flores, Hauke; van Franeker, Jan Andries; Siegel, Volker; Haraldsson, Matilda; Strass, Volker; Meesters, Erik Hubert; Bathmann, Ulrich; Wolff, Willem Jan
2012-01-01
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0–2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m−2 in summer and autumn, and 2.7 individuals m−2 in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0–2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0–2 m layer were higher than corresponding values from the 0–200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0–200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change. PMID:22384073
Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge.
Brierley, Andrew S; Fernandes, Paul G; Brandon, Mark A; Armstrong, Frederick; Millard, Nicholas W; McPhail, Steven D; Stevenson, Peter; Pebody, Miles; Perrett, James; Squires, Mark; Bone, Douglas G; Griffiths, Gwyn
2002-03-08
We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge.
Local and Total Density Measurements in Ice Shapes
NASA Technical Reports Server (NTRS)
Vargas, Mario; Broughton, Howard; Sims, James J.; Bleeze, Brian; Gaines, Vatanna
2005-01-01
Preliminary measurements of local and total densities inside ice shapes were obtained from ice shapes grown in the NASA Glenn Research Tunnel for a range of glaze ice, rime ice, and mixed phase ice conditions on a NACA 0012 airfoil at 0 angle of attack. The ice shapes were removed from the airfoil and a slice of ice 3 mm thick was obtained using a microtome. The resulting samples were then x-rayed to obtain a micro-radiography, the film was digitized, and image processing techniques were used to extract the local and total density values.
Sea spray aerosol as a unique source of ice nucleating particles.
DeMott, Paul J; Hill, Thomas C J; McCluskey, Christina S; Prather, Kimberly A; Collins, Douglas B; Sullivan, Ryan C; Ruppel, Matthew J; Mason, Ryan H; Irish, Victoria E; Lee, Taehyoung; Hwang, Chung Yeon; Rhee, Tae Siek; Snider, Jefferson R; McMeeking, Gavin R; Dhaniyala, Suresh; Lewis, Ernie R; Wentzell, Jeremy J B; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M; Ault, Andrew P; Axson, Jessica L; Diaz Martinez, Myrelis; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M Dale; Deane, Grant B; Mayol-Bracero, Olga L; Grassian, Vicki H; Bertram, Timothy H; Bertram, Allan K; Moffett, Bruce F; Franc, Gary D
2016-05-24
Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.
Dueling Mechanisms for Dry Zones around Frozen Droplets
NASA Astrophysics Data System (ADS)
Bisbano, Caitlin; Nath, Saurabh; Boreyko, Jonathan
2016-11-01
Ice acts as a local humidity sink, due to its depressed saturation pressure relative to that of supercooled water. Hygroscopic chemicals typically exhibit annular dry zones of inhibited condensation; however, dry zones do not tend to form around ice because of inter-droplet frost growth to nearby liquid droplets that have already condensed on the chilled surface. Here, we use a humidity chamber with an embedded Peltier stage to initially suppress the growth of condensation on a chilled surface containing a single frozen droplet, in order to characterize the dry zone around ice for the first time. The length of the dry zone was observed to vary by at least two orders of magnitude as a function of surface temperature, ambient humidity, and the size of the frozen droplet. The surface temperature and ambient humidity govern the magnitudes of the in-plane and out-of-plane gradients in vapor pressure, while the size of the frozen droplet effects the local thickness of the concentration boundary layer. We develop an analytical model that reveals two different types of dry zones are possible: one in which nucleation is inhibited and one where the net growth of condensate is inhibited. Finally, a phase map was developed to predict the parameter space in which nucleation dry zones versus flux dry zones are dominant.
NASA Astrophysics Data System (ADS)
Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.
2013-11-01
We present airborne measurements to investigate the thickness of the western McMurdo Ice Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine ice and brine intrusions conventional radar systems are limited in detecting the ice thickness in this area. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the ice shelf. The maximum electromagnetically detectable ice thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of ice freeboard and thickness was used to derive bulk ice densities ranging from 800 to 975 kg m-3. Densities higher than those of pure ice can be largely explained by the abundance of sediments accumulated at the surface and present within the ice shelf, and are likely to a smaller extent related to the overestimation of ice thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the ice shelf, similar to what is observed in front of the ice shelf below the sea ice, is likely to exist in areas of highest thickness. The thickness and density distribution reflects a picture of areas of basal freezing and supercooled Ice Shelf Water emerging from below the central ice shelf cavity into McMurdo Sound.
NASA Technical Reports Server (NTRS)
Kirby, Mark S.; Hansman, R. John
1988-01-01
Real-time measurements of ice growth during artificial and natural icing conditions were conducted using an ultrasonic pulse-echo technique. This technique allows ice thickness to be measured with an accuracy of + or - 0.5 mm; in addition, the ultrasonic signal characteristics may be used to detect the presence of liquid on the ice surface and hence discern wet and dry ice growth behavior. Ice growth was measured on the stagnation line of a cylinder exposed to artificial icing conditions in the NASA Lewis Icing Research Tunnel (IRT), and similarly for a cylinder exposed in flight to natural icing conditions. Ice thickness was observed to increase approximately linearly with exposure time during the initial icing period. The ice accretion rate was found to vary with cloud temperature during wet ice growth, and liquid runback from the stagnation region was inferred. A steady-state energy balance model for the icing surface was used to compare heat transfer characteristics for IRT and natural icing conditions. Ultrasonic measurements of wet and dry ice growth observed in the IRT and in flight were compared with icing regimes predicted by a series of heat transfer coefficients. The heat transfer magnitude was generally inferred to be higher for the IRT than for the natural icing conditions encountered in flight. An apparent variation in the heat transfer magnitude was also observed for flights conducted through different natural icing-cloud formations.
2011-06-01
recession rate prediction of carbon based, camphor and dry ice at hypersonic velocities...paradichlorobenzene, naphthalene, camphor , and ammonium chloride (Kohlman & Richardson, 1969). Except for dry ice, these materials require stagnation temperatures... Camphor , for example, sublimates at ~170C. With the reestablished interest in expendable ablative heat shields, these past experiences have
75 FR 67258 - Position Reports for Physical Commodity Swaps
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-02
... Cattle. CME Milk Class III. Comex (``CMX'') Copper Grade 1. CMX Gold. CMX Silver. ICE Futures US (``ICUS... Oats. CME Butter. CME Cheese. CME Dry Whey. CME Hardwood Pulp. CME Lean Hogs. CME Non Fat Dry Milk. CME... contract--The ICE WTI Average Price Option is indirectly linked to a 20.2 listed futures contract because...
Perspective of Life Search in Martian Econiches
NASA Astrophysics Data System (ADS)
Demidov, N. E.
2017-05-01
Mars may be divided on five ecological niches according to presence and state of water: permanent polar caps, dry regolith, subpermafrost aquifers, cryopegs and ice containing regolith. Basic limiting factors for the search of life in this econiches are: absence of water (dry regolith), depth of burial (cryopegs and subpermafrost aquifers), age (ice containing permafrost and polar caps). High priority targets for the search of life on Mars are represented by permanently frozen deposits of young polar volcanoes and ash layers in polar caps. During volcanic eruptions microorganisms from subpermafrost aquifers could propagate to the surface and survive in permafrost or ice for million years, as it is known to happen on Earth. Possibility of specific lithic habitats in dry layer must also be taken into account.
Code of Federal Regulations, 2013 CFR
2013-01-01
... refrigerated samples should contain ice or ice packs to maintain temperatures of 0° to 5 °C, unless a different temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice...
Code of Federal Regulations, 2012 CFR
2012-01-01
... refrigerated samples should contain ice or ice packs to maintain temperatures of 0° to 5 °C, unless a different temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice...
Code of Federal Regulations, 2014 CFR
2014-01-01
... refrigerated samples should contain ice or ice packs to maintain temperatures of 0° to 5 °C, unless a different temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice...
Code of Federal Regulations, 2011 CFR
2011-01-01
... refrigerated samples should contain ice or ice packs to maintain temperatures of 0° to 5 °C, unless a different temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice...
Code of Federal Regulations, 2010 CFR
2010-01-01
... refrigerated samples should contain ice or ice packs to maintain temperatures of 0° to 5 °C, unless a different temperature is required for the sample to be tested. (d) Containers for frozen samples should contain dry ice...
High-Density Amorphous Ice, the Frost on Interstellar Grains
NASA Technical Reports Server (NTRS)
Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.
1995-01-01
Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ice bag. 880.6050 Section 880.6050 Food and Drugs....6050 Ice bag. (a) Identification. An ice bag is a device intended for medical purposes that is in the form of a container intended to be filled with ice that is used to apply dry cold therapy to an area of...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ice bag. 880.6050 Section 880.6050 Food and Drugs....6050 Ice bag. (a) Identification. An ice bag is a device intended for medical purposes that is in the form of a container intended to be filled with ice that is used to apply dry cold therapy to an area of...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ice bag. 880.6050 Section 880.6050 Food and Drugs....6050 Ice bag. (a) Identification. An ice bag is a device intended for medical purposes that is in the form of a container intended to be filled with ice that is used to apply dry cold therapy to an area of...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ice bag. 880.6050 Section 880.6050 Food and Drugs....6050 Ice bag. (a) Identification. An ice bag is a device intended for medical purposes that is in the form of a container intended to be filled with ice that is used to apply dry cold therapy to an area of...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ice bag. 880.6050 Section 880.6050 Food and Drugs....6050 Ice bag. (a) Identification. An ice bag is a device intended for medical purposes that is in the form of a container intended to be filled with ice that is used to apply dry cold therapy to an area of...
Microwave properties of solid CO2. [for Mars surface study
NASA Technical Reports Server (NTRS)
Simpson, R. A.; Howard, H. T.; Fair, B. C.
1980-01-01
Measurements over the range of 2.2 to 12.0 GHz show that CO2 snow is a slightly lossy dielectric whose constant varies with density following the Rayleigh formula to 1.27 g/cu cm. It is independent of frequency and does not vary with temperature in the 113 to 183 K range; frequency independence and agreement with the Rayleigh fit are obtained from measurements on dry block ice. The dielectric constant of solid CO2 in block form is lower than that of solid water ice or solid rock; in powder form, the constant for CO2 is also lower than that of H2O (snow) or soils. These measurements may be useful in limiting the interpretations of the Viking radio reflection experiment; a radio value of 3.0 for the dielectric constant near the North Pole would be strong evidence against the presence of cm thicknesses of CO2 in that region.
A Molecular Explanation of How the Fog Is Produced When Dry Ice Is Placed in Water
ERIC Educational Resources Information Center
Kuntzleman, Thomas S.; Ford, Nathan; No, Jin-Hwan; Ott, Mark E.
2015-01-01
Everyone enjoys seeing the cloudy white fog generated when solid carbon dioxide (dry ice) is placed in water. Have you ever wondered what physical and chemical processes occur to produce this fog? When asked this question, many chemical educators suggest that the fog is produced when atmospheric water vapor condenses on cold carbon dioxide gas…
USDA-ARS?s Scientific Manuscript database
Mosquito surveillance in remote areas with limited access to canisters of CO2 or dry ice will benefit from an effective alternative CO2 source. In this study, we document the differences in mosquito and non-mosquito capture rates from CO2 baited (dry ice or yeast fermentation of carbohydrates) CDC t...
A New Freezing Method Using Pre-Dehydration by Microwave-Vacuum Drying
NASA Astrophysics Data System (ADS)
Tsuruta, Takaharu; Hamidi, Nurkholis
Partial dehydration by microwave-vacuum drying has been applied to tuna and strawberry in order to reduce cell-damages caused by the formation of large ice-crystals during freezing. The samples were subjected to microwave vacuum drying at pressure of 5 kPa and temperature less than 27°C to remove small amount of water prior to freezing. The tuna were cooled by using the freezing chamber at temperature -50°C or -150°C, while the strawberries were frozen at temperature -30°C or -80°C, respectively. The temperature transients in tuna showed that removing some water before freezing made the freezing time shorter. The observations of ice crystal clearly indicated that rapid cooling and pre-dehydration prior to freezing were effective in minimizing the size of ice crystal. It is also understood that the formation of large ice crystals has a close relation to the cell damages. After thawing, the observation of microstructure was done on the tuna and strawberry halves. The pre-dehydrated samples showed a better structure than the un-dehydrated one. It is concluded that the pre-dehydration by microwave-vacuum drying is one promising method for the cryo-preservation of foods.
Glacier advance during Marine Isotope Stage 11 in the McMurdo Dry Valleys of Antarctica
Swanger, Kate M.; Lamp, Jennifer L.; Winckler, Gisela; Schaefer, Joerg M.; Marchant, David R.
2017-01-01
We mapped six distinct glacial moraines alongside Stocking Glacier in the McMurdo Dry Valleys, Antarctica. Stocking Glacier is one of several alpine glaciers in the Dry Valleys fringed by multiple cold-based drop moraines. To determine the age of the outermost moraine, we collected 10 boulders of Ferrar Dolerite along the crest of the moraine and analyzed mineral separates of pyroxene for cosmogenic 3He. On the basis of these measurements, the exposure age for the outermost moraine is 391 ± 35 ka. This represents the first documented advance of alpine glacier ice in the Dry Valleys during Marine Isotope Stage (MIS) 11. At this time, Stocking Glacier was ~20–30% larger than today. The cause of ice expansion is uncertain, but most likely it is related to increased atmospheric temperature and precipitation, associated with reduced ice extent in the nearby Ross Embayment. The data suggest complex local environmental response to warm climates in Antarctica and have implications for glacial response to Holocene warming. The study also demonstrates the potential for using alpine glacier chronologies in the Transantarctic Mountains as proxies for retreat of grounded glacier ice in the Ross Embayment. PMID:28139676
Possible Sea Ice Impacts on Oceanic Deep Convection
NASA Technical Reports Server (NTRS)
Parkinson, C. L.
1984-01-01
Many regions of the world ocean known or suspected to have deep convection are sea-ice covered for at least a portion of the annual cycle. As this suggests that sea ice might have some impact on generating or maintaining this phenomenon, several mechanisms by which sea ice could exert an influence are presented in the following paragraphs. Sea ice formation could be a direct causal factor in deep convection by providing the surface density increase necessary to initiate the convective overturning. As sea ice forms, either by ice accretion or by in situ ice formation in open water or in lead areas between ice floes, salt is rejected to the underlying water. This increases the water salinity, thereby increasing water density in the mixed layer under the ice. A sufficient increase in density will lead to mixing with deeper waters, and perhaps to deep convection or even bottom water formation. Observations are needed to establish whether this process is actually occurring; it is most likely in regions with extensive ice formation and a relatively unstable oceanic density structure.
Park, Junghyun; Kim, Myunghee
2013-01-01
This study was performed to compare the performance of Sanita-Kun dry medium culture plate with those of traditional culture medium and Petrifilm dry medium culture plate for the enumeration of the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet. Mesophilic aerobic bacteria were comparatively evaluated in milk, ice cream, ham, and codfish fillet using Sanita-Kun aerobic count (SAC), Petrifilm aerobic count (PAC), and traditional plate count agar (PCA) media. According to the results, all methods showed high correlations of 0.989~1.000 and no significant differences were observed for enumerating the mesophilic aerobic bacteria in the tested food products. SAC method was easier to perform and count colonies efficiently as compared to the PCA and PAC methods. Therefore, we concluded that the SAC method offers an acceptable alternative to the PCA and PAC methods for counting the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products. PMID:24551829
NASA Technical Reports Server (NTRS)
Jensen, E. J.; Toon, O. B.
1994-01-01
We have investigated the processes that control ice crystal nucleation in the upper troposphere using a numerical model. Nucleation of ice resulting from cooling was simulated for a range of aerosol number densities, initial temperatures, and cooling rates. In contrast to observations of stratus clouds, we find that the number of ice crystals that nucleate in cirrus is relatively insensitive to the number of aerosols present. The ice crystal size distribution at the end of the nucleation process is unaffected by the assumed initial aerosol number density. Essentially, nucleation continues until enough ice crystals are present such that their deposition growth rapidly depletes the vapor and shuts off any further nucleation. However, the number of ice crystals nucleated increases rapidly with decreasing initial temperature and increasing cooling rate. This temperature dependence alone could explain the large ice crystal number density observed in very cold tropical cirrus.
NASA Astrophysics Data System (ADS)
Zacny, K.; Paulsen, G.; McKay, C.; Glass, B. J.; Marinova, M.; Davila, A. F.; Pollard, W. H.; Jackson, A.
2011-12-01
We report on the testing of the one meter class prototype Mars drill and cuttings sampling system, called the IceBreaker in the Dry Valleys of Antarctica. The drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sampling station for moving the augered ice shavings or soil cuttings into a sample cup. In November/December of 2010, the IceBreaker drill was tested in the Uni-versity Valley (within the Beacon Valley region of the Antarctic Dry Valleys). University Valley is a good analog to the Northern Polar Regions of Mars because a layer of dry soil lies on top of either ice-cemeted ground or massive ice (depending on the location within the valley). That is exactly what the 2007 Phoenix mission discovered on Mars. The drill demonstrated drilling in ice-cemented ground and in massive ice at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This corresponds to an average energy of 100 Whr. At the same time, the bit temperature measured by the bit thermocouple did not exceed more than 10 °C above the formation temperature. The temperature also never exceeded freezing, which minimizes chances of getting stuck and also of altering the materials that are being sampled and analyzed. The samples in the forms of cuttings were acquired every 10 cm intervals into sterile bags. These tests have shown that drilling on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in discrete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.
Cleaning By Blasting With Pellets Of Dry Ice
NASA Technical Reports Server (NTRS)
Fody, Jody
1993-01-01
Dry process strips protective surface coats from parts to be cleaned, without manual scrubbing. Does not involve use of flammable or toxic solvents. Used to remove coats from variety of materials, including plastics, ceramics, ferrous and nonferrous metals, and composites. Adds no chemical-pollution problem to problem of disposal of residue of coating material. Process consists of blasting solid carbon dioxide (dry ice) pellets at surface to be cleaned. Pellets sublime on impact and pass into atmosphere as carbon dioxide gas. Size, harness, velocity, and quantity of pellets adjusted to suit coating material and substrate.
... treatment for geographic atrophy, the advanced form of dry age-related macular degeneration. Thursday, September 28, 2017 ... and ICE Syndrome Iridocorneal endothelial syndrome, or ICE syndrome, is a ...
Anomalously-dense firn in an ice-shelf channel revealed by wide-angle radar
NASA Astrophysics Data System (ADS)
Drews, R.; Brown, J.; Matsuoka, K.; Witrant, E.; Philippe, M.; Hubbard, B.; Pattyn, F.
2015-10-01
The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g. temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar datasets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. Using a novel algorithm including traveltime inversion and raytracing with a prescribed shape of the depth-density relationship, we show that the depth to internal reflectors, the local ice thickness and depth-averaged densities can reliably be reconstructed. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggests that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals 10 % denser firn inside compared to outside the channel. The denser firn in the ice-shelf channel should be accounted for when using the hydrostatic ice thickness for determining basal melt rates. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.
Constraining variable density of ice shelves using wide-angle radar measurements
NASA Astrophysics Data System (ADS)
Drews, Reinhard; Brown, Joel; Matsuoka, Kenichi; Witrant, Emmanuel; Philippe, Morgane; Hubbard, Bryn; Pattyn, Frank
2016-04-01
The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium, for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g., temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar data sets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. We reconstruct depth to internal reflectors, local ice thickness, and firn-air content using a novel algorithm that includes traveltime inversion and ray tracing with a prescribed shape of the depth-density relationship. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggest that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals that the firn inside the channel is 4.7 % denser than that outside the channel. Hydrostatic ice thickness calculations used for determining basal melt rates should account for the denser firn in ice-shelf channels. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.
Koh, Hye Yeon; Lee, Sung Gu; Lee, Jun Hyuck; Doyle, Shawn; Christner, Brent C; Kim, Hak Jun
2012-12-01
The psychrophilic bacterium Paenisporosarcina sp. TG-14 was isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. Here we report the draft genome sequence of this strain, which may provide useful information on the cold adaptation mechanism in extremely variable environments.
35 GHz Measurements of CO2 Crystals for Simulating Observations of the Martian Polar Caps
NASA Technical Reports Server (NTRS)
Foster, J. L.; Chang, A. T. C.; Hall, D. K.; Tait, A. B.; Barton, J. S.
1998-01-01
In order to learn more about the Martian polar caps, it is important to compare and contrast the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum. Relatively little attention has been given, thus far, to observing the thermal microwave part of the spectrum. In this experiment, passive microwave radiation emanating from within a 33 cm snowpack was measured with a 35 GHz hand-held radiometer, and in addition to the natural snow measurements, the radiometer was used to measure the microwave emission and scattering from layers of manufactured CO2 (dry ice). A 1 m x 2 m plate of aluminum sheet metal was positioned beneath the natural snow so that microwave emissions from the underlying soil layers would be minimized. Compared to the natural snow crystals, results for the dry ice layers exhibit lower' microwave brightness temperatures for similar thicknesses, regardless of the incidence angle of the radiometer. For example, at 50 degree H (horizontal polarization) and with a covering of 21 cm of snow and 18 cm of dry ice, the brightness temperatures were 150 K and 76 K, respectively. When the snow depth was 33 cm, the brightness temperature was 144 K, and when the total thickness of the dry ice was 27 cm, the brightness temperature was 86 K. The lower brightness temperatures are due to a combination of the lower physical temperature and the larger crystal sizes of the commercial CO2 Crystals compared to the snow crystals. As the crystal size approaches the size of the microwave wavelength, it scatters microwave radiation more effectively, thus lowering the brightness temperature. The dry ice crystals in this experiment were about an order of magnitude larger than the snow crystals and three orders of magnitude larger than the CO2 Crystals produced in the cold stage of a scanning electron microscope. Spreading soil, approximately 2 mm in thickness, on the dry ice appeared to have no effect on the brightness temperatures.
Continuing Measurements of CO2 Crystals with a Hand-Held 35 GHz Radiometer
NASA Technical Reports Server (NTRS)
Foster, J.; Chang, A.; Hall, D.; Tait, A.; Wergin, W.; Erbe, E.
2000-01-01
In order to increase our knowledge of the Martian polar caps, an improved understanding of the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum is needed. The thermal microwave part of the spectrum has received relatively little attention compared to the visible and infrared wavelengths. A simple experiment to measure the brightness temperature of frozen CO2 was first performed in the winter of 1998 using a 35 GHz radiometer. in experiments performed during the winter of 1999 and 2000, passive microwave radiation emanating from within layers of manufactured CO2 (dry ice) crystals was again measured with a 35 GHz handheld radiometer. Both large (0.8 cm) and small (0.3 cm) cylindrical-shaped dry ice pellets, at a temperature of 197 K (-76 C), were measured. A 1 sq m plate of aluminum sheet metal was positioned beneath the dry ice so that microwave emissions from the underlying soil layers would be minimized. Non-absorbing foam was positioned around the sides of the plate in order to keep the dry ice in place and to assure that the incremental deposits were level. Thirty-five GHz measurements of this plate were made through the dry ice deposits in the following way. Layers of dry ice were built up and measurements were repeated for the increasing CO2 pack. First, 7 cm of large CO2 pellets were poured onto the sheet metal plate, then an additional 7 cm were added, and finally, 12 cm were added on top of the 14 cm base. Hand-held 35 GHz measurements were made each time the thickness of the deposit was increased. The same process was repeated for the smaller grain pellets. Furthermore, during the past winter, 35 GHz measurements were taken of a 25 kg (27 cm x 27 cm x 27 cm) solid cube Of CO2, which was cut in half and then re-measured. Additional information is contained in the original extended abstract.
1975-09-01
Ice, and Camphor (Summarized from Ref 11) . . . . . . . 16 3 Boundary Layer Edge Velocity Normalized by Free Stream Velocity for a Sphere and a...function of environmental conditions for water ice, dry ice, and camphor which are summarized in Figure 2. A low turbulence subsonic free jet was chosen
NASA Astrophysics Data System (ADS)
Falk, Stefanie; Sinnhuber, Björn-Martin
2018-03-01
Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.
NASA Astrophysics Data System (ADS)
Gooseff, M. N.; Priscu, J. C.; Doran, P. T.; Chiuchiolo, A.; Obryk, M.
2014-12-01
Lakes integrate landscape processes and climate conditions. Most of the permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica are closed basin, receiving glacial melt water from streams for 10-12 weeks per year. Lake levels rise during the austral summer are balanced by sublimation of ice covers (year-round) and evaporation of open water moats (summer only). Vertical profiles of water temperature have been measured in three lakes in Taylor Valley since 1988. Up to 2002, lake levels were dropping, ice covers were thickening, and total heat contents were decreasing. These lakes have been gaining heat since the mid-2000s, at rates as high as 19.5x1014 cal/decade). Since 2002, lake levels have risen substantially (as much as 2.5 m), and ice covers have thinned (1.5 m on average). Analyses of lake ice thickness, meteorological conditions, and stream water heat loads indicate that the main source of heat to these lakes is from latent heat released when ice-covers form during the winter. An aditional source of heat to the lakes is water inflows from streams and direct glacieal melt. Mean lake temperatures in the past few years have stabilized or cooled, despite increases in lake level and total heat content, suggesting increased direct inflow of meltwater from glaciers. These results indicate that McMurdo Dry Valley lakes are sensitive indicators of climate processes in this polar desert landscape and demonstrate the importance of long-term data sets when addressing the effects of climate on ecosystem processes.
Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.
2011-01-01
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.
NASA Technical Reports Server (NTRS)
Lapalme, Caitlin M.; Fortier, Daniel; Pollard, Wayne; Lacelle, Denis; Davila, Alfonso; McKay, Christopher P.
2017-01-01
The cryostratigraphy of permafrost in ultraxerous environments is poorly known. In this study, icy permafrost cores from University Valley (McMurdo Dry Valleys, Antarctica) were analyzed for sediment properties, ground-ice content, types and distribution of cryostructures, and presence of unconformities. No active layer exists in the valley, but the ice table, a sublimation unconformity, ranges from 0 to 60 cm depth. The sediments are characterized as a medium sand, which classifies them as low to non-frost susceptible. Computed tomography (CT) scan images of the icy permafrost cores revealed composite cryostructures that included the structureless, porous visible, suspended and crustal types. These cryostructures were observed irrespective of ground-ice origin (vapour deposited and freezing of snow meltwater), suggesting that the type and distribution of cryostructures could not be used as a proxy to infer the mode of emplacement of ground ice. Volumetric ice content derived from the CT scan images underestimated measured volumetric ice content, but approached measured excess ice content. A palaeo-sublimation unconformity could not be detected from a change in cryostructures, but could be inferred from an increase in ice content at the maximum predicted ice table depth. This study highlights some of the unique ground-ice processes and cryostructures in ultraxerous environments.
NASA Technical Reports Server (NTRS)
Olsen, W.; Vanfossen, J.; Nussle, R.
1987-01-01
Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.
Disparities in Intratumoral Steroidogenesis
2013-07-01
Tuesday shipment only) by overnight express for next day delivery on dry ice. Frozen specimens will be shipped on dry ice to the following address...Samples will be labeled with the study subject number and date of surgery. Frozen samples will be batch shipped (Monday and Tuesday shipment only) by... Morris MJ, de Bono JS, Ryan CJ, Denmeade SR, Smith MR, et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients
Variation in Baiting Intensity Among CO2-Baited Traps Used to Collect Hematophagous Arthropods
Springer, Yuri P.; Taylor, Jeffrey R.; Travers, Patrick D.
2015-01-01
Hematophagous arthropods transmit the etiological agents of numerous diseases and as a result are frequently the targets of sampling to characterize vector and pathogen populations. Arguably, the most commonly used sampling approach involves traps baited with carbon dioxide. We report results of a laboratory study in which the performance of carbon dioxide-baited traps was evaluated using measures of baiting intensity, the amount of carbon dioxide released per unit time during trap deployment. We evaluated the effects of trap design, carbon dioxide source, and wind speed on baiting intensity and documented significant effects of these factors on the length of sampling (time to baiting intensity = 0), maximum baiting intensity, and variation in baiting intensity during experimental trials. Among the three dry ice-baited trap types evaluated, traps utilizing insulated beverage coolers as dry ice containers sampled for the longest period of time, had the lowest maximum but most consistent baiting intensity within trials and were least sensitive to effects of wind speed and dry ice form (block vs. pellet) on baiting intensity. Results of trials involving traps baited with carbon dioxide released from pressurized cylinders suggested that this trap type had performance comparable to dry ice-baited insulated cooler traps but at considerably higher cost. PMID:26160803
Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.
Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J
2018-03-01
Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Obryk, M.; Doran, P. T.; Priscu, J. C.; Morgan-Kiss, R. M.; Siebenaler, A. G.
2012-12-01
The perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica have been extensively studied under the Long Term Ecological Research project. But sampling has been spatially restricted due to the logistical difficulty of penetrating the 3-6 m of ice cover. The ice covers restrict wind-driven turbulence and its associated mixing of water, resulting in a unique thermal stratification and a strong vertical gradient of salinity. The permanent ice covers also shade the underlying water column, which, in turn, controls photosynthesis. Here, we present results of a three-dimensional record of lake processes obtained with an autonomous underwater vehicle (AUV). The AUV was deployed at West Lake Bonney, located in Taylor Valley, Dry Valleys, to further understand biogeochemical and physical properties of the Dry Valley lakes. The AUV was equipped with depth, conductivity, temperature, under water photosynthetically active radiation (PAR), turbidity, chlorophyll-and-DOM fluorescence, pH, and REDOX sensors. Measurements were taken over the course of two years in a 100 x 100 meter spaced horizontal sampling grid (and 0.2 m vertical resolution). In addition, the AUV measured ice thickness and collected 200 images looking up through the ice, which were used to quantify sediment distribution. Comparison with high-resolution satellite QuickBird imagery demonstrates a strong correlation between aerial sediment distribution and ice cover thickness. Our results are the first to show the spatial heterogeneity of lacustrine ecosystems in the McMurdo Dry Valleys, significantly improving our understanding of lake processes. Surface sediment is responsible for localized thinning of ice cover due to absorption of solar radiation, which in turn increases total available PAR in the water column. Higher PAR values are negatively correlated with chlorophyll-a, presenting a paradox; historically, long-term studies of PAR and chlorophyll-a have shown positive trends. We hypothesized that this paradox is a result of short-term photoadaptation of phytoplanktonic communities to spatial and temporal variations of PAR within the water column. To test this hypothesis, we established phytoplankton enrichment cultures from depths of maximum primary production (13 m) and tested whether dry valley lake phytoplankton respond to daily variations in controlled light environment. Laboratory-grown cultures exhibited a strong response at 12 hr:12 hr day:night cycle at the level of both photochemistry and chlorophyll biosynthesis, indicating that Lake Bonney possess the ability to quickly respond to changes in their light environment.
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Augustin-Bauditz, S.; Bingemer, H.; Budke, C.; Curtius, J.; Danielczok, A.; Diehl, K.; Dreischmeier, K.; Ebert, M.; Frank, F.; Hoffmann, N.; Kandler, K.; Kiselev, A.; Koop, T.; Leisner, T.; Möhler, O.; Nillius, B.; Peckhaus, A.; Rose, D.; Weinbruch, S.; Wex, H.; Boose, Y.; DeMott, P. J.; Hader, J. D.; Hill, T. C. J.; Kanji, Z. A.; Kulkarni, G.; Levin, E. J. T.; McCluskey, C. S.; Murakami, M.; Murray, B. J.; Niedermeier, D.; Petters, M. D.; O'Sullivan, D.; Saito, A.; Schill, G. P.; Tajiri, T.; Tolbert, M. A.; Welti, A.; Whale, T. F.; Wright, T. P.; Yamashita, K.
2015-03-01
Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, ns, to develop a representative ns(T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers 9 orders of magnitude in ns. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency expressed in ns of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns(T) spectra and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. While the agreement between different instruments was reasonable below ~ -27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in ns was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about -27 and -18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -27 and -18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based ns(T) and geometric surface area-based ns(T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.
Investigation of vapor-deposited amorphous ice and irradiated ice by molecular dynamics simulation.
Guillot, Bertrand; Guissani, Yves
2004-03-01
With the purpose of clarifying a number of points raised in the experimental literature, we investigate by molecular dynamics simulation the thermodynamics, the structure and the vibrational properties of vapor-deposited amorphous ice (ASW) as well as the phase transformations experienced by crystalline and vitreous ice under ion bombardment. Concerning ASW, we have shown that by changing the conditions of the deposition process, it is possible to form either a nonmicroporous amorphous deposit whose density (approximately 1.0 g/cm3) is essentially invariant with the temperature of deposition, or a microporous sample whose density varies drastically upon temperature annealing. We find that ASW is energetically different from glassy water except at the glass transition temperature and above. Moreover, the molecular dynamics simulation shows no evidence for the formation of a high-density phase when depositing water molecules at very low temperature. In order to model the processing of interstellar ices by cosmic ray protons and heavy ions coming from the magnetospheric radiation environment around the giant planets, we bombarded samples of vitreous ice and cubic ice with 35 eV water molecules. After irradiation the recovered samples were found to be densified, the lower the temperature, the higher the density of the recovered sample. The analysis of the structure and vibrational properties of this new high-density phase of amorphous ice shows a close relationship with those of high-density amorphous ice obtained by pressure-induced amorphization. Copyright 2004 American Institute of Physics
Reconnaissance and deep-drill site selection on Taylor Dome, Antarctica
NASA Technical Reports Server (NTRS)
Grootes, Pieter M.; Waddington, Edwin D.
1993-01-01
Taylor Dome is a small ice dome near the head of Taylor Valley, Southern Victoria Land. The location of the dome, just west of the Transantarctic Mountains, is expected to make the composition of the accumulating snow sensitive to changes in the extent of the Ross Ice Shelf. Thus, it is linked to the discharge of the West Antarctic Ice Sheet but protected against direct influences of glacial-interglacial sea-level rise. The record of past climatic and environmental changes in the ice provides a valuable complement to the radiocarbon-dated proxy record of climate derived from perched deltas, strandlines, and moraines that have been obtained in the nearby Dry Valleys. We carried out a reconnaissance of the Taylor Dome area over the past two field seasons to determine the most favorable location to obtain a deep core to bedrock. A stake network has been established with an 80-km line roughly along the crest of Taylor Dome, and 40-km lines parallel to it and offset by 10 km. These lines have been surveyed 1990/91, and the positions of 9 grid points have been determined with geoceivers. A higher density stake network was placed and surveyed around the most likely drill area in the second year. Ground-based radar soundings in both years provided details on bedrock topography and internal layering of the ice in the drill area. An airborne radar survey in January 1992, completed the radar coverage of the Taylor Dome field area.
Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska
NASA Astrophysics Data System (ADS)
Gusmeroli, A.; Grosse, G.
2012-12-01
Lakes are abundant throughout the pan-Arctic region. For many of these lakes ice cover lasts for up to two thirds of the year. The frozen cover allows human access to these lakes, which are therefore used for many subsistence and recreational activities, including water harvesting, fishing, and skiing. Safe traveling condition onto lakes may be compromised, however, when, after significant snowfall, the weight of the snow acts on the ice and causes liquid water to spill through weak spots and overflow at the snow-ice interface. Since visual detection of subsnow slush is almost impossible our understanding on overflow processes is still very limited and geophysical methods that allow water and slush detection are desirable. In this study we demonstrate that a commercially available, lightweight 1 GHz, ground penetrating radar system can detect and map extent and intensity of overflow. The strength of radar reflections from wet snow-ice interfaces are at least twice as much in strength than returns from dry snow-ice interface. The presence of overflow also affects the quality of radar returns from the base of the lake ice. During dry conditions we were able to profile ice thickness of up to 1 m, conversely, we did not retrieve any ice-water returns in areas affected by overflow.
Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology and sedimentation
NASA Technical Reports Server (NTRS)
Wharton, R. A. Jr; Simmons, G. M. Jr; McKay, C. P.; Wharton RA, J. r. (Principal Investigator)
1989-01-01
Lake Hoare (77 degrees 38' S, 162 degrees 53' E) is a perennially ice-covered lake at the eastern end of Taylor Valley in southern Victoria Land, Antarctica. The environment of this lake is controlled by the relatively thick ice cover (3-5 m) which eliminates wind generated currents, restricts gas exchange and sediment deposition, and reduces light penetration. The ice cover is in turn largely controlled by the extreme seasonality of Antarctica and local climate. Lake Hoare and other dry valley lakes may be sensitive indicators of short term (< 100 yr) climatic and/or anthropogenic changes in the dry valleys since the onset of intensive exploration over 30 years ago. The time constants for turnover of the water column and lake ice are 50 and 10 years, respectively. The turnover time for atmospheric gases in the lake is 30-60 years. Therefore, the lake environment responds to changes on a 10-100 year timescale. Because the ice cover has a controlling influence on the lake (e.g. light penetration, gas content of water, and sediment deposition), it is probable that small changes in ice ablation, sediment loading on the ice cover, or glacial meltwater (or groundwater) inflow will affect ice cover dynamics and will have a major impact on the lake environment and biota.
Steiger, D B Meyer; Ritchie, S A; Laurance, S G W
2014-01-01
Emerging infectious diseases are on the rise with future outbreaks predicted to occur in frontier regions of tropical countries. Disease surveillance in these hotspots is challenging because sampling techniques often rely on vector attractants that are either unavailable in remote localities or difficult to transport. We examined whether a novel method for producing CO2 from yeast and sugar produces similar mosquito species captures compared with a standard attractant such as dry ice. Across three different vegetation communities, we found traps baited with dry ice frequently captured more mosquitoes than yeast-baited traps; however, there was little effect on mosquito community composition. Based on our preliminary experiments, we find that this method of producing CO2 is a realistic alternative to dry ice and would be highly suitable for remote field work.
The Coolest Landscape on Mars or Earth
2016-12-07
Many Martian landscapes contain features that are familiar to ones we find on Earth, like river valleys, cliffs, glaciers and volcanos. However, Mars has an exotic side too, with landscapes that are alien to Earthlings. This image shows one of these exotic locales at the South Pole. The polar cap is made from carbon dioxide (dry ice), which does not occur naturally on the Earth. The circular pits are holes in this dry ice layer that expand by a few meters each Martian year. New dry ice is constantly being added to this landscape by freezing directly out of the carbon dioxide atmosphere or falling as snow. Freezing out the atmosphere like this limits how cold the surface can get to the frost point at -130 degrees Celsius (-200 F). Nowhere on Mars can ever get any colder this, making this this coolest landscape on Earth and Mars combined. http://photojournal.jpl.nasa.gov/catalog/PIA21216
Plants as sources of airborne bacteria, including ice nucleation-active bacteria.
Lindemann, J; Constantinidou, H A; Barchet, W R; Upper, C D
1982-11-01
Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m over young corn and wet soil to 663 colony-forming units per m over dry soil and 6,500 colony-forming units per m over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalfa field were fourfold higher than those over a field with dry, bare soil immediately upwind. The upward flux of viable bacteria over alfalfa was three- to fourfold greater than over dry soil. Concentrations of ice nucleation-active bacteria were higher over plants than over soil. Thus, plant canopies may constitute a major source of bacteria, including ice nucleation-active bacteria, in the air.
NASA Astrophysics Data System (ADS)
Su, X.; Shum, C. K.; Guo, J.; Howat, I.; Jezek, K. C.; Luo, Z.; Zhou, Z.
2017-12-01
Satellite altimetry has been used to monitor elevation and volume change of polar ice sheets since the 1990s. In order to derive mass change from the measured volume change, different density assumptions are commonly used in the research community, which may cause discrepancies on accurately estimating ice sheets mass balance. In this study, we investigate the inter-annual anomalies of mass change from GRACE gravimetry and elevation change from Envisat altimetry during years 2003-2009, with the objective of determining inter-annual variations of snow/firn density over the Greenland ice sheet (GrIS). High positive correlations (0.6 or higher) between these two inter-annual anomalies at are found over 93% of the GrIS, which suggests that both techniques detect the same geophysical process at the inter-annual timescale. Interpreting the two anomalies in terms of near surface density variations, over 80% of the GrIS, the inter-annual variation in average density is between the densities of snow and pure ice. In particular, at the Summit of Central Greenland, we validate the satellite data estimated density with the in situ data available from 75 snow pits and 9 ice cores. This study provides constraints on the currently applied density assumptions for the GrIS.
Large-Scale Structure and Hyperuniformity of Amorphous Ices
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto
2017-09-01
We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Figure 1 Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface. The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain. Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.Simple Cloud Chambers Using a Freezing Mixture of Ice and Cooking Salt
ERIC Educational Resources Information Center
Yoshinaga, Kyohei; Kubota, Miki; Kamata, Masahiro
2015-01-01
We have developed much simpler cloud chambers that use only ice and cooking salt instead of the dry ice or ice gel pack needed for the cloud chambers produced in our previous work. The observed alpha-ray particle tracks are as clear as those observed using our previous cloud chambers. The tracks can be observed continuously for about 20?min, and…
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.
2013-12-01
Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected dielectric spectroscopy at the Cold Regions Research and Engineering Laboratory (CRREL) permafrost tunnel in Fox, AK. We were able to detect the ice relaxation in the subsurface despite the considerable amount of subsurface unfrozen water due to the presence of montmorillonite clay and much warmer temperatures than Mars or permanently shadowed regions of the Moon. While dielectric spectroscopy can be used to determine ice and adsorbed water content it does not possess the high resolution mapping capability of a GPR. Moreover, GPR cannot detect subsurface ice content in ice-sediment mixtures as evidenced in the interpretation of the Medusae Fossae Formation. Orbital radar surveys show this unit has a low attenuation and a dielectric permittivity near 4. This allows the formation to be interpreted as ice-rich or a dry high-porosity volcanic tuff unit. Therefore, combining GPR and dielectric spectroscopy will enable high-resolution structural and volatile mapping of the subsurface. Furthermore, the addition of neutron spectroscopy would add total hydrogen abundance in the top meter. This could lead to the determination of how much hydrogen resides in ice, adsorbed water, and minerals.
Efficacy of osmoprotectants on prevention and treatment of murine dry eye.
Chen, Wei; Zhang, Xin; Li, Jinyang; Wang, Yu; Chen, Qi; Hou, Chao; Garrett, Qian
2013-09-19
To evaluate the efficacy of osmoprotectants on prevention and treatment of dry eye in a murine model. Dry eye was induced in mice by using an intelligently controlled environmental system (ICES). Osmoprotectants betaine, L-carnitine, erythritol, or vehicle (PBS) were topically administered to eyes four times daily following two schedules: schedule 1 (modeling prevention): dosing started at the beginning of housing in ICES and lasted for 21 or 35 days; schedule 2 (modeling treatment): dosing started after ICES-housed mice developed dry eye (day 21), continuing until day 35. Treatment efficacy was evaluated for corneal fluorescein staining; corneal epithelial apoptosis by TUNEL and caspase-3 assays; goblet cell numbers by PAS staining; and expression of inflammatory mediators, TNF-α, IL-17, IL-6, or IL-1β by using RT-PCR on days 0, 14, 21, and/or 35. Compared with vehicle, prophylactic administration of betaine, L-carnitine, or erythritol significantly decreased corneal staining and expression of TNF-α and IL-17 on day 21 (schedule 1). Treatment of mouse dry eye with osmoprotectants significantly reduced corneal staining on day 35 compared with day 21 (schedule 2). Relative to vehicle, L-carnitine treatment of mouse dry eye for 14 days (days 21 to 35) resulted in a significant reduction in corneal staining, number of TUNEL-positive cells, and expression of TNF-α, IL-17, IL-6, or IL-1β, as well as significantly increased the number of goblet cells. Topical application of betaine, L-carnitine, or erythritol systematically limited progression of environmentally induced dry eye. L-carnitine can also reduce the severity of such dry-eye conditions.
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1985-01-01
A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.
Simple Cloud Chambers Using Gel Ice Packs
ERIC Educational Resources Information Center
Kamata, Masahiro; Kubota, Miki
2012-01-01
Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…
Variation in Baiting Intensity Among CO2-Baited Traps Used to Collect Hematophagous Arthropods.
Springer, Yuri P; Taylor, Jeffrey R; Travers, Patrick D
2015-01-01
Hematophagous arthropods transmit the etiological agents of numerous diseases and as a result are frequently the targets of sampling to characterize vector and pathogen populations. Arguably, the most commonly used sampling approach involves traps baited with carbon dioxide. We report results of a laboratory study in which the performance of carbon dioxide-baited traps was evaluated using measures of baiting intensity, the amount of carbon dioxide released per unit time during trap deployment. We evaluated the effects of trap design, carbon dioxide source, and wind speed on baiting intensity and documented significant effects of these factors on the length of sampling (time to baiting intensity = 0), maximum baiting intensity, and variation in baiting intensity during experimental trials. Among the three dry ice-baited trap types evaluated, traps utilizing insulated beverage coolers as dry ice containers sampled for the longest period of time, had the lowest maximum but most consistent baiting intensity within trials and were least sensitive to effects of wind speed and dry ice form (block vs. pellet) on baiting intensity. Results of trials involving traps baited with carbon dioxide released from pressurized cylinders suggested that this trap type had performance comparable to dry ice-baited insulated cooler traps but at considerably higher cost. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
The effects of snow and salt on ice table stability in University Valley, Antarctica
Williams, Kaj; Heldmann, Jennifer L.; McKay, Christopher P.; Mellon, Michael T.
2018-01-01
The Antarctic Dry Valleys represent a unique environment where it is possible to study dry permafrost overlaying an ice-rich permafrost. In this paper, two opposing mechanisms for ice table stability in University Valley are addressed: i) diffusive recharge via thin seasonal snow deposits and ii) desiccation via salt deposits in the upper soil column. A high-resolution time-marching soil and snow model was constructed and applied to University Valley, driven by meteorological station atmospheric measurements. It was found that periodic thin surficial snow deposits (observed in University Valley) are capable of drastically slowing (if not completely eliminating) the underlying ice table ablation. The effects of NaCl, CaCl2 and perchlorate deposits were then modelled. Unlike the snow cover, however, the presence of salt in the soil surface (but no periodic snow) results in a slight increase in the ice table recession rate, due to the hygroscopic effects of salt sequestering vapour from the ice table below. Near-surface pore ice frequently forms when large amounts of salt are present in the soil due to the suppression of the saturation vapour pressure. Implications for Mars high latitudes are discussed.
Sinclair, Brent J; Marshall, David J; Singh, Sarika; Chown, Steven L
2004-11-01
All intertidal gastropods for which cold tolerance strategies have been assessed have been shown to be freeze tolerant. Thus, freeze tolerance is considered an adaptation to the intertidal environment. We investigated the cold tolerance strategies of three species of subtropical and temperate snails (Gastropoda: Littorinidae) to determine whether this group is phylogenetically constrained to freeze tolerance. We exposed 'dry' acclimated and 'wet' rehydrated snails to low temperatures to determine temperature of crystallisation (Tc), lower lethal temperature and LT(50) and to examine the relationship between ice formation and mortality. Tc was lowest in dry Afrolittorina knysnaensis (-13.6+/-0.4 degrees C), followed by dry Echinolittorina natalensis (-10.9+/-0.2 degrees C) and wet A. knysnaensis (-10.2+/-0.2 degrees C) . The Tc of both A. knysnaensis and E. natalensis increased with rehydration, whereas Tc of dry and wet Afrolittorina africana did not differ (-9.6+/-0.2 and -9.0+/-0.2 degrees C respectively). Wet snails of all species exhibited no or low survival of inoculative freezing, whereas dry individuals of A. knysnaensis could survive subzero temperatures above -8 degrees C when freezing was inoculated with ice . In the absence of external ice, Afrolittorina knysnaensis employs a freeze-avoidance strategy of cold tolerance, the first time this has been reported for an intertidal snail, indicating that there is no family-level phylogenetic constraint to freeze tolerance. Echinolittorina natalensis and A. africana both showed pre-freeze mortality and survival of some internal ice formation, but were not cold hardy in any strict sense.
Liquid Water Oceans in Ice Giants
NASA Technical Reports Server (NTRS)
Wiktorowicz, Sloane J.; Ingersoll, Andrew P.
2007-01-01
Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune s water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.
New particle dependant parameterizations of heterogeneous freezing processes.
NASA Astrophysics Data System (ADS)
Diehl, Karoline; Mitra, Subir K.
2014-05-01
For detailed investigations of cloud microphysical processes an adiabatic air parcel model with entrainment is used. It represents a spectral bin model which explicitly solves the microphysical equations. The initiation of the ice phase is parameterized and describes the effects of different types of ice nuclei (mineral dust, soot, biological particles) in immersion, contact, and deposition modes. As part of the research group INUIT (Ice Nuclei research UnIT), existing parameterizations have been modified for the present studies and new parameterizations have been developed mainly on the basis of the outcome of INUIT experiments. Deposition freezing in the model is dependant on the presence of dry particles and on ice supersaturation. The description of contact freezing combines the collision kernel of dry particles with the fraction of frozen drops as function of temperature and particle size. A new parameterization of immersion freezing has been coupled to the mass of insoluble particles contained in the drops using measured numbers of ice active sites per unit mass. Sensitivity studies have been performed with a convective temperature and dew point profile and with two dry aerosol particle number size distributions. Single and coupled freezing processes are studied with different types of ice nuclei (e.g., bacteria, illite, kaolinite, feldspar). The strength of convection is varied so that the simulated cloud reaches different levels of temperature. As a parameter to evaluate the results the ice water fraction is selected which is defined as the relation of the ice water content to the total water content. Ice water fractions between 0.1 and 0.9 represent mixed-phase clouds, larger than 0.9 ice clouds. The results indicate the sensitive parameters for the formation of mixed-phase and ice clouds are: 1. broad particle number size distribution with high number of small particles, 2. temperatures below -25°C, 3. specific mineral dust particles as ice nuclei such as illite or montmorillonite. Coupled cases of deposition and contact freezing show that they are hardly in competition because of differences in the preferred particle sizes. In the contact mode, small particles are less efficient for collisions as well as less efficient as ice nuclei so that these are available for deposition freezing. On the other hand, immersion freezing is the dominant process when it is coupled with deposition freezing. As it is initiated earlier the formed ice particles consume water vapor for growing. The competition of combined contact and immersion freezing leads to lower ice water contents because more ice particles are formed via the immersion mode. In general, ice clouds and mixed-phase clouds with high ice water fractions are not directly the result of primary ice formation but of secondary ice formation and growth of ice particles at the expense of liquid drops.
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Augustin-Bauditz, S.; Bingemer, H.; Budke, C.; Curtius, J.; Danielczok, A.; Diehl, K.; Dreischmeier, K.; Ebert, M.; Frank, F.; Hoffmann, N.; Kandler, K.; Kiselev, A.; Koop, T.; Leisner, T.; Möhler, O.; Nillius, B.; Peckhaus, A.; Rose, D.; Weinbruch, S.; Wex, H.; Boose, Y.; DeMott, P. J.; Hader, J. D.; Hill, T. C. J.; Kanji, Z. A.; Kulkarni, G.; Levin, E. J. T.; McCluskey, C. S.; Murakami, M.; Murray, B. J.; Niedermeier, D.; Petters, M. D.; O'Sullivan, D.; Saito, A.; Schill, G. P.; Tajiri, T.; Tolbert, M. A.; Welti, A.; Whale, T. F.; Wright, T. P.; Yamashita, K.
2014-08-01
Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice nucleating particles (INPs). However, an inter-comparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nucleation research UnIT), we distributed an illite rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. Seventeen measurement methods were involved in the data inter-comparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while ten other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing dataset was evaluated using the ice nucleation active surface-site density (ns) to develop a representative ns(T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers nine orders of magnitude in ns. Our inter-comparison results revealed a discrepancy between suspension and dry-dispersed particle measurements for this mineral dust. While the agreement was good below ~ -26 °C, the ice nucleation activity, expressed in ns, was smaller for the wet suspended samples and higher for the dry-dispersed aerosol samples between about -26 and -18 °C. Only instruments making measurement techniques with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -26 and -18 °C is discussed. In general, the seventeen immersion freezing measurement techniques deviate, within the range of about 7 °C in terms of temperature, by three orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency (i.e., ns) of illite NX particles is relatively independent on droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature-dependence and weak time- and size-dependence of immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns (T) spectra, and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. A multiple exponential distribution fit is expressed as ns(T) = exp(23.82 × exp(-exp(0.16 × (T + 17.49))) + 1.39) based on the specific surface area and ns(T) = exp(25.75 × exp(-exp(0.13 × (T + 17.17))) + 3.34) based on the geometric area (ns and T in m-2 and °C, respectively). These new fits, constrained by using an identical reference samples, will help to compare IN measurement methods that are not included in the present study and, thereby, IN data from future IN instruments.
Future loss of Arctic sea-ice cover could drive a substantial decrease in California's rainfall.
Cvijanovic, Ivana; Santer, Benjamin D; Bonfils, Céline; Lucas, Donald D; Chiang, John C H; Zimmerman, Susan
2017-12-05
From 2012 to 2016, California experienced one of the worst droughts since the start of observational records. As in previous dry periods, precipitation-inducing winter storms were steered away from California by a persistent atmospheric ridging system in the North Pacific. Here we identify a new link between Arctic sea-ice loss and the North Pacific geopotential ridge development. In a two-step teleconnection, sea-ice changes lead to reorganization of tropical convection that in turn triggers an anticyclonic response over the North Pacific, resulting in significant drying over California. These findings suggest that the ability of climate models to accurately estimate future precipitation changes over California is also linked to the fidelity with which future sea-ice changes are simulated. We conclude that sea-ice loss of the magnitude expected in the next decades could substantially impact California's precipitation, thus highlighting another mechanism by which human-caused climate change could exacerbate future California droughts.
Method for foam encapsulating laser targets
Hendricks, Charles D.
1977-01-01
Foam encapsulated laser fusion targets are made by positioning a fusion fuel-filled sphere within a mold cavity of suitable configuration and dimensions, and then filling the cavity with a material capable of producing a low density, microcellular foam, such as cellulose acetate dissolved in an acetone-based solvent. The mold assembly is dipped into an ice water bath to gel the material and thereafter soaked in the water bath to leach out undesired components, after which the gel is frozen, then freeze-dried wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam, thereafter the resulting foam encapsulated target is removed from the mold cavity. The fuel-filled sphere is surrounded by foam having a thickness of about 10 to 100 .mu.m, a cell size of less than 2 .mu.m, and density of 0.065 to 0.6 .times. 10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by this encapsulation method are illustrated.
Thickness of tropical ice and photosynthesis on a snowball Earth
NASA Technical Reports Server (NTRS)
McKay, C. P.
2000-01-01
On a completely ice-covered "snowball" Earth the thickness of ice in the tropical regions would be limited by the sunlight penetrating into the ice cover and by the latent heat flux generated by freezing at the ice bottom--the freezing rate would balance the sublimation rate from the top of the ice cover. Heat transfer models of the perennially ice-covered Antarctic dry valley lakes applied to the snowball Earth indicate that the tropical ice cover would have a thickness of 10 m or less with a corresponding transmissivity of > 0.1%. This light level is adequate for photosynthesis and could explain the survival of the eukaryotic algae.
Thickness of tropical ice and photosynthesis on a snowball Earth.
McKay, C P
2000-07-15
On a completely ice-covered "snowball" Earth the thickness of ice in the tropical regions would be limited by the sunlight penetrating into the ice cover and by the latent heat flux generated by freezing at the ice bottom--the freezing rate would balance the sublimation rate from the top of the ice cover. Heat transfer models of the perennially ice-covered Antarctic dry valley lakes applied to the snowball Earth indicate that the tropical ice cover would have a thickness of 10 m or less with a corresponding transmissivity of > 0.1%. This light level is adequate for photosynthesis and could explain the survival of the eukaryotic algae.
Chen, Yong; Li, Xiang-Kai; Si, Jing; Wu, Guang-Jian; Tian, Li-De; Xiang, Shu-Rong
2016-01-01
In this study, six bacterial community structures were analyzed from the Dunde ice core (9.5-m-long) using 16S rRNA gene cloning library technology. Compared to the Muztagata mountain ice core (37-m-long), the Dunde ice core has different dominant community structures, with five genus-related groups Blastococcus sp./Propionibacterium, Cryobacterium-related., Flavobacterium sp., Pedobacter sp., and Polaromas sp. that are frequently found in the six tested ice layers from 1990 to 2000. Live and total microbial density patterns were examined and related to the dynamics of physical-chemical parameters, mineral particle concentrations, and stable isotopic ratios in the precipitations collected from both Muztagata and Dunde ice cores. The Muztagata ice core revealed seasonal response patterns for both live and total cell density, with high cell density occurring in the warming spring and summer months indicated by the proxy value of the stable isotopic ratios. Seasonal analysis of live cell density for the Dunde ice core was not successful due to the limitations of sampling resolution. Both ice cores showed that the cell density peaks were frequently associated with high concentrations of particles. A comparison of microbial communities in the Dunde and Muztagata glaciers showed that similar taxonomic members exist in the related ice cores, but the composition of the prevalent genus-related groups is largely different between the two geographically different glaciers. This indicates that the micro-biogeography associated with geographic differences was mainly influenced by a few dominant taxonomic groups. PMID:27847503
Fegyveresi, John M.; Alley, R.B.; Spencer, M.K.; Fitzpatrick, J.J.; Steig, E.J.; White, J.W.C.; McConnell, J.R.; Taylor, K.C.
2011-01-01
A surface cooling of ???1.7??C occurred over the ???two millennia prior to ???1700 CE at the West Antarctic ice sheet (WAIS) Divide site, based on trends in observed bubble number-density of samples from the WDC06A ice core, and on an independently constructed accumulation-rate history using annual-layer dating corrected for density variations and thinning from ice flow. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. Numberdensity is conserved in bubbly ice following pore close-off, allowing reconstruction of either paleotemperature or paleo-accumulation rate if the other is known. A quantitative late-Holocene paleoclimate reconstruction is presented for West Antarctica using data obtained from the WAIS Divide WDC06A ice core and a steady-state bubble number-density model. The resultant temperature history agrees closely with independent reconstructions based on stable-isotopic ratios of ice. The ???1.7??C cooling trend observed is consistent with a decrease in Antarctic summer duration from changing orbital obliquity, although it remains possible that elevation change at the site contributed part of the signal. Accumulation rate and temperature dropped together, broadly consistent with control by saturation vapor pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menou, Kristen
2013-09-01
Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than aboutmore » a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.« less
Thermal transfer in extracted incisors during thermal pulp sensitivity testing.
Linsuwanont, P; Palamara, J E; Messer, H H
2008-03-01
To measure the temperature distribution within tooth structure during and after application of thermal stimuli used during pulp sensitivity testing. Extracted intact human maxillary anterior teeth were investigated for temperature changes at the labial enamel, the dentino-enamel junction (DEJ) and pulpal surface during and after a 5-s application of six different thermal stimuli: hot water (80 degrees C), heated gutta-percha (140 degrees C), carbon dioxide dry ice (-72 degrees C), refrigerant spray (-50 degrees C), ice stick (0 degrees C) and cold water (2 degrees C). J-type thermocouples and heat conduction paste were used to detect temperature changes, together with a data acquisition system (Labview). Data were analysed using analysis of variance, with a confidence level of P < 0.05. Temperature change was detected more quickly at the DEJ and pulpal surface with the application of hot water, heated gutta-percha and refrigerant spray than with carbon dioxide dry ice and ice (P < 0.05). Cold water and refrigerant spray were in the same range in terms of time to detect temperature change at both the DEJ and pulpal surface. Thermal stimuli with greater temperature difference from tooth temperature created a greater thermal gradient initially, followed by a greater temperature change at the DEJ and the pulpal surface. In this regard, ice and cold water were weaker stimuli than others (P < 0.05). Thermal stimuli used in pulp testing are highly variable in terms of temperature of the stimulus, rate of thermal transfer to the tooth and extent of temperature change within tooth structure. Overall, dry ice and refrigerant spray provide the most consistent stimuli, whereas heated gutta-percha and hot water were highly variable. Ice was a weak stimulus.
2002-05-28
This diagram shows a possible configuration of ice-rich and dry soil in the upper meter 3 feet of Mars. The ice-rich soil was detected by the gamma ray spectrometer suite of instruments aboard NASA Mars Odyssey spacecraft.
Sulfur dioxide reactions on ice surfaces: Implications for dry deposition to snow
Martha H. Conklin; Richard A. Sommerfeld; S. Kay Laird; John E. Villinski
1993-01-01
Controlled exposure of ice to a reactive gas, SO2, demonstrated the importance of the chemical composition of the ice surface on the accumulation of acidity in snow. In a series of bench-scale continuous-flow column experiments run at four temperatures (-1, -8, -30 and -60°C), SO2 was shown to dissolve and to react with other species in the ice-air interfacial region...
NASA Astrophysics Data System (ADS)
Grand Graversen, Rune
2017-04-01
The Arctic amplification of global warming, and the pronounced Arctic sea-ice retreat constitute some of the most alarming signs of global climate change. These Arctic changes are likely a consequence of a combination of several processes, for instance enhanced uptake of solar radiation in the Arctic due to a decrease of sea ice (the ice-albedo feedback), and increase in the local Arctic greenhouse effect due to enhanced moister flux from lower latitudes. Many of the proposed processes appear to be dependent on each other, for instance an increase in water-vapour advection to the Arctic enhances the greenhouse effect in the Arctic and the longwave radiation to the surface, leading to sea-ice melt and enhancement of the ice-albedo feedback. The effects of albedo changes and other radiative feedbacks have been investigated in earlier studies based on model experiments designed to examine these effects specifically. Here we instead focus on the effects of meridional transport changes into the Arctic, both of moister and dry-static energy. Hence we here present results of model experiments with the CESM climate model designed specifically to extract the effects of the changes of the two transport components. In the CESM model the moister transport to the Arctic increases, whereas the dry-static transport decreases in response to a doubling of CO2. This is in agreement with other model results. The model is now forced with these transport changes of water-vapour and dry-static energy associated with a CO2 doubling. The results show that changes of the water-vapour transport lead to Arctic warming. This is partly a consequence of the ice-albedo feedback due to sea-ice melt caused by the change of the water-vapour advection. The changes of the dry-static transport lead to Arctic cooling, which however is smaller than the warming induced by the water-vapour component. Hence this study support the hypothesis that changes in the atmospheric circulation contribute to the Arctic temperature amplification of the ongoing global warming.
Snow, Firn and Ice Heterogeneity within Larsen C Ice Shelf Revealed by Borehole Optical-televiewing
NASA Astrophysics Data System (ADS)
Hubbard, B. P.; Ashmore, D.; Luckman, A. J.; Kulessa, B.; Bevan, S. L.; Booth, A.; Kuipers Munneke, P.; O'Leary, M.; Sevestre, H.
2016-12-01
The north-western sector of Larsen C Ice Shelf (LCIS), Antarctica, hosts intermittent surface ponds resulting from intense melting, largely driven by warm föhn winds. The fate of such surface melt water is largely controlled by the shelf's firn structure, which also dictates shelf density (widely used to reconstruct ice shelf thickness from altimetric data) and preconditioning to hydrofracture. Here, we report a suite of five 90 m long optical-televiewer (OPTV) borehole logs from the northern and central regions of LCIS recorded in spring 2014 and 2015. For each OPTV log we reconstruct vertical variations in material density via an empirical OPTV log-ice core calibration, and apply a thresholding technique to estimate refrozen ice content within the firn column. These data are combined to define five material facies present within this sector of LCIS. The firn/ice column is anomalously dense at all five sites, having an overall mean depth-averaged density of 873 +/-32 kg m-3. In terms of spatial variability, our findings generally support previous estimates of firn air content fields and implied infiltration ice content. However, they also highlight finer-resolution complexity of ice shelf structure. For example, the most dense ice, with the lowest equivalent firn air content, is not located within the most westerly inlets, where firn-driven melting and ponding are most active, but some tens of km down-flow of these areas. We interpret this effect in terms of the inheritance nearer the grounding line of relatively low-density glacial ice (e.g., 52 m thick with a density of 852 +/-21 kg m-3 in northernmost Cabinet Inlet) advected from inland. This inherited ice forms one of five facies identified across the study region. These are, extending broadly downwards into the shelf, and with different representation at each site: local accumulation (F1); local accumulation hosting substantial infiltration ice, i.e. influenced by intense melt but insufficient to form surface ponds (F2); massive refrozen pond ice (F3); ice composed of both metamorphosed host ice and infiltration ice, the origin of which is difficult to determine due to the facies being located at depth within our logs (F4); and glacial ice inherited from up-flow (F5).
NASA Astrophysics Data System (ADS)
Hayden, T. G.; Kominz, M. A.; Magens, D.; Niessen, F.
2009-12-01
We have estimated ice thicknesses at the AND-1B core during the Last Glacial Maximum by adapting an existing technique to calculate overburden. As ice thickness at Last Glacial Maximum is unknown in existing ice sheet reconstructions, this analysis provides constraint on model predictions. We analyze the porosity as a function of depth and lithology from measurements taken on the AND-1B core, and compare these results to a global dataset of marine, normally compacted sediments compiled from various legs of ODP and IODP. Using this dataset we are able to estimate the amount of overburden required to compact the sediments to the porosity observed in AND-1B. This analysis is a function of lithology, depth and porosity, and generates estimates ranging from zero to 1,000 meters. These overburden estimates are based on individual lithologies, and are translated into ice thickness estimates by accounting for both sediment and ice densities. To do this we use a simple relationship of Xover * (ρsed/ρice) = Xice; where Xover is the overburden thickness, ρsed is sediment density (calculated from lithology and porosity), ρice is the density of glacial ice (taken as 0.85g/cm3), and Xice is the equalivant ice thickness. The final estimates vary considerably, however the “Best Estimate” behavior of the 2 lithologies most likely to compact consistently is remarkably similar. These lithologies are the clay and silt units (Facies 2a/2b) and the diatomite units (Facies 1a) of AND-1B. These lithologies both produce best estimates of approximately 1,000 meters of ice during Last Glacial Maximum. Additionally, while there is a large range of possible values, no combination of reasonable lithology, compaction, sediment density, or ice density values result in an estimate exceeding 1,900 meters of ice. This analysis only applies to ice thicknesses during Last Glacial Maximum, due to the overprinting effect of Last Glacial Maximum on previous ice advances. Analysis of the AND-2A core is underway, and results will be compared to those of AND-1B.
Effect of hot-boned pork on the keeping quality of fresh pork sausage.
Guerrero Legarreta, I; Usborne, W R; Ashton, G C
1987-01-01
The first experiment evaluated the effect of solid carbon dioxide (dry ice) addition to hot-boned meat, in different proportions, upon the keeping quality of fresh pork sausage patties. Dry ice had some negative effects at levels of 20% to 40%, such as hardening and colour fading of samples, although it increased water-holding capacity of the sausage. In the second experiment three proportions of hot-boned meat and chilled meat were evaluated as a means to extend the retail storage time of fresh pork sausage links. Hot-boned pork was treated by three methods: freezing the meat before grinding, salting and freezing, and salting plus dry ice addition. The results favoured the use of 50% hot-boned meat and 50% chilled meat, for which the lowest hardness and oxidation values were obtained. Microbial counts and hue values showed no significant variation among the three treatments. Salting and freezing hot-boned meat before grinding was the method which produced the best overall quality. Copyright © 1987. Published by Elsevier Ltd.
Method of making foam-encapsulated laser targets
Rinde, James A.; Fulton, Fred J.
1977-01-01
Foam-encapsulated laser fusion targets are fabricated by suspending fusion fuel filled shells in a solution of cellulose acetate, extruding the suspension through a small orifice into a bath of ice water, soaking the thus formed shell containing cellulose acetate gel in the water to extract impurities, freezing the gel, and thereafter freeze-drying wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam containing one or more encapsulated fuel-filled shells. The thus formed material is thereafter cut and mounted on a support to provide laser fusion targets containing a fuel-filled shell surrounded by foam having a thickness of 10 to 60 .mu.m, a cell size of less than 2 .mu.m, and density of 0.08 to 0.6.times.10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by the encapsulation method are illustrated.
NASA Astrophysics Data System (ADS)
Okayama, Hiroshi; Li, Wei
2006-09-01
Atmopheric turbulence is one of the important correction factors to evaluate the earth's surface using a sinsor on a satellite. CO II and aerosol are selected as factors of turbulence. The effects of turbulence caused by CO II and aerosol on the light reflected from the earth's surface are estimated by measuring the degradation of spatial coherence of light in a chamber in which atmospheric turbulence is generated. Dry ice is used to generate carbon dioxide gas. degradation of spatial coherence is measured in relation to the increase of CO II. Turbulence caused by aerosol is measured by density of smoke cigarettes. The spatial coherence of light in the chamber degrades in relation to the increase of aerosol and as a result the turbulence increases. The relation between the turbulence and the degree of spatial coherence is explained in a formula.
NASA/FAA Tailplane Icing Program Overview
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; VanZante, Judith Foss; Riley, James T.
1999-01-01
The effects of tailplane icing were investigated in a four-year NASA/FAA Tailplane Icing, Program (TIP). This research program was developed to improve the understanding, of iced tailplane aeroperformance and aircraft aerodynamics, and to develop design and training aides to help reduce the number of incidents and accidents caused by tailplane icing. To do this, the TIP was constructed with elements that included icing, wind tunnel testing, dry-air aerodynamic wind tunnel testing, flight tests, and analytical code development. This paper provides an overview of the entire program demonstrating the interconnectivity of the program elements and reports on current accomplishments.
Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.
2017-01-01
The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.
Oxytocin Levels in Community-Collected Saliva Samples Transported by Dry Versus Wet Ice.
Howland, Lois C; Pickler, Rita H; Sullenbarger, Brent A; Connelly, Cynthia D
2018-01-01
Oxytocin (OT), a neuropeptide produced primarily in the hypothalamus, is associated with both critical physiological and psychological processes, particularly stress and feelings of affiliation. Increasingly, researchers are seeking ways to reliably incorporate OT as an outcome biomarker in clinical research. Previously, OT levels were measured in plasma or urine. Recently, researchers have measured this biomarker in saliva, particularly when conducting research in clinical and community settings. In spite of increased interest in the use of salivary OT in clinical research, procedures for handling, transport, and analysis of specimens vary. It is not known if significant OT protein degradation occurs if samples are initially transported on wet ice before being frozen. The aim of this study is to evaluate the effect of transport media (wet vs. dry ice) on OT levels derived from saliva collected from 12 postpartum women residing in the community. Saliva collected from each participant was divided between two microcentrifuge tubes (MIDSCI, Valley Park, MO), one placed on wet ice and one on dry ice for transport from the participant's home to the laboratory freezer. Time from collection to storage freezer was recorded. Laboratory personnel, blinded to method of transport, batch processed the samples. No significant differences in OT levels were found by transport method. Despite large interperson variations in OT levels, there were negligible intraperson variations. Although further research is required to identify factors (including transport time) related to interperson variation, this study supports the use of wet ice as a means of transporting salivary OT specimens in community-based research.
NASA Astrophysics Data System (ADS)
Rack, Wolfgang; Haas, Christian; Langhorne, Pat; Leonard, Greg; Price, Dan; Barnsdale, Kelvin; Soltanzadeh, Iman
2014-05-01
Melting and freezing processes in the ice shelf cavities of the Ross and McMurdo Ice Shelves significantly influence the sea ice formation in McMurdo Sound. Between 2009 and 2013 we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure thickness and freeboard profiles across the ice shelf and the landfast sea ice, which was accompanied by extensive field validation, and coordinated with satellite altimeter overpasses. Using freeboard and thickness, the bulk density of all ice types was calculated assuming hydrostatic equilibrium. Significant density steps were detected between first-year and multi-year sea ice, with higher values for the younger sea ice. Values are overestimated in areas with abundance of sub-ice platelets because of overestimation in both ice thickness and freeboard. On the ice shelf, bulk ice densities were sometimes higher than that of pure ice, which can be explained by both the accretion of marine ice and glacial sediments. For thin ice, the freeboard to thickness conversion critically depends on the knowledge of snow properties. Our measurements allow tuning and validation of snow cover simulations using the Weather Research Forecasting (WRF) model. The simulated snowcover is used to calculate ice thickness from satellite derived freeboard. The results of our measurements, which are supported by the New Zealand Antarctic programme, draw a picture of how oceanographic processes influence the ice shelf morphology and sea ice formation in McMurdo Sound, and how satellite derived freeboard of ICESat and CryoSat together with information on snow cover can potentially capture the signature of these processes.
Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.
Weng, Lindong; Tessier, Shannon N; Swei, Anisa; Stott, Shannon L; Toner, Mehmet
2017-04-01
The control of ice nucleation is of fundamental significance in many process technologies related to food and pharmaceutical science and cryobiology. Mechanical perturbation, electromagnetic fields and ice-nucleating agents (INAs) have been known to induce ice nucleation in a controlled manner. But these ice-nucleating methods may suffer from cumbersome manual operations, safety concerns of external fields, and biocompatibility and recovery issues of INA particles, especially when used in living systems. Given the automatic ice-seeding nature of INAs, a promising solution to overcome some of the above limitations is to engineer a biocomposite that accommodates the INA particles but minimizes their interactions with biologics, as well as enabling the recovery of used particles. In this study, freeze-dried Pseudomonas syringae, a model ice-nucleating agent, was encapsulated into microliter-sized alginate beads. We evaluated the performance of the bacterial hydrogel beads to initiate ice nucleation in water and aqueous glycerol solution by investigating factors including the size and number of the beads and the local concentration of INA particles. In the aqueous sample of a fixed volume, the total mass of the INA particles (m) was found to be the governing parameter that is solely responsible for determining the ice nucleation performance of the bacterial hydrogel beads. The freezing temperature has a strong positive linear correlation with log 10 m. The findings in this study provide an effective, predictable approach to control ice nucleation, which can improve the outcome and standardization of many ice-assisted process technologies. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael
2017-04-01
Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation becomes more likely when the particles are new and rough, but also after they have been through many collisions. Experiment 2: To create an even higher collision density and to understand the collective behaviour of these ice particles, a sample of them were placed to cover the tray of an electromagnetic shaker, mounted in an environment controlled chamber at -2°C. Continuous shaking of this system permitted observation of a spontaneous transition from dry granular behaviour to that of wetted granules. Vibrating with a fixed acceleration, image sequences were recorded every 10 min to show that at early stage (<15min) the particles adopted the dry granular flow (particles are free to bounce on the vibrating plate). After circa 40 min 90% particles became spontaneously immobile in an approximately hexagonally packed 2 dimensional sheet.
29 CFR 776.21 - “For” commerce.
Code of Federal Regulations, 2013 CFR
2013-07-01
... essentially local ice plant where the only basis of coverage is the delivery of ice for the water cooler in... entitled to be paid on that basis notwithstanding some of the wells drilled may eventually prove to be dry...
29 CFR 776.21 - “For” commerce.
Code of Federal Regulations, 2014 CFR
2014-07-01
... essentially local ice plant where the only basis of coverage is the delivery of ice for the water cooler in... entitled to be paid on that basis notwithstanding some of the wells drilled may eventually prove to be dry...
29 CFR 776.21 - “For” commerce.
Code of Federal Regulations, 2011 CFR
2011-07-01
... essentially local ice plant where the only basis of coverage is the delivery of ice for the water cooler in... entitled to be paid on that basis notwithstanding some of the wells drilled may eventually prove to be dry...
On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.
Nath, Saurabh; Boreyko, Jonathan B
2016-08-23
Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.
Developing a bubble number-density paleoclimatic indicator for glacier ice
Spencer, M.K.; Alley, R.B.; Fitzpatrick, J.J.
2006-01-01
Past accumulation rate can be estimated from the measured number-density of bubbles in an ice core and the reconstructed paleotemperature, using a new technique. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. An empirical model of these processes, optimized to fit published data on recently formed bubbles, reconstructs accumulation rates using recent temperatures with an uncertainty of 41% (P < 0.05). For modern sites considered here, no statistically significant trend exists between mean annual temperature and the ratio of bubble number-density to grain number-density at the time of pore close-off; optimum modeled accumulation-rate estimates require an eventual ???2.02 ?? 0.08 (P < 0.05) bubbles per close-off grain. Bubble number-density in the GRIP (Greenland) ice core is qualitatively consistent with independent estimates for a combined temperature decrease and accumulation-rate increase there during the last 5 kyr.
Effect of Surface Omniphobicity on Drying by Forced Convection (Briefing Charts)
2015-08-01
Lesson Plan • This lesson plan is directed for 9th-12th grade students. • Reading about ice - cream . • Learning to make ice - cream through a DOE...average of different ice - creams . 15DISTRIBUTION A: Approved for public release; distribution unlimited. AFRL Public Affairs Clearance # Future...optimization. • The three factors are different weight percent of salt per ice , fat content in dairy and shaking time. • Measured output will be rating and
Spaulding, S.A.; McKnight, Diane M.; Stoermer, E.F.; Doran, P.T.
1997-01-01
Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hore, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake=wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4-16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (2-31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta. Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process influencing species composition and abundance of diatom assemblages in the benthic microbial mats is episodic deposition of coarse sediment from the ice surface.
Keegan, Kaitlin M; Albert, Mary R; McConnell, Joseph R; Baker, Ian
2014-06-03
In July 2012, over 97% of the Greenland Ice Sheet experienced surface melt, the first widespread melt during the era of satellite remote sensing. Analysis of six Greenland shallow firn cores from the dry snow region confirms that the most recent prior widespread melt occurred in 1889. A firn core from the center of the ice sheet demonstrated that exceptionally warm temperatures combined with black carbon sediments from Northern Hemisphere forest fires reduced albedo below a critical threshold in the dry snow region, and caused the melting events in both 1889 and 2012. We use these data to project the frequency of widespread melt into the year 2100. Since Arctic temperatures and the frequency of forest fires are both expected to rise with climate change, our results suggest that widespread melt events on the Greenland Ice Sheet may begin to occur almost annually by the end of century. These events are likely to alter the surface mass balance of the ice sheet, leaving the surface susceptible to further melting.
2017-10-25
At around 2,200 kilometers in diameter, Hellas Planitia is the largest visible impact basin in the Solar System, and hosts the lowest elevations on Mars' surface as well as a variety of landscapes. This image from NASA's Mars Reconnaisance Orbiter (MRO) covers a small central portion of the basin and shows a dune field with lots of dust devil trails. In the middle, we see what appears to be long and straight "scratch marks" running down the southeast (bottom-right) facing dune slopes. If we look closer, we can see these scratch marks actually squiggle back and forth on their way down the dune. These scratch marks are linear gullies. Just like on Earth, high-latitude regions on Mars are covered with frost in the winter. However, the winter frost on Mars is made of carbon dioxide ice (dry ice) instead of water ice. We believe linear gullies are the result of this dry ice breaking apart into blocks, which then slide or roll down warmer sandy slopes, sublimating and carving as they go. The linear gullies exhibit exceptional sinuosity (the squiggle pattern) and we believe this to be the result of repeated movement of dry ice blocks in the same path, possibly in combination with different hardness or flow resistance of the sand within the dune slopes. Determining the specific process that causes the formation and evolution of sinuosity in linear gullies is a question scientists are still trying to answer. What do you think causes the squiggles? https://photojournal.jpl.nasa.gov/catalog/PIA22052
The lifecycle and climate-impact of contrail cirrus
NASA Astrophysics Data System (ADS)
Schumann, Ulrich
2016-04-01
The lifecycle of contrail cirrus has to be understood as a prerequisite to compute its weather and climate impact for given airtraffic and meteorology. As a new concept, this study distinguishes between: 1) Externally limited contrail cirrus, where contrails form in moderately ice-supersaturated air, but ice particles stay small and contrails end by sublimation because of drying of the ambient air, e.g., when the ambient air subsides; 2) Internally limited contrail cirrus, where contrails form at high humidity with strong supersaturation or form in rising air masses, so that the ice particles grow until their fall speed gets large, and the ice particles finally fall to lower levels (e.g. in fall streaks). For both kinds of contrail cirrus, scaling laws are set up which show how the "Surface Forcing" (SF), i.e. the time-integral of optical depth times width (integral of ice particle number per flight distance times ice particle cross-section area times extinction efficiency) depends on the lifetime, on the number of ice particles per unit length, ambient humidity, uplift velocity, wind shear, turbulent mixing, and temperature. SF can be converted into an energy forcing (EF), from which the global radiative forcing can be evaluated, for given radiative Earth-atmosphere properties and traffic density. The scaling laws are tested by comparison to global contrail simulations with the most recent version of CoCiP (as in Schumann, 2012; and some changes), using ECMWF data and a global traffic data bases (ACCRI). The model assumes that contrail ice particles form initially mainly on soot, that the ice particles consume the ice supersaturation in the contrail plume, that the ice particle number decreases slightly with lifetime, and that interactions of contrails with ambient cirrus are weak. The scaling laws and the model allow estimating the climate impact of contrails as a function of a given aircraft and weather parameters. The results are compared to available results from airborne observation campaigns, like CONCERT and MLCIRRUS, from remote sensing, from large eddy simulations and global model studies. For externally limited contrails, the climate impact of contrails increases with about the square of the externally controlled lifetime and the third root of the number contrail ice particles per flight distance. For internally limited contrails, SF grows about linearly with this number.
Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina
2018-06-22
Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.
Ice nucleation by soil dust compared to desert dust aerosols
NASA Astrophysics Data System (ADS)
Moehler, O.; Steinke, I.; Ullrich, R.; Höhler, K.; Schiebel, T.; Hoose, C.; Funk, R.
2015-12-01
A minor fraction of atmospheric aerosol particles, so-called ice-nucleating particles (INPs), initiates the formation of the ice phase in tropospheric clouds and thereby markedly influences the Earth's weather and climate systems. Whether an aerosol particle acts as an INP depends on its size, morphology and chemical compositions. The INP fraction of certain aerosol types also strongly depends on the temperature and the relative humidity. Because both desert dust and soil dust aerosols typically comprise a variety of different particles, it is difficult to assess and predict their contribution to the atmospheric INP abundance. This requires both accurate modelling of the sources and atmospheric distribution of atmospheric dust components and detailed investigations of their ice nucleation activities. The latter can be achieved in laboratory experiments and parameterized for use in weather and climate models as a function of temperature and particle surface area, a parameter called ice-nucleation active site (INAS) density. Concerning ice nucleation activity studies, the soil dust is of particular interest because it contains a significant fraction of organics and biological components, both with the potential for contributing to the atmospheric INP abundance at relatively high temperatures compared to mineral components. First laboratory ice nucleation experiments with a few soil dust samples indicated their INP fraction to be comparable or slightly enhanced to that of desert dust. We have used the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber to study the immersion freezing ability of four different arable soil dusts, sampled in Germany, China and Argentina. For temperatures higher than about -20°C, we found the INP fraction of aerosols generated from these samples by a dry dispersion technique to be significantly higher compared to various desert dust aerosols also investigated in AIDA experiments. In this contribution, we will summarize the experimental results, introduce related INP parameterizations for use in weather and climate models, and briefly discuss possible reasons for the discrepancy between the INP fraction of desert and soil dust aerosols.
... DO NOT put the body part directly in water without using a plastic bag. DO NOT put the severed part directly on ice. DO NOT use dry ice as this will cause frostbite and injury to the part. If cold water is not available, keep the part away from ...
Nonlinear Spectral Mixture Modeling to Estimate Water-Ice Abundance of Martian Regolith
NASA Astrophysics Data System (ADS)
Gyalay, Szilard; Chu, Kathryn; Zeev Noe Dobrea, Eldar
2017-10-01
We present a novel technique to estimate the abundance of water-ice in the Martian permafrost using Phoenix Surface Stereo Imager multispectral data. In previous work, Cull et al. (2010) estimated the abundance of water-ice in trenches dug by the Mars Phoenix lander by modeling the spectra of the icy regolith using the radiative transfer methods described in Hapke (2008) with optical constants for Mauna Kea palagonite (Clancy et al., 1995) as a substitute for unknown Martian regolith optical constants. Our technique, which uses the radiative transfer methods described in Shkuratov et al. (1999), seeks to eliminate the uncertainty that stems from not knowing the composition of the Martian regolith by using observations of the Martian soil before and after the water-ice has sublimated away. We use observations of the desiccated regolith sample to estimate its complex index of refraction from its spectrum. This removes any a priori assumptions of Martian regolith composition, limiting our free parameters to the estimated real index of refraction of the dry regolith at one specific wavelength, ice grain size, and regolith porosity. We can then model mixtures of regolith and water-ice, fitting to the original icy spectrum to estimate the ice abundance. To constrain the uncertainties in this technique, we performed laboratory measurements of the spectra of known mixtures of water-ice and dry soils as well as those of soils after desiccation with controlled viewing geometries. Finally, we applied the technique to Phoenix Surface Stereo Imager observations and estimated water-ice abundances consistent with pore-fill in the near-surface ice. This abundance is consistent with atmospheric diffusion, which has implications to our understanding of the history of water-ice on Mars and the role of the regolith at high latitudes as a reservoir of atmospheric H2O.
Paleolimnology of the McMurdo Dry Valleys, Antarctica
NASA Technical Reports Server (NTRS)
Doran, P. T.; Wharton, R. A. Jr; Lyons, W. B.; Wharton RA, J. r. (Principal Investigator)
1994-01-01
The McMurdo Dry Valleys presently contain more than 20 permanent lakes and ponds, which vary markedly in character. All, with the exception of a hypersaline pond, have a perennial ice-cover. The dry valley lakes, and lakes in other ice-free regions of continental Antarctica, are unique on this planet in that they consistently maintain a thick year-round ice cover (2.8-6.0 m) over liquid water. The persistent ice covers minimize wind-generated currents and reduce light penetration, as well as restricting sediment deposition into a lake and the exchange of atmospheric gases between the water column and the atmosphere. From a paleolimnological perspective, the dry valley lakes offer an important record of catchment and environmental changes. These lakes are also modern-day equivalents of periglacial lakes that were common during glacial periods at temperate latitudes. The present lakes are mostly remnants of larger glacial lakes that occupied the valleys in the past, perhaps up to 4.6 Ma ago. Two of the valleys contain evidence of being filled with large glacial lakes within the last 10000 years. Repeated drying and filling events since then have left a characteristic impression on the salt profiles of some lakes creating a unique paleo-indicator within the water column. These events are also marked in the sediments by the concentration and dilution of certain chemical constituents, particularly salts, and are also corroborated by carbonate speciation and oxygen isotope analysis. Stratigraphic analysis of dry valley lake sediments is made difficult by the occurrence of an 'old carbon' reservoir creating spurious radiocarbon dates, and by the high degree of spatial variability in lake sedimentation. From a biological perspective, the lakes are relatively simple, containing various taxa of planktonic and benthic microorganisms, but no higher forms of life, which is an advantage to paleolimnologists because there is no bioturbation in the sediments. Useful biological paleo-indicators found in the sediments include cyanobacterial filament sheaths, diatom frustules and other eukaryotic algal cells, protozoan cysts, photosynthetic pigments, and minerals (e.g. carbonates) associated with microbial activity. Future work will benefit from fully characterizing the connection between the ice covers, environmental conditions, and paleo-indicators, thereby allowing refinement of inferences made concerning the paleoenvironment. New dating techniques need to be tested in this environment to overcome the problems associated with radiocarbon dating. The establishment of a detailed and focused paleolimnological campaign is proposed.
Paleolimnology of the McMurdo Dry Valleys, Antarctica.
Doran, P T; Wharton, R A; Lyons, W B
1994-01-01
The McMurdo Dry Valleys presently contain more than 20 permanent lakes and ponds, which vary markedly in character. All, with the exception of a hypersaline pond, have a perennial ice-cover. The dry valley lakes, and lakes in other ice-free regions of continental Antarctica, are unique on this planet in that they consistently maintain a thick year-round ice cover (2.8-6.0 m) over liquid water. The persistent ice covers minimize wind-generated currents and reduce light penetration, as well as restricting sediment deposition into a lake and the exchange of atmospheric gases between the water column and the atmosphere. From a paleolimnological perspective, the dry valley lakes offer an important record of catchment and environmental changes. These lakes are also modern-day equivalents of periglacial lakes that were common during glacial periods at temperate latitudes. The present lakes are mostly remnants of larger glacial lakes that occupied the valleys in the past, perhaps up to 4.6 Ma ago. Two of the valleys contain evidence of being filled with large glacial lakes within the last 10000 years. Repeated drying and filling events since then have left a characteristic impression on the salt profiles of some lakes creating a unique paleo-indicator within the water column. These events are also marked in the sediments by the concentration and dilution of certain chemical constituents, particularly salts, and are also corroborated by carbonate speciation and oxygen isotope analysis. Stratigraphic analysis of dry valley lake sediments is made difficult by the occurrence of an 'old carbon' reservoir creating spurious radiocarbon dates, and by the high degree of spatial variability in lake sedimentation. From a biological perspective, the lakes are relatively simple, containing various taxa of planktonic and benthic microorganisms, but no higher forms of life, which is an advantage to paleolimnologists because there is no bioturbation in the sediments. Useful biological paleo-indicators found in the sediments include cyanobacterial filament sheaths, diatom frustules and other eukaryotic algal cells, protozoan cysts, photosynthetic pigments, and minerals (e.g. carbonates) associated with microbial activity. Future work will benefit from fully characterizing the connection between the ice covers, environmental conditions, and paleo-indicators, thereby allowing refinement of inferences made concerning the paleoenvironment. New dating techniques need to be tested in this environment to overcome the problems associated with radiocarbon dating. The establishment of a detailed and focused paleolimnological campaign is proposed.
Determination of CME 3D parameters based on a new full ice-cream cone model
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Yong-Jae
2017-08-01
In space weather forecast, it is important to determine three-dimensional properties of CMEs. Using 29 limb CMEs, we examine which cone type is close to a CME three-dimensional structure. We find that most CMEs have near full ice-cream cone structure which is a symmetrical circular cone combined with a hemisphere. We develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model). In addition, we derive CME mean density (ρmean=Mtotal/Vcone) based on the full ice-cream cone structure. For several limb events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. From the power-law relationship between CME mean density and its height, we estimate CME mean densities at 20 solar radii (Rs). We will compare the CME densities at 20 Rs with their corresponding ICME densities.
NASA Astrophysics Data System (ADS)
Anick, David J.
2013-04-01
Of the fifteen known crystalline forms of ice, eleven consist of a single topologically connected hydrogen bond network with four H-bonds at every O. The other four, Ices VI-VIII and XV, consist of two topologically connected networks, each with four H-bonds at every O. The networks interpenetrate but do not share H-bonds. This article presents two new periodic water lattice families whose topological connectivity is "atypical": they consist of many two-dimensional layers that share no H-bonds. Layers are held together only by dispersion forces. Within each layer there are still four H-bonds at each O. Called "Hexagonal Bilayer Water" (HBW) and "Pleated Sheet Water" (PSW), they have computed densities of about 1.1 g/mL and 1.3 g/mL respectively, and nearest neighbor O-coordination is 4.5 to 5.5 and 6 to 8 respectively. Using density functional theory (BLYP-D/TZVP), various proton ordered forms of HBW and PSW are optimized and categorized. There are simple pathways connecting Ice-Ih to HBW and HBW to PSW. Their computed properties suggest similarities to the high density and very high density amorphous ices (HDA and VHDA) respectively. It is unknown whether HDA, VHDA, and Low Density Amorphous Ice (LDA) are fully disordered glasses down to the molecular level, or whether there is some short-range local order. Based on estimated radial distribution functions (RDFs), one proton ordered form of HBW matches HDA best. The idea is explored that HDA could contain islands with this underlying structure, and likewise, that VHDA could contain regions of PSW. A "microlattice model version 1" (MLM1) is presented as a device to compare key experimental data on the amorphous ices with these atypical structures and with a microlattice form of Ice-XI for LDA. Resemblances are found with the amorphs' RDFs, densities, Raman spectra, and transition behaviors. There is not enough information in the static models to assign either a microlattice structure or a partial microlattice structure to any amorphous ice phase.
Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina
2014-06-01
The study aims to investigate the impact of annealing hold time and temperature on the primary drying rate/duration of a 10% (w/v) solution of maltodextrin with an emphasis on how the mechanisms of annealing might be understood from the in-vial measurements of the ice crystal growth and the glass transition. The electrical impedance of the solution within a modified glass vial was recorded between 10 and 10(6) Hz during freeze-drying cycles with varying annealing hold times (1-5 h) and temperatures. Primary drying times decreased by 7%, 27% and 34% (1.1, 4.3 and 5.5 h) with the inclusion of an annealing step at temperatures of -15°C, -10°C and -5°C, respectively. The glass transition was recorded at approximately -16°C during the re-heating and re-cooling steps, which is close to the glass transition (Tg ') reported for 10% (w/v) maltodextrin and therefore indicates that a maximum freeze concentration (∼86%, w/w, from the Gordon-Taylor equation) was achieved during first freezing, with no further ice being formed on annealing. This observation, coupled to the decrease in electrical resistance that was observed during the annealing hold time, suggests that the reduction in the drying time was because of improved connectivity of ice crystals because of Ostwald ripening rather than devitrification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiranuma, Naruki; Augustin-Bauditz, Stefanie; Bingemer, Heinz
Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques.more » Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature ( T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, n s, to develop a representative n s( T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers 9 orders of magnitude in n s. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to n s. In addition, we show evidence that the immersion freezing efficiency expressed in n s of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the n s parameterization solely as a function of temperature. We also characterized the n s( T) spectra and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. While the agreement between different instruments was reasonable below ~ -27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in n s was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about -27 and -18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -27 and -18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based n s( T) and geometric surface area-based n s( T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.« less
Hiranuma, Naruki; Augustin-Bauditz, Stefanie; Bingemer, Heinz; ...
2015-03-06
Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques.more » Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature ( T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, n s, to develop a representative n s( T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers 9 orders of magnitude in n s. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to n s. In addition, we show evidence that the immersion freezing efficiency expressed in n s of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the n s parameterization solely as a function of temperature. We also characterized the n s( T) spectra and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. While the agreement between different instruments was reasonable below ~ -27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in n s was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about -27 and -18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -27 and -18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based n s( T) and geometric surface area-based n s( T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.« less
A tale of two polar bear populations: Ice habitat, harvest, and body condition
Rode, Karyn D.; Peacock, Elizabeth; Taylor, Mitchell K.; Stirling, Ian; Born, Erik W.; Laidre, Kristin L.; Wiig, Øystein
2012-01-01
One of the primary mechanisms by which sea ice loss is expected to affect polar bears is via reduced body condition and growth resulting from reduced access to prey. To date, negative effects of sea ice loss have been documented for two of 19 recognized populations. Effects of sea ice loss on other polar bear populations that differ in harvest rate, population density, and/or feeding ecology have been assumed, but empirical support, especially quantitative data on population size, demography, and/or body condition spanning two or more decades, have been lacking. We examined trends in body condition metrics of captured bears and relationships with summertime ice concentration between 1977 and 2010 for the Baffin Bay (BB) and Davis Strait (DS) polar bear populations. Polar bears in these regions occupy areas with annual sea ice that has decreased markedly starting in the 1990s. Despite differences in harvest rate, population density, sea ice concentration, and prey base, polar bears in both populations exhibited positive relationships between body condition and summertime sea ice cover during the recent period of sea ice decline. Furthermore, females and cubs exhibited relationships with sea ice that were not apparent during the earlier period (1977–1990s) when sea ice loss did not occur. We suggest that declining body condition in BB may be a result of recent declines in sea ice habitat. In DS, high population density and/or sea ice loss, may be responsible for the declines in body condition.
2009-11-02
The McMurdo Dry Valleys are a row of valleys west of McMurdo Sound, Antarctica. They are so named because of their extremely low humidity and lack of snow and ice cover. This image was acquired December 8, 2002 by NASA Terra spacecraft.
Hierarchical Nafion enhanced carbon aerogels for sensing applications
NASA Astrophysics Data System (ADS)
Weng, Bo; Ding, Ailing; Liu, Yuqing; Diao, Jianglin; Razal, Joselito; Lau, King Tong; Shepherd, Roderick; Li, Changming; Chen, Jun
2016-02-01
This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 103 μA mM-1 cm-2 was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions.This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 103 μA mM-1 cm-2 was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08631k
Effects of different cryoprotectants and freezing methods on post-thaw boar semen quality.
Yang, Chung-Hsun; Wu, Ting-Wen; Cheng, Feng-Pang; Wang, Jiann-Hsiung; Wu, Jui-Te
2016-03-01
The current study aimed to investigate the effects of different concentrations of glycerol (0%, 1%, 2%, 3%, and 5%) and dimethylacetamide (DMA: 0%, 1%, 3%, and 5%) on post-sperm quality characteristics following semen freezing in dry ice (D) or liquid nitrogen (N). Semen was collected from Duroc boars and was allocated to 32 treatment groups for cryopreservation. Analysis of post-thaw semen quality and fertility after artificial insemination (AI) was used to examine the combinatorial effects of different treatments. The best scores for post-thaw sperm motility, sperm viability, and sperm acrosomal integrity were observed in semen frozen in: (a) dry ice in the presence of 5% glycerol and no DMA (16D-treatment); (b) dry ice in the presence of 3% glycerol and no DMA (9D-treatment); and (c) liquid nitrogen in the presence of 3% glycerol and 1% DMA (10N-treatment), with no significant difference observed among these three treatments. The farrowing rates after AI with post-thawed semen after 9D- and 10N-treatments were 33% and 50%, respectively. To summarize, the results of the present study indicated that the freezing extender containing 3% glycerol in combination with the straw-freezing method using dry ice produced the best post-thaw quality parameters of boar semen. Combinations of glycerol and DMA did not enhance the cryosurvival of boar spermatozoa. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Measurements of Refractory Black Carbon (rBC) Aerosols in the McMurdo Dry Valleys, Antarctica
NASA Astrophysics Data System (ADS)
Khan, A. L.; McMeeking, G. R.; Lyons, W. B.; Schwarz, J. P.; Welch, K. A.; McKnight, D. M.
2015-12-01
Measurements of light absorbing particles in the boundary layer of the high southern latitudes are scarce. During the 2013-2014 austral summer field season refractory black carbon (rBC) aerosols were quantified by a single particle soot photometer (SP2) in the McMurdo Dry Valleys, Antarctica. The dark rBC particles absorb more radiation thereby increasing atmospheric heating, as well as reducing surface albedo and enhancing hydrologic melt when deposited on highly reflective surfaces such as snow and ice. Quantifying both local and long-range atmospheric transport of rBC to this region of a remote continent mostly covered by ice and snow would be useful in understanding meltwater generation as climate changes. Although the Dry Valleys are the largest ice-free region of Antarctica, they contain many alpine glaciers, some of which are fed from the East Antarctic Ice Sheet (EAIS). Continuous rBC measurements were collected at Lake Hoare Camp in the Taylor Valley for two months, along with shorter periods at more remote locations within the Dry Valleys. Conditions at the Lake Hoare Camp were dominated by up-valley winds from McMurdo Sound, however, winds also brought air down-valley from the EAIS polar plateau. Here we investigated periods dominated by both up and down-valley winds to explore differences in rBC concentrations, size distributions, and scattering properties. The average background rBC mass concentration was 1ng/m3, though concentrations as high as 50 ng/m3 were observed at times, likely due to local sources.
NASA Technical Reports Server (NTRS)
Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.
2003-01-01
Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.
Impact of aerosols on ice crystal size
NASA Astrophysics Data System (ADS)
Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin
2018-01-01
The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.
NASA Technical Reports Server (NTRS)
Li, Jun; Zwally, H. Jay
2011-01-01
Changes in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kg/cu m, which along with 900 kg/cu m for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kg/cu m. We show that using an average (or "effective") density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.
Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies
NASA Astrophysics Data System (ADS)
Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry
2016-08-01
Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.
Mechanical and thermal properties of planetologically important ices
NASA Technical Reports Server (NTRS)
Croft, Steven K.
1987-01-01
Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.
NASA Astrophysics Data System (ADS)
Kuipers Munneke, P.; Luckman, A. J.; Bevan, S. L.; Gilbert, E.; Smeets, P.; van den Broeke, M. R.; Wang, W.; Zender, C. S.; Ashmore, D. W.; Hubbard, B. P.; Orr, A.; King, J.
2017-12-01
We know that increased surface melt, driven by atmospheric warming, contributed to the collapse of ice shelves as observed in the Antarctic Peninsula. This has induced grounded-ice acceleration and increased ice discharge. You may associate this surface melt with the austral summer season, with plenty of solar radiation driving the melt. In contrast, winter in Antarctica evokes images of darkness, snow, and cold. However, we will make you rethink this picture by presenting observations of frequent snow surface melt in winter, from a weather station located in a previously unsurveyed area of the Larsen C Ice Shelf. Peak intensities of this wintertime melt even exceed summertime values, and thermal satellite images show that large ponds of meltwater are formed at the surface in the pitch-dark Antarctic winter. Obviously, we wanted to find out what could drive these strong melt events if it's not the sun. It turns out that these multi-day melt events occur when warm and dry föhn winds descend from the Antarctic Peninsula mountains. Simulations with a high-resolution weather model confirm that these winds generate turbulent fluxes of sensible heat, leading to melt fluxes in excess of 200 W m-2. In 2015 and 2016, about 23% of the annual melt was produced in winter. We use satellite radar to show that winter melt occurs on many more places in the Antarctic Peninsula. It happens every year, although in some years the melting is much more widespread than in others. We think that wintertime melt matters as its refreezing warms the snow and increases snow density. In this way, winter melt preconditions the ice shelf for more extensive surface drainage, potentially leading to meltwater-driven instability.
Monte Carlo Study of Melting of a Model Bulk Ice.
NASA Astrophysics Data System (ADS)
Han, Kyu-Kwang
The methods of NVT (constant number, volume and temperature) and NPT (constant number, pressure and temperature) Monte Carlo computer simulations are used to examine the melting of a periodic hexagonal ice (ice Ih) sample with a unit cell of 192 (rigid) water molecules interacting via the revised central force potentials of Stillinger and Rahman (RSL2). In NVT Monte Carlo simulation of P-T plot for a constant density (0.904g/cm^3) is used to locate onset of the liquid-solid coexistence region (where the slope of the pressure changes sign) and estimate the (constant density) melting point. The slope reversal is a natural consequence of the constant density condition for substances which expand upon freezing and it is pointed out that this analysis is extremely useful for substances such as water. In this study, a sign reversal of the pressure slope is observed near 280 K, indicating that the RSL2 potentials reproduce the freezing expansion expected for water and support a bulk ice Ih system which melts <280 K. The internal energy, specific heat, and two dimensional structure factors for the constant density H_2O system are also examined at a range of temperatures between 100 and 370 K and support the P-T analysis for location of the melting point. This P-T analysis might likewise be useful for determining a (constant density) freezing point, or, with multiple simulations at appropriate densities, the triple point. For NPT Monte Carlo simulations preliminary results are presented. In this study the density, enthalpy, specific heat, and structure factor dependences on temperature are monitored during a sequential heating of the system from 100 to 370 K at a constant pressure (1 atm.). A jump in density upon melting is observed and indicates that the RSL2 potentials reproduce the melting contraction of ice. From the dependences of monitored physical properties on temperature an upper bound on the melting temperature is estimated. In this study we made the first analysis and calculation of the P-T curve for ice Ih melting at constant volume and the first NPT study of ice and of ice melting. In the NVT simulation we found for rho = 0.904g/cm^3 T_ {rm m} ~eq 280 K which is much closer to physical T_ {rm m} than any other published NVT simulation of ice. Finally it is shown that RSL2 potentials do a credible job of describing the thermodynamic properties of ice Ih near its melting point.
The relation between high-density and very-high-density amorphous ice.
Loerting, Thomas; Salzmann, Christoph G; Winkel, Katrin; Mayer, Erwin
2006-06-28
The exact nature of the relationship between high-density (HDA) and very-high-density (VHDA) amorphous ice is unknown at present. Here we review the relation between HDA and VHDA, concentrating on experimental aspects and discuss these with respect to the relation between low-density amorphous ice (LDA) and HDA. On compressing LDA at 125 K up to 1.5 GPa, two distinct density steps are observable in the pressure-density curves which correspond to the LDA --> HDA and HDA --> VHDA conversion. This stepwise formation process LDA --> HDA --> VHDA at 125 K is the first unambiguous observation of a stepwise amorphous-amorphous-amorphous transformation sequence. Density values of amorphous ice obtained in situ between 0.3 and 1.9 GPa on isobaric heating up to the temperatures of crystallization show a pronounced change of slope at ca. 0.8 GPa which could indicate formation of a distinct phase. We infer that the relation between HDA and VHDA is very similar to that between LDA and HDA except for a higher activation barrier between the former. We further discuss the two options of thermodynamic phase transition versus kinetic densification for the HDA --> VHDA conversion.
Konstantinidis, Alex K; Kuu, Wei; Otten, Lori; Nail, Steven L; Sever, Robert R
2011-08-01
A novel and scalable method has been developed to enable control of the ice nucleation step for the freezing process during lyophilization. This method manipulates the chamber pressure of the freeze dryer to simultaneously induce nucleation in all product vials at a desired temperature. The effects of controlled nucleation on the drying rate of various formulations including 5% (w/w) mannitol, 5% (w/w) sucrose, and a mixture of 3% (w/w) mannitol and 2% (w/w) sucrose were studied. For a 5% (w/w) mannitol, uncontrolled ice nucleation occurred randomly at product temperatures between -8.0°C and -15.9°C as the vials were cooled to -40°C. Controlled ice nucleation was achieved at product temperatures between -2.3°C and -3.7°C. The effect of nucleation control on the effective pore radius (r(e) ) of the cake was determined from the product temperature profiles using a pore diffusion model in combination with a nonlinear parameter estimation approach reported earlier. Results show that the value of r(e) for 5% (w/w) mannitol was enlarged from 13 to 27 μm by uniformly inducing nucleation at higher temperatures. Applying the resistance parameters obtained from the pore diffusion model for 5% (w/w) mannitol, optimized cycles were theoretically generated and experimentally tested, resulting in a 41% reduction in primary drying time. Copyright © 2011 Wiley-Liss, Inc.
Passive infrared ice detection for helicopter applications
NASA Technical Reports Server (NTRS)
Dershowitz, Adam L.; Hansman, R. John, Jr.
1990-01-01
A technique is proposed to remotely detect rotor icing on helicopters by using passive IR thermometry to detect the warming caused by latent heat release as supercooled water freezes. During icing, the ice accretion region will be warmer than the uniced trailing edge, resulting in a characteristic chordwise temperature profile. Preliminary tests were conducted on a static model in the NASA Icing Research Tunnel for a variety of wet (glaze) and dry (rime) ice conditions. The chordwise temperature profiles were confirmed by observation with an IR thermal video system and thermocouple observations. The IR observations were consistent with predictions of the LEWICE ice accretion code, which was used to extrapolate the observations to rotor icing conditions. Based on the static observations, the passive IR ice detection technique appears promising; however, further testing or rotating blades is required.
A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories.
NASA Astrophysics Data System (ADS)
Straka, Jerry M.; Mansell, Edward R.
2005-04-01
A single-moment bulk microphysics scheme with multiple ice precipitation categories is described. It has 2 liquid hydrometeor categories (cloud droplets and rain) and 10 ice categories that are characterized by habit, size, and density—two ice crystal habits (column and plate), rimed cloud ice, snow (ice crystal aggregates), three categories of graupel with different densities and intercepts, frozen drops, small hail, and large hail. The concept of riming history is implemented for conversions among the graupel and frozen drops categories. The multiple precipitation ice categories allow a range of particle densities and fall velocities for simulating a variety of convective storms with minimal parameter tuning. The scheme is applied to two cases—an idealized continental multicell storm that demonstrates the ice precipitation process, and a small Florida maritime storm in which the warm rain process is important.
NASA Technical Reports Server (NTRS)
1994-01-01
In planning for the long duration Apollo missions, NASA conducted extensive research into space food. One of the techniques developed was freeze drying. Action Products commercialized this technique, concentrating on snack food including the first freeze-dried ice cream. The foods are cooked, quickly frozen and then slowly heated in a vacuum chamber to remove the ice crystals formed by the freezing process. The final product retains 98 percent of its nutrition and weighs only 20 percent of its original weight. Action snacks are sold at museums, NASA facilities and are exported to a number of foreign countries. Sales run to several million dollars annually.
WISDOM GPR performance assessment in a cold artificial environment
NASA Astrophysics Data System (ADS)
Dechambre, M.; Ciarletti, V.; Biancheri-Astier, M.; Saintenoy, A.; Costard, F.; Hassen-Khodja, R.
2012-04-01
The WISDOM (Water Ice Subsurface Deposit Observation on Mars) GPR is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. WISDOM has been designed to obtain information about the nature of the subsurface along the rover path with the objective to explore the first ~ 3 m of the soil with a vertical resolution of a few centimetres. The sub-surface properties that can be addressed with WISDOM are variations in composition, texture, stratification (e.g., number, thickness and orientation of layers), the presence of unconformities and other structural characteristics (such as fractures and the deformation of strata). It is then essential to quantify the performances of WISDOM in controlled conditions, and several full polarimetric measurements have been carried out with the prototype in a cold artificial environment. The main objectives are the detection of different interface between homogeneous materials with WISDOM. The characterization of the material (porosity, % of water, dielectric properties, thickness and depth, temperature ...) is well-controlled. The cold room facility of IDES at Orsay (France) has been used, the ambient temperature ranged from -7° C to -10° C. A tank laying on the metallic floor (height: 0.5m, width: 0.80 m, length: 1.20m) in macrolon can contain liquid or frozen water or layers (dielectric contrasts) of home-maid permafrost (frozen saturated sand) with and without embedded objects or fractures. The temperature inside the medium (ice or permafrost) is controlled, the radar antennas are put on a sheet of polystyrene over the tank. Frequent measurements were performed (every 2cm) along a track from one side to the other side of the tank. The experimental conditions were: (1)dry cold sand (Fontainebleau sand) : porosity 35% density 2,67 (2) saturated wet sand : 35% of water (3) permafrost (frozen saturated sand) : 35% of ice content 1 layer: 3 consecutive experiments : 10cm dry sand ( 1) 10cm saturated sand (2) 10cm permafrost(3) 2 layers :previous 10cm permafrost in the bottom +3 consecutive experiments : 10cm dry sand ( 1) 10cm saturated sand (2) 10cm permafrost(3) . Basalt rocks and air fractures are or are not embedded in the layers Values of the permittivity of dry sand and permafrost were retrieve by two different ways. 1.Retrieval of the sand and permafrost permittivity from delay measurements knowing the layer thickness d ɛr = ct/2d = n2 2. Retrieval of the sand and permafrost permittivity from amplitude measurements knowing a calibration reference (reflection over a metallic plate), R is the Fresnel coefficient between the air and the medium. Aint/ = R = n- 1-,ɛ = 1+-R-= n2 Aair n +1 r 1- R Results : Internal layering is observed. The transition between dry sand and permafrost can be detected. The permittivity can be retrieved from delay or amplitude measurements as well from delay measurements : dry sand ɛr = 2.71 permafrost ɛr = 3.72 from amplitude measurements : dry sand ɛr = 2.73 permafrost ɛr = 3.35 Embedded objects are detected, Fracture and its orientation is detected.
Perennial Antarctic lake ice: an oasis for life in a polar desert
NASA Technical Reports Server (NTRS)
Priscu, J. C.; Fritsen, C. H.; Adams, E. E.; Giovannoni, S. J.; Paerl, H. W.; McKay, C. P.; Doran, P. T.; Gordon, D. A.; Lanoil, B. D.; Pinckney, J. L.
1998-01-01
The permanent ice covers of Antarctic lakes in the McMurdo Dry Valleys develop liquid water inclusions in response to solar heating of internal aeolian-derived sediments. The ice sediment particles serve as nutrient (inorganic and organic)-enriched microzones for the establishment of a physiologically and ecologically complex microbial consortium capable of contemporaneous photosynthesis, nitrogen fixation, and decomposition. The consortium is capable of physically and chemically establishing and modifying a relatively nutrient- and organic matter-enriched microbial "oasis" embedded in the lake ice cover.
Perennial Antarctic lake ice: an oasis for life in a polar desert.
Priscu, J C; Fritsen, C H; Adams, E E; Giovannoni, S J; Paerl, H W; McKay, C P; Doran, P T; Gordon, D A; Lanoil, B D; Pinckney, J L
1998-06-26
The permanent ice covers of Antarctic lakes in the McMurdo Dry Valleys develop liquid water inclusions in response to solar heating of internal aeolian-derived sediments. The ice sediment particles serve as nutrient (inorganic and organic)-enriched microzones for the establishment of a physiologically and ecologically complex microbial consortium capable of contemporaneous photosynthesis, nitrogen fixation, and decomposition. The consortium is capable of physically and chemically establishing and modifying a relatively nutrient- and organic matter-enriched microbial "oasis" embedded in the lake ice cover.
Ice-Templated Bimodal-Porous Silver Nanowire/PDMS Nanocomposites for Stretchable Conductor.
Oh, Jae Young; Lee, Dongju; Hong, Soon Hyung
2018-06-27
A three-dimensional (3D) bimodal-porous silver nanowire (AgNW) nanostructure with superior electrical properties is fabricated by freeze drying of AgNW aqueous dispersion with macrosized ice spheres for bimodal-porous structure. The ice sphere dispersed AgNW solution yields a 3D AgNW network at the surface of ice sphere and formation of macropores by removal of ice sphere during freeze-drying process. The resulting nanostructures exhibit excellent electrical properties due to their low electrical percolation threshold by the formation of macropores, which results in an efficient and dense 3D AgNW network with a small amount of AgNWs. The highly conductive and stretchable AgNW/poly(dimethylsiloxane) (PDMS) nanocomposites are made by impregnating the 3D porous conductive network with highly stretchable poly(dimethylsiloxane) (PDMS) matrix. The AgNW/PDMS nanocomposites exhibit a high conductivity of 42 S/cm with addition of relatively small amount of 2 wt %. The high conductivity is retained when stretched up to 120% elongation even after 100 stretching-releasing cycles. Due to high electrical conductivity and superior stretchability of AgNW/PDMS nanocomposites, these are expected to be used in stretchable electronic devices.
Passive anti-frosting surfaces using microscopic ice arrays
NASA Astrophysics Data System (ADS)
Ahmadi, Farzad; Nath, Saurabh; Iliff, Grady; Boreyko, Jonathan
2017-11-01
Despite exceptional advances in surface chemistry and micro/nanofabrication, no engineered surface has been able to passively suppress the in-plane growth of frost occurring in humid, subfreezing environments. Motivated by this, and inspired by the fact that ice itself can evaporate nearby liquid water droplets, we present a passive anti-frosting surface in which the majority of the surface remains dry indefinitely. We fabricated an aluminum surface exhibiting an array of small metallic fins, where a wicking micro-groove was laser-cut along the top of each fin to produce elevated water ``stripes'' that freeze into ice. As the saturation vapor pressure of ice is less than that of supercooled liquid water, the ice stripes serve as overlapping humidity sinks that siphon all nearby moisture from the air and prevent condensation and frost from forming anywhere else on the surface. Our experimental results show that regions between stripes remain dry even after 24 hours of operation under humid and supercooled conditions. We believe that the presented anti-frosting technology has the potential to help solve the world's multi-billion dollar frosting problem that adversely affects transportation, power generation, and HVAC systems.
NASA Astrophysics Data System (ADS)
Thundercloud, Z. R.; Osterberg, E. C.; Ferris, D. G.; Graeter, K.; Lewis, G.; Hawley, R. L.; Marshall, H. P.
2016-12-01
Greenland ice cores provide seasonally to annually resolved proxy records of past temperature, accumulation and atmospheric circulation. Most Greenland ice cores have been collected from the dry snow zone at elevations greater than 2500 m to produce records of North Atlantic paleoclimate over the last full glacial cycle. Ice cores collected from more costal regions, however, provide the opportunity to develop regional-scale records of climate conditions along ice sheet margins where recent temperature and precipitation changes have been larger than those in the ice sheet interior. These cores are more readily comparable to lake sediment and landscape (i.e. moraine) records from the ice sheet margin, and are potentially more sensitive to sea-ice variability due to the proximity to the coast. Here we present major ion and stable isotope records from an array of firn cores (40-55 year records) collected in the western Greenland percolation zone, and assess the spatial variability of ice core statistical relationships with the North Atlantic Oscillation (NAO) and Baffin Bay sea ice extent. Seven cores were collected from elevations of 2100-2500 m along a 400-km segment of the ice sheet from Dye-2 to Milcent as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project from May-June 2016. They were sampled by a continuous melter system at Dartmouth College, and analyzed using Dionex ion chromatographs and a Picarro L2130-i laser ring-down spectrometer. We focus on the signature of the NAO and Baffin Bay sea ice extent in the sea-salt, dust, deuterium excess (d-excess), and methanesulfonic acid (MSA) firn core records, and assess the special variability of these climate-ice core relationships across the study area. Climate reanalysis data indicate that NAO-ice core correlations should be stronger at lower elevation in the percolation zone than high in the dry snow zone. Our results will provide valuable insight into the sensitivity of Greenland ice core paleoclimate reconstructions to the specific ice core location, and thereby aid in site selection for deeper ice cores that could span the Holocene.
Standard for Ground Vehicle Mobility
2005-02-01
Zone Dry climates (2), humid mesothermal (3), See Appendix A humid microthermal (4), undifferentiated highland (6) Condition Dry, wet, snow See...represent the Dry, the Humid Mesothermal, and the Humid Microthermal climate zones, respectively. Scenarios ERDC-GSL was sponsored by WARSIM to...Coast D. Humid Microthermal Climates Humid Continental, Warm Summer, Humid Continental, Cool Summer, Sub-Arctic E. Polar Climates Tundra, Ice Caps F
Kwon, Miye; Kim, Mincheol; Takacs-Vesbach, Cristina; Lee, Jaejin; Hong, Soon Gyu; Kim, Sang Jong; Priscu, John C; Kim, Ok-Sun
2017-06-01
Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
The McMurdo Dry Valleys: A landscape on the threshold of change
NASA Astrophysics Data System (ADS)
Fountain, Andrew G.; Levy, Joseph S.; Gooseff, Michael N.; Van Horn, David
2014-11-01
Field observations of coastal and lowland regions in the McMurdo Dry Valleys suggest they are on the threshold of rapid topographic change, in contrast to the high elevation upland landscape that represents some of the lowest rates of surface change on Earth. A number of landscapes have undergone dramatic and unprecedented landscape changes over the past decade including, the Wright Lower Glacier (Wright Valley) - ablated several tens of meters, the Garwood River (Garwood Valley) has incised > 3 m into massive ice permafrost, smaller streams in Taylor Valley (Crescent, Lawson, and Lost Seal Streams) have experienced extensive down-cutting and/or bank undercutting, and Canada Glacier (Taylor Valley) has formed sheer, > 4 meter deep canyons. The commonality between all these landscape changes appears to be sediment on ice acting as a catalyst for melting, including ice-cement permafrost thaw. We attribute these changes to increasing solar radiation over the past decade despite no significant trend in summer air temperature. To infer possible future landscape changes in the McMurdo Dry Valleys, due to anticipated climate warming, we map ‘at risk’ landscapes defined as those with buried massive ice in relative warm regions of the valleys. Results show that large regions of the valley bottoms are ‘at risk’. Changes in surface topography will trigger important responses in hydrology, geochemistry, and biological community structure and function.
Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica
Esposito, R.M.M.; Spaulding, S.A.; McKnight, Diane M.; Van De Vijver, B.; Kopalova, K.; Lubinski, D.; Hall, B.; Whittaker, T.
2008-01-01
Diatom taxa present in the inland streams and lakes of the McMurdo Dry Valleys and James Ross Island, Antarctica, are presented in this paper. A total of nine taxa are illustrated, with descriptions of four new species (Luticola austroatlantica sp. nov., Luticola dolia sp. nov., Luticola laeta sp. nov., Muelleria supra sp. nov.). In the perennially ice-covered lakes of the McMurdo Dry Valleys, diatoms are confined to benthic mats within the photic zone. In streams, diatoms are attached to benthic surfaces and within the microbial mat matrix. One species, L. austroatlantica, is found on James Ross Island, of the southern Atlantic archipelago, and the McMurdo Dry Valleys. The McMurdo Dry Valley populations are at the lower range of the size spectrum for the species. Streams flow for 6-10 weeks during the austral summer, when temperatures and solar radiation allow glacial ice to melt. The diatom flora of the region is characterized by species assemblages favored under harsh conditions, with naviculoid taxa as the dominant group and several major diatom groups conspicuously absent. ?? 2008 NRC.
Exposed water ice discovered near the south pole of Mars
Titus, T.N.; Kieffer, H.H.; Christensen, P.R.
2003-01-01
The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap.
Antarctic lakes (above and beneath the ice sheet): Analogues for Mars
NASA Technical Reports Server (NTRS)
Rice, J. W., Jr.
1992-01-01
The perennial ice covered lakes of the Antarctic are considered to be excellent analogues to lakes that once existed on Mars. Field studies of ice covered lakes, paleolakes, and polar beaches were conducted in the Bunger Hills Oasis, Eastern Antarctica. These studies are extended to the Dry Valleys, Western Antarctica, and the Arctic. Important distinctions were made between ice covered and non-ice covered bodies of water in terms of the geomorphic signatures produced. The most notable landforms produced by ice covered lakes are ice shoved ridges. These features form discrete segmented ramparts of boulders and sediments pushed up along the shores of lakes and/or seas. Sub-ice lakes have been discovered under the Antarctic ice sheet using radio echo sounding. These lakes occur in regions of low surface slope, low surface accumulations, and low ice velocity, and occupy bedrock hollows. The presence of sub-ice lakes below the Martian polar caps is possible. The discovery of the Antarctic sub-ice lakes raises possibilities concerning Martian lakes and exobiology.
NASA Astrophysics Data System (ADS)
Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.
2016-11-01
Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.
Ice-coupled wave propagation across an abrupt change in ice rigidity, density, or thickness
NASA Astrophysics Data System (ADS)
Barrett, Murray D.; Squire, Vernon A.
1996-09-01
The model of Fox and Squire [1990, 1991, 1994], which discusses the oblique propagation of surface gravity waves from the open sea into an ice sheet of constant thickness and properties, is augmented to include propagation across an abrupt transition of properties within a continuous ice sheet or across two dissimilar ice sheets that abut one another but are free to move independently. Rigidity, thickness, and/or density may change across the transition, allowing, for example, the modeling of ice-coupled waves into, across, and out of refrozen leads and polynyas, across cracks, and through coherent pressure ridges. Reflection and transmission behavior is reported for various changes in properties under both types of transition conditions.
NASA Astrophysics Data System (ADS)
Shalit, Andrey; Perakis, Fivos; Hamm, Peter
2014-04-01
We apply two-dimensional infrared spectroscopy to differentiate between the two polyamorphous forms of glassy water, low-density (LDA) and high-density (HDA) amorphous ices, that were obtained by slow vapor deposition at 80 and 11 K, respectively. Both the vibrational lifetime and the bandwidth of the 1-2 transition of the isolated OD stretch vibration of HDO in H2O exhibit characteristic differences when comparing hexagonal (Ih), LDA, and HDA ices, which we attribute to the different local structures - in particular the presence of interstitial waters in HDA ice - that cause different delocalization lengths of intermolecular phonon degrees of freedom. Moreover, temperature dependent measurements show that the vibrational lifetime closely follows the structural transition between HDA and LDA phases.
Thickness of ice on perennially frozen lakes
McKay, C.P.; Clow, G.D.; Wharton, R.A.; Squyres, S. W.
1985-01-01
The dry valleys of southern Victoria Land, constituting the largest ice-free expanse in the Antarctic, contain numerous lakes whose perennial ice cover is the cause of some unique physical and biological properties 1-3. Although the depth, temperature and salinity of the liquid water varies considerably from lake to lake, the thickness of the ice cover is remarkably consistent1, ranging from 3.5 to 6m, which is determined primarily by the balance between conduction of energy out of the ice and the release of latent heat at the ice-water interface and is also affected by the transmission and absorption of sunlight. In the steady state, the release of latent heat at the ice bottom is controlled by ablation from the ice surface. Here we present a simple energy-balance model, using the measured ablation rate of 30 cm yr-1, which can explain the observed ice thickness. ?? 1985 Nature Publishing Group.
The phase diagram of water at negative pressures: virtual ices.
Conde, M M; Vega, C; Tribello, G A; Slater, B
2009-07-21
The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.
NASA Astrophysics Data System (ADS)
Giovambattista, Nicolas; Starr, Francis W.; Poole, Peter H.
2017-07-01
Experiments and computer simulations of the transformations of amorphous ices display different behaviors depending on sample preparation methods and on the rates of change of temperature and pressure to which samples are subjected. In addition to these factors, simulation results also depend strongly on the chosen water model. Using computer simulations of the ST2 water model, we study how the sharpness of the compression-induced transition from low-density amorphous ice (LDA) to high-density amorphous ice (HDA) is influenced by the preparation of LDA. By studying LDA samples prepared using widely different procedures, we find that the sharpness of the LDA-to-HDA transformation is correlated with the depth of the initial LDA sample in the potential energy landscape (PEL), as characterized by the inherent structure energy. Our results show that the complex phenomenology of the amorphous ices reported in experiments and computer simulations can be understood and predicted in a unified way from knowledge of the PEL of the system.
A century of Amazon burning driven by Atlantic climate
NASA Astrophysics Data System (ADS)
Makou, M.; Thompson, L. G.; Davis, M. E.; Eglinton, T. I.
2011-12-01
Very little is known about annual burning trends in the Amazon Basin prior to remote sensing of fires beginning in the late 1970's. Fires reduce Amazon forest biomass and species richness, release pollutant aerosols, and impact the carbon cycle, compelling further investigation of fire-climate dynamics. We measured organic compounds derived from vegetation burning in ice core samples from the Quelccaya Ice Cap in Peru at better than annual resolution to reconstruct wet and dry season burning throughout the Twentieth Century. Variations in the abundance of methyl hexadecanoate, which is produced by thermal alteration of vascular plant alkanoic acids, were used as a proxy for past fire activity. Concentrations of this compound in Quelccaya ice varied strongly on seasonal, interannual, and decadal time scales over the last 100 years, with high-amplitude dry season variability and muted, decadal-scale changes in wet season fire activity. Decade-long periods of repeatedly enhanced burning occurred during the 1930's and 1960's when dry season precipitation was perpetually reduced, as evidenced by low stages of the Rio Negro. These decadal trends suggest that changes in dry season precipitation drive fire activity in the western Amazon and highlight the potential of Amazon forests to undergo repeated strong burning. Fires occurred during years when sea surface temperatures (SSTs) in the north tropical Atlantic were elevated and the north-south tropical Atlantic SST gradient was enhanced; this SST pattern likely displaced the intertropical convergence zone northward, driving subsidence and drought in the western and southern Amazon basin. Thus, our novel ice core record suggests that Amazon forest fire activity during the Twentieth Century was driven primarily by Atlantic climate processes, and future forest health will depend heavily on the evolution of tropical climate.
White Mars: A New Model for Mars' Surface and Atmosphere Based on CO 2
NASA Astrophysics Data System (ADS)
Hoffman, Nick
2000-08-01
A new model is presented for the Amazonian outburst floods on Mars. Rather than the working fluid being water, with the associated difficulties in achieving warm and wet conditions on Mars and on collecting and removing the water before and after the floods, instead this model suggests that CO 2 is the active agent in the "floods." The flow is not a conventional liquid flood but is instead a gas-supported density flow akin to terrestrial volcanic pyroclastic flows and surges and at cryogenic temperatures with support from degassing of CO 2-bearing ices. The flows are not sourced from volcanic vents, but from the collapse of thick layered regolith containing liquid CO 2 to form zones of chaotic terrain, as shown by R. St. J. Lambert and V. E. Chamberlain (1978, Icarus34, 568-580; 1992, Workshop on the Evolution of the Martian Atmosphere). Submarine turbidites are also analagous in the flow mechanism, but the martian cryogenic flows were both dry and subaerial, so there is no need for a warm and wet epoch nor an ocean on Mars. Armed with this new model for the floods we review the activity of volatiles on the surface of Mars in the context of a cold ice world—"White Mars." We find that many of the recognized paradoxes about Mars' surface and atmosphere are resolved. In particular, the lack of carbonates on Mars is due to the lack of liquid water. The CO 2 of the primordial atmosphere and the H 2O inventory remain largely sequestered in subsurface ices. The distribution of water ice on modern Mars is also reevaluated, with important potential consequences for future Mars exploration. The model for collapse of terrain due to ices that show decompression melting, and the generation of nonaqueous flows in these circumstances may also be applicable to outer Solar System bodies, where CO 2, SO 2, N 2, and other ices are stable.
Albedo Drop on the Greenland Ice Sheet: Relative Impacts of Wet and Dry Snow Processes
NASA Astrophysics Data System (ADS)
Chen, J.; Polashenski, C.
2014-12-01
The energy balance of the Greenland Ice Sheet (GIS) is strongly impacted by changes in snow albedo. MODIS (Moderate Resolution Imaging Spectroradiometer) observations indicate that the GIS albedo has dropped since the early part of this century. We analyze data from the MODIS products MOD10A1 for broadband snow albedo and MOD09A1 for surface spectral reflectance since 2001 to better explain the physical mechanisms driving these changes. The MODIS products are filtered, and the data is masked using microwave-derived surface melt maps to isolate albedo changes due to dry snow processes from those driven by melt impacts. Results show that the majority of recent changes in the GIS albedo - even at high elevations - are driven by snow wetting rather than dry snow processes such as grain metamorphosis and aerosol impurity deposition. The spectral signature of the smaller changes occurring within dry snow areas suggests that grain metamorphosis dominates the albedo decline in these regions.
Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica.
Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G
2016-07-01
Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature -23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival.
Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica
Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G
2016-01-01
Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature −23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival. PMID:27323892
Evaporation of ice in planetary atmospheres: Ice-covered rivers on Mars
NASA Technical Reports Server (NTRS)
Wallace, D.; Sagan, C.
1978-01-01
The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. Evaporation from the surface is governed by wind and free convection. In the absence of wind, eddy diffusion is caused by the lower density of water vapor in comparison to the density of the Martian atmosphere. For mean martian insolations, the evaporation rate above the ice is approximately 10 to the minus 8th power gm/sq cm/s. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-chocked rivers. Typical equilibrium thicknesses of such ice covers are approximately 10m to 30 m; typical surface temperatures are 210 to 235 K.
NASA Astrophysics Data System (ADS)
Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.
2015-04-01
Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m-2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = -(T-273.2)+(Sice-1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.
Mixed ice accretion on aircraft wings
NASA Astrophysics Data System (ADS)
Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So
2018-02-01
Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.
2016-12-14
Gas under pressure will choose an easy escape route. In this image, the terrain is covered with a seasonal layer of dry ice. The weak spots, for gas sublimating from the bottom of the seasonal ice layer to escape, appear to be around craters, where the surface was broken and pulverized by an impact. Fans of surface material deposited on top of the seasonal ice layer show where the escape vents are. http://photojournal.jpl.nasa.gov/catalog/PIA21271
NASA Astrophysics Data System (ADS)
Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.
2017-12-01
The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework. Including the fine scale density fluctuation greatly improved the retrieval results. The ice sheet vertical temperature profile, especially the 10m temperature, can be well retrieved via the MCMC process. Future retrieval work will apply the Bayesian approach to UWBRAD airborne measurements.
Geological and geomorphological insights into Antarctic ice sheet evolution.
Sugden, David E; Bentley, Michael J; O Cofaigh, Colm
2006-07-15
Technical advances in the study of ice-free parts of Antarctica can provide quantitative records that are useful for constraining and refining models of ice sheet evolution and behaviour. Such records improve our understanding of system trajectory, influence the questions we ask about system stability and help to define the ice-sheet processes that are relevant on different time-scales. Here, we illustrate the contribution of cosmogenic isotope analysis of exposed bedrock surfaces and marine geophysical surveying to the understanding of Antarctic ice sheet evolution on a range of time-scales. In the Dry Valleys of East Antarctica, 3He dating of subglacial flood deposits that are now exposed on mountain summits provide evidence of an expanded and thicker Mid-Miocene ice sheet. The survival of surface boulders for approximately 14Myr, the oldest yet measured, demonstrates exceptionally low rates of subsequent erosion and points to the persistence and stability of the dry polar desert climate since that time. Increasingly, there are constraints on West Antarctic ice sheet fluctuations during Quaternary glacial cycles. In the Sarnoff Mountains of Marie Byrd Land in West Antarctica, 10Be and 26Al cosmogenic isotope analysis of glacial erratics and bedrock reveal steady thinning of the ice sheet from 10400 years ago to the present, probably as a result of grounding line retreat. In the Antarctic Peninsula, offshore analysis reveals an extensive ice sheet at the last glacial maximum. Based on radiocarbon dating, deglaciation began by 17000cal yr BP and was complete by 9500cal yr BP. Deglaciation of the west and east sides of the Antarctic Peninsula ice sheet occurred at different times and rates, but was largely complete by the Early Holocene. At that time ice shelves were less extensive on the west side of the Antarctic Peninsula than they are today. The message from the past is that individual glacier drainage basins in Antarctica respond in different and distinctive ways to global climate change, depending on the link between regional topography and climate setting.
Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.
2006-01-01
Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.
Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil
2015-01-01
Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669
Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil
2015-03-03
Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.
A new temperature and humidity dependent surface site density approach for deposition ice nucleation
NASA Astrophysics Data System (ADS)
Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.
2014-07-01
Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to decribe the temperature and humidity dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature and relative humidity dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 × 105 \\centerdot exp(0.2659 \\centerdot xtherm) [m-2] (1) where the thermodynamic variable xtherm is defined as xtherm = -(T - 273.2) + (Sice-1) × 100 (2) with Sice>1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.
De Beer, T R M; Vercruysse, P; Burggraeve, A; Quinten, T; Ouyang, J; Zhang, X; Vervaet, C; Remon, J P; Baeyens, W R G
2009-09-01
The aim of the present study was to examine the complementary properties of Raman and near infrared (NIR) spectroscopy as PAT tools for the fast, noninvasive, nondestructive and in-line process monitoring of a freeze drying process. Therefore, Raman and NIR probes were built in the freeze dryer chamber, allowing simultaneous process monitoring. A 5% (w/v) mannitol solution was used as model for freeze drying. Raman and NIR spectra were continuously collected during freeze drying (one Raman and NIR spectrum/min) and the spectra were analyzed using principal component analysis (PCA) and multivariate curve resolution (MCR). Raman spectroscopy was able to supply information about (i) the mannitol solid state throughout the entire process, (ii) the endpoint of freezing (endpoint of mannitol crystallization), and (iii) several physical and chemical phenomena occurring during the process (onset of ice nucleation, onset of mannitol crystallization). NIR spectroscopy proved to be a more sensitive tool to monitor the critical aspects during drying: (i) endpoint of ice sublimation and (ii) monitoring the release of hydrate water during storage. Furthermore, via NIR spectroscopy some Raman observations were confirmed: start of ice nucleation, end of mannitol crystallization and solid state characteristics of the end product. When Raman and NIR monitoring were performed on the same vial, the Raman signal was saturated during the freezing step caused by reflected NIR light reaching the Raman detector. Therefore, NIR and Raman measurements were done on a different vial. Also the importance of the position of the probes (Raman probe above the vial and NIR probe at the bottom of the sidewall of the vial) in order to obtain all required critical information is outlined. Combining Raman and NIR spectroscopy for the simultaneous monitoring of freeze drying allows monitoring almost all critical freeze drying process aspects. Both techniques do not only complement each other, they also provided mutual confirmation of specific conclusions.
Classification of surface types using SIR-C/X-SAR, Mount Everest Area, Tibet
Albright, Thomas P.; Painter, Thomas H.; Roberts, Dar A.; Shi, Jiancheng; Dozier, Jeff; Fielding, Eric
1998-01-01
Imaging radar is a promising tool for mapping snow and ice cover in alpine regions. It combines a high-resolution, day or night, all-weather imaging capability with sensitivity to hydrologic and climatic snow and ice parameters. We use the spaceborne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) to map snow and glacial ice on the rugged north slope of Mount Everest. From interferometrically derived digital elevation data, we compute the terrain calibration factor and cosine of the local illumination angle. We then process and terrain-correct radar data sets acquired on April 16, 1994. In addition to the spectral data, we include surface slope to improve discrimination among several surface types. These data sets are then used in a decision tree to generate an image classification. This method is successful in identifying and mapping scree/talus, dry snow, dry snow-covered glacier, wet snow-covered glacier, and rock-covered glacier, as corroborated by comparison with existing surface cover maps and other ancillary information. Application of the classification scheme to data acquired on October 7 of the same year yields accurate results for most surface types but underreports the extent of dry snow cover.
[Growth inhibition of Vibrio parahaemolyticus in seafood by tabletop dry ice cooler].
Maruyama, Yumi; Kimura, Bon; Fujii, Tateo; Tokunaga, Yoshinori; Matsubayashi, Megumi; Aikawa, Yasushi
2005-10-01
Tabletop dry ice coolers (three types; dome model, cap model and tripod model), which are used in kitchens and hotel banquet halls to refrigerate fresh seafood, were investigated to determine whether growth of Vibrio parahaemolyticus was inhibited by their use. On TSA plates containing 1.8% NaCl and fresh seafood (fillets of squid, pink shrimp and yellowtail), V. parahaemolyticus (O3:K6, TDH+) inoculated at 4 to 5 log CFU/sample and left at ambient temperature (25 degrees C) grew by 1.0 to 2.8 orders in 4 hours. In contrast, with tabletop coolers no significant increase in viable count occurred in 3 to 4 hours, confirming that tabletop coolers inhibited the growth of V. parahaemolyticus. The temperature in each tabletop cooler was kept below 10 degrees C for 80 to 135 min, though the CO2 gas concentration in them remained high for only a short time (0 to 75 min). It was presumed that the refrigeration function mainly contributed to growth inhibition. Our results indicate that tabletop dry ice coolers are helpful for prevention of food-borne disease due to V. parahaemolyticus in food-service locations, such as kitchens and banquet halls.
Guedes, Elizângela; de Azevedo Prata, Márcia Cristina; dos Reis, Eder Sebastião; Cançado, Paulo Henrique Duarte; Leite, Romário Cerqueira
2012-12-01
Traps using carbon dioxide (CO(2)) as a chemical attractant are known to be effective when capturing nymphs and adults of some free-living tick species such as Amblyomma cajennense and Amblyomma parvum. Despite the fact that the main source of CO(2) is dry ice, the chemical trap which uses 20 % lactic acid (C(3)H(6)O(3)) and calcium carbonate (CaCO(3)) has been tested as an alternative source of CO(2) whenever it is difficult to obtain dry ice. The objective of this paper was to test and compare the efficiency of these two models of traps during the study of population dynamics of A. cajennense and Amblyomma dubitatum in Coronel Pacheco, Minas Gerais, Brazil. Within the period comprising May 2006 to April 2008, eight CO(2) traps, of which four were dry ice and four chemical, were put in the pasture every 14 days at preestablished areas over a 1.0-m(2) white cotton flannel cloth with a capture dispositive which constituted of double-sided adhesive tapes fixed onto the four corners of the flannels. On every collection day, a cotton flannel without any chemical attractant was placed in the same area of the pasture to become an instrument to control the traps' capture efficiency. After 1 h, the white flannels were collected and placed in plastic bags for later identification and counting of the ticks. A total of 2,133 nymphs of Amblyomma sp., 328 adults of A. cajennense, and 292 adults of A. dubitatum were collected. Out of this total, the dry ice traps captured 1,087 nymphs (51 %), 188 A. cajennense (58.2 %), and 151 A. dubitatum (53 %), while the chemical traps captured 1,016 nymphs (47.6 %), 133 A. cajennense (41 %), and 133 A. dubitatum (46.5 %); 30 nymphs (1.4 %), 7 A. cajennense (0.8 %), and 8 A. dubitatum (0.5 %) were found on the control flannel. The capture potentials of ticks, nymphs, and adults, by the two models of traps tested, were statistically similar (p > 0.05). These results confirm the efficiency of the chemical trap enabling its use in areas of either difficult access or too distant from a dry ice supplier as is the case of forest areas where studies about ixodological fauna are generally carried out.
2017-08-21
It is spring in the Northern hemisphere when NASA's Mars Reconnaissance Orbiter took this image. Over the winter, snow and ice have inexorably covered the dunes. Unlike on Earth, this snow and ice is carbon dioxide, better known to us as dry ice. When the sun starts shining on it in the spring, the ice on the smooth surface of the dune cracks and escaping gas carries dark sand out from the dune below, often creating beautiful patterns. On the rough surface between the dunes, frost is trapped behind small sheltered ridges. https://photojournal.jpl.nasa.gov/catalog/PIA21882
Characterization of Ice for Return-to-Flight of the Space Shuttle. Part 2; Soft Ice
NASA Technical Reports Server (NTRS)
Schulson, Erland M.; Iliescu, Daniel
2005-01-01
In support of characterizing ice debris for return-to-flight (RTF) of NASA's space shuttle, we have determined the microstructure, density and compressive strength (at -10 C at approximately 0.3 per second) of porous or soft ice that was produced from both atmospheric water and consolidated snow. The study showed that the atmospheric material was generally composed of a mixture of very fine (0.1 to 0.3 millimeters) and coarser (5 to 10 millimeter) grains, plus air bubbles distributed preferentially within the more finely-grained part of the microstructure. The snow ice was composed of even finer grains (approximately 0.05 millimeters) and contained more pores. Correspondingly, the snow ice was of lower density than the atmospheric ice and both materials were significantly less dense than hard ice. The atmospheric ice was stronger (approximately 3.8 MPa) than the snow ice (approximately 1.9 MPa), but weaker by a factor of 2 to 5 than pore-free hard ice deformed under the same conditions. Zero Values are given for Young's modulus, compressive strength and Poisson's ratio that can be used for modeling soft ice from the external tank (ET).
NASA Technical Reports Server (NTRS)
Wadhams, P.; Tucker, W. B., III; Krabill, W. B.; Swift, R. N.; Comiso, J. C.; Davis, N. R.
1992-01-01
This study confirms the finding of Comiso et al. (1991) that the probability density function (pdf) of the ice freeboard in the Arctic Ocean can be converted to a pdf of ice draft by applying a simple coordinate factor. The coordinate factor, R, which is the ratio of mean draft to mean freeboard pdf is related to the mean material (ice plus snow) density, rho(m), and the near-surface water density rho(w) by the relationship R = rho(m)/(rho(w) - rho(m)). The measured value of R was applied to each of six 50-km sections north of Greenland of a joint airborne laser and submarine sonar profile obtained along nearly coincident tracks from the Arctic Basin north of Greenland and was found to be consistent over all sections tested, despite differences in the ice regime. This indicates that a single value of R might be used for measurements done in this season of the year. The mean value R from all six sections was found to be 7.89.
Tegos, G; Vargas, C; Perysinakis, A; Koukkou, A I; Christogianni, A; Nieto, J J; Ventosa, A; Drainas, C
2000-11-01
Release of ice nuclei in the growth medium of recombinant Halomonas elongata cells expressing the inaZ gene of Pseudomonas syringae was studied in an attempt to produce cell-free active ice nuclei for biotechnological applications. Cell-free ice nuclei were not retained by cellulose acetate filters of 0.2 microm pore size. Highest activity of cell-free ice nuclei was obtained when cells were grown in low salinity (0.5-5% NaCl, w/v). Freezing temperature threshold, estimated to be below -7 degrees C indicating class C nuclei, was not affected by medium salinity. Their density, as estimated by Percoll density centrifugation, was 1.018 +/- 0.002 gml(-1) and they were found to be free of lipids. Ice nuclei are released in the growth medium of recombinant H. elongata cells probably because of inefficient anchoring of the ice-nucleation protein aggregates in the outer membrane. The ice+ recombinant H. elongata cells could be useful for future use as a source of active cell-free ice nucleation protein.
Ni, Xuewen; Ke, Fan; Xiao, Man; Wu, Kao; Kuang, Ying; Corke, Harold; Jiang, Fatang
2016-11-01
Konjac glucomannan (KGM)-based aerogels were prepared using a combination of sol-gel and freeze-drying methods. Preparation conditions were chosen to control ice crystal growth and aerogel structure formation. The ice crystals formed during pre-freezing were observed by low temperature polarizing microscopy, and images of aerogel pores were obtained by scanning electron microscopy. The size of ice crystals were calculated and size distribution maps were drawn, and similarly for aerogel pores. Results showed that ice crystal growth and aerogel pore sizes may be controlled by varying pre-freezing temperatures, KGM concentration and glyceryl monostearate concentration. The impact of pre-freezing temperatures on ice crystal growth was explained as combining ice crystal growth rate with nucleation rate, while the impacts of KGM and glyceryl monostearate concentration on ice crystal growth were interpreted based on their influences on sol network structure. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rignot, Eric; Jezek, K.; Vanzyl, J. J.; Drinkwater, Mark R.; Lou, Y. L.
1993-01-01
In June 1991, the NASA/JPL airborne SAR (AIRSAR) acquired C- (lambda = 5.6cm), L- (lambda = 24cm), and P- (lambda = 68m) band polarimetric SAR data over the Greenland ice sheet. These data are processed using version 3.55 of the AIRSAR processor which provides radiometrically and polarimetrically calibrated images. The internal calibration of the AIRSAR data is cross-checked using the radar response from corner reflectors deployed prior to flight in one of the scenes. In addition, a quantitative assessment of the noise power level at various frequencies and polarizations is made in all the scenes. Synoptic SAR data corresponding to a swath width of about 12 by 50 km in length (compared to the standard 12 x 12 km size of high-resolution scenes) are also processed and calibrated to study transitions in radar backscatter as a function of snow facies at selected frequencies and polarizations. The snow facies on the Greenland ice sheet are traditionally categorized based on differences in melting regime during the summer months. The interior of Greenland corresponds to the dry snow zone where terrain elevation is the highest and no snow melt occurs. The lowest elevation boundary of the dry snow zone is known traditionally as the dry snow line. Beneath it is the percolation zone where melting occurs in the summer and water percolates through the snow freezing at depth to form massive ice lenses and ice pipes. At the downslope margin of this zone is the wet snow line. Below it, the wet snow zone corresponds to the lowest elevations where snow remains at the end of the summer. Ablation produces enough meltwater to create areas of snow saturated with water, together with ponds and lakes. The lowest altitude zone of ablation sees enough summer melt to remove all traces of seasonal snow accumulation, such that the surface comprises bare glacier ice.
Experimental investigation of passive infrared ice detection for helicopter applications
NASA Technical Reports Server (NTRS)
Dershowitz, Adam; Hansman, R. John, Jr.
1991-01-01
A technique is proposed to remotely detect rotor icing on helicopters. Using passive infrared (IR) thermometry it is possible to detect the warming caused by latent heat released as supercooled water freezes. During icing, the ice accretion region on the blade leading edge will be warmer than the uniced trailing edge resulting in a chordwise temperature profile characteristic of icing. Preliminary tests were conducted on a static model in the NASA Icing Research Tunnel for a variety of wet (glaze) and dry (rime) ice conditions. The characteristic chordwise temperature profiles were observed with an IR thermal video system and confirmed with thermocouple measurements. A prototype detector system was built consisting of a single point IR pyrometer, and experiments were run on a small scale rotor model. Again the characteristic chordwise temperature profiles were observed during icing, and the IR system was able to remotely detect icing. Based on the static and subscale rotor tests the passive IR technique is promising for rotor ice detection.
Experimental investigation of passive infrared ice detection for helicopter applications
NASA Technical Reports Server (NTRS)
Dershowitz, Adam; Hansman, R. John, Jr.
1991-01-01
A technique is proposed to remotely detect rotor icing on helicopters. Using passive infrared (IR) thermometry, it is possible to detect the warming caused by latent heat released as supercooled water freezes. During icing, the ice accretion region on the blade leading edge will be warmer than the uniced trailing edge, resulting in a chordwise temperature profile characteristic of icing. Preliminary tests were conducted on a static model in the NASA Icing Research Tunnel for a variety of wet (glaze) and dry (rime) ice conditions. The characteristic chordwise temperature profiles were observed with an IR thermal video system and confirmed with thermocouple measurements. A prototype detector system was built consisting of a single point IR pyrometer. Experiments were run on a small scale rotor model. Again, the characteristic chordwise temperature profiles were observed during icing, and the IR system was able to remotely detect icing. Based on the static and subscale rotor tests, the passive IR technique is promising for rotor ice detection.
Löw, Florian; Amann-Winkel, Katrin; Loerting, Thomas; Fujara, Franz; Geil, Burkhard
2013-06-21
The postulated glass-liquid transition of low density amorphous ice (LDA) is investigated with deuteron NMR stimulated echo experiments. Such experiments give access to ultra-slow reorientations of water molecules on time scales expected for structural relaxation of glass formers close to the glass-liquid transition temperature. An involved data analysis is necessary to account for signal contributions originating from a gradual crystallization to cubic ice. Even if some ambiguities remain, our findings support the view that pressure amorphized LDA ices are of glassy nature and undergo a glass-liquid transition before crystallization.
The Canadian Defence Input-Output Model DIO Version 4.41
2011-09-01
0841 Mineral water, fruit-flavoured beverages and ice 99 0842 Pasta products, excluding dry pasta 100 0843 Prepared meals 101 0850 Feed supplements and...junior foods, excluding in airtight containers 134 1136 Dry pasta 135 1140 Soft drink concentrates 136 1150 Carbonated soft drinks 137 1161 Distilled
Factors affecting oxidative stain in soft maple (Acer rubrum L.)
Michael C. Wiemann; Mark Knaebe
2008-01-01
A preliminary study to determine possible treatments that might be used to eliminate or limit value reducing stain in soft maple suggests that rapid processing and treatment with sulfur dioxide gas decreases discoloration, high-temperature drying increases discoloration, and freezing in dry ice prior to processing has no effect.
Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival.
Grosbois, Guillaume; Mariash, Heather; Schneider, Tobias; Rautio, Milla
2017-09-14
Shortening winter ice-cover duration in lakes highlights an urgent need for research focused on under-ice ecosystem dynamics and their contributions to whole-ecosystem processes. Low temperature, reduced light and consequent changes in autotrophic and heterotrophic resources alter the diet for long-lived consumers, with consequences on their metabolism in winter. We show in a survival experiment that the copepod Leptodiaptomus minutus in a boreal lake does not survive five months under the ice without food. We then report seasonal changes in phytoplankton, terrestrial and bacterial fatty acid (FA) biomarkers in seston and in four zooplankton species for an entire year. Phytoplankton FA were highly available in seston (2.6 µg L -1 ) throughout the first month under the ice. Copepods accumulated them in high quantities (44.8 µg mg dry weight -1 ), building lipid reserves that comprised up to 76% of body mass. Terrestrial and bacterial FA were accumulated only in low quantities (<2.5 µg mg dry weight -1 ). The results highlight the importance of algal FA reserve accumulation for winter survival as a key ecological process in the annual life cycle of the freshwater plankton community with likely consequences to the overall annual production of aquatic FA for higher trophic levels and ultimately for human consumption.
NASA Astrophysics Data System (ADS)
Tsang, L.; Tan, S.; Sanamzadeh, M.; Johnson, J. T.; Jezek, K. C.; Durand, M. T.
2017-12-01
The recent development of an ultra-wideband software defined radiometer (UWBRAD) operating over the unprotected spectrum of 0.5 2.0 GHz using radio-frequency interference suppression techniques offers new methodologies for remote sensing of the polar ice sheets, sea ice, and terrestrial snow. The instrument was initially designed for remote sensing of the intragalcial temperature profile of the ice sheet, where a frequency dependent penetration depth yields a frequency dependent brightness temperature (Tb) spectrum that can be linked back to the temperature profile of the ice sheet. The instrument was tested during a short flight over Northwest Greenland in September, 2016. Measurements were successfully made over the different snow facies characteristic of Greenland including the ablation, wet snow and percolation facies, and ended just west of Camp Century during the approach to the dry snow zone. Wide-band emission spectra collected during the flight have been processed and analyzed. Results show that the spectra are highly sensitive to the facies type with scattering from ice lenses being the dominant reason for low Tbs in the percolation zone. Inversion of Tb to physical temperature at depth was conducted on the measurements near Camp Century, achieving a -1.7K ten-meter error compared to borehole measurements. However, there is a relatively large uncertainty in the lower part possibly due to the large scattering near the surface. Wideband radiometry may also be applicable to sea ice and terrestrial snow thickness retrieval. Modeling studies suggest that the UWBRAD spectra reduce ambiguities inherent in other sea ice thickness retrievals by utilizing coherent wave interferences that appear in the Tb spectrum. When applied to a lossless medium such as terrestrial snow, this coherent oscillation turns out to be the single key signature that can be used to link back to snow thickness. In this paper, we report our forward modeling findings in support of instrument development and data analysis. The effects of density fluctuations and layered roughness are examined using a partially coherent model; we also report the results of applying such models to analyze the UWBRAD Greenland data. The approach of combining active L- band observations from PALSAR with UWBRAD Tb spectra is also discussed.
NASA Astrophysics Data System (ADS)
Wells, Gary; Ledesma-Aguillar, Ridrigo; McHale, Glen; Sefiane, Khellil
2015-11-01
The Leidenfrost effect, the sustained levitation of evaporating liquid droplets by a cushion of their on vapour on very hot surfaces, has received increased attention over the past few years. On patterned surfaces, rectification of the vapour layer flow can lead to rich dynamics of evaporating drops or sublimating blocks of dry ice, including self-propulsion, orbiting and conjoint rotation. In this paper we show that the Leidenfrost effect can be exploited to drive the rotation of rigid objects, such as solid hydrophilic plates coupled to water droplets and blocks of dry ice, by using turbine-like substrates. Using a hydrodynamic model, we show that drag-based rotation is achieved at low-Reynolds number by a rectification mechanism of the flow in the vapour layer caused by the underlying turbine-like geometry. Our theoretical model determines the maximum weight of Leidenfrost rotors and the net torque driving their motion in terms of operational parameters, showing an excellent agreement with experiments using dry-ice blocks. We generalise the concept of rotation into a new concept for a heat engine capable of harvesting thermal energy using either thin-film boiling or sublimation as a phase-change mechanism. As a proof principle, we implement the new sublimation engine in the lab to create a simple electromagnetic generator. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.
2017-01-11
Southern spring on Mars brings sublimation of the seasonal dry ice polar cap. Gas trapped under the seasonal ice sheet carves channels on its way to escaping to the atmosphere. At this site, the channels are wider than we see elsewhere on Mars, perhaps meaning that the spider-like (or more scientifically, "araneiform") terrain here is older, or that the surface is more easily eroded. Seasonal fans of eroded surface material, pointed in two different directions, are deposited on the remaining ice. http://photojournal.jpl.nasa.gov/catalog/PIA13151
Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice.
Lin, Chuanlong; Yong, Xue; Tse, John S; Smith, Jesse S; Sinogeikin, Stanislav V; Kenney-Benson, Curtis; Shen, Guoyin
2017-09-29
We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1 Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.
Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice
NASA Astrophysics Data System (ADS)
Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin
2017-09-01
We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.
Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chuanlong; Yong, Xue; Tse, John S.
We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transitionmore » to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.« less
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke E.
2017-05-01
We present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First, we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.
Evaluation of Hydrometeor Classification for Winter Mixed-Phase Precipitation Events
NASA Astrophysics Data System (ADS)
Hickman, B.; Troemel, S.; Ryzhkov, A.; Simmer, C.
2016-12-01
Hydrometeor classification algorithms (HCL) typically discriminate radar echoes into several classes including rain (light, medium, heavy), hail, dry snow, wet snow, ice crystals, graupel and rain-hail mixtures. Despite the strength of HCL for precipitation dominated by a single phase - especially warm-season classification - shortcomings exist for mixed-phase precipitation classification. Properly identifying mixed-phase can lead to more accurate precipitation estimates, and better forecasts for aviation weather and ground warnings. Cold season precipitation classification is also highly important due to their potentially high impact on society (e.g. black ice, ice accumulation, snow loads), but due to the varying nature of the hydrometeor - density, dielectric constant, shape - reliable classification via radar alone is not capable. With the addition of thermodynamic information of the atmosphere, either from weather models or sounding data, it has been possible to extend more and more into winter time precipitation events. Yet, inaccuracies still exist in separating more benign (ice pellets) from more the more hazardous (freezing rain) events. We have investigated winter mixed-phase precipitation cases which include freezing rain, ice pellets, and rain-snow transitions from several events in Germany in order to move towards a reliable nowcasting of winter precipitation in hopes to provide faster, more accurate winter time warnings. All events have been confirmed to have the specified precipitation from ground reports. Classification of the events is achieved via a combination of inputs from a bulk microphysics numerical weather prediction model and the German dual-polarimetric C-band radar network, into a 1D spectral bin microphysical model (SBC) which explicitly treats the processes of melting, refreezing, and ice nucleation to predict four near-surface precipitation types: rain, snow, freezing rain, ice pellets, rain/snow mixture, and freezing rain/pellet mixture. Evaluation of the classification is performed by means of disdrometer data, in-situ ground observations, and eye-witness reports from the European Severe Weather Database (ESWD). Additionally, a comparison to an existing radar based HCL is performed as a sanity check and a performance evaluator.
The distribution, structure, and composition of freshwater ice deposits in Bolivian salt lakes
Hurlbert, S.H.; Chang, Cecily C.Y.
1988-01-01
Freshwater ice deposits are described from seven, high elevation (4117-4730 m), shallow (mean depth <30 cm), saline (10-103 g l-1) lakes in the southwestern corner of Bolivia. The ice deposits range to several hundred meters in length and to 7 m in height above the lake or playa surface. They are located near the lake or salar margins; some are completely surrounded by water, others by playa deposits or salt crusts. Upper surfaces and sides of the ice deposits usually are covered by 20-40 cm of white to light brown, dry sedimentary materials. Calcite is the dominant crystalline mineral in these, and amorphous materials such as diatom frustules and volcanic glass are also often abundant. Beneath the dry overburden the ice occurs primarily as horizontal lenses 1-1000 mm thick, irregularly alternating with strata of frozen sedimentary materials. Ice represents from 10 to 87% of the volume of the deposits and yields freshwater (TFR <3 g l-1) when melted. Oxygen isotope ratios for ice are similar to those for regional precipitation and shoreline seeps but much lower than those for the lakewaters. Geothermal flux is high in the region as evidenced by numerous hot springs and deep (3.0-3.5 m) sediment temperatures of 5-10??C. This flux is one cause of the present gradual wasting away of these deposits. Mean annual air temperatures for the different lakes probably are all in the range of -2 to 4??C, and mean midwinter temperatures about 5??C lower. These deposits apparently formed during colder climatic conditions by the freezing of low salinity porewaters and the building up of segregation ice lenses. ?? 1988 Dr W. Junk Publishers.
NASA Astrophysics Data System (ADS)
Passalacqua, Olivier; Ritz, Catherine; Parrenin, Frédéric; Urbini, Stefano; Frezzotti, Massimo
2017-09-01
Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF), which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice-bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km × 130 km area, with a N-S gradient and with values ranging from 48 to 60 mW m-2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.
NASA Astrophysics Data System (ADS)
Slobbe, D. C.; Ditmar, P.; Lindenbergh, R. C.
2009-01-01
The focus of this paper is on the quantification of ongoing mass and volume changes over the Greenland ice sheet. For that purpose, we used elevation changes derived from the Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry mission and monthly variations of the Earth's gravity field as observed by the Gravity Recovery and Climate Experiment (GRACE) mission. Based on a stand alone processing scheme of ICESat data, the most probable estimate of the mass change rate from 2003 February to 2007 April equals -139 +/- 68 Gtonyr-1. Here, we used a density of 600+/-300 kgm-3 to convert the estimated elevation change rate in the region above 2000m into a mass change rate. For the region below 2000m, we used a density of 900+/-300 kgm-3. Based on GRACE gravity models from half 2002 to half 2007 as processed by CNES, CSR, DEOS and GFZ, the estimated mass change rate for the whole of Greenland ranges between -128 and -218Gtonyr-1. Most GRACE solutions show much stronger mass losses as obtained with ICESat, which might be related to a local undersampling of the mass loss by ICESat and uncertainties in the used snow/ice densities. To solve the problem of uncertainties in the snow and ice densities, two independent joint inversion concepts are proposed to profit from both GRACE and ICESat observations simultaneously. The first concept, developed to reduce the uncertainty of the mass change rate, estimates this rate in combination with an effective snow/ice density. However, it turns out that the uncertainties are not reduced, which is probably caused by the unrealistic assumption that the effective density is constant in space and time. The second concept is designed to convert GRACE and ICESat data into two totally new products: variations of ice volume and variations of snow volume separately. Such an approach is expected to lead to new insights in ongoing mass change processes over the Greenland ice sheet. Our results show for different GRACE solutions a snow volume change of -11 to 155km3yr-1 and an ice loss with a rate of -136 to -292km3yr-1.
Influences of sea ice on eastern Bering Sea phytoplankton
NASA Astrophysics Data System (ADS)
Zhou, Qianqian; Wang, Peng; Chen, Changping; Liang, Junrong; Li, Bingqian; Gao, Yahui
2015-03-01
The influence of sea ice on the species composition and cell density of phytoplankton was investigated in the eastern Bering Sea in spring 2008. Diatoms, particularly pennate diatoms, dominated the phytoplankton community. The dominant species were Grammonema islandica (Grunow in Van Heurck) Hasle, Fragilariopsis cylindrus (Grunow) Krieger, F. oceanica (Cleve) Hasle, Navicula vanhoeffenii Gran, Thalassiosira antarctica Comber, T. gravida Cleve, T. nordenskiöeldii Cleve, and T. rotula Meunier. Phytoplankton cell densities varied from 0.08×104 to 428.8×104 cells/L, with an average of 30.3×104 cells/L. Using cluster analysis, phytoplankton were grouped into three assemblages defined by ice-forming conditions: open water, ice edge, and sea ice assemblages. In spring, when the sea ice melts, the phytoplankton dispersed from the sea ice to the ice edge and even into open waters. Thus, these phytoplankton in the sea ice may serve as a "seed bank" for phytoplankton population succession in the subarctic ecosystem. Moreover, historical studies combined with these results suggest that the sizes of diatom species have become smaller, shifting from microplankton to nannoplankton-dominated communities.
Kinetic boundaries and phase transformations of ice i at high pressure.
Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F
2018-01-28
Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H 2 O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.
Kinetic boundaries and phase transformations of ice i at high pressure
NASA Astrophysics Data System (ADS)
Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.
2018-01-01
Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.
Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water.
Mishima, Osamu
2011-12-08
Melting of the precipitated ice IV in supercooled LiCl-H(2)O solution was studied in the range of 0-0.6 MPa and 160-270 K. Emulsified solution was used to detect this metastable transition. Ice IV was precipitated from the aqueous solution of 2.0 mol % LiCl (or 4.8 mol % LiCl) in each emulsion particle at low-temperature and high-pressure conditions, and the emulsion was decompressed at different temperatures. The melting of ice IV was detected from the temperature change of the emulsified sample during the decompression. There was an apparently sudden change in the slope of the ice IV melting curve (liquidus) in the pressure-temperature diagram. At the high-pressure and high-temperature side of the change, the solute-induced freezing point depression was observed. At the low-pressure and low-temperature side, ice IV transformed into ice Ih on the decompression, and the transition was almost unrelated to the concentration of LiCl. These experimental results were roughly explained by the presumed existence of two kinds of liquid water (low-density liquid water and high-density liquid water), or polyamorphism in water, and by the simple assumption that LiCl dissolved maily in high-density liquid water. © 2011 American Chemical Society
Clements, Aspen R; Berk, Brandon; Cooke, Ilsa R; Garrod, Robin T
2018-02-21
Dust grains in cold, dense interstellar clouds build up appreciable ice mantles through the accretion and subsequent surface chemistry of atoms and molecules from the gas. These mantles, of thicknesses on the order of 100 monolayers, are primarily composed of H 2 O, CO, and CO 2 . Laboratory experiments using interstellar ice analogues have shown that porosity could be present and can facilitate diffusion of molecules along the inner pore surfaces. However, the movement of molecules within and upon the ice is poorly described by current chemical kinetics models, making it difficult either to reproduce the formation of experimental porous ice structures or to extrapolate generalized laboratory results to interstellar conditions. Here we use the off-lattice Monte Carlo kinetics model MIMICK to investigate the effects that various deposition parameters have on laboratory ice structures. The model treats molecules as isotropic spheres of a uniform size, using a Lennard-Jones potential. We reproduce experimental trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature; ice density decreases when the incident angle or deposition rate is increased, while increasing temperature results in a more-compact water ice. The models indicate that the density behaviour at higher temperatures (≥80 K) is dependent on molecular rearrangement resulting from thermal diffusion. To reproduce trends at lower temperatures, it is necessary to take account of non-thermal diffusion by newly-adsorbed molecules, which bring kinetic energy both from the gas phase and from their acceleration into a surface binding site. Extrapolation of the model to conditions appropriate to protoplanetary disks, in which direct accretion of water from the gas-phase may be the dominant ice formation mechanism, indicate that these ices may be less porous than laboratory ices.
Influence of Bulk Carbonaceous Matter on Pluto's Structure and Evolution
NASA Astrophysics Data System (ADS)
McKinnon, W. B.; Stern, S. A.; Weaver, H. A., Jr.; Spencer, J. R.; Moore, J. M.; Young, L. A.; Olkin, C.
2017-12-01
The rock/ice mass ratio of the Pluto system is about 2/1 (McKinnon et al., Icarus 287, 2017) [1], though this neglects the potential role of bulk carbonaceous matter ("CHON"), an important cometary component and one likely important in the ancestral Kuiper belt. The wealth of measurements at comet 67P/Churyumov-Gerasimenko (a Jupiter-family comet and thus one formed in the same region of the outer Solar System as Pluto) by Rosetta are particularly instructive. E.g., Davidsson et al. (A&A 592, 2016) [2] propose in their "composition A" that 67P/Ch-G is 25% metal/sulfides, 42% rock/organics, and 32% ice by mass. For their assumed component densities, the overall grain density is 1820 kg/m3. Fulle et al. (MNRAS 462, 2016) [3] posit 5 ± 2 volume % Fe-sulfides of density 4600 kg/m3, 28 ± 5% Mg,Fe-olivines and -pyroxenes of density 3200 kg/m3, 52 ± 12% hydrocarbons of density 1200 kg/m3, and 15 ± 6% ices of 917 kg/m3. This composition yields a primordial grain density (dust + ice) of 1885 ± 240 kg/m3. Both of these cometary density estimates [2,3] are consistent with Pluto-Charon, especially as Pluto's uncompressed (STP) density is close to 1820 kg/m3 and that of the system as a whole is close to 1800 kg/m3 [1]. We consider the potential compositional and structural implications of these proposed 67P/Ch-G compositions when applied to Pluto and Charon. The amount of ice in model A of [2] is a good match to Pluto structural models. Their rock/organics component, however, is taken to be half graphite (2000 kg/m3) by volume. The composition in [3] is more divergent: very ice poor, and on the order of 50% light hydrocarbons by volume. Regardless of the differences between [2] and [3], the possibility of massive internal graphite or carbonaceous layers within Pluto is real. We discuss the possible consequences for Pluto's structure, rock/ice ratio, thermal and chemical evolution, and even interpretation of its gravity field from tectonics. For example, radiogenic heat flows could be lessened in comparison with pure ice+rock±ocean interior models. And could the inferred gravity high at Sputnik Planitia (Nimmo et al., Nature 540, 2016) actually be due to an uplifted graphite-rich layer? A bulk carbonaceous contribution to icy satellites is also possible, and may behind the rich organic chemistry in Enceladus' plume vapor (Waite et al., Nature 460, 2009).
NASA Astrophysics Data System (ADS)
Meehan, T.; Osterberg, E. C.; Lewis, G.; Overly, T. B.; Hawley, R. L.; Bradford, J.; Marshall, H. P.
2016-12-01
To better predict the response of the Greenland Ice Sheet (GrIS) to future warming, leading edge Regional Climate Models (RCM) must be calibrated with in situ measurements of recent accumulation and melt. Mass balance estimates averaged across the entire Greenland Ice Sheet (GrIS) vary between models by more than 30 percent, and regional comparisons of mass balance reconstructions in Greenland vary by 100 percent or more. Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) is a multi-year and multi-disciplinary 1700 km science traverse from Raven/Dye2 in SW Greenland, to Summit Station. Multi-offset radar measurements can provide high accuracy electromagnetic (EM) velocity estimates of the firn to within (+-) 0.002 to 0.003 m/ns. EM velocity, in turn, can be used to estimate bulk firn density. Using a mixing equation such as the CRIM Equation we use the measured EM velocity, along with the known EM velocity in air and ice, to estimate bulk density. During spring 2016, we used multi-channel 500MHz radar in a multi-offset configuration to survey more than 800 km from Raven towards summit. Preliminary radar-derived snow density estimates agree with density estimates from a firn core measurement ( 50 kg/m3), despite the lateral heterogeneity of the firn across the length of the antenna array (12 m).
A passive infrared ice detection technique for helicopter applications
NASA Technical Reports Server (NTRS)
Dershowitz, Adam L.; Hansman, R. John, Jr.
1991-01-01
A technique has been developed, and successfully tested, to detect icing remotely on helicopter rotor blades. Using passive infrared (IR) thermometry it is possible to detect the warming caused by latent heat released as supercooled water freezes. During icing, the ice accretion region on the leading edge of the blade is found to be warmer than the uniced trailing edge resulting in a chordwise temperature profile characteristic of icing. Preliminary tests, using an IR Thermal video system, were conducted on a static model in the NASA Icing Research Tunnel (IRT) for a variety of wet (glaze) and dry (rime) ice conditions. A prototype detector system was built consisting of a single point IR pyrometer, and experiments were run on a small scale rotor model. Using this prototype detector, the characteristic chordwise temperature profiles were again observed for a range of icing conditions. Several signal processing methods were investigated, to allow automatic recognition of the icing signature. Additionally, several implementation issues were considered. Based on both the static and subscale rotor tests, where ice was successfully detected, the passive IR technique appears to be promising for rotor ice detection.
Adsorption inhibition as a mechanism of freezing resistance in polar fishes.
Raymond, J A; DeVries, A L
1977-01-01
Polar fishes are known to have serum proteins and glycoproteins that protect them from freezing, by a noncolligative process. Measurements of antifreeze concentrations in ice and scanning electron micrographs of freeze-dried antifreeze solutions indicate that the antifreezes are incorporated in ice during freezing. The antifreezes also have a pronounced effect on the crystal habit of ice grown in their presence. Each of four antifreezes investigated caused ice to grow in long needles whose axes were parallel to the ice c axis. Together these results indicate the antifreezes adsorb to ice surfaces and inhibit their growth. A model in which adsorbed antifreezes raise the curvature of growth steps on the ice surface is proposed to account for the observed depression of the temperature at which freezing occurs and agrees well with experimental observations. The model is similar to one previously proposed for other cases of crystal growth inhibition. Images PMID:267952
Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE
Xie, Shaocheng; Hume, Timothy; Jakob, Christian; ...
2010-01-01
This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less
Ancient ice islands in salt lakes of the Central Andes
Hurlbert, S.H.; Chang, Cecily C.Y.
1984-01-01
Massive blocks of freshwater ice and frozen sediments protrude from shallow, saline lakes in the Andes of southwestern Bolivia and northeastern Chile. These ice islands range up to 1.5 kilometers long, stand up to 7 meters above the water surface, and may extend out tens of meters and more beneath the unfrozen lake sediments. The upper surfaces of the islands are covered with dry white sediments, mostly aragonite or calcite. The ice blocks may have formed by freezing of the fresh pore water of lake sediments during the "little ice age." The largest blocks are melting rapidly because of possibly recent increases in geothermal heat flux through the lake bottom and undercutting by warm saline lake water during the summer.
La Harpe, Romano; Shiferaw, Kebede; Mangin, Patrice; Burkhardt, Sandra
2013-06-01
Intoxication with carbon dioxide (CO2), a nonexplosive, colorless, and odorless gas does not cause any clinical symptoms or signs, with the occasional exception of sudation. Carbon dioxide is principally used in the food industry (70% of CO2 production), in particular to preserve foods and to carbonate beverages. Most fatalities resulting from CO2 intoxication are accidental and occur either in closed spaces or when dry ice is used in the food industry. In this case report, a 42-year-old male winemaker engineer was found dead, his head inside a wine vat that had been filled with grapes on the previous day and supplemented with dry ice to improve the taste of wine.
MABEL Photon-Counting Laser Altimetry Data in Alaska for ICESat-2 Simulations and Development
NASA Technical Reports Server (NTRS)
Brunt, Kelly; Neumann, T. A.; Amundson, M.; Kavanaugh, J. L.; Moussavi, M. S.; Walsh, K. M.; Cook, W. B.; Markus, T.
2016-01-01
Multiple Altimeter Beam Experimental Lidar (MABEL) maps Alaskan crevasses in detail, using 50 of the expected along-track Advanced Topographic Laser Altimeter System (ATLAS) signal-photon densities over summer ice sheets. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) along-track data density, and spatial data density due to the multiple-beam strategy, will provide a new dataset to mid-latitude alpine glacier researchers.
Accumulation Rates in the Dry Snow Zone of the Greenland Ice Sheet Inferred from L-band InSAR Data
NASA Astrophysics Data System (ADS)
Chen, A. C.; Zebker, H. A.
2012-12-01
The Greenland ice sheet contains about 2.9 million km3 of ice and would raise global sea levels by about 7.1 m if it melted completely. Two unusually large iceberg calving events at Petermann Glacier in the past several years, along with the unusually large extent of ice sheet melt this summer point to the relevance of understanding the mass balance of the Greenland ice sheet. In this study, we use data from the PALSAR instrument aboard the ALOS satellite to form L-band (23-centimeter carrier wavelength) InSAR images of the dry snow zone of the Greenland ice sheet. We form geocoded differential interferograms, using the ice sheet elevation model produced by Howat et.al. [1]. By applying phase and radiometric calibration, we can examine interferograms formed between any pair of transmit and receive polarization channels. In co-polarized interferograms, the InSAR correlation ranges from about 0.35 at the summit (38.7 deg W, 73.0 deg N) where accumulation is about 20 cm w.e./yr to about 0.70 at the north-eastern part of the dry snow zone (35.1 deg W, 77.1 deg N), where accumulation is about 11.7 cm w.e./yr. Cross-polarized interferograms show similar geographic variation with overall lower correlation. We compare our InSAR data with in-situ measurements published by Bales et.al. [2]. We examine the applicability of dense-medium radiative transfer electromagnetic scattering models for estimating accumulation rates from L-band InSAR data. The large number and broad coverage of ALOS scenes acquired between 2007 and 2009 with good InSAR coherence at 46-day repeat times and 21.5 degree incidence angles gives us the opportunity to examine the empirical relationship between in-situ accumulation rate observations and the polarimetric InSAR correlation and radar brightness at this particular imaging geometry. This helps us quantify the accuracy of accumulation rates estimated from InSAR data. In some regions, 46-day interferograms acquired in the winters of several consecutive years allows us to investigate the variability of L-band InSAR correlation over time. [1] Howat I.M., A. Negrete, T. Scambos, T. Haran, in prep, A high-resolution elevation model for the Greenland Ice Sheet from combined stereoscopic and photoclinometric data. [2] [1] R. C. Bales, J. R. McConnell, E. Mosley-Thompson, and B. Csatho, "Accumulation over the Greenland ice sheet from historical and recent records," Journal of Geophysical Research, vol. 106, pp. 33813-33825, 2001.
Effective Ice Particle Densities for Cold Anvil Cirrus
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica
2002-01-01
This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.
NASA Technical Reports Server (NTRS)
Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad
1995-01-01
A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.
Excess electrons in ice: a density functional theory study.
Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro
2014-02-21
We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.
NASA Astrophysics Data System (ADS)
Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian
2017-10-01
Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.
40 CFR Appendix 2 to Subpart A of... - Drilling Fluids Toxicity Test
Code of Federal Regulations, 2011 CFR
2011-07-01
... are designed to minimize sample contamination and alteration of the physical or chemical properties of... wet ice (do not use dry ice) and continuously maintained at 0-4 °C until the time of testing. (3) Bulk... use. (5) Most drilling mud samples may be stored for periods of time longer than 2 weeks prior to...
40 CFR Appendix 2 to Subpart A of... - Drilling Fluids Toxicity Test
Code of Federal Regulations, 2010 CFR
2010-07-01
... are designed to minimize sample contamination and alteration of the physical or chemical properties of... wet ice (do not use dry ice) and continuously maintained at 0-4 °C until the time of testing. (3) Bulk... use. (5) Most drilling mud samples may be stored for periods of time longer than 2 weeks prior to...
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Sherrit, S.; Chang, Z.; Wessel, L.; Bao, X.; Doran, P. T.; Fritsen, C. H.; Kenig, F.; McKay, C. P.; Murray, A.;
2004-01-01
There is growing evidence for ice and fluids near the surface of Mars with potential discharge of brines, which may preserve a record of past life on the planet. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for such records.
Determination of Local Densities in Accreted Ice Samples Using X-Rays and Digital Imaging
NASA Technical Reports Server (NTRS)
Broughton, Howard; Sims, James; Vargas, Mario
1996-01-01
At the NASA Lewis Research Center's Icing Research Tunnel ice shapes, similar to those which develop in-flight icing conditions, were formed on an airfoil. Under cold room conditions these experimental samples were carefully removed from the airfoil, sliced into thin sections, and x-rayed. The resulting microradiographs were developed and the film digitized using a high resolution scanner to extract fine detail in the radiographs. A procedure was devised to calibrate the scanner and to maintain repeatability during the experiment. The techniques of image acquisition and analysis provide accurate local density measurements and reveal the internal characteristics of the accreted ice with greater detail. This paper will discuss the methodology by which these samples were prepared with emphasis on the digital imaging techniques.
Scanning electron microscopy of high-pressure-frozen sea urchin embryos.
Walther, P; Chen, Y; Malecki, M; Zoran, S L; Schatten, G P; Pawley, J B
1993-12-01
High-pressure-freezing permits direct cryo-fixation of sea urchin embryos having a defined developmental state without the formation of large ice crystals. We have investigated preparation protocols for observing high-pressure-frozen and freeze-fractured samples in the scanning electron microscope. High-pressure-freezing was superior to other freezing protocols, because the whole bulk sample was reasonably well frozen and the overall three-dimensional shape of the embryos was well preserved. The samples were either dehydrated by freeze-substitution and critical-point-drying, or imaged in the partially hydrated state, using a cold stage in the SEM. During freeze-substitution the samples were stabilized by fixatives. The disadvantage of this method was that shrinking and extraction effects, caused by the removal of the water, could not be avoided. These disadvantages were avoided when the sample was imaged in the frozen-hydrated state using a cold-stage in the SEM. This would be the method of choice for morphometric studies. Frozen-hydrated samples, however, were very beam sensitive and many structures remained covered by the ice and were not visible. Frozen-hydrated samples were partially freeze-dried to make visible additional structures that had been covered by ice. However, this method also caused drying artifacts when too much water was removed.
Density of Mars' south polar layered deposits.
Zuber, Maria T; Phillips, Roger J; Andrews-Hanna, Jeffrey C; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Plaut, Jeffrey J; Smith, David E; Smrekar, Suzanne E
2007-09-21
Both poles of Mars are hidden beneath caps of layered ice. We calculated the density of the south polar layered deposits by combining the gravity field obtained from initial results of radio tracking of the Mars Reconnaissance Orbiter with existing surface topography from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft and basal topography from the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express spacecraft. The results indicate a best-fit density of 1220 kilograms per cubic meter, which is consistent with water ice that has approximately 15% admixed dust. The results demonstrate that the deposits are probably composed of relatively clean water ice and also refine the martian surface-water inventory.
Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight
NASA Technical Reports Server (NTRS)
Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.
1995-01-01
A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.
Ice Slurry Ingestion Leads to a Lower Net Heat Loss during Exercise in the Heat.
Morris, Nathan B; Coombs, Geoff; Jay, Ollie
2016-01-01
To compare the reductions in evaporative heat loss from the skin (Esk) to internal heat loss (Hfluid) induced by ice slurry (ICE) ingestion relative to 37 °C fluid and the accompanying body temperature and local thermoeffector responses during exercise in warm, dry conditions (33.5 °C ± 1.4 °C; 23.7% ± 2.6% relative humidity [RH]). Nine men cycled at approximately 55% VO2peak for 75 min and ingested 3.2 mL · kg(-1) aliquots of 37 °C fluid or ICE after 15, 30, and 45 min of exercise. Metabolic heat production (M-W), rectal temperature (Tre), mean skin temperature (Tsk), whole-body sweat loss (WBSL), local sweat rate (LSR), and skin blood flow (SkBF) were measured throughout. Net heat loss (HLnet) and heat storage (S) were estimated using partitional calorimetry. Relative to the 37 °C trial, M-W was similar (P = 0.81) with ICE ingestion; however, the 200 ± 20 kJ greater Hfluid (P < 0.001) with ICE ingestion was overcompensated by a 381 ± 199-kJ lower Esk (P < 0.001). Net heat loss (HLnet) was consequently 131 ± 120 kJ lower (P = 0.01) and S was greater (P = 0.05) with ICE ingestion compared with 37 °C fluid ingestion. Concurrently, LSR and WBSL were lower by 0.16 ± 0.14 mg · min(-1) · cm(-2) (P < 0.01) and 191 ± 122 g (P < 0.001), respectively, and SkBF tended to be lower (P = 0.06) by 5.4%maxAU ± 13.4%maxAU in the ICE trial. Changes in Tre and Tsk were similar throughout exercise with ICE compared to 37 °C fluid ingestion. Relative to 37 °C, ICE ingestion caused disproportionately greater reductions in Esk relative to Hfluid, resulting in a lower HLnet and greater S. Mechanistically, LSR and possibly SkBF were suppressed independently of Tre or Tsk, reaffirming the concept of human abdominal thermoreception. From a heat balance perspective, recommendations for ICE ingestion during exercise in warm, dry conditions should be reconsidered.
Ice nucleation rates of single protein complexes and single macromolecules
NASA Astrophysics Data System (ADS)
Stratmann, F.; Wex, H.; Niedermeier, D.; Hartmann, S.; Augustin, S.; Clauss, T.; Voigtlaender, J.; Pummer, B.; Grothe, H.
2012-12-01
With our flow-tube LACIS (Leipzig Aerosol cloud Interaction Simulator), we measured immersion freezing of droplets containing biological ice nucleating (IN) agents. From our measurements, we were able to deduce ice nucleation rates for single IN protein complexes (for Snomax) and for IN macromolecules (in the case of Birch pollen). For the measurements, aerosol particles were produced from solutions/suspensions of either Snomax (deadened and partly fractionalized pseudomonas syringae bacteria) or of Birch pollen washing water (BW in the following). All particles were dried and size selected before entering LACIS. In LACIS, particles were activated to droplets, and we measured the fraction of all droplets that froze (F(ice)) as function of temperature. For Snomax, a strong increase in F(ice) was observed around -7 to -10°C, for BW around -19 to -25°C, respectively. After this initial steep increase, F(ice) stayed constant for both examined substances down to -35°C. We found that the values of F(ice) in the plateau region depended on the dry particle size. The initial solution used to generate the particles contained parts of bacteria with ice active protein complexes on them in the case of Snomax, or IN macromolecules in the case of BW (Pummer et al., 2011). We show that the distribution of the IN proteins or IN molecules in the aerosol particles follows the Poisson distribution. With this knowledge, derivation of the ice nucleation rates for single IN protein complexes or for single IN macromolecules is possible. Combining the Poisson distribution with a stochastic model and using the derived nucleation rates, we can reproduce not only our measurements for both examined substances, but also past measurements done for Snomax and even pseudomonas syringae bacteria. As an additional peculiarity, we seem to observe two different macromolecules being ice active for Birch trees growing in Central Europe or Northern Europe, with the latter initiating freezing at slightly warmer temperatures. Pummer, B. G. et al. (2012), Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Aerosol Chem. Phys., 12, 2541-2550.
Effectiveness of bed bug monitors for detecting and trapping bed bugs in apartments.
Wang, Changlu; Tsai, Wan-Tien; Cooper, Richard; White, Jeffrey
2011-02-01
Bed bugs, Cimex lectularius L., are now considered a serious urban pest in the United States. Because they are small and difficult to find, there has been strong interest in developing and using monitoring tools to detect bed bugs and evaluate the results of bed bug control efforts. Several bed bug monitoring devices were developed recently, but their effectiveness is unknown. We comparatively evaluated three active monitors that contain attractants: CDC3000, NightWatch, and a home-made dry ice trap. The Climbup Insect Interceptor, a passive monitor (without attractants), was used for estimating the bed bug numbers before and after placing active monitors. The results of the Interceptors also were compared with the results of the active monitors. In occupied apartments, the relative effectiveness of the active monitors was: dry ice trap > CDC3000 > NightWatch. In lightly infested apartments, the Interceptor (operated for 7 d) trapped similar number of bed bugs as the dry ice trap (operated for 1 d) and trapped more bed bugs than CDC3000 and NightWatch (operated for 1 d). The Interceptor was also more effective than visual inspections in detecting the presence of small numbers of bed bugs. CDC3000 and the dry ice trap operated for 1 d were equally as effective as the visual inspections for detecting very low level of infestations, whereas 1-d deployment of NightWatch detected significantly lower number of infestations compared with visual inspections. NightWatch was designed to be able to operate for several consecutive nights. When operated for four nights, NightWatch trapped similar number of bed bugs as the Interceptors operated for 10 d after deployment of NightWatch. We conclude these monitors are effective tools in detecting early bed bug infestations and evaluating the results of bed bug control programs.
NASA Astrophysics Data System (ADS)
Mass, A.
2016-12-01
Cryoconites are small melt pools on the ablation surface of glaciers created by the accumulation of aeolian sediment with a lower albedo than the surrounding ice. While many cryoconites remain open to the surrounding atmosphere, environmental conditions in the McMurdo Dry Valleys of Antarctica often lead to the formation of dense ice lids due to advection from cold winds. These lidded cryoconites are isolated from atmospheric exchange while maintaining subsurface melt in a solid-state greenhouse. The varying conditions for the formation and freeze-thaw cycle of cryoconites lead to a range of biogeochemical processes occurring within the pools. This study analyzed the biochemistry of both open and lidded cryoconite water from six glaciers in the Dry Valleys throughout the initial pulse melt, equilibrium, and refreezing periods in 2013- 2015. Many of the spatial gradients in carbon cycling, solute concentrations, and pH identified for lidded cryoconites exhibited opposite trends for pools in equilibrium with the atmosphere, while temporal gradients were less diverse for open pools.
NASA Technical Reports Server (NTRS)
Wharton, Robert A., Jr.
1989-01-01
This research was conducted to establish the scientific framework for the exobiological study of sediments on Mars and to encourage the selection of these sedimentary deposits as sampling sites for future Mars missions. A study was completed on the Antarctic Dry Valley Lakes (terrestrial analogs of the purported Martian paleolakes) and their sediments that allowed the development of quantitative models relating environmental factors to the nature of the biological community and sediment forming processes. The publications presented include: (1) Diversity of micro-fungi isolated in an Antarctic dry valley; (2) Lake Hoare, Antarctica--sedimentation through a thick perennial ice cover; (3) The possibility of life on Mars during a water-rich past; (4) An Antarctic research outpost as a model for planetary exploration; (5) Early Martian environments--the Antarctic and other terrestrial analogs; (6) Lipophilic pigments from the benthos of a perennially ice-covered Antarctic lake; and (7) Perennially ice-covered Lake Hoare, Antarctica--physical environment, biology, and sedimentation.
Paleolakes and life on early Mars
NASA Technical Reports Server (NTRS)
Meyer, M. A.; Wharton, Robert A., Jr.; Mckay, C. P.
1991-01-01
Two distinct directions have begun to elucidate key parameters in the search for extinct life on Mars. Carbonate sediments, deposited about 10,000 years ago in association with biological activity, have been sampled from the paleolake beds of Lake Vanda and Meirs in the McMurdo Dry Valleys in Antarctica. These samples are being analyzed for simple biological signatures that remain in cold and dry paleolake sediments, namely microfossils, percent carbonate, and total organic carbon. Our second initiative is the study of Colour Lake, in the Canadian Arctic, that periodically maintains a perennial ice cover. Physical measurements started this year will be used to determine one end point for ice covered lake environments and will be compared to continuous measurements from Antarctic lakes started in November 1985. Interestingly, Colour Lake also supports benthic mat communities, but the low pH precludes carbonate deposition. This research will broaden our knowledge base for what conditions are necessary for ice covered lake formation and what biological signatures will remain in paleolake deposits.
Moghadam, M Bakhtiari; Vazan, S; Darvishi, B; Golzardi, F; Farahani, M Esfini
2011-01-01
Living mulch is a suitable solution for weeds ecological management and is considered as an effective method in decreasing of weeds density and dry weight. In order to evaluate of mungbean living mulch effect on density and dry weight of weeds in corn field, an experiment was conducted as a split plot based on randomized complete block design with four blocks in Research Field of Department of Agronomy, Karaj Branch, Islamic Azad University in 2010. Main plots were time of mungbean suppression with 2,4-D herbicide in four levels (4, 6, 8 and 10 leaves stages of corn) and control without weeding and sub plots were densities of mungbean in three levels (50%, 100% and 150% more than optimum density). Density and dry weight of the weeds were measured in all plots with a quadrate (60 x 100 cm) in 10 days after tasseling. Totally, 9 species of weeds were identified in the field, which included 4 broad leave species that were existed in all plots. The results showed that the best time for suppression of mungbean is the 8 leaves stage of corn, which decreased density and dry weight of weeds, 53% and 51% in comparison with control, respectively. Increase of density of mungbean from 50% into 150% more than optimum density, decrease the density and dry weight of weeds, 27.5% and 22%, respectively. It is concluded that the best time and density for suppression mungbean was 8 leaves stage of corn, and 150% more than optimum density, which decreased density and dry weight of the weeds 69% and 63.5% in comparison with control, respectively.
Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.
2016-01-01
The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.
2003-03-13
This gamma ray spectrometer map centered on the north pole of Mars is based on gamma-rays from the element hydrogen. In this region, hydrogen is mainly in the form of water ice. Regions of high ice content are shown in red and those low in ice content are shown in blue. The very ice-rich region at the north pole is due to a permanent polar cap of water ice on the surface. Elsewhere in this region, the ice is buried under several to a few tens of centimeters of dry soil. The sub-surface ice is not uniformly distributed in the north, but varies with both latitude and longitude. In the north, the soil is well over 50 percent ice, which is more than can be accommodated by just filling the pore space in pre-existing soil. This high ice content implies that the ice may have been slowly co-deposited with dust in the past when conditions were wetter. Deposition of ice by this process means it is more likely that the ice deposits are very thick and may even be deep enough to have liquid water at their base. http://photojournal.jpl.nasa.gov/catalog/PIA04254
A Synthesis of the Basal Thermal State of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Macgregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Aschwanden, A.; Clow, G. D.; Colgan, W. T.; Gogineni, S. P.; Morlighem, M.; Nowicki, S. M. J.; Paden, J. D.;
2016-01-01
Greenland's thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth's depths. Knowing whether Greenland's ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future. But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Our study synthesizes several independent methods to infer the Greenland Ice Sheet's basal thermal state -whether the bottom of the ice is melted or not-leading to the first map that identifies frozen and thawed areas across the whole ice sheet. This map will guide targets for future investigations of the Greenland Ice Sheet toward the most vulnerable and poorly understood regions, ultimately improving our understanding of its dynamics and contribution to future sea-level rise. It is of particular relevance to ongoing Operation IceBridge activities and future large-scale airborne missions over Greenland.
Evidence of deep circulation in two perennially ice-covered Antarctic lakes
Tyler, S.W.; Cook, P.G.; Butt, A.Z.; Thomas, J.M.; Doran, P.T.; Lyons, W.B.
1998-01-01
The perennial ice covers found on many of the lakes in the McMurdo Dry Valley region of the Antarctic have been postulated to severely limit mixing and convective turnover of these unique lakes. In this work, we utilize chlorofluorocarbon (CFC) concentration profiles from Lakes Hoare and Fryxell in the McMurdo Dry Valley to determine the extent of deep vertical mixing occurring over the last 50 years. Near the ice-water interface, CFC concentrations in both lakes were well above saturation, in accordance with atmospheric gas supersaturations resulting from freezing under the perennial ice covers. Evidence of mixing throughout the water column at Lake Hoare was confirmed by the presence of CFCs throughout the water column and suggests vertical mixing times of 20-30 years. In Lake Fryxell, CFC-11, CFC-12, and CFC-113 were found in the upper water column; however, degradation of CFC-11 and CFC-12 in the anoxic bottom waters appears to be occurring with CFC-113 only present in these bottom waters. The presence of CFC-113 in the bottom waters, in conjunction with previous work detecting tritium in these waters, strongly argues for the presence of convective mixing in Lake Fryxell. The evidence for deep mixing in these lakes may be an important, yet overlooked, phenomenon in the limnology of perennially ice-covered lakes.
Rosa, Mónica; Tiago, João M; Singh, Satish K; Geraldes, Vítor; Rodrigues, Miguel A
2016-10-01
The quality of lyophilized products is dependent of the ice structure formed during the freezing step. Herein, we evaluate the importance of the air gap at the bottom of lyophilization vials for consistent nucleation, ice structure, and cake appearance. The bottom of lyophilization vials was modified by attaching a rectified aluminum disc with an adhesive material. Freezing was studied for normal and converted vials, with different volumes of solution, varying initial solution temperature (from 5°C to 20°C) and shelf temperature (from -20°C to -40°C). The impact of the air gap on the overall heat transfer was interpreted with the assistance of a computational fluid dynamics model. Converted vials caused nucleation at the bottom and decreased the nucleation time up to one order of magnitude. The formation of ice crystals unidirectionally structured from bottom to top lead to a honeycomb-structured cake after lyophilization of a solution with 4% mannitol. The primary drying time was reduced by approximately 35%. Converted vials that were frozen radially instead of bottom-up showed similar improvements compared with normal vials but very poor cake quality. Overall, the curvature of the bottom of glass vials presents a considerable threat to consistency by delaying nucleation and causing radial ice growth. Rectifying the vials bottom with an adhesive material revealed to be a relatively simple alternative to overcome this inconsistency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molpeceres, Germán; Ortigoso, Juan; Escribano, Rafael
2016-07-10
We present a spectroscopic study of methane–ethane ice mixtures. We have grown CH{sub 4}:C{sub 2}H{sub 6} mixtures with ratios 3:1, 1:1, and 1:3 at 18 and 30 K, plus pure methane and ethane ices, and have studied them in the near-infrared (NIR) and mid-infrared (MIR) ranges. We have determined densities of all species mentioned above. For amorphous ethane grown at 18 and 30 K we have obtained a density of 0.41 and 0.54 g cm{sup −3}, respectively, lower than a previous measurement of the density of the crystalline species, 0.719 g cm{sup −3}. As far as we know this ismore » the first determination of the density of amorphous ethane ice. We have measured band shifts of the main NIR methane and ethane features in the mixtures with respect to the corresponding values in the pure ices. We have estimated band strengths of these bands in the NIR and MIR ranges. In general, intensity decay in methane modes was detected in the mixtures, whereas for ethane no clear tendency was observed. Optical constants of the mixtures at 30 and 18 K have also been evaluated. These values can be used to trace the presence of these species in the surface of trans-Neptunian objects. Furthermore, we have carried out a theoretical calculation of these ice mixtures. Simulation cells for the amorphous solids have been constructed using a Metropolis Monte Carlo procedure. Relaxation of the cells and prediction of infrared spectra have been carried out at density functional theory level.« less
High-density amorphous ice: nucleation of nanosized low-density amorphous ice
NASA Astrophysics Data System (ADS)
Tonauer, Christina M.; Seidl-Nigsch, Markus; Loerting, Thomas
2018-01-01
The pressure dependence of the crystallization temperature of different forms of expanded high-density amorphous ice (eHDA) was scrutinized. Crystallization at pressures 0.05-0.30 GPa was followed using volumetry and powder x-ray diffraction. eHDA samples were prepared via isothermal decompression of very high-density amorphous ice at 140 K to different end pressures between 0.07-0.30 GPa (eHDA0.07-0.3). At 0.05-0.17 GPa the crystallization line T x (p) of all eHDA variants is the same. At pressures >0.17 GPa, all eHDA samples decompressed to pressures <0.20 GPa exhibit significantly lower T x values than eHDA0.2 and eHDA0.3. We rationalize our findings with the presence of nanoscaled low-density amorphous ice (LDA) seeds that nucleate in eHDA when it is decompressed to pressures <0.20 GPa at 140 K. Below ~0.17 GPa, these nanosized LDA domains are latent within the HDA matrix, exhibiting no effect on T x of eHDA<0.2. Upon heating at pressures ⩾0.17 GPa, these nanosized LDA nuclei transform to ice IX nuclei. They are favored sites for crystallization and, hence, lower T x . By comparing crystallization experiments of bulk LDA with the ones involving nanosized LDA we are able to estimate the Laplace pressure and radius of ~0.3-0.8 nm for the nanodomains of LDA. The nucleation of LDA in eHDA revealed here is evidence for the first-order-like nature of the HDA → LDA transition, supporting water’s liquid-liquid transition scenarios.
Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods.
Traffano-Schiffo, Maria Victoria; Castro-Giraldez, Marta; Fito, Pedro J; Santagapita, Patricio R
2017-10-01
The purpose of the present work was to analyze the effect of trehalose, arabic and guar gums on the preservation of β-galactosidase activity in freeze-dried and vacuum dried Ca(II)-alginate beads. Freezing process was also studied as a first step of freeze-drying. Trehalose was critical for β-galactosidase conservation, and guar gum as a second excipient showed the highest conservation effect (close to 95%). Systems with T g values ~40°C which were stables at ambient temperature were obtained, being trehalose the main responsible of the formation of an amorphous matrix. Vacuum dried beads showed smaller size (with Feret's diameter below 1.08±0.09mm), higher circularity (reaching 0.78±0.06) and large cracks in their surface than freeze-dried beads, which were more spongy and voluminous. Ice crystallization of the beads revealed that the crystallization of Ca(II)-alginate system follows the Avrami kinetics of nucleation and growth. Particularly, Ca(II)-alginate showed an Avrami index of 2.03±0.07, which means that crystal growing is bidimensional. Neither the addition of trehalose nor gums affected the dimension of the ice growing or its rate. These results open an opportunity in the development of new lactic products able to be consumed by lactose intolerance people. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamical mechanism of antifreeze proteins to prevent ice growth
NASA Astrophysics Data System (ADS)
Kutschan, B.; Morawetz, K.; Thoms, S.
2014-08-01
The fascinating ability of algae, insects, and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). These are surface-active molecules and interact with the diffusive water-ice interface thus preventing complete solidification. We propose a dynamical mechanism on how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau-type approach to describe the phase separation in the two-component system (ice, AFP). The free-energy density involves two fields: one for the ice phase with a low AFP concentration and one for liquid water with a high AFP concentration. The time evolution of the ice reveals microstructures resulting from phase separation in the presence of AFPs. We observed a faster clustering of pre-ice structure connected to a locking of grain size by the action of AFP, which is an essentially dynamical process. The adsorption of additional water molecules is inhibited and the further growth of ice grains stopped. The interfacial energy between ice and water is lowered allowing the AFPs to form smaller critical ice nuclei. Similar to a hysteresis in magnetic materials we observe a thermodynamic hysteresis leading to a nonlinear density dependence of the freezing point depression in agreement with the experiments.
Influence of aeolian activities on the distribution of microbial abundance in glacier ice
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, X.-K.; Si, J.; Wu, G.-J.; Tian, L.-D.; Xiang, S.-R.
2014-10-01
Microorganisms are continuously blown onto the glacier snow, and thus the glacial depth profiles provide excellent archives of microbial communities and climatic and environmental changes. However, it is uncertain about how aeolian processes that cause climatic changes control the distribution of microorganisms in the glacier ice. In the present study, microbial density, stable isotopic ratios, 18O / 16O in the precipitation, and mineral particle concentrations along the glacial depth profiles were collected from ice cores from the Muztag Ata glacier and the Dunde ice cap. The ice core data showed that microbial abundance was often, but not always associated with high concentrations of particles. Results also revealed clear seasonal patterning with high microbial abundance occurring in both the cooling autumn and warming spring-summer seasons. Microbial comparisons among the neighbouring glaciers display a heterogeneous spatial pattern, with the highest microbial cell density in the glaciers lying adjacent to the central Asian deserts and lowest microbial density in the southwestern margin of the Tibetan Plateau. In conclusion, microbial data of the glaciers indicates the aeolian deposits of microorganisms in the glacier ice and that the spatial patterns of microorgansisms are related to differences in sources of microbial flux and intensity of aeolian activities in the current regions. The results strongly support our hypothesis of aeolian activities being the main agents controlling microbial load in the glacier ice.
Egg production of turbot, Scophthalmus maximus, in the Baltic Sea
NASA Astrophysics Data System (ADS)
Nissling, Anders; Florin, Ann-Britt; Thorsen, Anders; Bergström, Ulf
2013-11-01
In the brackish water Baltic Sea turbot spawn at ~ 6-9 psu along the coast and on offshore banks in ICES SD 24-29, with salinity influencing the reproductive success. The potential fecundity (the stock of vitellogenic oocytes in the pre-spawning ovary), egg size (diameter and dry weight of artificially fertilized 1-day-old eggs) and gonad dry weight were assessed for fish sampled in SD 25 and SD 28. Multiple regression analysis identified somatic weight, or total length in combination with Fulton's condition factor, as main predictors of fecundity and gonad dry weight with stage of maturity (oocyte packing density or leading cohort) as an additional predictor. For egg size, somatic weight was identified as main predictor while otolith weight (proxy for age) was an additional predictor. Univariate analysis using GLM revealed significantly higher fecundity and gonad dry weight for turbot from SD 28 (3378-3474 oocytes/g somatic weight) compared to those from SD 25 (2343 oocytes/g somatic weight), with no difference in egg size (1.05 ± 0.03 mm diameter and 46.8 ± 6.5 μg dry weight; mean ± sd). The difference in egg production matched egg survival probabilities in relation to salinity conditions suggesting selection for higher fecundity as a consequence of poorer reproductive success at lower salinities. This supports the hypothesis of higher size-specific fecundity towards the limit of the distribution of a species as an adaptation to harsher environmental conditions and lower offspring survival probabilities. Within SD 28 comparisons were made between two major fishing areas targeting spawning aggregations and a marine protected area without fishing. The outcome was inconclusive and is discussed with respect to potential fishery induced effects, effects of the salinity gradient, effects of specific year-classes, and effects of maturation status of sampled fish.
16 CFR 1500.43a - Method of test for flashpoint of volatile flammable materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) below the target temperature, remove the cooling block and quickly dry the cup with a paper tissue to... (cooling) fluid is solid carbon dioxide (dry ice) and acetone. If the refrigerant charged cooling module is... pouring acetone. Use only in a well-ventilated area. Avoid inhalation and contact with the eyes or skin...
Titan's interior from Cassini-Huygens
NASA Astrophysics Data System (ADS)
Tobie, G.; Baland, R.-M.; Lefevre, A.; Monteux, J.; Cadek, O.; Choblet, G.; Mitri, G.
2013-09-01
The Cassini-Huygens mission has brought many informations about Titan that can be used to infer its interior structure: the gravity field coefficients (up to degree 3, [1]), the surface shape (up to degree 6, [2]), the tidal Love number [1], the electric field [3], and the orientation of its rotation axis [4]. The measured obliquity and gravity perturbation due to tides, as well as the electric field, are lines of evidence for the presence of an internal global ocean beneath the ice surface of Titan [5,1,3]. The observed surface shape and gravity can be used to further constrain the structure of the ice shell above the internal ocean. The presence of a significant topography associated with weak gravity anomalies indicates that deflections of internal interface or lateral density variations may exist to compensate the topography. To assess the sources of compensation, we consider interior models including interface deflections and/or density variations, which reproduces simultaneously the surface gravity and long-wavelength topography data [6]. Furthermore, in order to test the long-term mechanical stability of the internal mass anomalies, we compute the relaxation rate of each internal interface in response to surface mass load. We show that the topography can be explained either by defections of the ocean/ice interface or by density variations in an upper crust [6]. For non-perfectly compensated models of the outer ice shell, the present-day structure is stable only for a conductive layer above a relatively cold ocean (for bottom viscosity > 1016 Pa.s, T < 250 K). For perfectly compensated models, a convective ice shell is stable (with a bottom viscosity lower than 1015 Pas) if the source of compensation is due to density variations in the upper crust (2-3 km below the surface). In this case, deep gravity anomalies are required to explain the observed geoid. Our calculations show that the high pressure ice layer cannot be the source of the residual gravity anomalies. The existence of mass anomalies in the rocky core is a most likely explanation. However, as the observed geoid and topography are mostly sensitive to the lateral structure of the outer ice shell, no information can be retrieved on the ice shell thickness, ocean density and/or size of the rocky core. Constraints on these internal parameters can be obtained from the tidal Love number and the obliquity. To derive the possible density profile, the obliquity is computed from a Cassini state model for a satellite with an internal liquid layer, each layer having an ellipsoidal shape consistent with the measured surface shape and gravity field [7]. We show that, once the observed surface flattening is taken into account, the measured obliquity can be reproduced only for internal models with a dense ocean (between 1275 and 1350 kg.m-3) above a differentiated interior with a full separation of rock and ice [7]. We obtain normalized moments of inertia between 0.31 and 0.33, significantly lower than the expected hydrostatic value (0.34). The tidal Love number is also found to be mostly sensitive to the ocean density and to a lesser extent the ice shell thickness. By combining obliquity and tidal Love number constraints, we show that the thickness of the outer ice shell is at least 40 km and the ocean thickness is less than 100 km, with an averaged density of 1275-1350 kg.m-3. Such a high density indicates that the ocean may contain a significant fraction of salts. Our calculations also imply that there is a significant difference of flattening between the surface and the ice/ocean interface. This is possible only if the ice layer is viscous enough to limit relaxation, as indicated above. This is also consistent with an ocean enriched in salts for which the crystallization point can be several tens of degree below the crystallization point of pure water system. The elevated density (> 3800 kg.m-3) found for the rocky core further suggests that Titan might have a differentiated iron core. The rocky core is likely fully dehydrated at present, suggesting warm conditions during most of its evolution. All the water contained in the deep interior has probably been expelled to the outer regions, thus potentially explaining the salt enrichments.
NASA Astrophysics Data System (ADS)
Polito, P. J.; Litwin, K.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G. C.
2009-12-01
Images from Cassini and Huygens reveal widespread fluvial dissection of Titan’s surface, where incision by low-velocity impacts of bedload sediments may be a dominant mechanism, much like fluvial systems on Earth. Models of fluvial erosion dynamics on Titan are currently limited by a lack of data on ice resistance to abrasive wear at ultra-low temperatures. Using the theoretical framework of a terrestrial bedrock incision model, we seek to quantify the temperature dependence of the abrasion resistance of ice. We use the saltation-abrasion model to calculate a non-dimensional abrasion resistance coefficient, kv=2ɛvE/σt2, where ɛv is the impact kinetic energy to detach a unit volume of material, E is the elastic modulus, and σt is the tensile strength. Here we present results of a laboratory investigation of the tensile strength and erodibility of polycrystalline water-ice at temperatures ranging from 270 K down to 135 K. We make ice samples by grinding small amounts clear ice in a snow-cone machine, pack the seed grains into a modified 55-gallon drum, and add near-freezing distilled water to make a large cylindrical block. We placed ice samples in an insulated box in a walk-in freezer. We chilled the samples with a combination of dry ice and liquid nitrogen to achieve a wide range of experimental conditions and eroded the samples by dropping limestone and ice clasts from 10 cm above, 500 drops per trial. We measured the volume of ice eroded using a topographic laser-scanning system. By taking a series of obliquely oriented photographs of a laser line shining on the ice surface, we created a topographic map. Subtracting subsequent scans, we were able to quantify volumetric changes between scans. We eroded two ice samples (A and B) at varying temperatures and calculated the temperature dependence of the kinetic energy required to detach a unit volume of ice (ɛv). We measured tensile strength (σt) using the Brazil tensile splitting method at temperatures ranging from 100-270 K. We find that ice undergoes chill-strengthening—colder ice requires more impact kinetic energy to detach a unit volume of material. Sample A was significantly less erodible than sample B, which we attribute to differences in density (sample B ice was less dense than A). The temperature dependence of ɛv for samples A and B are ɛv=2.2x108T-1.6 kJ/m3 and ɛv=6.3x107T-1.6 kJ/m3 respectively, where T is temperature. The temperature dependence of tensile strength for ice is σt=3x104T-1.9 MPa and we estimate σtkv≈2x103 and scales as T2, significantly lower than terrestrial bedrock, which is kv≈106. Our results suggest that ice on Titan’s surface is significantly more erodible than terrestrial bedrock of comparable tensile strength.
Small scale variability of snow properties on Antarctic sea ice
NASA Astrophysics Data System (ADS)
Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael
2016-04-01
Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.
Numerical Simulations of Martian Fog Formation in the Low Latitudes
NASA Astrophysics Data System (ADS)
Inada, A.
2002-09-01
The formation of Martian surface fog is simulated by a one-dimensional model including the micro-physical processes of heterogeneous nucleation, condensation, and sublimation. The model includes diurnal cycle of water vapor in the 1 km surface layer which is spatially resolved. The results show that the column density of water ice in fog strongly depends on the water vapor density near the surface. If the mixing ratio of water vapor is 300 ppm near the surface, the simulations show that a thin fog layer appears with a maximum column density of 0.145 precipitable microns. If the mixing ratio is 600 ppm, the value measured by the Mars Pathfinder, the column density of water ice reaches 0.75 precipitable microns. It is also found that if the boundary layer is strongly turbulent the total amount of ice formed is small, since the ice particles are transported to the unsaturated higher atmospheric layers and sublimate there. Fog particles, which are large enough to precipitate to the lower atmosphere play a significant role in determining the altitude distribution of water vapor. It is noteworthy that the size distribution of all of the aerosols has two peaks once fog appears. This is because nucleation on large dust particles is so much faster than on the small ones, that the small dust particles are hardly coated by ice. The simulations assume an initial dust distribution with effective radius of 1.6 microns. Once fog forms this peak remains and is populated with particles with little water ice. A secondary peak is formed at about 10 microns corresponding to particles which are mostly water ice. This research was carried out under the partial support of JSPS Postdoctoral Fellowships for Research Abroad.
NASA Technical Reports Server (NTRS)
Herzfeld, Ute C.; Trantow, Thomas M.; Harding, David; Dabney, Philip W.
2017-01-01
Glacial acceleration is a main source of uncertainty in sea-level-change assessment. Measurement of ice-surface heights with a spatial and temporal resolution that not only allows elevation-change calculation, but also captures ice-surface morphology and its changes is required to aid in investigations of the geophysical processes associated with glacial acceleration.The Advanced Topographic Laser Altimeter System aboard NASAs future ICESat-2 Mission (launch 2017) will implement multibeam micropulse photon-counting lidar altimetry aimed at measuring ice-surface heights at 0.7-m along-track spacing. The instrument is designed to resolve spatial and temporal variability of rapidly changing glaciers and ice sheets and the Arctic sea ice. The new technology requires the development of a new mathematical algorithm for the retrieval of height information.We introduce the density-dimension algorithm (DDA) that utilizes the radial basis function to calculate a weighted density as a form of data aggregation in the photon cloud and considers density an additional dimension as an aid in auto-adaptive threshold determination. The auto-adaptive capability of the algorithm is necessary to separate returns from noise and signal photons under changing environmental conditions. The algorithm is evaluated using data collected with an ICESat-2 simulator instrument, the Slope Imaging Multi-polarization Photon-counting Lidar, over the heavily crevassed Giesecke Braer in Northwestern Greenland in summer 2015. Results demonstrate that ICESat-2 may be expected to provide ice-surface height measurements over crevassed glaciers and other complex ice surfaces. The DDA is generally applicable for the analysis of airborne and spaceborne micropulse photon-counting lidar data over complex and simple surfaces.
Wideband Interferometric Sensing and Imaging Polarimetry
NASA Technical Reports Server (NTRS)
Verdi, James Salvatore; Kessler, Otto; Boerner, Wolfgang-Martin
1996-01-01
Wideband Interferometric Sensing and Imaging Polarimetry (WISIP) has become an important, indispensible tool in wide area military surveillance and global environmental monitoring of the terrestrial and planetary covers. It enables dynamic, real time optimal feature extraction of significant characteristics of desirable targets and/or target sections with simultaneous suppression of undesirable background clutter and propagation path speckle at hitherto unknown clarity and never before achieved quality. WISIP may be adopted to the detection, recognition, and identification (DRI) of any stationary, moving or vibrating targets or distributed scatterer segments versus arbitrary stationary, dynamical changing and/or moving geo-physical/ecological environments, provided the instantaneous 2x2 phasor and 4x4 power density matrices for forward propagation/backward scattering, respectively, can be measured with sufficient accuracy. For example, the DRI of stealthy, dynamically moving inhomogeneous volumetric scatter environments such as precipitation scatter, the ocean/sea/lake surface boundary layers, the littoral coastal surf zones, pack ice and snow or vegetative canopies, dry sands and soils, etc. can now be successfully realized. A comprehensive overview is presented on how these modern high resolution/precision, complete polarimetric co-registered signature sensing and imaging techniques, complemented by full integration of novel navigational electronic tools, such as DGPS, will advance electromagnetic vector wave sensing and imaging towards the limits of physical realization. Various examples utilizing the most recent image data take sets of airborne, space shuttle, and satellite imaging systems demonstrate the utility of WISIP.
Urey prize lecture - Water on Mars
NASA Technical Reports Server (NTRS)
Squyres, Steven W.
1989-01-01
Taking the heat-transport physics of ice-covered lakes in the Dry Valleys of Antarctica as a model, it is presently suggested that liquid water lakes could have persisted for significant periods under protective ice covers in the Valles Marineris depressions of Mars. Calculations of ground ice thermodynamic stability in a Martian setting indicate that they may exist close to the surface at high latitudes, but are able to persist near the equator only at substantial depths. Such Martian landforms as terrain-softening are attributable to the creep of the Martian regolith under the influence of ground-ice deformation; FEM modeling of the flow process implies terrain-softening to be a near-surface phenomenon.
1974-12-01
Breakfast Cereals 11 Griddle Cakes 12 Eggs 13 Breakfast Meats Arm®d Forces High Preference and Low Preference Foods HIGH Tom. Veg. Noodle Soup...Tomato Soup Chicken Noodle Soup Orange Juice Grape Juice Lemonade Iced Tea Milk Ice Cream Cola Doughnuts Sweet Rolls Cold Cereal Griddle...Grape Lemonade Lime-Flavored Drink Cherry-Flavored Drink Instant Coffee Freeze-Dried Coffee Skimmed Milk Buttermilk Frutt-Flvd. Yogurt Lo-cal
Doran, Peter T; Fritsen, Christian H; McKay, Christopher P; Priscu, John C; Adams, Edward E
2003-01-07
Lake Vida, one of the largest lakes in the McMurdo Dry Valleys of Antarctica, was previously believed to be shallow (<10 m) and frozen to its bed year-round. New ice-core analysis and temperature data show that beneath 19 m of ice is a water column composed of a NaCl brine with a salinity seven times that of seawater that remains liquid below -10 degrees C. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice cover is stabilized by a negative feedback between ice growth and the freezing-point depression of the brine. The ice cover contains frozen microbial mats throughout that are viable after thawing and has a history that extends to at least 2,800 (14)C years B.P., suggesting that the brine has been isolated from the atmosphere for as long. To our knowledge, Lake Vida has the thickest subaerial lake ice cover recorded and may represent a previously undiscovered end-member lacustrine ecosystem on Earth.
Doran, Peter T.; Fritsen, Christian H.; McKay, Christopher P.; Priscu, John C.; Adams, Edward E.
2003-01-01
Lake Vida, one of the largest lakes in the McMurdo Dry Valleys of Antarctica, was previously believed to be shallow (<10 m) and frozen to its bed year-round. New ice-core analysis and temperature data show that beneath 19 m of ice is a water column composed of a NaCl brine with a salinity seven times that of seawater that remains liquid below −10°C. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice cover is stabilized by a negative feedback between ice growth and the freezing-point depression of the brine. The ice cover contains frozen microbial mats throughout that are viable after thawing and has a history that extends to at least 2,800 14C years B.P., suggesting that the brine has been isolated from the atmosphere for as long. To our knowledge, Lake Vida has the thickest subaerial lake ice cover recorded and may represent a previously undiscovered end-member lacustrine ecosystem on Earth. PMID:12518052
Properties of Filamentary Sublimation Residues from Dispersions of Clay in Ice
NASA Technical Reports Server (NTRS)
Stephens, J. B.; Parker, T. J.; Saunders, R. S.; Laue, E. G.; Fanale, F. P.
1985-01-01
The properties of sublimate residues are of considerable interest in studies of the thermal modeling of Martian and cometary ice surfaces. The study of the formation of sand grains from this mantle on Martian polar ice is also supported by these experiments. To understand these properties, a series of low temperature vacuum experiments were run during which dirty ices that might be expected to be found in Martian polar caps and in comet nuclei were made and then freeze dried. In addition to using particulate material of appropriate grain size and minerology, particle nucleated ices were simulated by dispersing the particulates in the ice so that they did not contact one another. This noncontact dispersion was the most difficult requirement to achieve but the most rewarding in that it produced a new filamentary sublimate residue that was not a relic of the frozen dispersion. If the siliceous particles are allowed to touch one another in the ice the structure of the contacting particles in the ice will remain as a relic after the ice is sublimed away.
High-density 3D graphene-based monolith and related materials, methods, and devices
Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah
2017-03-21
A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.
NASA Astrophysics Data System (ADS)
Lonergan, Jeffrey M.
1992-04-01
As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.
NASA Astrophysics Data System (ADS)
Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.
2016-04-01
Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.
Advancements in the LEWICE Ice Accretion Model
NASA Technical Reports Server (NTRS)
Wright, William B.
1993-01-01
Recent evidence has shown that the NASA/Lewis Ice Accretion Model, LEWICE, does not predict accurate ice shapes for certain glaze ice conditions. This paper will present the methodology used to make a first attempt at improving the ice accretion prediction in these regimes. Importance is given to the correlations for heat transfer coefficient and ice density, as well as runback flow, selection of the transition point, flow field resolution, and droplet trajectory models. Further improvements and refinement of these modules will be performed once tests in NASA's Icing Research Tunnel, scheduled for 1993, are completed.
Handle, Philip H; Loerting, Thomas
2018-03-28
The existence of more than one solid amorphous state of water is an extraordinary feature. Since polyamorphism might be connected to the liquid-liquid critical point hypothesis, it is particularly important to study the relations amongst the different amorphous ices. Here we study the polyamorphic transformations of several high pressure amorphous ices to low-density amorphous ice (LDA) at 4 MPa by isobaric heating utilising in situ volumetry and ex situ X-ray diffraction. We find that very-high density amorphous ice (VHDA) and unannealed high density amorphous ice (HDA) show significant relaxation before transforming to LDA, whereby VHDA is seen to relax toward HDA. By contrast, expanded HDA shows almost no relaxation prior to the transformation. The transition to LDA itself obeys criteria for a first-order-like transition in all cases. In the case of VHDA, even macroscopic phase separation is observed. These findings suggest that HDA and LDA are two clearly distinct polyamorphs. We further present evidence that HDA reaches the metastable equilibrium at 140 K and 0.1 GPa but only comes close to that at 140 K and 0.2 GPa. The most important is the path independence of the amorphous phase reached at 140 K and 0.1 GPa.
NASA Astrophysics Data System (ADS)
Handle, Philip H.; Loerting, Thomas
2018-03-01
The existence of more than one solid amorphous state of water is an extraordinary feature. Since polyamorphism might be connected to the liquid-liquid critical point hypothesis, it is particularly important to study the relations amongst the different amorphous ices. Here we study the polyamorphic transformations of several high pressure amorphous ices to low-density amorphous ice (LDA) at 4 MPa by isobaric heating utilising in situ volumetry and ex situ X-ray diffraction. We find that very-high density amorphous ice (VHDA) and unannealed high density amorphous ice (HDA) show significant relaxation before transforming to LDA, whereby VHDA is seen to relax toward HDA. By contrast, expanded HDA shows almost no relaxation prior to the transformation. The transition to LDA itself obeys criteria for a first-order-like transition in all cases. In the case of VHDA, even macroscopic phase separation is observed. These findings suggest that HDA and LDA are two clearly distinct polyamorphs. We further present evidence that HDA reaches the metastable equilibrium at 140 K and 0.1 GPa but only comes close to that at 140 K and 0.2 GPa. The most important is the path independence of the amorphous phase reached at 140 K and 0.1 GPa.
Invisible polynyas: Modulation of fast ice thickness by ocean heat flux on the Canadian polar shelf
NASA Astrophysics Data System (ADS)
Melling, Humfrey; Haas, Christian; Brossier, Eric
2015-02-01
Although the Canadian polar shelf is dominated by thick fast ice in winter, areas of young ice or open water do recur annually at locations within and adjacent to the fast ice. These polynyas are detectable by eye and sustained by wind or tide-driven ice divergence and ocean heat flux. Our ice-thickness surveys by drilling and towed electromagnetic sounder reveal that visible polynyas comprise only a subset of thin-ice coverage. Additional area in the coastal zone, in shallow channels and in fjords is covered by thin ice which is too thick to be discerned by eye. Our concurrent surveys by CTD reveal correlation between thin fast ice and above-freezing seawater beneath it. We use winter time series of air and ocean temperatures and ice and snow thicknesses to calculate the ocean-to-ice heat flux as 15 and 22 W/m2 at locations with thin ice in Penny Strait and South Cape Fjord, respectively. Near-surface seawater above freezing is not a sufficient condition for ocean heat to reach the ice; kinetic energy is needed to overcome density stratification. The ocean's isolation from wind under fast ice in winter leaves tides as the only source. Two tidal mechanisms driving ocean heat flux are discussed: diffusion via turbulence generated by shear at the under-ice and benthic boundaries, and the internal hydraulics of flow over topography. The former appears dominant in channels and the coastal zone and the latter in some silled fjords where and when the layering of seawater density permits hydraulically critical flow.
Karaman, Safa; Toker, Ömer Said; Yüksel, Ferhat; Çam, Mustafa; Kayacier, Ahmed; Dogan, Mahmut
2014-01-01
In the present study, persimmon puree was incorporated into the ice cream mix at different concentrations (8, 16, 24, 32, and 40%) and some physicochemical (dry matter, ash, protein, pH, sugar, fat, mineral, color, and viscosity), textural (hardness, stickiness, and work of penetration), bioactive (antiradical activity and total phenolic content), and sensory properties of samples were investigated. The technique for order preference by similarity to ideal solution approach was used for the determination of optimum persimmon puree concentration based on the sensory and bioactive characteristics of final products. Increase in persimmon puree resulted in a decrease in the dry matter, ash, fat, protein contents, and viscosity of ice cream mix. Glucose, fructose, sucrose, and lactose were determined to be major sugars in the ice cream samples including persimmon and increase in persimmon puree concentration increased the fructose and glucose content. Better melting properties and textural characteristics were observed for the samples with the addition of persimmon. Magnesium, K, and Ca were determined to be major minerals in the samples and only K concentration increased with the increase in persimmon content. Bioactive properties of ice cream samples improved and, in general, acetone-water extracts showed higher bioactivity compared with ones obtained using methanol-water extracts. The technique for order preference by similarity to ideal solution approach showed that the most preferred sample was the ice cream containing 24% persimmon puree. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Environmentally Non-Disturbing Under-ice Robotic ANtarctiC Explorer (ENDURANCE)
NASA Astrophysics Data System (ADS)
Doran, P. T.; Stone, W.; Priscu, J.; McKay, C.; Johnson, A.; Chen, B.
2007-12-01
Permanently ice-covered liquid water environments are among the leading candidate sites for finding evidence of extant life elsewhere in our solar system (e.g. on Europa and other Galiean satellites, and possibly in subglacial lakes on Mars). In order to have the proper tools and strategies for exploring the extant ice-covered planetary environments, we are developing an autonomous underwater vehicle (AUV) capable of generating for the first time 3-D biogeochemical datasets in the extreme environment of perennially ice-covered Antarctic dry valley lakes. The ENDURANCE (Environmentally Non-Disturbing Under-ice Robotic ANtarctic Explorer) will map the under-ice lake dimensions of West Lake Bonney in the McMurdo Dry Valleys, and be equipped to measure a comprehensive suite of physical and biogeochemical indices in the water column, as well as Raman Spectrometry of the water column and benthos. The AUV is being specifically designed to minimize impact on the environment it is working in. This is primarily to meet strict Antarctic environmental protocols, but will also be useful for planetary protection and improved science in the future. We will carry out two Antarctic field seasons (in concert with our NSF-funded Long Term Ecological Research) and test two central hypotheses: H1: The low kinetic energy of the system (diffusion dominates the spatial transport of constituents) produces an ecosystem and ecosystem limits that vary significantly in three dimensions. H2: The whole-lake physical and biogeochemical structure remains static from year to year The talk will provide an overview of the ENDURANCE project and an update on the AUV development at the time of presentation.
Long-term decline in krill stock and increase in salps within the Southern Ocean.
Atkinson, Angus; Siegel, Volker; Pakhomov, Evgeny; Rothery, Peter
2004-11-04
Antarctic krill (Euphausia superba) and salps (mainly Salpa thompsoni) are major grazers in the Southern Ocean, and krill support commercial fisheries. Their density distributions have been described in the period 1926-51, while recent localized studies suggest short-term changes. To examine spatial and temporal changes over larger scales, we have combined all available scientific net sampling data from 1926 to 2003. This database shows that the productive southwest Atlantic sector contains >50% of Southern Ocean krill stocks, but here their density has declined since the 1970s. Spatially, within their habitat, summer krill density correlates positively with chlorophyll concentrations. Temporally, within the southwest Atlantic, summer krill densities correlate positively with sea-ice extent the previous winter. Summer food and the extent of winter sea ice are thus key factors in the high krill densities observed in the southwest Atlantic Ocean. Krill need the summer phytoplankton blooms of this sector, where winters of extensive sea ice mean plentiful winter food from ice algae, promoting larval recruitment and replenishing the stock. Salps, by contrast, occupy the extensive lower-productivity regions of the Southern Ocean and tolerate warmer water than krill. As krill densities decreased last century, salps appear to have increased in the southern part of their range. These changes have had profound effects within the Southern Ocean food web.
NASA Astrophysics Data System (ADS)
Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.
The Growth, Structure, and Properties of Sea Ice,
1982-11-01
First, the natural range of temperatures at which sea ice exists is just a few degrees off its melting point. In fact, sea ice normally is only...surface of lakes and seas. If ice sank into its melt, as do most solids, there would be a tendency for natural water bodies to freeze completely to...I I I -c 1 I II I I 02 b . Figure 1. Structure of ice I. The fact that ordinary ice is such an open, low density solid also suggests that
Wheeler, M J; Mason, R H; Steunenberg, K; Wagstaff, M; Chou, C; Bertram, A K
2015-05-14
Ice nucleation on mineral dust particles is known to be an important process in the atmosphere. To accurately implement ice nucleation on mineral dust particles in atmospheric simulations, a suitable theory or scheme is desirable to describe laboratory freezing data in atmospheric models. In the following, we investigated ice nucleation by supermicron mineral dust particles [kaolinite and Arizona Test Dust (ATD)] in the immersion mode. The median freezing temperature for ATD was measured to be approximately -30 °C compared with approximately -36 °C for kaolinite. The freezing results were then used to test four different schemes previously used to describe ice nucleation in atmospheric models. In terms of ability to fit the data (quantified by calculating the reduced chi-squared values), the following order was found for ATD (from best to worst): active site, pdf-α, deterministic, single-α. For kaolinite, the following order was found (from best to worst): active site, deterministic, pdf-α, single-α. The variation in the predicted median freezing temperature per decade change in the cooling rate for each of the schemes was also compared with experimental results from other studies. The deterministic model predicts the median freezing temperature to be independent of cooling rate, while experimental results show a weak dependence on cooling rate. The single-α, pdf-α, and active site schemes all agree with the experimental results within roughly a factor of 2. On the basis of our results and previous results where different schemes were tested, the active site scheme is recommended for describing the freezing of ATD and kaolinite particles. We also used our ice nucleation results to determine the ice nucleation active site (INAS) density for the supermicron dust particles tested. Using the data, we show that the INAS densities of supermicron kaolinite and ATD particles studied here are smaller than the INAS densities of submicron kaolinite and ATD particles previously reported in the literature.
Microbiota within the perennial ice cover of Lake Vida, Antarctica.
Mosier, Annika C; Murray, Alison E; Fritsen, Christian H
2007-02-01
Lake Vida, located in the McMurdo Dry Valleys, Antarctica, is an 'ice-sealed' lake with approximately 19 m of ice covering a highly saline water column (approximately 245 ppt). The lower portions of the ice cover and the lake beneath have been isolated from the atmosphere and land for circa 2800 years. Analysis of microbial assemblages within the perennial ice cover of the lake revealed a diverse array of bacteria and eukarya. Bacterial and eukaryal denaturing gradient gel electrophoresis phylotype profile similarities were low (<59%) between all of the depths compared (five depths spanning 11 m of the ice cover), with the greatest differences occurring between surface and deep ice. The majority of bacterial 16S rRNA gene sequences in the surface ice were related to Actinobacteria (42%) while Gammaproteobacteria (52%) dominated the deep ice community. Comparisons of assemblage composition suggest differences in ice habitability and organismal origin in the upper and lower portions of ice cover. Specifically, the upper ice cover microbiota likely reflect the modern day transport and colonization of biota from the terrestrial landscape, whereas assemblages in the deeper ice are more likely to be persistent remnant biota that originated from the ancient liquid water column of the lake that froze.
Short, intermediate and long range order in amorphous ices
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto
Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.
Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany
NASA Astrophysics Data System (ADS)
Steinke, I.; Funk, R.; Busse, J.; Iturri, A.; Kirchen, S.; Leue, M.; Möhler, O.; Schwartz, T.; Schnaiter, M.; Sierau, B.; Toprak, E.; Ullrich, R.; Ulrich, A.; Hoose, C.; Leisner, T.
2016-11-01
Soil dust particles emitted from agricultural areas contain considerable mass fractions of organic material. Also, soil dust particles may act as carriers for potentially ice-active biological particles. In this work, we present ice nucleation experiments conducted in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. The results are expressed as ice nucleation active surface site (INAS) densities and presented for the immersion freezing and the deposition nucleation mode. For immersion freezing occurring at 254 K, samples from Argentina, China, and Germany show ice nucleation efficiencies which are by a factor of 10 higher than desert dusts. On average, the difference in ice nucleation efficiencies between agricultural and desert dusts becomes significantly smaller at temperatures below 247 K. In the deposition mode the soil dusts showed higher ice nucleation activity than Arizona Test Dust over a temperature range between 232 and 248 K and humidities RHice up to 125%. INAS densities varied between 109 and 1011 m-2 for these thermodynamic conditions. For one soil dust sample (Argentinian Soil), the effect of treatments with heat was investigated. Heat treatments (383 K) did not affect the ice nucleation efficiency observed at 249 K. This finding presumably excludes proteinaceous ice-nucleating entities as the only source of the increased ice nucleation efficiency.
NASA Astrophysics Data System (ADS)
Head, James; Wordsworth, Robin; Forget, Francis; Madeleine, Jean-Baptiste; Halvey, Italy
2014-05-01
A new reconstruction of the Late Noachian Mars atmosphere and climate shows atmosphere-surface thermal coupling and an adiabatic cooling effect producing preferential distribution of snow and ice in the highlands. In this Late Noachian Icy Highlands (LNIH) scenario, snow and ice accumulate in the south circumpolar region and in the higher altitudes of the southern uplands, but the mean annual temperature is everywhere below freezing. How can the abundant evidence for water-related fluvial and lacustrine activity (valley networks, VN; open-basin lakes, OBL; closed-basin lakes; CBL) be reconciled with the icy highlands model? We investigate the nature of geologic processes operating in the icy highlands and use the Antarctic McMurdo Dry Valleys (MDV) as guidance in understanding and assessing how melting might be taking place. In the MDV, mean annual temperatures (MAT) are well below freezing. This results in a thick regional permafrost layer, the presence of an ice-table at shallow depths, and an overlying dry active layer. This configuration produces a perched aquifer and a horizontally stratified hydrologic system, where any melting results in local saturation of the dry active layer and channelized flow on top of the ice table. Top-down melting results in the dominance of lateral water transport, in contrast to temperate climates with vertical infiltration and transport to the groundwater table. Despite subzero MAT, MDV peak seasonal and peak daytime temperatures can exceed 273K and have a strong influence on the melting of available water ice. We present maps of the predicted distribution of LNIH snow and ice, compare these to the distribution of VN, OBL and CBL, and assess how top-down and bottom-up melting processes might explain the formation of these features in an otherwise cold and icy LN Mars. We assess the global near-surface water budget, analyze thickness estimates to distinguish areas of cold-based and wet-based glaciation, analyze the state of the ice cover and its susceptibility to melting and runoff, and describe top-down melting and fluvial channel formation processes in a LNIH environment. We find that: 1) episodic top-down melting of the LNIH is a robust mechanism to produce the observed fluvial and lacustrine features; 2) the characteristics and distribution of features in the Dorsa Argentea Formation are consistent with an extensive circum-polar ice cap during LNIH time; and 3) the nature of preserved LN impact craters is consistent with impact cratering processes in the LNIH environment. 393 words.
NASA Astrophysics Data System (ADS)
Cassanelli, J.
2017-12-01
Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars climate exposed to episodic high temperatures will not differ significantly from that in a warm climate. The fundamentally different hydrologic conditions are likely to influence other aspects of valley network morphology and morphometry including: drainage density, drainage pattern, and stream orders.
Effect of Viscous Agents on Corneal Density in Dry Eye Disease.
Wegener, Alfred R; Meyer, Linda M; Schönfeld, Carl-Ludwig
2015-10-01
To investigate the effect of the viscous agents, hydroxypropyl methylcellulose (HPMC), carbomer, povidone, and a combination of HPMC and povidone on corneal density in patients with dry eye disease. In total, 98 eyes of 49 patients suffering from dry eye and 65 eyes of 33 healthy age-matched individuals were included in this prospective, randomized study. Corneal morphology was documented with Scheimpflug photography and corneal density was analyzed in 5 anatomical layers (epithelium, bowman membrane, stroma, descemet's membrane, and endothelium). Corneal density was evaluated for the active ingredients HPMC, carbomer, povidone, and a combination of HPMC and povidone as the viscous agents contained in the artificial tear formulations used by the dry eye patients. Data were compared to the age-matched healthy control group without medication. Corneal density in dry eye patients was reduced in all 5 anatomical layers compared to controls. Corneal density was highest and very close to control in patients treated with HPMC containing ocular lubricants. Patients treated with lubricants, including carbomer as the viscous agent displayed a significant reduction of corneal density in layers 1 and 2 compared to control. HPMC containing ocular lubricants can help to maintain physiological corneal density and may be beneficial in the treatment of dry eye disease.
Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Nguyen, Thanh-Binh; Park, Seungchul; Lim, Hyuneui
2018-03-01
In this paper, we report the contributions of actual ice-substrate contact area and nanopillar height to passive anti-icing performance in terms of adhesion force and freezing time. Well-textured nanopillars with various parameters were fabricated via colloidal lithography and a dry etching process. The nanostructured quartz surface was coated with low-energy material to confer water-repellent properties. These superhydrophobic surfaces were investigated to determine the parameters essential for reducing adhesion strength and delaying freezing time. A well-textured surface with nanopillars of very small top diameter, regardless of height, could reduce adhesion force and delay freezing time in a subsequent de-icing process. Small top diameters of nanopillars also ensured the metastable Cassie-Baxter state based on energy barrier calculations. The results demonstrated the important role of areal fraction in anti-icing efficiency, and the negligible contribution of texture height. This insight into icing phenomena should lead to design of improved ice-phobic surfaces in the future.
The role of water ice clouds in the Martian hydrologic cycle
NASA Technical Reports Server (NTRS)
James, Philip B.
1990-01-01
A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.
Predicting the melting temperature of ice-Ih with only electronic structure information as input.
Pinnick, Eric R; Erramilli, Shyamsunder; Wang, Feng
2012-07-07
The melting temperature of ice-Ih was calculated with only electronic structure information as input by creating a problem-specific force field. The force field, Water model by AFM for Ice and Liquid (WAIL), was developed with the adaptive force matching (AFM) method by fitting to post-Hartree-Fock quality forces obtained in quantum mechanics∕molecular mechanics calculations. WAIL predicts the ice-Ih melting temperature to be 270 K. The model also predicts the densities of ice and water, the temperature of maximum density of water, the heat of vaporizations, and the radial distribution functions for both ice and water in good agreement with experimental measurements. The non-dissociative WAIL model is very similar to a flexible version of the popular TIP4P potential and has comparable computational cost. By customizing to problem-specific configurations with the AFM approach, the resulting model is remarkably more accurate than any variants of TIP4P for simulating ice-Ih and water in the temperature range from 253 K and 293 K under ambient pressure.
Limits of metastability in amorphous ices: the neutron scattering Debye-Waller factor.
Amann-Winkel, Katrin; Löw, Florian; Handle, Philip H; Knoll, Wiebke; Peters, Judith; Geil, Burkhard; Fujara, Franz; Loerting, Thomas
2012-12-21
Recently, it became clear that relaxation effects in amorphous ices play a very important role that has previously been overlooked. The thermodynamic history of amorphous samples strongly affects their transition behavior. In particular, well-relaxed samples show higher thermal stability, thereby providing a larger window to investigate their glass transitions. We here present neutron scattering experiments using fixed elastic window scans on relaxed forms of amorphous ice, namely expanded high density amorphous ice (eHDA), a variant of low density amorphous ice (LDA-II) and hyperquenched glassy water (HGW). These amorphous ices are expected to be true glassy counterparts of deeply supercooled liquid water, therefore fast precursor dynamics of structural relaxation are expected to appear below the calorimetric glass transition temperature. The Debye-Waller factor shows a very weak sub-T(g) anomaly in some of the samples, which might be the signature of such fast precursor dynamics. However, we cannot find this behavior consistently in all samples at all reciprocal length scales of momentum transfer.
Infection Vibrio sp. Bacteria on Kappaphycus Seaweed Varieties Brown and Green
NASA Astrophysics Data System (ADS)
Irmawati, Yuni; Sudirjo, Fien
2017-10-01
Disease in seaweed or ice-ice, until today is still a major problem in the cultivation of seaweed. Changes in extreme environmental conditions is a trigger factor of ice-ice, which can result in seaweed susceptible to infection with pathogenic microorganisms, such as bacteria Vibrio sp. This research aims to determine the bacteria Vibrio sp. infection in seaweed Kappaphycus varieties of brown and green. Vibrio sp. bacteria isolated in the infected seaweed thallus ice-ice, grown on TCBS media, purification, gram staining and biochemical tests. Vibrio sp. infected to seaweed Kappaphycus brown and green varieties in containers controlled by different density, 105 CFU/ml, 106 CFU/ml and 107CFU/ml. Observations were made to change clinical effect in thallus seaweed for 14 days of observation. The results obtained show that the levels of infection bacteria Vibrio sp. higher in seaweed Kappaphycus green varieties both in density 105 CFU/ml, 106 CFU/ml and 107CFU/ml, when compared with varieties brown.
Laser-induced cracks in ice due to temperature gradient and thermal stress
NASA Astrophysics Data System (ADS)
Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun
2018-06-01
This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.
NASA Astrophysics Data System (ADS)
Grima, C.; Koch, I.; Greenbaum, J. S.; Soderlund, K. M.; Blankenship, D. D.; Young, D. A.; Fitzsimons, S.
2017-12-01
The McMurdo ice shelves (northern and southern MIS), adjacent to the eponymous station and the Ross Ice Shelf, Antarctica, are known for large gradients in surface snow accumulation and snow/ice impurities. Marine ice accretion and melting are important contributors to MIS's mass balance. Due to erosive winds, the southern MIS (SMIS) shows a locally negative surface mass balance. Thus, marine ice once accreted at the ice shelf base crops out at the surface. However, the exact processes that exert primary control on SMIS mass balance have remained elusive. Radar statistical reconnaissance (RSR) is a recent technique that has been used to characterize the surface properties of the Earth's cryosphere, Mars, and Titan from the stochastic character of energy scattered by the surface. Here, we apply RSR to map the surface density and roughness of the SMIS and extend the technique to derive the basal reflectance and scattering coefficients of the ice-ocean interface. We use an airborne radar survey grid acquired over the SMIS in the 2014-2015 austral summer by the University of Texas Institute for Geophysics with the High Capability Radar Sounder (HiCARS2; 60-MHz center frequency and 15-MHz bandwidth). The RSR-derived snow density values and patterns agree with directly -measured ice shelf surface accumulation rates. We also compare the composition of SMIS ice surface samples to test the ability of RSR to discriminate ices with varying dielectric properties (e.g., marine versus meteoric ice) and hypothesize relationships between the RSR-derived basal reflectance/scattered coefficients and accretion or melting at the ice-ocean interface. This improved knowledge of air-ice and ice-ocean boundaries provides a new perspective on the processes governing SMIS surface and basal mass balance.
Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders
NASA Astrophysics Data System (ADS)
Annie, D.; Chandramouli, V.; Anthonysamy, S.; Ghosh, Chanchal; Divakar, R.
2017-02-01
Thoria powders were synthesized by oxalate precipitation from an aqueous solution of the nitrate. The filtered precipitates were freeze dried or microwave dried before being calcined at 1073 K. The thoria powders obtained were characterized for crystallite size, specific surface area, bulk density, particle size distribution and residual carbon. Microstructure of the product was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sinterability of the synthesized powders was studied by measuring the density of the sintered compacts. Powders that can be consolidated and sintered to densities ∼96% theoretical density (TD) at 1773 K were obtained.
Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data
NASA Astrophysics Data System (ADS)
Spreen, Gunnar; Kwok, Ron; Menemenlis, Dimitris; Nguyen, An T.
2017-07-01
A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous-plastic (VP) sea-ice rheology are compared with synthetic aperture radar (SAR) satellite observations (RGPS, RADARSAT Geophysical Processor System) for the time period 1996-2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs) of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous-plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.
Ferroelectricity in high-density H 2O ice
Caracas, Razvan; Hemley, Russell J.
2015-04-01
The origin of longstanding anomalies in experimental studies of the dense solid phases of H 2O ices VII, VIII, and X is examined using a combination of first-principles theoretical methods. We find that a ferroelectric variant of ice VIII is energetically competitive with the established antiferroelectric form under pressure. The existence of domains of the ferroelectric form within anti-ferroelectric ice can explain previously observed splittings in x-ray diffraction data. The ferroelectric form is stabilized by density and is accompanied by the onset of spontaneous polarization. Here, the presence of local electric fields triggers the preferential parallel orientation of the watermore » molecules in the structure, which could be stabilized in bulk using new high-pressure techniques.« less
Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes
Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Hinkel, Kenneth M.; Welker, Jeffery A.
2015-01-01
Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since many Arctic lakes are shallow and ice grows thick (historically 2-m or greater), seasonal ice commonly freezes to the lake bed (bedfast ice) by winter's end. Bedfast ice fundamentally alters lake energy balance and melt-out processes compared to deeper lakes that exceed the maximum ice thickness (floating ice) and maintain perennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-out of bedfast ice lakes occurred on average 17 days earlier (22-June) than ice-out on adjacent floating ice lakes (9-July). Earlier ice-free conditions in bedfast ice lakes caused higher open-water evaporation, 28% on average, relative to floating ice lakes and this divergence increased in lakes closer to the coast and in cooler summers. Water isotopes (18O and 2H) indicated similar differences in evaporation between these lake types. Our analysis suggests that ice regimes created by the combination of lake depth relative to ice thickness and associated ice-out timing currently cause a strong hydrologic divergence among Arctic lakes. Thus understanding the distribution and dynamics of lakes by ice regime is essential for predicting regional hydrology. An observed regime shift in lakes to floating ice conditions due to thinner ice growth may initially offset lake drying because of lower evaporative loss from this lake type. This potential negative feedback caused by winter processes occurs in spite of an overall projected increase in evapotranspiration as the Arctic climate warms.
ON A GIANT IMPACT ORIGIN OF CHARON, NIX, AND HYDRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canup, Robin M., E-mail: robin@boulder.swri.edu
It is generally believed that Charon was formed as a result of a large, grazing collision with Pluto that supplied the Pluto-Charon system with its high angular momentum. It has also been proposed that Pluto's small outer moons, Nix and Hydra, formed from debris from the Charon-forming impact, although the viability of this scenario remains unclear. Here I use smooth particle hydrodynamics impact simulations to show that it is possible to simultaneously form an intact Charon and an accompanying debris disk from a single impact. The successful cases involve colliding objects that are partially differentiated prior to impact, having thinmore » outer ice mantles overlying a uniform composition rock-ice core. The composition of the resulting debris disks varies from a mixture of rock and ice (similar to the bulk composition of Pluto and Charon) to a pure ice disk. If Nix and Hydra were formed from such an impact-generated disk, their densities should be less than or similar to that of Charon and Pluto, and the small moons could be composed entirely of ice. If they were instead formed from captured material, a mixed rock-ice composition and densities similar to that of Charon and Pluto would be expected. Improved constraints on the properties of Nix and Hydra through occultations and/or the New Horizons encounter may thus help to distinguish between these two modes of origin, particularly if the small moons are found to have ice-like densities.« less
High-density amorphous ice: A path-integral simulation
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.; Ramírez, Rafael
2012-09-01
Structural and thermodynamic properties of high-density amorphous (HDA) ice have been studied by path-integral molecular dynamics simulations in the isothermal-isobaric ensemble. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Quantum nuclear motion is found to affect several observable properties of the amorphous solid. At low temperature (T = 50 K) the molar volume of HDA ice is found to increase by 6%, and the intramolecular O-H distance rises by 1.4% due to quantum motion. Peaks in the radial distribution function of HDA ice are broadened with respect to their classical expectancy. The bulk modulus, B, is found to rise linearly with the pressure, with a slope ∂B/∂P = 7.1. Our results are compared with those derived earlier from classical and path-integral simulations of HDA ice. We discuss similarities and discrepancies with those earlier simulations.
Spectral Analysis and Experimental Modeling of Ice Accretion Roughness
NASA Technical Reports Server (NTRS)
Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.
1996-01-01
A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.
Distribution of glacial deposits, soils, and permafrost in Taylor Valley, Antarctica
Bockheim, James G.; Prentice, M.L.; McLeod, M.
2008-01-01
We provide a map of lower and central Taylor Valley, Antarctica, that shows deposits from Taylor Glacier, local alpine glaciers, and grounded ice in the Ross Embayment. From our electronic database, which includes 153 sites from the coast 50 km upvalley to Pearse Valley, we show the distribution of permafrost type and soil subgroups according to Soil Taxonomy. Soils in eastern Taylor Valley are of late Pleistocene age, cryoturbated due to the presence of ground ice or ice-cemented permafrost within 70 cm of the surface, and classified as Glacic and Typic Haploturbels. In central Taylor Valley, soils are dominantly Typic Anhyorthels of mid-Pleistocene age that have dry-frozen permafrost within the upper 70 cm. Salt-enriched soils (Salic Anhyorthels and Petrosalic Anhyorthels) are of limited extent in Taylor Valley and occur primarily on drifts of early Pleistocene and Pliocene age. Soils are less developed in Taylor Valley than in nearby Wright Valley, because of lesser salt input from atmospheric deposition and salt weathering. Ice-cemented permafrost is ubiquitous on Ross Sea, pre-Ross Sea, and Bonney drifts that occur within 28 km of the McMurdo coast. In contrast, dry-frozen permafrost is prevalent on older (???115 ky) surfaces to the west. ?? 2008 Regents of the University of Colorado.
Lampkin, Derrick; Peng, Rui
2008-01-01
Accelerated ice flow near the equilibrium line of west-central Greenland Ice Sheet (GIS) has been attributed to an increase in infiltrated surface melt water as a response to climate warming. The assessment of surface melting events must be more than the detection of melt onset or extent. Retrieval of surface melt magnitude is necessary to improve understanding of ice sheet flow and surface melt coupling. In this paper, we report on a new technique to quantify the magnitude of surface melt. Cloud-free dates of June 10, July 5, 7, 9, and 11, 2001 Moderate Resolution Imaging Spectroradiometer (MODIS) daily reflectance Band 5 (1.230-1.250μm) and surface temperature images rescaled to 1km over western Greenland were used in the retrieval algorithm. An optical-thermal feature space partitioned as a function of melt magnitude was derived using a one-dimensional thermal snowmelt model (SNTHERM89). SNTHERM89 was forced by hourly meteorological data from the Greenland Climate Network (GC-Net) at reference sites spanning dry snow, percolation, and wet snow zones in the Jakobshavn drainage basin in western GIS. Melt magnitude or effective melt (E-melt) was derived for satellite composite periods covering May, June, and July displaying low fractions (0-1%) at elevations greater than 2500m and fractions at or greater than 15% at elevations lower than 1000m assessed for only the upper 5 cm of the snow surface. Validation of E-melt involved comparison of intensity to dry and wet zones determined from QSCAT backscatter. Higher intensities (> 8%) were distributed in wet snow zones, while lower intensities were grouped in dry zones at a first order accuracy of ∼ ±2%. PMID:27873793
Lampkin, Derrick; Peng, Rui
2008-08-22
Accelerated ice flow near the equilibrium line of west-central Greenland Ice Sheet (GIS) has been attributed to an increase in infiltrated surface melt water as a response to climate warming. The assessment of surface melting events must be more than the detection of melt onset or extent. Retrieval of surface melt magnitude is necessary to improve understanding of ice sheet flow and surface melt coupling. In this paper, we report on a new technique to quantify the magnitude of surface melt. Cloud-free dates of June 10, July 5, 7, 9, and 11, 2001 Moderate Resolution Imaging Spectroradiometer (MODIS) daily reflectance Band 5 (1.230-1.250μm) and surface temperature images rescaled to 1km over western Greenland were used in the retrieval algorithm. An optical-thermal feature space partitioned as a function of melt magnitude was derived using a one-dimensional thermal snowmelt model (SNTHERM89). SNTHERM89 was forced by hourly meteorological data from the Greenland Climate Network (GC-Net) at reference sites spanning dry snow, percolation, and wet snow zones in the Jakobshavn drainage basin in western GIS. Melt magnitude or effective melt (E-melt) was derived for satellite composite periods covering May, June, and July displaying low fractions (0-1%) at elevations greater than 2500m and fractions at or greater than 15% at elevations lower than 1000m assessed for only the upper 5 cm of the snow surface. Validation of E-melt involved comparison of intensity to dry and wet zones determined from QSCAT backscatter. Higher intensities (> 8%) were distributed in wet snow zones, while lower intensities were grouped in dry zones at a first order accuracy of ~ ±2%.
Wafelman, A R; Hoefnagel, C A; Maes, R A; Beijnen, J H
1996-08-01
The determination of the amount of free [131I]iodide in [131I]metaiodobenzylguanidine ([131I]MIBG) concentrates for intravenous infusion under different storage conditions derived from daily practice. The percentage of free [131I]iodide was determined in [131I]MIBG concentrates (1.6-3.9 GBq in 7.5 ml), kept on dry ice (up to expiry, 3 days after production) or, after thawing, at room temperature (up to 24 h). A validated solid phase extraction (SPE) assay was used. Free [131I]iodide increased from 1.9% +/- 0.34% at production to 4.4% +/- 0.67% (mean +/- SD; n = 5) at expiry in 3.7 GBq per 7.5 ml [131I]MIBG infusion concentrates stored on dry ice (-78 degrees C). At room temperature, formation of free [131I]iodide was found to be dependent on the radioactive concentration of the fluid. [131I]iodide levels increased from 3.1%, immediately after thawing, to 6.6% and 16.6% at t = 5 and 24 h, respectively, for a 3.9 GBq per 7.5 ml concentrate. The investigated formulation of [131I]MIBG concentrates, stored in its original packing containing dry ice, can generally be used up to expiry. After thawing, the undiluted concentrates should be administered to a patient within 3.5 h.
A diffusion approximation for ocean wave scatterings by randomly distributed ice floes
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley
2016-11-01
This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.
Brick Paving Systems in Expeditionary Environments: Field Testing
2012-07-01
specific gravity of 2.7, optimum moisture content of 2.6 percent, and a maximum dry density of 114.2 pcf. Figure 5 shows the Proctor curve developed by...4 Figure 3. Dry density versus moisture content for CH material...6 Figure 5. Dry density versus moisture content for blended GM base course. ..................................... 7 Figure 6
Classification of Baltic Sea ice types by airborne multifrequency microwave radiometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurvonen, L.; Hallikainen, M.
An airborne multifrequency radiometer (24, 34, 48, and 94 GHz, vertical polarization) was used to investigate the behavior of the brightness temperature of different sea ice types in the Gulf of Bothnia (Baltic Sea). The measurements and the main results of the analysis are presented. The measurements were made in dry and wet conditions (air temperature above and below 0 C). The angle of incidence was 45{degree} in all measurements. The following topics are evaluated: (a) frequency dependency of the brightness temperature of different ice types, (b) the capability of the multifrequency radiometer to classify ice types for winter navigationmore » purposes, and (c) the optimum measurement frequencies for mapping sea ice. The weather conditions had a significant impact on the radiometric signatures of some ice types (snow-covered compact pack ice and frost-covered new ice); the impact was the highest at 94 GHz. In all cases the overall classification accuracy was around 90% (the kappa coefficient was from 0.86 to 0.96) when the optimum channel combination (24/34 GHz and 94 GHz) was used.« less
Molecular Markers in the Quelccaya Ice Cap, Peru Describe 20th Century Biomass Burning Variability
NASA Astrophysics Data System (ADS)
Makou, M. C.; Thompson, L. G.; Eglinton, T. I.; Montluçon, D. B.
2007-12-01
Organic geochemical analytical methods were applied to Andean ice core samples, resulting in a multi- molecular biomass burning record spanning 1915 to 2001 AD. The Quelccaya Ice Cap in Peru is situated on the eastern flank of the Andes at 14°S and is well situated to receive aeolian inputs of organic matter derived from Amazonian forest fire events. Compounds of interest, which occur in trace quantities in ice, were recovered by stir bar sorptive extraction and analyzed by gas chromatography/time-of-flight mass spectrometry coupled with thermal desorption. These methods permitted identification and quantitation of numerous biomarkers in sample volumes of as little as 10 ml. At least one wet and dry season sample was analyzed for every year. Observed biomarkers that may be derived from vegetation fires include several polycyclic aromatic hydrocarbons (PAHs), atraric acid, 2-ethylhexyl p-methoxycinnamate, and a range of other aromatic compounds. Abrupt changes in compound abundances were superimposed on decadal variability. Systematic offsets between wet and dry season abundances were not observed, suggesting that the biomass burning signal is not biased by seasonal depositional effects, such as dust delivery. Inputs likely reflect a combination of sources from anthropogenic burning of the Amazon rainforest as well as natural fires related to aridity, and include both high and low elevation vegetation. These compounds and techniques can be applied to older ice in this and other core locations as an independent estimate of aridity.
Examining Differences in Arctic and Antarctic Sea Ice Change
NASA Astrophysics Data System (ADS)
Nghiem, S. V.; Rigor, I. G.; Clemente-Colon, P.; Neumann, G.; Li, P.
2015-12-01
The paradox of the rapid reduction of Arctic sea ice versus the stability (or slight increase) of Antarctic sea ice remains a challenge in the cryospheric science research community. Here we start by reviewing a number of explanations that have been suggested by different researchers and authors. One suggestion is that stratospheric ozone depletion may affect atmospheric circulation and wind patterns such as the Southern Annular Mode, and thereby sustaining the Antarctic sea ice cover. The reduction of salinity and density in the near-surface layer may weaken the convective mixing of cold and warmer waters, and thus maintaining regions of no warming around the Antarctic. A decrease in sea ice growth may reduce salt rejection and upper-ocean density to enhance thermohalocline stratification, and thus supporting Antarctic sea ice production. Melt water from Antarctic ice shelves collects in a cool and fresh surface layer to shield the surface ocean from the warmer deeper waters, and thus leading to an expansion of Antarctic sea ice. Also, wind effects may positively contribute to Antarctic sea ice growth. Moreover, Antarctica lacks of additional heat sources such as warm river discharge to melt sea ice as opposed to the case in the Arctic. Despite of these suggested explanations, factors that can consistently and persistently maintains the stability of sea ice still need to be identified for the Antarctic, which are opposed to factors that help accelerate sea ice loss in the Arctic. In this respect, using decadal observations from multiple satellite datasets, we examine differences in sea ice properties and distributions, together with dynamic and thermodynamic processes and interactions with land, ocean, and atmosphere, causing differences in Arctic and Antarctic sea ice change to contribute to resolving the Arctic-Antarctic sea ice paradox.
True density and apparent density during the drying process for vegetables and fruits: a review.
Rodríguez-Ramírez, J; Méndez-Lagunas, L; López-Ortiz, A; Torres, S Sandoval
2012-12-01
This review presents the concepts involved in determining the density of foodstuffs, and summarizes the volumetric determination techniques used to calculate true density and apparent density in foodstuffs exposed to the drying process. The behavior of density with respect to moisture content (X) and drying temperature (T) is presented and explained with a basis in changes in structure, conformation, chemical composition, and second-order phase changes that occur in the processes of mass and heat transport, as reported to date in the literature. A review of the empirical and theoretical equations that represent density is presented, and their application in foodstuffs is discussed. This review also addresses cases with nonideal density behavior, including variations in ρ(s) and ρ(w) as a function of the inside temperature of the material, depending on drying conditions (X, T). A compilation of studies regarding the density of dehydrated foodstuffs is also presented. © 2012 Institute of Food Technologists®
Effect of ethanol, dry extract and reducing sugars on density and viscosity of Brazilian red wines.
Neto, Flávia S P P; de Castilhos, Maurício B M; Telis, Vânia R N; Telis-Romero, Javier
2015-05-01
Density and viscosity are properties that exert great influence on the body of wines. The present work aimed to evaluate the influence of the alcoholic content, dry extract, and reducing sugar content on density and viscosity of commercial dry red wines at different temperatures. The rheological assays were carried out on a controlled stress rheometer, using concentric cylinder geometry at seven temperatures (2, 8, 14, 16, 18, 20 and 26 °C). Wine viscosity decreased with increasing temperature and density was directly related to the wine alcohol content, whereas viscosity was closely linked to the dry extract. Reducing sugars did not influence viscosity or density. Wines produced from Italian grapes were presented as full-bodied with higher values for density and viscosity, which was linked to the higher alcohol content and dry extract, respectively. The results highlighted the major effects of certain physicochemical properties on the physical properties of wines, which in turn is important for guiding sensory assessments. © 2014 Society of Chemical Industry.
Poe, Amanda; Duong, Ngocvien Thi; Bedi, Kanwar; Kodani, Maja
2018-03-01
Diagnosis of hepatitis C virus (HCV) infection is based on testing for antibodies to HCV (anti-HCV), hepatitis C core antigen (HCV cAg) and HCV RNA. To ensure quality control (QC) and quality assurance (QA), proficiency panels are provided by reference laboratories and various international organizations, requiring costly dry ice shipments to maintain specimen integrity. Alternative methods of specimen preservation and transport can save on shipping and handling and help in improving diagnostics by facilitating QA/QC of various laboratories especially in resource limited countries. Plasma samples positive for anti-HCV and HCV RNA were either dried using dried tube specimens (DTS) method or lyophilization for varying durations of time and temperature. Preservation of samples using DTS method resulted in loss of anti-HCV reactivity for low-positive samples and did not generate enough volume for HCV RNA testing. Lyophilized samples tested positive for anti-HCV even after storage at 4 °C and 25 °C for 12 weeks. Further, HCV RNA was detectable in 5 of 5 (100%) samples over the course of 12 week storage at 4, 25, 37 and 45 °C. In conclusion, lyophilization of specimens maintains integrity of plasma samples for testing for markers of HCV infection and can be a potent mode of sharing proficiency samples without incurring huge shipping costs and avoids challenges with dry ice shipments between donor and recipient laboratories. Copyright © 2017. Published by Elsevier B.V.
A TEM analysis of nanoparticulates in a Polar ice core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esquivel, E.V.; Murr, L.E
2004-03-15
This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar withmore » some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.« less
MDA Ice Detection and Measurement Camera Development and Validation for NASA-KSC (2004-2007)
2007-08-17
various densities, ice formed on metals, and ice made from Atlantic Ocean salt water that may be more representative of ice formed in the salt air... clam squ den app det n). a. d b. h so that they enough to support the Kaman sensor head without crushing. Some th throughout this process is... clam s, may be considered compensated for by the extra ice that can form on the edge of the test el. In such a case where there is no ice extending
NASA Astrophysics Data System (ADS)
Harrington, J. Y.
2017-12-01
Parameterizing the growth of ice particles in numerical models is at an interesting cross-roads. Most parameterizations developed in the past, including some that I have developed, parse model ice into numerous categories based primarily on the growth mode of the particle. Models routinely possess smaller ice, snow crystals, aggregates, graupel, and hail. The snow and ice categories in some models are further split into subcategories to account for the various shapes of ice. There has been a relatively recent shift towards a new class of microphysical models that predict the properties of ice particles instead of using multiple categories and subcategories. Particle property models predict the physical characteristics of ice, such as aspect ratio, maximum dimension, effective density, rime density, effective area, and so forth. These models are attractive in the sense that particle characteristics evolve naturally in time and space without the need for numerous (and somewhat artificial) transitions among pre-defined classes. However, particle property models often require fundamental parameters that are typically derived from laboratory measurements. For instance, the evolution of particle shape during vapor depositional growth requires knowledge of the growth efficiencies for the various axis of the crystals, which in turn depends on surface parameters that can only be determined in the laboratory. The evolution of particle shapes and density during riming, aggregation, and melting require data on the redistribution of mass across a crystals axis as that crystal collects water drops, ice crystals, or melts. Predicting the evolution of particle properties based on laboratory-determined parameters has a substantial influence on the evolution of some cloud systems. Radiatively-driven cirrus clouds show a broader range of competition between heterogeneous nucleation and homogeneous freezing when ice crystal properties are predicted. Even strongly convective squall lines show a substantial influence to predicted particle properties: The more natural evolution of ice crystals during riming produces graupel-like particles with size and fall-speeds required for the formation of a classic transition zone and extended stratiform precipitation region.
NASA Astrophysics Data System (ADS)
Wadhams, P.; Tucker, W. B.; Krabill, W. B.; Swift, R. N.; Comiso, J. C.; Davis, N. R.
1992-12-01
We have confirmed our earlier finding that the probability density function (pdf) of ice freeboard in the Arctic Ocean can be converted to a pdf of ice draft by applying a simple coordinate transformation based on the measured mean draft and mean elevation. This applies in each of six 50-km sections (north of Greenland) of joint airborne laser and submarine sonar profile obtained along nearly coincident tracks from the Arctic Basin north of Greenland and tested for this study. Detailed differences in the shape of the pdf can be explained on the basis of snow load and can, in principle, be compensated by the use of a more sophisticated freeboard-dependent transformation. The measured "density ratio" R (actually mean draft/mean elevation ratio) for each section was found to be consistent over all sections tested, despite differences in the ice regime, indicating that a single value of R might be used for measurements done in this season of the year. The mean value
Mars Polar Lander Landing Site Noon-time Temperatures
NASA Technical Reports Server (NTRS)
1999-01-01
The Mars Polar Lander will arrive at Mars on December 3, 1999. TES analysis of data from the pre-mapping phase demonstrate the spacecraft is expected to land on bare ground, free of -128oC (-200oF) dry ice that completely covered this region during the winter. This image shows the noon-time temperatures of data within the landing site in January, 1998, almost exactly one Martian year prior to MPL landing. The plus sign marks the landing site. The thick white line shows the location of the polar layered deposits. Temperatures are given in Kelvin. The temperature of CO2 frost (dry ice) on Mars is 145K (-128oC), approximately -200oF. Temperatures above 200K show the absence of CO2 frost.NASA Astrophysics Data System (ADS)
Mount, Christopher P.; Titus, Timothy N.
2015-07-01
Small-scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct end-members across the NPSC: (1) Snow deposits may anneal to form an overlying slab layer that fractures. These low-density deposits maintain relatively constant densities over springtime. (2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high-density deposits dramatically increase in density over time. The end-members appear to be correlated with latitude.
Mount, Christopher P.; Titus, Timothy N.
2015-01-01
Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.
NASA Astrophysics Data System (ADS)
Warren, S. G.; Dadic, R.; Mullen, P.; Schneebeli, M.; Brandt, R. E.
2012-12-01
The albedos of snow and ice surfaces are, because of their positive feedback, crucial to the initiation, maintenance, and termination of a snowball event, as well as for determining the ice thickness on the ocean. Despite the name, Snowball Earth would not have been entirely snow-covered. As on modern Earth, evaporation would exceed precipitation over much of the tropical ocean. After a transient period with sea ice, the dominant ice type would probably be sea-glaciers flowing in from higher latitude. As they flowed equatorward into the tropical region of net sublimation, their surface snow and subsurface firn would sublimate away, exposing bare glacier ice to the atmosphere and to solar radiation. This ice would be freshwater (meteoric) ice, which originated from snow and firn, so it would contain numerous air bubbles, which determine the albedo. The modern surrogate for this type of ice (glacier ice exposed by sublimation, which has never experienced melting), are the bare-ice surfaces of the Antarctic Ice Sheet near the Trans-Antarctic Mountains. These areas have been well mapped because of their importance in the search for meteorites. A transect across an icefield can sample ice of different ages that has traveled to different depths en route to the sublimation front. On a 6-km transect from snow to ice near the Allan Hills, spectral albedo was measured and 1-m core samples were collected. This short transect is meant to represent a north-south transect across many degrees of latitude on the snowball ocean. Surfaces on the transect transitioned through the sequence: new snow - old snow - firn - young white ice - old blue ice. The transect from snow to ice showed a systematic progression of decreasing albedo at all wavelengths, as well as decreasing specific surface area (SSA; ratio of air-ice interface area to ice mass) and increasing density. The measured spectral albedos are integrated over wavelength and weighted by the spectral solar flux to obtain broadband albedos. These range from 0.8 for snow to 0.55-0.6 for blue ice, which is in the range that favors thick ice over the tropical ocean of Snowball Earth. Air bubbles in the ice, as well as cracks, are responsible for the reflection of sunlight; their contributions to SSA were determined by micro-computed tomography. Scattering by bubbles dominates; removing cracks from the radiative-transfer calculation causes only a slight reduction of albedo. Although what determines the albedo is the SSA of bubbles or snow grains, the broadband albedo also shows a systematic relation to the snow or ice density, suggesting that density might serve as a surrogate variable that will be easier to predict than SSA in an ice-sheet model, using a parameterization for firn densification.
Durability of Polymer Electrolyte Membrane Fuel Cells Operated at Subfreezing Temperatures
Macauley, Natalia; Lujan, Roger W.; Spernjak, Dusan; ...
2016-09-15
The structure, composition, and interfaces of membrane electrode assemblies (MEA) and gas-diffusion layers (GDLs) have a significant effect on the performance of single-proton-exchange-membrane (PEM) fuel cells operated isothermally at subfreezing temperatures. During isothermal constant-current operation at subfreezing temperatures, water forming at the cathode initially hydrates the membrane, then forms ice in the catalyst layer and/or GDL. This ice formation results in a gradual decay in voltage. High-frequency resistance initially decreases due to an increase in membrane water content and then increases over time as the contact resistance increases. The water/ice holding capacity of a fuel cell decreases with decreasing subfreezingmore » temperature (-10°C vs. -20°C vs. -30°C) and increasing current density (0.02 A cm -2 vs. 0.04 A cm -2). Ice formation monitored using in-situ high-resolution neutron radiography indicated that the ice was concentrated near the cathode catalyst layer at low operating temperatures (≈-20°C) and high current densities (0.04 A cm -2). Significant ice formation was also observed in the GDLs at higher subfreezing temperatures (≈-10°C) and lower current densities (0.02 A cm -2). These results are in good agreement with the long-term durability observations that show more severe degradation at lower temperatures (-20°C and -30°C).« less
HiRISE observations of new impact craters exposing Martian ground ice
Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.; Mellon, Michael T.; Kennedy, Megan R.; Daubar, Ingrid J.; Saper, Lee
2014-01-01
Twenty small new impact craters or clusters have been observed to excavate bright material inferred to be ice at mid and high latitudes on Mars. In the northern hemisphere, the craters are widely distributed geographically and occur at latitudes as low as 39°N. Stability modeling suggests that this ice distribution requires a long-term average atmospheric water vapor content around 25 precipitable microns, more than double the present value, which is consistent with the expected effect of recent orbital variations. Alternatively, near-surface humidity could be higher than expected for current column abundances if water vapor is not well-mixed with atmospheric CO2, or the vapor pressure at the ice table could be lower due to salts. Ice in and around the craters remains visibly bright for months to years, indicating that it is clean ice rather than ice-cemented regolith. Although some clean ice may be produced by the impact process, it is likely that the original ground ice was excess ice (exceeding dry soil pore space) in many cases. Observations of the craters suggest small-scale heterogeneities in this excess ice. The origin of such ice is uncertain. Ice lens formation by migration of thin films of liquid is most consistent with local heterogeneity in ice content and common surface boulders, but in some cases nearby thermokarst landforms suggest large amounts of excess ice that may be best explained by a degraded ice sheet.
The Correlation Between Green Density and the Occurrence of Honeycomb in Kiln-Dried
Robert A. Harris; Philip A. Araman
1995-01-01
Fresh-cut, 5/4 red oak (Quercus sp.) boards were weighed, measured to determine volume and then kiln-dried to determine if the initial green density (green weight/green volume) was correlated to the occurrence of honeycomb. A positive relationship was found between the occurrence of honeycomb during drying and the initial green density. These results...
A design protocol for tailoring ice-templated scaffold structure
Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.
2014-01-01
In this paper, we show, for the first time, the key link between scaffold architecture and latent heat evolution during the production of porous biomedical collagen structures using freeze-drying. Collagen scaffolds are used widely in the biomedical industry for the repair and reconstruction of skeletal tissues and organs. Freeze-drying of collagen slurries is a standard industrial process, and, until now, the literature has sought to characterize the influence of set processing parameters including the freezing protocol and weight percentage of collagen. However, we are able to demonstrate, by monitoring the local thermal events within the slurry during solidification, that nucleation, growth and annealing processes can be controlled, and therefore we are able to control the resulting scaffold architecture. Based on our correlation of thermal profile measurements with scaffold architecture, we hypothesize that there is a link between the fundamental freezing of ice and the structure of scaffolds, which suggests that this concept is applicable not only for collagen but also for ceramics and pharmaceuticals. We present a design protocol of strategies for tailoring the ice-templated scaffold structure. PMID:24402916
A Mass Diffusion Model for Dry Snow Utilizing a Fabric Tensor to Characterize Anisotropy
NASA Astrophysics Data System (ADS)
Shertzer, Richard H.; Adams, Edward E.
2018-03-01
A homogenization algorithm for randomly distributed microstructures is applied to develop a mass diffusion model for dry snow. Homogenization is a multiscale approach linking constituent behavior at the microscopic level—among ice and air—to the macroscopic material—snow. Principles of continuum mechanics at the microscopic scale describe water vapor diffusion across an ice grain's surface to the air-filled pore space. Volume averaging and a localization assumption scale up and down, respectively, between microscopic and macroscopic scales. The model yields a mass diffusivity expression at the macroscopic scale that is, in general, a second-order tensor parameterized by both bulk and microstructural variables. The model predicts a mass diffusivity of water vapor through snow that is less than that through air. Mass diffusivity is expected to decrease linearly with ice volume fraction. Potential anisotropy in snow's mass diffusivity is captured due to the tensor representation. The tensor is built from directional data assigned to specific, idealized microstructural features. Such anisotropy has been observed in the field and laboratories in snow morphologies of interest such as weak layers of depth hoar and near-surface facets.
Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds
NASA Astrophysics Data System (ADS)
Lübken, F.-J.; Berger, U.; Baumgarten, G.
2009-11-01
Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.
Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds
NASA Astrophysics Data System (ADS)
Lübken, F.-J.; Berger, U.; Baumgarten, G.
2009-01-01
Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.
NASA Astrophysics Data System (ADS)
Ford, A. B.
2015-12-01
"SNAP!, CRACK!, POP!" The sounds reverberated across newly shaded permafrost of unusual talus aprons (Ford & Andersen, 1967; J. Geol., 75, 722-732) of interior Antarctica (lats. >84°S; Thiel, Pensacola mtns.), coming from ice cracking under tensile failure (cryoseisms). Apron regoliths show conspicuously reversed downslope particle-size sorting and downslope-oriented lineations (debris-cleared tracts; stone stripes) formed by vibrational movement of detritus by midsummer, diurnal cracking of ice. Moving laterally by vibrations away from cracks, with downslope component by gravity, finer detritus becomes concentrated downslope from coarser debris of initial cliff fall — winnowed, as if on a gigantic vibrating shaking table. Slopes outside shade zones remain free of cracking. Diurnal midday shading of solar-warmed, debris-mantled permafrost- and glacier-surface ice at low ambient midsummer temperatures produces high strain-loading rates that exceed tensile toughness of inhomogeneous, polycrystalline ice containing zones of older but sealed cracks. This dry, mechanical, cryoseism mechanism is here proposed also for now waterless Mars and other icy Solar System bodies. Regolith features of Mars' cryosphere may appear different from anrarctic analogues owing to likely operation over tens if not hundreds of millions of years longer than on Earth. The strain distributions in tensile failure of ice better explain a common spacing uniformity of many martian linear features than others' proposed origins, and for some "active" streaks and gully channels, TARS, RSL and dune-slipface channels, as well as for dune orthogonality, diurnal moonquakes and asteroid-regolith detrital sorting (e.g., "rubble-pile" 25143-Itokawa). Because periodic shade from topography (canyons, craters, etc.) is needed, the mechanism is not expected on flattish terrains where more normal annual cooling rates produce the common polygonal tensile fracturing of ice
Specific findings on ice crystal microphysical properties from in-situ observation
NASA Astrophysics Data System (ADS)
Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter
2017-04-01
This study focuses on microphysical properties of ice particles populating high ice water content areas in Mesoscale Convective Systems (MCS). These clouds have been extensively sampled during the High Altitude Ice Crystal - High Ice Water Content international projects (HAIC-HIWC, Dezitter et al. 2013, Strapp et al. 2015) with the objective of characterizing ice particle properties such as size distribution, radar reflectivity and ice water content. The in-situ data collected during these campaigns at different temperature levels and in different type of MCS (oceanic, continental) make the HAIC-HIWC data set a unique opportunity to study ice particle microphysical properties. Recently, a new approach to retrieve ice particle mass from in-situ measurements has been developed: a forward model that relates ice particles' mass to Particle Size Distribution (PSD) and Ice Water Content (IWC) is formulated as a linear system of equations and the retrieval process consists in solving the inverse problem with numerical optimization tools (Coutris et al. 2016). In this study, this new method is applied to HAIC-HIWC data set and main outcomes are discussed. First, the method is compared to a classical power-law based method using data from one single flight performed in Darwin area on February, 7th 2014. The observed differences in retrieved quantities such as ice particle mass, ice water content or median mass diameter, highlight the potential benefit of abandoning the power law simplistic assumption. The method is then applied to data measured at different cloud temperatures ranging from -40°C to -10°C during several flights of both Darwin 2014 and Cayenne 2015 campaigns. Specific findings about ice microphysical properties such as variations of effective density with particle size and the influence of cloud temperature on particle effective density are presented.
Mineralogy of Antarctica Dry Valley Soils: Implications for Pedogenic Processes on Mars
NASA Technical Reports Server (NTRS)
Quinn, J. E.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; Zent, A. P.; Archer, P. D., Jr.
2010-01-01
The Antarctic Dry Valleys (ADVs) located in the Transantarctic Mountains are the coldest and driest locations on Earth. The mean annual air temperature is -20 C or less and the ADVs receive 100mm or less of precipitation annually in the form of snow. The cold and dry climate in the ADVs is one of the best terrestrial analogs for the climatic conditions on Mars [2]. The soils in the ADVs have been categorized into three soil moisture zones: subxerous, xerous and ultraxerous. The subxerous zone is a coastal region in which soils have ice-cemented permafrost relatively close to the surface. Moisture is available in relatively large amounts and soil temperatures are above freezing throughout the soil profile (above ice permafrost) in summer months. The xerous zone, the most widespread of the three zones, is an inland region with a climate midway between the subxerous and ultraxerous. The soils from this zone have dry permafrost at moderate depths (30-75cm) but have sufficient water in the upper soil horizons to allow leaching of soluble materials. The ultraxerous zone is a high elevation zone, where both temperature and precipitation amounts are very low resulting in dry permafrost throughout the soil profile. The three moisture regime regions are similar to the three microclimatic zones (coastal thaw, inland mixed, stable upland) defined by Marchant and Head.
Rooney, P; Eagle, M J; Kearney, J N
2015-12-01
Human tissue is shipped to surgeons in the UK in either a freeze-dried or frozen state. To ensure quality and safety of the tissue, frozen tissue must be shipped in insulated containers such that tissue is maintained at an appropriate temperature. UK Blood Transfusion Service regulations state "Transportation systems must be validated to show maintenance of the required storage temperature" and also state that frozen, non-cryopreserved tissue "must be transported… at -20 °C or lower" (Guidelines for the Blood Transfusion Services in the United Kingdom, 8th Edn. 2013). To maintain an expiry date for frozen tissue longer than 6 months, the tissue must be maintained at a temperature of -40 °C or below. The objective of this study was to evaluate and validate the capability of a commercially available insulated polystyrene carton (XPL10), packed with dry ice, to maintain tissue temperature below -40 °C. Tissue temperature of a single frozen femoral head or a single frozen Achilles tendon, was recorded over a 4-day period at 37 °C, inside a XPL10 carton with dry ice as refrigerant. The data demonstrate that at 37 °C, the XPL10 carton with 9.5 kg of dry ice maintained femoral head and tendon tissue temperature below -55 °C for at least 48 h; tissue temperature did not rise above -40 °C until at least 70 h. Data also indicated that at a storage temperature lower than 37 °C, tissue temperature was maintained for longer periods.
Geomorphological evidence for ground ice on dwarf planet Ceres
Schmidt, Britney E.; Hughson, Kynan H.G.; Chilton, Heather T.; Scully, Jennifer E. C.; Platz, Thomas; Nathues, Andreas; Sizemore, Hanna; Bland, Michael T.; Byrne, Shane; Marchi, Simone; O'Brien, David; Schorghofer, Norbert; Hiesinger, Harald; Jaumann, Ralf; Hendrick Pasckert, Jan; Lawrence, Justin D.; Buzckowski, Debra; Castillo-Rogez, Julie C.; Sykes, Mark V.; Schenk, Paul M.; DeSanctis, Maria-Cristina; Mitri, Giuseppe; Formisano, Michelangelo; Li, Jian-Yang; Reddy, Vishnu; Le Corre, Lucille; Russell, Christopher T.; Raymond, Carol A.
2017-01-01
Five decades of observations of Ceres suggest that the dwarf planet has a composition similar to carbonaceous meteorites and may have an ice-rich outer shell protected by a silicate layer. NASA’s Dawn spacecraft has detected ubiquitous clays, carbonates and other products of aqueous alteration across the surface of Ceres, but surprisingly it has directly observed water ice in only a few areas. Here we use Dawn Framing Camera observations to analyse lobate morphologies on Ceres’ surface and we infer the presence of ice in the upper few kilometres of Ceres. We identify three distinct lobate morphologies that we interpret as surface flows: thick tongue-shaped, furrowed flows on steep slopes; thin, spatulate flows on shallow slopes; and cuspate sheeted flows that appear fluidized. The shapes and aspect ratios of these flows are different from those of dry landslides—including those on ice-poor Vesta—but are morphologically similar to ice-rich flows on other bodies, indicating the involvement of ice. Based on the geomorphology and poleward increase in prevalence of these flows, we suggest that the shallow subsurface of Ceres is comprised of mixtures of silicates and ice, and that ice is most abundant near the poles.
NASA Technical Reports Server (NTRS)
Gagliano, J. A.; Mcsheehy, J. J.; Cavalieri, D. J.
1983-01-01
An airborne imaging 92/183 GHz radiometer was recently flown onboard NASA's Convair 990 research aircraft during the February 1983 Bering Sea Marginal Ice Zone Experiment (MIZEX-WEST). The 92 GHz portion of the radiometer was used to gather ice signature data and to generate real-time millimeter wave images of the marginal ice zone. Dry atmospheric conditions in the Arctic resulted in good surface ice signature data for the 183 GHz double sideband (DSB) channel situated + or - 8.75 GHz away from the water vapor absorption line. The radiometer's beam scanner imaged the marginal ice zone over a + or - 45 degrees swath angle about the aircraft nadir position. The aircraft altitude was 30,000 feet (9.20 km) maximum and 3,000 feet (0.92 km) minimum during the various data runs. Calculations of the minimum detectable target (ice) size for the radiometer as a function of aircraft altitude were performed. In addition, the change in the atmospheric attenuation at 92 GHz under varying weather conditions was incorporated into the target size calculations. A radiometric image of surface ice at 92 GHz in the marginal ice zone is included.
De Beer, T R M; Allesø, M; Goethals, F; Coppens, A; Heyden, Y Vander; De Diego, H Lopez; Rantanen, J; Verpoort, F; Vervaet, C; Remon, J P; Baeyens, W R G
2007-11-01
The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us to understand the process.
Communication: Hypothetical ultralow-density ice polymorphs
NASA Astrophysics Data System (ADS)
Matsui, Takahiro; Hirata, Masanori; Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki
2017-09-01
More than 300 kinds of porous ice structures derived from zeolite frameworks and space fullerenes are examined using classical molecular dynamics simulations. It is found that a hypothetical zeolitic ice phase is less dense and more stable than the sparse ice structures reported by Huang et al. [Chem. Phys. Lett. 671, 186 (2017)]. In association with the zeolitic ice structure, even less dense structures, "aeroices," are proposed. It is found that aeroices are the most stable solid phases of water near the absolute zero temperature under negative pressure.
NASA Astrophysics Data System (ADS)
Turner, J. S.; Veronis, G.
2004-03-01
This study has been motivated by two oceanographic observations: an increased rate of melting of sea ice in the Arctic Ocean, and the advance of an anomalously warm tongue of Atlantic water across the Arctic below the halocline over the last few decades. A series of laboratory experiments has been carried out in order to explore the physical principles underlying these phenomena, and the possibility that the extra heating at depth is responsible for the enhanced melting rate. A tank was filled with salt solution having various constant vertical density gradients. A block of ice one third of the length of the tank was floated on the surface at one end, and the rest of the surface and the walls of the tank were insulated. When no extra heat was supplied the melting rate (loss of weight of the ice in 1 h) systematically decreased as the stratification was changed from homogeneous fluid to increasingly large density gradients, while keeping the salinity of the solution in contact with the ice constant. An analogue of the intruding Atlantic water was produced by heating the lower portion of the vertical end wall at the end of the tank opposite to the ice end, keeping its temperature constant, and using the same range of salinity gradients as in the unheated experiments. Again the melting rate decreased as the density gradient was increased, but for low gradients it was larger than that in the unheated experiments. Above a certain intermediate gradient there was no significant difference in melting rate between the unheated and heated runs. The melting data were supplemented by photographs and vertical temperature and salinity profiles. The upward transfer of heat from the body of the fluid to melt the ice was clearly double-diffusive: overturning layers, separated by 'diffusive' interfaces, were visible on shadowgraphs, and the thickness of the layers decreased as the density gradient increased. The mean thickness of the layers through the depth of the tank also systematically decreased as the density gradient increased. With weak gradients an extra heat flux to the ice came from the intruding heated layer, but at large gradients this tongue of warm water at depth did not add to the flux near the surface. Though they were obtained in a simple, arbitrary and fixed geometry, we believe that the results of these experiments can be used as the basis for a better physical understanding of the melting rates of ice in the Arctic under various conditions.
Girdner, Scott; Larson, Gary L.
1995-01-01
Ten high-mountain ponds in Mount Rainier National Park, Washington State, were studied from ice-out in June through September1992 to investigate the influences of fluctuating pond volumes on zooplankton communities. All of the ponds were at maximum volume immediately after ice-out. The temporary pond with the shortest wet phase was inhabited by rotifer taxa with short generation times and a crustacean taxon with the ability to encyst as drought-resistant resting bodies at immature stages of development. Dominant zooplankton taxa in three other temporary ponds and six permanent ponds were similar. Rotifer densities typically were lower in temporary ponds relative to those in permanent ponds, although Brachionus urceolaris was abundant shortly before the temporary ponds dried. Large volume loss was associated with large declines in total abundances of crustacean populations. Daphnia rosea was not present in temporary ponds following fall recharge. In deep-permanent ponds, copepods had slower developmental rates, smaller temporal changes in total abundances of crustacean populations and two additional large-bodied crustacean taxa were present relative to the characteristics of crustacean communities in shallow-permanent ponds. Owing to their small sizes and sensitivity to environmental change, collectively ponds such as these may provide an early signal of long-term climate change in aquatic systems.
Process and system for producing high-density pellets from a gaseous medium
Foster, Christopher A.
1999-01-01
A process and system for producing pellets of high density carbon dioxide or other gases utilize a chamber containing a plurality of cell-like freezing compartments within which ice is to be formed. A gas desired to be frozen into ice is introduced into the chamber while the internal pressure of the chamber is maintained at a level which is below the equilibrium triple pressure of the gas. The temperature of the freezing compartments is lowered to a temperature which is below the equilibrium vapor pressure temperature of the gas at the chamber pressure so that the gas condenses into ice within the compartments. The temperature of the freezing compartments is thereafter raised so that the ice is thereby released from and falls out of the compartments as pellets for collection.
Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures
NASA Astrophysics Data System (ADS)
Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas
2018-03-01
In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.
The glass transition in high-density amorphous ice
Loerting, Thomas; Fuentes-Landete, Violeta; Handle, Philip H.; Seidl, Markus; Amann-Winkel, Katrin; Gainaru, Catalin; Böhmer, Roland
2015-01-01
There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature Tg of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's Tg measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p–T plane for LDA, HDA, and VHDA. PMID:25641986
The glass transition in high-density amorphous ice.
Loerting, Thomas; Fuentes-Landete, Violeta; Handle, Philip H; Seidl, Markus; Amann-Winkel, Katrin; Gainaru, Catalin; Böhmer, Roland
2015-01-01
There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature T g of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's T g measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p-T plane for LDA, HDA, and VHDA.
Mellon, M.T.; Boynton, W.V.; Feldman, W.C.; Arvidson, R. E.; Titus, Joshua T.N.; Bandfield, L.; Putzig, N.E.; Sizemore, H.G.
2009-01-01
We review multiple estimates of the ice table depth at potential Phoenix landing sites and consider the possible state and distribution of subsurface ice. A two-layer model of ice-rich material overlain by ice-free material is consistent with both the observational and theoretical lines of evidence. Results indicate ground ice to be shallow and ubiquitous, 2-6 cm below the surface. Undulations in the ice table depth are expected because of the thermodynamic effects of rocks, slopes, and soil variations on the scale of the Phoenix Lander and within the digging area, which can be advantageous for analysis of both dry surficial soils and buried ice-rich materials. The ground ice at the ice table to be sampled by the Phoenix Lander is expected to be geologically young because of recent climate oscillations. However, estimates of the ratio of soil to ice in the ice-rich subsurface layer suggest that that the ice content exceeds the available pore space, which is difficult to reconcile with existing ground ice stability and dynamics models. These high concentrations of ice may be the result of either the burial of surface snow during times of higher obliquity, initially high-porosity soils, or the migration of water along thin films. Measurement of the D/H ratio within the ice at the ice table and of the soil-to-ice ratio, as well as imaging ice-soil textures, will help determine if the ice is indeed young and if the models of the effects of climate change on the ground ice are reasonable. Copyright 2008 by the American Geophysical Union.
Dry chips versus green chips as furnish for medium-density fiberboard
Paul H. Short; George E. Woodson; Duane E. Lyon
1978-01-01
The fiber characteristics and the physical and mechanical properties of medium-density fiberboard (MDF), manufactured with pressure-refined fiber from green and partially dried raw material, were analyzed to determine if dry wood chips made a better furnish than green wood chips. Pressure-refining dry material produced coarser fiber than those obtained from green...
Dry chips versus green chips as furnish for medium-density fiberboard
P.H. Short; G.E. Woodson; D.E. Lyon
1978-01-01
The fiber characteristics and the physical and mechanical properties of medium-density fiberboard (MDF), manufactured with pressure-refined fiber from green and partially dried raw material, were analyzed to determine if dry wood chips made a better furnish than green wood chips. Pressure-refined dry material produced coarser fiber than those obtained from green...
Atmospheric Icing on Sea Structures,
1984-04-01
structures causes many safety risks and inconve- niences. Ship icing has been recognized as a serious problem for a long time and has been discussed in...during an icing storm. Also, as will be shown in the theory section, ice density and type may even vary in constant environmental con- ditions, so...oeiousn aret otn cmalcurglatie for the roplet thabhaecth mdianrvolme dater ofltheug drEt distfriton.ec Ths mehode givese fairlyraccurateyresultsron
Modeling KBOs Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies
NASA Astrophysics Data System (ADS)
Malamud, U.; Prialnik, D.
2015-10-01
We use a one-dimensional adaptive-grid thermal evolution code to model intermediate sized Kuiper belt objects Charon, Orcus and Salacia and compare their measured bulk densities with those resulting from evolutionary calculations at the end of 4.6 Gyr. Our model assumes an initial homogeneous composition of mixed ice and rock, and follows the multiphase flow of water through the porous rocky medium, consequent differentiation and aqueous chemical alterations in the rock. Heating sources include long-lived radionuclides, serpentinization reactions, release of gravitational potential energy due to compaction, and crystallization of amorphous ice. The density profile is calculated by assuming hydrostatic equilibrium to be maintained through changes in composition, pressure and temperature. To this purpose, we construct an equation of state suitable for porous icy bodies with radii of a few hundred km, based on the best available empirical studies of ice and rock compaction, and on comparisons with rock porosities in Earth analog and Solar System silicates. We show that the observed bulk densities can be reproduced by assuming the same set of initial and physical parameters, including the same rock/ice mass ratio for all three bodies. We conclude that the mass of the object uniquely determines the evolution of porosity, and thus explains the observed differences in bulk density. The final structure of all three objects is differentiated, with an inner rocky core, and outer ice-enriched mantle. The degree of differentiation, too, is determined by the object's mass.
NASA Astrophysics Data System (ADS)
Malamud, Uri; Prialnik, Dina
2015-01-01
We use a one-dimensional adaptive-grid thermal evolution code to model Kuiper belt objects Charon, Orcus and Salacia and compare their measured bulk densities with those resulting from evolutionary calculations at the end of 4.6 Gyr. Our model assumes an initial homogeneous composition of mixed ice and rock, and follows the multiphase flow of water through the porous rocky medium, consequent differentiation and aqueous chemical alterations in the rock. Heating sources include long-lived radionuclides, serpentinization reactions, release of gravitational potential energy due to compaction, and crystallization of amorphous ice. The density profile is calculated by assuming hydrostatic equilibrium to be maintained through changes in composition, pressure and temperature. To this purpose, we construct an equation of state suitable for porous icy bodies with radii of a few hundred km, based on the best available empirical studies of ice and rock compaction, and on comparisons with rock porosities in Earth analog and Solar System silicates. We show that the observed bulk densities can be reproduced by assuming the same set of initial and physical parameters, including the same rock/ice mass ratio for all three bodies. We conclude that the mass of the object uniquely determines the evolution of porosity, and thus explains the observed differences in bulk density. The final structure of all three objects is differentiated, with an inner rocky core, and outer ice-enriched mantle. The degree of differentiation, too, is determined by the object's mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I
2013-01-01
It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaricmore » temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the alpha-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.« less
NASA Astrophysics Data System (ADS)
Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I.; Zhang, Yang; Liu, Kao-Hsiang
2013-02-01
It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the α-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.
Ice polyamorphism in the minimal Mercedes-Benz model of water.
Cartwright, Julyan H E; Piro, Oreste; Sánchez, Pedro A; Sintes, Tomás
2012-12-28
We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.
Ice polyamorphism in the minimal Mercedes-Benz model of water
NASA Astrophysics Data System (ADS)
Cartwright, Julyan H. E.; Piro, Oreste; Sánchez, Pedro A.; Sintes, Tomás
2012-12-01
We investigate ice polyamorphism in the context of the two-dimensional Mercedes-Benz model of water. We find a first-order phase transition between a crystalline phase and a high-density amorphous phase. Furthermore, we find a reversible transformation between two amorphous structures of high and low density; however, we find this to be a continuous and not an abrupt transition, as the low-density amorphous phase does not show structural stability. We discuss the origin of this behavior and its implications with regard to the minimal generic modeling of polyamorphism.
Evidence From Hydrogen Isotopes in Meteorites for a Martian Permafrost
NASA Technical Reports Server (NTRS)
Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.
2014-01-01
Fluvial landforms on Mars suggest that it was once warm enough to maintain persistent liquid water on its surface. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have investigated the evolution of surface water/ ice and its interaction with the atmosphere by measurements of hydrogen isotope ratios (D/H: deuterium/ hydrogen) of martian meteorites. Hydrogen is a major component of water (H2O) and its isotopes fractionate significantly during hydrological cycling between the atmosphere, surface waters, ground ice, and polar cap ice. Based on in situ ion microprobe analyses of three geochemically different shergottites, we reported that there is a water/ice reservoir with an intermediate D/H ratio (delta D = 1,000?2500 %) on Mars. Here we present the possibility that this water/ice reservoir represents a ground-ice/permafrost that has existed relatively intact over geologic time.
Wave-ice interaction, observed and modelled
NASA Astrophysics Data System (ADS)
Gemmrich, Johannes
2017-04-01
The need for wide-spread, up-to-date sea state predictions and observations in the emerging ice-free Arctic will further increase as the region will open up to marine operations. Wave models for arctic regions have to capture the additional wave physics associated with wave-ice interactions, and different prediction schemes have to be tested against observations. Here we present examples of spatial wave field parameters obtained from TerraSAR-X StripMap swaths in the southern Beaufort Sea taken as part of the "Arctic Sea State and Boundary Layer DRI". Fetch evolution of the significant wave height and length in open waters, and dominant wave lengths and the high frequency cut-off of the wave spectrum in ice are readily extracted from the SAR (synthetic aperture radar) data. A surprising result is that wave evolution in off-ice wind conditions is more rapidly than the fetch evolution in off-land cases, suggesting seeding of the wave field within the ice-covered region.
A Novel Concrete-Based Sensor for Detection of Ice and Water on Roads and Bridges
Aljuboori, Mohammed
2017-01-01
Hundreds of people are killed or injured annually in the United States in accidents related to ice formation on roadways and bridge decks. In this paper, a novel embedded sensor system is proposed for the detection of black ice as well as wet, dry, and frozen pavement conditions on roads, runways, and bridges. The proposed sensor works by detecting changes in electrical resistance between two sets of stainless steel poles embedded in the concrete sensor to assess surface and near-surface conditions. A preliminary decision algorithm is developed that utilizes sensor outputs indicating resistance changes and surface temperature. The sensor consists of a 102-mm-diameter, 38-mm-high, concrete cylinder. Laboratory results indicate that the proposed sensor can effectively detect surface ice and wet conditions even in the presence of deicing chlorides and rubber residue. This sensor can further distinguish black ice from ice that may exist within concrete pores. PMID:29240710
Formation and decomposition of CO2-filled ice.
Massani, B; Mitterdorfer, C; Loerting, T
2017-10-07
Recently it was shown that CO 2 -filled ice is formed upon compression of CO 2 -clathrate hydrate. Here we show two alternative routes of its formation, namely, by decompression of CO 2 /ice VI mixtures at 250 K and by isobaric heating of CO 2 /high-density amorphous ice mixtures at 0.5-1.0 GPa above 200 K. Furthermore, we show that filled ice may either transform into the clathrate at an elevated pressure or decompose to "empty" hexagonal ice at ambient pressure and low temperature. This complements the literature studies in which decomposition to ice VI was favoured at high pressures and low temperatures.
Formation and decomposition of CO2-filled ice
NASA Astrophysics Data System (ADS)
Massani, B.; Mitterdorfer, C.; Loerting, T.
2017-10-01
Recently it was shown that CO2-filled ice is formed upon compression of CO2-clathrate hydrate. Here we show two alternative routes of its formation, namely, by decompression of CO2/ice VI mixtures at 250 K and by isobaric heating of CO2/high-density amorphous ice mixtures at 0.5-1.0 GPa above 200 K. Furthermore, we show that filled ice may either transform into the clathrate at an elevated pressure or decompose to "empty" hexagonal ice at ambient pressure and low temperature. This complements the literature studies in which decomposition to ice VI was favoured at high pressures and low temperatures.
Pyroclastic density current dynamics and associated hazards at ice-covered volcanoes
NASA Astrophysics Data System (ADS)
Dufek, J.; Cowlyn, J.; Kennedy, B.; McAdams, J.
2015-12-01
Understanding the processes by which pyroclastic density currents (PDCs) are emplaced is crucial for volcanic hazard prediction and assessment. Snow and ice can facilitate PDC generation by lowering the coefficient of friction and by causing secondary hydrovolcanic explosions, promoting remobilisation of proximally deposited material. Where PDCs travel over snow or ice, the reduction in surface roughness and addition of steam and meltwater signficantly changes the flow dynamics, affecting PDC velocities and runout distances. Additionally, meltwater generated during transit and after the flow has come to rest presents an immediate secondary lahar hazard that can impact areas many tens of kilometers beyond the intial PDC. This, together with the fact that deposits emplaced on ice are rarely preserved means that PDCs over ice have been little studied despite the prevalence of summit ice at many tall stratovolcanoes. At Ruapehu volcano in the North Island of New Zealand, a monolithologic welded PDC deposit with unusually rounded clasts provides textural evidence for having been transported over glacial ice. Here, we present the results of high-resolution multiphase numerical PDC modeling coupled with experimentaly determined rates of water and steam production for the Ruapehu deposits in order to assess the effect of ice on the Ruapehu PDC. The results suggest that the presence of ice significantly modified the PDC dynamics, with implications for assessing the PDC and associated lahar hazards at Ruapehu and other glaciated volcanoes worldwide.
NASA Astrophysics Data System (ADS)
Diallo, Amadou O.
Optical techniques are used to determine the size, shape and many other properties of particles ranging from the micro to a nano-level. These techniques have endless applications. This research is based on a project assigned by a "Vendor" that wants anonymity. The Leica optical microscope and the Dark Field Polarizing Metallurgical Microscope is used to determine the size and count of ice crystals (Vendors products) in multiple time frames. Since the ice temperature influences, its symmetry and the shape is subject to changes at room temperature (300 K) and the atmospheric pressure that is exerted on the ice crystals varies. The ice crystals are in a mixture of water, electrolytes and carbon dioxide with the optical spectroscopy (Qpod2) and Spectra suite, the optical density of the ice crystals is established from the absorbance and transmission measurements. The optical density in this case is also referred to as absorption; it is plotted with respect to a frequency (GHz), wavelength (nm) or Raman shift (1/cm) which shows the light colliding with the ice particles and CO2. Depending on the peaks positions, it is possible to profile the ice crystal sizes using a mean distribution plots. The region of absorbency wavelength expected for the ice is in the visible range; the water molecules in the (UV) Ultra-violet range and the CO2 in the (IR) infrared region. It is also possible to obtain the reflection and transmission output as a percentage change with the wavelengths ranging from 200 to 1100 nm. The refractive index of the ice can be correlated to the density based on the optical acoustic theorem, or Mie Scattering Theory. The viscosity of the ice crystals and the solutions from which the ice crystals are made of as well are recorded with the SV-10 viscometer. The baseline viscosity is used as reference and set lower than that of the ice crystals. The Zeta potential of the particles present in the mixture are approximated by first finding the viscosity of the solution where the pH level contribute to the surface charges, afterward use Stoke's diameter to compute the settling velocity of the bubbles, or alternatively record it under the microscope. With those parameters in hand the surface charge of the bubble (zeta potential) is approximated.
Experimental evidence of low-density liquid water upon rapid decompression
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Shen, Guoyin
2018-01-01
Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140–165 K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. Together with the change in crystallization rate with temperature, the experimental evidence indicates that the LDN is a low-density liquid (LDL). The measured X-ray diffraction data show that the LDL is tetrahedrally coordinated with the tetrahedral network fully developed and clearly linked to low-density amorphous ices. On the other hand, there is a distinct difference in structure between the LDL and supercooled water or liquid water in terms of the tetrahedral order parameter. PMID:29440411
2008-03-01
behavior of moisture content-dry density Proctor curves......................................... 16 Figure 8. Moisture- density data scatter for an... density . Built-in higher order regression equations allow the user to visua- lize complete curves for Proctor density , as-built California Bearing Ratio...requirements involving soil are optimum moisture content (OMC) and maximum dry density (MDD) as determined from a laboratory compaction or Proctor test
NASA Astrophysics Data System (ADS)
Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank
2015-04-01
The formation of ice in atmospheric clouds has a substantial influence on the radiative properties of clouds as well as on the formation of precipitation. Therefore much effort has been made to understand and quantify the major ice formation processes in clouds. Immersion freezing has been suggested to be a dominant primary ice formation process in low and mid-level clouds (mixed-phase cloud conditions). It also has been shown that mineral dust particles are the most abundant ice nucleating particles in the atmosphere and thus may play an important role for atmospheric ice nucleation (Murray et al., 2012). Additionally, biological particles like bacteria and pollen are suggested to be potentially involved in atmospheric ice formation, at least on a regional scale (Murray et al., 2012). In recent studies for biological particles (SNOMAX and birch pollen), it has been demonstrated that freezing is induced by ice nucleating macromolecules and that an asymptotic value for the mass density of these ice nucleating macromolecules can be determined (Hartmann et al., 2013; Augustin et al., 2013, Wex et al., 2014). The question arises whether such an asymptotic value can also be determined for the ice active surface site density ns, a parameter which is commonly used to describe the ice nucleation activity of e.g., mineral dust. Such an asymptotic value for ns could be an important input parameter for atmospheric modeling applications. In the presented study, we therefore investigated the immersion freezing behavior of droplets containing size-segregated, monodisperse feldspar particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). For all particle sizes considered in the experiments, we observed a leveling off of the frozen droplet fraction reaching a plateau within the heterogeneous freezing temperature regime (T > -38°C) which was proportional to the particle surface area. Based on these findings, we could determine an asymptotic value for the ice active surface site density, which we named ns*, for the investigated feldspar sample. The comparison of these results with those of other studies elucidates the general feasibility of determining such an asymptotic value and also show that the value of ns* strongly depends on the method of the particle surface area determination. Acknowledgement This work is partly funded by the Federal Ministry of Education and Research (BMBF - project CLOUD 12) and by the German Research Foundation (DFG project WE 4722/1-1, part of the research unit INUIT, FOR 1525). D. Niedermeier acknowledges financial support from the Alexander von Humboldt-foundation. References Augustin et al.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989-11003, doi:10.5194/acp-13-10989-2013, 2013. Hartmann et al.: Immersion freezing of ice nucleation active protein complexes, Atmos. Chem. Phys., 13, 5751-5766, doi:10.5194/acp-13-5751-2013, 2013. Murray et al.: Ice nucleation by particles immersed in supercooled cloud droplets, Chem. Soc. Rev., 41, 6519-6554, 2012. Wex et al.: Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance, Atmos. Chem. Phys. Discuss., 14, 22321-22384, doi:10.5194/acpd-14-22321-2014, 2014.
Microwave signatures of snow and fresh water ice
NASA Technical Reports Server (NTRS)
Schmugge, T.; Wilheit, T. T.; Gloersen, P.; Meier, M. F.; Frank, D.; Dirmhirn, I.
1973-01-01
During March of 1971, the NASA Convair 990 Airborne Observatory carrying microwave radiometers in the wavelength range 0.8 to 21 cm was flown over dry snow with different substrata: Lake ice at Bear Lake in Utah; wet soil in the Yampa River Valley near Steamboat Springs, Colorado; and glacier ice, firm and wet snow on the South Cascade Glacier in Washington. The data presented indicate that the transparency of the snow cover is a function of wavelength. False-color images of microwave brightness temperatures obtained from a scanning radiometer operating at a wavelength of 1.55 cm demonstrate the capability of scanning radiometers for mapping snowfields.
Observed Melt Season Seismicity of Taylor Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Carmichael, J. D.; Pettit, E. C.; Creager, K. C.
2006-12-01
Sufficient evidence exists to suggest that interaction of crevasses and meltwater accelerates ice cliff disintegration of tidewater glaciers. It is not clear what role meltwater plays in calving characteristics from dry- based polar glaciers. We have obtained seismic data from a six-sensor seismic array deployed in October of 2004 near the terminus cliffs of Taylor Glacier, West Antarctica, to analyze near-cliff seismicity throughout a melt season. Discharge data from the adjacent Lawson stream suggests that dramatic increases in meltwater volume temporally correlate with changes in seismic character near ice cliffs. We calculated source-locations for ice-quake during hours of melting and re-freezing and found most large energy events to be located near the ice cliffs. The associated spectra and waveform characteristics are indicative of literature descriptions of crevassing events.
NASA Astrophysics Data System (ADS)
Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.
2013-12-01
Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.
Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method
NASA Astrophysics Data System (ADS)
Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan
Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.
Radar Detection of Layering in Ice: Experiments on a Constructed Layered Ice Sheet
NASA Astrophysics Data System (ADS)
Carter, L. M.; Koenig, L.; Courville, Z.; Ghent, R. R.; Koutnik, M. R.
2016-12-01
The polar caps and glaciers of both Earth and Mars display internal layering that preserves a record of past climate. These layers are apparent both in optical datasets (high resolution images, core samples) and in ground penetrating radar (GPR) data. On Mars, the SHARAD (Shallow Radar) radar on the Mars Reconnaissance Orbiter shows fine layering that changes spatially and with depth across the polar caps. This internal layering has been attributed to changes in fractional dust contamination due to obliquity-induced climate variations, but there are other processes that can lead to internal layers visible in radar data. In particular, terrestrial sounding of ice sheets compared with core samples have revealed that ice density and composition differences account for the majority of the radar reflectors. The large cold rooms and ice laboratory facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) provide us a unique opportunity to construct experimental ice sheets in a controlled setting and measure them with radar. In a CRREL laboratory, we constructed a layered ice sheet that is 3-m deep with a various snow and ice layers with known dust concentrations (using JSC Mars-1 basaltic simulant) and density differences. These ice sheets were profiled using a commercial GPR, at frequencies of 200, 400 and 900 MHz, to determine how the radar profile changes due to systematic and known changes in snow and ice layers, including layers with sub-wavelength spacing. We will report results from these experiments and implications for interpreting radar-detected layering in ice on Earth and Mars.
Controlling the physical form of mannitol in freeze-dried systems.
Mehta, Mehak; Bhardwaj, Sunny P; Suryanarayanan, Raj
2013-10-01
A potential drawback with the use of mannitol as a bulking agent is its existence as mannitol hemihydrate (MHH; C₆H₁₄O₆·0.5H₂O) in the lyophile. Once formed during freeze-drying, MHH dehydration may require secondary drying under aggressive conditions which can be detrimental to the stability of thermolabile components. If MHH is retained in the lyophile, the water released by MHH dehydration during storage has the potential to cause product instability. We systematically identified the conditions under which anhydrous mannitol and MHH crystallized in frozen systems with the goal of preventing MHH formation during freeze-drying. When mannitol solutions were cooled, the temperature of solute crystallization was the determinant of the physical form of mannitol. Based on low temperature X-ray diffractometry (using both laboratory and synchrotron sources), MHH formation was observed when solute crystallization occurred at temperatures ≤ -20 °C, while anhydrous mannitol crystallized at temperatures ≤ -10 °C. The transition temperature (anhydrate - MHH) appears to be ∼-15 °C. The use of a freeze-dryer with controlled ice nucleation technology enabled anhydrous mannitol crystallization at ∼-5 °C. Thus, ice crystallization followed by annealing at temperatures ≤ -10 °C can be an effective strategy to prevent MHH formation. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stroes-Gascoyne, Simcha; Hamon, Connie J.; Maak, Peter
Recent studies have suggested that microbial activity in highly compacted bentonite (⩾1600 kg/m 3) is severely suppressed. Therefore, it appears that the dry density of emplaced bentonite barriers in a geological repository for nuclear waste may be tailored such that a microbiologically unfavorable environment can be created adjacent to used fuel containers. This would ensure that microbiologically influenced corrosion is a negligible contributor to the overall corrosion process. However, this premise is valid only as long as the emplaced bentonite maintains a uniform high dry density (⩾1600 kg/m 3) because it has been shown that high dry density only suppresses microbial activity but not necessarily eliminates the viable microbial population in bentonite. In a repository, a reduction in the dry density of highly compacted bentonite may occur at a number of interface locations, such as placement gaps, contact regions with materials of different densities and contact points with water-carrying fractures in the rock. Experiments were carried out in our laboratory to examine the effects of a reduction in dry density (from 1600 kg/m 3 to about 1000 kg/m 3) on the recovery of microbial culturability in compacted bentonite. Results showed that upon expansion of compacted bentonite into a void, the resulting reduction in dry density stimulated or restored culturability of indigenous microbes. In a repository this would increase the possibility of in situ activity, which might be detrimental for the longevity of waste containers. Reductions in dry density, therefore, should be minimized or eliminated by adequate design and placement methods of compacted bentonite. Materials compliance models can be used to determine the required as-placed dry densities of bentonite buffer and gap fillings to achieve specific targets for long-term equilibrium dry densities for various container placement room designs. Locations where flowing fractures could be in contact with highly compacted bentonite should either be avoided or grouted adequately to limit contact between bentonite and flowing water. Even if localized enhanced microbial activity at interfaces remains of concern, despite adequate engineering and placement methods, the potential consequences can be assessed and quantified adequately by a combination of in situ activity measurements and modeling calculations.
Use of Vertically Integrated Ice in WRF-Based Forecasts of Lightning Threat
NASA Technical Reports Server (NTRS)
McCaul, E. W., jr.; Goodman, S. J.
2008-01-01
Previously reported methods of forecasting lightning threat using fields of graupel flux from WRF simulations are extended to include the simulated field of vertically integrated ice within storms. Although the ice integral shows less temporal variability than graupel flux, it provides more areal coverage, and can thus be used to create a lightning forecast that better matches the areal coverage of the lightning threat found in observations of flash extent density. A blended lightning forecast threat can be constructed that retains much of the desirable temporal sensitivity of the graupel flux method, while also incorporating the coverage benefits of the ice integral method. The graupel flux and ice integral fields contributing to the blended forecast are calibrated against observed lightning flash origin density data, based on Lightning Mapping Array observations from a series of case studies chosen to cover a wide range of flash rate conditions. Linear curve fits that pass through the origin are found to be statistically robust for the calibration procedures.
Searles, J A; Carpenter, J F; Randolph, T W
2001-07-01
In a companion paper we show that the freezing of samples in vials by shelf-ramp freezing results in significant primary drying rate heterogeneity because of a dependence of the ice crystal size on the nucleation temperature during freezing.1 The purpose of this study was to test the hypothesis that post-freezing annealing, in which the product is held at a predetermined temperature for a specified duration, can reduce freezing-induced heterogeneity in sublimation rates. In addition, we test the impact of annealing on primary drying rates. Finally, we use the kinetics of relaxations during annealing to provide a simple measurement of T(g)', the glass transition temperature of the maximally freeze-concentrated amorphous phase, under conditions and time scales most appropriate for industrial lyophilization cycles. Aqueous solutions of hydroxyethyl starch (HES), sucrose, and HES:sucrose were either frozen by placement on a shelf while the temperature was reduced ("shelf-ramp frozen") or by immersion into liquid nitrogen. Samples were then annealed for various durations over a range of temperatures and partially lyophilized to determine the primary drying rate. The morphology of fully dried liquid nitrogen-frozen samples was examined using scanning electron microscopy. Annealing reduced primary drying rate heterogeneity for shelf-ramp frozen samples, and resulted in up to 3.5-fold increases in the primary drying rate. These effects were due to increased ice crystal sizes, simplified amorphous structures, and larger and more numerous holes on the cake surface of annealed samples. Annealed HES samples dissolved slightly faster than their unannealed counterparts. Annealing below T(g)' did not result in increased drying rates. We present a simple new annealing-lyophilization method of T(g)' determination that exploits this phenomenon. It can be carried out with a balance and a freeze-dryer, and has the additional advantage that a large number of candidate formulations can be evaluated simultaneously.
49 CFR 173.199 - Category B infectious substances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... materials except— (i) Refrigerants, such as dry ice or liquid nitrogen, as authorized under paragraph (d) of... must maintain their integrity at the temperature of the refrigerant used, as well as the temperatures...
... as triggers include: Cold air Dry air Air pollution High pollen counts Chlorine in swimming pools Chemicals used with ice rink resurfacing equipment Respiratory infections or other lung disease Activities with extended periods of deep breathing, such ...
THIEMANN, TARA; NELMS, BRITTANY; REISEN, WILLIAM K.
2011-01-01
Vegetation patterns and the presence of large numbers of nesting herons and egrets significantly altered the number of host-seeking Culex tarsalis Coquillett (Diptera: Culicidae) collected at dry ice-baited traps. The numbers of females collected per trap night at traps along the ecotone of Eucalyptus stands with and without a heron colony were always greater or equal to numbers collected at traps within or under canopy. No Cx. tarsalis were collected within or under Eucaplytus canopy during the peak heron nesting season, even though these birds frequently were infected with West Nile virus and large number of engorged females could be collected at resting boxes. These data indicate a diversion of host-seeking females from traps to nesting birds reducing sampling efficiency. PMID:21661310
Calving of Talyor Glacier, Dry Valleys, Antarctica
NASA Astrophysics Data System (ADS)
Carmichael, J. D.; Pettit, E. C.; Creager, K. C.; Hallet, B.
2007-12-01
Calving of tide-water glaciers has received considerable attention, with seismic arrays in Alaska, Greenland, and Antarctica devoted to their observation. In these environments, ice cliffs are directly coupled to oceanic temperatures. The land-based polar glaciers of the McMurdo Dry Valleys in Antarctica represent a simpler environment unaffected directly by water contact where other factors can be isolated. In particular, summer calving events of Taylor Glacier are observed to consist of precursory activity including crack growth, cliff overhang, and active seismicity at least 1 hour before collapse. We propose that collapse occurs only after a stress threshold has been crossed, evident from 'pre-calving' of ice from the cliff base 1-3 days prior to the major event. We provide photographic, seismic, and temperature data to illustrate the thermal and stress landscape for land-based calving of polar glaciers.
Utilizing commercial microwave for rapid and effective immunostaining.
Owens, Katrina; Park, Ji H; Kristian, Tibor
2013-09-30
There is an accumulating literature demonstrating the application of microwaves across a wide spectrum of histological techniques. Although exposure to microwaves for short periods resulted in substantial acceleration of all procedures this technique still is not adopted widely. In part, this may be due to concerns over solutions that will avoid induction of thermal damage to the tissue when using standard microwave. Here, we offer a cooling setup that can be used with conventional microwave ovens. We utilized dry ice for effective cooling during microwave irradiation of tissue samples. To prevent overheating, the cups with tissue during exposure to microwaves were surrounded with powdered dry ice. Since the dry ice does not touch the walls of the cups, freezing is prevented. Overheating is avoided by alternating the microwave treatment with 1-2 min time periods when the cups are cooled outside of the microwave oven. This technique was used on mouse brain sections that were immunostained with microglia-specific CD68 antiserum and astrocyte labeling GFAP antibody. Both standard and microwave-assisted immonolabeling gave comparable results visualizing cells with fine processes and low background signal. Short incubation time in the microwave requires high concentrations of antibody for tissue immunostaining. We show that by prolonging the microwaving procedure we were able to reduce the antibody concentration to the levels used in standard immunostaining protocol. In summary, our technique gives a possibility to use a conventional microwave for rapid and effective immunolabeling resulting in reduced amount of antibody required for satisfactory immunostaining. Published by Elsevier B.V.
Reconstruction of Monsoon Driven South China Sea Surface Ocean Circulation using Coral Δ14C
NASA Astrophysics Data System (ADS)
Goodkin, N.; Bolton, A.; Karnauskas, K. B.; Hughen, K. A.; Griffin, S.; Druffel, E. R. M.
2016-12-01
The need to improve our understanding of annual and decadal climate behavior in the South China Sea is increasingly important, as this region includes the largest population density globally but encompasses few climate records. Here we present a record of annually resolved Δ14C from a coral collected off the coast of Nha Trang, Vietnam (12°12'49.90″N, 109°18'17.51″E), that reveals a significant correlation to regional winter sea level pressure (SLP) and sea surface temperature (SST), and extends back more than 400 years. Coral Δ14C during thermonuclear bomb testing indicates the presence of wet-season (summer) upwelling, demonstrated by low Δ14C values for both baseline and peak values relative to other records in the region (Bolton et al., 2016, Radiocarbon). However, annually resolved pre-bomb Δ14C correlates significantly to regional dry-season (winter) SLP and SST, indicating that annual variability is driven by changes to the East Asian Winter Monsoon (EAWM) and subsequent down-welling at this site. Spectral density is focused at 25, 11.8, 7, 4, and 3.2 years per cycle reflecting a range of influences on surface advection variability including the EAWM (D'Arrigo et al., 2005, GRL) and the El Nino Southern Oscillation (ENSO). Spectral power at all of these frequencies decreases following the Little Ice Age ( 1600-1850?) to today, indicating that wind driven surface advection was more variable when hemispheric temperatures were cooler. Decadal variance in the past 100 years is significantly correlated to variance records of the Arctic Oscillation (AO, Thompson and Wallace, 1989, GRL), suggesting that increasing variance in the EAWM may be tied to increasing variance of the AO during the Little Ice Age and vice versa.
Reconstructing thermal properties of firn at Summit, Greenland from a temperature profile
NASA Astrophysics Data System (ADS)
Giese, A. L.; Hawley, R. L.
2013-12-01
Thermodynamic properties of firn are important factors when considering energy balance and temperature-dependent physical processes in the near-surface of glaciers. Of particular interest is thermal diffusivity, which can take a range of values and which governs both the temperature gradient and its evolution through time. Given that temperature is a well-established driver of firn densification, a better understanding of heat transfer will permit greater accuracy in the compaction models essential for interpreting inter-annual and seasonal ice surface elevation changes detected by airborne and satellite altimetry. Due to its dependence on microstructure, diffusivity can vary significantly by location. Rather than directly measuring diffusivity or one of its proxies (e.g. density, hardness, shear strength), this study inverts the heat equation to reconstruct diffusivity values. This is a less logistically-intensive approach which circumvents many of the challenges associated with imperfect proxies and snow metamorphism during measurement. Hourly records (May 2004 - July 2008) from 8 thermistors placed in the top 10 m at Summit, Greenland provide temperature values for Summit's firn, which is broadly representative of firn across the ice sheet's dry snow zone. In this study, we use both physical analysis and a finite-difference numerical model to determine a diffusivity magnitude and gradient; we find that diffusivity of Summit firn falls in the lower end of the range expected from local density and temperature conditions alone (i.e. 15 - 36 m^2/a for firn at -30C). Further, we assess the utility of our modeling approach, explore the validity of assuming bulk conductive heat transfer when modeling temperature changes in non-homogeneous firn, and investigate the implications of a low-end diffusivity value for surface compaction modeling in Greenland.
NASA Astrophysics Data System (ADS)
Demuth, M. N.; Marshall, H.; Morris, E. M.; Burgess, D. O.; Gray, L.
2009-12-01
As the Earth's glaciers and ice sheets are subjected to the effects of recent and predicted warming, the distribution of their glaciological facies zones will alter. Percolation and wet snow facies zones will, in general, move upwards; encroaching upon, for some glacier configurations, regions of dry snow facies. Meltwater percolation and internal accumulation processes that characterize these highly variable facies may confound reliable estimates of surface mass budgets based on traditional point measurements alone. If the extents of these zones are indeed increasing, as has been documented through recent analysis of QuickScat data for the ice caps of the Canadian Arctic, then the certainty of glacier mass budget estimates using traditional techniques may be degraded to an as yet un-quantified degree. Indeed, the application of remote sensing, in particular that utilizing repeat altimetry to retrieve surface mass budget estimates, is also subject to the complexity of glacier facies from the standpoint of their near-surface stratigraphy, density variations and rates of compaction. We first review the problem of measuring glacier mass budgets in the context of nested scales of variability, where auto-correlation structure varies with the scale of observation. We then consider specifically firn subject to percolation and describe the application of high-resolution instruments to characterize variability at the field-scale. The data collected include measurements of micro-topography, snow hardness, and snow density and texture; retrieved using airborne scanning lidar, a snow micro-penetrometer, neutron probe and ground-penetrating radars. The analysis suggests corresponding scales of correlation as it concerns the influence of antecedent conditions (surface roughness and hardness, and stratigraphic variability) and post-depositional processes (percolation and refreezing of surface melt water).
Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A. Levent; Kizilel, Seda
2014-01-01
Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite. PMID:24516593
Changes in corneal epithelial layer inflammatory cells in aqueous tear-deficient dry eye.
Lin, Hui; Li, Wei; Dong, Nuo; Chen, Wensheng; Liu, Jing; Chen, Lelei; Yuan, Hongxia; Geng, Zhixin; Liu, Zuguo
2010-01-01
To investigate the morphology, distribution, and density of inflammatory cells in the corneal epithelium of aqueous tear-deficient dry eye. Thirty-two patients with non-Sjögren's syndrome (NSS) dry eye, 14 patients with Sjögren's syndrome (SS) dry eye, and 33 healthy volunteers were studied. In vivo laser scanning confocal microscopy was used to investigate both Langerhans cell (LCs) and leukocyte distribution and density in the peripheral and central corneal epithelium. LC morphology was also evaluated. Multifactor regression analysis assessed whether there is a correlation between clinical manifestations and inflammatory cell densities. LCs were present in both central (34.9 +/- 5.7 cells/mm(2)) and peripheral (90.7 +/- 8.2 cells/mm(2)) parts of the normal corneal epithelium. Moreover, LC density increased dramatically in the central corneal epithelium in patients with NSS (89.8 +/- 10.8 cells/mm(2)) and SS (127.9 +/- 23.7 cells/mm(2)). The ratio of LCs with obvious processes was much higher in patients with dry eye than in healthy volunteers. LC density also increased in peripheral corneal epithelium in patients with SS, but not in those with NSS. Leukocyte density in normal corneal epithelium was very low, whereas it increased in the central corneal epithelium (4.6 +/- 1.0 cells/mm(2)) in NSS and in both central (49.0 +/- 12.9 cells/mm(2)) and peripheral (84.2 +/- 36.8 cells/mm(2)) corneal epithelium in SS. Densities of LCs and leukocytes showed significant correlation with the severity found in clinical evaluation. The LC and leukocyte changes in the corneal epithelium suggest their involvement in aqueous tear-deficient dry eye pathophysiology. In vivo dynamic assessment of central corneal inflammatory cell density may serve as an indicator of dry eye severity and provide new insight for dry eye treatment.
Landscape Change and Microbial Response in the McMurdo Dry Valleys, Antarctica: Preliminary Results
NASA Astrophysics Data System (ADS)
Fountain, A. G.; Levy, J.; Gooseff, M. N.; Van Horn, D. J.; Obryk, M.; Pettersson, R.; Telling, J. W.; Glennie, C. L.
2017-12-01
Permafrost in the McMurdo Dry Valleys (MDV), Antarctica is ubiquitous with active layer depths ranging from a few cm at the highest elevations to 1 m near sea level. Although many landscapes in this region have been considered stable over millennia, ad-hoc field observations have documented extreme geomorphic changes in the valley bottoms over the past decade. To assess these changes across the region, we compared a lidar dataset surveyed in the austral summers of 2001-2002 against one surveyed in 2014-2015. Results showed that the vertical resolution of the surveys was < 0.1m. However, a mounting bias of the NASA sensor reduced the resolution of the elevation differences and we ignored differences < ±0.25 m. The surveys revealed large (>1m) landscape changes, including stream channel incision into buried ice deposits (implying the advection of heat by stream water locally degrades thermokarst) and slope failures in thermokarst landforms from block failure and insolation-driven retreat. Smaller changes (<0.5 m) were observed in stream channels where lateral bank erosion intercepted buried ice, or in thermokarst ponds. The magnitude and rate of change is much larger than observed previously in this otherwise stable and slowly changing environment. Biological surveys and experimental manipulations show that wetted soils host microbial communities different from those hosted by adjacent dry soils, and are hotspots of biodiversity highly susceptible to changing physical conditions. In all cases field-checked, the association of sediment and rock debris blanketing buried ice was noted, indicating these are the most vulnerable landscapes to climate warming. Ground penetrating radar mapping of buried ice showed, however, that not all buried ice is associated with landscape change due to the depth of burial, slope, and proximity to stream water. Similarly, modeling of soil temperatures suggests a spatial heterogeneity in warming rates across the valley bottom, as a consequence of microclimatic influences, topographic shading and moisture content. Collectively, these conditions imply that landscapes in the MDV will become progressively unstable in a warming future as heat is increasingly transported to greater depths in the valley floor, and that these changes are likely to significantly impact the associated microbial communities.
Sliding-surface-liquefaction of sand-dry ice mixture and submarine landslides
NASA Astrophysics Data System (ADS)
Fukuoka, H.; Tsukui, A.
2010-12-01
In the historic records of off-shore mega-earthquakes along the subduction zone offshore Japan, there are a lot of witnesses about large-scale burning of flammable gas possibly ejected from sea floor. This gas was supposed to be the dissolved methane hydrates (MH), which have been found in the soundings of IODP and other oceanology projects. Since the vast distribution of the BSR in the continental margins, a lot of papers have been published which pointed out the possibilities of that gasification of those hydrates could have triggered gigantic submarine landslides. Global warming or large earthquake or magma intrusion may trigger extremely deep gigantic landslides in continental margins that which could cause catastrophic tsunami. However, recent triaxial compression tests on artificially prepared sand-MH-mixture samples revealed that the they have slightly higher strength than the ones of only sands and MH’s endothermal characteristics may resist against accelerating shear and large-displacement landslides as well. While, the stress-controlled undrained ring shear apparatuses have been developed by Sassa and Fukuoka at Disaster Prevention Research Institute, Kyoto University to reproduce subaerial landslides induced by earthquakes and rainfalls. Using the apparatuses, they found localized liquefaction phenomenon along the deep saturated potential sliding surface due to excess pore pressure generation during the grain crushing induced bulk volume change. This phenomenon was named as “sliding surface liquefaction.” Similar sudden large pore pressure generation was observed in pore pressure control test simulating rain-induced landslides. In this paper, authors examined the shear behavior of the dry sand-dry ice mixture under constant normal stress and shear speed control tests using the latest ring shear apparatus. Sample was mixture of silica sands and dry-ice pellets (frozen carbon-dioxide). Those mixtures are often used for studying the mechanism of the methane hydrates in laboratories because no explosion protection facility is required. In order to prevent rapid gasification, the specimen was prepared without water. Applied total normal stress was 200 kPa and initial normal stress was maintained at about 70 kPa by slightly opening the drainage valve to vent pressured CO2 gas. When the sample was sheared at 30 cm/s, the stress path reached failure line of friction angle of about 37 degrees immediately. However, excess pore air pressure increased soon after and the stress path moved to the origin along the failure line. This means rapid shearing generates frictional heat and it accelerates the gasification of dry ice quickly. On the other hand, crushing of pellets may contribute to increase the total surface area of dry ice and to acceleration of gasification, to some extent. Authors are conducting to examine the velocity weakening characteristics of the samples and upcoming results will give more detail of the mechanism. But this sliding-surface-liquefaction in the mixture supports the possibility of similar accelerating displacement in the sand-MH mixture or boundaries between MH and sand layer induced by certain strong ground motion under sea floor.
In situ observations of a high-pressure phase of H2O ice
Chou, I.-Ming; Blank, J.G.; Goncharov, A.F.; Mao, Ho-kwang; Hemley, R.J.
1998-01-01
A previously unknown solid phase of H2O has been identified by its peculiar growth patterns, distinct pressure-temperature melting relations, and vibrational Raman spectra. Morphologies of ice crystals and their pressure-temperature melting relations were directly observed in a hydrothermal diamond-anvil cell for H2O bulk densities between 1203 and 1257 kilograms per cubic meter at temperatures between -10??and 50??C. Under these conditions, four different ice forms were observed to melt: two stable phases, ice V and ice VI, and two metastable phases, ice IV and the new ice phase. The Raman spectra and crystal morphology are consistent with a disordered anisotropic structure with some similarities to ice VI.
Zakharov, Boris; Fisyuk, Alexander; Fitch, Andy; Watier, Yves; Kostyuchenko, Anastasia; Varshney, Dushyant; Sztucki, Michael; Boldyreva, Elena; Shalaev, Evgenyi
2016-07-01
Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dadic, R.; Mullen, P.; Schneebeli, M.; Brandt, R. E.; Fitzpatric, M.; Carns, R.; Warren, S. G.
2012-04-01
The albedos of snow and ice surfaces are, because of their positive feedback, crucial to the initiation, continuation, and termination of a snowball event, as well as for determining the ice thickness on the ocean. Despite the name, Snowball Earth would not have been entirely snow-covered. As on modern Earth, evaporation would exceed precipitation over much of the tropical ocean. After a transient period with sea ice, the dominant ice type would probably be sea-glaciers flowing in from higher latitude. As they flowed equatorward into the tropical region of net sublimation, their surface snow and subsurface firn would sublimate away, exposing bare glacier ice to the atmosphere and to solar radiation. This ice would be freshwater (meteoric) ice, which originated from snow and firn, so it would contain numerous air bubbles, which determine the albedo. The modern surrogate for this type of ice (glacier ice exposed by pure sublimation, which has never experienced melting), are the bare-ice surfaces of the East Antarctic Ice Sheet near the Trans-Antarctic Mountains. These areas have been well mapped because of their importance in the search for meteorites. A transect across an icefield can potentially sample ice of different ages that has traveled to different depths en route to the sublimation front. We examined a 6-km transect from snow to ice near the Allan Hills (77 S, 158 E, 2000 m ASL), measuring spectral albedo and collecting 1-m core samples. This short transect is a surrogate of a north-south transect across many degrees of latitude on the Snowball ocean. Surfaces on the transect transitioned through the sequence: new snow - old snow - firn - young white ice - old blue ice. The transect from snow to ice showed a systematic progression of decreasing albedo at all wavelengths, as well as decreasing specific surface area (SSA; ratio of air-ice interface area to ice mass) and increasing density. The measured spectral albedos are integrated over wavelength and weighted by the spectral solar flux to obtain broadband albedos. These range from 0.8 for snow to 0.55 for blue ice. Although what determines the albedo is the SSA of bubbles or snow grains, the broadband albedo also shows a systematic relation to the snow or ice density, suggesting that density might serve as a surrogate variable that will be easier to predict than SSA in an ice-sheet model, using a parameterization for firn densification. The ice cores were analyzed by micro-CT (computer tomography) for bubble morphology, cracks (mainly thermal cracks), and SSA. The SSA is used in a radiative transfer model to explain the measured albedo spectra. We found that thermal cracks in the Allan Hills may be more important than in the equatorial region of Snowball Earth. We tried to separate the effects of cracks from original air bubbles by separately computing their individual SSAs in the CT images, and using those SSAs in the albedo model. These methods allow us to estimate a range of albedos for the different possible regions and climatic conditions on low latitudes of Snowball Earth.
Ice Mapping Observations in Galactic Star-Forming Regions: the AKARI Legacy
NASA Astrophysics Data System (ADS)
Fraser, Helen Jane; Suutarinnen, Aleksi; Noble, Jennifer
2015-08-01
It is becoming increasingly clear that explaining the small-scale distribution of many gas-phase molecules relies on our interpretation of the complex inter-connectivity between gas- and solid-phase interstellar chemistries. Inputs to proto-stellar astrochemical models are required that exploit ice compositions reflecting the historical physical conditions in pre-stellar environments when the ices first formed. Such data are required to translate the near-universe picture of ice-composition to our understanding of the role of extra-galactic ices in star-formation at higher redshifts.Here we present the first attempts at multi-object ice detections, and the subsequent ice column density mapping. The AKARI space telescope was uniquely capable of observing all the ice features between 2 and 5 microns, thereby detecting H2O, CO and CO2 ices concurrently, through their stretching vibrational features. Our group has successfully extracted an unprecedented volume of ice spectra from AKARI, including sources with not more than 2 mJy flux at 3 microns, showing:(a) H2O CO and CO2 ices on 30 lines of sight towards pre-stellar and star-forming cores, which when combined with laboratory experiments indicate how the chemistries of these three ices are interlinked (Noble et al (2013)),(b) ice maps showing the spatial distribution of water ice across 12 pre-stellar cores, in different molecular clouds (Suutarinnen et al (2015)), and the distribution of ice components within these cores on 1000 AU scales (Noble et al (2015)),(c) over 200 new detections of water ice, mostly on lines of sight towards background sources (> 145), indicating that water ice column density has a minimum value as a function of Av, but on a cloud-by-cloud basis typically correlates with Av, and dust emissivity at 250 microns (Suutarinnen et al (2015)),(d) the first detections of HDO ice towards background stars (Fraser et al (2015)).We discuss whether these results support the picture of a generic chemical evolutionary scenario for interstellar ice chemistry, ranging from pre-stellar to extra-galactic scales.
Coastal-change and glaciological map of the Ross Island area, Antarctica
Ferrigno, Jane G.; Foley, Kevin M.; Swithinbank, Charles; Williams, Richard S.
2010-01-01
Reduction in the area and volume of Earth?s two polar ice sheets is intricately linked to changes in global climate and to the resulting rise in sea level. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council. On the basis of these recommendations, the U.S. Geological Survey used its archive of satellite images to document changes in the cryospheric coastline of Antarctica and analyze the glaciological features of the coastal regions. The Ross Island area map is bounded by long 141? E. and 175? E. and by lat 76? S. and 81? S. The map covers the part of southern Victoria Land that includes the northwestern Ross Ice Shelf, the McMurdo Ice Shelf, part of the polar plateau and Transantarctic Mountains, the McMurdo Dry Valleys, northernmost Shackleton Coast, Hillary Coast, the southern part of Scott Coast, and Ross Island. Little noticeable change has occurred in the ice fronts on the map, so the focus is on glaciological features. In the western part of the map area, the polar plateau of East Antarctica, once thought to be a featureless region, has subtle wavelike surface forms (megadunes) and flow traces of glaciers that originate far inland and extend to the coast or into the Ross Ice Shelf. There are numerous outlet glaciers. Glaciers drain into the McMurdo Dry Valleys, through the Transantarctic Mountains into the Ross Sea, or into the Ross Ice Shelf. Byrd Glacier is the largest. West of the Transantarctic Mountains are areas of blue ice, readily identifiable on Landsat images, that have been determined to be prime areas for finding meteorites. Three subglacial lakes have been identified in the map area. Because McMurdo Station, the main U.S. scientific research station in Antarctica, is located on Ross Island in the map area, many of these and other features in the area have been studied extensively. The paper version of this map is available for purchase from the USGS Store.
Geophysical Investigations of Habitability in Ice-Covered Ocean Worlds
NASA Astrophysics Data System (ADS)
Vance, Steven D.; Panning, Mark P.; Stähler, Simon; Cammarano, Fabio; Bills, Bruce G.; Tobie, Gabriel; Kamata, Shunichi; Kedar, Sharon; Sotin, Christophe; Pike, William T.; Lorenz, Ralph; Huang, Hsin-Hua; Jackson, Jennifer M.; Banerdt, Bruce
2018-01-01
Geophysical measurements can reveal the structures and thermal states of icy ocean worlds. The interior density, temperature, sound speed, and electrical conductivity thus characterize their habitability. We explore the variability and correlation of these parameters using 1-D internal structure models. We invoke thermodynamic consistency using available thermodynamics of aqueous MgSO4, NaCl (as seawater), and NH3; pure water ice phases I, II, III, V, and VI; silicates; and any metallic core that may be present. Model results suggest, for Europa, that combinations of geophysical parameters might be used to distinguish an oxidized ocean dominated by MgSO4 from a more reduced ocean dominated by NaCl. In contrast with Jupiter's icy ocean moons, Titan and Enceladus have low-density rocky interiors, with minimal or no metallic core. The low-density rocky core of Enceladus may comprise hydrated minerals or anhydrous minerals with high porosity.
NASA Technical Reports Server (NTRS)
Battaglia, A.; Mroz, K.; Lang, Tim; Tridon, F.; Tanelli, S.; Tian, Lin; Heymsfield, Gerald M.
2016-01-01
Due to the large natural variability of its microphysical properties, the characterization of solid precipitation is a longstanding problem. Since in situ observations are unavailable in severe convective systems, innovative remote sensing retrievals are needed to extend our understanding of such systems. This study presents a novel technique able to retrieve the density, mass, and effective diameter of graupel and hail in severe convection through the combination of airborne microwave remote sensing instruments. The retrieval is applied to measure solid precipitation properties within two convective cells observed on 2324 May 2014 over North Carolina during the IPHEx campaign by the NASA ER-2 instrument suite. Between 30 and 40 degrees of freedom of signal are associated with the measurements, which is insufficient to provide full microphysics profiling. The measurements have the largest impact on the retrieval of ice particle sizes, followed by ice water contents. Ice densities are mainly driven by a priori assumptions, though low relative errors in ice densities suggest that in extensive regions of the convective system, only particles with densities larger than 0.4 gcm3 are compatible with the observations. This is in agreement with reports of large hail on the ground and with hydrometeor classification derived from ground-based polarimetric radars observations. This work confirms that multiple scattering generated by large ice hydrometeors in deep convection is relevant for airborne radar systems already at Ku band. A fortiori, multiple scattering will play a pivotal role in such conditions also for Ku band spaceborne radars (e.g., the GPM Dual Precipitation Radar).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Soohaeng; Zeng, Xiao Cheng; Xantheas, Sotiris S.
2009-06-11
The melting temperature (Tm) of ice Ih was determined from constant enthalphy (NPH) Born-Oppenheimer Molecular Dynamics (BOMD) simulations to be 417±3 K for the Perdew-Burke-Ernzerhof (PBE) and 411±4 K for the Becke-Lee-Yang-Parr (BLYP) density functionals using a coexisting ice (Ih)-liquid phase at constant pressures of P = 2,500 and 10,000 bar and a density ρ = 1 g/cm3, respectively. This suggests that ambient condition simulations at ρ = 1 g/cm3 will rather describe a supercooled state that is overstructured when compared to liquid water. This work was supported by the US Department of Energy Office of Basic Energy Sciences' Chemicalmore » Sciences program. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.
2010-01-01
Robust mud detection is a critical perception requirement for Unmanned Ground Vehicle (UGV) autonomous offroad navigation. A military UGV stuck in a mud body during a mission may have to be sacrificed or rescued, both of which are unattractive options. There are several characteristics of mud that may be detectable with appropriate UGV-mounted sensors. For example, mud only occurs on the ground surface, is cooler than surrounding dry soil during the daytime under nominal weather conditions, is generally darker than surrounding dry soil in visible imagery, and is highly polarized. However, none of these cues are definitive on their own. Dry soil also occurs on the ground surface, shadows, snow, ice, and water can also be cooler than surrounding dry soil, shadows are also darker than surrounding dry soil in visible imagery, and cars, water, and some vegetation are also highly polarized. Shadows, snow, ice, water, cars, and vegetation can all be disambiguated from mud by using a suite of sensors that span multiple bands in the electromagnetic spectrum. Because there are military operations when it is imperative for UGV's to operate without emitting strong, detectable electromagnetic signals, passive sensors are desirable. JPL has developed a daytime mud detection capability using multiple passive imaging sensors. Cues for mud from multiple passive imaging sensors are fused into a single mud detection image using a rule base, and the resultant mud detection is localized in a terrain map using range data generated from a stereo pair of color cameras.
9 CFR 3.101 - Facilities, general.
Code of Federal Regulations, 2014 CFR
2014-01-01
... measures, on all sides of the enclosure not contained by dry land to fulfill the requirements of this.../or iced coolers for under 12 hours) must be used for perishable food. No substances that are known to...
9 CFR 3.101 - Facilities, general.
Code of Federal Regulations, 2011 CFR
2011-01-01
... measures, on all sides of the enclosure not contained by dry land to fulfill the requirements of this.../or iced coolers for under 12 hours) must be used for perishable food. No substances that are known to...
9 CFR 3.101 - Facilities, general.
Code of Federal Regulations, 2013 CFR
2013-01-01
... measures, on all sides of the enclosure not contained by dry land to fulfill the requirements of this.../or iced coolers for under 12 hours) must be used for perishable food. No substances that are known to...
9 CFR 3.101 - Facilities, general.
Code of Federal Regulations, 2012 CFR
2012-01-01
... measures, on all sides of the enclosure not contained by dry land to fulfill the requirements of this.../or iced coolers for under 12 hours) must be used for perishable food. No substances that are known to...
NASA Astrophysics Data System (ADS)
Soom, F.; Ulrich, C.; Dafflon, B.; Wu, Y.; Kneafsey, T. J.; López, R. D.; Peterson, J.; Hubbard, S. S.
2016-12-01
The Arctic tundra with its permafrost dominated soils is one of the regions most affected by global climate change, and in turn, can also influence the changing climate through biogeochemical processes, including greenhouse gas release or storage. Characterization of shallow permafrost distribution and characteristics are required for predicting ecosystem feedbacks to a changing climate over decadal to century timescales, because they can drive active layer deepening and land surface deformation, which in turn can significantly affect hydrological and biogeochemical responses, including greenhouse gas dynamics. In this study, part of the Next-Generation Ecosystem Experiment (NGEE-Arctic), we use X-ray computed tomography (CT) to estimate wet bulk density of cores extracted from a field site near Barrow AK, which extend 2-3m through the active layer into the permafrost. We use multi-dimensional relationships inferred from destructive core sample analysis to infer organic matter density, dry bulk density and ice content, along with some geochemical properties from nondestructive CT-scans along the entire length of the cores, which was not obtained by the spatially limited destructive laboratory analysis. Multi-parameter cross-correlations showed good agreement between soil properties estimated from CT scans versus properties obtained through destructive sampling. Soil properties estimated from cores located in different types of polygons provide valuable information about the vertical distribution of soil and permafrost properties as a function of geomorphology.
Manning, D P; Jones, C
2001-04-01
Research over a period of about 18 years has shown that a microcellular polyurethane known as AP66033 is the most slip-resistant safety footwear soling material on oily and wet surfaces. In recent years it has been replaced in commercially available footwear by a dual density polyurethane (DDP) which has a dense outer layer and a soft microcellular backing. This research programme has compared the slip resistance of AP66033 with DDP and some rubber solings. In addition, data were obtained on the effects of soling and floor roughness, and floor polish on slip resistance. Some data were also obtained for walking on ice. The coefficient of friction (CoF) of the solings was measured on 19 water wet surfaces in three conditions: (I) when the solings were new, (II) following abrasion to create maximum roughness and (III) after polishing. The CoF was measured on four oily surfaces after each of 11 abrasion or polishing treatments. The profound effects of the roughening of all soles and of floor roughness on the CoF were demonstrated for both wet and oily surfaces. The superior slip resistance of AP66033 was confirmed for oily and wet conditions; however, some rubbers not suitable for safety footwear achieved higher CoF values on wet floors. All of the floor polishes reduced the CoF of all floors when contaminated with water. The mean CoF of DDP solings was lower than the mean for AP66033 on wet and oily surfaces. No safety footwear soling provided adequate grip on dry ice and the CoF was reduced by water on the ice. A rubber used for rock climbing footwear was one of the most slip-resistant solings on wet surfaces in the laboratory but recorded the lowest CoF on ice. It is concluded that the incidence of occupational injuries caused by slipping could be reduced by the following: (A) returning to safety footwear soled with the microcellular polyurethane AP66033; (B) abrading all new and smooth footwear solings with a belt sanding machine coated with P100 grit; (C) avoiding the use of floor polish; (D) informing the general public about the poor slip resistance of ordinary footwear on ice and the lowering of slip resistance in cold weather.
Stabilities of Dried Suspensions of Influenza Virus Sealed in a Vacuum or Under Different Gases
Greiff, Donald; Rightsel, Wilton A.
1969-01-01
Suspensions of purified influenza virus, dried to a 1.4% content of residual moisture by sublimation of ice in vacuo, were sealed in a vacuum or under different gases of high purity. The stabilities of the several preparations were determined by an accelerated storage test. Based on the times predicted for the dried preparations stored at different temperatures to lose 1 log of infectivity titer, the order of stabilities in relation to sealing in vacuum or under different gases was as follows: helium > hydrogen > vacuum > argon > nitrogen > oxygen > carbon dioxide. Images PMID:5797938
Mechanisms of basal ice formation in polar glaciers: An evaluation of the apron entrainment model
NASA Astrophysics Data System (ADS)
Fitzsimons, Sean; Webb, Nicola; Mager, Sarah; MacDonell, Shelley; Lorrain, Regi; Samyn, Denis
2008-06-01
Previous studies of polar glaciers have argued that basal ice can form when these glaciers override and entrain ice marginal aprons that accumulate adjacent to steep ice cliffs. To test this idea, we have studied the morphology, structure, composition, and deformation of the apron and basal ice at the terminus of Victoria Upper Glacier in the McMurdo dry valleys, which are located on the western coast of the Ross Sea at 77°S in southern Victoria Land, Antarctica. Our results show that the apron has two structural elements: an inner element that consists of strongly foliated ice that has a steep up-glacier dip, and an outer element that lacks a consistent foliation and has a down-glacier, slope-parallel dip. Although strain measurements show that the entire apron is deforming, the inner element is characterized by high strain rates, whereas relatively low rates of strain characterize the outer part of the apron. Co-isotopic analyses of the ice, together with analysis of solute chemistry and sedimentary characteristics, show that the apron is compositionally different from the basal ice. Our observations show that aprons may become deformed and partially entrained by advancing glaciers. However, such an ice marginal process does not provide a satisfactory explanation for the origin of basal ice observed at the ice margin. Our interpretation of the origin of basal ice is that it is formed by subglacial processes, which are likely to include deformation and entrainment of subglacial permafrost.
Estimating historical snag density in dry forests east of the Cascade Range
Richy J. Harrod; William L. Gaines; William E. Hartl; Ann. Camp
1998-01-01
Estimating snag densities in pre-European settlement landscapes (i.e., historical conditions) provides land managers with baseline information for comparing current snag densities. We propose a method for determining historical snag densities in the dry forests east of the Cascade Range. Basal area increase was calculated from tree ring measurements of old ponderosa...
Sink or Swim: Ions and Organics at the Ice-Air Interface.
Hudait, Arpa; Allen, Michael T; Molinero, Valeria
2017-07-26
The ice-air interface is an important locus of environmental chemical reactions. The structure and dynamics of the ice surface impact the uptake of trace gases and kinetics of reactions in the atmosphere and snowpack. At tropospheric temperatures, the ice surface is partially premelted. Experiments indicate that ions increase the liquidity of the ice surface but hydrophilic organics do not. However, it is not yet known the extent of the perturbation solutes induce at the ice surface and what is the role of the disordered liquid-like layer in modulating the interaction between solutes and their mobility and aggregation at the ice surface. Here we use large-scale molecular simulations to investigate the effect of ions and glyoxal, one of the most abundant oxygenated volatile organic compounds in the atmosphere, on the structure, dynamics, and solvation properties of the ice surface. We find that the premelted surface of ice has unique solvation properties, different from those of liquid water. The increase in surface liquidity resulting from the hydration of ions leads to a water-mediated attraction of ions at the ice surface. Glyoxal molecules, on the other hand, perturb only slightly the surface of ice and do not experience water-driven attraction. They nonetheless accumulate as dry agglomerates at the ice surface, driven by direct interactions between the organic molecules. The enhanced attraction and clustering of ions and organics at the ice surface may play a significant role in modulating the mechanism and rate of heterogeneous chemical reactions occurring at the surface of atmospheric ice particles.
Bibliography on Cold Regions Science and Technology Volume 53, Part 2
1999-12-01
A.T. Claud, C. 53-1504 Interaction of ice floes with ships on offshore structures Case study of antarctic mesolow [1995, eng] 53-329 Coffey, M.T. [1992...in a dry-snow Dethloff, K Biogeochemistry of antarctic sea ice: a case study on avalanche [1998, eng] 53-2018 Climate variability in a nonlinear...concrete with respect to Effect of the Endicott Causeway on the population of Ferguson, M.E. frost resistance: a case study [1998, eng] 53-952 broad
Smith, H J; Dieser, M; McKnight, D M; SanClements, M D; Foreman, C M
2018-05-14
Vast expanses of Earth's surface are covered by ice, with microorganisms in these systems affecting local and global biogeochemical cycles. We examined microbial assemblages from habitats fed by glacial meltwater within the McMurdo Dry Valleys, Antarctica, and on the west Greenland Ice Sheet, (GrIS) evaluating potential physicochemical factors explaining trends in community structure. Microbial assemblages present in the different Antarctic dry valley habitats were dominated by Sphingobacteria and Flavobacteria, while Gammaproteobacteria and Sphingobacteria prevailed in west GrIS supraglacial environments. Microbial assemblages clustered by location (Canada Glacier, Cotton Glacier, west GrIS) and were separated by habitat type (i.e. ice, cryoconite holes, supraglacial lakes, sediment, and stream water). Community dissimilarities were strongly correlated with dissolved organic matter (DOM) quality. Microbial meltwater assemblages were most closely associated with different protein-like components of the DOM pool. Microbes in environments with mineral particles (i.e. stream sediments, cryoconite holes) were linked to DOM containing more humic-like fluorescence. Our results demonstrate the establishment of distinct microbial communities within ephemeral glacial meltwater habitats, with DOM-microbe interactions playing an integral role in shaping communities on local and polar spatial scales.
Method of altering the effective bulk density of solid material and the resulting product
Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.
1983-01-01
A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.
Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.
Calonne, Neige; Geindreau, Christian; Flin, Frédéric
2014-11-26
Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.
Glacial geomorphic evidence for a late climatic change on Mars
NASA Technical Reports Server (NTRS)
Kargel, J. S.; Strom, R. G.
1992-01-01
In a series of preliminary reports, we documented evidence of former glacial epochs on Mars. Apparent glacial landforms seemed to be concentrated primarily at middle to high southern latitudes. We now have additional evidence supporting the view that Martian glaciation appears to have been more extensive than previously recognized. The growth and collapse of ice sheets on Mars seems closely analogous to the growth and decline of Earth's great Pleistocene ice sheets. This implies that climate change was probably somewhat comparable on the two planets, although in the case of Mars the entire planet seems to have changed rapidly to a cold, dry present-day environment after the collapse of the ice sheets.
Modeling of surface roughness effects on glaze ice accretion
NASA Technical Reports Server (NTRS)
Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark
1990-01-01
A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.
Preventing Ice Before it Forms
NASA Technical Reports Server (NTRS)
2006-01-01
In the late 1990s, a team of engineers at Ames Research Center invented an anti-icing fluid to keep ice from building up on airplane wings. Ice on wings can be a serious safety hazard, especially during takeoff, when a sheet of ice the thickness of a compact disc can reduce lift by 25 percent or more. The typical approach to clearing off the ice is to use a deicing solution once the ice has built up. The fluid created by the Ames team, though, when applied to a dry surface, prevents the ice from even forming a surface bond, which saves deicing time and money, while also preventing excessive use of chemical solvents. If, however, the solution is not applied before ice forms, it also serves as a traditional deicing formula. The formula contains propylene glycol, which has a very low freezing point, and a thickener, which helps the fluid adhere to the surface. Ice gathers on top of the formula, and then it can be wiped off with little effort. This thickening agent, a pseudo-plastic, sprays on as a liquid, like lemonade, gels like a lemon sherbet, turns back to a liquid when wiped, and then gels again into its sherbet consistency when left to solidify. The sherbet-gel stage is especially important when the formula is sprayed onto a vertical or steeped surface, as it clings better than a liquid would.
Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica
Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V.; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P.; Brook, Edward J.
2014-01-01
We present successful 81Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) 85Kr and 39Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the 81Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130–115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA 81Kr analysis requires a 40–80-kg ice sample; as sample requirements continue to decrease, 81Kr dating of ice cores is a future possibility. PMID:24753606
Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica.
Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J
2014-05-13
We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.
Data report for the Siple Coast (Antarctica) project
NASA Technical Reports Server (NTRS)
Bindschadler, R. A.; Stephenson, S. N.; Roberts, E. P.; Macayeal, D. R.; Lindstrom, D. R.
1988-01-01
This report presents data collected during three field seasons of glaciological studies in the Antarctica and describes the methods employed. The region investigated covers the mouths of Ice Streams B and C (the Siple Coast) and Crary Ice Rise on the Ross Ice Shelf. Measurements included in the report are as follows: surface velocity and deformation from repeated satellite geoceiver positions; surface topography from optical levelling; radar sounding of ice thickness; accumulation rates; near-surface densities and temperature profiles; and mapping from aerial photography.
Ssang Yong 2014 Remote Sensing Experiment
2016-05-25
determination of the wet field density of soil. Dry density is calculated after the laboratory measurement of the field moisture content...28 Figure 5-9. Drying ovens used in field laboratory established...seasons. Winters are usually long, cold, and dry . Summers are generally short, hot, and humid. Spring and autumn are pleasant but short in duration
Global Map of Thermal Neutrons
2002-05-28
Observations by NASA Mars Odyssey spacecraft show a global view of Mars in low energy, or thermal, neutrons. Thermal neutrons are sensitive to the presence of hydrogen and the presence of carbon dioxide, in this case dry ice frost.
Polyamorphism in tetrahedral substances: Similarities between silicon and ice
NASA Astrophysics Data System (ADS)
Garcez, K. M. S.; Antonelli, A.
2015-07-01
Tetrahedral substances, such as silicon, water, germanium, and silica, share various unusual phase behaviors. Among them, the so-called polyamorphism, i.e., the existence of more than one amorphous form, has been intensively investigated in the last three decades. In this work, we study the metastable relations between amorphous states of silicon in a wide range of pressures, using Monte Carlo simulations. Our results indicate that the two amorphous forms of silicon at high pressures, the high density amorphous (HDA) and the very high density amorphous (VHDA), can be decompressed from high pressure (˜20 GPa) down to the tensile regime, where both convert into the same low density amorphous. Such behavior is also observed in ice. While at high pressure (˜20 GPa), HDA is less stable than VHDA, at the pressure of 10 GPa both forms exhibit similar stability. On the other hand, at much lower pressure (˜5 GPa), HDA and VHDA are no longer the most stable forms, and, upon isobaric annealing, an even less dense form of amorphous silicon emerges, the expanded high density amorphous, again in close similarity to what occurs in ice.
Low temperature simulation of subliming boundary layer flow in Jupiter atmosphere
NASA Technical Reports Server (NTRS)
Chen, C. J.
1976-01-01
A low-temperature approximate simulation for the sublimation of a graphite heat shield under Jovian entry conditions is studied. A set of algebraic equations is derived to approximate the governing equation and boundary conditions, based on order-of-magnitude analysis. Characteristic quantities such as the wall temperature and the subliming velocity are predicted. Similarity parameters that are needed to simulate the most dominant phenomena of the Jovian entry flow are also given. An approximate simulation of the sublimation of the graphite heat shield is performed with an air-dry-ice model. The simulation with the air-dry-ice model may be carried out experimentally at a lower temperature of 3000 to 6000 K instead of the entry temperature of 14,000 K. The rate of graphite sublimation predicted by the present algebraic approximation agrees to the order of magnitude with extrapolated data. The limitations of the simulation method and its utility are discussed.
DDT poisoning in a Cooper's hawk collected in 1980
Prouty, Richard M.; Pattee, Oliver H.; Schmeling, Shelia K.
1982-01-01
In April 1980, a Cooper's hawk (Accipiter cooperii) was found on the ground in Lakewood, Colorado, unable to fly and in convulsion. The bird died shortly thereafter. The hawk was packed in dry ice and shipped air express to the Fish and Wildlife Service, U. S. Department of the Interior, National Wildlife Health Laboratory, Madison, Wisconsin, for necropsy. Following necropsy, the brain, gastrointestinal tract, and remaining carcass except skin, feet, wings, liver, and kidney were packed in dry ice and shipped air express to the Patuxent Wildlife Research Center, Laurel, Maryland, for chemical residue analysis. Because the bird's behavior before death suggested some form of poisoning, the kidney was assayed for thallium, the liver for lead, and the gastrointestinal tract for strychnine, sodium fluoroacetate, and arsenic. When these assays proved negative, the bird was analyzed for organochlorine pesticides. Necropsy findings and pesticide residue analyses are reported here.
Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley
Mikucki, J. A.; Auken, E.; Tulaczyk, S.; Virginia, R. A.; Schamper, C.; Sørensen, K. I.; Doran, P. T.; Dugan, H.; Foley, N.
2015-01-01
The occurrence of groundwater in Antarctica, particularly in the ice-free regions and along the coastal margins is poorly understood. Here we use an airborne transient electromagnetic (AEM) sensor to produce extensive imagery of resistivity beneath Taylor Valley. Regional-scale zones of low subsurface resistivity were detected that are inconsistent with the high resistivity of glacier ice or dry permafrost in this region. We interpret these results as an indication that liquid, with sufficiently high solute content, exists at temperatures well below freezing and considered within the range suitable for microbial life. These inferred brines are widespread within permafrost and extend below glaciers and lakes. One system emanates from below Taylor Glacier into Lake Bonney and a second system connects the ocean with the eastern 18 km of the valley. A connection between these two basins was not detected to the depth limitation of the AEM survey (∼350 m). PMID:25919365
Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon
Shi, Meng; Ji, Xing; Feng, Shangsheng; Yang, Qingzhen; Lu, Tian Jian; Xu, Feng
2016-01-01
The Leidenfrost phenomenon of liquid droplets levitating and dancing when placed upon a hot plate due to propulsion of evaporative vapor has been extended to many self-propelled circumstances. However, such self-propelled Leidenfrost devices commonly need a high temperature for evaporation and a structured solid substrate for directional movements. Here we observed a “cold Leidenfrost phenomenon” when placing a dry ice device on the surface of room temperature water, based on which we developed a controllable self-propelled dry ice hovercraft. Due to the sublimated vapor, the hovercraft could float on water and move in a programmable manner through designed structures. As demonstrations, we showed that the hovercraft could be used as a cargo ship or a petroleum contamination collector without consuming external power. This phenomenon enables a novel way to utilize programmable self-propelled devices on top of room temperature water, holding great potential for applications in energy, chemical engineering and biology. PMID:27338595
Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon.
Shi, Meng; Ji, Xing; Feng, Shangsheng; Yang, Qingzhen; Lu, Tian Jian; Xu, Feng
2016-06-24
The Leidenfrost phenomenon of liquid droplets levitating and dancing when placed upon a hot plate due to propulsion of evaporative vapor has been extended to many self-propelled circumstances. However, such self-propelled Leidenfrost devices commonly need a high temperature for evaporation and a structured solid substrate for directional movements. Here we observed a "cold Leidenfrost phenomenon" when placing a dry ice device on the surface of room temperature water, based on which we developed a controllable self-propelled dry ice hovercraft. Due to the sublimated vapor, the hovercraft could float on water and move in a programmable manner through designed structures. As demonstrations, we showed that the hovercraft could be used as a cargo ship or a petroleum contamination collector without consuming external power. This phenomenon enables a novel way to utilize programmable self-propelled devices on top of room temperature water, holding great potential for applications in energy, chemical engineering and biology.
Hauquier, Freija; Ingels, Jeroen; Gutt, Julian; Raes, Maarten; Vanreusel, Ann
2011-01-01
Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely to influence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide. The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (>2000 individuals per 10 cm(2)) and showed below-surface maxima at a sediment depth of 2-3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable (13)C isotopic signals (ranging between -21.97±0.86‰ and -24.85±1.89‰) were indicative of a phytoplankton-derived food source. The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine nematodes and may be responsible for the successful colonisation by this single species.
Avalanche weak layer shear fracture parameters from the cohesive crack model
NASA Astrophysics Data System (ADS)
McClung, David
2014-05-01
Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0.08 N/m (non-linear) to 0.18 N/m (LEFM) for median slab density around 200 kg/m3. Schulson and Duval (2009) estimated the fracture energy of solid ice (mode I) to be about 0.22-1 N/m which yields rough theoretical limits of about 0.05- 0.2 N/m for density 200 kg/m3 when the ice volume fraction is accounted for. Mode I results from lab tests (Sigrist, 2006) gave 0.1 N/m (200 kg/m3). The median effective mode II shear fracture toughness was calculated between 0.31 to 0.35 kPa(m)1/2 for the avalanche data. All the fracture energy results are much lower than previously calculated from propagation saw tests (PST) results for a weak layer collapse model (1.3 N/m) (Schweizer et al., 2011). The differences are related to model assumptions and estimates of the effective slab modulus. The calculations in this paper apply to quasi-static deformation and mode II weak layer fracture whereas the weak layer collapse model is more appropriate for dynamic conditions which follow fracture initiation (McClung and Borstad, 2012). References: Bažant, Z.P. et al. (2003) Size effect law and fracture mechanics of the triggering of dry snow slab avalanches, J. Geophys. Res. 108(B2): 2119, doi:10.1029/2002JB))1884.2003. McClung, D.M. and C.P. Borstad (2012) Deformation and energy of dry snow slabs prior to fracture propagation, J. Glaciol. 58(209), 2012 doi:10.3189/2012JoG11J009. Schulson, E.M and P. Duval (2009) Creep and fracture of ice, Cambridge University Press, 401 pp. Schweizer, J. et al. (2011) Measurements of weak layer fracture energy, Cold Reg. Sci. and Tech. 69: 139-144. Sigrist, C. (2006) Measurement of fracture mechanical properties of snow and application to dry snow slab avalanche release, Ph.D thesis: 16736, ETH, Zuerich: 139 pp.
Assessing the Impact of Sublimation on the Stable Water Isotope Signal of Surface Ice
NASA Astrophysics Data System (ADS)
Dennis, D. P.; Ehrenfeucht, S.; Marchant, D. R.
2017-12-01
Sublimation is often a significant, if not the dominant, mechanism for ablation in polar and high elevation glacial systems. Previous field studies on firn and ice have suggested that sublimation can enrich the stable water isotope (δD and δ18O) signatures of these exposed materials. Several additional studies have attempted to replicate this effect through laboratory experiments. However, neither the magnitude of alteration caused by sublimation nor the maximum depth at which ice is affected are well-constrained. The effect of sublimation-induced alteration on the original meteoric signal relative to other post-depositional processes is additionally unknown. Here, we present the results of an experimental study on the effect of sublimation on stable water isotope ratios in surface ice. Using high-resolution data, we attempt to assess the suitability of δD and δ18O in near-surface and exposed ice for use as paleoclimate proxies. This type of analysis is particularly useful for future studies of ice from hyper-arid polar regions like the Antarctic McMurdo Dry Valleys, and may be extended to icy planetary bodies, including surface ice on Mars.
Response of Antarctic cryoconite microbial communities to light.
Bagshaw, Elizabeth A; Wadham, Jemma L; Tranter, Martyn; Perkins, Rupert; Morgan, Alistair; Williamson, Christopher J; Fountain, Andrew G; Fitzsimons, Sean; Dubnick, Ashley
2016-06-01
Microbial communities on polar glacier surfaces are found dispersed on the ice surface, or concentrated in cryoconite holes and cryolakes, which are accumulations of debris covered by a layer of ice for some or all of the year. The ice lid limits the penetration of photosynthetically available radiation (PAR) to the sediment layer, since the ice attenuates up to 99% of incoming radiation. This suite of field and laboratory experiments demonstrates that PAR is an important control on primary production in cryoconite and cryolake ecosystems. Increased light intensity increased efficiency of primary production in controlled laboratory incubations of debris from the surface of Joyce Glacier, McMurdo Dry Valleys, Antarctica. However, when light intensity was increased to levels near that received on the ice surface, without the protection of an ice lid, efficiency decreased and measurements of photophysiology showed that the communities suffered light stress. The communities are therefore well adapted to low light levels. Comparison with Arctic cryoconite communities, which are typically not covered by an ice lid for the majority of the ablation season, showed that these organisms were also stressed by high light, so they must employ strategies to protect against photodamage. © FEMS 2016.
Response of Antarctic cryoconite microbial communities to light
Bagshaw, Elizabeth A.; Wadham, Jemma L.; Tranter, Martyn; Perkins, Rupert; Morgan, Alistair; Williamson, Christopher J.; Fountain, Andrew G.; Fitzsimons, Sean; Dubnick, Ashley
2016-01-01
Microbial communities on polar glacier surfaces are found dispersed on the ice surface, or concentrated in cryoconite holes and cryolakes, which are accumulations of debris covered by a layer of ice for some or all of the year. The ice lid limits the penetration of photosynthetically available radiation (PAR) to the sediment layer, since the ice attenuates up to 99% of incoming radiation. This suite of field and laboratory experiments demonstrates that PAR is an important control on primary production in cryoconite and cryolake ecosystems. Increased light intensity increased efficiency of primary production in controlled laboratory incubations of debris from the surface of Joyce Glacier, McMurdo Dry Valleys, Antarctica. However, when light intensity was increased to levels near that received on the ice surface, without the protection of an ice lid, efficiency decreased and measurements of photophysiology showed that the communities suffered light stress. The communities are therefore well adapted to low light levels. Comparison with Arctic cryoconite communities, which are typically not covered by an ice lid for the majority of the ablation season, showed that these organisms were also stressed by high light, so they must employ strategies to protect against photodamage. PMID:27095815
Critical Fracture Toughness Measurements of an Antarctic Ice Core
NASA Astrophysics Data System (ADS)
Christmann, Julia; Müller, Ralf; Webber, Kyle; Isaia, Daniel; Schader, Florian; Kippstuhl, Sepp; Freitag, Johannes; Humbert, Angelika
2014-05-01
Fracture toughness is a material parameter describing the resistance of a pre-existing defect in a body to further crack extension. The fracture toughness of glacial ice as a function of density is important for modeling efforts aspire to predict calving behavior. In the presented experiments this fracture toughness is measured using an ice core from Kohnen Station, Dronning Maud Land, Antarctica. The samples were sawed in an ice lab at the Alfred Wegener Institute in Bremerhaven at -20°C and had the dimensions of standard test samples with thickness 14 mm, width 28 mm and length 126 mm. The samples originate from a depth of 94.6 m to 96 m. The grain size of the samples was also identified. The grain size was found to be rather uniform. The critical fracture toughness is determined in a four-point bending approach using single edge V-notch beam samples. The initial notch length was around 2.5 mm and was prepared using a drilling machine. The experimental setup was designed at the Institute of Materials Science at Darmstadt. In this setup the force increases linearly, until the maximum force is reached, where the specific sample fractures. This procedure was done in an ice lab with a temperature of -15°C. The equations to calculate the fracture toughness for pure bending are derived from an elastic stress analysis and are given as a standard test method to detect the fracture toughness. An X-ray computer tomography (CT scanner) was used to determine the ice core densities. The tests cover densities from 843 kg m-3 to 871 kg m-3. Thereby the influence of the fracture toughness on the density was analyzed and compared to previous investigations of this material parameter. Finally the dependence of the measured toughness on thickness, width, and position in the core cross-section was investigated.
Twenty-three years of height changes on Antarctic Peninsula ice shelves
NASA Astrophysics Data System (ADS)
Adusumilli, S.; Siegfried, M. R.; Paolo, F. S.; Fricker, H. A.; Padman, L.
2017-12-01
Over the past few decades, several ice shelves in the Antarctic Peninsula (AP), the northernmost region of Antarctica, have collapsed or undergone significant retreat. While the disintegration of these ice shelves appears to be linked primarily to hydrofracture initiated by widespread surface melting, it has also been proposed that some of these ice shelves could have weakened prior to collapse due to increased basal melt rates induced by thermal ocean forcing. To determine the long-term evolution of ice shelves in this region, we compiled data from four radar altimeters (ERS-1, ERS-2, Envisat, and CryoSat-2) spanning twenty-three years (1994-2017). Over Larsen C, the largest AP ice shelf, a surface lowering of around 1 m between 1992 and 2009 has been partially offset by a height increase of around 0.75 m between 2009 and 2017. We use four independent, repeat airborne laser altimetry surveys from NASA's Operation IceBridge to confirm the recent height increase, and a firn densification model (IMAU-FDM) forced by a regional atmospheric model (RACMO), to show that the recent height increase is primarily due to density changes in the firn column. In contrast, George VI Ice Shelf in the Bellingshausen Sea remains in a state of continuous thinning through excess basal melting attributed to higher fluxes of ocean heat under the ice shelf. Changes such as these, which can occur on seasonal to decadal timescales, can potentially impact the dynamics of the grounded ice sheet behind the floating ice shelves, consequently affecting sea-level rise. Therefore, it is vital to continue the long-term, uninterrupted monitoring of ice shelves through the modern satellite and airborne altimetry missions, and lengthen our existing time series to investigate the climate drivers causing changes in the ice shelves from above (accumulation and density changes) and below (basal melting).
Lunar and Planetary Science XXXV: Special Session: Mars Climate Change
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars Climate Change" contained the following reports:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape; Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.
Lunar and Planetary Science XXXV: Special Session: Mars Climate Change
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars Climate Change" included the following topics:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.
Pehkonen, K S; Roos, Y H; Miao, S; Ross, R P; Stanton, C
2008-06-01
The frozen and dehydrated state transitions of lactose and trehalose were determined and studied as factors affecting the stability of probiotic bacteria to understand physicochemical aspects of protection against freezing and dehydration of probiotic cultures. Lactobacillus rhamnosus GG was frozen (-22 or -43 degrees C), freeze-dried and stored under controlled water vapour pressure (0%, 11%, 23% and 33% relative vapour pressure) conditions. Lactose, trehalose and their mixture (1 : 1) were used as protective media. These systems were confirmed to exhibit relatively similar state transition and water plasticization behaviour in freeze-concentrated and dehydrated states as determined by differential scanning calorimetry. Ice formation and dehydrated materials were studied using cold-stage microscopy and scanning electron microscopy. Trehalose and lactose-trehalose gave the most effective protection of cell viability as observed from colony forming units after freezing, dehydration and storage. Enhanced cell viability was observed when the freezing temperature was -43 degrees C. State transitions of protective media affect ice formation and cell viability in freeze-drying and storage. Formation of a maximally freeze-concentrated matrix with entrapped microbial cells is essential in freezing prior to freeze-drying. Freeze-drying must retain a solid amorphous state of protectant matrices. Freeze-dried matrices contain cells entrapped in the protective matrices in the freezing process. The retention of viability during storage seems to be controlled by water plasticization of the protectant matrix and possibly interactions of water with the dehydrated cells. Highest cell viability was obtained in glassy protective media. This study shows that physicochemical properties of protective media affect the stability of dehydrated cultures. Trehalose and lactose may be used in combination, which is particularly important for the stabilization of probiotic bacteria in dairy systems.
Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica.
Schmidt, S K; Lynch, R C; King, A J; Karki, D; Robeson, M S; Nagy, L; Williams, M W; Mitter, M S; Freeman, K R
2011-03-07
High-elevation valleys in dry areas of the Himalayas are among the most extreme, yet least explored environments on Earth. These barren, rocky valleys are subjected to year-round temperature fluctuations across the freezing point and very low availability of water and nutrients, causing previous workers to hypothesize that no photoautotrophic life (primary producers) exists in these locations. However, there has been no work using modern biogeochemical or culture-independent molecular methods to test the hypothesis that photoautotrophs are absent from high Himalayan soil systems. Here, we show that although microbial biomass levels are as low as those of the Dry Valleys of Antarctica, there are abundant microbial photoautotrophs, displaying unexpected phylogenetic diversity, in barren soils from just below the permanent ice line of the central Himalayas. Furthermore, we discovered that one of the dominant algal clades from the high Himalayas also contains the dominant algae in culture-independent surveys of both soil and ice samples from the Dry Valleys of Antarctica, revealing an unexpected link between these environmentally similar but geographically very distant systems. Phylogenetic and biogeographic analyses demonstrated that although this algal clade is globally distributed to other high-altitude and high-latitude soils, it shows significant genetic isolation by geographical distance patterns, indicating local adaptation and perhaps speciation in each region. Our results are the first to demonstrate the remarkable similarities of microbial life of arid soils of Antarctica and the high Himalayas. Our findings are a starting point for future comparative studies of the dry valleys of the Himalayas and Antarctica that will yield new insights into the cold and dry limits to life on Earth.
A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases
NASA Astrophysics Data System (ADS)
Zyvoloski, G.; Lucia, A.; Lewis, K. C.
2011-12-01
The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water, and NaCl in permafrost conditions are presented to illustrate the predictive capabilities of the multi-scale GHC equation. In particular, we show that the GHC equation correctly predicts 1) The density of 1h ice and methane hydrate to within 1%. 2) The melting curve for hexagonal ice. 3) The hydrate-gas phase co-existence curve. 4) Various phase equilibrium involving ice and hydrate phases. We also show that the GHC equation approach can be readily incorporated into subsurface flow simulation programs like FEHM to predict the behavior of permafrost and other reservoirs where ice and/or hydrates are present. Many geometric illustrations are used to elucidate key concepts. References A. Lucia, A Multi-Scale Gibbs Helmholtz Constrained Cubic Equation of State. J. Thermodynamics: Special Issue on Advances in Gas Hydrate Thermodynamics and Transport Properties. Available on-line [doi:10.1155/2010/238365]. A. Lucia, B.M. Bonk, A. Roy and R.R. Waterman, A Multi-Scale Framework for Multi-Phase Equilibrium Flash. Comput. Chem. Engng. In press.
Qiu, Hu; Zeng, Xiao Cheng; Guo, Wanlin
2015-10-27
Phase behavior and the associated phase transition of water within inhomogeneous nanoconfinement are investigated using molecular dynamics simulations. The nanoconfinement is constructed by a flat bottom plate and a convex top plate. At 300 K, the confined water can be viewed as a coexistence of monolayer, bilayer, and trilayer liquid domains to accommodate the inhomogeneous confinement. With increasing liquid density, the confined water with uneven layers transforms separately into two-dimensional ice crystals with unchanged layer number and rhombic in-plane symmetry for oxygen atoms. The monolayer water undergoes the transition first into a puckered ice nanoribbon, and the bilayer water transforms into a rhombic ice nanoribbon next, followed by the transition of trilayer water into a trilayer ice nanoribbon. The sequential localized liquid-to-solid transition within the inhomogeneous confinement can also be achieved by gradually decreasing the temperature at low liquid densities. These findings of phase behaviors of water under the inhomogeneous nanoconfinement not only extend the phase diagram of confined water but also have implications for realistic nanofluidic systems and microporous materials.
Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei
2014-02-01
To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).
Colonization of maritime glacier ice by bdelloid Rotifera.
Shain, Daniel H; Halldórsdóttir, Katrín; Pálsson, Finnur; Aðalgeirsdóttir, Guðfinna; Gunnarsson, Andri; Jónsson, Þorsteinn; Lang, Shirley A; Pálsson, Hlynur Skagfjörð; Steinþórssson, Sveinbjörn; Arnason, Einar
2016-05-01
Very few animal taxa are known to reside permanently in glacier ice/snow. Here we report the widespread colonization of Icelandic glaciers and ice fields by species of bdelloid Rotifera. Specimens were collected within the accumulation zones of Langjökull and Vatnajökull ice caps, among the largest European ice masses. Rotifers reached densities up to ∼100 individuals per liter-equivalent of glacier ice/snow, and were freeze-tolerant. Phylogenetic analyses indicate that glacier rotifers are polyphyletic, with independent ancestries occurring within the Pleistocene. Collectively, these data identify a previously undescribed environmental niche for bdelloid rotifers and suggest their presence in comparable habitats worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Clements, Aspen R.; Berk, Brandon; Cooke, Ilsa R.; Garrod, Robin T.
2018-02-01
Using an off-lattice kinetic Monte Carlo model we reproduce experimental laboratory trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature. Extrapolation of the model to conditions appropriate to protoplanetary disks and interstellar dark clouds indicate that these ices may be less porous than laboratory ices.
Friis Hills glacial history: an international collaboration to examine Miocene climate in Antarctica
NASA Astrophysics Data System (ADS)
Halberstadt, A. R. W.; Kowalewski, D. E.
2016-12-01
The Friis Hills, Antarctica (western McMurdo Dry Valleys) contain unique, well-preserved records of Miocene climate. These terrestrial deposits hold geomorphic clues for deciphering the glacial history in a region directly adjacent to the East Antarctic Ice Sheet. Stacked till sheets, interbedded with lake sediments and non-glacial deposits, reveal a complex history of ice flow and erosion throughout multiple glacial-interglacial cycles (Lewis and Ashworth, 2015). Fossiliferous beds containing Nothofagus, diatoms, algal cells, pollen, insects, and mosses provide past climatological constraints. The Friis Hills sustained multiple alpine glaciations as well as full ice-sheet development, recording glacial drainage reorganization and evidence of previous ice configurations that possibly overrode the Transantarctic Mountains (Lewis and Ashworth, 2015) exposing only scattered nunataks (i.e. a portion of Friis Hills). Lack of chronological control has previously hindered efforts to link the Friis Hills glacial history with regional context; a tephra deposit at the base of the glacial drifts currently provides a single age constraint within the drift deposits. To build upon previous studies, an international collaboration between the USAP, Antarctic New Zealand, and the Italian Antarctic community proposes to core a paleo-lake in the center of the Friis Hills in November 2016, thereby acquiring one of the oldest continuous sedimentological records within the McMurdo Dry Valleys. Here we report discoveries from this year's fieldwork, and reconstruct paleoenvironment at the periphery of the East Antarctic Ice Sheet for the mid-early Miocene, a critical time when marine isotopic records indicate dramatic ice fluctuations. Ash within the sediment core stratigraphy will provide a more robust chronology for the region, and will also suggest possible outcrop locations of corresponding ash deposits to pursue while in the field. We anticipate that the Friis Hills stratigraphy will have the necessary chronological control for correlation with offshore marine records from the Ross Embayment, including the ANDRILL project.
Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends
NASA Astrophysics Data System (ADS)
Lübken, F.-J.; Berger, U.
2011-02-01
Latitudinal and interhemispheric differences of model results on trends in mesospheric ice layers and background conditions are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. Water vapor increases at noctilucent cloud (NLC) heights and decreases above due to increased freeze drying caused by temperature trends. There is no tendency for ice clouds in the Northern Hemisphere for extending farther southward with time. Trends of NLC albedo are similar to satellite measurements, but only if a time period longer than observations is considered. Ice cloud trends get smaller if albedo thresholds relevant to satellite instruments are applied, in particular at high polar latitudes. This implies that weak and moderate NLC is favored when background conditions improve for NLC formation, whereas strong NLC benefits less. Trends of ice cloud parameters are generally smaller in the Southern Hemisphere (SH) compared to the Northern Hemisphere (NH), consistent with observations. Trends in background conditions have counteracting effects on NLC: temperature trends would suggest stronger ice increase in the SH, and water vapor trends would suggest a weaker increase. Larger trends in NLC brightness or occurrence rates are not necessarily associated with larger (more negative) temperature trends. They can also be caused by larger trends of water vapor caused by larger freeze drying, which in turn can be caused by generally lower temperatures and/or more background water. Trends of NLC brightness and occurrence rates decrease with decreasing latitude in both hemispheres. The latitudinal variation of these trends is primarily determined by induced water vapor trends. Trends in NLC altitudes are generally small. Stratospheric temperature trends vary differently with altitude in the NH and SH but add up to similar trends at mesospheric cloud heights.
Wu, T-W; Cheng, F-P; Chen, I-H; Yang, C-H; Tsai, M-Y; Chang, M-H; Wang, J-H; Wu, J-T
2013-02-01
This study was to evaluate the combinatorial effect (14 treatments, A-N) of different Equex STM paste concentrations, cryoprotectants and the straw-freezing method on the post-thaw boar semen quality. Two ejaculates were collected from each of nine boars (three boars from each of three breeds). Semen was diluted in extenders with different concentrations of Equex STM paste and different cryoprotectants [glycerol or dimethylacetamide (DMA)] before cryopreserving via liquid nitrogen or dry ice. Motility, viability, percentage of spermatozoa with intense acrosomal staining and with normal morphology of post-thaw sperm were evaluated. The qualities of thawed semen were best preserved in treatment H (extender with 0.5% Equex STM paste and 5% glycerol and freezing by dry ice) and were worst in treatment B (extender with 0% Equex STM paste and 5% DMA and freezing by dry ice). Significant difference (p < 0.05) was present in post-thawed sperm motility (63% vs 27%), sperm viability (70% vs 33%) and sperm acrosomal integrity rate (68% vs 29%) between treatments H and B. However, sperm proportion with normal morphology showed no significant difference among treatments (66% vs 66%; p > 0.05). Moreover, statistical analysis suggests that no significant difference was present in semen quality among breed or individual donors (p > 0.05). These findings suggest that Equex STM paste improved the cryosurvival efficiency of boar sperm, and the favourable straw-freezing method changes between glycerol and DMA. © 2012 Blackwell Verlag GmbH.
Snow crystal imaging using scanning electron microscopy: III. Glacier ice, snow and biota
Rango, A.; Wergin, W.P.; Erbe, E.F.; Josberger, E.G.
2000-01-01
Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of -196??C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1-2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 ??m in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were easily imaged and studied. The low-temperature SEM sample collecting and handling methods proved to be operable in the field; the SEM analysis is applicable to glaciological studies and reveals details unattainable by conventional light microscopic methods.Low temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae and ice worms were also collected and imaged. The SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. The SEM has a great depth of field with a wide range of magnifying capabilities.
Hart, Kris M; Szpak, Michal T; Mahaney, William C; Dohm, James M; Jordan, Sean F; Frazer, Andrew R; Allen, Christopher C R; Kelleher, Brian P
2011-05-01
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography--mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.
NASA Technical Reports Server (NTRS)
Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.
2004-01-01
Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.
NASA Technical Reports Server (NTRS)
Casey, Kimberly A.; Polashenski, Chris M.; Chen, Justin; Tedesco, Marco
2017-01-01
We evaluate Greenland Ice Sheet (GrIS) surface reflectance and albedo trends using the newly released Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) products over the period 2001-2016. We find that the correction of MODIS sensor degradation provided in the new C6 data products reduces the magnitude of the surface reflectance and albedo decline trends obtained from previous MODIS data (i.e., Collection 5, C5). Collection 5 and 6 data product analysis over GrIS is characterized by surface (i.e., wet vs. dry) and elevation (i.e., 500-2000 m, 2000 m and greater) conditions over the summer season from 1 June to 31 August. Notably, the visible-wavelength declining reflectance trends identified in several bands of MODIS C5 data from previous studies are only slightly detected at reduced magnitude in the C6 versions over the dry snow area. Declining albedo in the wet snow and ice area remains over the MODIS record in the C6 product, albeit at a lower magnitude than obtained using C5 data. Further analyses of C6 spectral reflectance trends show both reflectance increases and decreases in select bands and regions, suggesting that several competing processes are contributing to Greenland Ice Sheet albedo change. Investigators using MODIS data for other ocean, atmosphere and/or land analyses are urged to consider similar re-examinations of trends previously established using C5 data.
Transferable model of water with variable molecular size
NASA Astrophysics Data System (ADS)
Kiss, Péter T.; Baranyai, András
2011-06-01
By decreasing the steepness of the repulsive wing in the intermolecular potential, one can extend the applicability of a water model to the high pressure region. Exploiting this trivial possibility, we published a polarizable model of water which provided good estimations not only of gas clusters, ambient liquid, hexagonal ice, but ice VII at very high pressures as well [A. Baranyai and P. Kiss, J. Chem. Phys. 133, 144109 (2010), 10.1063/1.3490660]. This straightforward method works well provided the closest O-O distance is reasonably shorter in the high pressure phase than in hexagonal ice. If these O-O distances are close to each other and we fit the interactions to obtain an accurate picture of hexagonal ice, we underestimate the density of the high-pressure phases. This can be overcome if models use contracted molecules under high external pressure.In this paper we present a method, which is capable to describe the contraction of water molecules under high pressure by using two simple repulsion-attraction functions. These functions represent the dispersion interaction under low pressure and high pressure. The switch function varies between 0 and 1 and portions the two repulsions among the individual particles. The argument of the switch function is a virial-type expression, which can be interpreted as a net force compressing the molecule. We calculated the properties of gas clusters, densities, and internal energies of ambient water, hexagonal ice, ice III, ice VI, and ice VII phases and obtained excellent match of experimental data.
NASA Astrophysics Data System (ADS)
Smiraglia, C.; Motta, M.; Vassena, G.; Diolaiuti, G.
2003-04-01
In Antartic coastal area, where the ice sheet and the large outlet glaciers do not reach the sea and where some rugged mountain chains are often present, many small glaciers can be found. They are the so called local or alpine type glaciers, which have their terminus ground-based such as the real alpine glaciers and rarely reach the main valley floors. They are practically isolated and independent from the supply flowing down from the plateau and their mass balance is mainly controlled by sublimation and aeolic erosion and accumulation. The glaciers closer to the coast are submitted to the melting as well, and when the terminus is cliff-shaped they are also affected by dry calving. The most known and studied Antarctic local glaciers are placed in the Dry Valleys region (Chinn, 1985), but this kind of glaciers is also diffused all along the Northern Victoria Land coastal region (Chinn and others, 1989). Since the first Italian Antarctic expedition (1985), many studies have been carried out on this type of glaciers, which can be usefull for detailed mass balance evaluations and for obtaining information about the effects of the present climatic dynamics on the Antarctic coastal environment (Baroni and Orombelli, 1987; Baroni and others, 1995; Meneghel, 1999; Vassena and others., 2001). The Strandline Glacier (74 41 S; 164 07 E), in particular is a small alpine glacier (0,79 kmq) on the coast of Terra Nova Bay, Northern Victoria Land; it is a cold glacier where accumulation and ablation basins are mainly controlled by wind processes. Its terminus forms in the central part a grounded ice cliff about 30 m high, about 130 m far from the sea. On that glacier mass balance, surface velocity and calving rate were measured. During the southern summer season 2000-2001 many topographycal profiles of the ice cliff were surveyed by using both classical topographical and glaciological methods (total station and stakes) and GPS technique. It was so possible to detect the short term changes in ice cliff position (a retreat of 10 m in the central part of the front on 15 days) caused by crack propagation from the glacier surface and calving of ice flakes from the cliff face; during the warmest days also melting occurred along glacier surface and on the cliff. In the same period of 15 days ice thickness near the cliff boundary decreased about 30 cm. The collected measures regard also surface velocities and meteorological data . This work was carried out within the framework of the Project on Glaciology and Palaeoclimatology of the Programma Nazionale Ricerche in Antartide (PNRA), national co-ordinator Prof. G. Orombelli.
Latent heat induced rotation limited aggregation in 2D ice nanocrystals.
Bampoulis, Pantelis; Siekman, Martin H; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene
2015-07-21
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.
The Effects of Aircraft Wake Dynamics on Contrail Development
NASA Technical Reports Server (NTRS)
Lewellen, D. C.; Lewellen, W. S.; Grose, W. L. (Technical Monitor)
2001-01-01
Results of large-eddy simulations of the development of young persistent ice contrails are presented, concentrating on the interactions between the aircraft wake dynamics and the ice cloud evolution over ages front a few seconds to approx. 30 min. The 3D unsteady evolution of the dispersing engine exhausts, trailing vortex pair interaction and breakup, and subsequent Brunt-Vaisala oscillations of the older wake plume are modeled in detail in high-resolution simulations, coupled with it bulk microphysics model for the contrail ice development. The simulations confirm that the early wake dynamics can have a strong influence on the properties of persistent contrails even at late times. The vortex dynamics are the primary determinant of the vertical extent of the contrail (until precipitate ton becomes significant): and this together with the local wind shear largely determines the horizontal extent. The ice density, ice crystal number density, and a conserved exhaust tracer all develop and disperse in different fashions from each other. The total ice crystal number can be significantly reduced due to adiabatic compression resulting from the downward motion of the vortex system, even for ambient conditions that are substantially supersaturated with respect to ice. The fraction of the initial ice crystals surviving, their spatial distribution and the ice mass distribution are all sensitive to the aircraft type, ambient humidity, assumed initial ice crystal number, and ambient turbulence conditions. There is a significant range of conditions for which a smaller transport such as a B737 produces as significant a persistent contrail as a larger transport such as a B747, even though the latter consumes almost five times as much fuel. The difficulties involved in trying to minimize persistent contrail production are discussed.
NASA Astrophysics Data System (ADS)
Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian
2017-10-01
Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.
Latent heat induced rotation limited aggregation in 2D ice nanocrystals
NASA Astrophysics Data System (ADS)
Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene
2015-07-01
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.
Did Water Leave Its Mark on Mars?
ERIC Educational Resources Information Center
Secosky, James J.
1989-01-01
Discusses the missing water on Mars. Describes five experiments simulating conditions on Mars: (1) behavior of dry ice; (2) low-pressure vacuum; (3) freezing point depression; (4) water in hydrated minerals and clay; and (5) properties of carbon dioxide. (YP)
49 CFR 172.604 - Emergency response telephone number.
Code of Federal Regulations, 2010 CFR
2010-10-01
... vehicle. Carbon dioxide, solid. Castor bean. Castor flake. Castor meal. Castor pomace. Consumer commodity. Dry ice. Engines, internal combustion. Fish meal, stabilized. Fish scrap, stabilized. Refrigerating machine. Vehicle, flammable gas powered. Vehicle, flammable liquid powered. Wheelchair, electric. (3...
Limmer, David T; Chandler, David
2014-07-01
We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.