A fast and objective multidimensional kernel density estimation method: fastKDE
O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.; ...
2016-03-07
Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.
Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less
How bandwidth selection algorithms impact exploratory data analysis using kernel density estimation.
Harpole, Jared K; Woods, Carol M; Rodebaugh, Thomas L; Levinson, Cheri A; Lenze, Eric J
2014-09-01
Exploratory data analysis (EDA) can reveal important features of underlying distributions, and these features often have an impact on inferences and conclusions drawn from data. Graphical analysis is central to EDA, and graphical representations of distributions often benefit from smoothing. A viable method of estimating and graphing the underlying density in EDA is kernel density estimation (KDE). This article provides an introduction to KDE and examines alternative methods for specifying the smoothing bandwidth in terms of their ability to recover the true density. We also illustrate the comparison and use of KDE methods with 2 empirical examples. Simulations were carried out in which we compared 8 bandwidth selection methods (Sheather-Jones plug-in [SJDP], normal rule of thumb, Silverman's rule of thumb, least squares cross-validation, biased cross-validation, and 3 adaptive kernel estimators) using 5 true density shapes (standard normal, positively skewed, bimodal, skewed bimodal, and standard lognormal) and 9 sample sizes (15, 25, 50, 75, 100, 250, 500, 1,000, 2,000). Results indicate that, overall, SJDP outperformed all methods. However, for smaller sample sizes (25 to 100) either biased cross-validation or Silverman's rule of thumb was recommended, and for larger sample sizes the adaptive kernel estimator with SJDP was recommended. Information is provided about implementing the recommendations in the R computing language. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Locally adaptive methods for KDE-based random walk models of reactive transport in porous media
NASA Astrophysics Data System (ADS)
Sole-Mari, G.; Fernandez-Garcia, D.
2017-12-01
Random Walk Particle Tracking (RWPT) coupled with Kernel Density Estimation (KDE) has been recently proposed to simulate reactive transport in porous media. KDE provides an optimal estimation of the area of influence of particles which is a key element to simulate nonlinear chemical reactions. However, several important drawbacks can be identified: (1) the optimal KDE method is computationally intensive and thereby cannot be used at each time step of the simulation; (2) it does not take advantage of the prior information about the physical system and the previous history of the solute plume; (3) even if the kernel is optimal, the relative error in RWPT simulations typically increases over time as the particle density diminishes by dilution. To overcome these problems, we propose an adaptive branching random walk methodology that incorporates the physics, the particle history and maintains accuracy with time. The method allows particles to efficiently split and merge when necessary as well as to optimally adapt their local kernel shape without having to recalculate the kernel size. We illustrate the advantage of the method by simulating complex reactive transport problems in randomly heterogeneous porous media.
NASA Astrophysics Data System (ADS)
Siirila, E. R.; Fernandez-Garcia, D.; Sanchez-Vila, X.
2014-12-01
Particle tracking (PT) techniques, often considered favorable over Eulerian techniques due to artificial smoothening in breakthrough curves (BTCs), are evaluated in a risk-driven framework. Recent work has shown that given a relatively few number of particles (np), PT methods can yield well-constructed BTCs with kernel density estimators (KDEs). This work compares KDE and non-KDE BTCs simulated as a function of np (102-108) and averaged as a function of the exposure duration, ED. Results show that regardless of BTC shape complexity, un-averaged PT BTCs show a large bias over several orders of magnitude in concentration (C) when compared to the KDE results, remarkably even when np is as low as 102. With the KDE, several orders of magnitude less np are required to obtain the same global error in BTC shape as the PT technique. PT and KDE BTCs are averaged as a function of the ED with standard and new methods incorporating the optimal h (ANA). The lowest error curve is obtained through the ANA method, especially for smaller EDs. Percent error of peak of averaged-BTCs, important in a risk framework, is approximately zero for all scenarios and all methods for np ≥105, but vary between the ANA and PT methods, when np is lower. For fewer np, the ANA solution provides a lower error fit except when C oscillations are present during a short time frame. We show that obtaining a representative average exposure concentration is reliant on an accurate representation of the BTC, especially when data is scarce.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, TImothy P.; Kiedrowski, Brian C.; Martin, William R.
Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has recently been applied to Monte Carlo radiation transport simulations. Kernel density estimators are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With KDEs, a single event, either a collision or particle track, can contribute to the score at multiple tally points with the uncertainty at those points being independent of the desired resolution of the solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced variance when compared to a histogram. Previously, KDEs have been applied to neutronics formore » one-group reactor physics problems and fixed source shielding applications. However, little work was done to obtain reaction rates using KDEs. This paper introduces a new form of the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.« less
NASA Astrophysics Data System (ADS)
Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai
2016-07-01
Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.
NASA Astrophysics Data System (ADS)
Sole-Mari, G.; Fernandez-Garcia, D.
2016-12-01
Random Walk Particle Tracking (RWPT) coupled with Kernel Density Estimation (KDE) has been recently proposed to simulate reactive transport in porous media. KDE provides an optimal estimation of the area of influence of particles which is a key element to simulate nonlinear chemical reactions. However, several important drawbacks can be identified: (1) the optimal KDE method is computationally intensive and thereby cannot be used at each time step of the simulation; (2) it does not take advantage of the prior information about the physical system and the previous history of the solute plume; (3) even if the kernel is optimal, the relative error in RWPT simulations typically increases over time as the particle density diminishes by dilution. To overcome these problems, we propose an adaptive branching random walk methodology that incorporates the physics, the particle history and maintains accuracy with time. The method allows particles to efficiently split and merge when necessary as well as to optimally adapt their local kernel shape without having to recalculate the kernel size. We illustrate the advantage of the method by simulating complex reactive transport problems in randomly heterogeneous porous media.
SOMKE: kernel density estimation over data streams by sequences of self-organizing maps.
Cao, Yuan; He, Haibo; Man, Hong
2012-08-01
In this paper, we propose a novel method SOMKE, for kernel density estimation (KDE) over data streams based on sequences of self-organizing map (SOM). In many stream data mining applications, the traditional KDE methods are infeasible because of the high computational cost, processing time, and memory requirement. To reduce the time and space complexity, we propose a SOM structure in this paper to obtain well-defined data clusters to estimate the underlying probability distributions of incoming data streams. The main idea of this paper is to build a series of SOMs over the data streams via two operations, that is, creating and merging the SOM sequences. The creation phase produces the SOM sequence entries for windows of the data, which obtains clustering information of the incoming data streams. The size of the SOM sequences can be further reduced by combining the consecutive entries in the sequence based on the measure of Kullback-Leibler divergence. Finally, the probability density functions over arbitrary time periods along the data streams can be estimated using such SOM sequences. We compare SOMKE with two other KDE methods for data streams, the M-kernel approach and the cluster kernel approach, in terms of accuracy and processing time for various stationary data streams. Furthermore, we also investigate the use of SOMKE over nonstationary (evolving) data streams, including a synthetic nonstationary data stream, a real-world financial data stream and a group of network traffic data streams. The simulation results illustrate the effectiveness and efficiency of the proposed approach.
Space Use and Movement of a Neotropical Top Predator: The Endangered Jaguar
Stabach, Jared A.; Fleming, Chris H.; Calabrese, Justin M.; De Paula, Rogério C.; Ferraz, Kátia M. P. M.; Kantek, Daniel L. Z.; Miyazaki, Selma S.; Pereira, Thadeu D. C.; Araujo, Gediendson R.; Paviolo, Agustin; De Angelo, Carlos; Di Bitetti, Mario S.; Cruz, Paula; Lima, Fernando; Cullen, Laury; Sana, Denis A.; Ramalho, Emiliano E.; Carvalho, Marina M.; Soares, Fábio H. S.; Zimbres, Barbara; Silva, Marina X.; Moraes, Marcela D. F.; Vogliotti, Alexandre; May, Joares A.; Haberfeld, Mario; Rampim, Lilian; Sartorello, Leonardo; Ribeiro, Milton C.; Leimgruber, Peter
2016-01-01
Accurately estimating home range and understanding movement behavior can provide important information on ecological processes. Advances in data collection and analysis have improved our ability to estimate home range and movement parameters, both of which have the potential to impact species conservation. Fitting continuous-time movement model to data and incorporating the autocorrelated kernel density estimator (AKDE), we investigated range residency of forty-four jaguars fit with GPS collars across five biomes in Brazil and Argentina. We assessed home range and movement parameters of range resident animals and compared AKDE estimates with kernel density estimates (KDE). We accounted for differential space use and movement among individuals, sex, region, and habitat quality. Thirty-three (80%) of collared jaguars were range resident. Home range estimates using AKDE were 1.02 to 4.80 times larger than KDE estimates that did not consider autocorrelation. Males exhibited larger home ranges, more directional movement paths, and a trend towards larger distances traveled per day. Jaguars with the largest home ranges occupied the Atlantic Forest, a biome with high levels of deforestation and high human population density. Our results fill a gap in the knowledge of the species’ ecology with an aim towards better conservation of this endangered/critically endangered carnivore—the top predator in the Neotropics. PMID:28030568
Space Use and Movement of a Neotropical Top Predator: The Endangered Jaguar.
Morato, Ronaldo G; Stabach, Jared A; Fleming, Chris H; Calabrese, Justin M; De Paula, Rogério C; Ferraz, Kátia M P M; Kantek, Daniel L Z; Miyazaki, Selma S; Pereira, Thadeu D C; Araujo, Gediendson R; Paviolo, Agustin; De Angelo, Carlos; Di Bitetti, Mario S; Cruz, Paula; Lima, Fernando; Cullen, Laury; Sana, Denis A; Ramalho, Emiliano E; Carvalho, Marina M; Soares, Fábio H S; Zimbres, Barbara; Silva, Marina X; Moraes, Marcela D F; Vogliotti, Alexandre; May, Joares A; Haberfeld, Mario; Rampim, Lilian; Sartorello, Leonardo; Ribeiro, Milton C; Leimgruber, Peter
2016-01-01
Accurately estimating home range and understanding movement behavior can provide important information on ecological processes. Advances in data collection and analysis have improved our ability to estimate home range and movement parameters, both of which have the potential to impact species conservation. Fitting continuous-time movement model to data and incorporating the autocorrelated kernel density estimator (AKDE), we investigated range residency of forty-four jaguars fit with GPS collars across five biomes in Brazil and Argentina. We assessed home range and movement parameters of range resident animals and compared AKDE estimates with kernel density estimates (KDE). We accounted for differential space use and movement among individuals, sex, region, and habitat quality. Thirty-three (80%) of collared jaguars were range resident. Home range estimates using AKDE were 1.02 to 4.80 times larger than KDE estimates that did not consider autocorrelation. Males exhibited larger home ranges, more directional movement paths, and a trend towards larger distances traveled per day. Jaguars with the largest home ranges occupied the Atlantic Forest, a biome with high levels of deforestation and high human population density. Our results fill a gap in the knowledge of the species' ecology with an aim towards better conservation of this endangered/critically endangered carnivore-the top predator in the Neotropics.
Nowcasting Cloud Fields for U.S. Air Force Special Operations
2017-03-01
application of Bayes’ Rule offers many advantages over Kernel Density Estimation (KDE) and other commonly used statistical post-processing methods...reflectance and probability of cloud. A statistical post-processing technique is applied using Bayesian estimation to train the system from a set of past...nowcasting, low cloud forecasting, cloud reflectance, ISR, Bayesian estimation, statistical post-processing, machine learning 15. NUMBER OF PAGES
Probability Distribution Extraction from TEC Estimates based on Kernel Density Estimation
NASA Astrophysics Data System (ADS)
Demir, Uygar; Toker, Cenk; Çenet, Duygu
2016-07-01
Statistical analysis of the ionosphere, specifically the Total Electron Content (TEC), may reveal important information about its temporal and spatial characteristics. One of the core metrics that express the statistical properties of a stochastic process is its Probability Density Function (pdf). Furthermore, statistical parameters such as mean, variance and kurtosis, which can be derived from the pdf, may provide information about the spatial uniformity or clustering of the electron content. For example, the variance differentiates between a quiet ionosphere and a disturbed one, whereas kurtosis differentiates between a geomagnetic storm and an earthquake. Therefore, valuable information about the state of the ionosphere (and the natural phenomena that cause the disturbance) can be obtained by looking at the statistical parameters. In the literature, there are publications which try to fit the histogram of TEC estimates to some well-known pdf.s such as Gaussian, Exponential, etc. However, constraining a histogram to fit to a function with a fixed shape will increase estimation error, and all the information extracted from such pdf will continue to contain this error. In such techniques, it is highly likely to observe some artificial characteristics in the estimated pdf which is not present in the original data. In the present study, we use the Kernel Density Estimation (KDE) technique to estimate the pdf of the TEC. KDE is a non-parametric approach which does not impose a specific form on the TEC. As a result, better pdf estimates that almost perfectly fit to the observed TEC values can be obtained as compared to the techniques mentioned above. KDE is particularly good at representing the tail probabilities, and outliers. We also calculate the mean, variance and kurtosis of the measured TEC values. The technique is applied to the ionosphere over Turkey where the TEC values are estimated from the GNSS measurement from the TNPGN-Active (Turkish National Permanent GNSS Network) network. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.
A tool for the estimation of the distribution of landslide area in R
NASA Astrophysics Data System (ADS)
Rossi, M.; Cardinali, M.; Fiorucci, F.; Marchesini, I.; Mondini, A. C.; Santangelo, M.; Ghosh, S.; Riguer, D. E. L.; Lahousse, T.; Chang, K. T.; Guzzetti, F.
2012-04-01
We have developed a tool in R (the free software environment for statistical computing, http://www.r-project.org/) to estimate the probability density and the frequency density of landslide area. The tool implements parametric and non-parametric approaches to the estimation of the probability density and the frequency density of landslide area, including: (i) Histogram Density Estimation (HDE), (ii) Kernel Density Estimation (KDE), and (iii) Maximum Likelihood Estimation (MLE). The tool is available as a standard Open Geospatial Consortium (OGC) Web Processing Service (WPS), and is accessible through the web using different GIS software clients. We tested the tool to compare Double Pareto and Inverse Gamma models for the probability density of landslide area in different geological, morphological and climatological settings, and to compare landslides shown in inventory maps prepared using different mapping techniques, including (i) field mapping, (ii) visual interpretation of monoscopic and stereoscopic aerial photographs, (iii) visual interpretation of monoscopic and stereoscopic VHR satellite images and (iv) semi-automatic detection and mapping from VHR satellite images. Results show that both models are applicable in different geomorphological settings. In most cases the two models provided very similar results. Non-parametric estimation methods (i.e., HDE and KDE) provided reasonable results for all the tested landslide datasets. For some of the datasets, MLE failed to provide a result, for convergence problems. The two tested models (Double Pareto and Inverse Gamma) resulted in very similar results for large and very large datasets (> 150 samples). Differences in the modeling results were observed for small datasets affected by systematic biases. A distinct rollover was observed in all analyzed landslide datasets, except for a few datasets obtained from landslide inventories prepared through field mapping or by semi-automatic mapping from VHR satellite imagery. The tool can also be used to evaluate the probability density and the frequency density of landslide volume.
Papantonopoulos, Georgios; Takahashi, Keiso; Bountis, Tasos; Loos, Bruno G
2014-01-01
There is neither a single clinical, microbiological, histopathological or genetic test, nor combinations of them, to discriminate aggressive periodontitis (AgP) from chronic periodontitis (CP) patients. We aimed to estimate probability density functions of clinical and immunologic datasets derived from periodontitis patients and construct artificial neural networks (ANNs) to correctly classify patients into AgP or CP class. The fit of probability distributions on the datasets was tested by the Akaike information criterion (AIC). ANNs were trained by cross entropy (CE) values estimated between probabilities of showing certain levels of immunologic parameters and a reference mode probability proposed by kernel density estimation (KDE). The weight decay regularization parameter of the ANNs was determined by 10-fold cross-validation. Possible evidence for 2 clusters of patients on cross-sectional and longitudinal bone loss measurements were revealed by KDE. Two to 7 clusters were shown on datasets of CD4/CD8 ratio, CD3, monocyte, eosinophil, neutrophil and lymphocyte counts, IL-1, IL-2, IL-4, INF-γ and TNF-α level from monocytes, antibody levels against A. actinomycetemcomitans (A.a.) and P.gingivalis (P.g.). ANNs gave 90%-98% accuracy in classifying patients into either AgP or CP. The best overall prediction was given by an ANN with CE of monocyte, eosinophil, neutrophil counts and CD4/CD8 ratio as inputs. ANNs can be powerful in classifying periodontitis patients into AgP or CP, when fed by CE values based on KDE. Therefore ANNs can be employed for accurate diagnosis of AgP or CP by using relatively simple and conveniently obtained parameters, like leukocyte counts in peripheral blood. This will allow clinicians to better adapt specific treatment protocols for their AgP and CP patients.
Retina verification system based on biometric graph matching.
Lajevardi, Seyed Mehdi; Arakala, Arathi; Davis, Stephen A; Horadam, Kathy J
2013-09-01
This paper presents an automatic retina verification framework based on the biometric graph matching (BGM) algorithm. The retinal vasculature is extracted using a family of matched filters in the frequency domain and morphological operators. Then, retinal templates are defined as formal spatial graphs derived from the retinal vasculature. The BGM algorithm, a noisy graph matching algorithm, robust to translation, non-linear distortion, and small rotations, is used to compare retinal templates. The BGM algorithm uses graph topology to define three distance measures between a pair of graphs, two of which are new. A support vector machine (SVM) classifier is used to distinguish between genuine and imposter comparisons. Using single as well as multiple graph measures, the classifier achieves complete separation on a training set of images from the VARIA database (60% of the data), equaling the state-of-the-art for retina verification. Because the available data set is small, kernel density estimation (KDE) of the genuine and imposter score distributions of the training set are used to measure performance of the BGM algorithm. In the one dimensional case, the KDE model is validated with the testing set. A 0 EER on testing shows that the KDE model is a good fit for the empirical distribution. For the multiple graph measures, a novel combination of the SVM boundary and the KDE model is used to obtain a fair comparison with the KDE model for the single measure. A clear benefit in using multiple graph measures over a single measure to distinguish genuine and imposter comparisons is demonstrated by a drop in theoretical error of between 60% and more than two orders of magnitude.
2012-01-01
Background Myocardial ischemia can be developed into more serious diseases. Early Detection of the ischemic syndrome in electrocardiogram (ECG) more accurately and automatically can prevent it from developing into a catastrophic disease. To this end, we propose a new method, which employs wavelets and simple feature selection. Methods For training and testing, the European ST-T database is used, which is comprised of 367 ischemic ST episodes in 90 records. We first remove baseline wandering, and detect time positions of QRS complexes by a method based on the discrete wavelet transform. Next, for each heart beat, we extract three features which can be used for differentiating ST episodes from normal: 1) the area between QRS offset and T-peak points, 2) the normalized and signed sum from QRS offset to effective zero voltage point, and 3) the slope from QRS onset to offset point. We average the feature values for successive five beats to reduce effects of outliers. Finally we apply classifiers to those features. Results We evaluated the algorithm by kernel density estimation (KDE) and support vector machine (SVM) methods. Sensitivity and specificity for KDE were 0.939 and 0.912, respectively. The KDE classifier detects 349 ischemic ST episodes out of total 367 ST episodes. Sensitivity and specificity of SVM were 0.941 and 0.923, respectively. The SVM classifier detects 355 ischemic ST episodes. Conclusions We proposed a new method for detecting ischemia in ECG. It contains signal processing techniques of removing baseline wandering and detecting time positions of QRS complexes by discrete wavelet transform, and feature extraction from morphology of ECG waveforms explicitly. It was shown that the number of selected features were sufficient to discriminate ischemic ST episodes from the normal ones. We also showed how the proposed KDE classifier can automatically select kernel bandwidths, meaning that the algorithm does not require any numerical values of the parameters to be supplied in advance. In the case of the SVM classifier, one has to select a single parameter. PMID:22703641
Kenchington, Ellen; Murillo, Francisco Javier; Lirette, Camille; Sacau, Mar; Koen-Alonso, Mariano; Kenny, Andrew; Ollerhead, Neil; Wareham, Vonda; Beazley, Lindsay
2014-01-01
The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify “significant concentrations” of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and elsewhere. PMID:25289667
Kenchington, Ellen; Murillo, Francisco Javier; Lirette, Camille; Sacau, Mar; Koen-Alonso, Mariano; Kenny, Andrew; Ollerhead, Neil; Wareham, Vonda; Beazley, Lindsay
2014-01-01
The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify "significant concentrations" of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and elsewhere.
Nakamura, Yoshihiro; Hasegawa, Osamu
2017-01-01
With the ongoing development and expansion of communication networks and sensors, massive amounts of data are continuously generated in real time from real environments. Beforehand, prediction of a distribution underlying such data is difficult; furthermore, the data include substantial amounts of noise. These factors make it difficult to estimate probability densities. To handle these issues and massive amounts of data, we propose a nonparametric density estimator that rapidly learns data online and has high robustness. Our approach is an extension of both kernel density estimation (KDE) and a self-organizing incremental neural network (SOINN); therefore, we call our approach KDESOINN. An SOINN provides a clustering method that learns about the given data as networks of prototype of data; more specifically, an SOINN can learn the distribution underlying the given data. Using this information, KDESOINN estimates the probability density function. The results of our experiments show that KDESOINN outperforms or achieves performance comparable to the current state-of-the-art approaches in terms of robustness, learning time, and accuracy.
NASA Astrophysics Data System (ADS)
Ngan, Henry Y. T.; Yung, Nelson H. C.; Yeh, Anthony G. O.
2015-02-01
This paper aims at presenting a comparative study of outlier detection (OD) for large-scale traffic data. The traffic data nowadays are massive in scale and collected in every second throughout any modern city. In this research, the traffic flow dynamic is collected from one of the busiest 4-armed junction in Hong Kong in a 31-day sampling period (with 764,027 vehicles in total). The traffic flow dynamic is expressed in a high dimension spatial-temporal (ST) signal format (i.e. 80 cycles) which has a high degree of similarities among the same signal and across different signals in one direction. A total of 19 traffic directions are identified in this junction and lots of ST signals are collected in the 31-day period (i.e. 874 signals). In order to reduce its dimension, the ST signals are firstly undergone a principal component analysis (PCA) to represent as (x,y)-coordinates. Then, these PCA (x,y)-coordinates are assumed to be conformed as Gaussian distributed. With this assumption, the data points are further to be evaluated by (a) a correlation study with three variant coefficients, (b) one-class support vector machine (SVM) and (c) kernel density estimation (KDE). The correlation study could not give any explicit OD result while the one-class SVM and KDE provide average 59.61% and 95.20% DSRs, respectively.
Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül
2015-01-01
In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.
MacQuillan, E L; Curtis, A B; Baker, K M; Paul, R; Back, Y O
2017-08-01
With advances in spatial analysis techniques, there has been a trend in recent public health research to assess the contribution of area-level factors to health disparity for a number of outcomes, including births. Although it is widely accepted that health disparity is best addressed by targeted, evidence-based and data-driven community efforts, and despite national and local focus in the U.S. to reduce infant mortality and improve maternal-child health, there is little work exploring how choice of scale and specific GIS visualization technique may alter the perception of analyses focused on health disparity in birth outcomes. Retrospective cohort study. Spatial analysis of individual-level vital records data for low birthweight and preterm births born to black women from 2007 to 2012 in one mid-sized Midwest city using different geographic information systems (GIS) visualization techniques [geocoded address records were aggregated at two levels of scale and additionally mapped using kernel density estimation (KDE)]. GIS analyses in this study support our hypothesis that choice of geographic scale (neighborhood or census tract) for aggregated birth data can alter programmatic decision-making. Results indicate that the relative merits of aggregated visualization or the use of KDE technique depend on the scale of intervention. The KDE map proved useful in targeting specific areas for interventions in cities with smaller populations and larger census tracts, where they allow for greater specificity in identifying intervention areas. When public health programmers seek to inform intervention placement in highly populated areas, however, aggregated data at the census tract level may be preferred, since it requires lower investments in terms of time and cartographic skill and, unlike neighborhood, census tracts are standardized in that they become smaller as the population density of an area increases.
Using kernel density estimation to understand the influence of neighbourhood destinations on BMI
King, Tania L; Bentley, Rebecca J; Thornton, Lukar E; Kavanagh, Anne M
2016-01-01
Objectives Little is known about how the distribution of destinations in the local neighbourhood is related to body mass index (BMI). Kernel density estimation (KDE) is a spatial analysis technique that accounts for the location of features relative to each other. Using KDE, this study investigated whether individuals living near destinations (shops and service facilities) that are more intensely distributed rather than dispersed, have lower BMIs. Study design and setting A cross-sectional study of 2349 residents of 50 urban areas in metropolitan Melbourne, Australia. Methods Destinations were geocoded, and kernel density estimates of destination intensity were created using kernels of 400, 800 and 1200 m. Using multilevel linear regression, the association between destination intensity (classified in quintiles Q1(least)–Q5(most)) and BMI was estimated in models that adjusted for the following confounders: age, sex, country of birth, education, dominant household occupation, household type, disability/injury and area disadvantage. Separate models included a physical activity variable. Results For kernels of 800 and 1200 m, there was an inverse relationship between BMI and more intensely distributed destinations (compared to areas with least destination intensity). Effects were significant at 1200 m: Q4, β −0.86, 95% CI −1.58 to −0.13, p=0.022; Q5, β −1.03 95% CI −1.65 to −0.41, p=0.001. Inclusion of physical activity in the models attenuated effects, although effects remained marginally significant for Q5 at 1200 m: β −0.77 95% CI −1.52, −0.02, p=0.045. Conclusions This study conducted within urban Melbourne, Australia, found that participants living in areas of greater destination intensity within 1200 m of home had lower BMIs. Effects were partly explained by physical activity. The results suggest that increasing the intensity of destination distribution could reduce BMI levels by encouraging higher levels of physical activity. PMID:26883235
NASA Astrophysics Data System (ADS)
Wolf, C.; Johnson, A. S.; Bilicki, M.; Blake, C.; Amon, A.; Erben, T.; Glazebrook, K.; Heymans, C.; Hildebrandt, H.; Joudaki, S.; Klaes, D.; Kuijken, K.; Lidman, C.; Marin, F.; Parkinson, D.; Poole, G.
2017-04-01
We present a new training set for estimating empirical photometric redshifts of galaxies, which was created as part of the 2-degree Field Lensing Survey project. This training set is located in a ˜700 deg2 area of the Kilo-Degree-Survey South field and is randomly selected and nearly complete at r < 19.5. We investigate the photometric redshift performance obtained with ugriz photometry from VST-ATLAS and W1/W2 from WISE, based on several empirical and template methods. The best redshift errors are obtained with kernel-density estimation (KDE), as are the lowest biases, which are consistent with zero within statistical noise. The 68th percentiles of the redshift scatter for magnitude-limited samples at r < (15.5, 17.5, 19.5) are (0.014, 0.017, 0.028). In this magnitude range, there are no known ambiguities in the colour-redshift map, consistent with a small rate of redshift outliers. In the fainter regime, the KDE method produces p(z) estimates per galaxy that represent unbiased and accurate redshift frequency expectations. The p(z) sum over any subsample is consistent with the true redshift frequency plus Poisson noise. Further improvements in redshift precision at r < 20 would mostly be expected from filter sets with narrower passbands to increase the sensitivity of colours to small changes in redshift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, J; Fan, J; Hu, W
Purpose: To develop a fast automatic algorithm based on the two dimensional kernel density estimation (2D KDE) to predict the dose-volume histogram (DVH) which can be employed for the investigation of radiotherapy quality assurance and automatic treatment planning. Methods: We propose a machine learning method that uses previous treatment plans to predict the DVH. The key to the approach is the framing of DVH in a probabilistic setting. The training consists of estimating, from the patients in the training set, the joint probability distribution of the dose and the predictive features. The joint distribution provides an estimation of the conditionalmore » probability of the dose given the values of the predictive features. For the new patient, the prediction consists of estimating the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimation of the DVH. The 2D KDE is implemented to predict the joint probability distribution of the training set and the distribution of the predictive features for the new patient. Two variables, including the signed minimal distance from each OAR (organs at risk) voxel to the target boundary and its opening angle with respect to the origin of voxel coordinate, are considered as the predictive features to represent the OAR-target spatial relationship. The feasibility of our method has been demonstrated with the rectum, breast and head-and-neck cancer cases by comparing the predicted DVHs with the planned ones. Results: The consistent result has been found between these two DVHs for each cancer and the average of relative point-wise differences is about 5% within the clinical acceptable extent. Conclusion: According to the result of this study, our method can be used to predict the clinical acceptable DVH and has ability to evaluate the quality and consistency of the treatment planning.« less
Di Salvo, Francesca; Meneghini, Elisabetta; Vieira, Veronica; Baili, Paolo; Mariottini, Mauro; Baldini, Marco; Micheli, Andrea; Sant, Milena
2015-01-01
Introduction The study investigated the geographic variation of mortality risk for hematological malignancies (HMs) in order to identify potential high-risk areas near an Italian petrochemical refinery. Material and methods A population-based case-control study was conducted and residential histories for 171 cases and 338 sex- and age-matched controls were collected. Confounding factors were obtained from interviews with consenting relatives for 109 HM deaths and 267 controls. To produce risk mortality maps, two different approaches were applied. We mapped (1) adptive kernel density relative risk estimation (KDE) for case-control studies which estimates a spatial relative risk function using the ratio between cases and controls’ densities, and (2) estimated odds ratios for case-control study data using generalized additive models (GAMs) to smooth the effect of location, a proxy for exposure, while adjusting for confounding variables. Results No high-risk areas for HM mortality were identified among all subjects (men and women combined), by applying both approaches. Using the adaptive KDE approach, we found a significant increase in death risk only among women in a large area 2–6 km southeast of the refinery and the application of GAMs also identified a similarly-located significant high-risk area among women only (global p-value<0.025). Potential confounding risk factors we considered in the GAM did not alter the results. Conclusion Both approaches identified a high-risk area close to the refinery among women only. Those spatial methods are useful tools for public policy management to determine priority areas for intervention. Our findings suggest several directions for further research in order to identify other potential environmental exposures that may be assessed in forthcoming studies based on detailed exposure modeling. PMID:26073202
Multinuclear NMR of CaSiO(3) glass: simulation from first-principles.
Pedone, Alfonso; Charpentier, Thibault; Menziani, Maria Cristina
2010-06-21
An integrated computational method which couples classical molecular dynamics simulations with density functional theory calculations is used to simulate the solid-state NMR spectra of amorphous CaSiO(3). Two CaSiO(3) glass models are obtained by shell-model molecular dynamics simulations, successively relaxed at the GGA-PBE level of theory. The calculation of the NMR parameters (chemical shielding and quadrupolar parameters), which are then used to simulate solid-state 1D and 2D-NMR spectra of silicon-29, oxygen-17 and calcium-43, is achieved by the gauge including projector augmented-wave (GIPAW) and the projector augmented-wave (PAW) methods. It is shown that the limitations due to the finite size of the MD models can be overcome using a Kernel Estimation Density (KDE) approach to simulate the spectra since it better accounts for the disorder effects on the NMR parameter distribution. KDE allows reconstructing a smoothed NMR parameter distribution from the MD/GIPAW data. Simulated NMR spectra calculated with the present approach are found to be in excellent agreement with the experimental data. This further validates the CaSiO(3) structural model obtained by MD simulations allowing the inference of relationships between structural data and NMR response. The methods used to simulate 1D and 2D-NMR spectra from MD GIPAW data have been integrated in a package (called fpNMR) freely available on request.
The chronology of reindeer hunting on Norway's highest ice patches
Pilø, Lars; Finstad, Espen; Ramsey, Christopher Bronk; Martinsen, Julian Robert Post; Nesje, Atle; Solli, Brit; Wangen, Vivian; Callanan, Martin
2018-01-01
The melting of perennial ice patches globally is uncovering a fragile record of alpine activity, especially hunting and the use of mountain passes. When rescued by systematic fieldwork (glacial archaeology), this evidence opens an unprecedented window on the chronology of high-elevation activity. Recent research in Jotunheimen and surrounding mountain areas of Norway has recovered over 2000 finds—many associated with reindeer hunting (e.g. arrows). We report the radiocarbon dates of 153 objects and use a kernel density estimation (KDE) method to determine the distribution of dated events from ca 4000 BCE to the present. Interpreted in light of shifting environmental, preservation and socio-economic factors, these new data show counterintuitive trends in the intensity of reindeer hunting and other high-elevation activity. Cold temperatures may sometimes have kept humans from Norway's highest elevations, as expected based on accessibility, exposure and reindeer distributions. In times of increasing demand for mountain resources, however, activity probably continued in the face of adverse or variable climatic conditions. The use of KDE modelling makes it possible to observe this patterning without the spurious effects of noise introduced by the discrete nature of the finds and the radiocarbon calibration process. PMID:29410869
Building knowledge development and exchange capacity in Canada: lessons from Youth Excel.
Riley, B; Wong, K; Manske, S
2014-07-01
Youth Excel was a 3-year pan-Canadian initiative to advance youth health through improving knowledge development and exchange (KDE) capacity. KDE capacity refers to an improvement cycle linking evidence and action. Capacities include local surveillance of youth behaviours; knowledge exchange; skills, resources and a supportive environment to use knowledge; and evaluation. Interviews were conducted with Youth Excel members, including 7 provincial teams and 2 national organizations. Interviews explored participant experiences with building KDE capacity. Local surveillance systems were considered the backbone to KDE capacity, strengthened by co-ordinating surveys within and across jurisdictions and using common indicators and measures. The most effective knowledge exchange included tailored products and opportunities for dialogue and action planning. Evaluation is the least developed KDE component. Building KDE capacity requires frequent dialogue, mutually beneficial partnerships and trust. It also requires attention to language, vision, strategic leadership and funding. Youth Excel reinforces the need for a KDE system to improve youth health that will require new perspectives and sustained commitment from individual champions and relevant organizations.
Jarnevich, Catherine S.; Talbert, Marian; Morisette, Jeffrey T.; Aldridge, Cameron L.; Brown, Cynthia; Kumar, Sunil; Manier, Daniel; Talbert, Colin; Holcombe, Tracy R.
2017-01-01
Evaluating the conditions where a species can persist is an important question in ecology both to understand tolerances of organisms and to predict distributions across landscapes. Presence data combined with background or pseudo-absence locations are commonly used with species distribution modeling to develop these relationships. However, there is not a standard method to generate background or pseudo-absence locations, and method choice affects model outcomes. We evaluated combinations of both model algorithms (simple and complex generalized linear models, multivariate adaptive regression splines, Maxent, boosted regression trees, and random forest) and background methods (random, minimum convex polygon, and continuous and binary kernel density estimator (KDE)) to assess the sensitivity of model outcomes to choices made. We evaluated six questions related to model results, including five beyond the common comparison of model accuracy assessment metrics (biological interpretability of response curves, cross-validation robustness, independent data accuracy and robustness, and prediction consistency). For our case study with cheatgrass in the western US, random forest was least sensitive to background choice and the binary KDE method was least sensitive to model algorithm choice. While this outcome may not hold for other locations or species, the methods we used can be implemented to help determine appropriate methodologies for particular research questions.
1991-08-15
Conversely, displays Atr con- past experience to the experimental stimuli. structed %xith normal density- controlled KDE cues but %ith 5. Excluding...frame. This 3Ndisplays, gray background is displayed’ on ail introduces 50% -scintillation (density control lion even frames (labelled 1:0). Other non ...video tapes were prepared, each of whsich contained all the experimental ASL signs but distributed 1 2 3 4 into dliffereint. filter groups . Eight
Sykes, Steven; Szempruch, Anthony; Hajduk, Stephen
2015-03-01
α-Ketoglutarate decarboxylase (α-KDE1) is a Krebs cycle enzyme found in the mitochondrion of the procyclic form (PF) of Trypanosoma brucei. The bloodstream form (BF) of T. brucei lacks a functional Krebs cycle and relies exclusively on glycolysis for ATP production. Despite the lack of a functional Krebs cycle, α-KDE1 was expressed in BF T. brucei and RNA interference knockdown of α-KDE1 mRNA resulted in rapid growth arrest and killing. Cell death was preceded by progressive swelling of the flagellar pocket as a consequence of recruitment of both flagellar and plasma membranes into the pocket. BF T. brucei expressing an epitope-tagged copy of α-KDE1 showed localization to glycosomes and not the mitochondrion. We used a cell line transfected with a reporter construct containing the N-terminal sequence of α-KDE1 fused to green fluorescent protein to examine the requirements for glycosome targeting. We found that the N-terminal 18 amino acids of α-KDE1 contain overlapping mitochondrion- and peroxisome-targeting sequences and are sufficient to direct localization to the glycosome in BF T. brucei. These results suggest that α-KDE1 has a novel moonlighting function outside the mitochondrion in BF T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Richardson, Jacob; Connor, Charles; Malservisi, Rocco; Bleacher, Jacob; Connor, Laura
2014-05-01
Clusters of tens to thousands of small volcanoes (diameters generally <30 km) are common features on the surface of Mars, Venus, and the Earth. These clusters may be described as distributed-style volcanism. Better characterizing the magmatic plumbing system of these clusters can constrain magma ascent processes as well as the regional magma production budget and heat flux beneath each cluster. Unfortunately, directly observing the plumbing systems of volcano clusters on Mars and Venus eludes our current geologic abilities. Because erosion exposes such systems at the Earth's surface, a better understanding of magmatic processes and migration can be achieved via field analysis. The terrestrial plumbing system of an eroded volcanic field may be a valuable planetary analog for Venus and Mars clusters. The magmatic plumbing system of a Pliocene-aged monogenetic volcanic field, emplaced at 0.8 km depth, is currently exposed as a sill and dike swarm in the San Rafael Desert of Central Utah, USA. The mafic bodies in this region intruded into Mesozoic sedimentary units and now make up the most erosion resistant units as sills, dikes, and plug-like conduits. Light Detection and Ranging (LiDAR) can identify volcanic units (sills, dikes, and conduits) at high resolution, both geomorphologically and with near infrared return intensity values. Two Terrestrial LiDAR Surveys and an Airborne LiDAR Survey have been carried out over the San Rafael volcanic swarm, producing a three dimensional point cloud over approximately 36 sq. km. From the point clouds of these surveys, 1-meter DEMs are produced and volcanic intrusions have been mapped. Here we present reconstructions of the volcanic instrusions of the San Rafael Swarm. We create this reconstruction by extrapolating mapped intrustions from the LiDAR surveys into a 3D space around the current surface. We compare the estimated intrusive volume to the estimated conduit density and estimates of extrusive volume at volcano clusters of similar density. The extrapolated reconstruction and conduit mapping provide a first-order estimate of the final intrustive/extrusive volume ratio for the now eroded volcanic field. Earth, Venus and Mars clusters are compared using Kernel Density Estimation (KDE) , which objectively compares cluster area, complexity, and vent density per sq. km. We show that Martian clusters are less dense than Venus clusters, which in turn are less dense than those on Earth. KDE and previous models of intrusive morphology for Mars and Venus are here used to calibrate the San Rafael plumbing system model to clusters on the two planets. The results from the calibrated Mars and Venus plumbing system models can be compared to previous estimates of magma budget and intrusive/extrusive ratios on Venus and Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, M.A.; Morris, C.M.; Fitzgerald, P.H.
The human kappa deleting element (Kde) mediates loss of CK and JK genes in B cells. A probe for Kde detects two genomic sequences on Southern blots. The Kde is located 24kb 3{prime} to CK, but the position of the homologous sequence is unknown. The authors in situ hybridized m141-2 to metaphase cells of JC11, a B-cell line bearing a t(2;14)(p11;q32) in which the chromosome 2 breakpoint is within JK or the VK-JK intron. Three peaks of labelled sites were obtained. Southern analysis of BamH1 digested DNA showed that Kde (14kb) and the homologous sequence (3kb) were both intact. Kdemore » accounts for hybridization to 14q+ and the 2p- signal presumably derives from the related sequence. This locates the sequence homologous to Kde upstream from JK, possibly within the VK cluster, and may reflect transposition or some other duplicative event as proposed for the evolution of other regions of the kappa locus.« less
NASA Astrophysics Data System (ADS)
Eftekharzadeh, S.; Myers, A. D.; Hennawi, J. F.; Djorgovski, S. G.; Richards, G. T.; Mahabal, A. A.; Graham, M. J.
2017-06-01
We present the most precise estimate to date of the clustering of quasars on very small scales, based on a sample of 47 binary quasars with magnitudes of g < 20.85 and proper transverse separations of ˜25 h-1 kpc. Our sample of binary quasars, which is about six times larger than any previous spectroscopically confirmed sample on these scales, is targeted using a kernel density estimation (KDE) technique applied to Sloan Digital Sky Survey (SDSS) imaging over most of the SDSS area. Our sample is 'complete' in that all of the KDE target pairs with 17.0 ≲ R ≲ 36.2 h-1 kpc in our area of interest have been spectroscopically confirmed from a combination of previous surveys and our own long-slit observational campaign. We catalogue 230 candidate quasar pairs with angular separations of <8 arcsec, from which our binary quasars were identified. We determine the projected correlation function of quasars (\\bar{W}_p) in four bins of proper transverse scale over the range 17.0 ≲ R ≲ 36.2 h-1 kpc. The implied small-scale quasar clustering amplitude from the projected correlation function, integrated across our entire redshift range, is A = 24.1 ± 3.6 at ˜26.6 h-1 kpc. Our sample is the first spectroscopically confirmed sample of quasar pairs that is sufficiently large to study how quasar clustering evolves with redshift at ˜25 h-1 kpc. We find that empirical descriptions of how quasar clustering evolves with redshift at ˜25 h-1 Mpc also adequately describe the evolution of quasar clustering at ˜25 h-1 kpc.
Fan, Jiawei; Wang, Jiazhou; Zhang, Zhen; Hu, Weigang
2017-06-01
To develop a new automated treatment planning solution for breast and rectal cancer radiotherapy. The automated treatment planning solution developed in this study includes selection of the iterative optimized training dataset, dose volume histogram (DVH) prediction for the organs at risk (OARs), and automatic generation of clinically acceptable treatment plans. The iterative optimized training dataset is selected by an iterative optimization from 40 treatment plans for left-breast and rectal cancer patients who received radiation therapy. A two-dimensional kernel density estimation algorithm (noted as two parameters KDE) which incorporated two predictive features was implemented to produce the predicted DVHs. Finally, 10 additional new left-breast treatment plans are re-planned using the Pinnacle 3 Auto-Planning (AP) module (version 9.10, Philips Medical Systems) with the objective functions derived from the predicted DVH curves. Automatically generated re-optimized treatment plans are compared with the original manually optimized plans. By combining the iterative optimized training dataset methodology and two parameters KDE prediction algorithm, our proposed automated planning strategy improves the accuracy of the DVH prediction. The automatically generated treatment plans using the dose derived from the predicted DVHs can achieve better dose sparing for some OARs without compromising other metrics of plan quality. The proposed new automated treatment planning solution can be used to efficiently evaluate and improve the quality and consistency of the treatment plans for intensity-modulated breast and rectal cancer radiation therapy. © 2017 American Association of Physicists in Medicine.
Sykes, Steven E.
2013-01-01
The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis. PMID:23125353
Sykes, Steven E; Hajduk, Stephen L
2013-01-01
The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis.
Systematic analysis of hot Yb* isotopes using the energy density formalism
NASA Astrophysics Data System (ADS)
Jain, Deepika; Sharma, Manoj K.; Rajni; Kumar, Raj; Gupta, Raj K.
2014-10-01
A systematic study of the spin-orbit density interaction potential is carried out, with spherical as well as deformed choices of nuclei, for a variety of near-symmetric and asymmetric colliding nuclei leading to various isotopes of the compound nucleus Yb*, using the semiclassical extended Thomas-Fermi formulation (ETF) of the Skyrme energy density formalism (SEDF). We observe that the spin-orbit density interaction barrier height ( and barrier position ( increase systematically with the increase in number of neutrons in both the projectile and target, for spherical systems. On allowing deformation effects with optimum orientations, the barrier-height increases by a large order of magnitude, as compared to the spherical case, in going from 156Yb* to 172Yb* nuclear systems formed via near-symmetric Ni+Mo or asymmetric O+Sm colliding nuclei, except that for the oblate-shaped nuclei, the is the highest and shifts towards a smaller (compact) interaction radius. The temperature does not change the behavior of spin-orbit density dependent ( and independent ( interaction potentials, except for some minor changes in the magnitude. The orientation degree of freedom also plays an important role in modifying the barrier characteristics and hence produces a large effect on the fusion cross section. The fusion excitation function of the compound nuclei 160, 164Yb* formed in different incoming channels, show clearly that the new forces GSkI and KDE0v1 respond better than the old SIII force. Among the first two, KDE0v1 seems to perform better. The fusion cross-sections are also predicted for a few other isotopes of Yb*.
A new license plate extraction framework based on fast mean shift
NASA Astrophysics Data System (ADS)
Pan, Luning; Li, Shuguang
2010-08-01
License plate extraction is considered to be the most crucial step of Automatic license plate recognition (ALPR) system. In this paper, a region-based license plate hybrid detection method is proposed to solve practical problems under complex background in which existing large quantity of disturbing information. In this method, coarse license plate location is carried out firstly to get the head part of a vehicle. Then a new Fast Mean Shift method based on random sampling of Kernel Density Estimate (KDE) is adopted to segment the color vehicle images, in order to get candidate license plate regions. The remarkable speed-up it brings makes Mean Shift segmentation more suitable for this application. Feature extraction and classification is used to accurately separate license plate from other candidate regions. At last, tilted license plate regulation is used for future recognition steps.
Analysis of Expressed and Non-Expressed IGK Locus Rearrangements in Chronic Lymphocytic Leukemia
Belessi, Chrysoula; Stamatopoulos, Kostas; Hadzidimitriou, Anastasia; Hatzi, Katerina; Smilevska, Tatjana; Stavroyianni, Niki; Marantidou, Fotini; Paterakis, George; Fassas, Athanasios; Anagnostopoulos, Achilles; Laoutaris, Nikolaos
2005-01-01
Immunoglobulin κ (IGK) locus rearrangements were analyzed in parallel on cDNA/genomic DNA in 188 κ- and 103 λ-chronic lymphocytic leukemia (CLL) cases. IGKV-KDE and IGKJ-C-intron-KDE rearrangements were also analyzed on genomic DNA. In κ-CLL, only 3 of 188 cases carried double in-frame IGKV-J transcripts: in such cases, the possibility that leukemic cells expressed more than one κ chain cannot be excluded. Twenty-eight κ-CLL cases also carried nonexpressed (nontranscribed and/or out-of-frame) IGKV-J rearrangements. Taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 38% of κ-CLL cases carried biallelic IGK locus rearrangements. In λ-CLL, 69 IGKV-J rearrangements were detected in 64 of 103 cases (62%); 24 rearrangements (38.2%) were in-frame. Four cases carried in-frame IGKV-J transcripts but retained monotypic light-chain expression, suggesting posttranscriptional regulation of allelic exclusion. In all, taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 97% of λ-CLL cases had at least 1 rearranged IGK allele, in keeping with normal cells. IG repertoire comparisons in κ- versus λ-CLL revealed that CLL precursor cells tried many rearrangements on the same IGK allele before they became λ producers. Thirteen of 28 and 26 of 69 non-expressed sequences in, respectively, κ- or λ-CLL had < 100% homology to germline. This finding might be considered as evidence for secondary rearrangements occurring after the onset of somatic hypermutation, at least in some cases. The inactivation of potentially functional IGKV-J joints by secondary rearrangements indicates active receptor editing in CLL and provides further evidence for the role of antigen in CLL immunopathogenesis. PMID:16622520
KDE Bioscience: platform for bioinformatics analysis workflows.
Lu, Qiang; Hao, Pei; Curcin, Vasa; He, Weizhong; Li, Yuan-Yuan; Luo, Qing-Ming; Guo, Yi-Ke; Li, Yi-Xue
2006-08-01
Bioinformatics is a dynamic research area in which a large number of algorithms and programs have been developed rapidly and independently without much consideration so far of the need for standardization. The lack of such common standards combined with unfriendly interfaces make it difficult for biologists to learn how to use these tools and to translate the data formats from one to another. Consequently, the construction of an integrative bioinformatics platform to facilitate biologists' research is an urgent and challenging task. KDE Bioscience is a java-based software platform that collects a variety of bioinformatics tools and provides a workflow mechanism to integrate them. Nucleotide and protein sequences from local flat files, web sites, and relational databases can be entered, annotated, and aligned. Several home-made or 3rd-party viewers are built-in to provide visualization of annotations or alignments. KDE Bioscience can also be deployed in client-server mode where simultaneous execution of the same workflow is supported for multiple users. Moreover, workflows can be published as web pages that can be executed from a web browser. The power of KDE Bioscience comes from the integrated algorithms and data sources. With its generic workflow mechanism other novel calculations and simulations can be integrated to augment the current sequence analysis functions. Because of this flexible and extensible architecture, KDE Bioscience makes an ideal integrated informatics environment for future bioinformatics or systems biology research.
Hart, Kristen M.; Fujisaki, Ikuko
2010-01-01
We tracked the movements of 6 juvenile green sea turtles captured in coastal areas of southwest Florida within Everglades National Park (ENP) using satellite transmitters for periods of 27 to 62 d in 2007 and 2008 (mean ± SD: 47.7 ± 12.9 d). Turtles ranged in size from 33.4 to 67.5 cm straight carapace length (45.7 ± 12.9 cm) and 4.4 to 40.8 kg in mass (16.0 ± 13.8 kg). These data represent the first satellite tracking data gathered on juveniles of this endangered species at this remote study site, which may represent an important developmental habitat and foraging ground. Satellite tracking results suggested that these immature turtles were resident for several months very close to capture and release sites, in waters from 0 to 10 m in depth. Mean home range for this springtime tracking period as represented by minimum convex polygon (MCP) was 1004.9 ± 618.8 km2 (range 374.1 to 2060.1 km2), with 4 of 6 individuals spending a significant proportion of time within the ENP boundaries in 2008 in areas with dense patches of marine algae. Core use areas determined by 50% kernel density estimates (KDE) ranged from 5.0 to 54.4 km2, with a mean of 22.5 ± 22.1 km2. Overlap of 50% KDE plots for 6 turtles confirmed use of shallow-water nearshore habitats =0.6 m deep within the park boundary. Delineating specific habitats used by juvenile green turtles in this and other remote coastal areas with protected status will help conservation managers to prioritize their efforts and increase efficacy in protecting endangered species.
Kaiware Daikon (Raphanus sativus L.) extract: a naturally multipotent chemopreventive agent.
Barillari, Jessica; Iori, Renato; Papi, Alessio; Orlandi, Marina; Bartolini, Giovanna; Gabbanini, Simone; Pedulli, Gian Franco; Valgimigli, Luca
2008-09-10
Brassica vegetables are attracting major attention as healthy foods because of their content of glucosinolates (GLs) that release the corresponding isothiocyanates (ITCs) upon myrosinase hydrolysis. A number of studies have so far documented the chemopreventive properties of some ITCs. On the other hand, single nutrients detached from the food itself risk being somewhat "reductive", since plants contain several classes of compounds endowed with a polyhedral mechanism of action. Our recent finding that 4-methylthio-3-butenyl isothiocyanate (GRH-ITC) and 4-methylsulfinyl-3-butenyl isothiocyanate (GRE-ITC), released by the GLs purified from Japanese (Kaiware) Daikon (Raphanus sativus L.) seeds and sprouts, had selective cytotoxic/apoptotic activity on three human colon carcinoma cell lines prompted further research on the potential chemopreventive role of a standardized Kaiware Daikon extract (KDE), containing 10.5% w/w GRH and 3.8% w/w GRE, compared to its isolated components. KDE administered in combination with myrosinase at doses corresponding to 50 microM GRH-ITC plus 15 microM GRE-ITC (50 microM KDE-ITC) to three human cancer cell lines (LoVo, HCT-116 and HT-29) significantly reduced cell growth by 94-96% of control in six days (p < 0.05), outperforming pure GRH-ITC or GRE-ITC at the same dose. On the other hand, the same treatment had no significant toxicity on normal human T-lymphocytes. A 50 microM concentration of KDE-ITC had relevant apoptosis induction in all tested cancer cell lines, as confirmed by annexin V assay (e.g., 33% induction in LoVo compared to control, p < 0.05), Bax protein induction (e.g., +20% in HT-29, p < 0.05), and Bcl2 downregulation (e.g.-20% in HT-29, p < 0.05), and induced caspase-1 and PARP-1 activation in all cancer cells as shown by Western blot analysis. Unlike pure GRH or GRH-ITC, KDE also had significant chain-breaking antioxidant activity, retarding the AAPH-initiated autoxidation of methyl linoleate in SDS micelles at concentrations as low as 4.4 ppm (-50% in oxygen consumption rate), as monitored by Clark-type microelectrode oxygen-uptake kinetics, and induced very fast quenching of DPPH. radical in methanol with t(1/2) (s) = (1.47 +/- 0.25) x 10(-2)/[KDE; (g/L)], measured by stopped-flow UV-vis kinetics at 298 K. The potential chemopreventive role of KDE is discussed.
NASA Astrophysics Data System (ADS)
Kaur, Arshdeep; Chopra, Sahila; Gupta, Raj K.
2015-06-01
The earlier study of *124Ce formed in the 32S+92Mo reaction at an above barrier beam energy of 150 MeV, using the pocket formula of Blocki et al. for the nuclear proximity potential in the dynamical cluster-decay model (DCM), is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach under the frozen density approximation. The Skyrme forces used are the old SII, SIII, SIV, SKa, SkM, and SLy4 and new GSkI and KDE0(v1), given for both normal and isospin-rich nuclei. It is found that the α -nucleus structure, over the non-α nucleus structure, is preferred for only two Skyrme forces, the SIII and KDE0(v1). An extended intermediate mass fragments (IMFs) window, along with the new decay region of heavy mass fragments (HMFs) and the near-symmetric and symmetric fission fragments which, on adding the complementary heavy fragments, corresponds to (A /2 )±12 mass region of the fusion-fission (ff) process, are predicted by considering cross sections of orders observed in the experiment under study. For the predicted (total) fusion cross section, the survival probability Psurv of the compound nucleus (CN) against fission is shown to be very small because of the very large predicted ff component. On the other hand, the CN formation probability PCN is found to be nearly equal to 1, and hence the decay under study is a pure CN decay for all the nuclear potentials considered, since the estimated noncompound nucleus (nCN) content is almost negligible. We have also applied the extended-Wong model of Gupta and collaborators, and find that the ℓmax values and total fusion cross sections are of the same order as for the DCM. Thus, the extended-Wong model, which describes only the total fusion cross section in terms of the barrier characteristics of the entrance channel nuclei, could be useful for initial experimental studies to be fully treated using the DCM for all the observed decay products.
NAVO MSRC Navigator. Fall 2006
2006-01-01
UNIX Manual Pages: xdm (1x). 7. Buddenhagen, Oswald, “The KDM Handbook,” KDE Documentation, http://docs.kde.org/development/ en /kdebase/kdm/. 8... Linux Opteron cluster was recently determined through a series of simulations that employed both fixed and adaptive meshes. The fixed-mesh scalability...approximately eight in the total number of cells in the 3-D simulation. The fixed-mesh and AMR scalability results on the Linux Opteron cluster are
Heigl, Florian; Horvath, Kathrin; Laaha, Gregor; Zaller, Johann G
2017-06-26
Amphibians and reptiles are among the most endangered vertebrate species worldwide. However, little is known how they are affected by road-kills on tertiary roads and whether the surrounding landscape structure can explain road-kill patterns. The aim of our study was to examine the applicability of open-access remote sensing data for a large-scale citizen science approach to describe spatial patterns of road-killed amphibians and reptiles on tertiary roads. Using a citizen science app we monitored road-kills of amphibians and reptiles along 97.5 km of tertiary roads covering agricultural, municipal and interurban roads as well as cycling paths in eastern Austria over two seasons. Surrounding landscape was assessed using open access land cover classes for the region (Coordination of Information on the Environment, CORINE). Hotspot analysis was performed using kernel density estimation (KDE+). Relations between land cover classes and amphibian and reptile road-kills were analysed with conditional probabilities and general linear models (GLM). We also estimated the potential cost-efficiency of a large scale citizen science monitoring project. We recorded 180 amphibian and 72 reptile road-kills comprising eight species mainly occurring on agricultural roads. KDE+ analyses revealed a significant clustering of road-killed amphibians and reptiles, which is an important information for authorities aiming to mitigate road-kills. Overall, hotspots of amphibian and reptile road-kills were next to the land cover classes arable land, suburban areas and vineyards. Conditional probabilities and GLMs identified road-kills especially next to preferred habitats of green toad, common toad and grass snake, the most often found road-killed species. A citizen science approach appeared to be more cost-efficient than monitoring by professional researchers only when more than 400 km of road are monitored. Our findings showed that freely available remote sensing data in combination with a citizen science approach would be a cost-efficient method aiming to identify and monitor road-kill hotspots of amphibians and reptiles on a larger scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Wang, Chenyu; Li, Mingjie
In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) can not fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First,more » the modeling error PDF by the tradional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. Furthermore, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Wang, Chenyu; Li, Mingjie
In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) cannot fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First, themore » modeling error PDF by the traditional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. However, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less
Zhou, Ping; Wang, Chenyu; Li, Mingjie; ...
2018-01-31
In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) cannot fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First, themore » modeling error PDF by the traditional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. However, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less
Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus
Fraser, Louise D.; Zhao, Yuan; Lutalo, Pamela M. K.; D'Cruz, David P.; Cason, John; Silva, Joselli S.; Dunn‐Walters, Deborah K.; Nayar, Saba; Cope, Andrew P.
2015-01-01
The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa‐deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE. PMID:26036683
NASA Astrophysics Data System (ADS)
Ruggles, Adam J.
2015-11-01
This paper presents improved statistical insight regarding the self-similar scalar mixing process of atmospheric hydrogen jets and the downstream region of under-expanded hydrogen jets. Quantitative planar laser Rayleigh scattering imaging is used to probe both jets. The self-similarity of statistical moments up to the sixth order (beyond the literature established second order) is documented in both cases. This is achieved using a novel self-similar normalization method that facilitated a degree of statistical convergence that is typically limited to continuous, point-based measurements. This demonstrates that image-based measurements of a limited number of samples can be used for self-similar scalar mixing studies. Both jets exhibit the same radial trends of these moments demonstrating that advanced atmospheric self-similarity can be applied in the analysis of under-expanded jets. Self-similar histograms away from the centerline are shown to be the combination of two distributions. The first is attributed to turbulent mixing. The second, a symmetric Poisson-type distribution centered on zero mass fraction, progressively becomes the dominant and eventually sole distribution at the edge of the jet. This distribution is attributed to shot noise-affected pure air measurements, rather than a diffusive superlayer at the jet boundary. This conclusion is reached after a rigorous measurement uncertainty analysis and inspection of pure air data collected with each hydrogen data set. A threshold based upon the measurement noise analysis is used to separate the turbulent and pure air data, and thusly estimate intermittency. Beta-distributions (four parameters) are used to accurately represent the turbulent distribution moments. This combination of measured intermittency and four-parameter beta-distributions constitutes a new, simple approach to model scalar mixing. Comparisons between global moments from the data and moments calculated using the proposed model show excellent agreement. This was attributed to the high quality of the measurements which reduced the width of the correctly identified, noise-affected pure air distribution, with respect to the turbulent mixing distribution. The ignitability of the atmospheric jet is determined using the flammability factor calculated from both kernel density estimated (KDE) PDFs and PDFs generated using the newly proposed model. Agreement between contours from both approaches is excellent. Ignitability of the under-expanded jet is also calculated using KDE PDFs. Contours are compared with those calculated by applying the atmospheric model to the under-expanded jet. Once again, agreement is excellent. This work demonstrates that self-similar scalar mixing statistics and ignitability of atmospheric jets can be accurately described by the proposed model. This description can be applied with confidence to under-expanded jets, which are more realistic of leak and fuel injection scenarios.
Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing
Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing
2017-01-01
Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive. PMID:28604641
Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.
Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing
2017-06-12
Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.
NASA Astrophysics Data System (ADS)
Rahbaralam, Maryam; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-12-01
Random walk particle tracking methods are a computationally efficient family of methods to solve reactive transport problems. While the number of particles in most realistic applications is in the order of 106-109, the number of reactive molecules even in diluted systems might be in the order of fractions of the Avogadro number. Thus, each particle actually represents a group of potentially reactive molecules. The use of a low number of particles may result not only in loss of accuracy, but also may lead to an improper reproduction of the mixing process, limited by diffusion. Recent works have used this effect as a proxy to model incomplete mixing in porous media. In this work, we propose using a Kernel Density Estimation (KDE) of the concentrations that allows getting the expected results for a well-mixed solution with a limited number of particles. The idea consists of treating each particle as a sample drawn from the pool of molecules that it represents; this way, the actual location of a tracked particle is seen as a sample drawn from the density function of the location of molecules represented by that given particle, rigorously represented by a kernel density function. The probability of reaction can be obtained by combining the kernels associated to two potentially reactive particles. We demonstrate that the observed deviation in the reaction vs time curves in numerical experiments reported in the literature could be attributed to the statistical method used to reconstruct concentrations (fixed particle support) from discrete particle distributions, and not to the occurrence of true incomplete mixing. We further explore the evolution of the kernel size with time, linking it to the diffusion process. Our results show that KDEs are powerful tools to improve computational efficiency and robustness in reactive transport simulations, and indicates that incomplete mixing in diluted systems should be modeled based on alternative mechanistic models and not on a limited number of particles.
Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus.
Fraser, Louise D; Zhao, Yuan; Lutalo, Pamela M K; D'Cruz, David P; Cason, John; Silva, Joselli S; Dunn-Walters, Deborah K; Nayar, Saba; Cope, Andrew P; Spencer, Jo
2015-08-01
The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa-deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs
NASA Astrophysics Data System (ADS)
Reshmidevi, T. V.; Nagesh Kumar, D.; Mehrotra, R.; Sharma, A.
2018-01-01
This work evaluates the impact of climate change on the water balance of a catchment in India. Rainfall and hydro-meteorological variables for current (20C3M scenario, 1981-2000) and two future time periods: mid of the 21st century (2046-2065) and end of the century (2081-2100) are simulated using Modified Markov Model-Kernel Density Estimation (MMM-KDE) and k-nearest neighbor downscaling models. Climate projections from an ensemble of 5 GCMs (MPI-ECHAM5, BCCR-BCM2.0, CSIRO-mk3.5, IPSL-CM4, and MRI-CGCM2) are used in this study. Hydrologic simulations for the current as well as future climate scenarios are carried out using Soil and Water Assessment Tool (SWAT) integrated with ArcGIS (ArcSWAT v.2009). The results show marginal reduction in runoff ratio, annual streamflow and groundwater recharge towards the end of the century. Increased temperature and evapotranspiration project an increase in the irrigation demand towards the end of the century. Rainfall projections for the future shows marginal increase in the annual average rainfall. Short and moderate wet spells are projected to decrease, whereas short and moderate dry spells are projected to increase in the future. Projected reduction in streamflow and groundwater recharge along with the increase in irrigation demand is likely to aggravate the water stress in the region under the future scenario.
Clustering on very small scales from a large, complete sample of confirmed quasar pairs
NASA Astrophysics Data System (ADS)
Eftekharzadeh, Sarah; Myers, Adam D.; Djorgovski, Stanislav G.; Graham, Matthew J.; Hennawi, Joseph F.; Mahabal, Ashish A.; Richards, Gordon T.
2016-06-01
We present by far the largest sample of spectroscopically confirmed binaryquasars with proper transverse separations of 17.0 ≤ Rprop ≤ 36.6 h-1 kpc. Our sample, whichis an order-of-magnitude larger than previous samples, is selected from Sloan Digital Sky Survey (SDSS) imaging over an area corresponding to the SDSS 6th data release (DR6). Our quasars are targeted using a Kernel Density Estimation technique (KDE), and confirmed using long-slit spectroscopy on a range of facilities.Our most complete sub-sample of 44 binary quasars with g<20.85, extends across angular scales of 2.9" < Δθ < 6.3", and is targeted from a parent sample that would be equivalent to a full spectroscopic survey of nearly 300,000 quasars.We determine the projected correlation function of quasars (\\bar Wp) over proper transverse scales of 17.0 ≤ Rprop ≤ 36.6 h-1 kpc, and also in 4 bins of scale within this complete range.To investigate the redshift evolution of quasar clustering on small scales, we make the first self-consistent measurement of the projected quasar correlation function in 4 bins of redshift over 0.4 ≤ z ≤ 2.3.
Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses.
Soleilhavoup, Anne; Delaye, Jean-Marc; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault
2010-12-01
Boron-11 and silicon-29 NMR spectra of xSiO(2)-(1-x)B(2)O(3) glasses (x=0.40, 0.80 and 0.83) have been calculated using a combination of molecular dynamics (MD) simulations with density functional theory (DFT) calculations of NMR parameters. Structure models of 200 atoms have been generated using classical force fields and subsequently relaxed at the PBE-GGAlevel of DFT theory. The gauge including projector augmented wave (GIPAW) method is then employed for computing the shielding and electric field gradient tensors for each silicon and boron atom. Silicon-29 MAS and boron-11 MQMAS NMR spectra of two glasses (x=0.40 and 0.80) have been acquired and theoretical spectra are found to well agree with the experimental data. For boron-11, the NMR parameter distributions have been analysed using a Kernel density estimation (KDE) approach which is shown to highlight its main features. Accordingly, a new analytical model that incorporates the observed correlations between the NMR parameters is introduced. It significantly improves the fit of the (11)B MQMAS spectra and yields, therefore, more reliable NMR parameter distributions. A new analytical model for a quantitative description of the dependence of the silicon-29 and boron-11 isotropic chemical shift upon the bond angles is proposed, which incorporates possibly the effect of SiO(2)-B(2)O(3) intermixing. Combining all the above procedures, we show how distributions of Si-O-T and B-O-T (T=Si, B) bond angles can be estimated from the distribution of isotropic chemical shift of silicon-29 and boron-11, respectively. Copyright © 2010 John Wiley & Sons, Ltd.
Incremental Refinement of FAÇADE Models with Attribute Grammar from 3d Point Clouds
NASA Astrophysics Data System (ADS)
Dehbi, Y.; Staat, C.; Mandtler, L.; Pl¨umer, L.
2016-06-01
Data acquisition using unmanned aerial vehicles (UAVs) has gotten more and more attention over the last years. Especially in the field of building reconstruction the incremental interpretation of such data is a demanding task. In this context formal grammars play an important role for the top-down identification and reconstruction of building objects. Up to now, the available approaches expect offline data in order to parse an a-priori known grammar. For mapping on demand an on the fly reconstruction based on UAV data is required. An incremental interpretation of the data stream is inevitable. This paper presents an incremental parser of grammar rules for an automatic 3D building reconstruction. The parser enables a model refinement based on new observations with respect to a weighted attribute context-free grammar (WACFG). The falsification or rejection of hypotheses is supported as well. The parser can deal with and adapt available parse trees acquired from previous interpretations or predictions. Parse trees derived so far are updated in an iterative way using transformation rules. A diagnostic step searches for mismatches between current and new nodes. Prior knowledge on façades is incorporated. It is given by probability densities as well as architectural patterns. Since we cannot always assume normal distributions, the derivation of location and shape parameters of building objects is based on a kernel density estimation (KDE). While the level of detail is continuously improved, the geometrical, semantic and topological consistency is ensured.
Cabrera, Jaime A; Molina, Eduardo; González, Tania; Armenteras, Dolors
2016-12-01
Telemetry based on Global Positioning Systems (GPS) makes possible to gather large quantities of information in a very fine scale and work with species that were impossible to study in the past. When working with GPS telemetry, the option of storing data on board could be more desirable than the sole satellite transmitted data, due to the increase in the amount of locations available for analysis. Nonetheless, the uncertainty in the retrieving of the collar unit makes satellite-transmitted technologies something to take into account. Therefore, differences between store-on-board (SoB) and satellite-transmitted (IT) data sets need to be considered. Differences between SoB and IT data collected from two lowland tapirs (Tapirus terrestris), were explored by means of the calculation of home range areas by three different methods: the Minimum Convex Polygon (MCP), the Fixed Kernel Density Estimator (KDE) and the Brownian Bridges (BB). Results showed that SoB and IT data sets for the same individual were similar, with fix ranging from 63 % to 85 % respectively, and 16 m to 17 m horizontal errors. Depending on the total number of locations available for each individual, the home ranges estimated showed differences between 2.7 % and 79.3 %, for the 50 % probability contour and between 9.9 % and 61.8 % for the 95 % probability contour. These differences imply variations in the spatial coincidence of the estimated home ranges. We concluded that the use of IT data is not a good option for the estimation of home range areas if the collar settings have not been designed specifically for this use. Nonetheless, geographical representations of the IT based estimators could be of great help to identify areas of use, besides its assistance to locate the collar for its retrieval at the end of the field season and as a proximate backup when collars disappear.
Modeling reactive transport with particle tracking and kernel estimators
NASA Astrophysics Data System (ADS)
Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-04-01
Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.
Extreme lymphocytosis with myelomonocytic morphology in a horse with diffuse large B-cell lymphoma.
Meichner, Kristina; Kraszeski, Blaire H; Durrant, Jessica R; Grindem, Carol B; Breuhaus, Babetta A; Moore, Peter F; Neel, Jennifer A; Linder, Keith E; Borst, Luke B; Fogle, Jonathan E; Tarigo, Jaime L
2017-03-01
An 11-year-old, 443-kg Haflinger mare was presented to the North Carolina State University Veterinary Teaching Hospital with a 2-week history of lethargy and a 3-day duration of anorexia, pyrexia, tachycardia, and ventral edema. Severe pitting edema, peripheral lymphadenopathy, and a caudal abdominal mass were noted on physical examination. An extreme leukocytosis (154.3 × 10 3 /μL) and microscopic hematologic findings suggestive of myelomonocytic leukemia were observed. Serum protein electrophoresis revealed a monoclonal gammopathy and urine protein electrophoresis revealed a monoclonal light chain proteinuria. Necropsy and histopathology confirmed widespread neoplastic infiltration in many organs with a heterogenous population of cells; there was no apparent evidence of bone marrow involvement. Immunohistochemistry confirmed presence of a majority of B cells with a limited antigen expression, admixed with a lower number of T cells. Molecular clonality analysis of IgH2, IgH3, and kappa-deleting element (KDE, B cell) on whole blood and KDE on infiltrated tissues revealed clonal rearrangements, and the KDE intron clones that amplified in blood and in infiltrated tissue were identical. In contrast, the clonality analysis of T-cell receptor γ revealed no clonality on blood cells and infiltrated tissues. In conjunction with the histopathologic changes, the lesion was interpreted to be composed of neoplastic B cells with a reactive T-cell population. Polymerase chain reaction testing for equine herpes virus 5 was negative. The final diagnosis was diffuse large B-cell lymphoma with a marked hematogenous component. © 2016 American Society for Veterinary Clinical Pathology.
Evaluation of portable near-infrared spectroscopy for organic milk authentication.
Liu, Ningjing; Parra, Hector Aya; Pustjens, Annemieke; Hettinga, Kasper; Mongondry, Philippe; van Ruth, Saskia M
2018-07-01
Organic products are vulnerable to fraud due to their premium price. Analytical methodology helps to manage the risk of fraud and due to the miniaturization of equipment, tests may nowadays even be rapidly applied on-site. The current study aimed to evaluate portable near infrared spectroscopy (NIRS) in combination with chemometrics to distinguish organic milk from other types of milk, and compare its performance with benchtop NIRS and fatty acid profiling by gas chromatography. The sample set included 37 organic retail milks and 50 non-organic retail milks (of which 36 conventional and 14 green 'pasture' milks). Partial least squares discriminant analysis was performed to build classification models and kernel density estimation (KDE) functions were calculated to generate non-parametric distributions for samples' class probabilities. These distributions showed that portable NIRS was successful to distinguish organic milks from conventional milks, and so were benchtop NIRS and fatty acid profiling procedures. However, it was less successful when 'pasture' milks were considered too, since their patterns occasionally resembled those of the organic milk group. Fatty acid profiling was capable of distinguishing organic milks from both non-organic milks though, including the 'pasture' milks. This comparative study revealed that the classification performance of the portable NIRS for this application was similar to that of the benchtop NIRS. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baccar, D.; Söffker, D.
2017-11-01
Acoustic Emission (AE) is a suitable method to monitor the health of composite structures in real-time. However, AE-based failure mode identification and classification are still complex to apply due to the fact that AE waves are generally released simultaneously from all AE-emitting damage sources. Hence, the use of advanced signal processing techniques in combination with pattern recognition approaches is required. In this paper, AE signals generated from laminated carbon fiber reinforced polymer (CFRP) subjected to indentation test are examined and analyzed. A new pattern recognition approach involving a number of processing steps able to be implemented in real-time is developed. Unlike common classification approaches, here only CWT coefficients are extracted as relevant features. Firstly, Continuous Wavelet Transform (CWT) is applied to the AE signals. Furthermore, dimensionality reduction process using Principal Component Analysis (PCA) is carried out on the coefficient matrices. The PCA-based feature distribution is analyzed using Kernel Density Estimation (KDE) allowing the determination of a specific pattern for each fault-specific AE signal. Moreover, waveform and frequency content of AE signals are in depth examined and compared with fundamental assumptions reported in this field. A correlation between the identified patterns and failure modes is achieved. The introduced method improves the damage classification and can be used as a non-destructive evaluation tool.
Skyrme forces and decay of the Rf266*104 nucleus synthesized via different incoming channels
NASA Astrophysics Data System (ADS)
Niyti, Deep, Aman; Kharab, Rajesh; Chopra, Sahila; Gupta, Raj K.
2017-03-01
The excitation functions for the production of 262Rf, 261Rf, and 260Rf isotopes via 4 n -, 5 n -, and 6 n -decay channels from the *266Rf compound nucleus are studied within the dynamical cluster-decay model (DCM), including deformations β2 i and so-called hot-optimum orientations θi which support symmetric fission, in agreement with experiments. The data are available for 18O+248Cm and 22Ne+244Pu reactions, respectively, at the energy ranges of Elab=88.2 to 101.3 and 109.0 to 124.8 MeV. For the nuclear interaction potentials, we use the Skyrme energy density functional (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach, which means an extension of the earlier study of excitation functions of *266Rf formed in 18O+248Cm reaction, based on the DCM using the pocket formula for nuclear proximity potential, showing interaction dependence. The Skyrme forces used here are the old SIII and SIV and new GSkI and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in frozen density approximation. Interestingly, the DCM gives an excellent fit to the measured data on fusion evaporation residue (ER) for both the incoming channels (18O+248Cm and 22Ne+244Pu ) at the energy range Elab=88.2 to 124.8 MeV, independent of the entrance channel and Skyrme force used. The possible fusion-fission (ff) and quasifission (qf) mass regions of fragments on DCM are also predicted. The DCM with Skyrme forces is further used to look for all the possible target-projectile (t-p) combinations forming the cold compound nucleus (CN) *266Rf at the CN excitation energy of Elab for hot compact configurations. The fusion evaporation residue cross sections, for the proposed new reactions in synthesizing the CN *266Rf, are also estimated for the future experiments, and role of mass asymmetry of nuclei is indicated.
Rako-Gospić, Nikolina; Radulović, Marko; Vučur, Tihana; Pleslić, Grgur; Holcer, Draško; Mackelworth, Peter
2017-11-15
This study investigates the influence of the most dominant factors (association patterns, gender, natal philopatry and anthropogenic pressure) on the home range size of the 44 most resident common bottlenose dolphins (Tursiops truncatus) inhabiting the waters of the Cres-Lošinj archipelago (north Adriatic Sea, Croatia), a recently declared NATURA 2000 SCI. Results show that variations in home range patterns (MCP, 95% KDE and 50% KDE home range size) among the individual resident dolphins are primarily related to differences in gender and reflect the way in which different genders respond to external stressors. In addition, results confirm the seasonal influence of nautical tourism on both female and male dolphins through changes in their home range sizes. The overall results improve current knowledge of the main anthropogenic threats that should be taken into consideration when developing conservation measures to be applied to this Cres and Lošinj SCI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hart, Kristen M.; Lamont, Margaret M.; Sartain, Autumn R.; Fujisaki, Ikuko; Stephens, Brail S.
2013-01-01
Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ∼250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0±930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of −31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of −15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km2 (50% KDEs, n = 10) and 741.4 km2 (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons. PMID:23843971
Hart, Kristen M.; Lamont, Margaret M.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko; Stephens, Brail S.
2013-01-01
Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0±930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of −31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of −15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km2 (50% KDEs, n = 10) and 741.4 km2 (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.
Hart, Kristen M; Lamont, Margaret M; Sartain, Autumn R; Fujisaki, Ikuko; Stephens, Brail S
2013-01-01
Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0 ± 930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of -31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of -15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km(2) (50% KDEs, n = 10) and 741.4 km(2) (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.
Understanding the Requirements for Open Source Software
2009-06-17
GNOME and K Development Environment ( KDE ) for end-user interfaces, the Eclipse and NetBeans interactive development environments for Java-based Web...17 4.1. Informal Post-hoc Assertion of OSS Requirements vs . Requirements Elicitation...18 4.2. Requirements Reading, Sense-making, and Accountability vs . Requirements Analysis
Free-ranging farm cats: home range size and predation on a livestock unit in Northwest Georgia.
Kitts-Morgan, Susanna E; Caires, Kyle C; Bohannon, Lisa A; Parsons, Elizabeth I; Hilburn, Katharine A
2015-01-01
This study's objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P < 0.0001) diurnal and nocturnal home ranges as compared to altered cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife.
Free-Ranging Farm Cats: Home Range Size and Predation on a Livestock Unit In Northwest Georgia
Kitts-Morgan, Susanna E.; Caires, Kyle C.; Bohannon, Lisa A.; Parsons, Elizabeth I.; Hilburn, Katharine A.
2015-01-01
This study’s objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P < 0.0001) diurnal and nocturnal home ranges as compared to altered cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife. PMID:25894078
TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glitzner, M; Lagendijk, J; Raaymakers, B
Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), themore » cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or machine models. Further strategies to reduce consequential overdosages are currently under investigation. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less
A KDE-Based Random Walk Method for Modeling Reactive Transport With Complex Kinetics in Porous Media
NASA Astrophysics Data System (ADS)
Sole-Mari, Guillem; Fernà ndez-Garcia, Daniel; Rodríguez-Escales, Paula; Sanchez-Vila, Xavier
2017-11-01
In recent years, a large body of the literature has been devoted to study reactive transport of solutes in porous media based on pure Lagrangian formulations. Such approaches have also been extended to accommodate second-order bimolecular reactions, in which the reaction rate is proportional to the concentrations of the reactants. Rather, in some cases, chemical reactions involving two reactants follow more complicated rate laws. Some examples are (1) reaction rate laws written in terms of powers of concentrations, (2) redox reactions incorporating a limiting term (e.g., Michaelis-Menten), or (3) any reaction where the activity coefficients vary with the concentration of the reactants, just to name a few. We provide a methodology to account for complex kinetic bimolecular reactions in a fully Lagrangian framework where each particle represents a fraction of the total mass of a specific solute. The method, built as an extension to the second-order case, is based on the concept of optimal Kernel Density Estimator, which allows the concentrations to be written in terms of particle locations, hence transferring the concept of reaction rate to that of particle location distribution. By doing so, we can update the probability of particles reacting without the need to fully reconstruct the concentration maps. The performance and convergence of the method is tested for several illustrative examples that simulate the Advection-Dispersion-Reaction Equation in a 1-D homogeneous column. Finally, a 2-D application example is presented evaluating the need of fully describing non-bilinear chemical kinetics in a randomly heterogeneous porous medium.
Spatial and Social Media Data Analytics of Housing Prices in Shenzhen, China.
Wu, Chao; Ye, Xinyue; Ren, Fu; Wan, You; Ning, Pengfei; Du, Qingyun
2016-01-01
Housing is among the most pressing issues in urban China and has received considerable scholarly attention. Researchers have primarily concentrated on identifying the factors that influence residential property prices and how such mechanisms function. However, few studies have examined the potential factors that influence housing prices from a big data perspective. In this article, we use a big data perspective to determine the willingness of buyers to pay for various factors. The opinions and geographical preferences of individuals for places can be represented by visit frequencies given different motivations. Check-in data from the social media platform Sina Visitor System is used in this article. Here, we use kernel density estimation (KDE) to analyse the spatial patterns of check-in spots (or places of interest, POIs) and employ the Getis-Ord [Formula: see text] method to identify the hot spots for different types of POIs in Shenzhen, China. New indexes are then proposed based on the hot-spot results as measured by check-in data to analyse the effects of these locations on housing prices. This modelling is performed using the hedonic price method (HPM) and the geographically weighted regression (GWR) method. The results show that the degree of clustering of POIs has a significant influence on housing values. Meanwhile, the GWR method has a better interpretive capacity than does the HPM because of the former method's ability to capture spatial heterogeneity. This article integrates big social media data to expand the scope (new study content) and depth (study scale) of housing price research to an unprecedented degree.
Spatial and Social Media Data Analytics of Housing Prices in Shenzhen, China
Ye, Xinyue; Ren, Fu; Wan, You; Ning, Pengfei; Du, Qingyun
2016-01-01
Housing is among the most pressing issues in urban China and has received considerable scholarly attention. Researchers have primarily concentrated on identifying the factors that influence residential property prices and how such mechanisms function. However, few studies have examined the potential factors that influence housing prices from a big data perspective. In this article, we use a big data perspective to determine the willingness of buyers to pay for various factors. The opinions and geographical preferences of individuals for places can be represented by visit frequencies given different motivations. Check-in data from the social media platform Sina Visitor System is used in this article. Here, we use kernel density estimation (KDE) to analyse the spatial patterns of check-in spots (or places of interest, POIs) and employ the Getis-Ord Gi* method to identify the hot spots for different types of POIs in Shenzhen, China. New indexes are then proposed based on the hot-spot results as measured by check-in data to analyse the effects of these locations on housing prices. This modelling is performed using the hedonic price method (HPM) and the geographically weighted regression (GWR) method. The results show that the degree of clustering of POIs has a significant influence on housing values. Meanwhile, the GWR method has a better interpretive capacity than does the HPM because of the former method’s ability to capture spatial heterogeneity. This article integrates big social media data to expand the scope (new study content) and depth (study scale) of housing price research to an unprecedented degree. PMID:27783645
Summary Statistics for Fun Dough Data Acquired at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallman, J S; Morales, K E; Whipple, R E
Using x-ray computerized tomography (CT), we have characterized the x-ray linear attenuation coefficients (LAC) of a Play Dough{trademark}-like product, Fun Dough{trademark}, designated as PD. Table 1 gives the first-order statistics for each of four CT measurements, estimated with a Gaussian kernel density estimator (KDE) analysis. The mean values of the LAC range from a high of about 2100 LMHU{sub D} at 100kVp to a low of about 1100 LMHU{sub D} at 300kVp. The standard deviation of each measurement is around 1% of the mean. The entropy covers the range from 3.9 to 4.6. Ordinarily, we would model the LAC ofmore » the material and compare the modeled values to the measured values. In this case, however, we did not have the composition of the material and therefore did not model the LAC. Using a method recently proposed by Lawrence Livermore National Laboratory (LLNL), we estimate the value of the effective atomic number, Z{sub eff}, to be near 8.5. LLNL prepared about 50mL of the Fun Dough{trademark} in a polypropylene vial and firmly compressed it immediately prior to the x-ray measurements. Still, layers can plainly be seen in the reconstructed images, indicating that the bulk density of the material in the container is affected by voids and bubbles. We used the computer program IMGREC to reconstruct the CT images. The values of the key parameters used in the data capture and image reconstruction are given in this report. Additional details may be found in the experimental SOP and a separate document. To characterize the statistical distribution of LAC values in each CT image, we first isolated an 80% central-core segment of volume elements ('voxels') lying completely within the specimen, away from the walls of the polypropylene vial. All of the voxels within this central core, including those comprised of voids and inclusions, are included in the statistics. We then calculated the mean value, standard deviation and entropy for (a) the four image segments and for (b) their digital gradient images. (A digital gradient image of a given image was obtained by taking the absolute value of the difference between the initial image and that same image offset by one voxel horizontally, parallel to the rows of the x-ray detector array.) The statistics of the initial image of LAC values are called 'first order statistics;' those of the gradient image, 'second order statistics.'« less
Towards the Ubiquitous Deployment of DNSSEC
2016-01-01
with other deployment partners around the world, there is now a significant and growing number of TLDs that have been signed, and a number of...as Google Earth, the Blackberry 10 operating system, and the entire set of K Desktop Environment (KDE) windowing system applications are based on...differentiate between transient errors and legitimate DNS spoofing attacks is likely going to be very important as deployment grows . The importance of
2001-09-01
Readily Available Linux has been copyrighted under the terms of the GNU General Public 5 License (GPL)1. This is a license written by the Free...GNOME and KDE . d. Portability Linux is highly compatible with many common operating systems. For...using suitable libraries, Linux is able to run programs written for other operating systems. [Ref. 8] 1 The GNU Project is coordinated by the
The Ubuntu Chat Corpus for Multiparticipant Chat Analysis
2013-03-01
Intelligence (www.aaai.org). All rights reserved. the # LINUX corpus (Elsner and Charniak 2010), and the #IPHONE/#PHYSICS/#PYTHON corpus (Adams 2008). For many...made publicly available, making it difficult to comparatively evaluate dif- ferent techniques. Corpus Description Ubuntu, a Linux -based operating...Kubuntu (Ubuntu with KDE ) support #ubuntu-devel 2 112 074 12 140 53.7 2004-10-01 Developmental team coordination #ubuntu+1 1 621 680 26 805 52.6 2007-04-04
MVC for Content Management on the Cloud
2011-09-01
Windows, Linux , MacOS, PalmOS and other customized ones (Qiu). Figure 20 illustrates implementation of MVC architecture. Qiu examines a “universal...Listing of Unzipped Text Document (From O’Reilly & Associates, Inc, 2005) Figure 37 shows the results of unzipping this file in Linux . The contents of the...ODF Adoption TC, and the ODF Alliance include members from Adobe, BBC, Bristol City Council, Bull, Corel, EDS, EMC, GNOME, IBM, Intel, KDE , MySQL
A Trusted Path Design and Implementation for Security Enhanced Linux
2004-09-01
functionality by a member of the team? Witten, et al., [21] provides an excellent discussion of some aspects of the subject. Ultimately, open vs ...terminal window is a program like gnome - terminal that provides a TTY-like environment as a window inside an X Windows session. The phrase computer...Editors selected No sound or video No graphics Check all development boxes except KDE Administrative tools System tools No printing support
Statistical Examination of Tornado Report and Warning Near-Storm Environments
NASA Astrophysics Data System (ADS)
Anderson-Frey, Alexandra K.
This study makes use of a 13-year dataset of 14,814 tornado events and 44,961 tornado warnings in the continental United States, along with near-storm environmental data associated with each of those tornado events and warnings, to build a methodology that can be used to create nuanced climatologies of near-storm environmental data. Two key parameter spaces are identified as being particularly useful in this endeavor: mixed-layer convective available potential energy (MLCAPE) versus 0-6-km vector shear magnitude (SHR6) and mixed-layer lifting condensation level (MLLCL) versus 0-1-km storm-relative helicity (SRH1). In addition, the Significant Tornado Parameter (STP) is identified as a useful composite parameter that can highlight near-storm environments that are particularly favorable for the development of significant tornadoes. Two particular statistical methods for the analysis and characterization of near-storm environments are described and applied: Kernel Density Estimation (KDE), which is applied to bulk (proximity soundinglike) parameter values associated with each event or warning, and Self-Organizing Maps (SOMs), which are applied to fully two-dimensional plots of STP in an area surrounding each event or warning. The KDE approach characterizes and identifies differences in the environments of tornadoes forming in quasi-linear convective systems versus those forming in right-moving supercells; specific environmental traits are also identified for different geographical regions, seasons, and times of day. Tornado warning performance is found to be best in environments with particularly large values of MLCAPE and SHR6. The early evening transition (EET) period is of particular interest: MLCAPE and MLLCL heights are in the process of falling, and SHR6 and SRH1 are in the process of increasing. Accordingly, tornadoes rated 2 or greater on the enhanced Fujita scale (EF2+) are also most common during the EET, probability of detection (POD) is relatively high, and false-alarm ratio (FAR) is relatively low. Overall, when comparing the distribution of environments for events versus those for warnings, there is no "smoking gun" indicating a systematic problem with forecasting that explains the high overall false-alarm ratio, which instead seems to stem from the inability to know which storms in a given environment will be tornadic. The SOM approach establishes nine statistically distinct clusters of spatial distributions of STP values in the 480 km x 480 km region surrounding each tornado event or warning. For tornado events, distinct patterns are associated more with particular times of day, geographical locations, and times of year, and the use of two-dimensional data rather than point proximity sounding information means that these patterns can be identified and characterized with still more detail; for instance, the archetypal springtime dryline environment in the Great Plains emerges readily from the data. Although high values of STP tend to be associated with relatively high POD and relatively low FAR, the majority of tornado events occur within a pattern of low STP, with relatively high FAR and low POD. The two-dimensional plots produced by the SOM approach provide an intuitive way to create distinct climatologies of tornadic near-storm environments. Having established a methodology through the use of KDE and SOM, this research then examines the topic of tornado outbreaks [defined as ten or more (E)F1+ tornadoes that occur with no more than 6 h or 2,000 km between subsequent tornadoes]. Outbreak tornadoes in a given geographical region have greater SRH1 and SHR6 than isolated tornadoes in the same region, and also have considerably higher POD than isolated tornadoes. When SOMs are created for all (E)F1+ tornadoes, the percentage of outbreak tornadoes in a given node is found to depend more strongly on the magnitude of the STP value surrounding the tornado than its orientation. For the SOM of outbreak tornadoes, outbreaks occurring in environments with higher magnitudes of STP will generally also have the highest casualty rates, regardless of the specific two-dimensional pattern of STP. Two specific tornado outbreaks are then examined through this methodology, which allows the events to be placed into their climatological context with more nuance than typical proximity sounding-based approaches would allow.
NASA Astrophysics Data System (ADS)
Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.
2015-01-01
The earlier study of excitation functions of *105Ag, formed in the 12C+93Nb reaction, based on the dynamical cluster-decay model (DCM), using the pocket formula for nuclear proximity potential is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach and to the use of the extended-Wong model of Gupta and collaborators. The Skyrme forces used are the old SIII and SIV and the new SSk, GSkI, and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in the frozen-density approximation. Taking advantage of the fact that different Skyrme forces provide different barrier characteristics, we look for the "barrier modification" effects in terms of choosing an appropriate force and hence for the existence or nonexistence of noncompound nucleus (nCN) effects in this reaction. Interestingly, independent of the choice of Skyrme or proximity force, the extended-Wong model fits the experimental data nicely, without any barrier modification and hence no nCN component in the measured fusion cross section, which consists of light-particle evaporation residue (ER) and intermediate-mass fragments (IMFs) up to mass 13, i.e., σfusionExpt .=σER+σIMFs . However, the predicted fusion cross section due to the extended-Wong model is much larger, possibly because of the so-far missing fusion-fission (ff) component in the data. On the other hand, in agreement with the earlier work using the pocket proximity potential, the DCM fits only some data (mainly IMFs) for only some Skyrme forces, and hence it presents the chosen reaction as a case of a large nCN component, whose empirically estimated content is fitted for use of the DCM with a fragment preformation factor taken equal to one, i.e., using DCM (P0=1 ), by introducing "barrier modification" through changing the neck-length parameter Δ R for a best fit to the empirical nCN data in each (ER and IMF) decay channel. Also, the ff component of the DCM is predicted to lie around the symmetric mass A /2 ±16 . All calculations are made for deformed and oriented coplanar nuclei.
Mapping young stellar populations toward Orion with Gaia DR1
NASA Astrophysics Data System (ADS)
Zari, E.; Brown, A. G. A.; de Bruijne, J.; Manara, C. F.; de Zeeuw, P. T.
2017-12-01
In this work we use the first data release of the Gaia mission to explore the three-dimensional arrangement and age ordering of the many stellar groups toward the Orion OB association, aiming at a new classification and characterization of the stellar population not embedded in the Orion A and B molecular clouds. We make use of the parallaxes and proper motions provided in the Tycho Gaia Astrometric Solution (TGAS) subset of the Gaia Data Release 1 (DR1) catalog and of the combination of Gaia DR1 and 2MASS photometry. In TGAS, we find evidence for the presence of a young population at a parallax ϖ 2.65 mas, which is loosely distributed around the following known clusters: 25 Ori, ɛ Ori, and σ Ori, and NGC 1980 (ι Ori) and the Orion Nebula Cluster (ONC). The low mass counterpart of this population is visible in the color magnitude diagrams constructed by combining Gaia DR1 G-band photometry and 2MASS. We study the density distribution of the young sources in the sky using a kernel density estimation (KDE). We find the same groups as in TGAS and also some other density enhancements that might be related to the recently discovered Orion X group, Orion dust ring, and λ Ori complex. The maps also suggest that the 25 Ori group presents a northern elongation. We estimated the ages of this population using a Bayesian isochronal fitting procedure assuming a unique parallax value for all the sources, and we inferred the presence of an age gradient going from 25 Ori (13-15 Myr) to the ONC (1-2 Myr). We confirmed this age ordering by repeating the Bayesian fit using the Pan-STARRS1 data. Intriguingly, the estimated ages toward the NGC 1980 cluster span a broad range of values. This can either be due to the presence of two populations coming from two different episodes of star formation or to a large spread along the line of sight of the same population. Some confusion might arise from the presence of unresolved binaries, which are not modeled in the fit, and usually mimic a younger population. Finally, we provisionally relate the stellar groups to the gas and dust features in Orion. Our results form the first step toward using Gaia data to unravel the complex star formation history of the Orion region in terms of the various star formation episodes, their duration, and their effects on the surrounding interstellar medium. The data and some relevant ipython notebooks used in the preparation of this paper are available at http://https://github.com/eleonorazari/OrionDR1, and also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A148
The Computational Science Environment (CSE)
2009-08-01
supported CSE platforms. Developers can also build against different versions of a particular package (e.g., Python-2.4 vs . Python-2.5) via a...8.2.1 TK Testing Error and Workaround It has been found that TK tends to produces more testing errors when using KDE , and in some instances, the test...suite freezes when reaching the TK select test. These issues have not been seen when using Gnome . 8.2.2 VTK Testing Error and Workaround VTK test
Open Radio Communications Architecture Core Framework V1.1.0 Volume 1 Software Users Manual
2005-02-01
on a PC utilizing the KDE desktop that comes with Red Hat Linux . The default desktop for most Red Hat Linux installations is the GNOME desktop. The...SCA) v2.2. The software was designed for a desktop computer running the Linux operating system (OS). It was developed in C++, uses ACE/TAO for CORBA...middleware, Xerces for the XML parser, and Red Hat Linux for the Operating System. The software is referred to as, Open Radio Communication
Summary Statistics for Homemade ?Play Dough? -- Data Acquired at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallman, J S; Morales, K E; Whipple, R E
Using x-ray computerized tomography (CT), we have characterized the x-ray linear attenuation coefficients (LAC) of a homemade Play Dough{trademark}-like material, designated as PDA. Table 1 gives the first-order statistics for each of four CT measurements, estimated with a Gaussian kernel density estimator (KDE) analysis. The mean values of the LAC range from a high of about 2700 LMHU{sub D} 100kVp to a low of about 1200 LMHUD at 300kVp. The standard deviation of each measurement is around 10% to 15% of the mean. The entropy covers the range from 6.0 to 7.4. Ordinarily, we would model the LAC of themore » material and compare the modeled values to the measured values. In this case, however, we did not have the detailed chemical composition of the material and therefore did not model the LAC. Using a method recently proposed by Lawrence Livermore National Laboratory (LLNL), we estimate the value of the effective atomic number, Z{sub eff}, to be near 10. LLNL prepared about 50mL of the homemade 'Play Dough' in a polypropylene vial and firmly compressed it immediately prior to the x-ray measurements. We used the computer program IMGREC to reconstruct the CT images. The values of the key parameters used in the data capture and image reconstruction are given in this report. Additional details may be found in the experimental SOP and a separate document. To characterize the statistical distribution of LAC values in each CT image, we first isolated an 80% central-core segment of volume elements ('voxels') lying completely within the specimen, away from the walls of the polypropylene vial. All of the voxels within this central core, including those comprised of voids and inclusions, are included in the statistics. We then calculated the mean value, standard deviation and entropy for (a) the four image segments and for (b) their digital gradient images. (A digital gradient image of a given image was obtained by taking the absolute value of the difference between the initial image and that same image offset by one voxel horizontally, parallel to the rows of the x-ray detector array.) The statistics of the initial image of LAC values are called 'first order statistics;' those of the gradient image, 'second order statistics.'« less
2007-12-07
is shown in the sequence of Figures 1 through 4, which were generated on a Linux platform (Fedora Core 3 and Core 6) using the Gnome (version 2.8.0...and KDE (version 3.5.7) desktop environments. Each of these figures presents a view of the GUI as it is scrolled downward one screen at a time with...number of tidal constituents desired vs . the number of selected constituents, see the error display in Figure 18). Several examples were discussed in
Influence of pedestrian age and gender on spatial and temporal distribution of pedestrian crashes.
Toran Pour, Alireza; Moridpour, Sara; Tay, Richard; Rajabifard, Abbas
2018-01-02
Every year, about 1.24 million people are killed in traffic crashes worldwide and more than 22% of these deaths are pedestrians. Therefore, pedestrian safety has become a significant traffic safety issue worldwide. In order to develop effective and targeted safety programs, the location- and time-specific influences on vehicle-pedestrian crashes must be assessed. The main purpose of this research is to explore the influence of pedestrian age and gender on the temporal and spatial distribution of vehicle-pedestrian crashes to identify the hotspots and hot times. Data for all vehicle-pedestrian crashes on public roadways in the Melbourne metropolitan area from 2004 to 2013 are used in this research. Spatial autocorrelation is applied in examining the vehicle-pedestrian crashes in geographic information systems (GIS) to identify any dependency between time and location of these crashes. Spider plots and kernel density estimation (KDE) are then used to determine the temporal and spatial patterns of vehicle-pedestrian crashes for different age groups and genders. Temporal analysis shows that pedestrian age has a significant influence on the temporal distribution of vehicle-pedestrian crashes. Furthermore, men and women have different crash patterns. In addition, results of the spatial analysis shows that areas with high risk of vehicle-pedestrian crashes can vary during different times of the day for different age groups and genders. For example, for those between ages 18 and 65, most vehicle-pedestrian crashes occur in the central business district (CBD) during the day, but between 7:00 p.m. and 6:00 a.m., crashes among this age group occur mostly around hotels, clubs, and bars. This research reveals that temporal and spatial distributions of vehicle-pedestrian crashes vary for different pedestrian age groups and genders. Therefore, specific safety measures should be in place during high crash times at different locations for different age groups and genders to increase the effectiveness of the countermeasures in preventing and reducing vehicle-pedestrian crashes.
Improvement of the performance of animal crossing warning signs.
Khalilikhah, Majid; Heaslip, Kevin
2017-09-01
Animal-vehicle collisions (AVCs) can result in serious injury and death to drivers, animals' death, and significant economic costs. However, the cost effectiveness of the majority of AVC mitigation measures is a significant issue. A mobile-based data collection effort was deployed to measure signs under the Utah Department of Transportation's (UDOT) jurisdiction. The crash data were obtained from the UDOT risk management database. ArcGIS was employed to link these two data sets and extract animal-related crashes and signs. An algorithm was developed to process the data and identify AVCs that occurred within sign recognition distance. Kernel density estimation (KDE) technique was applied to identify potential crash hotspots. Only 2% of AVCs occurred within the recognition distance of animal crossing signs. Almost 58% of animal-related crashes took place on the Interstate and U.S. highways, wherein only 30% of animal crossing signs were installed. State routes with a higher average number of signs experienced a lower number of AVCs per mile. The differences between AVCs that occurred within versus outside of sign recognition distance were not statistically significant regarding crash severity, time of crash, weather condition, driver age, vehicle speed, and type of animal. It is more likely that drivers become accustomed to deer crossing signs than cow signs. Based on the historical crash data and landscape structure, with attention given to the low cost safety improvement methods, a combination of different types of AVC mitigation measures can be developed to reduce the number of animal-related crashes. After an in-depth analysis of AVC data, warning traffic signs, coupled with other low cost mitigation countermeasures can be successfully placed in areas with higher priority or in critical areas. Practical applications: The findings of this study assist transportation agencies in developing more efficient mitigation measures against AVCs. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Using Open data in analyzing urban growth: urban density and change detection
NASA Astrophysics Data System (ADS)
murgante, Beniamino; Nolè, Gabriele; Lasaponara, Rosa; Lanorte, Antonio
2013-04-01
In recent years a great attention has been paid to the evolution and the use of spatial data. Internet technologies accelerated such a process, allowing more direct access to spatial information. It is estimated that more than 600 million people have been connected to the Internet at least once to display maps on the web. Consequently, there is an irreversible process which considers geographical dimension as a fundamental attribute for the management of information flows. Furthermore, the great activity produced by open data movement leads to an easier and clearer access to geospatial information. This trend concerns, in a less evident way, also satellite data, which are increasingly accessible through the web. Spatial planning, geography and other regional sciences find it difficult to build knowledge related to spatial transformation. These problems can be significantly reduced due to a large data availability, producing significant opportunities to capture knowledge useful for a better territorial governance. This study has been developed in a heavily anthropized area in southern Italy, Apulia region, using free spatial data and free multispectral and multitemporal satellite data (Apulia region was one of the first regions in Italy to adopt open data policies). The analysis concerns urban growth, which, in recent decades, showed a rapid increase. In a first step the evolution in time and change detection of urban areas has been analyzed paying particular attention to soil consumption. In the second step Kernel Density has been adopted in order to assess development pressures. KDE (Kernel Density Estimation) function is a technique that provides the density of a phenomenon based on point data. A mobile three dimensional surface has been produced from a set of points distributed over a region of space, which weighs the events within its sphere of influence, depending on their distance from the point from which intensity is estimated. It produces, considering as input point data (vector), a density continuous raster as an output. In this case, the intensity of phenomenon will be given by buildings volume. References • Bailey T. C., Gatrell A. C. (1995). Interactive spatial data analysis. Prentice Hall. • Danese M., Lazzari M., Murgante B. (2009). "Geostatistics in Historical Macroseismic Data Analysis" Transactions on Computational Sciences VI, LNCS Vol. 5730, pp. 324-341, Springer-Verlag, Berlin ISSN: 1611-3349, doi:10.1007/978-3-642-10649-1_19 • Nolè G., Danese M., Murgante B., Lasaponara R., Lanorte, A., (2012) "Using Spatial Autocorrelation Techniques and Multi-temporal Satellite Data for Analyzing Urban Sprawl" Lecture Notes in Computer Science vol. 7335, pp. 512-527. Springer-Verlag, Berlin. ISSN: 0302-9743, doi: 10.1007/978-3-642-31137-6_39 • Murgante, B., Las Casas, G., Danese, M., (2012), "Analyzing Neighbourhoods Suitable for Urban Renewal Programs with Autocorrelation Techniques" In Burian J. (Eds.) "Advances in Spatial Planning" InTech — Open Access DOI: 10.5772/33747 ISBN:978-953-51-0377-6 • Lanorte, A., Danese M., Lasaponara R., Murgante B. (2011) "Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis" International Journal of Applied Earth Observation and Geoinformation, Elsevier, doi:10.1016/j.jag.2011.09.005 • O'Sullivan D., Unwin D., (2002). Geographic Information Analysis. John Wiley & Sons • Yang, X., Lo, C. P.: Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int. J. Rem. Sensing 23, pp. 1775--1798 (2002) • Yuan, F., Sawaya, K.,.Loeffelholz, B. C., Bauer, M. E.: Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Rem. Sensing Environ. 98, pp. 317--328 (2005)
Blackledge, Matthew D; Collins, David J; Koh, Dow-Mu; Leach, Martin O
2016-02-01
We present pyOsiriX, a plugin built for the already popular dicom viewer OsiriX that provides users the ability to extend the functionality of OsiriX through simple Python scripts. This approach allows users to integrate the many cutting-edge scientific/image-processing libraries created for Python into a powerful DICOM visualisation package that is intuitive to use and already familiar to many clinical researchers. Using pyOsiriX we hope to bridge the apparent gap between basic imaging scientists and clinical practice in a research setting and thus accelerate the development of advanced clinical image processing. We provide arguments for the use of Python as a robust scripting language for incorporation into larger software solutions, outline the structure of pyOsiriX and how it may be used to extend the functionality of OsiriX, and we provide three case studies that exemplify its utility. For our first case study we use pyOsiriX to provide a tool for smooth histogram display of voxel values within a user-defined region of interest (ROI) in OsiriX. We used a kernel density estimation (KDE) method available in Python using the scikit-learn library, where the total number of lines of Python code required to generate this tool was 22. Our second example presents a scheme for segmentation of the skeleton from CT datasets. We have demonstrated that good segmentation can be achieved for two example CT studies by using a combination of Python libraries including scikit-learn, scikit-image, SimpleITK and matplotlib. Furthermore, this segmentation method was incorporated into an automatic analysis of quantitative PET-CT in a patient with bone metastases from primary prostate cancer. This enabled repeatable statistical evaluation of PET uptake values for each lesion, before and after treatment, providing estaimes maximum and median standardised uptake values (SUVmax and SUVmed respectively). Following treatment we observed a reduction in lesion volume, SUVmax and SUVmed for all lesions, in agreement with a reduction in concurrent measures of serum prostate-specific antigen (PSA). Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates
Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.
2008-01-01
Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.
Estimation of density of mongooses with capture-recapture and distance sampling
Corn, J.L.; Conroy, M.J.
1998-01-01
We captured mongooses (Herpestes javanicus) in live traps arranged in trapping webs in Antigua, West Indies, and used capture-recapture and distance sampling to estimate density. Distance estimation and program DISTANCE were used to provide estimates of density from the trapping-web data. Mean density based on trapping webs was 9.5 mongooses/ha (range, 5.9-10.2/ha); estimates had coefficients of variation ranging from 29.82-31.58% (X?? = 30.46%). Mark-recapture models were used to estimate abundance, which was converted to density using estimates of effective trap area. Tests of model assumptions provided by CAPTURE indicated pronounced heterogeneity in capture probabilities and some indication of behavioral response and variation over time. Mean estimated density was 1.80 mongooses/ha (range, 1.37-2.15/ha) with estimated coefficients of variation of 4.68-11.92% (X?? = 7.46%). Estimates of density based on mark-recapture data depended heavily on assumptions about animal home ranges; variances of densities also may be underestimated, leading to unrealistically narrow confidence intervals. Estimates based on trap webs require fewer assumptions, and estimated variances may be a more realistic representation of sampling variation. Because trap webs are established easily and provide adequate data for estimation in a few sample occasions, the method should be efficient and reliable for estimating densities of mongooses.
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
Density Estimation for New Solid and Liquid Explosives
1977-02-17
The group additivity approach was shown to be applicable to density estimation. The densities of approximately 180 explosives and related compounds... of very diverse compositions were estimated, and almost all the estimates were quite reasonable. Of the 168 compounds for which direct comparisons...could be made (see Table 6), 36.9% of the estimated densities were within 1% of the measured densities, 33.3% were within 1-2%, 11.9% were within 2-3
Breast density estimation from high spectral and spatial resolution MRI
Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.
2016-01-01
Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (p<0.0001) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 (p<0.0001) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590
Ant-inspired density estimation via random walks.
Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A
2017-10-03
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.
APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES.
Han, Qiyang; Wellner, Jon A
2016-01-01
In this paper, we study the approximation and estimation of s -concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s -concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [ Ann. Statist. 38 (2010) 2998-3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q : if Q n → Q in the Wasserstein metric, then the projected densities converge in weighted L 1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s -concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s -concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s -concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s -concave.
APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES
Han, Qiyang; Wellner, Jon A.
2017-01-01
In this paper, we study the approximation and estimation of s-concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s-concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [Ann. Statist. 38 (2010) 2998–3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q: if Qn → Q in the Wasserstein metric, then the projected densities converge in weighted L1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s-concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s-concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s-concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s-concave. PMID:28966410
Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.; ...
2017-08-25
Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.
Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...Utilizing Sparse Array Data to Develop and Implement a New Method for Estimating Blue and Fin Whale Density Len Thomas & Danielle Harris Centre...to develop and implement a new method for estimating blue and fin whale density that is effective over large spatial scales and is designed to cope
Demonstration of line transect methodologies to estimate urban gray squirrel density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hein, E.W.
1997-11-01
Because studies estimating density of gray squirrels (Sciurus carolinensis) have been labor intensive and costly, I demonstrate the use of line transect surveys to estimate gray squirrel density and determine the costs of conducting surveys to achieve precise estimates. Density estimates are based on four transacts that were surveyed five times from 30 June to 9 July 1994. Using the program DISTANCE, I estimated there were 4.7 (95% Cl = 1.86-11.92) gray squirrels/ha on the Clemson University campus. Eleven additional surveys would have decreased the percent coefficient of variation from 30% to 20% and would have cost approximately $114. Estimatingmore » urban gray squirrel density using line transect surveys is cost effective and can provide unbiased estimates of density, provided that none of the assumptions of distance sampling theory are violated.« less
Effects of LiDAR point density and landscape context on estimates of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, Kunwar K.; Chen, Gang; McCarter, James B.; Meentemeyer, Ross K.
2015-03-01
Light Detection and Ranging (LiDAR) data is being increasingly used as an effective alternative to conventional optical remote sensing to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and improved data accuracies accompanied by challenges for procuring and processing voluminous LiDAR data for large-area assessments. Reducing point density lowers data acquisition costs and overcomes computational challenges for large-area forest assessments. However, how does lower point density impact the accuracy of biomass estimation in forests containing a great level of anthropogenic disturbance? We evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing region of Charlotte, North Carolina, USA. We used multiple linear regression to establish a statistical relationship between field-measured biomass and predictor variables derived from LiDAR data with varying densities. We compared the estimation accuracies between a general Urban Forest type and three Forest Type models (evergreen, deciduous, and mixed) and quantified the degree to which landscape context influenced biomass estimation. The explained biomass variance of the Urban Forest model, using adjusted R2, was consistent across the reduced point densities, with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models at the representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, highlighting a distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest assessment without compromising the accuracy of biomass estimates, and these estimates can be further improved using development density.
Ant-inspired density estimation via random walks
Musco, Cameron; Su, Hsin-Hao
2017-01-01
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks. PMID:28928146
Nonparametric estimation of plant density by the distance method
Patil, S.A.; Burnham, K.P.; Kovner, J.L.
1979-01-01
A relation between the plant density and the probability density function of the nearest neighbor distance (squared) from a random point is established under fairly broad conditions. Based upon this relationship, a nonparametric estimator for the plant density is developed and presented in terms of order statistics. Consistency and asymptotic normality of the estimator are discussed. An interval estimator for the density is obtained. The modifications of this estimator and its variance are given when the distribution is truncated. Simulation results are presented for regular, random and aggregated populations to illustrate the nonparametric estimator and its variance. A numerical example from field data is given. Merits and deficiencies of the estimator are discussed with regard to its robustness and variance.
Precision Orbit Derived Atmospheric Density: Development and Performance
NASA Astrophysics Data System (ADS)
McLaughlin, C.; Hiatt, A.; Lechtenberg, T.; Fattig, E.; Mehta, P.
2012-09-01
Precision orbit ephemerides (POE) are used to estimate atmospheric density along the orbits of CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment). The densities are calibrated against accelerometer derived densities and considering ballistic coefficient estimation results. The 14-hour density solutions are stitched together using a linear weighted blending technique to obtain continuous solutions over the entire mission life of CHAMP and through 2011 for GRACE. POE derived densities outperform the High Accuracy Satellite Drag Model (HASDM), Jacchia 71 model, and NRLMSISE-2000 model densities when comparing cross correlation and RMS with accelerometer derived densities. Drag is the largest error source for estimating and predicting orbits for low Earth orbit satellites. This is one of the major areas that should be addressed to improve overall space surveillance capabilities; in particular, catalog maintenance. Generally, density is the largest error source in satellite drag calculations and current empirical density models such as Jacchia 71 and NRLMSISE-2000 have significant errors. Dynamic calibration of the atmosphere (DCA) has provided measurable improvements to the empirical density models and accelerometer derived densities of extremely high precision are available for a few satellites. However, DCA generally relies on observations of limited accuracy and accelerometer derived densities are extremely limited in terms of measurement coverage at any given time. The goal of this research is to provide an additional data source using satellites that have precision orbits available using Global Positioning System measurements and/or satellite laser ranging. These measurements strike a balance between the global coverage provided by DCA and the precise measurements of accelerometers. The temporal resolution of the POE derived density estimates is around 20-30 minutes, which is significantly worse than that of accelerometer derived density estimates. However, major variations in density are observed in the POE derived densities. These POE derived densities in combination with other data sources can be assimilated into physics based general circulation models of the thermosphere and ionosphere with the possibility of providing improved density forecasts for satellite drag analysis. POE derived density estimates were initially developed using CHAMP and GRACE data so comparisons could be made with accelerometer derived density estimates. This paper presents the results of the most extensive calibration of POE derived densities compared to accelerometer derived densities and provides the reasoning for selecting certain parameters in the estimation process. The factors taken into account for these selections are the cross correlation and RMS performance compared to the accelerometer derived densities and the output of the ballistic coefficient estimation that occurs simultaneously with the density estimation. This paper also presents the complete data set of CHAMP and GRACE results and shows that the POE derived densities match the accelerometer densities better than empirical models or DCA. This paves the way to expand the POE derived densities to include other satellites with quality GPS and/or satellite laser ranging observations.
Robust location and spread measures for nonparametric probability density function estimation.
López-Rubio, Ezequiel
2009-10-01
Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.
Broekhuis, Femke; Gopalaswamy, Arjun M.
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614
Broekhuis, Femke; Gopalaswamy, Arjun M
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
Large Scale Density Estimation of Blue and Fin Whales (LSD)
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...sensors, or both. The goal of this research is to develop and implement a new method for estimating blue and fin whale density that is effective over...develop and implement a density estimation methodology for quantifying blue and fin whale abundance from passive acoustic data recorded on sparse
Estimating Small-Body Gravity Field from Shape Model and Navigation Data
NASA Technical Reports Server (NTRS)
Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam
2008-01-01
This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.
Impact of density information on Rayleigh surface wave inversion results
NASA Astrophysics Data System (ADS)
Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai
2016-12-01
We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.
Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador
Molina, Santiago; Fuller, Angela K.; Morin, Dana J.; Royle, J. Andrew
2017-01-01
The Andean bear (Tremarctos ornatus) is the only extant species of bear in South America and is considered threatened across its range and endangered in Ecuador. Habitat loss and fragmentation is considered a critical threat to the species, and there is a lack of knowledge regarding its distribution and abundance. The species is thought to occur at low densities, making field studies designed to estimate abundance or density challenging. We conducted a pilot camera-trap study to estimate Andean bear density in a recently identified population of Andean bears northwest of Quito, Ecuador, during 2012. We compared 12 candidate spatial capture–recapture models including covariates on encounter probability and density and estimated a density of 7.45 bears/100 km2 within the region. In addition, we estimated that approximately 40 bears used a recently named Andean bear corridor established by the Secretary of Environment, and we produced a density map for this area. Use of a rub-post with vanilla scent attractant allowed us to capture numerous photographs for each event, improving our ability to identify individual bears by unique facial markings. This study provides the first empirically derived density estimate for Andean bears in Ecuador and should provide direction for future landscape-scale studies interested in conservation initiatives requiring spatially explicit estimates of density.
NASA Astrophysics Data System (ADS)
Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling
2016-03-01
We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in volatile and trace element contents. Our results are consistent with previously proposed geodynamical processes acting at mid-ocean ridges and with the generation of the E-DMM. Our observations indicate that the D-DMM and E-DMM have (1) a relatively constant CO2/Cl ratio of ∼57 ± 8, and (2) volatile and ITE element abundance patterns that can be related by a simple melting event, supporting the hypothesis that the E-DMM is a recycled oceanic lithosphere mantle metasomatized by low degree melts. Our calculation and model give rise to a Pacific upper mantle with volatile content of CO2 = 235 ppm, H2O = 191 ppm, F = 13 ppm, Cl = 5 ppm, and S = 114 ppm.
NASA Astrophysics Data System (ADS)
Giorli, Giacomo; Drazen, Jeffrey C.; Neuheimer, Anna B.; Copeland, Adrienne; Au, Whitlow W. L.
2018-01-01
Pelagic animals that form deep sea scattering layers (DSLs) represent an important link in the food web between zooplankton and top predators. While estimating the composition, density and location of the DSL is important to understand mesopelagic ecosystem dynamics and to predict top predators' distribution, DSL composition and density are often estimated from trawls which may be biased in terms of extrusion, avoidance, and gear-associated biases. Instead, location and biomass of DSLs can be estimated from active acoustic techniques, though estimates are often in aggregate without regard to size or taxon specific information. For the first time in the open ocean, we used a DIDSON sonar to characterize the fauna in DSLs. Estimates of the numerical density and length of animals at different depths and locations along the Kona coast of the Island of Hawaii were determined. Data were collected below and inside the DSLs with the sonar mounted on a profiler. A total of 7068 animals were counted and sized. We estimated numerical densities ranging from 1 to 7 animals/m3 and individuals as long as 3 m were detected. These numerical densities were orders of magnitude higher than those estimated from trawls and average sizes of animals were much larger as well. A mixed model was used to characterize numerical density and length of animals as a function of deep sea layer sampled, location, time of day, and day of the year. Numerical density and length of animals varied by month, with numerical density also a function of depth. The DIDSON proved to be a good tool for open-ocean/deep-sea estimation of the numerical density and size of marine animals, especially larger ones. Further work is needed to understand how this methodology relates to estimates of volume backscatters obtained with standard echosounding techniques, density measures obtained with other sampling methodologies, and to precisely evaluate sampling biases.
Temporal variation in bird counts within a Hawaiian rainforest
Simon, John C.; Pratt, T.K.; Berlin, Kim E.; Kowalsky, James R.; Fancy, S.G.; Hatfield, J.S.
2002-01-01
We studied monthly and annual variation in density estimates of nine forest bird species along an elevational gradient in an east Maui rainforest. We conducted monthly variable circular-plot counts for 36 consecutive months along transects running downhill from timberline. Density estimates were compared by month, year, and station for all resident bird species with sizeable populations, including four native nectarivores, two native insectivores, a non-native insectivore, and two non-native generalists. We compared densities among three elevational strata and between breeding and nonbreeding seasons. All species showed significant differences in density estimates among months and years. Three native nectarivores had higher density estimates within their breeding season (December-May) and showed decreases during periods of low nectar production following the breeding season. All insectivore and generalist species except one had higher density estimates within their March-August breeding season. Density estimates also varied with elevation for all species, and for four species a seasonal shift in population was indicated. Our data show that the best time to conduct counts for native forest birds on Maui is January-February, when birds are breeding or preparing to breed, counts are typically high, variability in density estimates is low, and the likelihood for fair weather is best. Temporal variations in density estimates documented in our study site emphasize the need for consistent, well-researched survey regimens and for caution when drawing conclusions from, or basing management decisions on, survey data.
Curtis L. VanderSchaaf; Harold E. Burkhart
2010-01-01
Maximum size-density relationships (MSDR) provide natural resource managers useful information about the relationship between tree density and average tree size. Obtaining a valid estimate of how maximum tree density changes as average tree size changes is necessary to accurately describe these relationships. This paper examines three methods to estimate the slope of...
Spatial pattern corrections and sample sizes for forest density estimates of historical tree surveys
Brice B. Hanberry; Shawn Fraver; Hong S. He; Jian Yang; Dan C. Dey; Brian J. Palik
2011-01-01
The U.S. General Land Office land surveys document trees present during European settlement. However, use of these surveys for calculating historical forest density and other derived metrics is limited by uncertainty about the performance of plotless density estimators under a range of conditions. Therefore, we tested two plotless density estimators, developed by...
Evaluation of line transect sampling based on remotely sensed data from underwater video
Bergstedt, R.A.; Anderson, D.R.
1990-01-01
We used underwater video in conjunction with the line transect method and a Fourier series estimator to make 13 independent estimates of the density of known populations of bricks lying on the bottom in shallows of Lake Huron. The pooled estimate of density (95.5 bricks per hectare) was close to the true density (89.8 per hectare), and there was no evidence of bias. Confidence intervals for the individual estimates included the true density 85% of the time instead of the nominal 95%. Our results suggest that reliable estimates of the density of objects on a lake bed can be obtained by the use of remote sensing and line transect sampling theory.
Toward accurate and precise estimates of lion density.
Elliot, Nicholas B; Gopalaswamy, Arjun M
2017-08-01
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km 2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions. © 2016 Society for Conservation Biology.
Wicke, Jason; Dumas, Genevieve A
2010-02-01
The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).
NASA Technical Reports Server (NTRS)
Garber, Donald P.
1993-01-01
A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.
Chen, Rongda; Wang, Ze
2013-01-01
Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management.
Chen, Rongda; Wang, Ze
2013-01-01
Recovery rate is essential to the estimation of the portfolio’s loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody’s. However, it has a fatal defect that it can’t fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody’s new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558
Evaluation of trapping-web designs
Lukacs, P.M.; Anderson, D.R.; Burnham, K.P.
2005-01-01
The trapping web is a method for estimating the density and abundance of animal populations. A Monte Carlo simulation study is performed to explore performance of the trapping web for estimating animal density under a variety of web designs and animal behaviours. The trapping performs well when animals have home ranges, even if the home ranges are large relative to trap spacing. Webs should contain at least 90 traps. Trapping should continue for 5-7 occasions. Movement rates have little impact on density estimates when animals are confined to home ranges. Estimation is poor when animals do not have home ranges and movement rates are rapid. The trapping web is useful for estimating the density of animals that are hard to detect and occur at potentially low densities. ?? CSIRO 2005.
An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.
Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len
2016-01-01
Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method an attractive option in many situations where populations can be surveyed acoustically by humans.
Density estimates of monarch butterflies overwintering in central Mexico
Diffendorfer, Jay E.; López-Hoffman, Laura; Oberhauser, Karen; Pleasants, John; Semmens, Brice X.; Semmens, Darius; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations. PMID:28462031
Density estimates of monarch butterflies overwintering in central Mexico
Thogmartin, Wayne E.; Diffendorfer, James E.; Lopez-Hoffman, Laura; Oberhauser, Karen; Pleasants, John M.; Semmens, Brice X.; Semmens, Darius J.; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.
Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin
2003-01-01
A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...
Ku, Bon Ki; Evans, Douglas E.
2015-01-01
For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard’s estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles. PMID:26526560
Ku, Bon Ki; Evans, Douglas E
2012-04-01
For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as "Maynard's estimation method") is used. Therefore, it is necessary to quantitatively investigate how much the Maynard's estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard's estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard's estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard's estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles.
Small-mammal density estimation: A field comparison of grid-based vs. web-based density estimators
Parmenter, R.R.; Yates, Terry L.; Anderson, D.R.; Burnham, K.P.; Dunnum, J.L.; Franklin, A.B.; Friggens, M.T.; Lubow, B.C.; Miller, M.; Olson, G.S.; Parmenter, Cheryl A.; Pollard, J.; Rexstad, E.; Shenk, T.M.; Stanley, T.R.; White, Gary C.
2003-01-01
Statistical models for estimating absolute densities of field populations of animals have been widely used over the last century in both scientific studies and wildlife management programs. To date, two general classes of density estimation models have been developed: models that use data sets from capture–recapture or removal sampling techniques (often derived from trapping grids) from which separate estimates of population size (NÌ‚) and effective sampling area (AÌ‚) are used to calculate density (DÌ‚ = NÌ‚/AÌ‚); and models applicable to sampling regimes using distance-sampling theory (typically transect lines or trapping webs) to estimate detection functions and densities directly from the distance data. However, few studies have evaluated these respective models for accuracy, precision, and bias on known field populations, and no studies have been conducted that compare the two approaches under controlled field conditions. In this study, we evaluated both classes of density estimators on known densities of enclosed rodent populations. Test data sets (n = 11) were developed using nine rodent species from capture–recapture live-trapping on both trapping grids and trapping webs in four replicate 4.2-ha enclosures on the Sevilleta National Wildlife Refuge in central New Mexico, USA. Additional “saturation” trapping efforts resulted in an enumeration of the rodent populations in each enclosure, allowing the computation of true densities. Density estimates (DÌ‚) were calculated using program CAPTURE for the grid data sets and program DISTANCE for the web data sets, and these results were compared to the known true densities (D) to evaluate each model's relative mean square error, accuracy, precision, and bias. In addition, we evaluated a variety of approaches to each data set's analysis by having a group of independent expert analysts calculate their best density estimates without a priori knowledge of the true densities; this “blind” test allowed us to evaluate the influence of expertise and experience in calculating density estimates in comparison to simply using default values in programs CAPTURE and DISTANCE. While the rodent sample sizes were considerably smaller than the recommended minimum for good model results, we found that several models performed well empirically, including the web-based uniform and half-normal models in program DISTANCE, and the grid-based models Mb and Mbh in program CAPTURE (with AÌ‚ adjusted by species-specific full mean maximum distance moved (MMDM) values). These models produced accurate DÌ‚ values (with 95% confidence intervals that included the true D values) and exhibited acceptable bias but poor precision. However, in linear regression analyses comparing each model's DÌ‚ values to the true D values over the range of observed test densities, only the web-based uniform model exhibited a regression slope near 1.0; all other models showed substantial slope deviations, indicating biased estimates at higher or lower density values. In addition, the grid-based DÌ‚ analyses using full MMDM values for WÌ‚ area adjustments required a number of theoretical assumptions of uncertain validity, and we therefore viewed their empirical successes with caution. Finally, density estimates from the independent analysts were highly variable, but estimates from web-based approaches had smaller mean square errors and better achieved confidence-interval coverage of D than did grid-based approaches. Our results support the contention that web-based approaches for density estimation of small-mammal populations are both theoretically and empirically superior to grid-based approaches, even when sample size is far less than often recommended. In view of the increasing need for standardized environmental measures for comparisons among ecosystems and through time, analytical models based on distance sampling appear to offer accurate density estimation approaches for research studies involving small-mammal abundances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.
2016-11-15
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less
Stochastic sediment property inversion in Shallow Water 06.
Michalopoulou, Zoi-Heleni
2017-11-01
Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.
Investigation of estimators of probability density functions
NASA Technical Reports Server (NTRS)
Speed, F. M.
1972-01-01
Four research projects are summarized which include: (1) the generation of random numbers on the IBM 360/44, (2) statistical tests used to check out random number generators, (3) Specht density estimators, and (4) use of estimators of probability density functions in analyzing large amounts of data.
Characterization of a maximum-likelihood nonparametric density estimator of kernel type
NASA Technical Reports Server (NTRS)
Geman, S.; Mcclure, D. E.
1982-01-01
Kernel type density estimators calculated by the method of sieves. Proofs are presented for the characterization theorem: Let x(1), x(2),...x(n) be a random sample from a population with density f(0). Let sigma 0 and consider estimators f of f(0) defined by (1).
Large Scale Density Estimation of Blue and Fin Whales (LSD)
2014-09-30
172. McDonald, MA, Hildebrand, JA, and Mesnick, S (2009). Worldwide decline in tonal frequencies of blue whale songs . Endangered Species Research 9...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...estimating blue and fin whale density that is effective over large spatial scales and is designed to cope with spatial variation in animal density utilizing
Kimura, Satoko; Akamatsu, Tomonari; Li, Songhai; Dong, Shouyue; Dong, Lijun; Wang, Kexiong; Wang, Ding; Arai, Nobuaki
2010-09-01
A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.
Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong
2016-05-30
Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.
Chen, Lin; Ray, Shonket; Keller, Brad M; Pertuz, Said; McDonald, Elizabeth S; Conant, Emily F; Kontos, Despina
2016-09-01
Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88-0.95; weighted κ = 0.83-0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76-0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density estimation may be feasible. (©) RSNA, 2016 Online supplemental material is available for this article.
Chen, Lin; Ray, Shonket; Keller, Brad M.; Pertuz, Said; McDonald, Elizabeth S.; Conant, Emily F.
2016-01-01
Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88–0.95; weighted κ = 0.83–0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76–0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density estimation may be feasible. © RSNA, 2016 Online supplemental material is available for this article. PMID:27002418
David W. Vahey; C. Tim Scott; J.Y. Zhu; Kenneth E. Skog
2012-01-01
Methods for estimating present and future carbon storage in trees and forests rely on measurements or estimates of tree volume or volume growth multiplied by specific gravity. Wood density can vary by tree ring and height in a tree. If data on density by tree ring could be obtained and linked to tree size and stand characteristics, it would be possible to more...
Reliability and precision of pellet-group counts for estimating landscape-level deer density
David S. deCalesta
2013-01-01
This study provides hitherto unavailable methodology for reliably and precisely estimating deer density within forested landscapes, enabling quantitative rather than qualitative deer management. Reliability and precision of the deer pellet-group technique were evaluated in 1 small and 2 large forested landscapes. Density estimates, adjusted to reflect deer harvest and...
Trunk density profile estimates from dual X-ray absorptiometry.
Wicke, Jason; Dumas, Geneviève A; Costigan, Patrick A
2008-01-01
Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.
Effects of LiDAR point density and landscape context on the retrieval of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, K. K.; Chen, G.; McCarter, J. B.; Meentemeyer, R. K.
2014-12-01
Light Detection and Ranging (LiDAR), as an alternative to conventional optical remote sensing, is being increasingly used to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and better data accuracies, which however pose challenges to the procurement and processing of LiDAR data for large-area assessments. Reducing point density cuts data acquisition costs and overcome computational challenges for broad-scale forest management. However, how does that impact the accuracy of biomass estimation in an urban environment containing a great level of anthropogenic disturbances? The main goal of this study is to evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing regions of Charlotte, North Carolina, USA. We used multiple linear regression to establish the statistical relationship between field-measured biomass and predictor variables (PVs) derived from LiDAR point clouds with varying densities. We compared the estimation accuracies between the general Urban Forest models (no discrimination of forest type) and the Forest Type models (evergreen, deciduous, and mixed), which was followed by quantifying the degree to which landscape context influenced biomass estimation. The explained biomass variance of Urban Forest models, adjusted R2, was fairly consistent across the reduced point densities with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models using two representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, signifying the distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest biomass assessment without compromising the accuracy of estimation, which may further be improved using development density.
Soil Bulk Density by Soil Type, Land Use and Data Source: Putting the Error in SOC Estimates
NASA Astrophysics Data System (ADS)
Wills, S. A.; Rossi, A.; Loecke, T.; Ramcharan, A. M.; Roecker, S.; Mishra, U.; Waltman, S.; Nave, L. E.; Williams, C. O.; Beaudette, D.; Libohova, Z.; Vasilas, L.
2017-12-01
An important part of SOC stock and pool assessment is the assessment, estimation, and application of bulk density estimates. The concept of bulk density is relatively simple (the mass of soil in a given volume), the specifics Bulk density can be difficult to measure in soils due to logistical and methodological constraints. While many estimates of SOC pools use legacy data in their estimates, few concerted efforts have been made to assess the process used to convert laboratory carbon concentration measurements and bulk density collection into volumetrically based SOC estimates. The methodologies used are particularly sensitive in wetlands and organic soils with high amounts of carbon and very low bulk densities. We will present an analysis across four database measurements: NCSS - the National Cooperative Soil Survey Characterization dataset, RaCA - the Rapid Carbon Assessment sample dataset, NWCA - the National Wetland Condition Assessment, and ISCN - the International soil Carbon Network. The relationship between bulk density and soil organic carbon will be evaluated by dataset and land use/land cover information. Prediction methods (both regression and machine learning) will be compared and contrasted across datasets and available input information. The assessment and application of bulk density, including modeling, aggregation and error propagation will be evaluated. Finally, recommendations will be made about both the use of new data in soil survey products (such as SSURGO) and the use of that information as legacy data in SOC pool estimates.
Computerized image analysis: estimation of breast density on mammograms
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Chan, Heang-Ping; Petrick, Nicholas; Sahiner, Berkman; Helvie, Mark A.; Roubidoux, Marilyn A.; Hadjiiski, Lubomir M.; Goodsitt, Mitchell M.
2000-06-01
An automated image analysis tool is being developed for estimation of mammographic breast density, which may be useful for risk estimation or for monitoring breast density change in a prevention or intervention program. A mammogram is digitized using a laser scanner and the resolution is reduced to a pixel size of 0.8 mm X 0.8 mm. Breast density analysis is performed in three stages. First, the breast region is segmented from the surrounding background by an automated breast boundary-tracking algorithm. Second, an adaptive dynamic range compression technique is applied to the breast image to reduce the range of the gray level distribution in the low frequency background and to enhance the differences in the characteristic features of the gray level histogram for breasts of different densities. Third, rule-based classification is used to classify the breast images into several classes according to the characteristic features of their gray level histogram. For each image, a gray level threshold is automatically determined to segment the dense tissue from the breast region. The area of segmented dense tissue as a percentage of the breast area is then estimated. In this preliminary study, we analyzed the interobserver variation of breast density estimation by two experienced radiologists using BI-RADS lexicon. The radiologists' visually estimated percent breast densities were compared with the computer's calculation. The results demonstrate the feasibility of estimating mammographic breast density using computer vision techniques and its potential to improve the accuracy and reproducibility in comparison with the subjective visual assessment by radiologists.
Topics in global convergence of density estimates
NASA Technical Reports Server (NTRS)
Devroye, L.
1982-01-01
The problem of estimating a density f on R sup d from a sample Xz(1),...,X(n) of independent identically distributed random vectors is critically examined, and some recent results in the field are reviewed. The following statements are qualified: (1) For any sequence of density estimates f(n), any arbitrary slow rate of convergence to 0 is possible for E(integral/f(n)-fl); (2) In theoretical comparisons of density estimates, integral/f(n)-f/ should be used and not integral/f(n)-f/sup p, p 1; and (3) For most reasonable nonparametric density estimates, either there is convergence of integral/f(n)-f/ (and then the convergence is in the strongest possible sense for all f), or there is no convergence (even in the weakest possible sense for a single f). There is no intermediate situation.
Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohayai, Tanaz Angelina; Snopok, Pavel; Neuffer, David
The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.
Jun, Jae Kwan; Kim, Mi Jin; Choi, Kui Son; Suh, Mina; Jung, Kyu-Won
2012-01-01
Mammographic breast density is a known risk factor for breast cancer. To conduct a survey to estimate the distribution of mammographic breast density in Korean women, appropriate sampling strategies for representative and efficient sampling design were evaluated through simulation. Using the target population from the National Cancer Screening Programme (NCSP) for breast cancer in 2009, we verified the distribution estimate by repeating the simulation 1,000 times using stratified random sampling to investigate the distribution of breast density of 1,340,362 women. According to the simulation results, using a sampling design stratifying the nation into three groups (metropolitan, urban, and rural), with a total sample size of 4,000, we estimated the distribution of breast density in Korean women at a level of 0.01% tolerance. Based on the results of our study, a nationwide survey for estimating the distribution of mammographic breast density among Korean women can be conducted efficiently.
Estimation of Wheat Plant Density at Early Stages Using High Resolution Imagery
Liu, Shouyang; Baret, Fred; Andrieu, Bruno; Burger, Philippe; Hemmerlé, Matthieu
2017-01-01
Crop density is a key agronomical trait used to manage wheat crops and estimate yield. Visual counting of plants in the field is currently the most common method used. However, it is tedious and time consuming. The main objective of this work is to develop a machine vision based method to automate the density survey of wheat at early stages. RGB images taken with a high resolution RGB camera are classified to identify the green pixels corresponding to the plants. Crop rows are extracted and the connected components (objects) are identified. A neural network is then trained to estimate the number of plants in the objects using the object features. The method was evaluated over three experiments showing contrasted conditions with sowing densities ranging from 100 to 600 seeds⋅m-2. Results demonstrate that the density is accurately estimated with an average relative error of 12%. The pipeline developed here provides an efficient and accurate estimate of wheat plant density at early stages. PMID:28559901
Simple Form of MMSE Estimator for Super-Gaussian Prior Densities
NASA Astrophysics Data System (ADS)
Kittisuwan, Pichid
2015-04-01
The denoising method that become popular in recent years for additive white Gaussian noise (AWGN) are Bayesian estimation techniques e.g., maximum a posteriori (MAP) and minimum mean square error (MMSE). In super-Gaussian prior densities, it is well known that the MMSE estimator in such a case has a complicated form. In this work, we derive the MMSE estimation with Taylor series. We show that the proposed estimator also leads to a simple formula. An extension of this estimator to Pearson type VII prior density is also offered. The experimental result shows that the proposed estimator to the original MMSE nonlinearity is reasonably good.
Davis, Amy J; Leland, Bruce; Bodenchuk, Michael; VerCauteren, Kurt C; Pepin, Kim M
2017-06-01
Population density is a key driver of disease dynamics in wildlife populations. Accurate disease risk assessment and determination of management impacts on wildlife populations requires an ability to estimate population density alongside management actions. A common management technique for controlling wildlife populations to monitor and mitigate disease transmission risk is trapping (e.g., box traps, corral traps, drop nets). Although abundance can be estimated from trapping actions using a variety of analytical approaches, inference is limited by the spatial extent to which a trap attracts animals on the landscape. If the "area of influence" were known, abundance estimates could be converted to densities. In addition to being an important predictor of contact rate and thus disease spread, density is more informative because it is comparable across sites of different sizes. The goal of our study is to demonstrate the importance of determining the area sampled by traps (area of influence) so that density can be estimated from management-based trapping designs which do not employ a trapping grid. To provide one example of how area of influence could be calculated alongside management, we conducted a small pilot study on wild pigs (Sus scrofa) using two removal methods 1) trapping followed by 2) aerial gunning, at three sites in northeast Texas in 2015. We estimated abundance from trapping data with a removal model. We calculated empirical densities as aerial counts divided by the area searched by air (based on aerial flight tracks). We inferred the area of influence of traps by assuming consistent densities across the larger spatial scale and then solving for area impacted by the traps. Based on our pilot study we estimated the area of influence for corral traps in late summer in Texas to be ∼8.6km 2 . Future work showing the effects of behavioral and environmental factors on area of influence will help mangers obtain estimates of density from management data, and determine conditions where trap-attraction is strongest. The ability to estimate density alongside population control activities will improve risk assessment and response operations against disease outbreaks. Published by Elsevier B.V.
A spatially explicit capture-recapture estimator for single-catch traps.
Distiller, Greg; Borchers, David L
2015-11-01
Single-catch traps are frequently used in live-trapping studies of small mammals. Thus far, a likelihood for single-catch traps has proven elusive and usually the likelihood for multicatch traps is used for spatially explicit capture-recapture (SECR) analyses of such data. Previous work found the multicatch likelihood to provide a robust estimator of average density. We build on a recently developed continuous-time model for SECR to derive a likelihood for single-catch traps. We use this to develop an estimator based on observed capture times and compare its performance by simulation to that of the multicatch estimator for various scenarios with nonconstant density surfaces. While the multicatch estimator is found to be a surprisingly robust estimator of average density, its performance deteriorates with high trap saturation and increasing density gradients. Moreover, it is found to be a poor estimator of the height of the detection function. By contrast, the single-catch estimators of density, distribution, and detection function parameters are found to be unbiased or nearly unbiased in all scenarios considered. This gain comes at the cost of higher variance. If there is no interest in interpreting the detection function parameters themselves, and if density is expected to be fairly constant over the survey region, then the multicatch estimator performs well with single-catch traps. However if accurate estimation of the detection function is of interest, or if density is expected to vary substantially in space, then there is merit in using the single-catch estimator when trap saturation is above about 60%. The estimator's performance is improved if care is taken to place traps so as to span the range of variables that affect animal distribution. As a single-catch likelihood with unknown capture times remains intractable for now, researchers using single-catch traps should aim to incorporate timing devices with their traps.
NASA Technical Reports Server (NTRS)
Weaver, W. L.; Green, R. N.
1980-01-01
A study was performed on the use of geometric shape factors to estimate earth-emitted flux densities from radiation measurements with wide field-of-view flat-plate radiometers on satellites. Sets of simulated irradiance measurements were computed for unrestricted and restricted field-of-view detectors. In these simulations, the earth radiation field was modeled using data from Nimbus 2 and 3. Geometric shape factors were derived and applied to these data to estimate flux densities on global and zonal scales. For measurements at a satellite altitude of 600 km, estimates of zonal flux density were in error 1.0 to 1.2%, and global flux density errors were less than 0.2%. Estimates with unrestricted field-of-view detectors were about the same for Lambertian and non-Lambertian radiation models, but were affected by satellite altitude. The opposite was found for the restricted field-of-view detectors.
Density Estimation with Mercer Kernels
NASA Technical Reports Server (NTRS)
Macready, William G.
2003-01-01
We present a new method for density estimation based on Mercer kernels. The density estimate can be understood as the density induced on a data manifold by a mixture of Gaussians fit in a feature space. As is usual, the feature space and data manifold are defined with any suitable positive-definite kernel function. We modify the standard EM algorithm for mixtures of Gaussians to infer the parameters of the density. One benefit of the approach is it's conceptual simplicity, and uniform applicability over many different types of data. Preliminary results are presented for a number of simple problems.
Cetacean population density estimation from single fixed sensors using passive acoustics.
Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica
2011-06-01
Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data. © 2011 Acoustical Society of America
Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A
2013-07-01
Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.
NASA Astrophysics Data System (ADS)
Freeman, P. E.; Izbicki, R.; Lee, A. B.
2017-07-01
Photometric redshift estimation is an indispensable tool of precision cosmology. One problem that plagues the use of this tool in the era of large-scale sky surveys is that the bright galaxies that are selected for spectroscopic observation do not have properties that match those of (far more numerous) dimmer galaxies; thus, ill-designed empirical methods that produce accurate and precise redshift estimates for the former generally will not produce good estimates for the latter. In this paper, we provide a principled framework for generating conditional density estimates (I.e. photometric redshift PDFs) that takes into account selection bias and the covariate shift that this bias induces. We base our approach on the assumption that the probability that astronomers label a galaxy (I.e. determine its spectroscopic redshift) depends only on its measured (photometric and perhaps other) properties x and not on its true redshift. With this assumption, we can explicitly write down risk functions that allow us to both tune and compare methods for estimating importance weights (I.e. the ratio of densities of unlabelled and labelled galaxies for different values of x) and conditional densities. We also provide a method for combining multiple conditional density estimates for the same galaxy into a single estimate with better properties. We apply our risk functions to an analysis of ≈106 galaxies, mostly observed by Sloan Digital Sky Survey, and demonstrate through multiple diagnostic tests that our method achieves good conditional density estimates for the unlabelled galaxies.
Woodpecker densities in the big woods of Arkansas
Luscier, J.D.; Krementz, David G.
2010-01-01
Sightings of the now-feared-extinct ivory-billed woodpecker Campephilus principalis in 2004 in the Big Woods of Arkansas initiated a series of studies on how to best manage habitat for this endangered species as well as all woodpeckers in the area. Previous work suggested that densities of other woodpeckers, particularly pileated Dryocopus pileatus and red-bellied Melanerpes carolinus woodpeckers, might be useful in characterizing habitat use by the ivory-billed woodpecker. We estimated densities of six woodpecker species in the Big Woods during the breeding seasons of 2006 and 2007 and also during the winter season of 2007. Our estimated densities were as high as or higher than previously published woodpecker density estimates for the Southeastern United States. Density estimates ranged from 9.1 to 161.3 individuals/km2 across six woodpecker species. Our data suggest that the Big Woods of Arkansas is attractive to all woodpeckers using the region, including ivory-billed woodpeckers.
Adjusting forest density estimates for surveyor bias in historical tree surveys
Brice B. Hanberry; Jian Yang; John M. Kabrick; Hong S. He
2012-01-01
The U.S. General Land Office surveys, conducted between the late 1700s to early 1900s, provide records of trees prior to widespread European and American colonial settlement. However, potential and documented surveyor bias raises questions about the reliability of historical tree density estimates and other metrics based on density estimated from these records. In this...
Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.
2013-01-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A
2013-02-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Kocovsky, Patrick M.; Rudstam, Lars G.; Yule, Daniel L.; Warner, David M.; Schaner, Ted; Pientka, Bernie; Deller, John W.; Waterfield, Holly A.; Witzel, Larry D.; Sullivan, Patrick J.
2013-01-01
Standardized methods of data collection and analysis ensure quality and facilitate comparisons among systems. We evaluated the importance of three recommendations from the Standard Operating Procedure for hydroacoustics in the Laurentian Great Lakes (GLSOP) on density estimates of target species: noise subtraction; setting volume backscattering strength (Sv) thresholds from user-defined minimum target strength (TS) of interest (TS-based Sv threshold); and calculations of an index for multiple targets (Nv index) to identify and remove biased TS values. Eliminating noise had the predictable effect of decreasing density estimates in most lakes. Using the TS-based Sv threshold decreased fish densities in the middle and lower layers in the deepest lakes with abundant invertebrates (e.g., Mysis diluviana). Correcting for biased in situ TS increased measured density up to 86% in the shallower lakes, which had the highest fish densities. The current recommendations by the GLSOP significantly influence acoustic density estimates, but the degree of importance is lake dependent. Applying GLSOP recommendations, whether in the Laurentian Great Lakes or elsewhere, will improve our ability to compare results among lakes. We recommend further development of standards, including minimum TS and analytical cell size, for reducing the effect of biased in situ TS on density estimates.
Plasma distributions in meteor head echoes and implications for radar cross section interpretation
NASA Astrophysics Data System (ADS)
Marshall, Robert A.; Brown, Peter; Close, Sigrid
2017-09-01
The derivation of meteoroid masses from radar measurements requires conversion of the measured radar cross section (RCS) to meteoroid mass. Typically, this conversion passes first through an estimate of the meteor plasma density derived from the RCS. However, the conversion from RCS to meteor plasma density requires assumptions on the radial electron density distribution. We use simultaneous triple-frequency measurements of the RCS for 63 large meteor head echoes to derive estimates of the meteor plasma size and density using five different possible radial electron density distributions. By fitting these distributions to the observed meteor RCS values and estimating the goodness-of-fit, we determine that the best fit to the data is a 1 /r2 plasma distribution, i.e. the electron density decays as 1 /r2 from the center of the meteor plasma. Next, we use the derived plasma distributions to estimate the electron line density q for each meteor using each of the five distributions. We show that depending on the choice of distribution, the line density can vary by a factor of three or more. We thus argue that a best estimate for the radial plasma distribution in a meteor head echo is necessary in order to have any confidence in derived meteoroid masses.
Estimating the densities of benzene-derived explosives using atomic volumes.
Ghule, Vikas D; Nirwan, Ayushi; Devi, Alka
2018-02-09
The application of average atomic volumes to predict the crystal densities of benzene-derived energetic compounds of general formula C a H b N c O d is presented, along with the reliability of this method. The densities of 119 neutral nitrobenzenes, energetic salts, and cocrystals with diverse compositions were estimated and compared with experimental data. Of the 74 nitrobenzenes for which direct comparisons could be made, the % error in the estimated density was within 0-3% for 54 compounds, 3-5% for 12 compounds, and 5-8% for the remaining 8 compounds. Among 45 energetic salts and cocrystals, the % error in the estimated density was within 0-3% for 25 compounds, 3-5% for 13 compounds, and 5-7.4% for 7 compounds. The absolute error surpassed 0.05 g/cm 3 for 27 of the 119 compounds (22%). The largest errors occurred for compounds containing fused rings and for compounds with three -NH 2 or -OH groups. Overall, the present approach for estimating the densities of benzene-derived explosives with different functional groups was found to be reliable. Graphical abstract Application and reliability of average atom volume in the crystal density prediction of energetic compounds containing benzene ring.
Estimation of dislocations density and distribution of dislocations during ECAP-Conform process
NASA Astrophysics Data System (ADS)
Derakhshan, Jaber Fakhimi; Parsa, Mohammad Habibi; Ayati, Vahid; Jafarian, Hamidreza
2018-01-01
Dislocation density of coarse grain aluminum AA1100 alloy (140 µm) that was severely deformed by Equal Channel Angular Pressing-Conform (ECAP-Conform) are studied at various stages of the process by electron backscattering diffraction (EBSD) method. The geometrically necessary dislocations (GNDs) density and statistically stored dislocations (SSDs) densities were estimate. Then the total dislocations densities are calculated and the dislocation distributions are presented as the contour maps. Estimated average dislocations density for annealed of about 2×1012 m-2 increases to 4×1013 m-2 at the middle of the groove (135° from the entrance), and they reach to 6.4×1013 m-2 at the end of groove just before ECAP region. Calculated average dislocations density for one pass severely deformed Al sample reached to 6.2×1014 m-2. At micrometer scale the behavior of metals especially mechanical properties largely depend on the dislocation density and dislocation distribution. So, yield stresses at different conditions were estimated based on the calculated dislocation densities. Then estimated yield stresses were compared with experimental results and good agreements were found. Although grain size of material did not clearly change, yield stress shown intensive increase due to the development of cell structure. A considerable increase in dislocations density in this process is a good justification for forming subgrains and cell structures during process which it can be reason of increasing in yield stress.
An adaptive technique for estimating the atmospheric density profile during the AE mission
NASA Technical Reports Server (NTRS)
Argentiero, P.
1973-01-01
A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.
Evaluation of Statistical Methodologies Used in U. S. Army Ordnance and Explosive Work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrouchov, G
2000-02-14
Oak Ridge National Laboratory was tasked by the U.S. Army Engineering and Support Center (Huntsville, AL) to evaluate the mathematical basis of existing software tools used to assist the Army with the characterization of sites potentially contaminated with unexploded ordnance (UXO). These software tools are collectively known as SiteStats/GridStats. The first purpose of the software is to guide sampling of underground anomalies to estimate a site's UXO density. The second purpose is to delineate areas of homogeneous UXO density that can be used in the formulation of response actions. It was found that SiteStats/GridStats does adequately guide the sampling somore » that the UXO density estimator for a sector is unbiased. However, the software's techniques for delineation of homogeneous areas perform less well than visual inspection, which is frequently used to override the software in the overall sectorization methodology. The main problems with the software lie in the criteria used to detect nonhomogeneity and those used to recommend the number of homogeneous subareas. SiteStats/GridStats is not a decision-making tool in the classical sense. Although it does provide information to decision makers, it does not require a decision based on that information. SiteStats/GridStats provides information that is supplemented by visual inspections, land-use plans, and risk estimates prior to making any decisions. Although the sector UXO density estimator is unbiased regardless of UXO density variation within a sector, its variability increases with increased sector density variation. For this reason, the current practice of visual inspection of individual sampled grid densities (as provided by Site-Stats/GridStats) is necessary to ensure approximate homogeneity, particularly at sites with medium to high UXO density. Together with Site-Stats/GridStats override capabilities, this provides a sufficient mechanism for homogeneous sectorization and thus yields representative UXO density estimates. Objections raised by various parties to the use of a numerical ''discriminator'' in SiteStats/GridStats were likely because of the fact that the concerned statistical technique is customarily applied for a different purpose and because of poor documentation. The ''discriminator'', in Site-Stats/GridStats is a ''tuning parameter'' for the sampling process, and it affects the precision of the grid density estimates through changes in required sample size. It is recommended that sector characterization in terms of a map showing contour lines of constant UXO density with an expressed uncertainty or confidence level is a better basis for remediation decisions than a sector UXO density point estimate. A number of spatial density estimation techniques could be adapted to the UXO density estimation problem.« less
Estimation and classification by sigmoids based on mutual information
NASA Technical Reports Server (NTRS)
Baram, Yoram
1994-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.
Dual Approach To Superquantile Estimation And Applications To Density Fitting
2016-06-01
incorporate additional constraints to improve the fidelity of density estimates in tail regions. We limit our investigation to data with heavy tails, where...samples of various heavy -tailed distributions. 14. SUBJECT TERMS probability density estimation, epi-splines, optimization, risk quantification...limit our investigation to data with heavy tails, where risk quantification is typically the most difficult. Demonstrations are provided in the form of
Comparison of methods for estimating density of forest songbirds from point counts
Jennifer L. Reidy; Frank R. Thompson; J. Wesley. Bailey
2011-01-01
New analytical methods have been promoted for estimating the probability of detection and density of birds from count data but few studies have compared these methods using real data. We compared estimates of detection probability and density from distance and time-removal models and survey protocols based on 5- or 10-min counts and outer radii of 50 or 100 m. We...
Density estimation using the trapping web design: A geometric analysis
Link, W.A.; Barker, R.J.
1994-01-01
Population densities for small mammal and arthropod populations can be estimated using capture frequencies for a web of traps. A conceptually simple geometric analysis that avoid the need to estimate a point on a density function is proposed. This analysis incorporates data from the outermost rings of traps, explaining large capture frequencies in these rings rather than truncating them from the analysis.
Estimating historical snag density in dry forests east of the Cascade Range
Richy J. Harrod; William L. Gaines; William E. Hartl; Ann. Camp
1998-01-01
Estimating snag densities in pre-European settlement landscapes (i.e., historical conditions) provides land managers with baseline information for comparing current snag densities. We propose a method for determining historical snag densities in the dry forests east of the Cascade Range. Basal area increase was calculated from tree ring measurements of old ponderosa...
Estimation of tiger densities in India using photographic captures and recaptures
Karanth, U.; Nichols, J.D.
1998-01-01
Previously applied methods for estimating tiger (Panthera tigris) abundance using total counts based on tracks have proved unreliable. In this paper we use a field method proposed by Karanth (1995), combining camera-trap photography to identify individual tigers based on stripe patterns, with capture-recapture estimators. We developed a sampling design for camera-trapping and used the approach to estimate tiger population size and density in four representative tiger habitats in different parts of India. The field method worked well and provided data suitable for analysis using closed capture-recapture models. The results suggest the potential for applying this methodology for estimating abundances, survival rates and other population parameters in tigers and other low density, secretive animal species with distinctive coat patterns or other external markings. Estimated probabilities of photo-capturing tigers present in the study sites ranged from 0.75 - 1.00. The estimated mean tiger densities ranged from 4.1 (SE hat= 1.31) to 11.7 (SE hat= 1.93) tigers/100 km2. The results support the previous suggestions of Karanth and Sunquist (1995) that densities of tigers and other large felids may be primarily determined by prey community structure at a given site.
Irigoyen, Alejo J; Rojo, Irene; Calò, Antonio; Trobbiani, Gastón; Sánchez-Carnero, Noela; García-Charton, José A
2018-01-01
Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer's experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1-31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC.
2018-01-01
Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer’s experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1–31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC. PMID:29324887
Unification of field theory and maximum entropy methods for learning probability densities
NASA Astrophysics Data System (ADS)
Kinney, Justin B.
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
Unification of field theory and maximum entropy methods for learning probability densities.
Kinney, Justin B
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
Robinson, Hugh S.; Abarca, Maria; Zeller, Katherine A.; Velasquez, Grisel; Paemelaere, Evi A. D.; Goldberg, Joshua F.; Payan, Esteban; Hoogesteijn, Rafael; Boede, Ernesto O.; Schmidt, Krzysztof; Lampo, Margarita; Viloria, Ángel L.; Carreño, Rafael; Robinson, Nathaniel; Lukacs, Paul M.; Nowak, J. Joshua; Salom-Pérez, Roberto; Castañeda, Franklin; Boron, Valeria; Quigley, Howard
2018-01-01
Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species’ entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world’s jaguar population at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions. PMID:29579129
Conditional Density Estimation with HMM Based Support Vector Machines
NASA Astrophysics Data System (ADS)
Hu, Fasheng; Liu, Zhenqiu; Jia, Chunxin; Chen, Dechang
Conditional density estimation is very important in financial engineer, risk management, and other engineering computing problem. However, most regression models have a latent assumption that the probability density is a Gaussian distribution, which is not necessarily true in many real life applications. In this paper, we give a framework to estimate or predict the conditional density mixture dynamically. Through combining the Input-Output HMM with SVM regression together and building a SVM model in each state of the HMM, we can estimate a conditional density mixture instead of a single gaussian. With each SVM in each node, this model can be applied for not only regression but classifications as well. We applied this model to denoise the ECG data. The proposed method has the potential to apply to other time series such as stock market return predictions.
DS — Software for analyzing data collected using double sampling
Bart, Jonathan; Hartley, Dana
2011-01-01
DS analyzes count data to estimate density or relative density and population size when appropriate. The software is available at http://iwcbm.dev4.fsr.com/IWCBM/default.asp?PageID=126. The software was designed to analyze data collected using double sampling, but it also can be used to analyze index data. DS is not currently configured to apply distance methods or methods based on capture-recapture theory. Double sampling for the purpose of this report means surveying a sample of locations with a rapid method of unknown accuracy and surveying a subset of these locations using a more intensive method assumed to yield unbiased estimates. "Detection ratios" are calculated as the ratio of results from rapid surveys on intensive plots to the number actually present as determined from the intensive surveys. The detection ratios are used to adjust results from the rapid surveys. The formula for density is (results from rapid survey)/(estimated detection ratio from intensive surveys). Population sizes are estimated as (density)(area). Double sampling is well-established in the survey sampling literature—see Cochran (1977) for the basic theory, Smith (1995) for applications of double sampling in waterfowl surveys, Bart and Earnst (2002, 2005) for discussions of its use in wildlife studies, and Bart and others (in press) for a detailed account of how the method was used to survey shorebirds across the arctic region of North America. Indices are surveys that do not involve complete counts of well-defined plots or recording information to estimate detection rates (Thompson and others, 1998). In most cases, such data should not be used to estimate density or population size but, under some circumstances, may be used to compare two densities or estimate how density changes through time or across space (Williams and others, 2005). The Breeding Bird Survey (Sauer and others, 2008) provides a good example of an index survey. Surveyors record all birds detected but do not record any information, such as distance or whether each bird is recorded in subperiods, that could be used to estimate detection rates. Nonetheless, the data are widely used to estimate temporal trends and spatial patterns in abundance (Sauer and others, 2008). DS produces estimates of density (or relative density for indices) by species and stratum. Strata are usually defined using region and habitat but other variables may be used, and the entire study area may be classified as a single stratum. Population size in each stratum and for the entire study area also is estimated for each species. For indices, the estimated totals generally are only useful if (a) plots are surveyed so that densities can be calculated and extrapolated to the entire study area and (b) if the detection rates are close to 1.0. All estimates are accompanied by standard errors (SE) and coefficients of variation (CV, that is, SE/estimate).
Camera traps and activity signs to estimate wild boar density and derive abundance indices.
Massei, Giovanna; Coats, Julia; Lambert, Mark Simon; Pietravalle, Stephane; Gill, Robin; Cowan, Dave
2018-04-01
Populations of wild boar and feral pigs are increasing worldwide, in parallel with their significant environmental and economic impact. Reliable methods of monitoring trends and estimating abundance are needed to measure the effects of interventions on population size. The main aims of this study, carried out in five English woodlands were: (i) to compare wild boar abundance indices obtained from camera trap surveys and from activity signs; and (ii) to assess the precision of density estimates in relation to different densities of camera traps. For each woodland, we calculated a passive activity index (PAI) based on camera trap surveys, rooting activity and wild boar trails on transects, and estimated absolute densities based on camera trap surveys. PAIs obtained using different methods showed similar patterns. We found significant between-year differences in abundance of wild boar using PAIs based on camera trap surveys and on trails on transects, but not on signs of rooting on transects. The density of wild boar from camera trap surveys varied between 0.7 and 7 animals/km 2 . Increasing the density of camera traps above nine per km 2 did not increase the precision of the estimate of wild boar density. PAIs based on number of wild boar trails and on camera trap data appear to be more sensitive to changes in population size than PAIs based on signs of rooting. For wild boar densities similar to those recorded in this study, nine camera traps per km 2 are sufficient to estimate the mean density of wild boar. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shangjie; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; Hara, Wendy
Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a referencemore » anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.« less
2015-09-30
together the research community working on marine mammal acoustics to discuss detection, classification, localization and density estimation methods...and Density Estimation of Marine Mammals Using Passive Acoustics - 2015 John A. Hildebrand Scripps Institution of Oceanography UCSD La Jolla...dclde LONG-TERM GOALS The goal of this project was to bring together the community of researchers working on methods for detection
Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S
2015-01-16
Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.
Fusion of Hard and Soft Information in Nonparametric Density Estimation
2015-06-10
and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.
Evidence of Temporal Variation of Titan Atmospheric Density in 2005-2013
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Lim, Ryan S.
2013-01-01
One major science objective of the Cassini mission is an investigation of Titan's atmosphere constituent abundances. Titan's atmospheric density is of interest not only to planetary scientists but also to mission design and mission control engineers. Knowledge of the dependency of Titan's atmospheric density with altitude is important because any unexpectedly high atmospheric density has the potential to tumble the spacecraft during a flyby. During low-altitude Titan flyby, thrusters are fired to counter the torque imparted on the spacecraft due to the Titan atmosphere. The denser the Titan's atmosphere is, the higher are the duty cycles of the thruster firings. Therefore thruster firing telemetry data could be used to estimate the atmospheric torque imparted on the spacecraft. Since the atmospheric torque imparted on the spacecraft is related to the Titan's atmospheric density, atmospheric densities are estimated accordingly. In 2005-2013, forty-three low-altitude Titan flybys were executed. The closest approach altitudes of these Titan flybys ranged from 878 to 1,074.8 km. Our density results are also compared with those reported by other investigation teams: Voyager-1 (in November 1980) and the Huygens Atmospheric Structure Instrument, HASI (in January 2005). From our results, we observe a temporal variation of the Titan atmospheric density in 2005-2013. The observed temporal variation is significant and it isn't due to the estimation uncertainty (5.8%, 1 sigma) of the density estimation methodology. Factors that contributed to this temporal variation have been conjectured but are largely unknown. The observed temporal variation will require synergetic analysis with measurements made by other Cassini science instruments and future years of laboratory and modeling efforts to solve. The estimated atmospheric density results are given in this paper help scientists to better understand and model the density structure of the Titan atmosphere.
Multidimensional density shaping by sigmoids.
Roth, Z; Baram, Y
1996-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the output entropy of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's optimization method, applied to the estimated density, yields a recursive estimator for a random variable or a random sequence. A constrained connectivity structure yields a linear estimator, which is particularly suitable for "real time" prediction. A Gaussian nonlinearity yields a closed-form solution for the network's parameters, which may also be used for initializing the optimization algorithm when other nonlinearities are employed. A triangular connectivity between the neurons and the input, which is naturally suggested by the statistical setting, reduces the number of parameters. Applications to classification and forecasting problems are demonstrated.
Demidenko, Eugene
2017-09-01
The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.
Herzog, Mark; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Hartman, Christopher
2016-01-01
In egg contaminant studies, it is necessary to calculate egg contaminant concentrations on a fresh wet weight basis and this requires accurate estimates of egg density and egg volume. We show that the inclusion or exclusion of the eggshell can influence egg contaminant concentrations, and we provide estimates of egg density (both with and without the eggshell) and egg-shape coefficients (used to estimate egg volume from egg morphometrics) for American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster’s tern (Sterna forsteri). Egg densities (g/cm3) estimated for whole eggs (1.056 ± 0.003) were higher than egg densities estimated for egg contents (1.024 ± 0.001), and were 1.059 ± 0.001 and 1.025 ± 0.001 for avocets, 1.056 ± 0.001 and 1.023 ± 0.001 for stilts, and 1.053 ± 0.002 and 1.025 ± 0.002 for terns. The egg-shape coefficients for egg volume (K v ) and egg mass (K w ) also differed depending on whether the eggshell was included (K v = 0.491 ± 0.001; K w = 0.518 ± 0.001) or excluded (K v = 0.493 ± 0.001; K w = 0.505 ± 0.001), and varied among species. Although egg contaminant concentrations are rarely meant to include the eggshell, we show that the typical inclusion of the eggshell in egg density and egg volume estimates results in egg contaminant concentrations being underestimated by 6–13 %. Our results demonstrate that the inclusion of the eggshell significantly influences estimates of egg density, egg volume, and fresh egg mass, which leads to egg contaminant concentrations that are biased low. We suggest that egg contaminant concentrations be calculated on a fresh wet weight basis using only internal egg-content densities, volumes, and masses appropriate for the species. For the three waterbirds in our study, these corrected coefficients are 1.024 ± 0.001 for egg density, 0.493 ± 0.001 for K v , and 0.505 ± 0.001 for K w .
NASA Astrophysics Data System (ADS)
Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Löcher, Anno; Kusche, Jürgen; Börger, Klaus
2018-05-01
Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from NRLMSISE-00. Our results indicate that these corrections improve model-based density simulations in order to provide density estimates at locations outside the vicinity of the GRACE satellites, in particular during the period of high solar/magnetic activity, e.g., during the St. Patrick's Day storm on 17 March 2015.
MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples
DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from ...
Active Learning for Directed Exploration of Complex Systems
NASA Technical Reports Server (NTRS)
Burl, Michael C.; Wang, Esther
2009-01-01
Physics-based simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. Such codes provide the highest-fidelity representation of system behavior, but are often so slow to run that insight into the system is limited. For example, conducting an exhaustive sweep over a d-dimensional input parameter space with k-steps along each dimension requires k(sup d) simulation trials (translating into k(sup d) CPU-days for one of our current simulations). An alternative is directed exploration in which the next simulation trials are cleverly chosen at each step. Given the results of previous trials, supervised learning techniques (SVM, KDE, GP) are applied to build up simplified predictive models of system behavior. These models are then used within an active learning framework to identify the most valuable trials to run next. Several active learning strategies are examined including a recently-proposed information-theoretic approach. Performance is evaluated on a set of thirteen synthetic oracles, which serve as surrogates for the more expensive simulations and enable the experiments to be replicated by other researchers.
Second-order motions contribute to vection.
Gurnsey, R; Fleet, D; Potechin, C
1998-09-01
First- and second-order motions differ in their ability to induce motion aftereffects (MAEs) and the kinetic depth effect (KDE). To test whether second-order stimuli support computations relating to motion-in-depth we examined the vection illusion (illusory self motion induced by image flow) using a vection stimulus (V, expanding concentric rings) that depicted a linear path through a circular tunnel. The set of vection stimuli contained differing amounts of first- and second-order motion energy (ME). Subjects reported the duration of the perceived MAEs and the duration of their vection percept. In Experiment 1 both MAEs and vection durations were longest when the first-order (Fourier) components of V were present in the stimulus. In Experiment 2, V was multiplicatively combined with static noise carriers having different check sizes. The amount of first-order ME associated with V increases with check size. MAEs were found to increase with check size but vection durations were unaffected. In general MAEs depend on the amount of first-order ME present in the signal. Vection, on the other hand, appears to depend on a representation of image flow that combines first- and second-order ME.
Nonparametric entropy estimation using kernel densities.
Lake, Douglas E
2009-01-01
The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation.
Hearn, Andrew J; Ross, Joanna; Bernard, Henry; Bakar, Soffian Abu; Hunter, Luke T B; Macdonald, David W
2016-01-01
The marbled cat Pardofelis marmorata is a poorly known wild cat that has a broad distribution across much of the Indomalayan ecorealm. This felid is thought to exist at low population densities throughout its range, yet no estimates of its abundance exist, hampering assessment of its conservation status. To investigate the distribution and abundance of marbled cats we conducted intensive, felid-focused camera trap surveys of eight forest areas and two oil palm plantations in Sabah, Malaysian Borneo. Study sites were broadly representative of the range of habitat types and the gradient of anthropogenic disturbance and fragmentation present in contemporary Sabah. We recorded marbled cats from all forest study areas apart from a small, relatively isolated forest patch, although photographic detection frequency varied greatly between areas. No marbled cats were recorded within the plantations, but a single individual was recorded walking along the forest/plantation boundary. We collected sufficient numbers of marbled cat photographic captures at three study areas to permit density estimation based on spatially explicit capture-recapture analyses. Estimates of population density from the primary, lowland Danum Valley Conservation Area and primary upland, Tawau Hills Park, were 19.57 (SD: 8.36) and 7.10 (SD: 1.90) individuals per 100 km2, respectively, and the selectively logged, lowland Tabin Wildlife Reserve yielded an estimated density of 10.45 (SD: 3.38) individuals per 100 km2. The low detection frequencies recorded in our other survey sites and from published studies elsewhere in its range, and the absence of previous density estimates for this felid suggest that our density estimates may be from the higher end of their abundance spectrum. We provide recommendations for future marbled cat survey approaches.
Hearn, Andrew J.; Ross, Joanna; Bernard, Henry; Bakar, Soffian Abu; Hunter, Luke T. B.; Macdonald, David W.
2016-01-01
The marbled cat Pardofelis marmorata is a poorly known wild cat that has a broad distribution across much of the Indomalayan ecorealm. This felid is thought to exist at low population densities throughout its range, yet no estimates of its abundance exist, hampering assessment of its conservation status. To investigate the distribution and abundance of marbled cats we conducted intensive, felid-focused camera trap surveys of eight forest areas and two oil palm plantations in Sabah, Malaysian Borneo. Study sites were broadly representative of the range of habitat types and the gradient of anthropogenic disturbance and fragmentation present in contemporary Sabah. We recorded marbled cats from all forest study areas apart from a small, relatively isolated forest patch, although photographic detection frequency varied greatly between areas. No marbled cats were recorded within the plantations, but a single individual was recorded walking along the forest/plantation boundary. We collected sufficient numbers of marbled cat photographic captures at three study areas to permit density estimation based on spatially explicit capture-recapture analyses. Estimates of population density from the primary, lowland Danum Valley Conservation Area and primary upland, Tawau Hills Park, were 19.57 (SD: 8.36) and 7.10 (SD: 1.90) individuals per 100 km2, respectively, and the selectively logged, lowland Tabin Wildlife Reserve yielded an estimated density of 10.45 (SD: 3.38) individuals per 100 km2. The low detection frequencies recorded in our other survey sites and from published studies elsewhere in its range, and the absence of previous density estimates for this felid suggest that our density estimates may be from the higher end of their abundance spectrum. We provide recommendations for future marbled cat survey approaches. PMID:27007219
NASA Technical Reports Server (NTRS)
Weaver, W. L.; Green, R. N.
1980-01-01
Geometric shape factors were computed and applied to satellite simulated irradiance measurements to estimate Earth emitted flux densities for global and zonal scales and for areas smaller than the detector field of view (FOV). Wide field of view flat plate detectors were emphasized, but spherical detectors were also studied. The radiation field was modeled after data from the Nimbus 2 and 3 satellites. At a satellite altitude of 600 km, zonal estimates were in error 1.0 to 1.2 percent and global estimates were in error less than 0.2 percent. Estimates with unrestricted field of view (UFOV) detectors were about the same for Lambertian and limb darkening radiation models. The opposite was found for restricted field of view detectors. The UFOV detectors are found to be poor estimators of flux density from the total FOV and are shown to be much better as estimators of flux density from a circle centered at the FOV with an area significantly smaller than that for the total FOV.
Tigers and their prey: Predicting carnivore densities from prey abundance
Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Link, W.A.; Hines, J.E.
2004-01-01
The goal of ecology is to understand interactions that determine the distribution and abundance of organisms. In principle, ecologists should be able to identify a small number of limiting resources for a species of interest, estimate densities of these resources at different locations across the landscape, and then use these estimates to predict the density of the focal species at these locations. In practice, however, development of functional relationships between abundances of species and their resources has proven extremely difficult, and examples of such predictive ability are very rare. Ecological studies of prey requirements of tigers Panthera tigris led us to develop a simple mechanistic model for predicting tiger density as a function of prey density. We tested our model using data from a landscape-scale long-term (1995-2003) field study that estimated tiger and prey densities in 11 ecologically diverse sites across India. We used field techniques and analytical methods that specifically addressed sampling and detectability, two issues that frequently present problems in macroecological studies of animal populations. Estimated densities of ungulate prey ranged between 5.3 and 63.8 animals per km2. Estimated tiger densities (3.2-16.8 tigers per 100 km2) were reasonably consistent with model predictions. The results provide evidence of a functional relationship between abundances of large carnivores and their prey under a wide range of ecological conditions. In addition to generating important insights into carnivore ecology and conservation, the study provides a potentially useful model for the rigorous conduct of macroecological science.
NASA Astrophysics Data System (ADS)
De Ridder, Maaike; De Haulleville, Thalès; Kearsley, Elizabeth; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans
2014-05-01
It is commonly acknowledged that allometric equations for aboveground biomass and carbon stock estimates are improved significantly if density is included as a variable. However, not much attention is given to this variable in terms of exact, measured values and density profiles from pith to bark. Most published case-studies obtain density values from literature sources or databases, this way using large ranges of density values and possible causing significant errors in carbon stock estimates. The use of one single fixed value for density is also not recommended if carbon stock increments are estimated. Therefore, our objective is to measure and analyze a large number of tree species occurring in two Biosphere Reserves (Luki and Yangambi). Nevertheless, the diversity of tree species in these tropical forests is too high to perform this kind of detailed analysis on all tree species (> 200/ha). Therefore, we focus on the most frequently encountered tree species with high abundance (trees/ha) and dominance (basal area/ha) for this study. Increment cores were scanned with a helical X-ray protocol to obtain density profiles from pith to bark. This way, we aim at dividing the tree species with a distinct type of density profile into separate groups. If, e.g., slopes in density values from pith to bark remain stable over larger samples of one tree species, this slope could also be used to correct for errors in carbon (increment) estimates, caused by density values from simplified density measurements or density values from literature. In summary, this is most likely the first study in the Congo Basin that focuses on density patterns in order to check their influence on carbon stocks and differences in carbon stocking based on species composition (density profiles ~ temperament of tree species).
Optimum nonparametric estimation of population density based on ordered distances
Patil, S.A.; Kovner, J.L.; Burnham, Kenneth P.
1982-01-01
The asymptotic mean and error mean square are determined for the nonparametric estimator of plant density by distance sampling proposed by Patil, Burnham and Kovner (1979, Biometrics 35, 597-604. On the basis of these formulae, a bias-reduced version of this estimator is given, and its specific form is determined which gives minimum mean square error under varying assumptions about the true probability density function of the sampled data. Extension is given to line-transect sampling.
2015-09-30
interpolation was used to estimate fin whale density in between the hydrophone locations , and the result plotted as a density image. This was repeated every 5...singing fin whale density throughout the year for the study location off Portugal. Color indicates whale density, with calibration scale at right; yellow...spots are hydrophone locations ; timeline at top indicates the time of year; circle at lower right is 1000 km 2 , the area used in the unit of whale
Weld defect identification in friction stir welding using power spectral density
NASA Astrophysics Data System (ADS)
Das, Bipul; Pal, Sukhomay; Bag, Swarup
2018-04-01
Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.
A Balanced Approach to Adaptive Probability Density Estimation.
Kovacs, Julio A; Helmick, Cailee; Wriggers, Willy
2017-01-01
Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE) method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests on univariate and bivariate experimental data show that the results are also aesthetically pleasing. This is due in part to the use of a visual criterion for setting the smoothing level of the density estimate. Our results suggest that BADE offers an attractive new take on the fundamental density estimation problem in statistics. We have applied it on molecular dynamics simulations of membrane pore formation. We also expect BADE to be generally useful for low-dimensional applications in other statistical application domains such as bioinformatics, signal processing and econometrics.
Yule, Daniel L.; Adams, Jean V.; Warner, David M.; Hrabik, Thomas R.; Kocovsky, Patrick M.; Weidel, Brian C.; Rudstam, Lars G.; Sullivan, Patrick J.
2013-01-01
Pelagic fish assessments often combine large amounts of acoustic-based fish density data and limited midwater trawl information to estimate species-specific biomass density. We compared the accuracy of five apportionment methods for estimating pelagic fish biomass density using simulated communities with known fish numbers that mimic Lakes Superior, Michigan, and Ontario, representing a range of fish community complexities. Across all apportionment methods, the error in the estimated biomass generally declined with increasing effort, but methods that accounted for community composition changes with water column depth performed best. Correlations between trawl catch and the true species composition were highest when more fish were caught, highlighting the benefits of targeted trawling in locations of high fish density. Pelagic fish surveys should incorporate geographic and water column depth stratification in the survey design, use apportionment methods that account for species-specific depth differences, target midwater trawling effort in areas of high fish density, and include at least 15 midwater trawls. With relatively basic biological information, simulations of fish communities and sampling programs can optimize effort allocation and reduce error in biomass estimates.
L. R. Iverson; S. Brown; A. Prasad; H. Mitasova; A. J. R. Gillespie; A. E. Lugo
1994-01-01
A geographic information system (GIS) was used to estimate total biomass and biomass density of the tropical forest in south and southeast Asia because available data from forest inventories were insufficient to extrapolate biomass-density estimates across the region.
Lee, K V; Moon, R D; Burkness, E C; Hutchison, W D; Spivak, M
2010-08-01
The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is arguably the most detrimental pest of the European-derived honey bee, Apis mellifera L. Unfortunately, beekeepers lack a standardized sampling plan to make informed treatment decisions. Based on data from 31 commercial apiaries, we developed sampling plans for use by beekeepers and researchers to estimate the density of mites in individual colonies or whole apiaries. Beekeepers can estimate a colony's mite density with chosen level of precision by dislodging mites from approximately to 300 adult bees taken from one brood box frame in the colony, and they can extrapolate to mite density on a colony's adults and pupae combined by doubling the number of mites on adults. For sampling whole apiaries, beekeepers can repeat the process in each of n = 8 colonies, regardless of apiary size. Researchers desiring greater precision can estimate mite density in an individual colony by examining three, 300-bee sample units. Extrapolation to density on adults and pupae may require independent estimates of numbers of adults, of pupae, and of their respective mite densities. Researchers can estimate apiary-level mite density by taking one 300-bee sample unit per colony, but should do so from a variable number of colonies, depending on apiary size. These practical sampling plans will allow beekeepers and researchers to quantify mite infestation levels and enhance understanding and management of V. destructor.
A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys
Jousimo, Jussi; Ovaskainen, Otso
2016-01-01
Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683
Jennelle, C.S.; Runge, M.C.; MacKenzie, D.I.
2002-01-01
The search for easy-to-use indices that substitute for direct estimation of animal density is a common theme in wildlife and conservation science, but one fraught with well-known perils (Nichols & Conroy, 1996; Yoccoz, Nichols & Boulinier, 2001; Pollock et al., 2002). To establish the utility of an index as a substitute for an estimate of density, one must: (1) demonstrate a functional relationship between the index and density that is invariant over the desired scope of inference; (2) calibrate the functional relationship by obtaining independent measures of the index and the animal density; (3) evaluate the precision of the calibration (Diefenbach et al., 1994). Carbone et al. (2001) argue that the number of camera-days per photograph is a useful index of density for large, cryptic, forest-dwelling animals, and proceed to calibrate this index for tigers (Panthera tigris). We agree that a properly calibrated index may be useful for rapid assessments in conservation planning. However, Carbone et al. (2001), who desire to use their index as a substitute for density, do not adequately address the three elements noted above. Thus, we are concerned that others may view their methods as justification for not attempting directly to estimate animal densities, without due regard for the shortcomings of their approach.
Estimating food portions. Influence of unit number, meal type and energy density.
Almiron-Roig, Eva; Solis-Trapala, Ivonne; Dodd, Jessica; Jebb, Susan A
2013-12-01
Estimating how much is appropriate to consume can be difficult, especially for foods presented in multiple units, those with ambiguous energy content and for snacks. This study tested the hypothesis that the number of units (single vs. multi-unit), meal type and food energy density disrupts accurate estimates of portion size. Thirty-two healthy weight men and women attended the laboratory on 3 separate occasions to assess the number of portions contained in 33 foods or beverages of varying energy density (1.7-26.8 kJ/g). Items included 12 multi-unit and 21 single unit foods; 13 were labelled "meal", 4 "drink" and 16 "snack". Departures in portion estimates from reference amounts were analysed with negative binomial regression. Overall participants tended to underestimate the number of portions displayed. Males showed greater errors in estimation than females (p=0.01). Single unit foods and those labelled as 'meal' or 'beverage' were estimated with greater error than multi-unit and 'snack' foods (p=0.02 and p<0.001 respectively). The number of portions of high energy density foods was overestimated while the number of portions of beverages and medium energy density foods were underestimated by 30-46%. In conclusion, participants tended to underestimate the reference portion size for a range of food and beverages, especially single unit foods and foods of low energy density and, unexpectedly, overestimated the reference portion of high energy density items. There is a need for better consumer education of appropriate portion sizes to aid adherence to a healthy diet. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
A common visual metric for approximate number and density
Dakin, Steven C.; Tibber, Marc S.; Greenwood, John A.; Kingdom, Frederick A. A.; Morgan, Michael J.
2011-01-01
There is considerable interest in how humans estimate the number of objects in a scene in the context of an extensive literature on how we estimate the density (i.e., spacing) of objects. Here, we show that our sense of number and our sense of density are intertwined. Presented with two patches, observers found it more difficult to spot differences in either density or numerosity when those patches were mismatched in overall size, and their errors were consistent with larger patches appearing both denser and more numerous. We propose that density is estimated using the relative response of mechanisms tuned to low and high spatial frequencies (SFs), because energy at high SFs is largely determined by the number of objects, whereas low SF energy depends more on the area occupied by elements. This measure is biased by overall stimulus size in the same way as human observers, and by estimating number using the same measure scaled by relative stimulus size, we can explain all of our results. This model is a simple, biologically plausible common metric for perceptual number and density. PMID:22106276
USDA-ARS?s Scientific Manuscript database
Technical Summary Objectives: Determine the effect of body mass index (BMI) on the accuracy of body density (Db) estimated with skinfold thickness (SFT) measurements compared to air displacement plethysmography (ADP) in adults. Subjects/Methods: We estimated Db with SFT and ADP in 131 healthy men an...
Thermospheric neutral density estimates from heater-induced ion up-flow at EISCAT
NASA Astrophysics Data System (ADS)
Kosch, Michael; Ogawa, Yasunobu; Yamazaki, Yosuke; Vickers, Hannah; Blagoveshchenskaya, Nataly
We exploit a recently-developed technique to estimate the upper thermospheric neutral density using measurements of ionospheric plasma parameters made by the EISCAT UHF radar during ionospheric modification experiments. Heating the electrons changes the balance between upward plasma pressure gradient and downward gravity, resulting in ion up-flow up to ~200 m/s. This field-aligned flow is retarded by collisions, which is directly related to the neutral density. Whilst the ion up-flow is consistent with the plasma pressure gradient, the estimated thermospheric neutral density depends on the assumed composition, which varies with altitude. Results in the topside ionosphere are presented.
Brown, Sandra [University of Illinois, Urbana, Illinois (USA); Iverson, Louis R. [University of Illinois, Urbana, Illinois (USA); Prasad, Anantha [University of Illinois, Urbana, Illinois (USA); Beaty, Tammy W. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA); Olsen, Lisa M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA); Cushman, Robert M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA); Brenkert, Antoinette L. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA)
2001-03-01
A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand, and Vietnam.
Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain
2017-01-01
The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...
Control algorithms for aerobraking in the Martian atmosphere
NASA Technical Reports Server (NTRS)
Ward, Donald T.; Shipley, Buford W., Jr.
1991-01-01
The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.
Evaluating sampling strategies for larval cisco (Coregonus artedi)
Myers, J.T.; Stockwell, J.D.; Yule, D.L.; Black, J.A.
2008-01-01
To improve our ability to assess larval cisco (Coregonus artedi) populations in Lake Superior, we conducted a study to compare several sampling strategies. First, we compared density estimates of larval cisco concurrently captured in surface waters with a 2 x 1-m paired neuston net and a 0.5-m (diameter) conical net. Density estimates obtained from the two gear types were not significantly different, suggesting that the conical net is a reasonable alternative to the more cumbersome and costly neuston net. Next, we assessed the effect of tow pattern (sinusoidal versus straight tows) to examine if propeller wash affected larval density. We found no effect of propeller wash on the catchability of larval cisco. Given the availability of global positioning systems, we recommend sampling larval cisco using straight tows to simplify protocols and facilitate straightforward measurements of volume filtered. Finally, we investigated potential trends in larval cisco density estimates by sampling four time periods during the light period of a day at individual sites. Our results indicate no significant trends in larval density estimates during the day. We conclude estimates of larval cisco density across space are not confounded by time at a daily timescale. Well-designed, cost effective surveys of larval cisco abundance will help to further our understanding of this important Great Lakes forage species.
A mass-density model can account for the size-weight illusion.
Wolf, Christian; Bergmann Tiest, Wouter M; Drewing, Knut
2018-01-01
When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object's mass, and the other from the object's density, with estimates' weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects' density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object's density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception.
Gately, Conor K; Hutyra, Lucy R; Wing, Ian Sue; Brondfield, Max N
2013-03-05
On-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories use spatial proxies such as population and road density to downscale national or state-level data. Such procedures introduce errors where the proxy variables and actual emissions are weakly correlated, and limit analysis of the relationship between emissions and demographic trends at local scales. We develop an on-road emission inventory product for Massachusetts-based on roadway-level traffic data obtained from the Highway Performance Monitoring System (HPMS). We provide annual estimates of on-road CO2 emissions at a 1 × 1 km grid scale for the years 1980 through 2008. We compared our results with on-road emissions estimates from the Emissions Database for Global Atmospheric Research (EDGAR), with the Vulcan Product, and with estimates derived from state fuel consumption statistics reported by the Federal Highway Administration (FHWA). Our model differs from FHWA estimates by less than 8.5% on average, and is within 5% of Vulcan estimates. We found that EDGAR estimates systematically exceed FHWA by an average of 22.8%. Panel regression analysis of per-mile CO2 emissions on population density at the town scale shows a statistically significant correlation that varies systematically in sign and magnitude as population density increases. Population density has a positive correlation with per-mile CO2 emissions for densities below 2000 persons km(-2), above which increasing density correlates negatively with per-mile emissions.
Estimating detection and density of the Andean cat in the high Andes
Reppucci, J.; Gardner, B.; Lucherini, M.
2011-01-01
The Andean cat (Leopardus jacobita) is one of the most endangered, yet least known, felids. Although the Andean cat is considered at risk of extinction, rigorous quantitative population studies are lacking. Because physical observations of the Andean cat are difficult to make in the wild, we used a camera-trapping array to photo-capture individuals. The survey was conducted in northwestern Argentina at an elevation of approximately 4,200 m during October-December 2006 and April-June 2007. In each year we deployed 22 pairs of camera traps, which were strategically placed. To estimate detection probability and density we applied models for spatial capture-recapture using a Bayesian framework. Estimated densities were 0.07 and 0.12 individual/km 2 for 2006 and 2007, respectively. Mean baseline detection probability was estimated at 0.07. By comparison, densities of the Pampas cat (Leopardus colocolo), another poorly known felid that shares its habitat with the Andean cat, were estimated at 0.74-0.79 individual/km2 in the same study area for 2006 and 2007, and its detection probability was estimated at 0.02. Despite having greater detectability, the Andean cat is rarer in the study region than the Pampas cat. Properly accounting for the detection probability is important in making reliable estimates of density, a key parameter in conservation and management decisions for any species. ?? 2011 American Society of Mammalogists.
Estimating detection and density of the Andean cat in the high Andes
Reppucci, Juan; Gardner, Beth; Lucherini, Mauro
2011-01-01
The Andean cat (Leopardus jacobita) is one of the most endangered, yet least known, felids. Although the Andean cat is considered at risk of extinction, rigorous quantitative population studies are lacking. Because physical observations of the Andean cat are difficult to make in the wild, we used a camera-trapping array to photo-capture individuals. The survey was conducted in northwestern Argentina at an elevation of approximately 4,200 m during October–December 2006 and April–June 2007. In each year we deployed 22 pairs of camera traps, which were strategically placed. To estimate detection probability and density we applied models for spatial capture–recapture using a Bayesian framework. Estimated densities were 0.07 and 0.12 individual/km2 for 2006 and 2007, respectively. Mean baseline detection probability was estimated at 0.07. By comparison, densities of the Pampas cat (Leopardus colocolo), another poorly known felid that shares its habitat with the Andean cat, were estimated at 0.74–0.79 individual/km2 in the same study area for 2006 and 2007, and its detection probability was estimated at 0.02. Despite having greater detectability, the Andean cat is rarer in the study region than the Pampas cat. Properly accounting for the detection probability is important in making reliable estimates of density, a key parameter in conservation and management decisions for any species.
NASA Astrophysics Data System (ADS)
Meehan, T.; Osterberg, E. C.; Lewis, G.; Overly, T. B.; Hawley, R. L.; Bradford, J.; Marshall, H. P.
2016-12-01
To better predict the response of the Greenland Ice Sheet (GrIS) to future warming, leading edge Regional Climate Models (RCM) must be calibrated with in situ measurements of recent accumulation and melt. Mass balance estimates averaged across the entire Greenland Ice Sheet (GrIS) vary between models by more than 30 percent, and regional comparisons of mass balance reconstructions in Greenland vary by 100 percent or more. Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) is a multi-year and multi-disciplinary 1700 km science traverse from Raven/Dye2 in SW Greenland, to Summit Station. Multi-offset radar measurements can provide high accuracy electromagnetic (EM) velocity estimates of the firn to within (+-) 0.002 to 0.003 m/ns. EM velocity, in turn, can be used to estimate bulk firn density. Using a mixing equation such as the CRIM Equation we use the measured EM velocity, along with the known EM velocity in air and ice, to estimate bulk density. During spring 2016, we used multi-channel 500MHz radar in a multi-offset configuration to survey more than 800 km from Raven towards summit. Preliminary radar-derived snow density estimates agree with density estimates from a firn core measurement ( 50 kg/m3), despite the lateral heterogeneity of the firn across the length of the antenna array (12 m).
Crajé, Céline; Santello, Marco; Gordon, Andrew M
2013-01-01
Anticipatory force planning during grasping is based on visual cues about the object's physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object's center of mass (CM) and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8) to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM) and non-uniform densities (mixture of plastic and brass, asymmetric CM). We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object's center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object's CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping.
Developing a bubble number-density paleoclimatic indicator for glacier ice
Spencer, M.K.; Alley, R.B.; Fitzpatrick, J.J.
2006-01-01
Past accumulation rate can be estimated from the measured number-density of bubbles in an ice core and the reconstructed paleotemperature, using a new technique. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. An empirical model of these processes, optimized to fit published data on recently formed bubbles, reconstructs accumulation rates using recent temperatures with an uncertainty of 41% (P < 0.05). For modern sites considered here, no statistically significant trend exists between mean annual temperature and the ratio of bubble number-density to grain number-density at the time of pore close-off; optimum modeled accumulation-rate estimates require an eventual ???2.02 ?? 0.08 (P < 0.05) bubbles per close-off grain. Bubble number-density in the GRIP (Greenland) ice core is qualitatively consistent with independent estimates for a combined temperature decrease and accumulation-rate increase there during the last 5 kyr.
A method to estimate statistical errors of properties derived from charge-density modelling
Lecomte, Claude
2018-01-01
Estimating uncertainties of property values derived from a charge-density model is not straightforward. A methodology, based on calculation of sample standard deviations (SSD) of properties using randomly deviating charge-density models, is proposed with the MoPro software. The parameter shifts applied in the deviating models are generated in order to respect the variance–covariance matrix issued from the least-squares refinement. This ‘SSD methodology’ procedure can be applied to estimate uncertainties of any property related to a charge-density model obtained by least-squares fitting. This includes topological properties such as critical point coordinates, electron density, Laplacian and ellipticity at critical points and charges integrated over atomic basins. Errors on electrostatic potentials and interaction energies are also available now through this procedure. The method is exemplified with the charge density of compound (E)-5-phenylpent-1-enylboronic acid, refined at 0.45 Å resolution. The procedure is implemented in the freely available MoPro program dedicated to charge-density refinement and modelling. PMID:29724964
Influence of sampling window size and orientation on parafoveal cone packing density
Lombardo, Marco; Serrao, Sebastiano; Ducoli, Pietro; Lombardo, Giuseppe
2013-01-01
We assessed the agreement between sampling windows of different size and orientation on packing density estimates in images of the parafoveal cone mosaic acquired using a flood-illumination adaptive optics retinal camera. Horizontal and vertical oriented sampling windows of different size (320x160 µm, 160x80 µm and 80x40 µm) were selected in two retinal locations along the horizontal meridian in one eye of ten subjects. At each location, cone density tended to decline with decreasing sampling area. Although the differences in cone density estimates were not statistically significant, Bland-Altman plots showed that the agreement between cone density estimated within the different sampling window conditions was moderate. The percentage of the preferred packing arrangements of cones by Voronoi tiles was slightly affected by window size and orientation. The results illustrated the high importance of specifying the size and orientation of the sampling window used to derive cone metric estimates to facilitate comparison of different studies. PMID:24009995
Critical thresholds in sea lice epidemics: evidence, sensitivity and subcritical estimation
Frazer, L. Neil; Morton, Alexandra; Krkošek, Martin
2012-01-01
Host density thresholds are a fundamental component of the population dynamics of pathogens, but empirical evidence and estimates are lacking. We studied host density thresholds in the dynamics of ectoparasitic sea lice (Lepeophtheirus salmonis) on salmon farms. Empirical examples include a 1994 epidemic in Atlantic Canada and a 2001 epidemic in Pacific Canada. A mathematical model suggests dynamics of lice are governed by a stable endemic equilibrium until the critical host density threshold drops owing to environmental change, or is exceeded by stocking, causing epidemics that require rapid harvest or treatment. Sensitivity analysis of the critical threshold suggests variation in dependence on biotic parameters and high sensitivity to temperature and salinity. We provide a method for estimating the critical threshold from parasite abundances at subcritical host densities and estimate the critical threshold and transmission coefficient for the two epidemics. Host density thresholds may be a fundamental component of disease dynamics in coastal seas where salmon farming occurs. PMID:22217721
Hierarchical models for estimating density from DNA mark-recapture studies
Gardner, B.; Royle, J. Andrew; Wegan, M.T.
2009-01-01
Genetic sampling is increasingly used as a tool by wildlife biologists and managers to estimate abundance and density of species. Typically, DNA is used to identify individuals captured in an array of traps ( e. g., baited hair snares) from which individual encounter histories are derived. Standard methods for estimating the size of a closed population can be applied to such data. However, due to the movement of individuals on and off the trapping array during sampling, the area over which individuals are exposed to trapping is unknown, and so obtaining unbiased estimates of density has proved difficult. We propose a hierarchical spatial capture-recapture model which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to (via movement) and detection by traps. Detection probability is modeled as a function of each individual's distance to the trap. We applied this model to a black bear (Ursus americanus) study conducted in 2006 using a hair-snare trap array in the Adirondack region of New York, USA. We estimated the density of bears to be 0.159 bears/km2, which is lower than the estimated density (0.410 bears/km2) based on standard closed population techniques. A Bayesian analysis of the model is fully implemented in the software program WinBUGS.
A hierarchical model for estimating density in camera-trap studies
Royle, J. Andrew; Nichols, James D.; Karanth, K.Ullas; Gopalaswamy, Arjun M.
2009-01-01
Estimating animal density using capture–recapture data from arrays of detection devices such as camera traps has been problematic due to the movement of individuals and heterogeneity in capture probability among them induced by differential exposure to trapping.We develop a spatial capture–recapture model for estimating density from camera-trapping data which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to and detection by traps.We adopt a Bayesian approach to analysis of the hierarchical model using the technique of data augmentation.The model is applied to photographic capture–recapture data on tigers Panthera tigris in Nagarahole reserve, India. Using this model, we estimate the density of tigers to be 14·3 animals per 100 km2 during 2004.Synthesis and applications. Our modelling framework largely overcomes several weaknesses in conventional approaches to the estimation of animal density from trap arrays. It effectively deals with key problems such as individual heterogeneity in capture probabilities, movement of traps, presence of potential ‘holes’ in the array and ad hoc estimation of sample area. The formulation, thus, greatly enhances flexibility in the conduct of field surveys as well as in the analysis of data, from studies that may involve physical, photographic or DNA-based ‘captures’ of individual animals.
Herzog, Mark P; Ackerman, Joshua T; Eagles-Smith, Collin A; Hartman, C Alex
2016-05-01
In egg contaminant studies, it is necessary to calculate egg contaminant concentrations on a fresh wet weight basis and this requires accurate estimates of egg density and egg volume. We show that the inclusion or exclusion of the eggshell can influence egg contaminant concentrations, and we provide estimates of egg density (both with and without the eggshell) and egg-shape coefficients (used to estimate egg volume from egg morphometrics) for American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster's tern (Sterna forsteri). Egg densities (g/cm(3)) estimated for whole eggs (1.056 ± 0.003) were higher than egg densities estimated for egg contents (1.024 ± 0.001), and were 1.059 ± 0.001 and 1.025 ± 0.001 for avocets, 1.056 ± 0.001 and 1.023 ± 0.001 for stilts, and 1.053 ± 0.002 and 1.025 ± 0.002 for terns. The egg-shape coefficients for egg volume (K v ) and egg mass (K w ) also differed depending on whether the eggshell was included (K v = 0.491 ± 0.001; K w = 0.518 ± 0.001) or excluded (K v = 0.493 ± 0.001; K w = 0.505 ± 0.001), and varied among species. Although egg contaminant concentrations are rarely meant to include the eggshell, we show that the typical inclusion of the eggshell in egg density and egg volume estimates results in egg contaminant concentrations being underestimated by 6-13 %. Our results demonstrate that the inclusion of the eggshell significantly influences estimates of egg density, egg volume, and fresh egg mass, which leads to egg contaminant concentrations that are biased low. We suggest that egg contaminant concentrations be calculated on a fresh wet weight basis using only internal egg-content densities, volumes, and masses appropriate for the species. For the three waterbirds in our study, these corrected coefficients are 1.024 ± 0.001 for egg density, 0.493 ± 0.001 for K v , and 0.505 ± 0.001 for K w .
Breast percent density estimation from 3D reconstructed digital breast tomosynthesis images
NASA Astrophysics Data System (ADS)
Bakic, Predrag R.; Kontos, Despina; Carton, Ann-Katherine; Maidment, Andrew D. A.
2008-03-01
Breast density is an independent factor of breast cancer risk. In mammograms breast density is quantitatively measured as percent density (PD), the percentage of dense (non-fatty) tissue. To date, clinical estimates of PD have varied significantly, in part due to the projective nature of mammography. Digital breast tomosynthesis (DBT) is a 3D imaging modality in which cross-sectional images are reconstructed from a small number of projections acquired at different x-ray tube angles. Preliminary studies suggest that DBT is superior to mammography in tissue visualization, since superimposed anatomical structures present in mammograms are filtered out. We hypothesize that DBT could also provide a more accurate breast density estimation. In this paper, we propose to estimate PD from reconstructed DBT images using a semi-automated thresholding technique. Preprocessing is performed to exclude the image background and the area of the pectoral muscle. Threshold values are selected manually from a small number of reconstructed slices; a combination of these thresholds is applied to each slice throughout the entire reconstructed DBT volume. The proposed method was validated using images of women with recently detected abnormalities or with biopsy-proven cancers; only contralateral breasts were analyzed. The Pearson correlation and kappa coefficients between the breast density estimates from DBT and the corresponding digital mammogram indicate moderate agreement between the two modalities, comparable with our previous results from 2D DBT projections. Percent density appears to be a robust measure for breast density assessment in both 2D and 3D x-ray breast imaging modalities using thresholding.
Optimum Selection Age for Wood Density in Loblolly Pine
D.P. Gwaze; K.J. Harding; R.C. Purnell; Floyd E. Brigwater
2002-01-01
Genetic and phenotypic parameters for core wood density of Pinus taeda L. were estimated for ages ranging from 5 to 25 years at two sites in southern United States. Heritability estimates on an individual-tree basis for core density were lower than expected (0.20-0.31). Age-age genetic correlations were higher than phenotypic correlations,...
High throughput nonparametric probability density estimation.
Farmer, Jenny; Jacobs, Donald
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.
High throughput nonparametric probability density estimation
Farmer, Jenny
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference. PMID:29750803
Item Response Theory with Estimation of the Latent Density Using Davidian Curves
ERIC Educational Resources Information Center
Woods, Carol M.; Lin, Nan
2009-01-01
Davidian-curve item response theory (DC-IRT) is introduced, evaluated with simulations, and illustrated using data from the Schedule for Nonadaptive and Adaptive Personality Entitlement scale. DC-IRT is a method for fitting unidimensional IRT models with maximum marginal likelihood estimation, in which the latent density is estimated,…
Population density estimated from locations of individuals on a passive detector array
Efford, Murray G.; Dawson, Deanna K.; Borchers, David L.
2009-01-01
The density of a closed population of animals occupying stable home ranges may be estimated from detections of individuals on an array of detectors, using newly developed methods for spatially explicit capture–recapture. Likelihood-based methods provide estimates for data from multi-catch traps or from devices that record presence without restricting animal movement ("proximity" detectors such as camera traps and hair snags). As originally proposed, these methods require multiple sampling intervals. We show that equally precise and unbiased estimates may be obtained from a single sampling interval, using only the spatial pattern of detections. This considerably extends the range of possible applications, and we illustrate the potential by estimating density from simulated detections of bird vocalizations on a microphone array. Acoustic detection can be defined as occurring when received signal strength exceeds a threshold. We suggest detection models for binary acoustic data, and for continuous data comprising measurements of all signals above the threshold. While binary data are often sufficient for density estimation, modeling signal strength improves precision when the microphone array is small.
Estimating population density and connectivity of American mink using spatial capture-recapture
Fuller, Angela K.; Sutherland, Christopher S.; Royle, Andy; Hare, Matthew P.
2016-01-01
Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture–recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture–recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km2 area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture–recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.
Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok
2016-01-01
Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.
Estimating population density and connectivity of American mink using spatial capture-recapture.
Fuller, Angela K; Sutherland, Chris S; Royle, J Andrew; Hare, Matthew P
2016-06-01
Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture-recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture-recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km² area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture-recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.
Weghorst, Jennifer A
2007-04-01
The main objective of this study was to estimate the population density and demographic structure of spider monkeys living in wet forest in the vicinity of Sirena Biological Station, Corcovado National Park, Costa Rica. Results of a 14-month line-transect survey showed that spider monkeys of Sirena have one of the highest population densities ever recorded for this genus. Density estimates varied, however, depending on the method chosen to estimate transect width. Data from behavioral monitoring were available to compare density estimates derived from the survey, providing a check of the survey's accuracy. A combination of factors has most probably contributed to the high density of Ateles, including habitat protection within a national park and high diversity of trees of the fig family, Moraceae. Although natural densities of spider monkeys at Sirena are substantially higher than those recorded at most other sites and in previous studies at this site, mean subgroup size and age ratios were similar to those determined in previous studies. Sex ratios were similar to those of other sites with high productivity. Although high densities of preferred fruit trees in the wet, productive forests of Sirena may support a dense population of spider monkeys, other demographic traits recorded at Sirena fall well within the range of values recorded elsewhere for the species.
Variability of dental cone beam CT grey values for density estimations
Pauwels, R; Nackaerts, O; Bellaiche, N; Stamatakis, H; Tsiklakis, K; Walker, A; Bosmans, H; Bogaerts, R; Jacobs, R; Horner, K
2013-01-01
Objective The aim of this study was to investigate the use of dental cone beam CT (CBCT) grey values for density estimations by calculating the correlation with multislice CT (MSCT) values and the grey value error after recalibration. Methods A polymethyl methacrylate (PMMA) phantom was developed containing inserts of different density: air, PMMA, hydroxyapatite (HA) 50 mg cm−3, HA 100, HA 200 and aluminium. The phantom was scanned on 13 CBCT devices and 1 MSCT device. Correlation between CBCT grey values and CT numbers was calculated, and the average error of the CBCT values was estimated in the medium-density range after recalibration. Results Pearson correlation coefficients ranged between 0.7014 and 0.9996 in the full-density range and between 0.5620 and 0.9991 in the medium-density range. The average error of CBCT voxel values in the medium-density range was between 35 and 1562. Conclusion Even though most CBCT devices showed a good overall correlation with CT numbers, large errors can be seen when using the grey values in a quantitative way. Although it could be possible to obtain pseudo-Hounsfield units from certain CBCTs, alternative methods of assessing bone tissue should be further investigated. Advances in knowledge The suitability of dental CBCT for density estimations was assessed, involving a large number of devices and protocols. The possibility for grey value calibration was thoroughly investigated. PMID:23255537
Carroll, James M.; Krementz, David G.
2014-01-01
Wilson's snipe Gallinago delicata is one of the least studied North American game birds, and information on snipe populations and abundance is mostly unknown. We conducted roadside surveys stratified at the township level in the lower Mississippi Alluvial Valley (LMAV) in Arkansas, Mississippi and Louisiana, as well as the Red River Region, and the Gulf Coastal Plain of Louisiana during winters of 2009 and 2010. We identified observer, vegetation cover, and water cover as important covariates in estimating snipe densities. We detected 2915 snipe along 814 line transects (1450 km) for 2009 and 2010 combined. We estimated snipe densities of 8.05 individuals km-2 (95% CI: 4.57-14.17) in 2009, and 2.13 individuals km-2 (95% CI: 1.47-3.08) in 2010. We used the resulting snipe density estimates within the study area to calculate abundance estimates of 1 026 431 (95% CI: 582 707-1 806 774) in 2009, and 271 590 (95% CI: 187 435-392 722) in 2010 for the LMAV. Our data indicate that a road transect survey method is effective for estimating wintering snipe density and abundance in the lower Mississippi Flyway.
Density estimation in tiger populations: combining information for strong inference
Gopalaswamy, Arjun M.; Royle, J. Andrew; Delampady, Mohan; Nichols, James D.; Karanth, K. Ullas; Macdonald, David W.
2012-01-01
A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture–recapture data. The model, which combined information, provided the most precise estimate of density (8.5 ± 1.95 tigers/100 km2 [posterior mean ± SD]) relative to a model that utilized only one data source (photographic, 12.02 ± 3.02 tigers/100 km2 and fecal DNA, 6.65 ± 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.
Gao, Nuo; Zhu, S A; He, Bin
2005-06-07
We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.
Density estimation in tiger populations: combining information for strong inference.
Gopalaswamy, Arjun M; Royle, J Andrew; Delampady, Mohan; Nichols, James D; Karanth, K Ullas; Macdonald, David W
2012-07-01
A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture-recapture data. The model, which combined information, provided the most precise estimate of density (8.5 +/- 1.95 tigers/100 km2 [posterior mean +/- SD]) relative to a model that utilized only one data source (photographic, 12.02 +/- 3.02 tigers/100 km2 and fecal DNA, 6.65 +/- 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.
NASA Astrophysics Data System (ADS)
Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.
2010-03-01
We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, p<=0.001). The correlation between the volumetric and the area-based density measures is lower and depends on the training background of the Cumulus software user (r=0.73-84, p<=0.001). In terms of absolute values, MRI provides the lowest volumetric estimates (mean=14.63%), followed by the DM volumetric (mean=22.72%) and area-based measures (mean=29.35%). The MRI estimates of the fibroglandular volume are statistically significantly lower than the DM estimates for women with very low-density breasts (p<=0.001). We attribute these differences to potential partial volume effects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.
NASA Astrophysics Data System (ADS)
Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.
2014-11-01
We present a practical implementation of a Monte Carlo method to estimate the significance of cross-correlations in unevenly sampled time series of data, whose statistical properties are modelled with a simple power-law power spectral density. This implementation builds on published methods; we introduce a number of improvements in the normalization of the cross-correlation function estimate and a bootstrap method for estimating the significance of the cross-correlations. A closely related matter is the estimation of a model for the light curves, which is critical for the significance estimates. We present a graphical and quantitative demonstration that uses simulations to show how common it is to get high cross-correlations for unrelated light curves with steep power spectral densities. This demonstration highlights the dangers of interpreting them as signs of a physical connection. We show that by using interpolation and the Hanning sampling window function we are able to reduce the effects of red-noise leakage and to recover steep simple power-law power spectral densities. We also introduce the use of a Neyman construction for the estimation of the errors in the power-law index of the power spectral density. This method provides a consistent way to estimate the significance of cross-correlations in unevenly sampled time series of data.
Automated skin lesion segmentation with kernel density estimation
NASA Astrophysics Data System (ADS)
Pardo, A.; Real, E.; Fernandez-Barreras, G.; Madruga, F. J.; López-Higuera, J. M.; Conde, O. M.
2017-07-01
Skin lesion segmentation is a complex step for dermoscopy pathological diagnosis. Kernel density estimation is proposed as a segmentation technique based on the statistic distribution of color intensities in the lesion and non-lesion regions.
Gupta, Manan; Joshi, Amitabh; Vidya, T N C
2017-01-01
Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species.
Joshi, Amitabh; Vidya, T. N. C.
2017-01-01
Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species. PMID:28306735
A New Monte Carlo Method for Estimating Marginal Likelihoods.
Wang, Yu-Bo; Chen, Ming-Hui; Kuo, Lynn; Lewis, Paul O
2018-06-01
Evaluating the marginal likelihood in Bayesian analysis is essential for model selection. Estimators based on a single Markov chain Monte Carlo sample from the posterior distribution include the harmonic mean estimator and the inflated density ratio estimator. We propose a new class of Monte Carlo estimators based on this single Markov chain Monte Carlo sample. This class can be thought of as a generalization of the harmonic mean and inflated density ratio estimators using a partition weighted kernel (likelihood times prior). We show that our estimator is consistent and has better theoretical properties than the harmonic mean and inflated density ratio estimators. In addition, we provide guidelines on choosing optimal weights. Simulation studies were conducted to examine the empirical performance of the proposed estimator. We further demonstrate the desirable features of the proposed estimator with two real data sets: one is from a prostate cancer study using an ordinal probit regression model with latent variables; the other is for the power prior construction from two Eastern Cooperative Oncology Group phase III clinical trials using the cure rate survival model with similar objectives.
Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan
2016-01-01
The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P < 0.001). A significant positive correlation was found between BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P < 0.001 for first radiologist and ρ = 0.725, P < 0.001 for second radiologist). Pairwise estimates of the weighted kappa between Volpara density grade and BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Gradient-based stochastic estimation of the density matrix
NASA Astrophysics Data System (ADS)
Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton
2018-03-01
Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.
Multivariate Density Estimation and Remote Sensing
NASA Technical Reports Server (NTRS)
Scott, D. W.
1983-01-01
Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.
Effects of stand density on top height estimation for ponderosa pine
Martin Ritchie; Jianwei Zhang; Todd Hamilton
2012-01-01
Site index, estimated as a function of dominant-tree height and age, is often used as an expression of site quality. This expression is assumed to be effectively independent of stand density. Observation of dominant height at two different ponderosa pine levels-of-growing-stock studies revealed that top height stability with respect to stand density depends on the...
Goldberg, Joshua F; Tempa, Tshering; Norbu, Nawang; Hebblewhite, Mark; Mills, L Scott; Wangchuk, Tshewang R; Lukacs, Paul
2015-01-01
Many large carnivores occupy a wide geographic distribution, and face threats from habitat loss and fragmentation, poaching, prey depletion, and human wildlife-conflicts. Conservation requires robust techniques for estimating population densities and trends, but the elusive nature and low densities of many large carnivores make them difficult to detect. Spatial capture-recapture (SCR) models provide a means for handling imperfect detectability, while linking population estimates to individual movement patterns to provide more accurate estimates than standard approaches. Within this framework, we investigate the effect of different sample interval lengths on density estimates, using simulations and a common leopard (Panthera pardus) model system. We apply Bayesian SCR methods to 89 simulated datasets and camera-trapping data from 22 leopards captured 82 times during winter 2010-2011 in Royal Manas National Park, Bhutan. We show that sample interval length from daily, weekly, monthly or quarterly periods did not appreciably affect median abundance or density, but did influence precision. We observed the largest gains in precision when moving from quarterly to shorter intervals. We therefore recommend daily sampling intervals for monitoring rare or elusive species where practicable, but note that monthly or quarterly sample periods can have similar informative value. We further develop a novel application of Bayes factors to select models where multiple ecological factors are integrated into density estimation. Our simulations demonstrate that these methods can help identify the "true" explanatory mechanisms underlying the data. Using this method, we found strong evidence for sex-specific movement distributions in leopards, suggesting that sexual patterns of space-use influence density. This model estimated a density of 10.0 leopards/100 km2 (95% credibility interval: 6.25-15.93), comparable to contemporary estimates in Asia. These SCR methods provide a guide to monitor and observe the effect of management interventions on leopards and other species of conservation interest.
Goldberg, Joshua F.; Tempa, Tshering; Norbu, Nawang; Hebblewhite, Mark; Mills, L. Scott; Wangchuk, Tshewang R.; Lukacs, Paul
2015-01-01
Many large carnivores occupy a wide geographic distribution, and face threats from habitat loss and fragmentation, poaching, prey depletion, and human wildlife-conflicts. Conservation requires robust techniques for estimating population densities and trends, but the elusive nature and low densities of many large carnivores make them difficult to detect. Spatial capture-recapture (SCR) models provide a means for handling imperfect detectability, while linking population estimates to individual movement patterns to provide more accurate estimates than standard approaches. Within this framework, we investigate the effect of different sample interval lengths on density estimates, using simulations and a common leopard (Panthera pardus) model system. We apply Bayesian SCR methods to 89 simulated datasets and camera-trapping data from 22 leopards captured 82 times during winter 2010–2011 in Royal Manas National Park, Bhutan. We show that sample interval length from daily, weekly, monthly or quarterly periods did not appreciably affect median abundance or density, but did influence precision. We observed the largest gains in precision when moving from quarterly to shorter intervals. We therefore recommend daily sampling intervals for monitoring rare or elusive species where practicable, but note that monthly or quarterly sample periods can have similar informative value. We further develop a novel application of Bayes factors to select models where multiple ecological factors are integrated into density estimation. Our simulations demonstrate that these methods can help identify the “true” explanatory mechanisms underlying the data. Using this method, we found strong evidence for sex-specific movement distributions in leopards, suggesting that sexual patterns of space-use influence density. This model estimated a density of 10.0 leopards/100 km2 (95% credibility interval: 6.25–15.93), comparable to contemporary estimates in Asia. These SCR methods provide a guide to monitor and observe the effect of management interventions on leopards and other species of conservation interest. PMID:26536231
Estimating canopy bulk density and canopy base height for interior western US conifer stands
Seth A. Ex; Frederick W. Smith; Tara L. Keyser; Stephanie A. Rebain
2016-01-01
Crown fire hazard is often quantified using effective canopy bulk density (CBD) and canopy base height (CBH). When CBD and CBH are estimated using nonlocal crown fuel biomass allometries and uniform crown fuel distribution assumptions, as is common practice, values may differ from estimates made using local allometries and nonuniform...
ERIC Educational Resources Information Center
Woods, Carol M.; Thissen, David
2006-01-01
The purpose of this paper is to introduce a new method for fitting item response theory models with the latent population distribution estimated from the data using splines. A spline-based density estimation system provides a flexible alternative to existing procedures that use a normal distribution, or a different functional form, for the…
Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study
NASA Astrophysics Data System (ADS)
Troudi, Molka; Alimi, Adel M.; Saoudi, Samir
2008-12-01
The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs). Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE) depends directly upon [InlineEquation not available: see fulltext.] which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of [InlineEquation not available: see fulltext.], the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.
Measuring atmospheric density using GPS-LEO tracking data
NASA Astrophysics Data System (ADS)
Kuang, D.; Desai, S.; Sibthorpe, A.; Pi, X.
2014-01-01
We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001-2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.
A Simple Ground-Based Trap For Estimating Densities of Arboreal Leaf Insects
Robert A. Haack; Richard W. Blank
1991-01-01
Describes a trap design to use in collecting larval frass or head capsules for estimating densities of aboveground arthropods. The trap is light, compact, durable, and easily constructed from common inexpensive items.
NASA Astrophysics Data System (ADS)
Victor, Rodolfo A.; Prodanović, Maša.; Torres-Verdín, Carlos
2017-12-01
We develop a new Monte Carlo-based inversion method for estimating electron density and effective atomic number from 3-D dual-energy computed tomography (CT) core scans. The method accounts for uncertainties in X-ray attenuation coefficients resulting from the polychromatic nature of X-ray beam sources of medical and industrial scanners, in addition to delivering uncertainty estimates of inversion products. Estimation of electron density and effective atomic number from CT core scans enables direct deterministic or statistical correlations with salient rock properties for improved petrophysical evaluation; this condition is specifically important in media such as vuggy carbonates where CT resolution better captures core heterogeneity that dominates fluid flow properties. Verification tests of the inversion method performed on a set of highly heterogeneous carbonate cores yield very good agreement with in situ borehole measurements of density and photoelectric factor.
Barber-Meyer, Shannon; Ryan, Daniel; Grosshuesch, David; Catton, Timothy; Malick-Wahls, Sarah
2018-01-01
core areas and averaged 52.3 (SD=8.3, range=43-59) during 2015-2017 in the larger core areas. We found no evidence for a decrease or increase in abundance during either period. Lynx density estimates were approximately 7-10 times lower than densities of lynx in northern populations at the low of the snowshoe hare (Lepus americanus) population cycle. To our knowledge, our results are the first attempt to estimate abundance, trend and density of lynx in Minnesota using non-invasive genetic capture-mark-recapture. Estimates such as ours provide useful benchmarks for future comparisons by providing a context with which to assess 1) potential changes in forest management that may affect lynx recovery and conservation, and 2) possible effects of climate change on the depth, density, and duration of annual snow cover and correspondingly, potential effects on snowshoe hares as well.
Use of uninformative priors to initialize state estimation for dynamical systems
NASA Astrophysics Data System (ADS)
Worthy, Johnny L.; Holzinger, Marcus J.
2017-10-01
The admissible region must be expressed probabilistically in order to be used in Bayesian estimation schemes. When treated as a probability density function (PDF), a uniform admissible region can be shown to have non-uniform probability density after a transformation. An alternative approach can be used to express the admissible region probabilistically according to the Principle of Transformation Groups. This paper uses a fundamental multivariate probability transformation theorem to show that regardless of which state space an admissible region is expressed in, the probability density must remain the same under the Principle of Transformation Groups. The admissible region can be shown to be analogous to an uninformative prior with a probability density that remains constant under reparameterization. This paper introduces requirements on how these uninformative priors may be transformed and used for state estimation and the difference in results when initializing an estimation scheme via a traditional transformation versus the alternative approach.
NASA Astrophysics Data System (ADS)
Jain, Jalaj; Prakash, Ram; Vyas, Gheesa Lal; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana; Halder, Nilanjan; Choyal, Yaduvendra
2015-12-01
In the present work an effort has been made to estimate the plasma parameters simultaneously like—electron density, electron temperature, ground state atom density, ground state ion density and metastable state density from the observed visible spectra of penning plasma discharge (PPD) source using least square fitting. The analysis is performed for the prominently observed neutral helium lines. The atomic data and analysis structure (ADAS) database is used to provide the required collisional-radiative (CR) photon emissivity coefficients (PECs) values under the optical thin plasma condition in the analysis. With this condition the estimated plasma temperature from the PPD is found rather high. It is seen that the inclusion of opacity in the observed spectral lines through PECs and addition of diffusion of neutrals and metastable state species in the CR-model code analysis improves the electron temperature estimation in the simultaneous measurement.
Computation of mass-density images from x-ray refraction-angle images.
Wernick, Miles N; Yang, Yongyi; Mondal, Indrasis; Chapman, Dean; Hasnah, Moumen; Parham, Christopher; Pisano, Etta; Zhong, Zhong
2006-04-07
In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artefacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.
NASA Astrophysics Data System (ADS)
Bormann, K.; Painter, T. H.; Marks, D. G.; Kirchner, P. B.; Winstral, A. H.; Ramirez, P.; Goodale, C. E.; Richardson, M.; Berisford, D. F.
2014-12-01
In the western US, snowmelt from the mountains contribute the vast majority of fresh water supply, in an otherwise dry region. With much of California currently experiencing extreme drought, it is critical for water managers to have accurate basin-wide estimations of snow water content during the spring melt season. At the forefront of basin-scale snow monitoring is the Jet Propulsion Laboratory's Airborne Snow Observatory (ASO). With combined LiDAR /spectrometer instruments and weekly flights over key basins throughout California, the ASO suite is capable of retrieving high-resolution basin-wide snow depth and albedo observations. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage snow water equivalent (SWE) from the measured depths. Snow density is a spatially and temporally variable property and is difficult to estimate at basin scales. Currently, ASO uses a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. However, there are issues with the density algorithms in iSnobal, particularly with snow depths below 0.50 m. This shortcoming limited the use of snow density fields from iSnobal during the poor snowfall year of 2014 in the Sierra Nevada, where snow depths were generally low. A deeper understanding of iSnobal model performance and uncertainty for snow density estimation is required. In this study, the model is compared to an existing climate-based statistical method for basin-wide snow density estimation in the Tuolumne basin in the Sierra Nevada and sparse field density measurements. The objective of this study is to improve the water resource information provided to water managers during ASO operation in the future by reducing the uncertainty introduced during the snow depth to SWE conversion.
Estimating cosmic velocity fields from density fields and tidal tensors
NASA Astrophysics Data System (ADS)
Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan
2012-10-01
In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.
Montesano, Giovanni; Allegrini, Davide; Colombo, Leonardo; Rossetti, Luca M; Pece, Alfredo
2017-01-01
The main objective of our work is to perform an in depth analysis of the structural features of normal choriocapillaris imaged with OCT Angiography. Specifically, we provide an optimal radius for a circular Region of Interest (ROI) to obtain a stable estimate of the subfoveal choriocapillaris density and characterize its textural properties using Markov Random Fields. On each binarized image of the choriocapillaris OCT Angiography we performed simulated measurements of the subfoveal choriocapillaris densities with circular Regions of Interest (ROIs) of different radii and with small random displacements from the center of the Foveal Avascular Zone (FAZ). We then calculated the variability of the density measure with different ROI radii. We then characterized the textural features of choriocapillaris binary images by estimating the parameters of an Ising model. For each image we calculated the Optimal Radius (OR) as the minimum ROI radius required to obtain a standard deviation in the simulation below 0.01. The density measured with the individual OR was 0.52 ± 0.07 (mean ± STD). Similar density values (0.51 ± 0.07) were obtained using a fixed ROI radius of 450 μm. The Ising model yielded two parameter estimates (β = 0.34 ± 0.03; γ = 0.003 ± 0.012; mean ± STD), characterizing pixel clustering and white pixel density respectively. Using the estimated parameters to synthetize new random textures via simulation we obtained a good reproduction of the original choriocapillaris structural features and density. In conclusion, we developed an extensive characterization of the normal subfoveal choriocapillaris that might be used for flow analysis and applied to the investigation pathological alterations.
A parametric generalization of the Hayne estimator for line transect sampling
Burnham, Kenneth P.
1979-01-01
The Hayne model for line transect sampling is generalized by using an elliptical (rather than circular) flushing model for animal detection. By assuming the ration of major and minor axes lengths is constant for all animals, a model results which allows estimation of population density based directly upon sighting distances and sighting angles. The derived estimator of animal density is a generalization of the Hayne estimator for line transect sampling.
Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William
2014-01-01
Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies.
Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William
2014-01-01
Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies. PMID:24992657
Brassine, Eléanor; Parker, Daniel
2015-01-01
Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus) numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9) cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100km²). While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200), no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration) is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species. PMID:26698574
Brassine, Eléanor; Parker, Daniel
2015-01-01
Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus) numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9) cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100 km²). While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200), no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration) is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species.
Karanth, K.Ullas; Chundawat, Raghunandan S.; Nichols, James D.; Kumar, N. Samba
2004-01-01
Tropical dry-deciduous forests comprise more than 45% of the tiger (Panthera tigris) habitat in India. However, in the absence of rigorously derived estimates of ecological densities of tigers in dry forests, critical baseline data for managing tiger populations are lacking. In this study tiger densities were estimated using photographic capture–recapture sampling in the dry forests of Panna Tiger Reserve in Central India. Over a 45-day survey period, 60 camera trap sites were sampled in a well-protected part of the 542-km2 reserve during 2002. A total sampling effort of 914 camera-trap-days yielded photo-captures of 11 individual tigers over 15 sampling occasions that effectively covered a 418-km2 area. The closed capture–recapture model Mh, which incorporates individual heterogeneity in capture probabilities, fitted these photographic capture history data well. The estimated capture probability/sample, p̂= 0.04, resulted in an estimated tiger population size and standard error (N̂(SÊN̂)) of 29 (9.65), and a density (D̂(SÊD̂)) of 6.94 (3.23) tigers/100 km2. The estimated tiger density matched predictions based on prey abundance. Our results suggest that, if managed appropriately, the available dry forest habitat in India has the potential to support a population size of about 9000 wild tigers.
Sousa, André Silva Guimarães; Argolo, Poliane Sá; Gondim, Manoel Guedes Correa; de Moraes, Gilberto José; Oliveira, Anibal Ramadan
2017-08-01
The coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae), is one of the main coconut pests in the American, African and parts of the Asian continents, reaching densities of several thousand mites per fruit. Diagrammatic scales have been developed to standardize the estimation of the population densities of A. guerreronis according to the estimated percentage of damage, but these have not taken into account the possible effect of fruit age, although previous studies have already reported the variation in mite numbers with fruit age. The objective of this study was to re-construct the relation between damage and mite density at different fruit ages collected in an urban coconut plantation containing the green dwarf variety ranging from the beginning to nearly the end of the infestation, as regularly seen under field conditions in northeast Brazil, in order to improve future estimates with diagrammatic scales. The percentage of damage was estimated with two diagrammatic scales on a total of 470 fruits from 1 to 5 months old, from a field at Ilhéus, Bahia, Brazil, determining the respective number of mites on each fruit. The results suggested that in estimates with diagrammatic scales: (1) fruit age has a major effect on the estimation of A. guerreronis densities, (2) fruits of different ages should be analyzed separately, and (3) regular evaluation of infestation levels should be done preferably on fruits of about 3-4 months old, which show the highest densities.
Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico.
Hildebrand, John A; Baumann-Pickering, Simone; Frasier, Kaitlin E; Trickey, Jennifer S; Merkens, Karlina P; Wiggins, Sean M; McDonald, Mark A; Garrison, Lance P; Harris, Danielle; Marques, Tiago A; Thomas, Len
2015-11-12
Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010-2013). Beaked whale species detected include: Gervais' (Mesoplodon europaeus), Cuvier's (Ziphius cavirostris), Blainville's (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf - BWG). For Gervais' and Cuvier's beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais' beaked whales were present throughout the monitoring period, but Cuvier's beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais' and Cuvier's beaked whales had a high density throughout the monitoring period.
A Hierarchical Bayesian Model for Calibrating Estimates of Species Divergence Times
Heath, Tracy A.
2012-01-01
In Bayesian divergence time estimation methods, incorporating calibrating information from the fossil record is commonly done by assigning prior densities to ancestral nodes in the tree. Calibration prior densities are typically parametric distributions offset by minimum age estimates provided by the fossil record. Specification of the parameters of calibration densities requires the user to quantify his or her prior knowledge of the age of the ancestral node relative to the age of its calibrating fossil. The values of these parameters can, potentially, result in biased estimates of node ages if they lead to overly informative prior distributions. Accordingly, determining parameter values that lead to adequate prior densities is not straightforward. In this study, I present a hierarchical Bayesian model for calibrating divergence time analyses with multiple fossil age constraints. This approach applies a Dirichlet process prior as a hyperprior on the parameters of calibration prior densities. Specifically, this model assumes that the rate parameters of exponential prior distributions on calibrated nodes are distributed according to a Dirichlet process, whereby the rate parameters are clustered into distinct parameter categories. Both simulated and biological data are analyzed to evaluate the performance of the Dirichlet process hyperprior. Compared with fixed exponential prior densities, the hierarchical Bayesian approach results in more accurate and precise estimates of internal node ages. When this hyperprior is applied using Markov chain Monte Carlo methods, the ages of calibrated nodes are sampled from mixtures of exponential distributions and uncertainty in the values of calibration density parameters is taken into account. PMID:22334343
Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan
2012-01-01
A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614
Genetic variation in basic density and modulus of elasticity of coastal Douglas-fir.
G.R. Johnson; B.L. Gartner
2006-01-01
Douglas-fir trees from 39 open-pollinated families at four test locations were assessed to estimate heritability of modulus of elasticity (MOE) and basic density. Heritability estimates of MOE (across-site h = 0.55) were larger than those for total height (0.15) and diameter at breast height (DBH; 0.29), and similar to those for density (0.59)....
Wood density-moisture profiles in old-growth Douglas-fir and western hemlock.
W.Y. Pong; Dale R. Waddell; Lambert Michael B.
1986-01-01
Accurate estimation of the weight of each load of logs is necessary for safe and efficient aerial logging operations. The prediction of green density (lb/ft3) as a function of height is a critical element in the accurate estimation of tree bole and log weights. Two sampling methods, disk and increment core (Bergstrom xylodensimeter), were used to measure the density-...
Bernard R. Parresol; Charles E. Thomas
1996-01-01
In the wood utilization industry, both stem profile and biomass are important quantities. The two have traditionally been estimated separately. The introduction of a density-integral method allows for coincident estimation of stem profile and biomass, based on the calculus of mass theory, and provides an alternative to weight-ratio methodology. In the initial...
A method of estimating log weights.
Charles N. Mann; Hilton H. Lysons
1972-01-01
This paper presents a practical method of estimating the weights of logs before they are yarded. Knowledge of log weights is required to achieve optimum loading of modern yarding equipment. Truckloads of logs are weighed and measured to obtain a local density index (pounds per cubic foot) for a species of logs. The density index is then used to estimate the weights of...
Investigation of the Specht density estimator
NASA Technical Reports Server (NTRS)
Speed, F. M.; Rydl, L. M.
1971-01-01
The feasibility of using the Specht density estimator function on the IBM 360/44 computer is investigated. Factors such as storage, speed, amount of calculations, size of the smoothing parameter and sample size have an effect on the results. The reliability of the Specht estimator for normal and uniform distributions and the effects of the smoothing parameter and sample size are investigated.
A hybrid pareto mixture for conditional asymmetric fat-tailed distributions.
Carreau, Julie; Bengio, Yoshua
2009-07-01
In many cases, we observe some variables X that contain predictive information over a scalar variable of interest Y , with (X,Y) pairs observed in a training set. We can take advantage of this information to estimate the conditional density p(Y|X = x). In this paper, we propose a conditional mixture model with hybrid Pareto components to estimate p(Y|X = x). The hybrid Pareto is a Gaussian whose upper tail has been replaced by a generalized Pareto tail. A third parameter, in addition to the location and spread parameters of the Gaussian, controls the heaviness of the upper tail. Using the hybrid Pareto in a mixture model results in a nonparametric estimator that can adapt to multimodality, asymmetry, and heavy tails. A conditional density estimator is built by modeling the parameters of the mixture estimator as functions of X. We use a neural network to implement these functions. Such conditional density estimators have important applications in many domains such as finance and insurance. We show experimentally that this novel approach better models the conditional density in terms of likelihood, compared to competing algorithms: conditional mixture models with other types of components and a classical kernel-based nonparametric model.
Black bear density in Glacier National Park, Montana
Stetz, Jeff B.; Kendall, Katherine C.; Macleod, Amy C.
2013-01-01
We report the first abundance and density estimates for American black bears (Ursus americanus) in Glacier National Park (NP),Montana, USA.We used data from 2 independent and concurrent noninvasive genetic sampling methods—hair traps and bear rubs—collected during 2004 to generate individual black bear encounter histories for use in closed population mark–recapture models. We improved the precision of our abundance estimate by using noninvasive genetic detection events to develop individual-level covariates of sampling effort within the full and one-half mean maximum distance moved (MMDM) from each bear’s estimated activity center to explain capture probability heterogeneity and inform our estimate of the effective sampling area.Models including the one-halfMMDMcovariate received overwhelming Akaike’s Information Criterion support suggesting that buffering our study area by this distance would be more appropriate than no buffer or the full MMDM buffer for estimating the effectively sampled area and thereby density. Our modelaveraged super-population abundance estimate was 603 (95% CI¼522–684) black bears for Glacier NP. Our black bear density estimate (11.4 bears/100 km2, 95% CI¼9.9–13.0) was consistent with published estimates for populations that are sympatric with grizzly bears (U. arctos) and without access to spawning salmonids. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Estimating Evapotranspiration Of Orange Orchards Using Surface Renewal And Remote Sensing Techniques
NASA Astrophysics Data System (ADS)
Consoli, S.; Russo, A.; Snyder, R.
2006-08-01
Surface renewal (SR) analysis was utilized to calculate sensible heat flux density from high frequency temperature measurements above orange orchard canopies during 2005 in eastern Sicily (Italy). The H values were employed to estimate latent heat flux density (LE) using measured net radiation (Rn) and soil heat flux density (G) in the energy balance (EB) equation. Crop coefficients were determined by calculating the ratio Kc=ETa/ETo, with reference ETo derived from the daily Penman-Monteith equation. The estimated daily Kc values showed an average of about 0.75 for canopy covers having about 70% ground shading and 80% of PAR light interception. Remote sensing estimates of Kc and ET fluxes were compared with those measured by SR-EB. IKONOS satellite estimates of Kc and NDVI were linearly correlated for the orchard stands.
Regression-assisted deconvolution.
McIntyre, Julie; Stefanski, Leonard A
2011-06-30
We present a semi-parametric deconvolution estimator for the density function of a random variable biX that is measured with error, a common challenge in many epidemiological studies. Traditional deconvolution estimators rely only on assumptions about the distribution of X and the error in its measurement, and ignore information available in auxiliary variables. Our method assumes the availability of a covariate vector statistically related to X by a mean-variance function regression model, where regression errors are normally distributed and independent of the measurement errors. Simulations suggest that the estimator achieves a much lower integrated squared error than the observed-data kernel density estimator when models are correctly specified and the assumption of normal regression errors is met. We illustrate the method using anthropometric measurements of newborns to estimate the density function of newborn length. Copyright © 2011 John Wiley & Sons, Ltd.
Smallwood, D. O.
1996-01-01
It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.
Distributed Noise Generation for Density Estimation Based Clustering without Trusted Third Party
NASA Astrophysics Data System (ADS)
Su, Chunhua; Bao, Feng; Zhou, Jianying; Takagi, Tsuyoshi; Sakurai, Kouichi
The rapid growth of the Internet provides people with tremendous opportunities for data collection, knowledge discovery and cooperative computation. However, it also brings the problem of sensitive information leakage. Both individuals and enterprises may suffer from the massive data collection and the information retrieval by distrusted parties. In this paper, we propose a privacy-preserving protocol for the distributed kernel density estimation-based clustering. Our scheme applies random data perturbation (RDP) technique and the verifiable secret sharing to solve the security problem of distributed kernel density estimation in [4] which assumed a mediate party to help in the computation.
Further developments in orbit ephemeris derived neutral density
NASA Astrophysics Data System (ADS)
Locke, Travis
There are a number of non-conservative forces acting on a satellite in low Earth orbit. The one which is the most dominant and also contains the most uncertainty is atmospheric drag. Atmospheric drag is directly proportional to atmospheric density, and the existing atmospheric density models do not accurately model the variations in atmospheric density. In this research, precision orbit ephemerides (POE) are used as input measurements in an optimal orbit determination scheme in order to estimate corrections to existing atmospheric density models. These estimated corrections improve the estimates of the drag experienced by a satellite and therefore provide an improvement in orbit determination and prediction as well as a better overall understanding of the Earth's upper atmosphere. The optimal orbit determination scheme used in this work includes using POE data as measurements in a sequential filter/smoother process using the Orbit Determination Tool Kit (ODTK) software. The POE derived density estimates are validated by comparing them with the densities derived from accelerometers on board the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). These accelerometer derived density data sets for both CHAMP and GRACE are available from Sean Bruinsma of the Centre National d'Etudes Spatiales (CNES). The trend in the variation of atmospheric density is compared quantitatively by calculating the cross correlation (CC) between the POE derived density values and the accelerometer derived density values while the magnitudes of the two data sets are compared by calculating the root mean square (RMS) values between the two. There are certain high frequency density variations that are observed in the accelerometer derived density data but not in the POE derived density data or any of the baseline density models. These high frequency density variations are typically small in magnitude compared to the overall day-night variation. However during certain time periods, such as when the satellite is near the terminator, the variations are on the same order of magnitude as the diurnal variations. These variations can also be especially prevalent during geomagnetic storms and near the polar cusps. One of the goals of this work is to see what affect these unmodeled high frequency variations have on orbit propagation. In order to see this effect, the orbits of CHAMP and GRACE are propagated during certain time periods using different sources of density data as input measurements (accelerometer, POE, HASDM, and Jacchia 1971). The resulting orbit propagations are all compared to the propagation using the accelerometer derived density data which is used as truth. The RMS and the maximum difference between the different propagations are analyzed in order to see what effect the unmodeled density variations have on orbit propagation. These results are also binned by solar and geomagnetic activity level. The primary input into the orbit determination scheme used to produce the POE derived density estimates is a precision orbit ephemeris file. This file contains position and velocity in-formation for the satellite based on GPS and SLR measurements. The values contained in these files are estimated values and therefore contain some level of error, typically thought to be around the 5-10 cm level. The other primary focus of this work is to evaluate the effect of adding different levels of noise (0.1 m, 0.5 m, 1 m, 10 m, and 100 m) to this raw ephemeris data file before it is input into the orbit determination scheme. The resulting POE derived density estimates for each level of noise are then compared with the accelerometer derived densities by computing the CC and RMS values between the data sets. These results are also binned by solar and geomagnetic activity level.
A mass-density model can account for the size-weight illusion
Bergmann Tiest, Wouter M.; Drewing, Knut
2018-01-01
When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object’s mass, and the other from the object’s density, with estimates’ weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects’ density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object’s density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception. PMID:29447183
Revised Thickness of the Lunar Crust from GRAIL Data: Implications for Lunar Bulk Composition
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey; Wieczorek, Mark A.; Neumann, Gregory A.; Nimmo, Francis; Kiefer, Walter S.; Melosh, H. Jay; Phillips, Roger J.; Solomon, Sean C.; Andrews-Hanna, Jeffrey C.; Asmar, Sami W.;
2013-01-01
High-resolution gravity data from GRAIL have yielded new estimates of the bulk density and thickness of the lunar crust. The bulk density of the highlands crust is 2550 kg m-3. From a comparison with crustal composition measured remotely, this density implies a mean porosity of 12%. With this bulk density and constraints from the Apollo seismic experiment, the average global crustal thickness is found to lie between 34 and 43 km, a value 10 to 20 km less than several previous estimates. Crustal thickness is a central parameter in estimating bulk lunar composition. Estimates of the concentrations of refractory elements in the Moon from heat flow, remote sensing and sample data, and geophysical data fall into two categories: those with refractory element abundances enriched by 50% or more relative to Earth, and those with abundances the same as Earth. Settling this issue has implications for processes operating during lunar formation. The crustal thickness resulting from analysis of GRAIL data is less than several previous estimates. We show here that a refractory-enriched Moon is not required
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.
2015-01-01
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112
Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.
Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A
2017-08-16
Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.
Estimating abundance and density of Amur tigers along the Sino-Russian border.
Xiao, Wenhong; Feng, Limin; Mou, Pu; Miquelle, Dale G; Hebblewhite, Mark; Goldberg, Joshua F; Robinson, Hugh S; Zhao, Xiaodan; Zhou, Bo; Wang, Tianming; Ge, Jianping
2016-07-01
As an apex predator the Amur tiger (Panthera tigris altaica) could play a pivotal role in maintaining the integrity of forest ecosystems in Northeast Asia. Due to habitat loss and harvest over the past century, tigers rapidly declined in China and are now restricted to the Russian Far East and bordering habitat in nearby China. To facilitate restoration of the tiger in its historical range, reliable estimates of population size are essential to assess effectiveness of conservation interventions. Here we used camera trap data collected in Hunchun National Nature Reserve from April to June 2013 and 2014 to estimate tiger density and abundance using both maximum likelihood and Bayesian spatially explicit capture-recapture (SECR) methods. A minimum of 8 individuals were detected in both sample periods and the documentation of marking behavior and reproduction suggests the presence of a resident population. Using Bayesian SECR modeling within the 11 400 km(2) state space, density estimates were 0.33 and 0.40 individuals/100 km(2) in 2013 and 2014, respectively, corresponding to an estimated abundance of 38 and 45 animals for this transboundary Sino-Russian population. In a maximum likelihood framework, we estimated densities of 0.30 and 0.24 individuals/100 km(2) corresponding to abundances of 34 and 27, in 2013 and 2014, respectively. These density estimates are comparable to other published estimates for resident Amur tiger populations in the Russian Far East. This study reveals promising signs of tiger recovery in Northeast China, and demonstrates the importance of connectivity between the Russian and Chinese populations for recovering tigers in Northeast China. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
A spatial mark–resight model augmented with telemetry data
Sollmann, Rachel; Gardner, Beth; Parsons, Arielle W.; Stocking, Jessica J.; McClintock, Brett T.; Simons, Theodore R.; Pollock, Kenneth H.; O’Connell, Allan F.
2013-01-01
Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark-resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad-hoc approaches. We develop a spatial mark-resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows 2. The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.
Estimating peer density effects on oral health for community-based older adults.
Chakraborty, Bibhas; Widener, Michael J; Mirzaei Salehabadi, Sedigheh; Northridge, Mary E; Kum, Susan S; Jin, Zhu; Kunzel, Carol; Palmer, Harvey D; Metcalf, Sara S
2017-12-29
As part of a long-standing line of research regarding how peer density affects health, researchers have sought to understand the multifaceted ways that the density of contemporaries living and interacting in proximity to one another influence social networks and knowledge diffusion, and subsequently health and well-being. This study examined peer density effects on oral health for racial/ethnic minority older adults living in northern Manhattan and the Bronx, New York, NY. Peer age-group density was estimated by smoothing US Census data with 4 kernel bandwidths ranging from 0.25 to 1.50 mile. Logistic regression models were developed using these spatial measures and data from the ElderSmile oral and general health screening program that serves predominantly racial/ethnic minority older adults at community centers in northern Manhattan and the Bronx. The oral health outcomes modeled as dependent variables were ordinal dentition status and binary self-rated oral health. After construction of kernel density surfaces and multiple imputation of missing data, logistic regression analyses were performed to estimate the effects of peer density and other sociodemographic characteristics on the oral health outcomes of dentition status and self-rated oral health. Overall, higher peer density was associated with better oral health for older adults when estimated using smaller bandwidths (0.25 and 0.50 mile). That is, statistically significant relationships (p < 0.01) between peer density and improved dentition status were found when peer density was measured assuming a more local social network. As with dentition status, a positive significant association was found between peer density and fair or better self-rated oral health when peer density was measured assuming a more local social network. This study provides novel evidence that the oral health of community-based older adults is affected by peer density in an urban environment. To the extent that peer density signifies the potential for social interaction and support, the positive significant effects of peer density on improved oral health point to the importance of place in promoting social interaction as a component of healthy aging. Proximity to peers and their knowledge of local resources may facilitate utilization of community-based oral health care.
Automated mammographic breast density estimation using a fully convolutional network.
Lee, Juhun; Nishikawa, Robert M
2018-03-01
The purpose of this study was to develop a fully automated algorithm for mammographic breast density estimation using deep learning. Our algorithm used a fully convolutional network, which is a deep learning framework for image segmentation, to segment both the breast and the dense fibroglandular areas on mammographic images. Using the segmented breast and dense areas, our algorithm computed the breast percent density (PD), which is the faction of dense area in a breast. Our dataset included full-field digital screening mammograms of 604 women, which included 1208 mediolateral oblique (MLO) and 1208 craniocaudal (CC) views. We allocated 455, 58, and 91 of 604 women and their exams into training, testing, and validation datasets, respectively. We established ground truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. Using the mammograms and ground truth, we fine-tuned a pretrained deep learning network to train the network to segment both the breast and the fibroglandular areas. Using the validation dataset, we evaluated the performance of the proposed algorithm against radiologists' BI-RADS density assessments. Specifically, we conducted a correlation analysis between a BI-RADS density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density using PD estimates, and its ability to provide consistent PD estimates for the left and the right breast and the MLO and CC views of the same women. To show the effectiveness of our algorithm, we compared the performance of our algorithm against a state of the art algorithm, laboratory for individualized breast radiodensity assessment (LIBRA). The PD estimated by our algorithm correlated well with BI-RADS density ratings by radiologists. Pearson's rho values of our algorithm for CC view, MLO view, and CC-MLO-averaged were 0.81, 0.79, and 0.85, respectively, while those of LIBRA were 0.58, 0.71, and 0.69, respectively. For CC view and CC-MLO averaged cases, the difference in rho values between the proposed algorithm and LIBRA showed statistical significance (P < 0.006). In addition, our algorithm provided reliable PD estimates for the left and the right breast (Pearson's ρ > 0.87) and for the MLO and CC views (Pearson's ρ = 0.76). However, LIBRA showed a lower Pearson's rho value (0.66) for both the left and right breasts for the CC view. In addition, our algorithm showed an excellent ability to separate each sub BI-RADS breast density class (statistically significant, p-values = 0.0001 or less); only one comparison pair, density 1 and density 2 in the CC view, was not statistically significant (P = 0.54). However, LIBRA failed to separate breasts in density 1 and 2 for both the CC and MLO views (P > 0.64). We have developed a new deep learning based algorithm for breast density segmentation and estimation. We showed that the proposed algorithm correlated well with BI-RADS density assessments by radiologists and outperformed an existing state of the art algorithm. © 2018 American Association of Physicists in Medicine.
Estimating the D-Region Ionospheric Electron Density Profile Using VLF Narrowband Transmitters
NASA Astrophysics Data System (ADS)
Gross, N. C.; Cohen, M.
2016-12-01
The D-region ionospheric electron density profile plays an important role in many applications, including long-range and transionospheric communications, and coupling between the lower atmosphere and the upper ionosphere occurs, and estimation of very low frequency (VLF) wave propagation within the earth-ionosphere waveguide. However, measuring the D-region ionospheric density profile has been a challenge. The D-region is about 60 to 90 [km] in altitude, which is higher than planes and balloons can fly but lower than satellites can orbit. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a single propagation path.We report on an effort to construct estimates of the D-region ionospheric electron density profile over multiple narrowband transmission paths for long periods of time. Measurements from multiple transmitters at multiple receivers are analyzed concurrently to minimize false solutions and improve accuracy. Likewise, time averaging is used to remove short transient noise at the receivers. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received amplitude and phase for the narrowband transmitters and the outputs are the commonly known h' and beta two parameter exponential electron density profile. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Results show the algorithm performs well under smooth ionospheric conditions and when proper geometries for the transmitters and receivers are used.
NASA Astrophysics Data System (ADS)
Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.
2017-12-01
Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.
Capture-recapture of white-tailed deer using DNA from fecal pellet-groups
Goode, Matthew J; Beaver, Jared T; Muller, Lisa I; Clark, Joseph D.; van Manen, Frank T.; Harper, Craig T; Basinger, P Seth
2014-01-01
Traditional methods for estimating white-tailed deer population size and density are affected by behavioral biases, poor detection in densely forested areas, and invalid techniques for estimating effective trapping area. We evaluated a noninvasive method of capture—recapture for white-tailed deer (Odocoileus virginianus) density estimation using DNA extracted from fecal pellets as an individual marker and for gender determination, coupled with a spatial detection function to estimate density (spatially explicit capture—recapture, SECR). We collected pellet groups from 11 to 22 January 2010 at randomly selected sites within a 1-km2 area located on Arnold Air Force Base in Coffee and Franklin counties, Tennessee. We searched 703 10-m radius plots and collected 352 pellet-group samples from 197 plots over five two-day sampling intervals. Using only the freshest pellets we recorded 140 captures of 33 different animals (15M:18F). Male and female densities were 1.9 (SE = 0.8) and 3.8 (SE = 1.3) deer km-2, or a total density of 5.8 deer km-2 (14.9 deer mile-2). Population size was 20.8 (SE = 7.6) over a 360-ha area, and sex ratio was 1.0 M: 2.0 F (SE = 0.71). We found DNA sampling from pellet groups improved deer abundance, density and sex ratio estimates in contiguous landscapes which could be used to track responses to harvest or other management actions.
Inverse modeling of Asian (222)Rn flux using surface air (222)Rn concentration.
Hirao, Shigekazu; Yamazawa, Hiromi; Moriizumi, Jun
2010-11-01
When used with an atmospheric transport model, the (222)Rn flux distribution estimated in our previous study using soil transport theory caused underestimation of atmospheric (222)Rn concentrations as compared with measurements in East Asia. In this study, we applied a Bayesian synthesis inverse method to produce revised estimates of the annual (222)Rn flux density in Asia by using atmospheric (222)Rn concentrations measured at seven sites in East Asia. The Bayesian synthesis inverse method requires a prior estimate of the flux distribution and its uncertainties. The atmospheric transport model MM5/HIRAT and our previous estimate of the (222)Rn flux distribution as the prior value were used to generate new flux estimates for the eastern half of the Eurasian continent dividing into 10 regions. The (222)Rn flux densities estimated using the Bayesian inversion technique were generally higher than the prior flux densities. The area-weighted average (222)Rn flux density for Asia was estimated to be 33.0 mBq m(-2) s(-1), which is substantially higher than the prior value (16.7 mBq m(-2) s(-1)). The estimated (222)Rn flux densities decrease with increasing latitude as follows: Southeast Asia (36.7 mBq m(-2) s(-1)); East Asia (28.6 mBq m(-2) s(-1)) including China, Korean Peninsula and Japan; and Siberia (14.1 mBq m(-2) s(-1)). Increase of the newly estimated fluxes in Southeast Asia, China, Japan, and the southern part of Eastern Siberia from the prior ones contributed most significantly to improved agreement of the model-calculated concentrations with the atmospheric measurements. The sensitivity analysis of prior flux errors and effects of locally exhaled (222)Rn showed that the estimated fluxes in Northern and Central China, Korea, Japan, and the southern part of Eastern Siberia were robust, but that in Central Asia had a large uncertainty.
Extracting galactic structure parameters from multivariated density estimation
NASA Technical Reports Server (NTRS)
Chen, B.; Creze, M.; Robin, A.; Bienayme, O.
1992-01-01
Multivariate statistical analysis, including includes cluster analysis (unsupervised classification), discriminant analysis (supervised classification) and principle component analysis (dimensionlity reduction method), and nonparameter density estimation have been successfully used to search for meaningful associations in the 5-dimensional space of observables between observed points and the sets of simulated points generated from a synthetic approach of galaxy modelling. These methodologies can be applied as the new tools to obtain information about hidden structure otherwise unrecognizable, and place important constraints on the space distribution of various stellar populations in the Milky Way. In this paper, we concentrate on illustrating how to use nonparameter density estimation to substitute for the true densities in both of the simulating sample and real sample in the five-dimensional space. In order to fit model predicted densities to reality, we derive a set of equations which include n lines (where n is the total number of observed points) and m (where m: the numbers of predefined groups) unknown parameters. A least-square estimation will allow us to determine the density law of different groups and components in the Galaxy. The output from our software, which can be used in many research fields, will also give out the systematic error between the model and the observation by a Bayes rule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbert, Ludovic, E-mail: ludohumberto@gmail.com; Hazrati Marangalou, Javad; Rietbergen, Bert van
Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was usedmore » as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm{sup 3}) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm{sup 3}), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm{sup 3}) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm{sup 3}). A trend for the cortical thickness and density estimation errors to increase with voxel size was observed and was more pronounced for thin cortices. Using clinical CT data for 19 of the 23 samples, mean errors of 0.18 ± 0.24 mm for the cortical thickness and 15 ± 106 mg/cm{sup 3} for the density were found. The case-control study showed that osteoporotic patients had a thinner cortex and a lower cortical density, with average differences of −0.8 mm and −58.6 mg/cm{sup 3} at the proximal femur in comparison with age-matched controls (p-value < 0.001). Conclusions: This method might be a promising approach for the quantification of cortical bone thickness and density using clinical routine imaging techniques. Future work will concentrate on investigating how this approach can improve the estimation of mechanical strength of bony structures, the prevention of fracture, and the management of osteoporosis.« less
A Non-Parametric Probability Density Estimator and Some Applications.
1984-05-01
distributions, which are assumed to be representa- tive of platykurtic , mesokurtic, and leptokurtic distribu- tions in general. The dissertation is... platykurtic distributions. Consider, for example, the uniform distribution shown in Figure 4. 34 o . 1., Figure 4 -Sensitivity to Support Estimation The...results of the density function comparisons indicate that the new estimator is clearly -Z superior for platykurtic distributions, equal to the best 59
Sensor Management for Fighter Applications
2006-06-01
has consistently shown that by directly estimating the prob- ability density of a target state using a track - before - detect scheme, weak and densely... track - before - detect nonlinear filter was constructed to estimate the joint density of all state variables. A simulation that emulates estimator...targets in clutter and noise from sensed kinematic and identity data. Among the most capable is track - before - detect (TBD), which delivers
Jacob Strunk; Hailemariam Temesgen; Hans-Erik Andersen; James P. Flewelling; Lisa Madsen
2012-01-01
Using lidar in an area-based model-assisted approach to forest inventory has the potential to increase estimation precision for some forest inventory variables. This study documents the bias and precision of a model-assisted (regression estimation) approach to forest inventory with lidar-derived auxiliary variables relative to lidar pulse density and the number of...
Density of American black bears in New Mexico
Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.; Liley, Stewart
2018-01-01
Considering advances in noninvasive genetic sampling and spatially explicit capture–recapture (SECR) models, the New Mexico Department of Game and Fish sought to update their density estimates for American black bear (Ursus americanus) populations in New Mexico, USA, to aide in setting sustainable harvest limits. We estimated black bear density in the Sangre de Cristo, Sandia, and Sacramento Mountains, New Mexico, 2012–2014. We collected hair samples from black bears using hair traps and bear rubs and used a sex marker and a suite of microsatellite loci to individually genotype hair samples. We then estimated density in a SECR framework using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We sampled the populations using 554 hair traps and 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 male, 358 female) individuals. Our density estimates varied from 16.5 bears/100 km2 (95% CI = 11.6–23.5) in the southern Sacramento Mountains to 25.7 bears/100 km2 (95% CI = 13.2–50.1) in the Sandia Mountains. Overall, detection probability at the activity center (g0) was low across all study areas and ranged from 0.00001 to 0.02. The low values of g0 were primarily a result of half of all hair samples for which genotypes were attempted failing to produce a complete genotype. We speculate that the low success we had genotyping hair samples was due to exceedingly high levels of ultraviolet (UV) radiation that degraded the DNA in the hair. Despite sampling difficulties, we were able to produce density estimates with levels of precision comparable to those estimated for black bears elsewhere in the United States.
Robel, G.L.; Fisher, W.L.
1999-01-01
Production of and consumption by hatchery-reared tingerling (age-0) smallmouth bass Micropterus dolomieu at various simulated stocking densities were estimated with a bioenergetics model. Fish growth rates and pond water temperatures during the 1996 growing season at two hatcheries in Oklahoma were used in the model. Fish growth and simulated consumption and production differed greatly between the two hatcheries, probably because of differences in pond fertilization and mortality rates. Our results suggest that appropriate stocking density depends largely on prey availability as affected by pond fertilization and on fingerling mortality rates. The bioenergetics model provided a useful tool for estimating production at various stocking density rates. However, verification of physiological parameters for age-0 fish of hatchery-reared species is needed.
DCMDN: Deep Convolutional Mixture Density Network
NASA Astrophysics Data System (ADS)
D'Isanto, Antonio; Polsterer, Kai Lars
2017-09-01
Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.
Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A
2013-09-01
New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities. © 2012 The Royal Entomological Society.
Estimating Density Using Precision Satellite Orbits from Multiple Satellites
NASA Astrophysics Data System (ADS)
McLaughlin, Craig A.; Lechtenberg, Travis; Fattig, Eric; Krishna, Dhaval Mysore
2012-06-01
This article examines atmospheric densities estimated using precision orbit ephemerides (POE) from several satellites including CHAMP, GRACE, and TerraSAR-X. The results of the calibration of atmospheric densities along the CHAMP and GRACE-A orbits derived using POEs with those derived using accelerometers are compared for various levels of solar and geomagnetic activity to examine the consistency in calibration between the two satellites. Densities from CHAMP and GRACE are compared when GRACE is orbiting nearly directly above CHAMP. In addition, the densities derived simultaneously from CHAMP, GRACE-A, and TerraSAR-X are compared to the Jacchia 1971 and NRLMSISE-00 model densities to observe altitude effects and consistency in the offsets from the empirical models among all three satellites.
Double sampling to estimate density and population trends in birds
Bart, Jonathan; Earnst, Susan L.
2002-01-01
We present a method for estimating density of nesting birds based on double sampling. The approach involves surveying a large sample of plots using a rapid method such as uncorrected point counts, variable circular plot counts, or the recently suggested double-observer method. A subsample of those plots is also surveyed using intensive methods to determine actual density. The ratio of the mean count on those plots (using the rapid method) to the mean actual density (as determined by the intensive searches) is used to adjust results from the rapid method. The approach works well when results from the rapid method are highly correlated with actual density. We illustrate the method with three years of shorebird surveys from the tundra in northern Alaska. In the rapid method, surveyors covered ~10 ha h-1 and surveyed each plot a single time. The intensive surveys involved three thorough searches, required ~3 h ha-1, and took 20% of the study effort. Surveyors using the rapid method detected an average of 79% of birds present. That detection ratio was used to convert the index obtained in the rapid method into an essentially unbiased estimate of density. Trends estimated from several years of data would also be essentially unbiased. Other advantages of double sampling are that (1) the rapid method can be changed as new methods become available, (2) domains can be compared even if detection rates differ, (3) total population size can be estimated, and (4) valuable ancillary information (e.g. nest success) can be obtained on intensive plots with little additional effort. We suggest that double sampling be used to test the assumption that rapid methods, such as variable circular plot and double-observer methods, yield density estimates that are essentially unbiased. The feasibility of implementing double sampling in a range of habitats needs to be evaluated.
An analytical framework for estimating aquatic species density from environmental DNA
Chambert, Thierry; Pilliod, David S.; Goldberg, Caren S.; Doi, Hideyuki; Takahara, Teruhiko
2018-01-01
Environmental DNA (eDNA) analysis of water samples is on the brink of becoming a standard monitoring method for aquatic species. This method has improved detection rates over conventional survey methods and thus has demonstrated effectiveness for estimation of site occupancy and species distribution. The frontier of eDNA applications, however, is to infer species density. Building upon previous studies, we present and assess a modeling approach that aims at inferring animal density from eDNA. The modeling combines eDNA and animal count data from a subset of sites to estimate species density (and associated uncertainties) at other sites where only eDNA data are available. As a proof of concept, we first perform a cross-validation study using experimental data on carp in mesocosms. In these data, fish densities are known without error, which allows us to test the performance of the method with known data. We then evaluate the model using field data from a study on a stream salamander species to assess the potential of this method to work in natural settings, where density can never be known with absolute certainty. Two alternative distributions (Normal and Negative Binomial) to model variability in eDNA concentration data are assessed. Assessment based on the proof of concept data (carp) revealed that the Negative Binomial model provided much more accurate estimates than the model based on a Normal distribution, likely because eDNA data tend to be overdispersed. Greater imprecision was found when we applied the method to the field data, but the Negative Binomial model still provided useful density estimates. We call for further model development in this direction, as well as further research targeted at sampling design optimization. It will be important to assess these approaches on a broad range of study systems.
Khorozyan, Igor G; Malkhasyan, Alexander G; Abramov, Alexei V
2008-12-01
It is important to predict how many individuals of a predator species can survive in a given area on the basis of prey sufficiency and to compare predictive estimates with actual numbers to understand whether or not key threats are related to prey availability. Rugged terrain and low detection probabilities do not allow for the use of traditional prey count techniques in mountain areas. We used presence-absence occupancy modeling and camera-trapping to estimate the abundance and densities of prey species and regression analysis to predict leopard (Panthera pardus) densities from estimated prey biomass in the mountains of the Nuvadi area, Meghri Ridge, southern Armenia. The prey densities were 12.94 ± 2.18 individuals km(-2) for the bezoar goat (Capra aegagrus), 6.88 ± 1.56 for the wild boar (Sus scrofa) and 0.44 ± 0.20 for the roe deer (Capreolus capreolus). The detection probability of the prey was a strong function of the activity patterns, and was highest in diurnal bezoar goats (0.59 ± 0.09). Based on robust regression, the estimated total ungulate prey biomass (720.37 ± 142.72 kg km(-2) ) can support a leopard density of 7. 18 ± 3.06 individuals 100 km(-2) . The actual leopard density is only 0.34 individuals 100 km(-2) (i.e. one subadult male recorded over the 296.9 km(2) ), estimated from tracking and camera-trapping. The most plausible explanation for this discrepancy between predicted and actual leopard density is that poaching and disturbance caused by livestock breeding, plant gathering, deforestation and human-induced wild fires are affecting the leopard population in Armenia. © 2008 ISZS, Blackwell Publishing and IOZ/CAS.
NASA Astrophysics Data System (ADS)
Chen, Biao; Ruth, Chris; Jing, Zhenxue; Ren, Baorui; Smith, Andrew; Kshirsagar, Ashwini
2014-03-01
Breast density has been identified to be a risk factor of developing breast cancer and an indicator of lesion diagnostic obstruction due to masking effect. Volumetric density measurement evaluates fibro-glandular volume, breast volume, and breast volume density measures that have potential advantages over area density measurement in risk assessment. One class of volume density computing methods is based on the finding of the relative fibro-glandular tissue attenuation with regards to the reference fat tissue, and the estimation of the effective x-ray tissue attenuation differences between the fibro-glandular and fat tissue is key to volumetric breast density computing. We have modeled the effective attenuation difference as a function of actual x-ray skin entrance spectrum, breast thickness, fibro-glandular tissue thickness distribution, and detector efficiency. Compared to other approaches, our method has threefold advantages: (1) avoids the system calibration-based creation of effective attenuation differences which may introduce tedious calibrations for each imaging system and may not reflect the spectrum change and scatter induced overestimation or underestimation of breast density; (2) obtains the system specific separate and differential attenuation values of fibroglandular and fat for each mammographic image; and (3) further reduces the impact of breast thickness accuracy to volumetric breast density. A quantitative breast volume phantom with a set of equivalent fibro-glandular thicknesses has been used to evaluate the volume breast density measurement with the proposed method. The experimental results have shown that the method has significantly improved the accuracy of estimating breast density.
Nonparametric probability density estimation by optimization theoretic techniques
NASA Technical Reports Server (NTRS)
Scott, D. W.
1976-01-01
Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.
Massive superclusters as a probe of the nature and amplitude of primordial density fluctuations
NASA Technical Reports Server (NTRS)
Kaiser, N.; Davis, M.
1985-01-01
It is pointed out that correlation studies of galaxy positions have been widely used in the search for information about the large-scale matter distribution. The study of rare condensations on large scales provides an approach to extend the existing knowledge of large-scale structure into the weakly clustered regime. Shane (1975) provides a description of several apparent massive condensations within the Shane-Wirtanen catalog, taking into account the Serpens-Virgo cloud and the Corona cloud. In the present study, a description is given of a model for estimating the frequency of condensations which evolve from initially Gaussian fluctuations. This model is applied to the Corona cloud to estimate its 'rareness' and thereby estimate the rms density contrast on this mass scale. An attempt is made to find a conflict between the density fluctuations derived from the Corona cloud and independent constraints. A comparison is conducted of the estimate and the density fluctuations predicted to arise in a universe dominated by cold dark matter.
NASA Astrophysics Data System (ADS)
Trirongjitmoah, Suchin; Iinaga, Kazuya; Sakurai, Toshihiro; Chiba, Hitoshi; Sriyudthsak, Mana; Shimizu, Koichi
2016-04-01
Quantification of small, dense low-density lipoprotein (sdLDL) cholesterol is clinically significant. We propose a practical technique to estimate the amount of sdLDL cholesterol using dynamic light scattering (DLS). An analytical solution in a closed form has newly been obtained to estimate the weight fraction of one species of scatterers in the DLS measurement of two species of scatterers. Using this solution, we can quantify the sdLDL cholesterol amount from the amounts of the low-density lipoprotein cholesterol and the high-density lipoprotein (HDL) cholesterol, which are commonly obtained through clinical tests. The accuracy of the proposed technique was confirmed experimentally using latex spheres with known size distributions. The applicability of the proposed technique was examined using samples of human blood serum. The possibility of estimating the sdLDL amount using the HDL data was demonstrated. These results suggest that the quantitative estimation of sdLDL amounts using DLS is feasible for point-of-care testing in clinical practice.
Scent Lure Effect on Camera-Trap Based Leopard Density Estimates
Braczkowski, Alexander Richard; Balme, Guy Andrew; Dickman, Amy; Fattebert, Julien; Johnson, Paul; Dickerson, Tristan; Macdonald, David Whyte; Hunter, Luke
2016-01-01
Density estimates for large carnivores derived from camera surveys often have wide confidence intervals due to low detection rates. Such estimates are of limited value to authorities, which require precise population estimates to inform conservation strategies. Using lures can potentially increase detection, improving the precision of estimates. However, by altering the spatio-temporal patterning of individuals across the camera array, lures may violate closure, a fundamental assumption of capture-recapture. Here, we test the effect of scent lures on the precision and veracity of density estimates derived from camera-trap surveys of a protected African leopard population. We undertook two surveys (a ‘control’ and ‘treatment’ survey) on Phinda Game Reserve, South Africa. Survey design remained consistent except a scent lure was applied at camera-trap stations during the treatment survey. Lures did not affect the maximum movement distances (p = 0.96) or temporal activity of female (p = 0.12) or male leopards (p = 0.79), and the assumption of geographic closure was met for both surveys (p >0.05). The numbers of photographic captures were also similar for control and treatment surveys (p = 0.90). Accordingly, density estimates were comparable between surveys (although estimates derived using non-spatial methods (7.28–9.28 leopards/100km2) were considerably higher than estimates from spatially-explicit methods (3.40–3.65 leopards/100km2). The precision of estimates from the control and treatment surveys, were also comparable and this applied to both non-spatial and spatial methods of estimation. Our findings suggest that at least in the context of leopard research in productive habitats, the use of lures is not warranted. PMID:27050816
Evaluating lidar point densities for effective estimation of aboveground biomass
Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.
2016-01-01
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.
Simplified Computation for Nonparametric Windows Method of Probability Density Function Estimation.
Joshi, Niranjan; Kadir, Timor; Brady, Michael
2011-08-01
Recently, Kadir and Brady proposed a method for estimating probability density functions (PDFs) for digital signals which they call the Nonparametric (NP) Windows method. The method involves constructing a continuous space representation of the discrete space and sampled signal by using a suitable interpolation method. NP Windows requires only a small number of observed signal samples to estimate the PDF and is completely data driven. In this short paper, we first develop analytical formulae to obtain the NP Windows PDF estimates for 1D, 2D, and 3D signals, for different interpolation methods. We then show that the original procedure to calculate the PDF estimate can be significantly simplified and made computationally more efficient by a judicious choice of the frame of reference. We have also outlined specific algorithmic details of the procedures enabling quick implementation. Our reformulation of the original concept has directly demonstrated a close link between the NP Windows method and the Kernel Density Estimator.
Mark-recapture using tetracycline and genetics reveal record-high bear density
Peacock, E.; Titus, K.; Garshelis, D.L.; Peacock, M.M.; Kuc, M.
2011-01-01
We used tetracycline biomarking, augmented with genetic methods to estimate the size of an American black bear (Ursus americanus) population on an island in Southeast Alaska. We marked 132 and 189 bears that consumed remote, tetracycline-laced baits in 2 different years, respectively, and observed 39 marks in 692 bone samples subsequently collected from hunters. We genetically analyzed hair samples from bait sites to determine the sex of marked bears, facilitating derivation of sex-specific population estimates. We obtained harvest samples from beyond the study area to correct for emigration. We estimated a density of 155 independent bears/100 km2, which is equivalent to the highest recorded for this species. This high density appears to be maintained by abundant, accessible natural food. Our population estimate (approx. 1,000 bears) could be used as a baseline and to set hunting quotas. The refined biomarking method for abundance estimation is a useful alternative where physical captures or DNA-based estimates are precluded by cost or logistics. Copyright ?? 2011 The Wildlife Society.
Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.
2016-01-01
During the 2004–2005 to 2015–2016 hunting seasons, the New Mexico Department of Game and Fish (NMDGF) estimated black bear abundance (Ursus americanus) across the state by coupling density estimates with the distribution of primary habitat generated by Costello et al. (2001). These estimates have been used to set harvest limits. For example, a density of 17 bears/100 km2 for the Sangre de Cristo and Sacramento Mountains and 13.2 bears/100 km2 for the Sandia Mountains were used to set harvest levels. The advancement and widespread acceptance of non-invasive sampling and mark-recapture methods, prompted the NMDGF to collaborate with the New Mexico Cooperative Fish and Wildlife Research Unit and New Mexico State University to update their density estimates for black bear populations in select mountain ranges across the state.We established 5 study areas in 3 mountain ranges: the northern (NSC; sampled in 2012) and southern Sangre de Cristo Mountains (SSC; sampled in 2013), the Sandia Mountains (Sandias; sampled in 2014), and the northern (NSacs) and southern Sacramento Mountains (SSacs; both sampled in 2014). We collected hair samples from black bears using two concurrent non-invasive sampling methods, hair traps and bear rubs. We used a gender marker and a suite of microsatellite loci to determine the individual identification of hair samples that were suitable for genetic analysis. We used these data to generate mark-recapture encounter histories for each bear and estimated density in a spatially explicit capture-recapture framework (SECR). We constructed a suite of SECR candidate models using sex, elevation, land cover type, and time to model heterogeneity in detection probability and the spatial scale over which detection probability declines. We used Akaike’s Information Criterion corrected for small sample size (AICc) to rank and select the most supported model from which we estimated density.We set 554 hair traps, 117 bear rubs and collected 4,083 hair samples. We identified 725 (367 M, 358 F) individuals; the sex ratio for each study area was approximately equal. Our density estimates varied within and among mountain ranges with an estimated density of 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) for the NSC, 19.74 bears/100 km2 (95% CI: 13.77 – 28.30) in the SSC, 25.75 bears/100 km2 (95% CI: 13.22 – 50.14) in the Sandias, 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) in the NSacs, and 16.55 bears/100 km2 (95% CI: 11.64 – 23.53) in the SSacs. Overall detection probability for hair traps and bear rubs, combined, was low across all study areas and ranged from 0.00001 to 0.02. We speculate that detection probabilities were affected by failure of some hair samples to produce a complete genotype due to UV degradation of DNA, and our inability to set and check some sampling devices due to wildfires in the SSC. Ultraviolet radiation levels are particularly high in New Mexico compared to other states where NGS methods have been used because New Mexico receives substantial amounts of sunshine, is relatively high in elevation (1,200 m – 4,000 m), and is at a lower latitude. Despite these sampling difficulties, we were able to produce density estimates for New Mexico black bear populations with levels of precision comparable to estimated black bear densities made elsewhere in the U.S.Our ability to generate reliable black bear density estimates for 3 New Mexico mountain ranges is attributable to our use of a statistically robust study design and analytical method. There are multiple factors that need to be considered when developing future SECR-based density estimation projects. First, the spatial extent of the population of interest and the smallest average home range size must be determined; these will dictate size of the trapping array and spacing necessary between hair traps. The number of technicians needed and access to the study areas will also influence configuration of the trapping array. We believe shorter sampling occasions could be implemented to reduce degradation of DNA due to UV radiation; this might help increase amplification rates and thereby increase both the number of unique individuals identified and the number of recaptures, improving the precision of the density estimates. A pilot study may be useful to determine the length of time hair samples can remain in the field prior to collection. In addition, researchers may consider setting hair traps and bear rubs in more shaded areas (e.g., north facing slopes) to help reduce exposure to UV radiation. To reduce the sampling interval it will be necessary to either hire more field personnel or decrease the number of hair traps per sampling session. Both of these will enhance detection of long-range movement events by individual bears, increase initial capture and recapture rates, and improve precision of the parameter estimates. We recognize that all studies are constrained by limited resources, however, increasing field personnel would also allow a larger study area to be sampled or enable higher trap density.In conclusion, we estimated the density of black bears in 5 study areas within 3 mountains ranges of New Mexico. Our estimates will aid the NMDGF in setting sustainable harvest limits. Along with estimates of density, information on additional demographic rates (e.g., survival rates and reproduction) and the potential effects that climate change and future land use may have on the demography of black bears may also help inform management of black bears in New Mexico, and may be considered as future areas for research.
Blackwell, Bradley F; Seamans, Thomas W; White, Randolph J; Patton, Zachary J; Bush, Rachel M; Cepek, Jonathan D
2004-04-01
Oral rabies vaccination (ORV) baiting programs for control of raccoon (Procyon lotor) rabies in the USA have been conducted or are in progress in eight states east of the Mississippi River. However, data specific to the relationship between raccoon population density and the minimum density of baits necessary to significantly elevate rabies immunity are few. We used the 22-km2 US National Aeronautics and Space Administration Plum Brook Station (PBS) in Erie County, Ohio, USA, to evaluate the period of exposure for placebo vaccine baits placed at a density of 75 baits/km2 relative to raccoon population density. Our objectives were to 1) estimate raccoon population density within the fragmented forest, old-field, and industrial landscape at PBS: and 2) quantify the time that placebo, Merial RABORAL V-RG vaccine baits were available to raccoons. From August through November 2002 we surveyed raccoon use of PBS along 19.3 km of paved-road transects by using a forward-looking infrared camera mounted inside a vehicle. We used Distance 3.5 software to calculate a probability of detection function by which we estimated raccoon population density from transect data. Estimated population density on PBS decreased from August (33.4 raccoons/km2) through November (13.6 raccoons/km2), yielding a monthly mean of 24.5 raccoons/km2. We also quantified exposure time for ORV baits placed by hand on five 1-km2 grids on PBS from September through October. An average 82.7% (SD = 4.6) of baits were removed within 1 wk of placement. Given raccoon population density, estimates of bait removal and sachet condition, and assuming 22.9% nontarget take, the baiting density of 75/ km2 yielded an average of 3.3 baits consumed per raccoon and the sachet perforated.
Reeslev, M.; Miller, M.; Nielsen, K. F.
2003-01-01
Two mold species, Stachybotrys chartarum and Aspergillus versicolor, were inoculated onto agar overlaid with cellophane, allowing determination of a direct measurement of biomass density by weighing. Biomass density, ergosterol content, and beta-N-acetylhexosaminidase (3.2.1.52) activity were monitored from inoculation to stationary phase. Regression analysis showed a good linear correlation to biomass density for both ergosterol content and beta-N-acetylhexosaminidase activity. The same two mold species were inoculated onto wallpapered gypsum board, from which a direct biomass measurement was not possible. Growth was measured as an increase in ergosterol content and beta-N-acetylhexosaminidase activity. A good linear correlation was seen between ergosterol content and beta-N-acetylhexosaminidase activity. From the experiments performed on agar medium, conversion factors (CFs) for estimating biomass density from ergosterol content and beta-N-acetylhexosaminidase activity were determined. The CFs were used to estimate the biomass density of the molds grown on gypsum board. The biomass densities estimated from ergosterol content and beta-N-acetylhexosaminidase activity data gave similar results, showing significantly slower growth and lower stationary-phase biomass density on gypsum board than on agar. PMID:12839773
Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico
Hildebrand, John A.; Baumann-Pickering, Simone; Frasier, Kaitlin E.; Trickey, Jennifer S.; Merkens, Karlina P.; Wiggins, Sean M.; McDonald, Mark A.; Garrison, Lance P.; Harris, Danielle; Marques, Tiago A.; Thomas, Len
2015-01-01
Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010–2013). Beaked whale species detected include: Gervais’ (Mesoplodon europaeus), Cuvier’s (Ziphius cavirostris), Blainville’s (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf — BWG). For Gervais’ and Cuvier’s beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais’ beaked whales were present throughout the monitoring period, but Cuvier’s beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais’ and Cuvier’s beaked whales had a high density throughout the monitoring period. PMID:26559743
Lu, Lee-Jane W.; Nishino, Thomas K.; Khamapirad, Tuenchit; Grady, James J; Leonard, Morton H.; Brunder, Donald G.
2009-01-01
Breast density (the percentage of fibroglandular tissue in the breast) has been suggested to be a useful surrogate marker for breast cancer risk. It is conventionally measured using screen-film mammographic images by a labor intensive histogram segmentation method (HSM). We have adapted and modified the HSM for measuring breast density from raw digital mammograms acquired by full-field digital mammography. Multiple regression model analyses showed that many of the instrument parameters for acquiring the screening mammograms (e.g. breast compression thickness, radiological thickness, radiation dose, compression force, etc) and image pixel intensity statistics of the imaged breasts were strong predictors of the observed threshold values (model R2=0.93) and %density (R2=0.84). The intra-class correlation coefficient of the %-density for duplicate images was estimated to be 0.80, using the regression model-derived threshold values, and 0.94 if estimated directly from the parameter estimates of the %-density prediction regression model. Therefore, with additional research, these mathematical models could be used to compute breast density objectively, automatically bypassing the HSM step, and could greatly facilitate breast cancer research studies. PMID:17671343
Is the density of alcohol establishments related to nonviolent crime?
Toomey, Traci L; Erickson, Darin J; Carlin, Bradley P; Quick, Harrison S; Harwood, Eileen M; Lenk, Kathleen M; Ecklund, Alexandra M
2012-01-01
We examined the associations between the density of alcohol establishments and five types of nonviolent crime across urban neighborhoods. Data from the city of Minneapolis, MN, in 2009 were aggregated and analyzed at the neighborhood level. We examined the association between alcohol establishment density and five categories of nonviolent crime: vandalism, nuisance crime, public alcohol consumption, driving while intoxicated, and underage alcohol possession/consumption. A Bayesian approach was used for model estimation accounting for spatial auto-correlation and controlling for relevant neighborhood demographics. Models were estimated for total alcohol establishment density and then separately for off-premise establishments (e.g., liquor and convenience stores) and on-premise establishments (e.g., bars and restaurants). We found positive associations between density and each crime category. The association was strongest for public consumption and weakest for vandalism. We estimated that a 3.3%-10.9% increase across crime categories would result from a 20% increase in neighborhood establishment density. Similar results were seen for on- and off-premise establishments, although the strength of the associations was lower for off-premise density. Our results indicate that communities should consider the potential increase in nonviolent crime associated with an increase in the number of alcohol establishments within neighborhoods.
Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.
2005-01-01
The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important, such as fire prone forests.
Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi Binti; Esmaile, Maher Faik; Zuki, Abu Bakar Zakaria
2013-01-01
Background Bone mass density is an important parameter used in the estimation of the severity and depth of lesions in osteoporosis. Estimation of bone density using existing methods in experimental models has its advantages as well as drawbacks. Materials and methods In this study, the X-ray histogram edge detection technique was used to estimate the bone mass density in ovariectomized rats treated orally with germinated brown rice (GBR) bioactives, and the results were compared with estimated results obtained using Archimede’s principle. New bone cell proliferation was assessed by histology and immunohistochemical reaction using polyclonal nuclear antigen. Additionally, serum alkaline phosphatase activity, serum and bone calcium and zinc concentrations were detected using a chemistry analyzer and atomic absorption spectroscopy. Rats were divided into groups of six as follows: sham (nonovariectomized, nontreated); ovariectomized, nontreated; and ovariectomized and treated with estrogen, or Remifemin®, GBR-phenolics, acylated steryl glucosides, gamma oryzanol, and gamma amino-butyric acid extracted from GBR at different doses. Results Our results indicate a significant increase in alkaline phosphatase activity, serum and bone calcium, and zinc and ash content in the treated groups compared with the ovariectomized nontreated group (P < 0.05). Bone density increased significantly (P < 0.05) in groups treated with estrogen, GBR, Remifemin®, and gamma oryzanol compared to the ovariectomized nontreated group. Histological sections revealed more osteoblasts in the treated groups when compared with the untreated groups. A polyclonal nuclear antigen reaction showing proliferating new cells was observed in groups treated with estrogen, Remifemin®, GBR, acylated steryl glucosides, and gamma oryzanol. There was a good correlation between bone mass densities estimated using Archimede’s principle and the edge detection technique between the treated groups (r2 = 0.737, P = 0.004). Conclusion Our study shows that GBR bioactives increase bone density, which might be via the activation of zinc formation and increased calcium content, and that X-ray edge detection technique is effective in the measurement of bone density and can be employed effectively in this respect. PMID:24187491
Method for Estimating the Charge Density Distribution on a Dielectric Surface.
Nakashima, Takuya; Suhara, Hiroyuki; Murata, Hidekazu; Shimoyama, Hiroshi
2017-06-01
High-quality color output from digital photocopiers and laser printers is in strong demand, motivating attempts to achieve fine dot reproducibility and stability. The resolution of a digital photocopier depends on the charge density distribution on the organic photoconductor surface; however, directly measuring the charge density distribution is impossible. In this study, we propose a new electron optical instrument that can rapidly measure the electrostatic latent image on an organic photoconductor surface, which is a dielectric surface, as well as a novel method to quantitatively estimate the charge density distribution on a dielectric surface by combining experimental data obtained from the apparatus via a computer simulation. In the computer simulation, an improved three-dimensional boundary charge density method (BCM) is used for electric field analysis in the vicinity of the dielectric material with a charge density distribution. This method enables us to estimate the profile and quantity of the charge density distribution on a dielectric surface with a resolution of the order of microns. Furthermore, the surface potential on the dielectric surface can be immediately calculated using the obtained charge density. This method enables the relation between the charge pattern on the organic photoconductor surface and toner particle behavior to be studied; an understanding regarding the same may lead to the development of a new generation of higher resolution photocopiers.
Block, Robert C; Abdolahi, Amir; Niemiec, Christopher P; Rigby, C Scott; Williams, Geoffrey C
2016-12-01
There is a lack of research on the use of electronic tools that guide patients toward reducing their cardiovascular disease risk. We conducted a 9-month clinical trial in which participants who were at low (n = 100) and moderate (n = 23) cardiovascular disease risk-based on the National Cholesterol Education Program III's 10-year risk estimator-were randomized to usual care or to usual care plus use of an Interactive Cholesterol Advisory Tool during the first 8 weeks of the study. In the moderate-risk category, an interaction between treatment condition and Framingham risk estimate on low-density lipoprotein and non-high-density lipoprotein cholesterol was observed, such that participants in the virtual clinician treatment condition had a larger reduction in low-density lipoprotein and non-high-density lipoprotein cholesterol as their Framingham risk estimate increased. Perceptions of the Interactive Cholesterol Advisory Tool were positive. Evidence-based information about cardiovascular disease risk and its management was accessible to participants without major technical challenges. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawase, Kazumasa, E-mail: Kawase.Kazumasa@ak.MitsubishiElectric.co.jp; Motoya, Tsukasa; Uehara, Yasushi
Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) have been treated with Ar plasma excited by microwave. The changes of the mass densities, carrier trap densities, and thicknesses of the CVD-SiO{sub 2} films with the Ar plasma treatments were investigated. The mass density depth profiles were estimated with X-Ray Reflectivity (XRR) analysis using synchrotron radiation. The densities of carrier trap centers due to defects of Si-O bond network were estimated with X-ray Photoelectron Spectroscopy (XPS) time-dependent measurement. The changes of the thicknesses due to the oxidation of Si substrates were estimated with the XRR and XPS. Themore » mass densities of the CVD-SiO{sub 2} films are increased by the Ar plasma treatments. The carrier trap densities of the films are decreased by the treatments. The thicknesses of the films are not changed by the treatments. It has been clarified that the mass densification and defect restoration in the CVD-SiO{sub 2} films are caused by the Ar plasma treatments without the oxidation of the Si substrates.« less
Application of adaptive cluster sampling to low-density populations of freshwater mussels
Smith, D.R.; Villella, R.F.; Lemarie, D.P.
2003-01-01
Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research is warranted on application of adaptive cluster sampling to freshwater mussels. However, at this time we do not recommend routine application of adaptive cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective procedure needs to be developed to identify biological populations for which adaptive cluster sampling is appropriate.
NASA Astrophysics Data System (ADS)
Lechtenberg, Travis; McLaughlin, Craig A.; Locke, Travis; Krishna, Dhaval Mysore
2013-01-01
paper examines atmospheric density estimated using precision orbit ephemerides (POE) from the CHAMP and GRACE satellites during short periods of greater atmospheric density variability. The results of the calibration of CHAMP densities derived using POEs with those derived using accelerometers are examined for three different types of density perturbations, [traveling atmospheric disturbances (TADs), geomagnetic cusp phenomena, and midnight density maxima] in order to determine the temporal resolution of POE solutions. In addition, the densities are compared to High-Accuracy Satellite Drag Model (HASDM) densities to compare temporal resolution for both types of corrections. The resolution for these models of thermospheric density was found to be inadequate to sufficiently characterize the short-term density variations examined here. Also examined in this paper is the effect of differing density estimation schemes by propagating an initial orbit state forward in time and examining induced errors. The propagated POE-derived densities incurred errors of a smaller magnitude than the empirical models and errors on the same scale or better than those incurred using the HASDM model.
Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel
2017-01-01
Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100sâ10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...
Sun, Yu; Reynolds, Hayley M; Wraith, Darren; Williams, Scott; Finnegan, Mary E; Mitchell, Catherine; Murphy, Declan; Haworth, Annette
2018-04-26
There are currently no methods to estimate cell density in the prostate. This study aimed to develop predictive models to estimate prostate cell density from multiparametric magnetic resonance imaging (mpMRI) data at a voxel level using machine learning techniques. In vivo mpMRI data were collected from 30 patients before radical prostatectomy. Sequences included T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced imaging. Ground truth cell density maps were computed from histology and co-registered with mpMRI. Feature extraction and selection were performed on mpMRI data. Final models were fitted using three regression algorithms including multivariate adaptive regression spline (MARS), polynomial regression (PR) and generalised additive model (GAM). Model parameters were optimised using leave-one-out cross-validation on the training data and model performance was evaluated on test data using root mean square error (RMSE) measurements. Predictive models to estimate voxel-wise prostate cell density were successfully trained and tested using the three algorithms. The best model (GAM) achieved a RMSE of 1.06 (± 0.06) × 10 3 cells/mm 2 and a relative deviation of 13.3 ± 0.8%. Prostate cell density can be quantitatively estimated non-invasively from mpMRI data using high-quality co-registered data at a voxel level. These cell density predictions could be used for tissue classification, treatment response evaluation and personalised radiotherapy.
Estimating animal population density using passive acoustics.
Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L
2013-05-01
Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Estimating animal population density using passive acoustics
Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L
2013-01-01
Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. PMID:23190144
Estimating neuronal connectivity from axonal and dendritic density fields
van Pelt, Jaap; van Ooyen, Arjen
2013-01-01
Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic “mass.” A population mean “mass” density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population mean density fields. PMID:24324430
Wallace, Dorothy; Prosper, Olivia; Savos, Jacob; Dunham, Ann M; Chipman, Jonathan W; Shi, Xun; Ndenga, Bryson; Githeko, Andrew
2017-03-01
A dynamical model of Anopheles gambiae larval and adult populations is constructed that matches temperature-dependent maturation times and mortality measured experimentally as well as larval instar and adult mosquito emergence data from field studies in the Kenya Highlands. Spectral classification of high-resolution satellite imagery is used to estimate household density. Indoor resting densities collected over a period of one year combined with predictions of the dynamical model give estimates of both aquatic habitat and total adult mosquito densities. Temperature and precipitation patterns are derived from monthly records. Precipitation patterns are compared with average and extreme habitat estimates to estimate available aquatic habitat in an annual cycle. These estimates are coupled with the original model to produce estimates of adult and larval populations dependent on changing aquatic carrying capacity for larvae and changing maturation and mortality dependent on temperature. This paper offers a general method for estimating the total area of aquatic habitat in a given region, based on larval counts, emergence rates, indoor resting density data, and number of households.Altering the average daily temperature and the average daily rainfall simulates the effect of climate change on annual cycles of prevalence of An. gambiae adults. We show that small increases in average annual temperature have a large impact on adult mosquito density, whether measured at model equilibrium values for a single square meter of habitat or tracked over the course of a year of varying habitat availability and temperature. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Leitold, Veronika; Keller, Michael; Morton, Douglas C.; Cook, Bruce D.; Shimabukuro, Yosio E.
2015-01-01
Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. Results: We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (approx. 20 returns/sq m) data was highly accurate (mean signed error of 0.19 +/-0.97 m), while those derived from reduced-density datasets (8/sq m, 4/sq m, 2/sq m and 1/sq m) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4/sq m, the bias in height estimates translated into errors of 80-125 Mg/ha in predicted aboveground biomass. Conclusions: Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.
Leitold, Veronika; Keller, Michael; Morton, Douglas C; Cook, Bruce D; Shimabukuro, Yosio E
2015-12-01
Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (~20 returns m -2 ) data was highly accurate (mean signed error of 0.19 ± 0.97 m), while those derived from reduced-density datasets (8 m -2 , 4 m -2 , 2 m -2 and 1 m -2 ) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4 m -2 , the bias in height estimates translated into errors of 80-125 Mg ha -1 in predicted aboveground biomass. Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.
Seasonal Variability in Global Eddy Diffusion and the Effect on Thermospheric Neutral Density
NASA Astrophysics Data System (ADS)
Pilinski, M.; Crowley, G.
2014-12-01
We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time between January 2004 and January 2008 were estimated from residuals of neutral density measurements made by the CHallenging Minisatellite Payload (CHAMP) and simulations made using the Thermosphere Ionosphere Mesosphere Electrodynamics - Global Circulation Model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy-diffusivity models. The eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the RMS difference between the TIME-GCM model and density data from a variety of satellites is reduced by an average of 5%. This result, indicates that global thermospheric density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates how eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are some limitations of this method, which are discussed, including that the latitude-dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion consistent with diffusion observations made by other techniques.
Seasonal variability in global eddy diffusion and the effect on neutral density
NASA Astrophysics Data System (ADS)
Pilinski, M. D.; Crowley, G.
2015-04-01
We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy diffusivity models. Eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5% when compared to density data from a variety of satellites, indicating that the fidelity of global density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion which is also consistent with diffusion observations made by other techniques.
Titan Density Reconstruction Using Radiometric and Cassini Attitude Control Flight Data
NASA Technical Reports Server (NTRS)
Andrade, Luis G., Jr.; Burk, Thomas A.
2015-01-01
This paper compares three different methods of Titan atmospheric density reconstruction for the Titan 87 Cassini flyby. T87 was a unique flyby that provided independent Doppler radiometric measurements on the ground throughout the flyby including at Titan closest approach. At the same time, the onboard accelerometer provided an independent estimate of atmospheric drag force and density during the flyby. These results are compared with the normal method of reconstructing atmospheric density using thruster on-time and angular momentum accumulation. Differences between the estimates are analyzed and a possible explanation for the differences is evaluated.
Ocelot (Leopardus pardalis) Density in Central Amazonia.
Rocha, Daniel Gomes da; Sollmann, Rahel; Ramalho, Emiliano Esterci; Ilha, Renata; Tan, Cedric K W
2016-01-01
Ocelots (Leopardus pardalis) are presumed to be the most abundant of the wild cats throughout their distribution range and to play an important role in the dynamics of sympatric small-felid populations. However, ocelot ecological information is limited, particularly for the Amazon. We conducted three camera-trap surveys during three consecutive dry seasons to estimate ocelot density in Amanã Reserve, Central Amazonia, Brazil. We implemented a spatial capture-recapture (SCR) model that shared detection parameters among surveys. A total effort of 7020 camera-trap days resulted in 93 independent ocelot records. The estimate of ocelot density in Amanã Reserve (24.84 ± SE 6.27 ocelots per 100 km2) was lower than at other sites in the Amazon and also lower than that expected from a correlation of density with latitude and rainfall. We also discuss the importance of using common parameters for survey scenarios with low recapture rates. This is the first density estimate for ocelots in the Brazilian Amazon, which is an important stronghold for the species.
Simplified large African carnivore density estimators from track indices.
Winterbach, Christiaan W; Ferreira, Sam M; Funston, Paul J; Somers, Michael J
2016-01-01
The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y = αx + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. The Lion on Clay and Low Density on Sand models with intercept were not significant ( P > 0.05). The other four models with intercept and the six models thorough origin were all significant ( P < 0.05). The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore density can be used to estimate densities of large African carnivores using track counts on sandy substrates in areas where carnivore densities are 0.27 carnivores/100 km 2 or higher. To improve the current models, we need independent data to validate the models and data to test for non-linear relationship between track indices and true density at low densities.
Evaluation of methods to estimate lake herring spawner abundance in Lake Superior
Yule, D.L.; Stockwell, J.D.; Cholwek, G.A.; Evrard, L.M.; Schram, S.; Seider, M.; Symbal, M.
2006-01-01
Historically, commercial fishers harvested Lake Superior lake herring Coregonus artedi for their flesh, but recently operators have targeted lake herring for roe. Because no surveys have estimated spawning female abundance, direct estimates of fishing mortality are lacking. The primary objective of this study was to determine the feasibility of using acoustic techniques in combination with midwater trawling to estimate spawning female lake herring densities in a Lake Superior statistical grid (i.e., a 10′ latitude × 10′ longitude area over which annual commercial harvest statistics are compiled). Midwater trawling showed that mature female lake herring were largely pelagic during the night in late November, accounting for 94.5% of all fish caught exceeding 250 mm total length. When calculating acoustic estimates of mature female lake herring, we excluded backscattering from smaller pelagic fishes like immature lake herring and rainbow smelt Osmerus mordax by applying an empirically derived threshold of −35.6 dB. We estimated the average density of mature females in statistical grid 1409 at 13.3 fish/ha and the total number of spawning females at 227,600 (95% confidence interval = 172,500–282,700). Using information on mature female densities, size structure, and fecundity, we estimate that females deposited 3.027 billion (109) eggs in grid 1409 (95% confidence interval = 2.356–3.778 billion). The relative estimation error of the mature female density estimate derived using a geostatistical model—based approach was low (12.3%), suggesting that the employed method was robust. Fishing mortality rates of all mature females and their eggs were estimated at 2.3% and 3.8%, respectively. The techniques described for enumerating spawning female lake herring could be used to develop a more accurate stock–recruitment model for Lake Superior lake herring.
Considerations in cross-validation type density smoothing with a look at some data
NASA Technical Reports Server (NTRS)
Schuster, E. F.
1982-01-01
Experience gained in applying nonparametric maximum likelihood techniques of density estimation to judge the comparative quality of various estimators is reported. Two invariate data sets of one hundered samples (one Cauchy, one natural normal) are considered as well as studies in the multivariate case.
NASA Astrophysics Data System (ADS)
Helge Østerås, Bjørn; Skaane, Per; Gullien, Randi; Catrine Trægde Martinsen, Anne
2018-02-01
The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra™). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra™. AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.
Østerås, Bjørn Helge; Skaane, Per; Gullien, Randi; Martinsen, Anne Catrine Trægde
2018-01-25
The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra ™ ). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra ™ . AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.
Face Value: Towards Robust Estimates of Snow Leopard Densities.
Alexander, Justine S; Gopalaswamy, Arjun M; Shi, Kun; Riordan, Philip
2015-01-01
When densities of large carnivores fall below certain thresholds, dramatic ecological effects can follow, leading to oversimplified ecosystems. Understanding the population status of such species remains a major challenge as they occur in low densities and their ranges are wide. This paper describes the use of non-invasive data collection techniques combined with recent spatial capture-recapture methods to estimate the density of snow leopards Panthera uncia. It also investigates the influence of environmental and human activity indicators on their spatial distribution. A total of 60 camera traps were systematically set up during a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve, Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trap-days, representing an average capture success of 2.62 captures/100 trap-days. We identified a total number of 20 unique individuals from photographs and estimated snow leopard density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate that our estimates from the Spatial Capture Recapture models were not optimal to respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our results underline the critical challenge in achieving sufficient sample sizes of snow leopard captures and recaptures. Possible performance improvements are discussed, principally by optimising effective camera capture and photographic data quality.
Face Value: Towards Robust Estimates of Snow Leopard Densities
2015-01-01
When densities of large carnivores fall below certain thresholds, dramatic ecological effects can follow, leading to oversimplified ecosystems. Understanding the population status of such species remains a major challenge as they occur in low densities and their ranges are wide. This paper describes the use of non-invasive data collection techniques combined with recent spatial capture-recapture methods to estimate the density of snow leopards Panthera uncia. It also investigates the influence of environmental and human activity indicators on their spatial distribution. A total of 60 camera traps were systematically set up during a three-month period over a 480 km2 study area in Qilianshan National Nature Reserve, Gansu Province, China. We recorded 76 separate snow leopard captures over 2,906 trap-days, representing an average capture success of 2.62 captures/100 trap-days. We identified a total number of 20 unique individuals from photographs and estimated snow leopard density at 3.31 (SE = 1.01) individuals per 100 km2. Results of our simulation exercise indicate that our estimates from the Spatial Capture Recapture models were not optimal to respect to bias and precision (RMSEs for density parameters less or equal to 0.87). Our results underline the critical challenge in achieving sufficient sample sizes of snow leopard captures and recaptures. Possible performance improvements are discussed, principally by optimising effective camera capture and photographic data quality. PMID:26322682
Estimated areal extent of colonies of black-tailed prairie dogs in the northern Great Plains
Sidle, John G.; Johnson, Douglas H.; Euliss, Betty R.
2001-01-01
During 1997–1998, we undertook an aerial survey, with an aerial line-intercept technique, to estimate the extent of colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the northern Great Plains states of Nebraska, North Dakota, South Dakota, and Wyoming. We stratified the survey based on knowledge of colony locations, computed 2 types of estimates for each stratum, and combined ratio estimates for high-density strata with average density estimates for low-density strata. Estimates of colony areas for black-tailed prairie dogs were derived from the average percentages of lines intercepting prairie dog colonies and ratio estimators. We selected the best estimator based on the correlation between length of transect line and length of intercepted colonies. Active colonies of black-tailed prairie dogs occupied 2,377.8 km2 ± 186.4 SE, whereas inactive colonies occupied 560.4 ± 89.2 km2. These data represent the 1st quantitative assessment of black-tailed prairie dog colonies in the northern Great Plains. The survey dispels popular notions that millions of hectares of colonies of black-tailed prairie dogs exist in the northern Great Plains and can form the basis for future survey efforts.
Statistics of some atmospheric turbulence records relevant to aircraft response calculations
NASA Technical Reports Server (NTRS)
Mark, W. D.; Fischer, R. W.
1981-01-01
Methods for characterizing atmospheric turbulence are described. The methods illustrated include maximum likelihood estimation of the integral scale and intensity of records obeying the von Karman transverse power spectral form, constrained least-squares estimation of the parameters of a parametric representation of autocorrelation functions, estimation of the power spectra density of the instantaneous variance of a record with temporally fluctuating variance, and estimation of the probability density functions of various turbulence components. Descriptions of the computer programs used in the computations are given, and a full listing of these programs is included.
Application of Density Estimation Methods to Datasets from a Glider
2013-09-30
sperm whales as well as different dolphin species. OBJECTIVES The objective of this research is to extend existing methods for cetacean...Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...a cue counting approach, where a cue has been defined as a clicking event (Küsel et al., 2011), to density estimation from data recorded by single
Cetacean Density Estimation from Novel Acoustic Datasets by Acoustic Propagation Modeling
2014-09-30
hydrophone, to estimate the population density of false killer whales (Pseudorca crassidens) off of the Kona coast of the Island of Hawai’i... killer whale , suffers from interaction with the fisheries industry and its population has been reported to have declined in the past 20 years. Studies...of abundance estimate of false killer whales in Hawai’i through mark recapture methods will provide comparable results to the ones obtained by this
Cetacean Density Estimation from Novel Acoustic Datasets by Acoustic Propagation Modeling
2013-09-30
hydrophone, to estimate the population density of false killer whales (Pseudorca crassidens) off of the Kona coast of the Island of Hawai’i. OBJECTIVES...propagation due to the complexities of its environment. Moreover, the target species chosen for the proposed work, the false killer whale , suffers...estimate of false killer whales in Hawai’i through mark recapture methods will provide comparable results to the ones obtained by this project. The ultimate
The Ecology and Acoustic Behavior of Minke Whales in the Hawaiian and other Pacific Islands
2012-09-30
the SECR density estimation methods (developed by project partners, Len Thomas, from St. Andrews, and Steve Martin from SPAWAR Systems San Diego...PROJECTS Related projects were conducted by Len Thomas, Vincent Janik, and Steve Martin. These projects are using density estimates derived from...Martin, D.K. Mellinger, S. Jarvis , R.P. Morrissey, C. Ciminello, and N.DiMarzio, 2010. Spatially explicit capture recapture methods to estimate minke
The maximum entropy method of moments and Bayesian probability theory
NASA Astrophysics Data System (ADS)
Bretthorst, G. Larry
2013-08-01
The problem of density estimation occurs in many disciplines. For example, in MRI it is often necessary to classify the types of tissues in an image. To perform this classification one must first identify the characteristics of the tissues to be classified. These characteristics might be the intensity of a T1 weighted image and in MRI many other types of characteristic weightings (classifiers) may be generated. In a given tissue type there is no single intensity that characterizes the tissue, rather there is a distribution of intensities. Often this distributions can be characterized by a Gaussian, but just as often it is much more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of a Gaussian distribution, one must estimate the mean and standard deviation. However, in the Non-Gaussian case the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [1, 2], kernel density estimation [3, 4], and the maximum entropy method of moments [5, 6]. In the introduction, the maximum entropy method of moments will be reviewed. Some of its problems and conditions under which it fails will be discussed. Then in later sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory. It will be shown that Bayesian probability theory solves all of the problems with the maximum entropy method of moments. One gets posterior probabilities for the Lagrange multipliers, and, finally, one can put error bars on the resulting estimated density function.
A citizen science based survey method for estimating the density of urban carnivores.
Scott, Dawn M; Baker, Rowenna; Charman, Naomi; Karlsson, Heidi; Yarnell, Richard W; Mill, Aileen C; Smith, Graham C; Tolhurst, Bryony A
2018-01-01
Globally there are many examples of synanthropic carnivores exploiting growth in urbanisation. As carnivores can come into conflict with humans and are potential vectors of zoonotic disease, assessing densities in suburban areas and identifying factors that influence them are necessary to aid management and mitigation. However, fragmented, privately owned land restricts the use of conventional carnivore surveying techniques in these areas, requiring development of novel methods. We present a method that combines questionnaire distribution to residents with field surveys and GIS, to determine relative density of two urban carnivores in England, Great Britain. We determined the density of: red fox (Vulpes vulpes) social groups in 14, approximately 1km2 suburban areas in 8 different towns and cities; and Eurasian badger (Meles meles) social groups in three suburban areas of one city. Average relative fox group density (FGD) was 3.72 km-2, which was double the estimates for cities with resident foxes in the 1980's. Density was comparable to an alternative estimate derived from trapping and GPS-tracking, indicating the validity of the method. However, FGD did not correlate with a national dataset based on fox sightings, indicating unreliability of the national data to determine actual densities or to extrapolate a national population estimate. Using species-specific clustering units that reflect social organisation, the method was additionally applied to suburban badgers to derive relative badger group density (BGD) for one city (Brighton, 2.41 km-2). We demonstrate that citizen science approaches can effectively obtain data to assess suburban carnivore density, however publicly derived national data sets need to be locally validated before extrapolations can be undertaken. The method we present for assessing densities of foxes and badgers in British towns and cities is also adaptable to other urban carnivores elsewhere. However this transferability is contingent on species traits meeting particular criteria, and on resident responsiveness.
A citizen science based survey method for estimating the density of urban carnivores
Baker, Rowenna; Charman, Naomi; Karlsson, Heidi; Yarnell, Richard W.; Mill, Aileen C.; Smith, Graham C.; Tolhurst, Bryony A.
2018-01-01
Globally there are many examples of synanthropic carnivores exploiting growth in urbanisation. As carnivores can come into conflict with humans and are potential vectors of zoonotic disease, assessing densities in suburban areas and identifying factors that influence them are necessary to aid management and mitigation. However, fragmented, privately owned land restricts the use of conventional carnivore surveying techniques in these areas, requiring development of novel methods. We present a method that combines questionnaire distribution to residents with field surveys and GIS, to determine relative density of two urban carnivores in England, Great Britain. We determined the density of: red fox (Vulpes vulpes) social groups in 14, approximately 1km2 suburban areas in 8 different towns and cities; and Eurasian badger (Meles meles) social groups in three suburban areas of one city. Average relative fox group density (FGD) was 3.72 km-2, which was double the estimates for cities with resident foxes in the 1980’s. Density was comparable to an alternative estimate derived from trapping and GPS-tracking, indicating the validity of the method. However, FGD did not correlate with a national dataset based on fox sightings, indicating unreliability of the national data to determine actual densities or to extrapolate a national population estimate. Using species-specific clustering units that reflect social organisation, the method was additionally applied to suburban badgers to derive relative badger group density (BGD) for one city (Brighton, 2.41 km-2). We demonstrate that citizen science approaches can effectively obtain data to assess suburban carnivore density, however publicly derived national data sets need to be locally validated before extrapolations can be undertaken. The method we present for assessing densities of foxes and badgers in British towns and cities is also adaptable to other urban carnivores elsewhere. However this transferability is contingent on species traits meeting particular criteria, and on resident responsiveness. PMID:29787598
Porphyry copper deposit density
Singer, Donald A.; Berger, Vladimir; Menzie, W. David; Berger, Byron R.
2005-01-01
Estimating numbers of undiscovered mineral deposits has been a source of unease among economic geologists yet is a fundamental task in considering future supplies of resources. Estimates can be based on frequencies of deposits per unit of permissive area in control areas around the world in the same way that grade and tonnage frequencies are models of sizes and qualities of undiscovered deposits. To prevent biased estimates it is critical that, for a particular deposit type, these deposit density models be internally consistent with descriptive and grade and tonnage models of the same type. In this analysis only deposits and prospects that are likely to be included in future grade and tonnage models are employed, and deposits that have mineralization or alteration separated by less than an arbitrary but consistent distance—2 km for porphyry copper deposits—are combined into one deposit. Only 286 deposits and prospects that have more than half of the deposit not covered by postmineral rocks, sediments, or ice were counted.Nineteen control areas were selected and outlined along borders of hosting magmatic arc terranes based on three main features: (1) extensive exploration for porphyry copper deposits, (2) definable geologic settings of the porphyry copper deposits in island and continental volcanic-arc subduction-boundary zones, and (3) diversity of epochs of porphyry copper deposit formation.Porphyry copper deposit densities vary from 2 to 128 deposits per 100,000 km2 of exposed permissive rock, and the density histogram is skewed to high values. Ninety percent of the control areas have densities of four or more deposits, 50 percent have densities of 15 or more deposits, and 10 percent have densities of 35 or more deposits per 100,000 km2. Deposit density is not related to age or depth of emplacement. Porphyry copper deposit density is inversely related to the exposed area of permissive rock. The linear regression line and confidence limits constructed with the 19 control areas can be used to estimate the number of undiscovered deposits, given the size of a permissive area. In an example of the use of the equations, we estimate a 90 percent chance of at least four, a 50 percent chance of at least 11, and a 10 percent chance of at least 34 undiscovered porphyry copper deposits in the exposed parts of the Andean belt of Antarctica, which has no known deposits in a permissive area of about 76,000 km2. Measures of densities of deposits presented here allow rather simple yet robust estimation of the number of undiscovered porphyry copper deposits in exposed or covered permissive terranes.
Keller, Brad M; Nathan, Diane L; Gavenonis, Sara C; Chen, Jinbo; Conant, Emily F; Kontos, Despina
2013-05-01
Mammographic breast density, a strong risk factor for breast cancer, may be measured as either a relative percentage of dense (ie, radiopaque) breast tissue or as an absolute area from either raw (ie, "for processing") or vendor postprocessed (ie, "for presentation") digital mammograms. Given the increasing interest in the incorporation of mammographic density in breast cancer risk assessment, the purpose of this study is to determine the inherent reader variability in breast density assessment from raw and vendor-processed digital mammograms, because inconsistent estimates could to lead to misclassification of an individual woman's risk for breast cancer. Bilateral, mediolateral-oblique view, raw, and processed digital mammograms of 81 women were retrospectively collected for this study (N = 324 images). Mammographic percent density and absolute dense tissue area estimates for each image were obtained from two radiologists using a validated, interactive software tool. The variability of interreader agreement was not found to be affected by the image presentation style (ie, raw or processed, F-test: P > .5). Interreader estimates of relative and absolute breast density are strongly correlated (Pearson r > 0.84, P < .001) but systematically different (t-test, P < .001) between the two readers. Our results show that mammographic density may be assessed with equal reliability from either raw or vendor postprocessed images. Furthermore, our results suggest that the primary source of density variability comes from the subjectivity of the individual reader in assessing the absolute amount of dense tissue present in the breast, indicating the need to use standardized tools to mitigate this effect. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.
Volumes and bulk densities of forty asteroids from ADAM shape modeling
NASA Astrophysics Data System (ADS)
Hanuš, J.; Viikinkoski, M.; Marchis, F.; Ďurech, J.; Kaasalainen, M.; Delbo', M.; Herald, D.; Frappa, E.; Hayamizu, T.; Kerr, S.; Preston, S.; Timerson, B.; Dunham, D.; Talbot, J.
2017-05-01
Context. Disk-integrated photometric data of asteroids do not contain accurate information on shape details or size scale. Additional data such as disk-resolved images or stellar occultation measurements further constrain asteroid shapes and allow size estimates. Aims: We aim to use all the available disk-resolved images of approximately forty asteroids obtained by the Near-InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope together with the disk-integrated photometry and stellar occultation measurements to determine their volumes. We can then use the volume, in combination with the known mass, to derive the bulk density. Methods: We downloaded and processed all the asteroid disk-resolved images obtained by the Nirc2 that are available in the Keck Observatory Archive (KOA). We combined optical disk-integrated data and stellar occultation profiles with the disk-resolved images and use the All-Data Asteroid Modeling (ADAM) algorithm for the shape and size modeling. Our approach provides constraints on the expected uncertainty in the volume and size as well. Results: We present shape models and volume for 41 asteroids. For 35 of these asteroids, the knowledge of their mass estimates from the literature allowed us to derive their bulk densities. We see a clear trend of lower bulk densities for primitive objects (C-complex) and higher bulk densities for S-complex asteroids. The range of densities in the X-complex is large, suggesting various compositions. We also identified a few objects with rather peculiar bulk densities, which is likely a hint of their poor mass estimates. Asteroid masses determined from the Gaia astrometric observations should further refine most of the density estimates.
Estimations of population density for selected periods between the Neolithic and AD 1800.
Zimmermann, Andreas; Hilpert, Johanna; Wendt, Karl Peter
2009-04-01
Abstract We describe a combination of methods applied to obtain reliable estimations of population density using archaeological data. The combination is based on a hierarchical model of scale levels. The necessary data and methods used to obtain the results are chosen so as to define transfer functions from one scale level to another. We apply our method to data sets from western Germany that cover early Neolithic, Iron Age, Roman, and Merovingian times as well as historical data from AD 1800. Error margins and natural and historical variability are discussed. Our results for nonstate societies are always lower than conventional estimations compiled from the literature, and we discuss the reasons for this finding. At the end, we compare the calculated local and global population densities with other estimations from different parts of the world.
Wen, Xiaotong; Rangarajan, Govindan; Ding, Mingzhou
2013-01-01
Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix. PMID:23858479
Morin, Dana J.; Fuller, Angela K.; Royle, J. Andrew; Sutherland, Chris
2017-01-01
Conservation and management of spatially structured populations is challenging because solutions must consider where individuals are located, but also differential individual space use as a result of landscape heterogeneity. A recent extension of spatial capture–recapture (SCR) models, the ecological distance model, uses spatial encounter histories of individuals (e.g., a record of where individuals are detected across space, often sequenced over multiple sampling occasions), to estimate the relationship between space use and characteristics of a landscape, allowing simultaneous estimation of both local densities of individuals across space and connectivity at the scale of individual movement. We developed two model-based estimators derived from the SCR ecological distance model to quantify connectivity over a continuous surface: (1) potential connectivity—a metric of the connectivity of areas based on resistance to individual movement; and (2) density-weighted connectivity (DWC)—potential connectivity weighted by estimated density. Estimates of potential connectivity and DWC can provide spatial representations of areas that are most important for the conservation of threatened species, or management of abundant populations (i.e., areas with high density and landscape connectivity), and thus generate predictions that have great potential to inform conservation and management actions. We used a simulation study with a stationary trap design across a range of landscape resistance scenarios to evaluate how well our model estimates resistance, potential connectivity, and DWC. Correlation between true and estimated potential connectivity was high, and there was positive correlation and high spatial accuracy between estimated DWC and true DWC. We applied our approach to data collected from a population of black bears in New York, and found that forested areas represented low levels of resistance for black bears. We demonstrate that formal inference about measures of landscape connectivity can be achieved from standard methods of studying animal populations which yield individual encounter history data such as camera trapping. Resulting biological parameters including resistance, potential connectivity, and DWC estimate the spatial distribution and connectivity of the population within a statistical framework, and we outline applications to many possible conservation and management problems.
3D depth-to-basement and density contrast estimates using gravity and borehole data
NASA Astrophysics Data System (ADS)
Barbosa, V. C.; Martins, C. M.; Silva, J. B.
2009-05-01
We present a gravity inversion method for simultaneously estimating the 3D basement relief of a sedimentary basin and the parameters defining the parabolic decay of the density contrast with depth in a sedimentary pack assuming the prior knowledge about the basement depth at a few points. The sedimentary pack is approximated by a grid of 3D vertical prisms juxtaposed in both horizontal directions, x and y, of a right-handed coordinate system. The prisms' thicknesses represent the depths to the basement and are the parameters to be estimated from the gravity data. To produce stable depth-to-basement estimates we impose smoothness on the basement depths through minimization of the spatial derivatives of the parameters in the x and y directions. To estimate the parameters defining the parabolic decay of the density contrast with depth we mapped a functional containing prior information about the basement depths at a few points. We apply our method to synthetic data from a simulated complex 3D basement relief with two sedimentary sections having distinct parabolic laws describing the density contrast variation with depth. Our method retrieves the true parameters of the parabolic law of density contrast decay with depth and produces good estimates of the basement relief if the number and the distribution of boreholes are sufficient. We also applied our method to real gravity data from the onshore and part of the shallow offshore Almada Basin, on Brazil's northeastern coast. The estimated 3D Almada's basement shows geologic structures that cannot be easily inferred just from the inspection of the gravity anomaly. The estimated Almada relief presents steep borders evidencing the presence of gravity faults. Also, we note the existence of three terraces separating two local subbasins. These geologic features are consistent with Almada's geodynamic origin (the Mesozoic breakup of Gondwana and the opening of the South Atlantic Ocean) and they are important in understanding the basin evolution and in detecting structural oil traps.
Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J
2016-01-01
Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries. © 2015 SETAC.
Accounting for unsearched areas in estimating wind turbine-caused fatality
Huso, Manuela M.P.; Dalthorp, Dan
2014-01-01
With wind energy production expanding rapidly, concerns about turbine-induced bird and bat fatality have grown and the demand for accurate estimation of fatality is increasing. Estimation typically involves counting carcasses observed below turbines and adjusting counts by estimated detection probabilities. Three primary sources of imperfect detection are 1) carcasses fall into unsearched areas, 2) carcasses are removed or destroyed before sampling, and 3) carcasses present in the searched area are missed by observers. Search plots large enough to comprise 100% of turbine-induced fatality are expensive to search and may nonetheless contain areas unsearchable because of dangerous terrain or impenetrable brush. We evaluated models relating carcass density to distance from the turbine to estimate the proportion of carcasses expected to fall in searched areas and evaluated the statistical cost of restricting searches to areas near turbines where carcass density is highest and search conditions optimal. We compared 5 estimators differing in assumptions about the relationship of carcass density to distance from the turbine. We tested them on 6 different carcass dispersion scenarios at each of 3 sites under 2 different search regimes. We found that even simple distance-based carcass-density models were more effective at reducing bias than was a 5-fold expansion of the search area. Estimators incorporating fitted rather than assumed models were least biased, even under restricted searches. Accurate estimates of fatality at wind-power facilities will allow critical comparisons of rates among turbines, sites, and regions and contribute to our understanding of the potential environmental impact of this technology.
Fallout Deposition in the Marshall Islands from Bikini and Enewetak Nuclear Weapons Tests
Beck, Harold L.; Bouville, André; Moroz, Brian E.; Simon, Steven L.
2009-01-01
Deposition densities (Bq m-2) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for all the 31 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 25 inhabited atolls. This analysis was confirmed by the fact that the sum of our estimates of 137Cs deposition from these 20 tests at each atoll is in good agreement with the total 137Cs deposited as estimated from contemporary soil sample analyses. The monitoring data and meteorological analyses were used to quantitatively estimate the deposition density of 63 activation and fission products for each nuclear test, plus the cumulative deposition of 239+240Pu at each atoll. Estimates of the degree of fractionation of fallout from each test at each atoll, as well as of the fallout transit times from the test sites to the atolls were used in this analysis. The estimates of radionuclide deposition density, fractionation, and transit times reported here are the most complete available anywhere and are suitable for estimations of both external and internal dose to representative persons as described in companion papers. PMID:20622548
Fallout deposition in the Marshall Islands from Bikini and Enewetak nuclear weapons tests.
Beck, Harold L; Bouville, André; Moroz, Brian E; Simon, Steven L
2010-08-01
Deposition densities (Bq m(-2)) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for 32 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 23 inhabited atolls. This analysis was confirmed by the fact that the sum of our estimates of 137Cs deposition from these 20 tests at each atoll is in good agreement with the total 137Cs deposited as estimated from contemporary soil sample analyses. The monitoring data and meteorological analyses were used to quantitatively estimate the deposition density of 63 activation and fission products for each nuclear test, plus the cumulative deposition of 239+240Pu at each atoll. Estimates of the degree of fractionation of fallout from each test at each atoll, as well as of the fallout transit times from the test sites to the atolls were used in this analysis. The estimates of radionuclide deposition density, fractionation, and transit times reported here are the most complete available anywhere and are suitable for estimations of both external and internal dose to representative persons as described in companion papers.
Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio
We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on themore » bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.« less
DENSITY: software for analysing capture-recapture data from passive detector arrays
Efford, M.G.; Dawson, D.K.; Robbins, C.S.
2004-01-01
A general computer-intensive method is described for fitting spatial detection functions to capture-recapture data from arrays of passive detectors such as live traps and mist nets. The method is used to estimate the population density of 10 species of breeding birds sampled by mist-netting in deciduous forest at Patuxent Research Refuge, Laurel, Maryland, U.S.A., from 1961 to 1972. Total density (9.9 ? 0.6 ha-1 mean ? SE) appeared to decline over time (slope -0.41 ? 0.15 ha-1y-1). The mean precision of annual estimates for all 10 species pooled was acceptable (CV(D) = 14%). Spatial analysis of closed-population capture-recapture data highlighted deficiencies in non-spatial methodologies. For example, effective trapping area cannot be assumed constant when detection probability is variable. Simulation may be used to evaluate alternative designs for mist net arrays where density estimation is a study goal.
Som, Nicholas A.; Goodman, Damon H.; Perry, Russell W.; Hardy, Thomas B.
2016-01-01
Previous methods for constructing univariate habitat suitability criteria (HSC) curves have ranged from professional judgement to kernel-smoothed density functions or combinations thereof. We present a new method of generating HSC curves that applies probability density functions as the mathematical representation of the curves. Compared with previous approaches, benefits of our method include (1) estimation of probability density function parameters directly from raw data, (2) quantitative methods for selecting among several candidate probability density functions, and (3) concise methods for expressing estimation uncertainty in the HSC curves. We demonstrate our method with a thorough example using data collected on the depth of water used by juvenile Chinook salmon (Oncorhynchus tschawytscha) in the Klamath River of northern California and southern Oregon. All R code needed to implement our example is provided in the appendix. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Can You Tell the Density of the Watermelon from This Photograph?
ERIC Educational Resources Information Center
Foong, See Kit; Lim, Chim Chai
2010-01-01
Based on a photograph, the density of a watermelon floating in a pail of water is estimated with different levels of simplification--with and without consideration of refraction and three-dimensional effects. The watermelon was approximated as a sphere. The results of the theoretical estimations were verified experimentally. (Contains 6 figures.)
Analysing designed experiments in distance sampling
Stephen T. Buckland; Robin E. Russell; Brett G. Dickson; Victoria A. Saab; Donal N. Gorman; William M. Block
2009-01-01
Distance sampling is a survey technique for estimating the abundance or density of wild animal populations. Detection probabilities of animals inherently differ by species, age class, habitats, or sex. By incorporating the change in an observer's ability to detect a particular class of animals as a function of distance, distance sampling leads to density estimates...
Regression estimators for late-instar gypsy moth larvae at low pupulation densities
W.E. Wallnr; A.S. Devito; Stanley J. Zarnoch
1989-01-01
Two regression estimators were developed for determining densities of late-instar gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), larvae from burlap band and pyrethrin spray counts on oak trees in Vermont, Massachusetts, Connecticut, and New York. Studies were conducted by marking larvae on individual burlap banded trees within 15...
Camera trapping estimates of density and survival of fishers (Martes pennanti)
Mark J. Jordan; Reginald H. Barrett; Kathryn L. Purcell
2011-01-01
Developing efficient monitoring strategies for species of conservation concern is critical to ensuring their persistence. We have developed a method using camera traps to estimate density and survival in mesocarnivores and tested it on a population of fishers Martes pennanti in an area of approximately 300 km2 of the southern...
NASA Astrophysics Data System (ADS)
Theodorsen, A.; E Garcia, O.; Rypdal, M.
2017-05-01
Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type.
Rayan, D Mark; Mohamad, Shariff Wan; Dorward, Leejiah; Aziz, Sheema Abdul; Clements, Gopalasamy Reuben; Christopher, Wong Chai Thiam; Traeholt, Carl; Magintan, David
2012-12-01
The endangered Asian tapir (Tapirus indicus) is threatened by large-scale habitat loss, forest fragmentation and increased hunting pressure. Conservation planning for this species, however, is hampered by a severe paucity of information on its ecology and population status. We present the first Asian tapir population density estimate from a camera trapping study targeting tigers in a selectively logged forest within Peninsular Malaysia using a spatially explicit capture-recapture maximum likelihood based framework. With a trap effort of 2496 nights, 17 individuals were identified corresponding to a density (standard error) estimate of 9.49 (2.55) adult tapirs/100 km(2) . Although our results include several caveats, we believe that our density estimate still serves as an important baseline to facilitate the monitoring of tapir population trends in Peninsular Malaysia. Our study also highlights the potential of extracting vital ecological and population information for other cryptic individually identifiable animals from tiger-centric studies, especially with the use of a spatially explicit capture-recapture maximum likelihood based framework. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
A simple method for estimating the size of nuclei on fractal surfaces
NASA Astrophysics Data System (ADS)
Zeng, Qiang
2017-10-01
Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.
Estimating loblolly pine size-density trajectories across a range of planting densities
Curtis L. VanderSchaaf; Harold E. Burkhart
2013-01-01
Size-density trajectories on the logarithmic (ln) scale are generally thought to consist of two major stages. The first is often referred to as the density-independent mortality stage where the probability of mortality is independent of stand density; in the second, often referred to as the density-dependent mortality or self-thinning stage, the probability of...
Marine mammal tracks from two-hydrophone acoustic recordings made with a glider
NASA Astrophysics Data System (ADS)
Küsel, Elizabeth T.; Munoz, Tessa; Siderius, Martin; Mellinger, David K.; Heimlich, Sara
2017-04-01
A multinational oceanographic and acoustic sea experiment was carried out in the summer of 2014 off the western coast of the island of Sardinia, Mediterranean Sea. During this experiment, an underwater glider fitted with two hydrophones was evaluated as a potential tool for marine mammal population density estimation studies. An acoustic recording system was also tested, comprising an inexpensive, off-the-shelf digital recorder installed inside the glider. Detection and classification of sounds produced by whales and dolphins, and sometimes tracking and localization, are inherent components of population density estimation from passive acoustics recordings. In this work we discuss the equipment used as well as analysis of the data obtained, including detection and estimation of bearing angles. A human analyst identified the presence of sperm whale (Physeter macrocephalus) regular clicks as well as dolphin clicks and whistles. Cross-correlating clicks recorded on both data channels allowed for the estimation of the direction (bearing) of clicks, and realization of animal tracks. Insights from this bearing tracking analysis can aid in population density estimation studies by providing further information (bearings), which can improve estimates.
Using geostatistical methods to estimate snow water equivalence distribution in a mountain watershed
Balk, B.; Elder, K.; Baron, Jill S.
1998-01-01
Knowledge of the spatial distribution of snow water equivalence (SWE) is necessary to adequately forecast the volume and timing of snowmelt runoff. In April 1997, peak accumulation snow depth and density measurements were independently taken in the Loch Vale watershed (6.6 km2), Rocky Mountain National Park, Colorado. Geostatistics and classical statistics were used to estimate SWE distribution across the watershed. Snow depths were spatially distributed across the watershed through kriging interpolation methods which provide unbiased estimates that have minimum variances. Snow densities were spatially modeled through regression analysis. Combining the modeled depth and density with snow-covered area (SCA produced an estimate of the spatial distribution of SWE. The kriged estimates of snow depth explained 37-68% of the observed variance in the measured depths. Steep slopes, variably strong winds, and complex energy balance in the watershed contribute to a large degree of heterogeneity in snow depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Farrell, T.P.; Kato, T.
1980-11-01
The objectives of this study were to (1) determine the distribution and relative abundance of blunt-nosed leopard lizards, Crotaphytus silus, on three sections of BLM land impacted by light to moderate petroleum developments; (2) correlate relative density estimates with absolute density estimates, characteristics of the dominant vegetation associations, density of animal burrows, percent open space, and level of oil field development; and (3) determine the radius of movement for the species. Relative densities of lizards in each section were measured by counting all lizards seen during four surveys conducted between May and July 1980.
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Nathan, Diane L.; Conant, Emily F.; Kontos, Despina
2012-03-01
Breast percent density (PD%), as measured mammographically, is one of the strongest known risk factors for breast cancer. While the majority of studies to date have focused on PD% assessment from digitized film mammograms, digital mammography (DM) is becoming increasingly common, and allows for direct PD% assessment at the time of imaging. This work investigates the accuracy of a generalized linear model-based (GLM) estimation of PD% from raw and postprocessed digital mammograms, utilizing image acquisition physics, patient characteristics and gray-level intensity features of the specific image. The model is trained in a leave-one-woman-out fashion on a series of 81 cases for which bilateral, mediolateral-oblique DM images were available in both raw and post-processed format. Baseline continuous and categorical density estimates were provided by a trained breast-imaging radiologist. Regression analysis is performed and Pearson's correlation, r, and Cohen's kappa, κ, are computed. The GLM PD% estimation model performed well on both processed (r=0.89, p<0.001) and raw (r=0.75, p<0.001) images. Model agreement with radiologist assigned density categories was also high for processed (κ=0.79, p<0.001) and raw (κ=0.76, p<0.001) images. Model-based prediction of breast PD% could allow for a reproducible estimation of breast density, providing a rapid risk assessment tool for clinical practice.
Mercury's lithospheric thickness and crustal density, as inferred from MESSENGER observations
NASA Astrophysics Data System (ADS)
James, P. B.; Mazarico, E.; Genova, A.; Smith, D. E.; Neumann, G. A.; Solomon, S. C.
2015-12-01
The gravity field and topography of Mercury measured by the MESSENGER spacecraft have provided insights into the thickness of the planet's elastic lithosphere, Te. We localized the HgM006 free-air gravity anomaly and gtmes_125v03 shape datasets to search for theoretical elastic thickness solutions that best fit a variety of localized coherence spectra between Bouguer gravity anomaly and topography. We adopted a crustal density of ρcrust =2700 kg m-3 for the Bouguer gravity correction, but density uncertainty did not markedly affect the elastic thickness estimates. A best-fit solution in the northern smooth plains (NSP) gives an elastic thickness of Te =30-60 km at the time of formation of topography for a range of ratios of top to bottom loading from 1 to 5. For a mechanical lithosphere with a thickness of ~2Te and a temperature of 1600 °C at the base, this solution is consistent with a geothermal gradient of 9-18 K km-1. A similar coherence analysis exterior to the NSP produces an elastic thickness estimate of Te =20-50 km, albeit with a poorer fit. Coherence in the northern hemisphere as a whole does not approach zero at any wavelength, because of the presence of variations in crustal thickness that are unassociated with elastic loading. The ratios and correlations of gravity and topography at intermediate wavelengths (harmonic degree l between 30 and 50) also constrain regional crustal densities. We localized gravity and topography with a moving Slepian taper and calculated regionally averaged crustal densities with the approximation ρcrust=Zl/(2πG), where Zl is the localized admittance and G is the gravitational constant. The only regional density estimates greater than 2000 kg m-3 for l=30 correspond to the NSP. Density estimates outside of the NSP were unreasonably low, even for highly porous crust. We attribute these low densities to the confounding effects of crustal thickness variations and Kaula filtering of the gravity dataset at the highest harmonic degrees, both of which tend to introduce a downward bias to crustal density estimation. An alternative analysis—which corrected for crustal thickness variability and was restricted to regions with gravity/topography coherence greater than 0.6—yielded an aggregate crustal density of ρcrust=2602 ± 470 kg m-3 for Mercury's high northern latitudes.
Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus).
Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi
2016-08-15
Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg(-1), closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m(-3) at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m(-3), which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. © 2016. Published by The Company of Biologists Ltd.
A cost-efficient method to assess carbon stocks in tropical peat soil
NASA Astrophysics Data System (ADS)
Warren, M. W.; Kauffman, J. B.; Murdiyarso, D.; Anshari, G.; Hergoualc'h, K.; Kurnianto, S.; Purbopuspito, J.; Gusmayanti, E.; Afifudin, M.; Rahajoe, J.; Alhamd, L.; Limin, S.; Iswandi, A.
2012-11-01
Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m-3; Cd) as a function of bulk density (gC cm-3; Bd), which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151) for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm-3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.
Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus)
Miller, Patrick; Narazaki, Tomoko; Isojunno, Saana; Aoki, Kagari; Smout, Sophie; Sato, Katsufumi
2016-01-01
ABSTRACT Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg−1, closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m−3 at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m−3, which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans. PMID:27296044
Bird population density estimated from acoustic signals
Dawson, D.K.; Efford, M.G.
2009-01-01
Many animal species are detected primarily by sound. Although songs, calls and other sounds are often used for population assessment, as in bird point counts and hydrophone surveys of cetaceans, there are few rigorous methods for estimating population density from acoustic data. 2. The problem has several parts - distinguishing individuals, adjusting for individuals that are missed, and adjusting for the area sampled. Spatially explicit capture-recapture (SECR) is a statistical methodology that addresses jointly the second and third parts of the problem. We have extended SECR to use uncalibrated information from acoustic signals on the distance to each source. 3. We applied this extension of SECR to data from an acoustic survey of ovenbird Seiurus aurocapilla density in an eastern US deciduous forest with multiple four-microphone arrays. We modelled average power from spectrograms of ovenbird songs measured within a window of 0??7 s duration and frequencies between 4200 and 5200 Hz. 4. The resulting estimates of the density of singing males (0??19 ha -1 SE 0??03 ha-1) were consistent with estimates of the adult male population density from mist-netting (0??36 ha-1 SE 0??12 ha-1). The fitted model predicts sound attenuation of 0??11 dB m-1 (SE 0??01 dB m-1) in excess of losses from spherical spreading. 5.Synthesis and applications. Our method for estimating animal population density from acoustic signals fills a gap in the census methods available for visually cryptic but vocal taxa, including many species of bird and cetacean. The necessary equipment is simple and readily available; as few as two microphones may provide adequate estimates, given spatial replication. The method requires that individuals detected at the same place are acoustically distinguishable and all individuals vocalize during the recording interval, or that the per capita rate of vocalization is known. We believe these requirements can be met, with suitable field methods, for a significant number of songbird species. ?? 2009 British Ecological Society.
Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau
Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin
2016-01-01
The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland. PMID:27494253
Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau.
Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin
2016-01-01
The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland.
Postmortem validation of breast density using dual-energy mammography
Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.
2014-01-01
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer. PMID:25086548
Postmortem validation of breast density using dual-energy mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun
2014-08-15
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decompositionmore » was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.« less
NASA Astrophysics Data System (ADS)
Yi, Wen; Xue, Xianghui; Reid, Iain M.; Younger, Joel P.; Chen, Jinsong; Chen, Tingdi; Li, Na
2018-04-01
Neutral mesospheric densities at a low latitude have been derived during April 2011 to December 2014 using data from the Kunming meteor radar in China (25.6°N, 103.8°E). The daily mean density at 90 km was estimated using the ambipolar diffusion coefficients from the meteor radar and temperatures from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The seasonal variations of the meteor radar-derived density are consistent with the density from the Mass Spectrometer and Incoherent Scatter (MSIS) model, show a dominant annual variation, with a maximum during winter, and a minimum during summer. A simple linear model was used to separate the effects of atmospheric density and the meteor velocity on the meteor radar peak detection height. We find that a 1 km/s difference in the vertical meteor velocity yields a change of approximately 0.42 km in peak height. The strong correlation between the meteor radar density and the velocity-corrected peak height indicates that the meteor radar density estimates accurately reflect changes in neutral atmospheric density and that meteor peak detection heights, when adjusted for meteoroid velocity, can serve as a convenient tool for measuring density variations around the mesopause. A comparison of the ambipolar diffusion coefficient and peak height observed simultaneously by two co-located meteor radars indicates that the relative errors of the daily mean ambipolar diffusion coefficient and peak height should be less than 5% and 6%, respectively, and that the absolute error of the peak height is less than 0.2 km.
Eskelson, Bianca N.I.; Hagar, Joan; Temesgen, Hailemariam
2012-01-01
Snags (standing dead trees) are an essential structural component of forests. Because wildlife use of snags depends on size and decay stage, snag density estimation without any information about snag quality attributes is of little value for wildlife management decision makers. Little work has been done to develop models that allow multivariate estimation of snag density by snag quality class. Using climate, topography, Landsat TM data, stand age and forest type collected for 2356 forested Forest Inventory and Analysis plots in western Washington and western Oregon, we evaluated two multivariate techniques for their abilities to estimate density of snags by three decay classes. The density of live trees and snags in three decay classes (D1: recently dead, little decay; D2: decay, without top, some branches and bark missing; D3: extensive decay, missing bark and most branches) with diameter at breast height (DBH) ≥ 12.7 cm was estimated using a nonparametric random forest nearest neighbor imputation technique (RF) and a parametric two-stage model (QPORD), for which the number of trees per hectare was estimated with a Quasipoisson model in the first stage and the probability of belonging to a tree status class (live, D1, D2, D3) was estimated with an ordinal regression model in the second stage. The presence of large snags with DBH ≥ 50 cm was predicted using a logistic regression and RF imputation. Because of the more homogenous conditions on private forest lands, snag density by decay class was predicted with higher accuracies on private forest lands than on public lands, while presence of large snags was more accurately predicted on public lands, owing to the higher prevalence of large snags on public lands. RF outperformed the QPORD model in terms of percent accurate predictions, while QPORD provided smaller root mean square errors in predicting snag density by decay class. The logistic regression model achieved more accurate presence/absence classification of large snags than the RF imputation approach. Adjusting the decision threshold to account for unequal size for presence and absence classes is more straightforward for the logistic regression than for the RF imputation approach. Overall, model accuracies were poor in this study, which can be attributed to the poor predictive quality of the explanatory variables and the large range of forest types and geographic conditions observed in the data.
Integrating resource selection into spatial capture-recapture models for large carnivores
Proffitt, Kelly M.; Goldberg, Joshua; Hebblewite, Mark; Russell, Robin E.; Jimenez, Ben; Robinson, Hugh S.; Pilgrim, Kristine; Schwartz, Michael K.
2015-01-01
Wildlife managers need reliable methods to estimate large carnivore densities and population trends; yet large carnivores are elusive, difficult to detect, and occur at low densities making traditional approaches intractable. Recent advances in spatial capture-recapture (SCR) models have provided new approaches for monitoring trends in wildlife abundance and these methods are particularly applicable to large carnivores. We applied SCR models in a Bayesian framework to estimate mountain lion densities in the Bitterroot Mountains of west central Montana. We incorporate an existing resource selection function (RSF) as a density covariate to account for heterogeneity in habitat use across the study area and include data collected from harvested lions. We identify individuals through DNA samples collected by (1) biopsy darting mountain lions detected in systematic surveys of the study area, (2) opportunistically collecting hair and scat samples, and (3) sampling all harvested mountain lions. We included 80 DNA samples collected from 62 individuals in the analysis. Including information on predicted habitat use as a covariate on the distribution of activity centers reduced the median estimated density by 44%, the standard deviation by 7%, and the width of 95% credible intervals by 10% as compared to standard SCR models. Within the two management units of interest, we estimated a median mountain lion density of 4.5 mountain lions/100 km2 (95% CI = 2.9, 7.7) and 5.2 mountain lions/100 km2 (95% CI = 3.4, 9.1). Including harvested individuals (dead recovery) did not create a significant bias in the detection process by introducing individuals that could not be detected after removal. However, the dead recovery component of the model did have a substantial effect on results by increasing sample size. The ability to account for heterogeneity in habitat use provides a useful extension to SCR models, and will enhance the ability of wildlife managers to reliably and economically estimate density of wildlife populations, particularly large carnivores.
A log-linear model approach to estimation of population size using the line-transect sampling method
Anderson, D.R.; Burnham, K.P.; Crain, B.R.
1978-01-01
The technique of estimating wildlife population size and density using the belt or line-transect sampling method has been used in many past projects, such as the estimation of density of waterfowl nestling sites in marshes, and is being used currently in such areas as the assessment of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line-transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathematical framework to a line-transect estimator based upon a log-linear model approach.
Khan, Md Nabiul Islam; Hijbeek, Renske; Berger, Uta; Koedam, Nico; Grueters, Uwe; Islam, S M Zahirul; Hasan, Md Asadul; Dahdouh-Guebas, Farid
2016-01-01
In the Point-Centred Quarter Method (PCQM), the mean distance of the first nearest plants in each quadrant of a number of random sample points is converted to plant density. It is a quick method for plant density estimation. In recent publications the estimator equations of simple PCQM (PCQM1) and higher order ones (PCQM2 and PCQM3, which uses the distance of the second and third nearest plants, respectively) show discrepancy. This study attempts to review PCQM estimators in order to find the most accurate equation form. We tested the accuracy of different PCQM equations using Monte Carlo Simulations in simulated (having 'random', 'aggregated' and 'regular' spatial patterns) plant populations and empirical ones. PCQM requires at least 50 sample points to ensure a desired level of accuracy. PCQM with a corrected estimator is more accurate than with a previously published estimator. The published PCQM versions (PCQM1, PCQM2 and PCQM3) show significant differences in accuracy of density estimation, i.e. the higher order PCQM provides higher accuracy. However, the corrected PCQM versions show no significant differences among them as tested in various spatial patterns except in plant assemblages with a strong repulsion (plant competition). If N is number of sample points and R is distance, the corrected estimator of PCQM1 is 4(4N - 1)/(π ∑ R2) but not 12N/(π ∑ R2), of PCQM2 is 4(8N - 1)/(π ∑ R2) but not 28N/(π ∑ R2) and of PCQM3 is 4(12N - 1)/(π ∑ R2) but not 44N/(π ∑ R2) as published. If the spatial pattern of a plant association is random, PCQM1 with a corrected equation estimator and over 50 sample points would be sufficient to provide accurate density estimation. PCQM using just the nearest tree in each quadrant is therefore sufficient, which facilitates sampling of trees, particularly in areas with just a few hundred trees per hectare. PCQM3 provides the best density estimations for all types of plant assemblages including the repulsion process. Since in practice, the spatial pattern of a plant association remains unknown before starting a vegetation survey, for field applications the use of PCQM3 along with the corrected estimator is recommended. However, for sparse plant populations, where the use of PCQM3 may pose practical limitations, the PCQM2 or PCQM1 would be applied. During application of PCQM in the field, care should be taken to summarize the distance data based on 'the inverse summation of squared distances' but not 'the summation of inverse squared distances' as erroneously published.
Multi-species genetic connectivity in a terrestrial habitat network.
Marrotte, Robby R; Bowman, Jeff; Brown, Michael G C; Cordes, Chad; Morris, Kimberley Y; Prentice, Melanie B; Wilson, Paul J
2017-01-01
Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the effects of habitat fragmentation for a larger number of species. To test the validity of a multi-species connectivity model, we used neutral microsatellite genetic datasets of Canada lynx ( Lynx canadensis ), American marten ( Martes americana ), fisher ( Pekania pennanti ), and southern flying squirrel ( Glaucomys volans ) to evaluate multi-species genetic connectivity across Ontario, Canada. We used linear models to compare node-based estimates of genetic connectivity for each species to point-based estimates of landscape connectivity (current density) derived from circuit theory. To our knowledge, we are the first to evaluate current density as a measure of genetic connectivity. Our results depended on landscape context: habitat amount was more important than current density in explaining multi-species genetic connectivity in the northern part of our study area, where habitat was abundant and fragmentation was low. In the south however, where fragmentation was prevalent, genetic connectivity was correlated with current density. Contrary to our expectations however, locations with a high probability of movement as reflected by high current density were negatively associated with gene flow. Subsequent analyses of circuit theory outputs showed that high current density was also associated with high effective resistance, underscoring that the presence of pinch points is not necessarily indicative of gene flow. Overall, our study appears to provide support for the hypothesis that landscape pattern is important when habitat amount is low. We also conclude that while current density is proportional to the probability of movement per unit area, this does not imply increased gene flow, since high current density tends to be a result of neighbouring pixels with high cost of movement (e.g., low habitat amount). In other words, pinch points with high current density appear to constrict gene flow.
Ehlers Smith, David A; Ehlers Smith, Yvette C
2013-08-01
Because of the large-scale destruction of Borneo's rainforests on mineral soils, tropical peat-swamp forests (TPSFs) are increasingly essential for conserving remnant biodiversity, particularly in the lowlands where the majority of habitat conversion has occurred. Consequently, effective strategies for biodiversity conservation are required, which rely on accurate population density and distribution estimates as a baseline. We sought to establish the first population density estimates of the endemic red langur (Presbytis rubicunda) in Sabangau TPSF, the largest remaining contiguous lowland forest-block on Borneo. Using Distance sampling principles, we conducted line transect surveys in two of Sabangau's three principle habitat sub-classes and calculated group density at 2.52 groups km⁻² (95% CI 1.56-4.08) in the mixed-swamp forest sub-class. Based on an average recorded group size of 6.95 individuals, population density was 17.51 ind km⁻², the second highest density recorded in this species. The accessible area of the tall-interior forest, however, was too disturbed to yield density estimates representative of the entire sub-class, and P. rubicunda was absent from the low-pole forest, likely as a result of the low availability of the species' preferred foods. This absence in 30% of Sabangau's total area indicates the importance of in situ population surveys at the habitat-specific level for accurately informing conservation strategies. We highlight the conservation value of TPSFs for P. rubicunda given the high population density and large areas remaining, and recommend 1) quantifying the response of P. rubicunda to the logging and burning of its habitats; 2) surveying degraded TPSFs for viable populations, and 3) effectively delineating TPSF sub-class boundaries from remote imagery to facilitate population estimates across the wider peat landscape, given the stark contrast in densities found across the habitat sub-classes of Sabangau. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Campbell, Gregory S.; Thomas, Len; Whitaker, Katherine; Douglas, Annie B.; Calambokidis, John; Hildebrand, John A.
2015-02-01
Trends in cetacean density and distribution off southern California were assessed through visual line-transect surveys during thirty-seven California Cooperative Oceanic Fisheries Investigations (CalCOFI) cruises from July 2004-November 2013. From sightings of the six most commonly encountered cetacean species, seasonal, annual and overall density estimates were calculated. Blue whales (Balaenoptera musculus), fin whales (Balaenoptera physalus) and humpback whales (Megaptera novaeangliae) were the most frequently sighted baleen whales with overall densities of 0.91/1000 km2 (CV=0.27), 2.73/1000 km2 (CV=0.19), and 1.17/1000 km2 (CV=0.21) respectively. Species specific density estimates, stratified by cruise, were analyzed using a generalized additive model to estimate long-term trends and correct for seasonal imbalances. Variances were estimated using a non-parametric bootstrap with one day of effort as the sampling unit. Blue whales were primarily observed during summer and fall while fin and humpback whales were observed year-round with peaks in density during summer and spring respectively. Short-beaked common dolphins (Delphinus delphis), Pacific white-sided dolphins (Lagenorhynchus obliquidens) and Dall's porpoise (Phocoenoidesdalli) were the most frequently encountered small cetaceans with overall densities of 705.83/1000 km2 (CV=0.22), 51.98/1000 km2 (CV=0.27), and 21.37/1000 km2 (CV=0.19) respectively. Seasonally, short-beaked common dolphins were most abundant in winter whereas Pacific white-sided dolphins and Dall's porpoise were most abundant during spring. There were no significant long-term changes in blue whale, fin whale, humpback whale, short-beaked common dolphin or Dall's porpoise densities while Pacific white-sided dolphins exhibited a significant decrease in density across the ten-year study. The results from this study were fundamentally consistent with earlier studies, but provide greater temporal and seasonal resolution.
French, Benjamin; Funamoto, Sachiyo; Sugiyama, Hiromi; Sakata, Ritsu; Cologne, John; Cullings, Harry M; Mabuchi, Kiyohiko; Preston, Dale L
2018-03-29
In the Life Span Study of atomic bomb survivors, differences in urbanicity between high-dose and low-dose survivors could confound the association between radiation dose and adverse outcomes. We obtained data on the pre-bombing population distribution in Hiroshima and Nagasaki, and quantified the impact of adjustment for population density on radiation risk estimates for mortality (1950-2003) and incident solid cancer (1958-2009). Population density ranged from 4,671-14,378 and 5,748-19,149 people/km2 in urban regions of Hiroshima and Nagasaki, respectively. Radiation risk estimates for solid cancer mortality were attenuated by 5.1%, but those for all-cause mortality and incident solid cancer were unchanged. There was no overall association between population density and adverse outcomes, but there was evidence that the association between density and mortality differed by age at exposure. Among survivors 10-14 years old in 1945, there was a positive association between population density and risk of all-cause mortality (relative risk, 1.053 per 5,000 people/km2 increase, 95% confidence interval: 1.027, 1.079) and solid cancer mortality (relative risk, 1.069 per 5,000 people/km2 increase, 95% confidence interval: 1.025, 1.115). Our results suggest that radiation risk estimates from the Life Span Study are not sensitive to unmeasured confounding by urban-rural differences.
NASA Astrophysics Data System (ADS)
Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.
2017-10-01
The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.
Keller, Brad M; Chen, Jinbo; Daye, Dania; Conant, Emily F; Kontos, Despina
2015-08-25
Breast density, commonly quantified as the percentage of mammographically dense tissue area, is a strong breast cancer risk factor. We investigated associations between breast cancer and fully automated measures of breast density made by a new publicly available software tool, the Laboratory for Individualized Breast Radiodensity Assessment (LIBRA). Digital mammograms from 106 invasive breast cancer cases and 318 age-matched controls were retrospectively analyzed. Density estimates acquired by LIBRA were compared with commercially available software and standard Breast Imaging-Reporting and Data System (BI-RADS) density estimates. Associations between the different density measures and breast cancer were evaluated by using logistic regression after adjustment for Gail risk factors and body mass index (BMI). Area under the curve (AUC) of the receiver operating characteristic (ROC) was used to assess discriminatory capacity, and odds ratios (ORs) for each density measure are provided. All automated density measures had a significant association with breast cancer (OR = 1.47-2.23, AUC = 0.59-0.71, P < 0.01) which was strengthened after adjustment for Gail risk factors and BMI (OR = 1.96-2.64, AUC = 0.82-0.85, P < 0.001). In multivariable analysis, absolute dense area (OR = 1.84, P < 0.001) and absolute dense volume (OR = 1.67, P = 0.003) were jointly associated with breast cancer (AUC = 0.77, P < 0.01), having a larger discriminatory capacity than models considering the Gail risk factors alone (AUC = 0.64, P < 0.001) or the Gail risk factors plus standard area percent density (AUC = 0.68, P = 0.01). After BMI was further adjusted for, absolute dense area retained significance (OR = 2.18, P < 0.001) and volume percent density approached significance (OR = 1.47, P = 0.06). This combined area-volume density model also had a significantly (P < 0.001) improved discriminatory capacity (AUC = 0.86) relative to a model considering the Gail risk factors plus BMI (AUC = 0.80). Our study suggests that new automated density measures may ultimately augment the current standard breast cancer risk factors. In addition, the ability to fully automate density estimation with digital mammography, particularly through the use of publically available breast density estimation software, could accelerate the translation of density reporting in routine breast cancer screening and surveillance protocols and facilitate broader research into the use of breast density as a risk factor for breast cancer.
Warren, Victoria E; Marques, Tiago A; Harris, Danielle; Thomas, Len; Tyack, Peter L; Aguilar de Soto, Natacha; Hickmott, Leigh S; Johnson, Mark P
2017-03-01
Passive acoustic monitoring has become an increasingly prevalent tool for estimating density of marine mammals, such as beaked whales, which vocalize often but are difficult to survey visually. Counts of acoustic cues (e.g., vocalizations), when corrected for detection probability, can be translated into animal density estimates by applying an individual cue production rate multiplier. It is essential to understand variation in these rates to avoid biased estimates. The most direct way to measure cue production rate is with animal-mounted acoustic recorders. This study utilized data from sound recording tags deployed on Blainville's (Mesoplodon densirostris, 19 deployments) and Cuvier's (Ziphius cavirostris, 16 deployments) beaked whales, in two locations per species, to explore spatial and temporal variation in click production rates. No spatial or temporal variation was detected within the average click production rate of Blainville's beaked whales when calculated over dive cycles (including silent periods between dives); however, spatial variation was detected when averaged only over vocal periods. Cuvier's beaked whales exhibited significant spatial and temporal variation in click production rates within vocal periods and when silent periods were included. This evidence of variation emphasizes the need to utilize appropriate cue production rates when estimating density from passive acoustic data.
Density estimation in a wolverine population using spatial capture-recapture models
Royle, J. Andrew; Magoun, Audrey J.; Gardner, Beth; Valkenbury, Patrick; Lowell, Richard E.; McKelvey, Kevin
2011-01-01
Classical closed-population capture-recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture-recapture models that accommodate the spatial attribute inherent in capture-recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000-km2(95% Bayesian CI: 5.9-15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies.
Estimating snow leopard population abundance using photography and capture-recapture techniques
Jackson, R.M.; Roe, J.D.; Wangchuk, R.; Hunter, D.O.
2006-01-01
Conservation and management of snow leopards (Uncia uncia) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16- to 30-km2 sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap-nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patterns located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE = 0.22; individuals per 100 km2 in 2003 to 4.45 (SE = 0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.
Model Parameterization and P-wave AVA Direct Inversion for Young's Impedance
NASA Astrophysics Data System (ADS)
Zong, Zhaoyun; Yin, Xingyao
2017-05-01
AVA inversion is an important tool for elastic parameters estimation to guide the lithology prediction and "sweet spot" identification of hydrocarbon reservoirs. The product of the Young's modulus and density (named as Young's impedance in this study) is known as an effective lithology and brittleness indicator of unconventional hydrocarbon reservoirs. Density is difficult to predict from seismic data, which renders the estimation of the Young's impedance inaccurate in conventional approaches. In this study, a pragmatic seismic AVA inversion approach with only P-wave pre-stack seismic data is proposed to estimate the Young's impedance to avoid the uncertainty brought by density. First, based on the linearized P-wave approximate reflectivity equation in terms of P-wave and S-wave moduli, the P-wave approximate reflectivity equation in terms of the Young's impedance is derived according to the relationship between P-wave modulus, S-wave modulus, Young's modulus and Poisson ratio. This equation is further compared to the exact Zoeppritz equation and the linearized P-wave approximate reflectivity equation in terms of P- and S-wave velocities and density, which illustrates that this equation is accurate enough to be used for AVA inversion when the incident angle is within the critical angle. Parameter sensitivity analysis illustrates that the high correlation between the Young's impedance and density render the estimation of the Young's impedance difficult. Therefore, a de-correlation scheme is used in the pragmatic AVA inversion with Bayesian inference to estimate Young's impedance only with pre-stack P-wave seismic data. Synthetic examples demonstrate that the proposed approach is able to predict the Young's impedance stably even with moderate noise and the field data examples verify the effectiveness of the proposed approach in Young's impedance estimation and "sweet spots" evaluation.
Estimating effective data density in a satellite retrieval or an objective analysis
NASA Technical Reports Server (NTRS)
Purser, R. J.; Huang, H.-L.
1993-01-01
An attempt is made to formulate consistent objective definitions of the concept of 'effective data density' applicable both in the context of satellite soundings and more generally in objective data analysis. The definitions based upon various forms of Backus-Gilbert 'spread' functions are found to be seriously misleading in satellite soundings where the model resolution function (expressing the sensitivity of retrieval or analysis to changes in the background error) features sidelobes. Instead, estimates derived by smoothing the trace components of the model resolution function are proposed. The new estimates are found to be more reliable and informative in simulated satellite retrieval problems and, for the special case of uniformly spaced perfect observations, agree exactly with their actual density. The new estimates integrate to the 'degrees of freedom for signal', a diagnostic that is invariant to changes of units or coordinates used.
Estimating Torque Imparted on Spacecraft Using Telemetry
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.
2013-01-01
There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.
A generalised random encounter model for estimating animal density with remote sensor data.
Lucas, Tim C D; Moorcroft, Elizabeth A; Freeman, Robin; Rowcliffe, J Marcus; Jones, Kate E
2015-05-01
Wildlife monitoring technology is advancing rapidly and the use of remote sensors such as camera traps and acoustic detectors is becoming common in both the terrestrial and marine environments. Current methods to estimate abundance or density require individual recognition of animals or knowing the distance of the animal from the sensor, which is often difficult. A method without these requirements, the random encounter model (REM), has been successfully applied to estimate animal densities from count data generated from camera traps. However, count data from acoustic detectors do not fit the assumptions of the REM due to the directionality of animal signals.We developed a generalised REM (gREM), to estimate absolute animal density from count data from both camera traps and acoustic detectors. We derived the gREM for different combinations of sensor detection widths and animal signal widths (a measure of directionality). We tested the accuracy and precision of this model using simulations of different combinations of sensor detection widths and animal signal widths, number of captures and models of animal movement.We find that the gREM produces accurate estimates of absolute animal density for all combinations of sensor detection widths and animal signal widths. However, larger sensor detection and animal signal widths were found to be more precise. While the model is accurate for all capture efforts tested, the precision of the estimate increases with the number of captures. We found no effect of different animal movement models on the accuracy and precision of the gREM.We conclude that the gREM provides an effective method to estimate absolute animal densities from remote sensor count data over a range of sensor and animal signal widths. The gREM is applicable for count data obtained in both marine and terrestrial environments, visually or acoustically (e.g. big cats, sharks, birds, echolocating bats and cetaceans). As sensors such as camera traps and acoustic detectors become more ubiquitous, the gREM will be increasingly useful for monitoring unmarked animal populations across broad spatial, temporal and taxonomic scales.
Population estimate of Chinese mystery snail (Bellamya chinensis) in a Nebraska reservoir
Chaine, Noelle M.; Allen, Craig R.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Stephen, Bruce J.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.
2012-01-01
The Chinese mystery snail (Bellamya chinensis) is an aquatic invasive species in North America. Little is known regarding this species' impacts on freshwater ecosystems. It is be lieved that population densities can be high, yet no population estimates have been reported. We utilized a mark-recapture approach to generate a population estimate for Chinese mystery snail in Wild Plum Lake, a 6.47-ha reservoir in southeast Nebraska. We calculated, using bias-adjusted Lincoln-Petersen estimation, that there were approximately 664 adult snails within a 127 m2 transect (5.2 snails/m2). If this density was consistent throughout the littoral zone (<3 m in depth) of the reservoir, then the total adult population in this impoundment is estimated to be 253,570 snails, and the total Chinese mystery snail wet biomass is estimated to be 3,119 kg (643 kg/ha). If this density is confined to the depth sampled in this study (1.46 m), then the adult population is estimated to be 169,400 snails, and wet biomass is estimated to be 2,084 kg (643 kg/ha). Additional research is warranted to further test the utility of mark-recapture methods for aquatic snails and to better understand Chinese mystery snail distributions within reservoirs.
[Spatial analysis of road traffic accidents with fatalities in Spain, 2008-2011].
Gómez-Barroso, Diana; López-Cuadrado, Teresa; Llácer, Alicia; Palmera Suárez, Rocío; Fernández-Cuenca, Rafael
2015-09-01
To estimate the areas of greatest density of road traffic accidents with fatalities at 24 hours per km(2)/year in Spain from 2008 to 2011, using a geographic information system. Accidents were geocodified using the road and kilometer points where they occurred. The average nearest neighbor was calculated to detect possible clusters and to obtain the bandwidth for kernel density estimation. A total of 4775 accidents were analyzed, of which 73.3% occurred on conventional roads. The estimated average distance between accidents was 1,242 meters, and the average expected distance was 10,738 meters. The nearest neighbor index was 0.11, indicating that there were aggregations of accidents in space. A map showing the kernel density was obtained with a resolution of 1 km(2), which identified the areas of highest density. This methodology allowed a better approximation to locating accident risks by taking into account kilometer points. The map shows areas where there was a greater density of accidents. This could be an advantage in decision-making by the relevant authorities. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Greenberg, J. M.
The density of typical comet nuclei is estimated on the basis of published empirical and theoretical density data on meteors. The nuclei are assumed to consist of aggregated interstellar dust (silicate cores with complex organic refractory mantles) as proposed by Greenberg (1982 and 1983) and Van de Bult et al. (1985). The theoretical density (0.5 g/cu cm) of a compact nucleus of this type is contrasted with the observed densities of meteors associated with short-period comets (0.2 g/cu cm) and the Draconids associated with comet Giacobini-Zinner (0.01 g/cu cm), and it is inferred that the original comet debris was less than fully packed. A birdsnest structure comprising elongated crystals and about 60 percent empty space is proposed; its albedo is estimated as about 0.05 (in the range predicted by observations); and it is shown to undergo much less internal heating by the sun than a solid ice nucleus. The mean density of reconstituted cometary matter is found to be in the range 0.54-0.03 g/cu cm, consistent with the estimates (0.1 g/cu cm) of Lin (1966) and Donn (1963).
The multicategory case of the sequential Bayesian pixel selection and estimation procedure
NASA Technical Reports Server (NTRS)
Pore, M. D.; Dennis, T. B. (Principal Investigator)
1980-01-01
A Bayesian technique for stratified proportion estimation and a sampling based on minimizing the mean squared error of this estimator were developed and tested on LANDSAT multispectral scanner data using the beta density function to model the prior distribution in the two-class case. An extention of this procedure to the k-class case is considered. A generalization of the beta function is shown to be a density function for the general case which allows the procedure to be extended.
NASA Astrophysics Data System (ADS)
Hayden, T. G.; Kominz, M. A.; Magens, D.; Niessen, F.
2009-12-01
We have estimated ice thicknesses at the AND-1B core during the Last Glacial Maximum by adapting an existing technique to calculate overburden. As ice thickness at Last Glacial Maximum is unknown in existing ice sheet reconstructions, this analysis provides constraint on model predictions. We analyze the porosity as a function of depth and lithology from measurements taken on the AND-1B core, and compare these results to a global dataset of marine, normally compacted sediments compiled from various legs of ODP and IODP. Using this dataset we are able to estimate the amount of overburden required to compact the sediments to the porosity observed in AND-1B. This analysis is a function of lithology, depth and porosity, and generates estimates ranging from zero to 1,000 meters. These overburden estimates are based on individual lithologies, and are translated into ice thickness estimates by accounting for both sediment and ice densities. To do this we use a simple relationship of Xover * (ρsed/ρice) = Xice; where Xover is the overburden thickness, ρsed is sediment density (calculated from lithology and porosity), ρice is the density of glacial ice (taken as 0.85g/cm3), and Xice is the equalivant ice thickness. The final estimates vary considerably, however the “Best Estimate” behavior of the 2 lithologies most likely to compact consistently is remarkably similar. These lithologies are the clay and silt units (Facies 2a/2b) and the diatomite units (Facies 1a) of AND-1B. These lithologies both produce best estimates of approximately 1,000 meters of ice during Last Glacial Maximum. Additionally, while there is a large range of possible values, no combination of reasonable lithology, compaction, sediment density, or ice density values result in an estimate exceeding 1,900 meters of ice. This analysis only applies to ice thicknesses during Last Glacial Maximum, due to the overprinting effect of Last Glacial Maximum on previous ice advances. Analysis of the AND-2A core is underway, and results will be compared to those of AND-1B.
A photographic technique for estimating egg density of the white pine weevil, Pissodes strobi (Peck)
Roger T. Zerillo
1975-01-01
Compares a photographic technique with visual and dissection techniques for estimating egg density of the white pine weevil, Pissodes strobi (Peck). The relatively high correlations (.67 and .79) between counts from photographs and those obtained by dissection indicate that the non-destructive photographic technique could be a useful tool for...
Estimating forest canopy bulk density using six indirect methods
Robert E. Keane; Elizabeth D. Reinhardt; Joe Scott; Kathy Gray; James Reardon
2005-01-01
Canopy bulk density (CBD) is an important crown characteristic needed to predict crown fire spread, yet it is difficult to measure in the field. Presented here is a comprehensive research effort to evaluate six indirect sampling techniques for estimating CBD. As reference data, detailed crown fuel biomass measurements were taken on each tree within fixed-area plots...
Fagerstone, Kathleen A.; Biggins, Dean E.
1986-01-01
Black-footed ferrets (Mustela nigripes) are dependent on prairie dogs (Cynomys spp.) for food and on their burrows for shelter and rearing young. A stable prairie dog population may therefore be the most important factor determining the survival of ferrets. A rapid method of determining prairie dog density would be useful for assessing prairie dog density in colonies currently occupied by ferrets and for selecting prairie dog colonies in other areas for ferret translocation. This study showed that visual counts can provide a rapid density estimate. Visual counts of white-tailed prairie dogs (Cynomys leucurus) were significantly correlated (r = 0.95) with mark-recapture population density estimates on two study areas near Meeteetse, Wyoming. Suggestions are given for use of visual counts.
Encircling the dark: constraining dark energy via cosmic density in spheres
NASA Astrophysics Data System (ADS)
Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.
2016-08-01
The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.
Surface term effects on mass estimators
NASA Astrophysics Data System (ADS)
Membrado, M.; Pacheco, A. F.
2016-05-01
Context. We propose a way of estimating the mass contained in the volume occupied by a sample of galaxies in a virialized system. Aims: We analyze the influence of surface effects and the contribution of the cosmological constant terms on our mass estimations of galaxy systems. Methods: We propose two equations that contain surface terms to estimate galaxy sample masses. When the surface terms are neglected, these equations provide the so-called virial and projected masses. Both equations lead to a single equation that allows sample masses to be estimated without the need for calculating surface terms. Sample masses for some nearest galaxy groups are estimated and compared with virialized masses determined from turn-around radii and results of a spherical infall model. Results: Surface effects have a considerable effect on the mass estimations of the studied galaxy groups. According to our results, they lead sample masses of some groups to being less than half the virial mass estimations and even less than 10% of projected mass estimations. However, the contributions of cosmological constant terms to mass estimations are smaller than 2% for the majority of the virialized groups studied. Our estimations are in agreement with virialized masses calculated from turn-around radii. Virialized masses for complexes were found to be: (8.9 ± 2.8) × 1011 M⊙ for the Milky Way - M 31; (12.5 ± 2.5) × 1011 M⊙ for M 81 - NGC 2403; (21.5 ± 7.7) × 1011 M⊙. for Cantaurs A - M 83; and (7.9 ± 2.6) × 1011 M⊙. for IC 324 - Maffei. Conclusions: The nearest galaxy groups located inside a sphere of 5 Mpc have been addressed to explore the performance of our mass estimator. We have seen that surface effects make mass estimations of galaxy groups rather smaller than both virial and projected masses. In mass calculations, cosmological constant terms can be neglected; nevertheless, the collapse of cold dark matter leading to virialized structures is strongly affected by the cosmological constant. We have also seen that, if mass density were proportional to luminosity density on different scales in the Universe, the 5 Mpc sphere would have a mean density close to that of the sphere region containing galaxies and systems of galaxies; thus, the rest of the sphere could contain regions of low-mass dark halos with similar mass density. This mass density would be about 4.5 times greater than that of the matter background of the Universe at present.
NASA Astrophysics Data System (ADS)
Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An
2018-05-01
The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.
Predicting Grizzly Bear Density in Western North America
Mowat, Garth; Heard, Douglas C.; Schwarz, Carl J.
2013-01-01
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend. PMID:24367552
The effect of respiratory induced density variations on non-TOF PET quantitation in the lung.
Holman, Beverley F; Cuplov, Vesna; Hutton, Brian F; Groves, Ashley M; Thielemans, Kris
2016-04-21
Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant (18)F-FDG and (18)F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.
Predicting grizzly bear density in western North America.
Mowat, Garth; Heard, Douglas C; Schwarz, Carl J
2013-01-01
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.
The effect of respiratory induced density variations on non-TOF PET quantitation in the lung
NASA Astrophysics Data System (ADS)
Holman, Beverley F.; Cuplov, Vesna; Hutton, Brian F.; Groves, Ashley M.; Thielemans, Kris
2016-04-01
Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18F-FDG and 18F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.
Equivalence of truncated count mixture distributions and mixtures of truncated count distributions.
Böhning, Dankmar; Kuhnert, Ronny
2006-12-01
This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.
Alternative Determination of Density of the Titan Atmosphere
NASA Technical Reports Server (NTRS)
Lee, Allan; Brown, Jay; Feldman, Antonette; Peer, Scott; Wamg. Eric
2009-01-01
An alternative has been developed to direct measurement for determining the density of the atmosphere of the Saturn moon Titan as a function of altitude. The basic idea is to deduce the density versus altitude from telemetric data indicative of the effects of aerodynamic torques on the attitude of the Cassini Saturn orbiter spacecraft as it flies past Titan at various altitudes. The Cassini onboard attitude-control software includes a component that can estimate three external per-axis torques exerted on the spacecraft. These estimates are available via telemetry.
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1977-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
Optimal estimation for discrete time jump processes
NASA Technical Reports Server (NTRS)
Vaca, M. V.; Tretter, S. A.
1978-01-01
Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.
Araz, Omer; Aydin, Mehmet Dumlu; Gundogdu, Betul; Altas, Ender; Cakir, Murteza; Calikoglu, Cagatay; Atalay, Canan; Gundogdu, Cemal
2015-01-01
Pulmonary arteries are mainly innervated by sympathetic vasoconstrictor and parasympathetic vasodilatory fibers. We examined whether there is a relationship between the neuron densities of hilar parasympathetic ganglia and pulmonary vasospasm in subarachnoid hemorrhage (SAH). Twenty-four rabbits were divided into two groups: control (n=8) and SAH (n=16). The animals were observed for 20 days following experimental SAH. The number of hilar parasympathetic ganglia and their neuron densities were determined. Proportion of pulmonary artery ring surface to lumen surface values was accepted as vasospasm index (VSI). Neuron densities of the hilar ganglia and VSI values were compared statistically. Animals in the SAH group experienced either mild (n=6) or severe (n=10) pulmonary artery vasospasm. In the control group, the mean VSI of pulmonary arteries was 0.777±0.048 and the hilar ganglion neuron density was estimated as 12.100±2.010/mm < sup > 3 < /sup > . In SAH animals with mild vasospasm, VSI=1.148±0.090 and neuron density was estimated as 10.110±1.430/mm < sup > 3 < /sup > ; in animals with severe vasospasm, VSI=1.500±0.120 and neuron density was estimated as 7.340±990/mm < sup > 3 < /sup > . There was an inverse correlation between quantity and neuron density of hilar ganglia and vasospasm index value. The low numbers and low density of hilar parasympathetic ganglia may be responsible for the more severe artery vasospasm in SAH.
Cummings, Steven R; Karpf, David B; Harris, Fran; Genant, Harry K; Ensrud, Kristine; LaCroix, Andrea Z; Black, Dennis M
2002-03-01
To estimate how much the improvement in bone mass accounts for the reduction in risk of vertebral fracture that has been observed in randomized trials of antiresorptive treatments for osteoporosis. After a systematic search, we conducted a meta-analysis of 12 trials to describe the relation between improvement in spine bone mineral density and reduction in risk of vertebral fracture in postmenopausal women. We also used logistic models to estimate the proportion of the reduction in risk of vertebral fracture observed with alendronate in the Fracture Intervention Trial that was due to improvement in bone mineral density. Across the 12 trials, a 1% improvement in spine bone mineral density was associated with a 0.03 decrease (95% confidence interval [CI]: 0.02 to 0.05) in the relative risk (RR) of vertebral fracture. The reductions in risk were greater than predicted from improvement in bone mineral density; for example, the model estimated that treatments predicted to reduce fracture risk by 20% (RR = 0.80), based on improvement in bone mineral density, actually reduce the risk of fracture by about 45% (RR = 0.55). In the Fracture Intervention Trial, improvement in spine bone mineral density explained 16% (95% CI: 11% to 27%) of the reduction in the risk of vertebral fracture with alendronate. Improvement in spine bone mineral density during treatment with antiresorptive drugs accounts for a predictable but small part of the observed reduction in the risk of vertebral fracture.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Smyth, E.; Small, E. E.
2017-12-01
The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, S; Tianjin University, Tianjin; Hara, W
Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less
Development of a phantom to test fully automated breast density software - A work in progress.
Waade, G G; Hofvind, S; Thompson, J D; Highnam, R; Hogg, P
2017-02-01
Mammographic density (MD) is an independent risk factor for breast cancer and may have a future role for stratified screening. Automated software can estimate MD but the relationship between breast thickness reduction and MD is not fully understood. Our aim is to develop a deformable breast phantom to assess automated density software and the impact of breast thickness reduction on MD. Several different configurations of poly vinyl alcohol (PVAL) phantoms were created. Three methods were used to estimate their density. Raw image data of mammographic images were processed using Volpara to estimate volumetric breast density (VBD%); Hounsfield units (HU) were measured on CT images; and physical density (g/cm 3 ) was calculated using a formula involving mass and volume. Phantom volume versus contact area and phantom volume versus phantom thickness was compared to values of real breasts. Volpara recognized all deformable phantoms as female breasts. However, reducing the phantom thickness caused a change in phantom density and the phantoms were not able to tolerate same level of compression and thickness reduction experienced by female breasts during mammography. Our results are promising as all phantoms resulted in valid data for automated breast density measurement. Further work should be conducted on PVAL and other materials to produce deformable phantoms that mimic female breast structure and density with the ability of being compressed to the same level as female breasts. We are the first group to have produced deformable phantoms that are recognized as breasts by Volpara software. Copyright © 2016 The College of Radiographers. All rights reserved.
NASA Astrophysics Data System (ADS)
Calabia, Andres; Jin, Shuanggen
2017-02-01
The thermospheric mass density variations and the thermosphere-ionosphere coupling during geomagnetic storms are not clear due to lack of observables and large uncertainty in the models. Although accelerometers on-board Low-Orbit-Earth (LEO) satellites can measure non-gravitational accelerations and derive thermospheric mass density variations with unprecedented details, their measurements are not always available (e.g., for the March 2013 geomagnetic storm). In order to cover accelerometer data gaps of Gravity Recovery and Climate Experiment (GRACE), we estimate thermospheric mass densities from numerical derivation of GRACE determined precise orbit ephemeris (POE) for the period 2011-2016. Our results show good correlation with accelerometer-based mass densities, and a better estimation than the NRLMSISE00 empirical model. Furthermore, we statistically analyze the differences to accelerometer-based densities, and study the March 2013 geomagnetic storm response. The thermospheric density enhancements at the polar regions on 17 March 2013 are clearly represented by POE-based measurements. Although our results show density variations better correlate with Dst and k-derived geomagnetic indices, the auroral electroject activity index AE as well as the merging electric field Em picture better agreement at high latitude for the March 2013 geomagnetic storm. On the other side, low-latitude variations are better represented with the Dst index. With the increasing resolution and accuracy of Precise Orbit Determination (POD) products and LEO satellites, the straightforward technique of determining non-gravitational accelerations and thermospheric mass densities through numerical differentiation of POE promises potentially good applications for the upper atmosphere research community.
Smart-Phone Based Magnetic Levitation for Measuring Densities
Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur
2015-01-01
Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform. PMID:26308615
Smart-Phone Based Magnetic Levitation for Measuring Densities.
Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur; Ghiran, Ionita Calin; Tasoglu, Savas
2015-01-01
Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform.
Dietary niche variation and its relationship to lizard population density.
Novosolov, Maria; Rodda, Gordon H; Gainsbury, Alison M; Meiri, Shai
2018-01-01
Insular species are predicted to broaden their niches, in response to having fewer competitors. They can thus exploit a greater proportion of the resource spectrum. In turn, broader niches are hypothesized to facilitate (or be a consequence of) increased population densities. We tested whether insular lizards have broader dietary niches than mainland species, how it relates to competitor and predator richness, and the nature of the relationship between population density and dietary niche breadth. We collected population density and dietary niche breadth data for 36 insular and 59 mainland lizard species, and estimated competitor and predator richness at the localities where diet data were collected. We estimated dietary niche shift by comparing island species to their mainland relatives. We controlled for phylogenetic relatedness, body mass and the size of the plots over which densities were estimated. We found that island and mainland species had similar niche breadths. Dietary niche breadth was unrelated to competitor and predator richness, on both islands and the mainland. Population density was unrelated to dietary niche breadth across island and mainland populations. Our results indicate that dietary generalism is not an effective way of increasing population density nor is it result of lower competitive pressure. A lower variety of resources on islands may prevent insular animals from increasing their niche breadths even in the face of few competitors. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Cavity turnover and equilibrium cavity densities in a cottonwood bottomland
Sedgwick, James A.; Knopf, Fritz L.
1992-01-01
A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.
The relative density of forests in the United States
Christopher W. Woodall; Charles H. Perry; Patrick D. Miles
2006-01-01
A relative stand density assessment technique, using the mean specific gravity of all trees in a stand to predict its maximum stand density index (SDI) and subsequently its relative stand density (current SDI divided by maximum SDI), was used to estimate the relative density of forests across the United States using a national-scale forest inventory. Live tree biomass...
Use of burrow entrances to indicate densities of Townsend's ground squirrels
Van Horne, Beatrice; Schooley, Robert L.; Knick, Steven T.; Olson, G.S.; Burnham, K.P.
1997-01-01
Counts of burrow entrances have been positively correlated with densities of semi-fossorial rodents and used as an index of densities. We evaluated their effectiveness in indexing densities of Townsend's ground squirrels (Spermophilus townsendii) in the Snake River Birds of Prey National Conservation Area (SRBOPNCA), Idaho, by comparing burrow entrance densities to densities of ground squirrels estimated from livetrapping in 2 consecutive years over which squirrel populations declined by >75%. We did not detect a consistent relation between burrow entrance counts and ground squirrel density estimates within or among habitat types. Scatter plots indicated that burrow entrances had little predictive power at intermediate densities. Burrow entrance counts did not reflect the magnitude of a between-year density decline. Repeated counts of entrances late in the squirrels' active season varied in a manner that would be difficult to use for calibration of transects sampled only once during this period. Annual persistence of burrow entrances varied between habitats. Trained observers were inconsistent in assigning active-inactive status to entrances. We recommend that burrow entrance counts not be used as measures or indices of ground squirrel densities in shrubsteppe habitats, and that the method be verified thoroughly before being used in other habitats.
Possibilities for Estimating Horizontal Electrical Currents in Active Regions on the Sun
NASA Astrophysics Data System (ADS)
Fursyak, Yu. A.; Abramenko, V. I.
2017-12-01
Part of the "free" magnetic energy associated with electrical current systems in the active region (AR) is released during solar flares. This proposition is widely accepted and it has stimulated interest in detecting electrical currents in active regions. The vertical component of an electric current in the photosphere can be found by observing the transverse magnetic field. At present, however, there are no direct methods for calculating transverse electric currents based on these observations. These calculations require information on the field vector measured simultaneously at several levels in the photosphere, which has not yet been done with solar instrumentation. In this paper we examine an approach to calculating the structure of the square of the density of a transverse electrical current based on a magnetogram of the vertical component of the magnetic field in the AR. Data obtained with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) for the AR of NOAA AR 11283 are used. It is shown that (1) the observed variations in the magnetic field of a sunspot and the proposed estimate of the density of an annular horizontal current around the spot are consistent with Faraday's law and (2) the resulting estimates of the magnitude of the square of the density of the horizontal current {j}_{\\perp}^2 = (0.002- 0.004) A2/m4 are consistent with previously obtained values of the density of a vertical current in the photosphere. Thus, the proposed estimate is physically significant and this method can be used to estimate the density and structure of transverse electrical currents in the photosphere.
Use of spatial capture-recapture modeling and DNA data to estimate densities of elusive animals
Kery, Marc; Gardner, Beth; Stoeckle, Tabea; Weber, Darius; Royle, J. Andrew
2011-01-01
Assessment of abundance, survival, recruitment rates, and density (i.e., population assessment) is especially challenging for elusive species most in need of protection (e.g., rare carnivores). Individual identification methods, such as DNA sampling, provide ways of studying such species efficiently and noninvasively. Additionally, statistical methods that correct for undetected animals and account for locations where animals are captured are available to efficiently estimate density and other demographic parameters. We collected hair samples of European wildcat (Felis silvestris) from cheek-rub lure sticks, extracted DNA from the samples, and identified each animals' genotype. To estimate the density of wildcats, we used Bayesian inference in a spatial capture-recapture model. We used WinBUGS to fit a model that accounted for differences in detection probability among individuals and seasons and between two lure arrays. We detected 21 individual wildcats (including possible hybrids) 47 times. Wildcat density was estimated at 0.29/km2 (SE 0.06), and 95% of the activity of wildcats was estimated to occur within 1.83 km from their home-range center. Lures located systematically were associated with a greater number of detections than lures placed in a cell on the basis of expert opinion. Detection probability of individual cats was greatest in late March. Our model is a generalized linear mixed model; hence, it can be easily extended, for instance, to incorporate trap- and individual-level covariates. We believe that the combined use of noninvasive sampling techniques and spatial capture-recapture models will improve population assessments, especially for rare and elusive animals.
Simcharoen, S.; Pattanavibool, A.; Karanth, K.U.; Nichols, J.D.; Kumar, N.S.
2007-01-01
We used capture-recapture analyses to estimate the density of a tiger Panthera tigris population in the tropical forests of Huai Kha Khaeng Wildlife Sanctuary, Thailand, from photographic capture histories of 15 distinct individuals. The closure test results (z = 0.39, P = 0.65) provided some evidence in support of the demographic closure assumption. Fit of eight plausible closed models to the data indicated more support for model Mh, which incorporates individual heterogeneity in capture probabilities. This model generated an average capture probability $\\hat p$ = 0.42 and an abundance estimate of $\\widehat{N}(\\widehat{SE}[\\widehat{N}])$ = 19 (9.65) tigers. The sampled area of $\\widehat{A}(W)(\\widehat{SE}[\\widehat{A}(W)])$ = 477.2 (58.24) km2 yielded a density estimate of $\\widehat{D}(\\widehat{SE}[\\widehat{D}])$ = 3.98 (0.51) tigers per 100 km2. Huai Kha Khaeng Wildlife Sanctuary could therefore hold 113 tigers and the entire Western Forest Complex c. 720 tigers. Although based on field protocols that constrained us to use sub-optimal analyses, this estimated tiger density is comparable to tiger densities in Indian reserves that support moderate prey abundances. However, tiger densities in well-protected Indian reserves with high prey abundances are three times higher. If given adequate protection we believe that the Western Forest Complex of Thailand could potentially harbour >2,000 wild tigers, highlighting its importance for global tiger conservation. The monitoring approaches we recommend here would be useful for managing this tiger population.
Tagliafico, A S; Tagliafico, G; Cavagnetto, F; Calabrese, M; Houssami, N
2013-11-01
To compare breast density estimated from two-dimensional full-field digital mammography (2D FFDM) and from digital breast tomosynthesis (DBT) according to different Breast Imaging-Reporting and Data System (BI-RADS) categories, using automated software. Institutional review board approval and written informed patient consent were obtained. DBT and 2D FFDM were performed in the same patients to allow within-patient comparison. A total of 160 consecutive patients (mean age: 50±14 years; mean body mass index: 22±3) were included to create paired data sets of 40 patients for each BI-RADS category. Automatic software (MedDensity(©), developed by Giulio Tagliafico) was used to compare the percentage breast density between DBT and 2D FFDM. The estimated breast percentage density obtained using DBT and 2D FFDM was examined for correlation with the radiologists' visual BI-RADS density classification. The 2D FFDM differed from DBT by 16.0% in BI-RADS Category 1, by 11.9% in Category 2, by 3.5% in Category 3 and by 18.1% in Category 4. These differences were highly significant (p<0.0001). There was a good correlation between the BI-RADS categories and the density evaluated using 2D FFDM and DBT (r=0.56, p<0.01 and r=0.48, p<0.01, respectively). Using DBT, breast density values were lower than those obtained using 2D FFDM, with a non-linear relationship across the BI-RADS categories. These data are relevant for clinical practice and research studies using density in determining the risk. On DBT, breast density values were lower than with 2D FFDM, with a non-linear relationship across the classical BI-RADS categories.
Norris, Jennifer L.; Chamberlain, Michael J.; Twedt, Daniel J.
2009-01-01
Effects of silvicultural activities on birds are of increasing interest because of documented national declines in breeding bird populations for some species and the potential that these declines are in part due to changes in forest habitat. Silviculturally induced disturbances have been advocated as a means to achieve suitable forest conditions for priority wildlife species in bottomland hardwood forests. We evaluated how silvicultural activities on conservation lands in bottomland hardwood forests of Louisiana, USA, influenced species-specific densities of breeding birds. Our data were from independent studies, which used standardized point-count surveys for breeding birds in 124 bottomland hardwood forest stands on 12 management areas. We used Program DISTANCE 5.0, Release 2.0 (Thomas et al. 2006) to estimate density for 43 species with > 50 detections. For 36 of those species we compared density estimates among harvest regimes (individual selection, group selection, extensive harvest, and no harvest). We observed 10 species with similar densities in those harvest regimes compared with densities in stands not harvested. However, we observed 10 species that were negatively impacted by harvest with greater densities in stands not harvested, 9 species with greater densities in individual selection stands, 4 species with greater densities in group selection stands, and 4 species with greater densities in stands receiving an extensive harvest (e.g., > 40% canopy removal). Differences in intensity of harvest influenced densities of breeding birds. Moreover, community-wide avian conservation values of stands subjected to individual and group selection, and stands not harvested, were similar to each other and greater than that of stands subjected to extensive harvest that removed > 40% canopy cover. These results have implications for managers estimating breeding bird populations, in addition to predicting changes in bird communities as a result of prescribed and future forest management practices.
Historical US Census population data was used to estimate population density for 1930-2000 and satellite imagery from circa 1973, 1992, and 2001 was used to estimate the degree of urban development and the percent imperviousness (for 1992 and 2001) for a set of 150 small (< 13...
Estimating snowpack density from Albedo measurement
James L. Smith; Howard G. Halverson
1979-01-01
Snow is a major source of water in Western United States. Data on snow depth and average snowpack density are used in mathematical models to predict water supply. In California, about 75 percent of the snow survey sites above 2750-meter elevation now used to collect data are in statutory wilderness areas. There is need for a method of estimating the water content of a...
Forecasting outbreaks of the Douglas-fir tussock moth from lower crown cocoon samples.
Richard R. Mason; Donald W. Scott; H. Gene Paul
1993-01-01
A predictive technique using a simple linear regression was developed to forecast the midcrown density of small tussock moth larvae from estimates of cocoon density in the previous generation. The regression estimator was derived from field samples of cocoons and larvae taken from a wide range of nonoutbreak tussock moth populations. The accuracy of the predictions was...
Use of the densiometer to estimate density of forest canopy on permanent sample plots.
Gerald S. Strickler
1959-01-01
An instrument known as the spherical densiometer has been found adaptable to permanent-plot estimates of relative canopy closure or density in forest and range ecological studies. The device is more compact and simpler to use than previous ocular-type instruments. Because the instrument has a curved reflecting surface which results in observations from lateral as well...
Lodgepole pine bole wood density 1 and 11 years after felling in central Montana
Duncan C. Lutes; Colin C. Hardy
2013-01-01
Estimates of large dead and down woody material biomass are used for evaluating ecological processes and making ecological assessments, such as for nutrient cycling, wildlife habitat, fire effects, and climate change science. Many methods are used to assess the abundance (volume) of woody material, which ultimately require an estimate of wood density to convert volume...
David M. Bell; Eric J. Ward; A. Christopher Oishi; Ram Oren; Paul G. Flikkema; James S. Clark; David Whitehead
2015-01-01
Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as...
NASA Astrophysics Data System (ADS)
Blossfeld, M.; Schmidt, M.; Erdogan, E.
2016-12-01
The thermospheric neutral density plays a crucial role within the equation of motion of Earth orbiting objects since drag, lift or side forces are one of the largest non-gravitational perturbations acting on the satellite. Precise Orbit Determination (POD) methods can be used to estimate thermospheric density variations from measured orbit determinations. One method which provides highly accurate measurements of the satellite position is Satellite Laser Ranging (SLR). Within the POD process, scaling factors are estimated frequently. These scaling factors can be either used for the scaling of the so called satellite-specific drag (ballistic) coefficients or the integrated thermospheric neutral density. We present a method for analytically model the drag coefficient based on a couple of physical assumptions and key parameters. In this paper, we investigate the possibility to use SLR observations to the very low Earth orbiting satellite ANDE-Pollux (approximately at 350km altitude) to determine scaling factors for different a priori thermospheric density models. We perform a POD for ANDE-Pollux covering 49 days between August 2009 and September 2009 which means the time span containing the largest number of observations during the short lifetime of the satellite. Finally, we compare the obtained scaled thermospheric densities w.r.t. each other
Non-Gaussian probabilistic MEG source localisation based on kernel density estimation☆
Mohseni, Hamid R.; Kringelbach, Morten L.; Woolrich, Mark W.; Baker, Adam; Aziz, Tipu Z.; Probert-Smith, Penny
2014-01-01
There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-Gaussian distribution. However, existing standard methods for source localisation model the data using only second order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case of Gaussian measurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation approach is shown to give better spatial estimates than the LCMV beamformer, both in simulations incorporating non-Gaussian signals, and in real MEG measurements of auditory and visual evoked responses, where the highly correlated sources are known to be difficult to estimate. PMID:24055702
ESTIMATING IMPERVIOUS COVER FROM REGIONALLY AVAILABLE DATA
The objective of this study is to compare and evaluate the reliability of different approaches for estimating impervious cover including three empirical formulations for estimating impervious cover from population density data, estimation from categorized land cover data, and to ...
Density and Reproductive Success of California Towhees
Kathryn L. Purcell; Jared Verner
1998-01-01
Models of habitat selection commonly asume that higher-quality source habitats will be occupied at higher densities than sink habitats. We examined an apparent sink habitat for California Towhees (Pipilo crissalis) in which densities are greater than in nearby source habitats. We estimated territory density using spot-mapping and monitored nests of towhees in grazed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawase, Kazumasa; Uehara, Yasushi; Teramoto, Akinobu
Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) were treated with oxygen radical oxidation using Ar/O{sub 2} plasma excited by microwave. The mass density depth profiles, carrier trap densities, and current-voltage characteristics of the radical-oxidized CVD-SiO{sub 2} films were investigated. The mass density depth profiles were estimated with x ray reflectivity measurement using synchrotron radiation of SPring-8. The carrier trap densities were estimated with x ray photoelectron spectroscopy time-dependent measurement. The mass densities of the radical-oxidized CVD-SiO{sub 2} films were increased near the SiO{sub 2} surface. The densities of the carrier trap centers in these films weremore » decreased. The leakage currents of the metal-oxide-semiconductor capacitors fabricated by using these films were reduced. It is probable that the insulation properties of the CVD-SiO{sub 2} film are improved by the increase in the mass density and the decrease in the carrier trap density caused by the restoration of the Si-O network with the radical oxidation.« less
Electronic polarizability of light crude oil from optical and dielectric studies
NASA Astrophysics Data System (ADS)
George, A. K.; Singh, R. N.
2017-07-01
In the present paper we report the temperature dependence of density, refractive indices and dielectric constant of three samples of crude oils. The API gravity number estimated from the temperature dependent density studies revealed that the three samples fall in the category of light oil. The measured data of refractive index and the density are used to evaluate the polarizability of these fluids. Molar refractive index and the molar volume are evaluated through Lorentz-Lorenz equation. The function of the refractive index, FRI , divided by the mass density ρ, is a constant approximately equal to one-third and is invariant with temperature for all the samples. The measured values of the dielectric constant decrease linearly with increasing temperature for all the samples. The dielectric constant estimated from the refractive index measurements using Lorentz-Lorentz equation agrees well with the measured values. The results are promising since all the three measured properties complement each other and offer a simple and reliable method for estimating crude oil properties, in the absence of sufficient data.
Phase diagram and universality of the Lennard-Jones gas-liquid system.
Watanabe, Hiroshi; Ito, Nobuyasu; Hu, Chin-Kun
2012-05-28
The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class.
Sutherland, Chris; Royle, Andy
2016-01-01
This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).
Estimating abundance: Chapter 27
Royle, J. Andrew
2016-01-01
This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Brad M.; Nathan, Diane L.; Wang Yan
Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') andmore » vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r= 0.82, p < 0.001) and processed (r= 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r= 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's {kappa}{>=} 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.« less
Keller, Brad M.; Nathan, Diane L.; Wang, Yan; Zheng, Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina
2012-01-01
Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies. PMID:22894417
Keller, Brad M; Nathan, Diane L; Wang, Yan; Zheng, Yuanjie; Gee, James C; Conant, Emily F; Kontos, Despina
2012-08-01
The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., "FOR PROCESSING") and vendor postprocessed (i.e., "FOR PRESENTATION"), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.
Improving Frozen Precipitation Density Estimation in Land Surface Modeling
NASA Astrophysics Data System (ADS)
Sparrow, K.; Fall, G. M.
2017-12-01
The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in model derived estimates and GHCN-D observations were assessed using time-series graphs of 2016-2017 winter season SLR observations and climatological estimates, as well as calculating RMSE and variance between estimated and observed values.
Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations
NASA Astrophysics Data System (ADS)
Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik
2009-04-01
Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.
Jiang, Shenghang; Park, Seongjin; Challapalli, Sai Divya; Fei, Jingyi; Wang, Yong
2017-01-01
We report a robust nonparametric descriptor, J′(r), for quantifying the density of clustering molecules in single-molecule localization microscopy. J′(r), based on nearest neighbor distribution functions, does not require any parameter as an input for analyzing point patterns. We show that J′(r) displays a valley shape in the presence of clusters of molecules, and the characteristics of the valley reliably report the clustering features in the data. Most importantly, the position of the J′(r) valley (rJm′) depends exclusively on the density of clustering molecules (ρc). Therefore, it is ideal for direct estimation of the clustering density of molecules in single-molecule localization microscopy. As an example, this descriptor was applied to estimate the clustering density of ptsG mRNA in E. coli bacteria. PMID:28636661
A geographic analysis of population density thresholds in the influenza pandemic of 1918-19.
Chandra, Siddharth; Kassens-Noor, Eva; Kuljanin, Goran; Vertalka, Joshua
2013-02-20
Geographic variables play an important role in the study of epidemics. The role of one such variable, population density, in the spread of influenza is controversial. Prior studies have tested for such a role using arbitrary thresholds for population density above or below which places are hypothesized to have higher or lower mortality. The results of such studies are mixed. The objective of this study is to estimate, rather than assume, a threshold level of population density that separates low-density regions from high-density regions on the basis of population loss during an influenza pandemic. We study the case of the influenza pandemic of 1918-19 in India, where over 15 million people died in the short span of less than one year. Using data from six censuses for 199 districts of India (n=1194), the country with the largest number of deaths from the influenza of 1918-19, we use a sample-splitting method embedded within a population growth model that explicitly quantifies population loss from the pandemic to estimate a threshold level of population density that separates low-density districts from high-density districts. The results demonstrate a threshold level of population density of 175 people per square mile. A concurrent finding is that districts on the low side of the threshold experienced rates of population loss (3.72%) that were lower than districts on the high side of the threshold (4.69%). This paper introduces a useful analytic tool to the health geographic literature. It illustrates an application of the tool to demonstrate that it can be useful for pandemic awareness and preparedness efforts. Specifically, it estimates a level of population density above which policies to socially distance, redistribute or quarantine populations are likely to be more effective than they are for areas with population densities that lie below the threshold.
A geographic analysis of population density thresholds in the influenza pandemic of 1918–19
2013-01-01
Background Geographic variables play an important role in the study of epidemics. The role of one such variable, population density, in the spread of influenza is controversial. Prior studies have tested for such a role using arbitrary thresholds for population density above or below which places are hypothesized to have higher or lower mortality. The results of such studies are mixed. The objective of this study is to estimate, rather than assume, a threshold level of population density that separates low-density regions from high-density regions on the basis of population loss during an influenza pandemic. We study the case of the influenza pandemic of 1918–19 in India, where over 15 million people died in the short span of less than one year. Methods Using data from six censuses for 199 districts of India (n=1194), the country with the largest number of deaths from the influenza of 1918–19, we use a sample-splitting method embedded within a population growth model that explicitly quantifies population loss from the pandemic to estimate a threshold level of population density that separates low-density districts from high-density districts. Results The results demonstrate a threshold level of population density of 175 people per square mile. A concurrent finding is that districts on the low side of the threshold experienced rates of population loss (3.72%) that were lower than districts on the high side of the threshold (4.69%). Conclusions This paper introduces a useful analytic tool to the health geographic literature. It illustrates an application of the tool to demonstrate that it can be useful for pandemic awareness and preparedness efforts. Specifically, it estimates a level of population density above which policies to socially distance, redistribute or quarantine populations are likely to be more effective than they are for areas with population densities that lie below the threshold. PMID:23425498
Density scaling on n = 1 error field penetration in ohmically heated discharges in EAST
NASA Astrophysics Data System (ADS)
Wang, Hui-Hui; Sun, You-Wen; Shi, Tong-Hui; Zang, Qing; Liu, Yue-Qiang; Yang, Xu; Gu, Shuai; He, Kai-Yang; Gu, Xiang; Qian, Jin-Ping; Shen, Biao; Luo, Zheng-Ping; Chu, Nan; Jia, Man-Ni; Sheng, Zhi-Cai; Liu, Hai-Qing; Gong, Xian-Zu; Wan, Bao-Nian; Contributors, EAST
2018-05-01
Density scaling of error field penetration in EAST is investigated with different n = 1 magnetic perturbation coil configurations in ohmically heated discharges. The density scalings of error field penetration thresholds under two magnetic perturbation spectra are br\\propto n_e0.5 and br\\propto n_e0.6 , where b r is the error field and n e is the line averaged electron density. One difficulty in understanding the density scaling is that key parameters other than density in determining the field penetration process may also be changed when the plasma density changes. Therefore, they should be determined from experiments. The estimated theoretical analysis (br\\propto n_e0.54 in lower density region and br\\propto n_e0.40 in higher density region), using the density dependence of viscosity diffusion time, electron temperature and mode frequency measured from the experiments, is consistent with the observed scaling. One of the key points to reproduce the observed scaling in EAST is that the viscosity diffusion time estimated from energy confinement time is almost constant. It means that the plasma confinement lies in saturation ohmic confinement regime rather than the linear Neo-Alcator regime causing weak density dependence in the previous theoretical studies.
On the mean radiative efficiency of accreting massive black holes in AGNs and QSOs
NASA Astrophysics Data System (ADS)
Zhang, XiaoXia; Lu, YouJun
2017-10-01
Radiative efficiency is an important physical parameter that describes the fraction of accretion material converted to radiative energy for accretion onto massive black holes (MBHs). With the simplest Sołtan argument, the radiative efficiency of MBHs can be estimated by matching the mass density of MBHs in the local universe to the accreted mass density by MBHs during AGN/QSO phases. In this paper, we estimate the local MBH mass density through a combination of various determinations of the correlations between the masses of MBHs and the properties of MBH host galaxies, with the distribution functions of those galaxy properties. We also estimate the total energy density radiated by AGNs and QSOs by using various AGN/QSO X-ray luminosity functions in the literature. We then obtain several hundred estimates of the mean radiative efficiency of AGNs/QSOs. Under the assumption that those estimates are independent of each other and free of systematic effects, we apply the median statistics as described by Gott et al. and find the mean radiative efficiency of AGNs/QSOs is ɛ = 0.105 -0.008 +0.006 , which is consistent with the canonical value 0.1. Considering that about 20% Compton-thick objects may be missed from current available X-ray surveys, the true mean radiative efficiency may be actually 0.12.
Spread of Epidemic on Complex Networks Under Voluntary Vaccination Mechanism
NASA Astrophysics Data System (ADS)
Xue, Shengjun; Ruan, Feng; Yin, Chuanyang; Zhang, Haifeng; Wang, Binghong
Under the assumption that the decision of vaccination is a voluntary behavior, in this paper, we use two forms of risk functions to characterize how susceptible individuals estimate the perceived risk of infection. One is uniform case, where each susceptible individual estimates the perceived risk of infection only based on the density of infection at each time step, so the risk function is only a function of the density of infection; another is preferential case, where each susceptible individual estimates the perceived risk of infection not only based on the density of infection but only related to its own activities/immediate neighbors (in network terminology, the activity or the number of immediate neighbors is the degree of node), so the risk function is a function of the density of infection and the degree of individuals. By investigating two different ways of estimating the risk of infection for susceptible individuals on complex network, we find that, for the preferential case, the spread of epidemic can be effectively controlled; yet, for the uniform case, voluntary vaccination mechanism is almost invalid in controlling the spread of epidemic on networks. Furthermore, given the temporality of some vaccines, the waves of epidemic for two cases are also different. Therefore, our work insight that the way of estimating the perceived risk of infection determines the decision on vaccination options, and then determines the success or failure of control strategy.
Ferret, Yann; Caillault, Aurélie; Sebda, Shéhérazade; Duez, Marc; Grardel, Nathalie; Duployez, Nicolas; Villenet, Céline; Figeac, Martin; Preudhomme, Claude; Salson, Mikaël; Giraud, Mathieu
2016-05-01
High-throughput sequencing (HTS) is considered a technical revolution that has improved our knowledge of lymphoid and autoimmune diseases, changing our approach to leukaemia both at diagnosis and during follow-up. As part of an immunoglobulin/T cell receptor-based minimal residual disease (MRD) assessment of acute lymphoblastic leukaemia patients, we assessed the performance and feasibility of the replacement of the first steps of the approach based on DNA isolation and Sanger sequencing, using a HTS protocol combined with bioinformatics analysis and visualization using the Vidjil software. We prospectively analysed the diagnostic and relapse samples of 34 paediatric patients, thus identifying 125 leukaemic clones with recombinations on multiple loci (TRG, TRD, IGH and IGK), including Dd2/Dd3 and Intron/KDE rearrangements. Sequencing failures were halved (14% vs. 34%, P = 0.0007), enabling more patients to be monitored. Furthermore, more markers per patient could be monitored, reducing the probability of false negative MRD results. The whole analysis, from sample receipt to clinical validation, was shorter than our current diagnostic protocol, with equal resources. V(D)J recombination was successfully assigned by the software, even for unusual recombinations. This study emphasizes the progress that HTS with adapted bioinformatics tools can bring to the diagnosis of leukaemia patients. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zona, Robert; Solar, Sonja
2003-02-01
The gamma-radiation-induced degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in aerated (A) and in during irradiation air saturated (AS) solutions. Whereas the decomposition rates were not influenced by AS, chloride elimination, detoxification as well as mineralization were significantly enhanced. In the range 50-500 μmol dm -3 2,4-D, degradation showed proportionality to concentration, while chloride formation was successively retarded. The ratios of the pseudo first-order rate constants for degradation and chloride formation, kde/ kCl, increase in AS solutions from 1.4 (50 μmol dm -3) to 2.7 (500 μmol dm -3) and in A solutions from 1.4 to 3.3. In AS for total chloride release 0.7 kGy (50 μmol dm -3) to 10 kGy (500 μmol dm -3) were required, the reduction of organic carbon at 10 kGy was 95% (50 μmol dm -3) and 50% (500 μmol dm -3). Increase and decrease of toxicity during irradiation correlated well with formation and degradation of intermediate phenolic products. The doses for detoxification corresponded to those of total dehalogenation. The oxygen uptake was ˜1.1 ppm 100 Gy -1. The presence of the inorganic components of Vienna drinking water affect the degradation parameters insignificantly.
NASA Technical Reports Server (NTRS)
Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.
1995-01-01
To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are unaffected by height and weight and are more strongly associated with vertebral fracture than standard PA BMD or BMC, or estimates of volumetric density that are solely based on PA DXA scans.
The Baryonic and Dark Matter Distributions in Abell 401
NASA Astrophysics Data System (ADS)
Nevalainen, J.; Markevitch, M.; Forman, W.
1999-11-01
We combine spatially resolved ASCA temperature data with ROSAT imaging data to constrain the total mass distribution in the cluster A401, assuming that the cluster is in hydrostatic equilibrium, but without the assumption of gas isothermality. We obtain a total mass within the X-ray core (290 h-150 kpc) of 1.2+0.1-0.5×1014 h-150 Msolar at the 90% confidence level, 1.3 times larger than the isothermal estimate. The total mass within r500 (1.7 h-150 Mpc) is M500=0.9+0.3-0.2×1015 h-150 Msolar at 90% confidence, in agreement with the optical virial mass estimate, and 1.2 times smaller than the isothermal estimate. Our M500 value is 1.7 times smaller than that estimated using the mass-temperature scaling law predicted by simulations. The best-fit dark matter density profile scales as r-3.1 at large radii, which is consistent with the Navarro, Frenk & White (NFW) ``universal profile'' as well as the King profile of the galaxy density in A401. From the imaging data, the gas density profile is shallower than the dark matter profile, scaling as r-2.1 at large radii, leading to a monotonically increasing gas mass fraction with radius. Within r500 the gas mass fraction reaches a value of fgas=0.21+0.06-0.05 h-3/250 (90% confidence errors). Assuming that fgas (plus an estimate of the stellar mass) is the universal value of the baryon fraction, we estimate the 90% confidence upper limit of the cosmological matter density to be Ωm<0.31, in conflict with an Einstein-deSitter universe. Even though the NFW dark matter density profile is statistically consistent with the temperature data, its central temperature cusp would lead to convective instability at the center, because the gas density does not have a corresponding peak. One way to reconcile a cusp-shaped total mass profile with the observed gas density profile, regardless of the temperature data, is to introduce a significant nonthermal pressure in the center. Such a pressure must satisfy the hydrostatic equilibrium condition without inducing turbulence. Alternately, significant mass drop-out from the cooling flow would make the temperature less peaked and the NFW profile acceptable. However, the quality of data is not adequate to test this possibility.
NASA Astrophysics Data System (ADS)
Webb, S. I.; Tudge, J.; Tobin, H. J.
2013-12-01
Integrated Ocean Drilling Program (IODP) Expedition 338, the most recently completed drilling stage of the NanTroSEIZE project, targeted the Miocene inner accretionary prism off the coast of southwest Japan. NanTroSEIZE is a multi-stage project in which the main objective is to characterize, sample, and instrument the potentially seismogenic region of the Nankai Trough, an active subduction zone. Understanding the physical properties of the inner accretionary prism will aid in the characterization of the deformation that has taken place and the evolution of stress, fluid pressure, and strain over the deformational history of these sediments and rocks. This study focuses on the estimation of porosity and density from available logs to inform solid and fluid volume estimates at Site C0002 from the sea floor through the Kumano Basin into the accretionary prism. Gamma ray, resistivity, and sonic logs were acquired at Hole C0002F, to a total depth of 2005 mbsf into the inner accretionary prism. Because a density and neutron porosity tool could not be deployed, porosity and density must be estimated using a variety of largely empirical methods. In this study, we calculate estimated porosity and density from both the electrical resistivity and sonic (P-wave velocity) logs collected in Hole C0002F. However, the relationship of these physical properties to the available logs is not straightforward and can be affected by changes in fluid type, salinity, temperature, presence of fractures, and clay mineralogy. To evaluate and calibrate the relationships among these properties, we take advantage of the more extensive suite of LWD data recorded in Hole C0002A at the same drill site, including density and neutron porosity measurements. Data collected in both boreholes overlaps in the interval from 875 - 1400 mbsf in the lower Kumano Basin and across the basin-accretionary wedge boundary. Core-based physical properties are also available across this interval. Through comparison of density and porosity values in intervals where core and LWD data overlap, we calculate porosity and density values and evaluate their uncertainties, developing a best estimate given the specific lithology and pore fluid at this tectonic setting. We then propagate this calibrated estimate to the deeper portions of C0002F where core and LWD density and porosity measurements are unavailable, using the sonic and resistivity data alone.
Fast clustering using adaptive density peak detection.
Wang, Xiao-Feng; Xu, Yifan
2017-12-01
Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Barrash, W.; Cardiff, M.; Johnson, T. C.
2011-12-01
Reliable predictions of groundwater flow and solute transport require an estimation of the detailed distribution of the parameters (e.g., hydraulic conductivity, effective porosity) controlling these processes. However, such parameters are difficult to estimate because of the inaccessibility and complexity of the subsurface. In this regard, developments in parameter estimation techniques and investigations of field experiments are still challenging and necessary to improve our understanding and the prediction of hydrological processes. Here we analyze a conservative tracer test conducted at the Boise Hydrogeophysical Research Site in 2001 in a heterogeneous unconfined fluvial aquifer. Some relevant characteristics of this test include: variable-density (sinking) effects because of the injection concentration of the bromide tracer, the relatively small size of the experiment, and the availability of various sources of geophysical and hydrological information. The information contained in this experiment is evaluated through several parameter estimation approaches, including a grid-search-based strategy, stochastic simulation of hydrological property distributions, and deterministic inversion using regularization and pilot-point techniques. Doing this allows us to investigate hydraulic conductivity and effective porosity distributions and to compare the effects of assumptions from several methods and parameterizations. Our results provide new insights into the understanding of variable-density transport processes and the hydrological relevance of incorporating various sources of information in parameter estimation approaches. Among others, the variable-density effect and the effective porosity distribution, as well as their coupling with the hydraulic conductivity structure, are seen to be significant in the transport process. The results also show that assumed prior information can strongly influence the estimated distributions of hydrological properties.
Density estimation in wildlife surveys
Bart, Jonathan; Droege, Sam; Geissler, Paul E.; Peterjohn, Bruce G.; Ralph, C. John
2004-01-01
Several authors have recently discussed the problems with using index methods to estimate trends in population size. Some have expressed the view that index methods should virtually never be used. Others have responded by defending index methods and questioning whether better alternatives exist. We suggest that index methods are often a cost-effective component of valid wildlife monitoring but that double-sampling or another procedure that corrects for bias or establishes bounds on bias is essential. The common assertion that index methods require constant detection rates for trend estimation is mathematically incorrect; the requirement is no long-term trend in detection "ratios" (index result/parameter of interest), a requirement that is probably approximately met by many well-designed index surveys. We urge that more attention be given to defining bird density rigorously and in ways useful to managers. Once this is done, 4 sources of bias in density estimates may be distinguished: coverage, closure, surplus birds, and detection rates. Distance, double-observer, and removal methods do not reduce bias due to coverage, closure, or surplus birds. These methods may yield unbiased estimates of the number of birds present at the time of the survey, but only if their required assumptions are met, which we doubt occurs very often in practice. Double-sampling, in contrast, produces unbiased density estimates if the plots are randomly selected and estimates on the intensive surveys are unbiased. More work is needed, however, to determine the feasibility of double-sampling in different populations and habitats. We believe the tension that has developed over appropriate survey methods can best be resolved through increased appreciation of the mathematical aspects of indices, especially the effects of bias, and through studies in which candidate methods are evaluated against known numbers determined through intensive surveys.
Emission measures derived from far ultraviolet spectra of T Tauri stars
NASA Astrophysics Data System (ADS)
Cram, L. E.; Giampapa, M. S.; Imhoff, C. L.
1980-06-01
Spectroscopic diagnostics based on UV emission line observations have been developed to study the solar chromosphere, transition region, and corona. The atmospheric properties that can be inferred from observations of total line intensities include the temperature, by identifying the ionic species present; the temperature distribution of the emission measure, from the absolute intensities; and the electron density of the source, from line intensity ratios sensitive to the electron density. In the present paper, the temperature distribution of the emission measure is estimated from observations of far UV emission line fluxes of the T Tauri stars, RW Aurigae and RU Lupi, made on the IUE. A crude estimate of the electron density of one star is obtained, using density-sensitive line ratios.
Improving the Navy’s Passive Underwater Acoustic Monitoring of Marine Mammal Populations
2013-09-30
passive acoustic monitoring: Correcting humpback whale call detections for site-specific and time-dependent environmental characteristics ,” JASA Exp...marine mammal species using passive acoustic monitoring, with application to obtaining density estimates of transiting humpback whale populations in...minimize the variance of the density estimates, 3) to apply the numerical modeling methods for humpback whale vocalizations to understand distortions
Using a terrestrial ecosystem survey to estimate the historical density of ponderosa pine trees
Scott R. Abella; Charles W. Denton; David G. Brewer; Wayne A. Robbie; Rory W. Steinke; W. Wallace Covington
2011-01-01
Maps of historical tree densities for project areas and landscapes may be useful for a variety of management purposes such as determining site capabilities and planning forest thinning treatments. We used the U.S. Forest Service Region 3 terrestrial ecosystem survey in a novel way to determine if the ecosystem classification is a useful a guide for estimating...