Density functional theory for field emission from carbon nano-structures.
Li, Zhibing
2015-12-01
Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.
Nanoparticle-density-dependent field emission of surface-decorated SiC nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Qizheng; School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo City 315016; State Key Lab of New Fine Ceramics and Fine Processing, Tsinghua University, Beijing City 100084
2016-08-22
Increasing the electron emission site density of nanostructured emitters with limited field screening effects is one of the key issues for improving the field emission (FE) properties. In this work, we reported the Au-nanoparticles-density-dependent field emission behaviors of surface-decorated SiC nanowires. The Au nanoparticles (AuNPs) decorated around the surface of the SiC nanowires were achieved via an ion sputtering technique, by which the densities of the isolated AuNPs could be adjusted by controlling the fixed sputtering times. The measured FE characteristics demonstrated that the turn-on fields of the SiC nanowires were tuned to be of 2.06, 1.14, and 3.35 V/μm withmore » the increase of the decorated AuNPs densities, suggesting that a suitable decorated AuNPs density could render the SiC nanowires with totally excellent FE performances by increasing the emission sites and limiting the field screening effects.« less
Penetration length-dependent hot electrons in the field emission from ZnO nanowires
NASA Astrophysics Data System (ADS)
Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun
2018-01-01
In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.
Polypyrrole nanostructures and their field emission investigations
NASA Astrophysics Data System (ADS)
Harpale, Kashmira; More, Mahendra A.; Koinkar, Pankaj M.; Patil, Sandip S.; Sonawane, Kishor M.
2015-03-01
Polypyrrole (PPy) nanostructures have been synthesized on indium doped tin oxide (ITO) substrates by a facile electrochemical route employing cyclic voltammetry (CV) mode. The morphology of the PPy thin films was observed to be influenced by the monomer concentration. Furthermore, FTIR revealed formation of electrically conducting state of PPy. Field emission investigations of the PPy nanostructures were carried out at base pressure of 1×10-8mbar. The values of turn-on field, corresponding to emission current density of 1 μA/cm2 were observed to be 0.6, 1.0 and 1.2 V/μm for the PPy films characterized with rod-like, cauliflower and granular morphology, respectively. In case of PPy nanorods maximum current density of 1.2 mA/cm2 has been drawn at electric field of 1 V/μm. The low turn on field, extraction of very high emission current density at relatively lower applied field and good emission stability propose the PPy nanorods as a promising material for field emission based devices.
Scanned-probe field-emission studies of vertically aligned carbon nanofibers
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Lowndes, Douglas H.; Baylor, Larry R.
2001-02-01
Field emission properties of dense and sparse "forests" of randomly placed, vertically aligned carbon nanofibers (VACNFs) were studied using a scanned probe with a small tip diameter of ˜1 μm. The probe was scanned in directions perpendicular and parallel to the sample plane, which allowed for measuring not only the emission turn-on field at fixed locations but also the emission site density over large surface areas. The results show that dense forests of VACNFs are not good field emitters as they require high extracting (turn-on) fields. This is attributed to the screening of the local electric field by the neighboring VACNFs. In contrast, sparse forests of VACNFs exhibit moderate-to-low turn-on fields as well as high emission site and current densities, and long emission lifetime, which makes them very promising for various field emission applications.
Development program on a Spindt cold-cathode electron gun
NASA Technical Reports Server (NTRS)
Spindt, C. A.
1982-01-01
A thin film field emission cathode (TFFEC) array and a cold cathode electron gun based on the emitter were developed. A microwave tube gun that uses the thin film field emission cathode as an electron source is produced. State-of-the-art cathodes were fabricated and tested. The tip-packing density of the arrays were increased thereby increasing the cathode's current density capability. The TFFEC is based on the well known field emission effect and was conceived to exploit the advantages of that phenomenon while minimizing the difficulties associated with conventional field emission structures, e.g. limited life and high voltage requirements. Field emission follows the Fowler-Nordheim equation.
NASA Astrophysics Data System (ADS)
Weintraub, Benjamin; Chang, Sehoon; Singamaneni, Srikanth; Han, Won Hee; Choi, Young Jin; Bae, Joonho; Kirkham, Melanie; Tsukruk, Vladimir V.; Deng, Yulin
2008-10-01
A simple, scalable, and cost-effective technique for controlling the growth density of ZnO nanorod arrays based on a layer-by-layer polyelectrolyte polymer film is demonstrated. The ZnO nanorods were synthesized using a low temperature (T = 90 °C), solution-based method. The density-control technique utilizes a polymer thin film pre-coated on the substrate to control the mass transport of the reactant to the substrate. The density-controlled arrays were investigated as potential field emission candidates. The field emission results revealed that an emitter density of 7 nanorods µm-2 and a tapered nanorod morphology generated a high field enhancement factor of 5884. This novel technique shows promise for applications in flat panel display technology.
Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays
NASA Technical Reports Server (NTRS)
Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.
2004-01-01
We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.
Superior Field Emission Properties of Layered WS2-RGO Nanocomposites
Rout, Chandra Sekhar; Joshi, Padmashree D.; Kashid, Ranjit V.; Joag, Dilip S.; More, Mahendra A.; Simbeck, Adam J.; Washington, Morris; Nayak, Saroj K.; Late, Dattatray J.
2013-01-01
We report here the field emission studies of a layered WS2-RGO composite at the base pressure of ~1 × 10−8 mbar. The turn on field required to draw a field emission current density of 1 μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2-RGO composite respectively. The enhanced field emission behavior observed for the WS2-RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 μA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2-RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overalp of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. PMID:24257504
NASA Astrophysics Data System (ADS)
Ansari, S. M.; Suryawanshi, S. R.; More, M. A.; Sen, Debasis; Kolekar, Y. D.; Ramana, C. V.
2018-06-01
We report on the field-emission properties of structure-morphology controlled nano-CoFe2O4 (CFO) synthesized via a simple and low-temperature chemical method. Structural analyses indicate that the spongy-CFO (approximately, 2.96 nm) is nano-structured, spherical, uniformly-distributed, cubic-structured and porous. Field emission studies reveal that CFO exhibit low turn-on field (4.27 V/μm) and high emission current-density (775 μA/cm2) at a lower applied electric field of 6.80 V/μm. In addition, extremely good emission current stability is obtained at a pre-set value of 1 μA and high emission spot-density over large area (2 × 2 cm2) suggesting the applicability of these materials for practical applications in vacuum micro-/nano-electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.M.; School of Materials Science and Engineering, The University of New South Wales, NSW 2052; Yang, C.C., E-mail: ccyang@unsw.edu.a
2009-12-15
In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheetmore » density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.« less
NASA Astrophysics Data System (ADS)
Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Loginov, Alexander P.; Mosiyash, Denis S.; Akchurin, Garif G.
2018-04-01
The paper provides a justification and a comparative analysis of the scaling directions of the developed and investigated planar triode field emission cathode unit with the aim of increasing the maximum field current density up to 0.75 A-cm-2 without sacrificing durability. The design features of the vacuum device with a planar structure provided low-voltage control - at 150 V in the mode of long-term durability and not more than 250 V in the mode of the maximum permissible emission current.
Enhanced field emission from hexagonal rhodium nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathe, Bhaskar R.; Kakade, Bhalchandra A.; Mulla, Imtiaz S.
2008-06-23
Shape selective synthesis of nanostructured Rh hexagons has been demonstrated with the help of a modified chemical vapor deposition using rhodium acetate. An ultralow threshold field of 0.72 V/{mu}m is observed to generate a field emission current density of 4x10{sup -3} {mu}A/cm{sup 2}. The high enhancement factor (9325) indicates that the origin of electron emission is from nanostructured features. The smaller size of emitting area, excellent current density, and stability over a period of more than 3 h are promising characteristics for the development of electron sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkattraman, Ayyaswamy
2013-11-15
The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential andmore » the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.« less
NASA Astrophysics Data System (ADS)
Safir, Abdelilah; Mudd, David; Yazdanpanah, Mehdi; Dobrokhotov, Vladimir; Sumanasekera, Gamini; Cohn, Robert
2008-03-01
In this work, we report a recent experimental study of high emission current densities exceeding 10mA/cm^2 and breakdown electric field lower than 5Volts/μm from novel cold cathodes such as conical shaped carbon nanopipettes (CNP). CNP were grown by CVD on Pt wire and have apex as sharp as 10nm with length between 3-6μm. The emission experiments were conducted under vacuum in a scanning electron microscope for individual CNP and in a dedicated chamber for bulk samples. CNP's conical bases and low density contribute significantly to the reduction of the screening effect and to the field emission enhancement. The experimental value for the field enhancement factor, γ, was about 867. Comparing emission results taken from CNP and aligned multiwall carbon nanotubes (MWNT) show that the ratio between γCNP and γMWNT is ˜1.6 which contributes to the reduction of screening effect. The emission from multilayers of graphene was also studied. High emission current (20μA) demonstrates promising emission properties of graphene.
Parametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays
Yuan, Xuesong; Cole, Matthew T.; Zhang, Yu; Wu, Jianqiang; Milne, William I.; Yan, Yang
2017-01-01
Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT)-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron sources. We determine the field emission current of the present microstructures directly using particle in cell (PIC) software and present a new CNT cold cathode array variant which has been geometrically optimized to provide maximal emission current density, with current densities of up to 11.5 A/cm2 at low operational electric fields of 5.0 V/μm. PMID:28336845
NASA Astrophysics Data System (ADS)
Ducati, C.; Barborini, E.; Piseri, P.; Milani, P.; Robertson, J.
2002-11-01
Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material.
Emission current from a single micropoint of explosive emission cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun
Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 10{sup 8}–10{sup 9 }A/cm{sup 2} is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the smallmore » size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 10{sup 8}–10{sup 9 }A/cm{sup 2}. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula.« less
Arrays of Bundles of Carbon Nanotubes as Field Emitters
NASA Technical Reports Server (NTRS)
Manohara, Harish; Bronkowski, Michael
2007-01-01
Experiments have shown that with suitable choices of critical dimensions, planar arrays of bundles of carbon nanotubes (see figure) can serve as high-current-density field emitter (cold-cathode) electron sources. Whereas some hot-cathode electron sources must be operated at supply potentials of thousands of volts, these cold-cathode sources generate comparable current densities when operated at tens of volts. Consequently, arrays of bundles of carbon nanotubes might prove useful as cold-cathode sources in miniature, lightweight electron-beam devices (e.g., nanoklystrons) soon to be developed. Prior to the experiments, all reported efforts to develop carbon-nanotube-based field-emission sources had yielded low current densities from a few hundred microamperes to a few hundred milliamperes per square centimeter. An electrostatic screening effect, in which taller nanotubes screen the shorter ones from participating in field emission, was conjectured to be what restricts the emission of electrons to such low levels. It was further conjectured that the screening effect could be reduced and thus emission levels increased by increasing the spacing between nanotubes to at least by a factor of one to two times the height of the nanotubes. While this change might increase the emission from individual nanotubes, it would decrease the number of nanotubes per unit area and thereby reduce the total possible emission current. Therefore, to maximize the area-averaged current density, it would be necessary to find an optimum combination of nanotube spacing and nanotube height. The present concept of using an array of bundles of nanotubes arises partly from the concept of optimizing the spacing and height of field emitters. It also arises partly from the idea that single nanotubes may have short lifetimes as field emitters, whereas bundles of nanotubes could afford redundancy so that the loss of a single nanotube would not significantly reduce the overall field emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoping, E-mail: wxpchina64@aliyun.com, E-mail: wxpchina@sohu.com; Shanghai Key Laboratory of Modern Optical System, Shanghai 200093; Wang, Jinye
A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibitsmore » the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm{sup 2} at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.« less
Top-down constraints of regional emissions for KORUS-AQ 2016 field campaign
NASA Astrophysics Data System (ADS)
Bae, M.; Yoo, C.; Kim, H. C.; Kim, B. U.; Kim, S.
2017-12-01
Accurate estimations of emission rates form local and international sources are essential in regional air quality simulations, especially in assessing the relative contributions from international emission sources. While bottom-up constructions of emission inventories provide detailed information on specific emission types, they are limited to cover regions with rapid change of anthropogenic emissions (e.g. China) or regions without enough socioeconomic information (e.g. North Korea). We utilized space-borne monitoring of major pollutant precursors to construct a realistic emission inputs for chemistry transport models during the KORUS-AQ 2016 field campaign. Base simulation was conducted using WRF, SMOKE, and CMAQ modeling frame using CREATE 2015 (Asian countries) and CAPSS 2013 (South Korea) emissions inventories. NOx, SO2 and VOC model emissions are adjusted using the column density comparisons ratios (between modeled and observed NO2, SO2 and HCHO column densities) and emission-to-density conversion ratio (from model). Brute force perturbation method was used to separate contributions from North Korea, China and South Korea for flight pathways during the field campaign. Backward-Tracking Model Analyzer (BMA), based on NOAA HYSPLIT trajectory and dispersion model, are also utilized to track histories of chemical processes and emission source apportionment. CMAQ simulations were conducted over East Asia (27-km) and over South and North Korea (9-km) during KORUS-AQ campaign (1st May to 10th June 2016).
Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase
NASA Astrophysics Data System (ADS)
Bankar, Prashant K.; Ratha, Satyajit; More, Mahendra A.; Late, Dattatray J.; Rout, Chandra Sekhar
2017-10-01
In this paper we report, large scale synthesis of α and β-NiMoO4 by a facile hydrothermal method and we observed that urea plays important role on the growth of β-NiMoO4 nanosheets. We have also carried out field emission (FE) investigations of α and β-NiMoO4 at a base pressure of ∼1 × 10-8 mbar. The obtained turn-on field at emission current density of 1 μA/cm2 for β-NiMoO4 nanosheets and α -NiMoO4 is 1.3 V/μm and 2.2 V/μm respectively were observed. The maximum field emission current density of 1.006 mA/cm2at an applied electric field of 2.7 V/μm was achieved for β-NiMoO4 nanosheets. Furthermore, we found that the β-NiMoO4 nanosheets possess good field emission performance compared to α-NiMoO4. The results indicate that NiMoO4can be used as a promising material in FE applications with possibility of tuning field emission performance by controlling the phase.
Density controlled carbon nanotube array electrodes
Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA
2008-12-16
CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.
Cold cathode emission studies on topographically modified few layer and single layer MoS2 films
NASA Astrophysics Data System (ADS)
Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.
2016-01-01
Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.
Investigation of field emission properties of laser irradiated tungsten
NASA Astrophysics Data System (ADS)
Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Rafique, Muhammad Shahid; Hayat, Asma; Mahmood, Khaliq
2018-02-01
Nd:YAG laser irradiation of Tungsten (W) has been performed in air at atmospheric pressure for four laser fluences ranging from 130 to 500 J/cm2. Scanning electron microscope analysis revealed the formation of micro and nanoscale surface features including cones, grains, mounds and pores. Field emission (FE) studies have been performed in a planar diode configuration under ultra-high vacuum conditions by recording I- V characteristics and plotting corresponding electric field ( E) versus emission current density ( J). The Fowler-Nordheim (FN) plots are found to be linear confirming the quantum mechanical tunneling phenomena for the structured targets. The irradiated samples at different fluences exhibit a turn-on field, field enhancement factor β and a maximum current density ranging from 5 to 8.5 V/µm, 1300 to 3490 and 107 to 350 µA/cm2, respectively. The difference in the FE properties is attributed to the variation in the nature and density of the grown structures at different fluences.
Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002.
Coburn, Wayne; Boggs, Steven E
2003-05-22
Observations of the afterglows of gamma-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy. The nature of the central engine that powers these events and the prompt gamma-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt gamma-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the gamma-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.
Towards graphane field emitters
Ding, Shuyi; Li, Chi; Zhou, Yanhuai; Collins, Clare M.; Kang, Moon H.; Parmee, Richard J.; Zhang, Xiaobing; Milne, William I.; Wang, Baoping
2015-01-01
We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V μm–1), with an increased maximum current density from 0.21 mA cm–2 (pristine) to 8.27 mA cm–2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function. PMID:28066543
Structural, optical and field emission properties of urchin-shaped ZnO nanostructures.
Al-Heniti, Saleh; Umar, Ahmad
2013-01-01
In this work, well-crystallized urchin-shaped ZnO structures were synthesized on silicon substrate by simple non-catalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen as source materials for zinc and oxygen, respectively. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and field emission properties. The detailed morphological investigations revealed that the synthesized structures possess urchin-shape and grown in high-density over the substrate surface. The detailed structural and optical characterizations revealed that the synthesized urchin-shaped ZnO structures are well-crystallized and exhibiting good optical properties. The field emission analysis for urchin-shaped ZnO structures exhibits a turn-on field of 4.6 V/microm. The emission current density reached to 0.056 mA/cm2 at an applied electrical field of 6.4 V/microm and shows no saturation. The calculated field enhancement factor 'beta', from the F-N plot, was found to be approximately 2.2 x 10(3).
Field emission from isolated individual vertically aligned carbon nanocones
NASA Astrophysics Data System (ADS)
Baylor, L. R.; Merkulov, V. I.; Ellis, E. D.; Guillorn, M. A.; Lowndes, D. H.; Melechko, A. V.; Simpson, M. L.; Whealton, J. H.
2002-04-01
Field emission from isolated individual vertically aligned carbon nanocones (VACNCs) has been measured using a small-diameter moveable probe. The probe was scanned parallel to the sample plane to locate the VACNCs, and perpendicular to the sample plane to measure the emission turn-on electric field of each VACNC. Individual VACNCs can be good field emitters. The emission threshold field depends on the geometric aspect ratio (height/tip radius) of the VACNC and is lowest when a sharp tip is present. VACNCs exposed to a reactive ion etch process demonstrate a lowered emission threshold field while maintaining a similar aspect ratio. Individual VACNCs can have low emission thresholds, carry high current densities, and have long emission lifetime. This makes them very promising for various field emission applications for which deterministic placement of the emitter with submicron accuracy is needed.
de Assis, T. A.
2015-01-01
This work considers the effects of the Hurst exponent (H) on the local electric field distribution and the slope of the Fowler-Nordheim (FN) plot when considering the cold field electron emission properties of rough Large-Area Conducting Field Emitter Surfaces (LACFESs). A LACFES is represented by a self-affine Weierstrass-Mandelbrot function in a given spatial direction. For 0.1 ≤ H < 0.5, the local electric field distribution exhibits two clear exponential regimes. Moreover, a scaling between the macroscopic current density () and the characteristic kernel current density (), , with an H-dependent exponent , has been found. This feature, which is less pronounced (but not absent) in the range where more smooth surfaces have been found (), is a consequence of the dependency between the area efficiency of emission of a LACFES and the macroscopic electric field, which is often neglected in the interpretation of cold field electron emission experiments. Considering the recent developments in orthodox field emission theory, we show that the exponent must be considered when calculating the slope characterization parameter (SCP) and thus provides a relevant method of more precisely extracting the characteristic field enhancement factor from the slope of the FN plot. PMID:26035290
Analysis of a photon assisted field emission device
NASA Astrophysics Data System (ADS)
Jensen, K. L.; Lau, Y. Y.; McGregor, D. S.
2000-07-01
A field emitter array held at the threshold of emission by a dc gate potential from which current pulses are triggered by the application of a laser pulse on the backside of the semiconductor may produce electron bunches ("density modulation") at gigahertz frequencies. We develop an analytical model of such optically controlled emission from a silicon tip using a modified Wentzel-Kramers-Brillouin and Airy function approach to solving Schrödinger's equation. Band bending and an approximation to the exchange-correlation effects on the image charge potential are included for an array of hyperbolic emitters with a distribution in tip radii and work function. For a simple relationship between the incident photon flux and the resultant electron density at the emission site, an estimation of the tunneling current is made. An example of the operation and design of such a photon-assisted field emission device is given.
Band-to-Band Tunneling-Dominated Thermo-Enhanced Field Electron Emission from p-Si/ZnO Nanoemitters.
Huang, Zhizhen; Huang, Yifeng; Xu, Ningsheng; Chen, Jun; She, Juncong; Deng, Shaozhi
2018-06-13
Thermo-enhancement is an effective way to achieve high performance field electron emitters, and enables the individually tuning on the emission current by temperature and the electron energy by voltage. The field emission current from metal or n-doped semiconductor emitter at a relatively lower temperature (i.e., < 1000 K) is less temperature sensitive due to the weak dependence of free electron density on temperature, while that from p-doped semiconductor emitter is restricted by its limited free electron density. Here, we developed full array of uniform individual p-Si/ZnO nanoemitters and demonstrated the strong thermo-enhanced field emission. The mechanism of forming uniform nanoemitters with well Si/ZnO mechanical joint in the nanotemplates was elucidated. No current saturation was observed in the thermo-enhanced field emission measurements. The emission current density showed about ten-time enhancement (from 1.31 to 12.11 mA/cm 2 at 60.6 MV/m) by increasing the temperature from 323 to 623 K. The distinctive performance did not agree with the interband excitation mechanism but well-fit to the band-to-band tunneling model. The strong thermo-enhancement was proposed to be benefit from the increase of band-to-band tunneling probability at the surface portion of the p-Si/ZnO nanojunction. This work provides promising cathode for portable X-ray tubes/panel, ionization vacuum gauges and low energy electron beam lithography, in where electron-dose control at a fixed energy is needed.
Axion production from Landau quantization in the strong magnetic field of magnetars
NASA Astrophysics Data System (ADS)
Maruyama, Tomoyuki; Balantekin, A. Baha; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.
2018-04-01
We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.
Field Emission and Nanostructure of Carbon Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.
1999-11-29
The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded.more » However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.« less
Improvement of carbon nanotube field emission properties by ultrasonic nanowelding
NASA Astrophysics Data System (ADS)
Zhao, Bo; Yadian, Boluo; Chen, Da; Xu, Dong; Zhang, Yafei
2008-12-01
Ultrasonic nanowelding was used to improve the field emission properties of carbon nanotube (CNT) cathodes. The CNTs were deposited on the Ti-coated glass substrate by electrophoretic deposition. By pressing CNTs against metal (Ti) substrate under a vibrating force at ultrasonic frequency, a reliable and low resistance contact was obtained between CNTs and Ti. The scanning electron microscopy results show that CNTs are embedded into the metal substrate and act as stable field emitters. The welded cathode demonstrates an excellent field emission with high emission current density and good current stability.
Calculation of gyrosynchrotron radiation brightness temperature for outer bright loop of ICME
NASA Astrophysics Data System (ADS)
Sun, Weiying; Wu, Ji; Wang, C. B.; Wang, S.
:Solar polar orbit radio telescope (SPORT) is proposed to detect the high density plasma clouds of outer bright loop of ICMEs from solar orbit with large inclination. Of particular interest is following the propagation of the plasma clouds with remote sensor in radio wavelength band. Gyrosynchrotron emission is a main radio radiation mechanism of the plasma clouds and can provide information of interplanetary magnetic field. In this paper, we statistically analyze the electron density, electron temperature and magnetic field of background solar wind in time of quiet sun and ICMEs propagation. We also estimate the fluctuation range of the electron density, electron temperature and magnetic field of outer bright loop of ICMEs. Moreover, we calculate and analyze the emission brightness temperature and degree of polarization on the basis of the study of gyrosynchrotron emission, absorption and polarization characteristics as the optical depth is less than or equal to 1.
PCDD AND PCDF EMISSIONS FROM SIMULATED SUGARCANE FIELD BURNING
The emissions from simulated sugarcane field burns were sampled and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs and PCDFs). Sugarcane leaves from Hawaii and Florida were burned in a manner simulating the natural physical dimensions and biomass density fou...
Mavrogordatos, Th K; Morris, S M; Wood, S M; Coles, H J; Wilkinson, T D
2013-06-01
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.
Chen, Yicong; Zhang, Zhipeng; Li, Zhi-Bing; She, Juncong; Deng, Shaozhi; Xu, Ning-Sheng; Chen, Jun
2018-06-27
ZnO nanowires as field emitters have important applications in flat panel display and X-ray source. Understanding the intrinsic field emission mechanism is crucial for further improving the performance of ZnO nanowire field emitters. In this article, the temperature dependent field emission from individual ZnO nanowires was investigated by an in-situ measurement in ultra-high vacuum. The divergent temperature-dependent Fowler-Nordheim plots is found in the low field region. A field-induced hot electrons emission model that takes into account penetration length is proposed to explain the results. The carrier density and temperature dependence of the field-induced hot electrons emission current are derived theoretically. The obtained results are consistent with the experimental results, which could be attributed to the variation of effective electron temperature. All of these are important for a better understanding on the field emission process of semiconductor nanostructures. © 2018 IOP Publishing Ltd.
Low-cost, high-density sensor network for urban emission monitoring: BEACO2N
NASA Astrophysics Data System (ADS)
Kim, J.; Shusterman, A.; Lieschke, K.; Newman, C.; Cohen, R. C.
2017-12-01
In urban environments, air quality is spatially and temporally heterogeneous as diverse emission sources create a high degree of variability even at the neighborhood scale. Conventional air quality monitoring relies on continuous measurements with limited spatial resolution or passive sampling with high-density and low temporal resolution. Either approach averages the air quality information over space or time and hinders our attempts to understand emissions, chemistry, and human exposure in the near-field of emission sources. To better capture the true spatio-temporal heterogeneity of urban conditions, we have deployed a low-cost, high-density air quality monitoring network in San Francisco Bay Area distributed at 2km horizontal spacing. The BErkeley Atmospheric CO2 Observation Network (BEACO2N) consists of approximately 50 sensor nodes, measuring CO2, CO, NO, NO2, O3, and aerosol. Here we describe field-based calibration approaches that are consistent with the low-cost strategy of the monitoring network. Observations that allow inference of emission factors and identification of specific local emission sources will also be presented.
Active spectroscopic measurements of the bulk deuterium properties in the DIII-D tokamak (invited).
Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Heidbrink, W W; Muñoz Burgos, J M; Pablant, N A; Solomon, W M; Van Zeeland, M A
2012-10-01
The neutral-beam induced D(α) emission spectrum contains a wealth of information such as deuterium ion temperature, toroidal rotation, density, beam emission intensity, beam neutral density, and local magnetic field strength magnitude |B| from the Stark-split beam emission spectrum, and fast-ion D(α) emission (FIDA) proportional to the beam-injected fast ion density. A comprehensive spectral fitting routine which accounts for all photoemission processes is employed for the spectral analysis. Interpretation of the measurements to determine physically relevant plasma parameters is assisted by the use of an optimized viewing geometry and forward modeling of the emission spectra using a Monte-Carlo 3D simulation code.
Space charge effects on the current-voltage characteristics of gated field emitter arrays
NASA Astrophysics Data System (ADS)
Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.
1997-07-01
Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.
A sample of [C II] clouds tracing dense clouds in weak FUV fields observed by Herschel
NASA Astrophysics Data System (ADS)
Pineda, J. L.; Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Li, D.; Yorke, H. W.
2010-10-01
The [C ii] fine-structure line at 158 μm is an excellent tracer of the warm diffuse gas in the ISM and the interfaces between molecular clouds and their surrounding atomic and ionized envelopes. Here we present the initial results from Galactic observations of terahertz C+ (GOT C+), a Herschel key project devoted to studying the [C ii] emission in the Galactic plane using the HIFI instrument. We used the [C ii] emission, together with observations of CO, as a probe to understand the effects of newly formed stars on their interstellar environment and characterize the physical and chemical state of the star-forming gas. We collected data along 16 lines-of-sight passing near star-forming regions in the inner Galaxy near longitudes 330° and 20°. We identified fifty-eight [C ii] components that are associated with high-column density molecular clouds as traced by 13CO emission. We combined [C ii], 12CO, and 13CO observations to derive the physical conditions of the [C ii]-emitting regions in our sample of high-column density clouds based on comparing results from a grid of photon dominated region (PDR) models. From this unbiased sample, our results suggest that most of the [C ii] emission originates in clouds with H2 volume densities between 103.5 and 105.5 cm-3 and weak FUV strength (χ0 = 1-10). We find two regions where our analysis suggest high densities >105 cm-3 and strong FUV fields (χ0 = 104-106), likely associated with massive star formation. We suggest that [C ii] emission in conjunction with CO isotopes is a good tool for differentiating regions of massive star formation (high densities/strong FUV fields) and regions that are distant from massive stars (lower densities/weaker FUV fields) along the line-of-sight. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Electric emissions from electrical appliances.
Leitgeb, N; Cech, R; Schröttner, J
2008-01-01
Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intracorporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration.
Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed
2017-01-01
A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647
High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K
2014-11-25
Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Suresh C.; Gupta, Neha
2015-12-15
A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, numbermore » density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Wei; Zhang Bing; Li Hui
The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jetmore » with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Wei; Zhang, Bing; Li, Hui
We report that the early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ, of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the "Athena++" relativistic MHD code to simulate amore » relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Finally, such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less
Deng, Wei; Zhang, Bing; Li, Hui; ...
2017-08-03
We report that the early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ, of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the "Athena++" relativistic MHD code to simulate amore » relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Finally, such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less
Modelling coronal electron density and temperature profiles of the Active Region NOAA 11855
NASA Astrophysics Data System (ADS)
Rodríguez Gómez, J. M.; Antunes Vieira, L. E.; Dal Lago, A.; Palacios, J.; Balmaceda, L. A.; Stekel, T.
2017-10-01
The magnetic flux emergence can help understand the physical mechanism responsible for solar atmospheric phenomena. Emerging magnetic flux is frequently related to eruptive events, because when emerging they can reconnected with the ambient field and release magnetic energy. We will use a physic-based model to reconstruct the evolution of the solar emission based on the configuration of the photospheric magnetic field. The structure of the coronal magnetic field is estimated by employing force-free extrapolation NLFFF based on vector magnetic field products (SHARPS) observed by HMI instrument aboard SDO spacecraft from Sept. 29 (2013) to Oct. 07 (2013). The coronal plasma temperature and density are described and the emission is estimated using the CHIANTI atomic database 8.0. The performance of the our model is compared to the integrated emission from the AIA instrument aboard SDO spacecraft in the specific wavelengths 171Å and 304Å.
Electrostatic properties of graphene edges for electron emission under an external electric field
NASA Astrophysics Data System (ADS)
Gao, Yanlin; Okada, Susumu
2018-04-01
Electronic properties of graphene edges under a lateral electric field were theoretically studied in regard to their edge shapes and terminations to provide a theoretical insight into their field emission properties. The work function and potential barrier for the electron emission from the graphene edges are sensitive to their shape and termination. We also found that the hydrogenated armchair edge shows the largest emission current among all edges studied here. The electric field outside the chiral edges is spatially modulated along the edge because of the inhomogeneous charge density at the atomic sites of the edge arising from the bond alternation.
Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo
NASA Astrophysics Data System (ADS)
Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; Lockman, F. J.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pinheiro Gonçalves, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011-12-01
This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800 deg2 at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2 × 1020 cm-2 is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the Hi-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average Hi column density greater than 2 × 1020 cm-2, show significant excess dust emission compared to the Hi column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher Hi column density fields the excess emission at 857 GHz is about 40% of that coming from the Hi, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes. Corresponding author: M.-A. Miville-Deschênes, e-mail: mamd@ias.u-psud.fr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Z.; Brown, I.G.; Ager, J.W. III
Electron emission from chemical vapor deposited (CVD) diamond and amorphous carbon (a-C) films was observed with a simple field emission device (FED). Both diamond and a-C films were prepared with microwave plasma-enhanced CVD techniques. Electron emission in the field strength range +10 to {minus}10 MVm{sup {minus}1} was studied, and the field emission source was confirmed by a diode characteristic of the {ital I}-{ital V} curve, a straight line in the Fowler--Nordheim (F-N) plot, and direct observation of light emission from a fluorescent screen. The turn-on field strength was {similar_to}5 MVm{sup {minus}1}, which was similar for both kinds of carbon films.more » The highest current density for diamond films, observed at a field strength of 10 MVm{sup {minus}1}, was {similar_to}15 {mu}A cm{sup {minus}2}. Diamond films yielded a higher emission current than a-C films. The reasons for the observed field emission are discussed.« less
Growth and field emission properties of globe-like diamond microcrystalline-aggregate
NASA Astrophysics Data System (ADS)
Gao, Jin-hai; Zhang, Lan; Zhao, Limin; Hao, Haoshan
2009-02-01
The globe-like diamond microcrystalline-aggregates were fabricated by microwave plasma chemical vapor deposition (MPCVD) method. The ceramic with a Ti mental layer was used as substrate. The fabricated diamond was evaluated by Raman scattering spectroscopy, X-ray diffraction spectrum (XRD), and scanning electron microscope (SEM). The field emission properties were tested by using a diode structure in a vacuum. A phosphor-coated indium tin oxide (ITO) anode was used for observing and characterizing the field emission. It was found that the globe-like diamond microcrystalline-aggregates exhibited good electron emission properties. The turn-on field was only 0.55 V/μm, and emission current density as high as 11 mA/cm 2 was obtained under an applied field of 2.9 V/μm for the first operation. The growth mechanism and field emission properties of the globe-like diamond microcrystalline-aggregates are discussed relating to microstructure and electrical conductivity.
Multi-barrier field-emission behavior in PBTTT thin films at low temperatures
Kang, Evan S. H.; Kim, Eunseong
2015-01-01
We investigated the low-temperature transport mechanism for poly[2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene] (PBTTT). The temperature-dependent transport behavior was studied by varying the drain–source electric field and gate bias. The results suggest that low-temperature charge transport is dominated by direct tunneling at low electric fields, while field emission is prevailing for high electric fields with high carrier densities. However, the obtained barrier heights are remarkably greater than expected in a conventional field emission. We propose a simplified model of field emission through quasi-one-dimensional path with multiple barriers which shows good agreement with the results more clearly. Field emission across the domain boundaries may assist in overcoming the transport barriers induced by the interchain disorder, which results in the weak temperature dependence of conductivities and nonlinear current–voltage relation at low temperatures. PMID:25670532
Electrostatic emissions between electron gyroharmonics in the outer magnetosphere
NASA Technical Reports Server (NTRS)
Hubbard, R. F.; Birmingham, T. J.
1977-01-01
A scheme was constructed and a theoretical model was developed to classify electrostatic emissions. All of the emissions appear to be generated by the same basic mechanism: an unstable electron plasma distribution consisting of cold electrons (less than 100 eV) and hot loss cone electrons (about 1 keV). Each emission class is associated with a particular range of model parameters; the wide band electric field data can thus be used to infer the density and temperature of the cold plasma component. The model predicts that gyroharmonic emissions near the plasma frequency require large cold plasma densities.
Effect of plasma density around Io on local electron heating in the Io plasma torus
NASA Astrophysics Data System (ADS)
Tsuchiya, F.; Yoshioka, K.; Kagitani, M.; Kimura, T.; Murakami, G.; Yamazaki, A.; Misawa, H.; Kasaba, Y.; Yoshikawa, I.; Sakanoi, T.; Koga, R.; Ryo, A.; Suzuki, F.; Hikida, R.
2017-12-01
HISAKI observation of Io plasma torus (IPT) with extreme ultraviolet (EUV) wavelength range is a useful probe to access plasma environment in inner magnetosphere of Jupiter. Emissions from sulfur and oxygen ions in EUV range are caused by electron impact excitation and their intensity is well correlated with the abundance of hot electron in IPT. Previous observation showed that the brightness was enhanced downstream of the satellite Io, indicating that efficient electron heating takes place at Io and/or just downstream of Io. Detailed analysis of the emission intensity shows that the brightness depends on the magnetic longitude at Io and primary and secondary peaks appear in the longitude ranges of 100-130 and 250-340 degrees, respectively. The peak position and amplitude are slightly different between dawn and dusk sides. Here, we introduce inhomogeneous IPT density model in order to investigate relation between the emission intensity and local plasma density around Io in detail. An empirical IPT model is used for spatial distribution of ion and electron densities in the meridional plane. To include longitude and local time asymmetry in IPT, we consider (1)dawnward shift of IPT due to global convection electric field, (2) offset of Jupiter's dipole magnetic field, and (3) tilt of IPT with respect to Io's orbital plane. The modeled electron density at the position of Io as a function of magnetic longitude at Io shows similar profile with the ion emission intensity derived from the observation. This result suggests that energy extracted around Io and/or efficiency of electron heating is closely related to the plasma density around Io and longitude and local time dependences is explained by the spatial inhomogeneity of plasma density in IPT. A part of the energy extracted around Io could be transferred to the Jovian ionosphere along the magnetic field line and cause bright aurora spots and strong radio emissions.
Park, Sangjun; Gupta, Amar Prasad; Yeo, Seung Jun; Jung, Jaeik; Paik, Sang Hyun; Mativenga, Mallory; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2018-05-29
In this study, a simple, efficient, and economical process is reported for the direct synthesis of carbon nanotube (CNT) field emitters on metal alloy. Given that CNT field emitters can be customized with ease for compact and cold field emission devices, they are promising replacements for thermionic emitters in widely accessible X-ray source electron guns. High performance CNT emitter samples were prepared in optimized plasma conditions through the plasma-enhanced chemical vapor deposition (PECVD) process and subsequently characterized by using a scanning electron microscope, tunneling electron microscope, and Raman spectroscopy. For the cathode current, field emission (FE) characteristics with respective turn on (1 μA/cm²) and threshold (1 mA/cm²) field of 2.84 and 4.05 V/μm were obtained. For a field of 5.24 V/μm, maximum current density of 7 mA/cm² was achieved and a field enhancement factor β of 2838 was calculated. In addition, the CNT emitters sustained a current density of 6.7 mA/cm² for 420 min under a field of 5.2 V/μm, confirming good operational stability. Finally, an X-ray generated image of an integrated circuit was taken using the compact field emission device developed herein.
Low-frequency radio constraints on the synchrotron cosmic web
NASA Astrophysics Data System (ADS)
Vernstrom, T.; Gaensler, B. M.; Brown, S.; Lenc, E.; Norris, R. P.
2017-06-01
We present a search for the synchrotron emission from the synchrotron cosmic web by cross-correlating 180-MHz radio images from the Murchison Widefield Array with tracers of large-scale structure (LSS). We use two versions of the radio image covering 21.76° × 21.76° with point sources brighter than 0.05 Jy subtracted, with and without filtering of Galactic emission. As tracers of the LSS, we use the Two Micron All-Sky Survey and the Wide-field InfraRed Explorer redshift catalogues to produce galaxy number density maps. The cross-correlation functions all show peak amplitudes at 0°, decreasing with varying slopes towards zero correlation over a range of 1°. The cross-correlation signals include components from point source, Galactic, and extragalactic diffuse emission. We use models of the diffuse emission from smoothing the density maps with Gaussians of sizes 1-4 Mpc to find limits on the cosmic web components. From these models, we find surface brightness 99.7 per cent upper limits in the range of 0.09-2.20 mJy beam-1 (average beam size of 2.6 arcmin), corresponding to 0.01-0.30 mJy arcmin-2. Assuming equipartition between energy densities of cosmic rays and the magnetic field, the flux density limits translate to magnetic field strength limits of 0.03-1.98 μG, depending heavily on the spectral index. We conclude that for a 3σ detection of 0.1 μG magnetic field strengths via cross-correlations, image depths of sub-mJy to sub-μJy are necessary. We include discussion on the treatment and effect of extragalactic point sources and Galactic emission, and next steps for building on this work.
A Narrowband Imaging Search for [O III] Emission from Galaxies at z > 3
NASA Astrophysics Data System (ADS)
Teplitz, Harry I.; Malkan, Matthew A.; McLean, Ian S.
1999-03-01
We present the results of a narrowband survey of quasi-stellar-object (QSO) fields at redshifts that place the [O III] (5007 Å) emission line in the Δλ/λ~1% 2.16 μm filter. We have observed 3 arcmin2 and detected one emission-line candidate object in the field around PC 1109+4642. We discuss the possibilities that this object is a star-forming galaxy at the QSO redshift, zem=3.313, or a Seyfert galaxy. In the former case, we infer a star formation rate of 170 Msolar yr-1 for this K'=21.3 object. The galaxy has a compact but resolved morphology, with an FWHM=0.6" or 4.2 kpc at z=3.313 (H0=50 km s-1 Mpc-1 and q0=0.5). The comoving density of such objects in QSO environments appears to be 0.0033 Mpc-3, marginally lower (<=3 σ) than the density observed for Hα-emitters in absorption-line fields at z~2.5 but similar to the density of Lyman-break galaxies at z~3. If, on the other hand, most of the line emission is [O III] from a Seyfert 2 nucleus at z=3.31, then the high inferred volume density could imply a large evolution in the Seyfert 2 luminosity function from the current epoch. We find the field containing the object to also contain many faint extended objects in the K' image but little significant excess over the expected number-magnitude relation. We discuss the implication of the emission line being a longer wavelength line at a lower redshift.
2008-01-01
Randomly oriented short and low density conical carbon nanotubes (CNTs) were prepared on Si substrates by tubular microwave plasma enhanced chemical vapor deposition process at relatively low temperature (350–550 °C) by judiciously controlling the microwave power and growth time in C2H2 + NH3gas composition and Fe catalyst. Both length as well as density of the CNTs increased with increasing microwave power. CNTs consisted of regular conical compartments stacked in such a way that their outer diameter remained constant. Majority of the nanotubes had a sharp conical tip (5–20 nm) while its other side was either open or had a cone/pear-shaped catalyst particle. The CNTs were highly crystalline and had many open edges on the outer surface, particularly near the joints of the two compartments. These films showed excellent field emission characteristics. The best emission was observed for a medium density film with the lowest turn-on and threshold fields of 1.0 and 2.10 V/μm, respectively. It is suggested that not only CNT tip but open edges on the body also act as active emission sites in the randomly oriented geometry of such periodic structures.
Study of Opacity Effects on Emission Lines at EXTRAP T2R RFP
NASA Astrophysics Data System (ADS)
Stancalie, Viorica; Rachlew, Elisabeth
We have investigated the influence of opacity on hydrogen (H-α and Ly-β) and Li-like oxygen emission lines from the EXTRAP T2R reversed field pinch. We used the Atomic Data Analysis System (AzDAS) based on the escape factor approximation for radiative transfer to calculate metastable and excited population densities via a collisional-radiative model. Population escape factor, emergent escape factor and modified line profiles are plotted vs. optical depth. The simulated emission line ratios in the density/temperature plane are in good agreement with experimental data for electron density and temperature measurements.
Dutra, E C; Koch, J A; Presura, R; Angermeier, W A; Darling, T; Haque, S; Mancini, R C; Covington, A M
2016-11-01
Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansode, Sanjeewani; Khare, Ruchita; Harpale, Kashmira
2015-06-24
In this work, a facile one step thermal evaporation method for deposition of Cu{sub 2}O nanoparticles on RGO sheets to form Cu{sub 2}O-RGO nanocomposite is discussed. To the best of our knowledge, this is the first report on Cu{sub 2}O-RGO nanocomposite, directly grown on Cu foil by a simple thermal evaporation route. The as –prepared nanocomposite exhibits well dispersed Cu{sub 2}O nanoparticles distributed all over the graphene sheet. Field emission properties of the nanocomposite were investigated at a base pressure of 1*10{sup −8} torr. The turn on field, required to draw emission current density of 0.1µA/cm2, was found to bemore » 3.8V/µm with a maximum emission current density of 80 µA/cm2 at an applied field of 6.8 V/µm. Moreover, the nanocomposite shows fairly good emission stability without significant degradation of emission current. The FE results seem to be encouraging, indicative of potential candidature of the Cu{sub 2}O-RGO nanocomposite emitter as an electron source for practical applications in vacuum nanoelectronic devices.« less
Space and time resolved emission of hard X-rays from a plasma focus
NASA Technical Reports Server (NTRS)
Harries, W. L.; Lee, J. H.; Mcfarland, D. R.
1978-01-01
The X-ray emission from focused plasmas was observed with an image converter camera in the streak and framing modes. Use of a very high gain image intensifier enabled weak hard X-ray emission (above 25 keV) to be recorded. The use of an admixture of higher atomic number into the deuterium was avoided, and the role of the vapor from the anode surface could be discerned. The recorded bremsstrahlung emission seemed to be from a metallic plasma of copper released from the anode surface by bombardment from an intense electron beam. The intensity of emission was determined by the density of copper and the density and energy of the electron beam. The main emission recorded occurred several 100 nsec after the focus was over, which implies that the electric fields driving the beam existed for this duration. It is suggested that the fields were created by annihilation of magnetic flux for a time much longer than the focus duration.
Angular distribution and polarization of atomic radiative emission in electric and magnetic fields
NASA Astrophysics Data System (ADS)
Jacobs, V. L.; Filuk, A. B.
1999-09-01
A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasis has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.
Angular distribution and polarization of atomic radiative emission in electric and magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, V.L.; Filuk, A.B.
A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasismore » has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.« less
NASA Astrophysics Data System (ADS)
Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan
2013-12-01
Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.
Preliminary Results of Field Emission Cathode Tests
NASA Technical Reports Server (NTRS)
Sovey, James S.; Kovaleski, Scott D.
2001-01-01
Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.
Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo
NASA Astrophysics Data System (ADS)
Rankin, Joanna M.
2017-01-01
With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, T. A.; Moskalenko, I. V.; Jóhannesson, G., E-mail: tporter@stanford.edu
High-energy γ -rays of interstellar origin are produced by the interaction of cosmic-ray (CR) particles with the diffuse gas and radiation fields in the Galaxy. The main features of this emission are well understood and are reproduced by existing CR propagation models employing 2D galactocentric cylindrically symmetrical geometry. However, the high-quality data from instruments like the Fermi Large Area Telescope reveal significant deviations from the model predictions on few to tens of degrees scales, indicating the need to include the details of the Galactic spiral structure and thus requiring 3D spatial modeling. In this paper, the high-energy interstellar emissions frommore » the Galaxy are calculated using the new release of the GALPROP code employing 3D spatial models for the CR source and interstellar radiation field (ISRF) densities. Three models for the spatial distribution of CR sources are used that are differentiated by their relative proportion of input luminosity attributed to the smooth disk or spiral arms. Two ISRF models are developed based on stellar and dust spatial density distributions taken from the literature that reproduce local near- to far-infrared observations. The interstellar emission models that include arms and bulges for the CR source and ISRF densities provide plausible physical interpretations for features found in the residual maps from high-energy γ -ray data analysis. The 3D models for CR and ISRF densities provide a more realistic basis that can be used for the interpretation of the nonthermal interstellar emissions from the Galaxy.« less
Field emission from in situ-grown vertically aligned SnO2 nanowire arrays
2012-01-01
Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800
NASA Astrophysics Data System (ADS)
Gupta, Bipin Kumar; Kedawat, Garima; Gangwar, Amit Kumar; Nagpal, Kanika; Kashyap, Pradeep Kumar; Srivastava, Shubhda; Singh, Satbir; Kumar, Pawan; Suryawanshi, Sachin R.; Seo, Deok Min; Tripathi, Prashant; More, Mahendra A.; Srivastava, O. N.; Hahm, Myung Gwan; Late, Dattatray J.
2018-01-01
The vertical aligned carbon nanotubes (CNTs)-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si) wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness) as a barrier layer and iron (Fe, 1.5 nm thickness) as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM) images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2-30 walls with an inner diameter of 3-8 nm. Raman spectrum analysis shows G-band at 1580 cm-1 and D-band at 1340 cm-1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm), low turn-on field (0.6 V/μm) and field enhancement factor (6917) with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.
Field emission properties of SiO2-wrapped CNT field emitter.
Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin
2018-01-05
Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO 2 -wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO 2 -wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO 2 -wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm -1 to achieve FE current density of 22 mA cm -2 ; whereas SiO 2 -wrapped field emitter requires 8.5 V μm -1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO 2 , as obtained from the electric field simulation. Nevertheless, SiO 2 -wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO 2 -wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO 2 -wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.
Field emission properties of SiO2-wrapped CNT field emitter
NASA Astrophysics Data System (ADS)
Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin
2018-01-01
Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO2-wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO2-wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO2-wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm-1 to achieve FE current density of 22 mA cm-2 whereas SiO2-wrapped field emitter requires 8.5 V μm-1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO2, as obtained from the electric field simulation. Nevertheless, SiO2-wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO2-wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO2-wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.
Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties
NASA Astrophysics Data System (ADS)
Song, Meng; Xu, Peng; Song, Yenan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wu, Huizhen; Zhao, Pei; Wang, Miao
2015-09-01
Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ˜1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.
NASA Astrophysics Data System (ADS)
Yates, S. R.; Ashworth, D. J.; Zheng, W.; Knuteson, J.; van Wesenbeeck, I. J.
2016-07-01
Fumigating soil is important for the production of many high-value vegetable, fruit, and tree crops, but fumigants are toxic pesticides with relatively high volatility, which can lead to significant atmospheric emissions. A field experiment was conducted to measure emissions and subsurface diffusion of a mixture of 1,3-dichloropropene (1,3-D) and chloropicrin after shank injection to bare soil at 61 cm depth (i.e., deep injection). Three on-field methods, the aerodynamic (ADM), integrated horizontal flux (IHF), and theoretical profile shape (TPS) methods, were used to obtain fumigant flux density and cumulative emission values. Two air dispersion models (CALPUFF and ISCST3) were also used to back-calculate the flux density using air concentration measurements surrounding the fumigated field. Emissions were continuously measured for 16 days and the daily peak emission rates for the five methods ranged from 13 to 33 μg m-2 s-1 for 1,3-D and 0.22-3.2 μg m-2 s-1 for chloropicrin. Total 1,3-D mass lost to the atmosphere was approximately 23-41 kg ha-1, or 15-27% of the applied active ingredient and total mass loss of chloropicrin was <2%. Based on the five methods, deep injection reduced total emissions by approximately 2-24% compared to standard fumigation practices where fumigant injection is at 46 cm depth. Given the relatively wide range in emission-reduction percentages, a fumigant diffusion model was used to predict the percentage reduction in emissions by injecting at 61 cm, which yielded a 21% reduction in emissions. Significant reductions in emissions of 1,3-D and chloropicrin are possible by injecting soil fumigants deeper in soil.
Recent progress in nanostructured next-generation field emission devices
NASA Astrophysics Data System (ADS)
Mittal, Gaurav; Lahiri, Indranil
2014-08-01
Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.
NASA Astrophysics Data System (ADS)
Morris, Dave; Gilchrist, Brian; Gallimore, Alec
2001-02-01
Field Emitter Array Cathodes (FEACs) are a new technology being developed for several potential spacecraft electron emission and charge control applications. Instead of a single hot (i.e., high powered) emitter, or a gas dependant plasma contactor, FEAC systems consist of many (hundreds or thousands) of small (micron level) cathode/gate pairs printed on a semiconductor wafer that effect cold field emission at relatively low voltages. Each individual cathode emits only micro-amp level currents, but a functional array is capable of amp/cm2 current densities. It is hoped that thus FEAC offers the possibility of a relatively low-power, simple to integrate, and inexpensive technique for the high level of current emissions that are required for an electrodynamic tether (EDT) propulsion mission. Space charge limits are a significant concern for the EDT application. Vacuum chamber tests and PIC simulations are being performed at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory and Space Physics Research Laboratory to determine the effect of plasma density and emitter geometry on space charge limitations. The results of this work and conclusions to date of how to best mitigate space charge limits will be presented. .
Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch
NASA Astrophysics Data System (ADS)
Sallander, J.
1999-05-01
Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.
Group-III Nitride Field Emitters
NASA Technical Reports Server (NTRS)
Bensaoula, Abdelhak; Berishev, Igor
2008-01-01
Field-emission devices (cold cathodes) having low electron affinities can be fabricated through lattice-mismatched epitaxial growth of nitrides of elements from group III of the periodic table. Field emission of electrons from solid surfaces is typically utilized in vacuum microelectronic devices, including some display devices. The present field-emission devices and the method of fabricating them were developed to satisfy needs to reduce the cost of fabricating field emitters, make them compatible with established techniques for deposition of and on silicon, and enable monolithic integration of field emitters with silicon-based driving circuitry. In fabricating a device of this type, one deposits a nitride of one or more group-III elements on a substrate of (111) silicon or other suitable material. One example of a suitable deposition process is chemical vapor deposition in a reactor that contains plasma generated by use of electron cyclotron resonance. Under properly chosen growth conditions, the large mismatch between the crystal lattices of the substrate and the nitride causes strains to accumulate in the growing nitride film, such that the associated stresses cause the film to crack. The cracks lie in planes parallel to the direction of growth, so that the growing nitride film becomes divided into microscopic growing single-crystal columns. The outer ends of the fully-grown columns can serve as field-emission tips. By virtue of their chemical compositions and crystalline structures, the columns have low work functions and high electrical conductivities, both of which are desirable for field emission of electrons. From examination of transmission electron micrographs of a prototype device, the average column width was determined to be about 100 nm and the sharpness of the tips was determined to be characterized by a dimension somewhat less than 100 nm. The areal density of the columns was found to about 5 x 10(exp 9)/sq cm . about 4 to 5 orders of magnitude greater than the areal density of tips in prior field-emission devices. The electric field necessary to turn on the emission current and the current per tip in this device are both lower than in prior field-emission devices, such that it becomes possible to achieve longer operational lifetime. Moreover, notwithstanding the lower current per tip, because of the greater areal density of tips, it becomes possible to achieve greater current density averaged over the cathode area. The thickness of the grown nitride film (equivalently, the length of the columns) could lie between about 0.5 microns and a few microns; in any event, a thickness of about 1 micron is sufficient and costs less than do greater thicknesses. It may be possible to grow nitride emitter columns on glass or other substrate materials that cost less than silicon does. What is important in the choice of substrate material is the difference between the substrate and nitride crystalline structures. Inasmuch as the deposition process is nondestructive, an ability to grow emitter columns on a variety of materials would be advantageous in that it would facilitate the integration of field-emitter structures onto previously processed integrated circuits.
Novel planar field emission of ultra-thin individual carbon nanotubes.
Song, Xuefeng; Gao, Jingyun; Fu, Qiang; Xu, Jun; Zhao, Qing; Yu, Dapeng
2009-10-07
In this work, we proposed and realized a new prototype of planar field emission device based on as-grown individual carbon nanotubes (CNTs) on the surface of a Si-SiO2 substrate. The anode, cathode and the CNT tip all lie on the same surface, so the electron emission is reduced from three-dimensional to two-dimensional. The benefits of such a design include usage of thinner CNT emitters, integrity with planar technology, stable construction, better heat dissipation, etc. A tip-to-tip field emission device was presented besides the tip-to-electrode one. Real-time, in situ observation of the planar field emission was realized in a scanning electron microscope (SEM). Measurements showed that the minimum voltage for 10 nA field emission current was only 8.0 V and the maximum emission current density in an individual CNT emitter (1.0 nm in diameter) exceeded 5.7 x 10(8) A cm(-2). These results stand out in the comparison with recent works on individual CNT field emission, indicating that the planar devices based on ultra-thin individual CNTs are more competitive candidates for next-generation electron field emitters.
Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja
NASA Technical Reports Server (NTRS)
Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.
2000-01-01
Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.
Field emission properties of different forms of carbon
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Lowndes, Douglas H.; Baylor, Larry R.; Kang, Sukill
2001-06-01
The results of field emission (FE) studies are reported for three different forms of carbon: smooth amorphous carbon (a-C) films with both low and high sp 3 content prepared by pulsed-laser deposition (PLD), nanostructured carbon prepared by hot-filament chemical-vapor deposition (HFCVD), and vertically aligned carbon nanofibers (VACNFs). The studies reveal that smooth PLD carbon films are poor field emitters regardless of their sp 3 content. Conditioning of the films, which resulted in films' modification, was required to draw FE current and the emission turn-on fields were relatively high. In contrast, HFCVD carbon films exhibit very good FE properties, including low-emission turn-on fields, relatively high emission site density, and excellent durability. Finally, VACNFs also were found to possess quite promising FE properties that compete with those of HFCVD films. We believe that the latter two forms of carbon are among the most promising candidates for use as cold cathodes in commercial devices.
Ultralow-current-density and bias-field-free spin-transfer nano-oscillator
Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Amiri, Pedram Khalili; Katine, Jordan A.; Krivorotov, Ilya N.; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L.; Jiang, Hongwen
2013-01-01
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators. PMID:23478390
Ultralow-current-density and bias-field-free spin-transfer nano-oscillator.
Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Khalili Amiri, Pedram; Katine, Jordan A; Krivorotov, Ilya N; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L; Jiang, Hongwen
2013-01-01
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.
NASA Astrophysics Data System (ADS)
Gao, Yanlin; Okada, Susumu
2017-05-01
Using the density functional theory, we studied the electronic structures of zigzag graphene nanoribbons with hydroxyl, H, ketone, aldehyde, or carboxyl terminations under a lateral electric field. The critical electric field for electron emission is proportional to the work function of the functionalized edges except the hydroxylated edge, which leads to the anomalous electric field outside the edge, owing to the electrons in the nearly free electron (NFE) state in the vacuum region. The strong electric field also causes a potential barrier for the electron emission from the H-terminated edge owing to the downward shift of the NFE state.
Electric field distribution and current emission in a miniaturized geometrical diode
NASA Astrophysics Data System (ADS)
Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng
2017-06-01
We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h <2. The calculations are spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.
High-Performance Field Emission from a Carbonized Cork.
Lee, Jeong Seok; Lee, Hak Jun; Yoo, Jae Man; Kim, Taewoo; Kim, Yong Hyup
2017-12-20
To broaden the range of application of electron beams, low-power field emitters are needed that are miniature and light. Here, we introduce carbonized cork as a material for field emitters. The light natural cork becomes a graphitic honeycomb upon carbonization, with the honeycomb cell walls 100-200 nm thick and the aspect ratio larger than 100, providing an ideal structure for the field electron emission. Compared to nanocarbon field emitters, the cork emitter produces a high current density and long-term stability with a low turn-on field. The nature of the cork material makes it quite simple to fabricate the emitter. Furthermore, any desired shape of the emitter tailored for the final application can easily be prepared for point, line, or planar emission.
NASA Technical Reports Server (NTRS)
Reisenfeld, Daniel B.; Raymond, John C.; Young, Albert R.; Kohl, John L.
1992-01-01
Dielectronic recombination dominates the recombination rates of most ions in coronal plasmas at their temperatures of peak concentration. Because dielectronic recombination goes by way of high nl doubly excited levels, it is susceptible to collisional excitation and ionization, leading to a decreased rate. On the other hand, theoretical studies show that Stark mixing of the nl levels by a modest electric field enhances the dielectronic recombination rate severalfold. The ionization balance is computed here as as function of density, and it is found that the new results require increased emission measures to match the C IV emission line intensities observed in the sun and in late-type stars. They also make it more difficult to interpret the overall EUV emission line spectrum of the sun.
NASA Astrophysics Data System (ADS)
Takahashi, S.; Ota, Y.; Tajiri, T.; Tatebayashi, J.; Iwamoto, S.; Arakawa, Y.
2017-11-01
The modification of a circularly polarized vacuum field in three-dimensional chiral photonic crystals was measured by spontaneous emission from quantum dots in the structures. Due to the circularly polarized eigenmodes along the helical axis in the GaAs-based mirror-asymmetric structures we studied, we observed highly circularly polarized emission from the quantum dots. Both spectroscopic and time-resolved measurements confirmed that the obtained circularly polarized light was influenced by a large difference in the photonic density of states between the orthogonal components of the circular polarization in the vacuum field.
K-shell spectroscopy of silicon ions as diagnostic for high electric fields
NASA Astrophysics Data System (ADS)
Loetzsch, R.; Jäckel, O.; Höfer, S.; Kämpfer, T.; Polz, J.; Uschmann, I.; Kaluza, M. C.; Förster, E.; Stambulchik, E.; Kroupp, E.; Maron, Y.
2012-11-01
We developed a detection scheme, capable of measuring X-ray line shape of tracer ions in μm thick layers at the rear side of a target foil irradiated by ultra intense laser pulses. We performed simulations of the effect of strong electric fields on the K-shell emission of silicon and developed a spectrometer dedicated to record this emission. The combination of a cylindrically bent crystal in von Hámos geometry and a CCD camera with its single photon counting capability allows for a high dynamic range of the instrument and background free spectra. This approach will be used in future experiments to study electric fields of the order of TV/m at high density plasmas close to solid density.
Growth and field emission properties of tubular carbon cones.
Li, J J; Wang, Q; Gu, C Z
2007-09-01
New forms of tubular carbon cone (TCC) were grown on gold wires by hot-filament chemical vapor deposition (HFCVD). They have a long-cone-shaped appearance with a herringbone hollow interior, surrounded by helical sheets of graphite that are coiled around it. It is considered that TCC formation results because the size of the catalyst particle located in the top of the TCC decreases continuously during growth, due to etching effects in the CVD plasma, reflecting competition between the growth and etching processes in the plasma. In addition, field emission measurements show that TCCs have a very low-threshold field of 0.27 V/microm, and that a stable macroscopic emitting current density of 1 mA/cm2 can be obtained at only 0.5 V/microm. TCCs have good field emission properties, compared to other forms of carbon field emitter, and may be good candidates for use in field emission display devices.
Improved MEGAN predictions of biogenic isoprene in the contiguous United States
NASA Astrophysics Data System (ADS)
Wang, Peng; Schade, Gunnar; Estes, Mark; Ying, Qi
2017-01-01
Isoprene emitted from biogenic sources significantly contributes to ozone and secondary organic aerosol formation in the troposphere. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) has been widely used to estimate isoprene emissions from local to global scales. However, previous studies have shown that MEGAN significantly over-predicts isoprene emissions in the contiguous United States (US). In this study, ambient isoprene concentrations in the US were simulated by the Community Multiscale Air Quality (CMAQ) model (v5.0.1) using biogenic emissions estimated by MEGAN v2.10 with several different gridded isoprene emission factor (EF) fields. Best isoprene predictions were obtained with the EF field based on the Biogenic Emissions Landcover Database v4 (BELD4) from US EPA for its Biogenic Emission Inventory System (BEIS) model v3.61 (MEGAN-BEIS361). A seven-month simulation (April to October 2011) of isoprene emissions with MEGAN-BEIS361 and ambient concentrations using CMAQ shows that observed spatial and temporal variations (both diurnal and seasonal) of isoprene concentrations can be well predicted at most non-urban monitors using isoprene emission estimation from the MEGAN-BEIS361 without significant biases. The predicted monthly average vertical column density of formaldehyde (HCHO), a reactive volatile organic compound with significant contributions from isoprene oxidation, generally agree with the spatial distribution of HCHO column density derived using satellite data collected by the Ozone Monitoring Instrument (OMI), although summer month vertical column densities in the southeast US were overestimated, which suggests that isoprene emission might still be overestimated in that region. The agreement between observation and prediction may be further improved if more accurate PAR values, such as those derived from satellite-based observations, were used in modeling the biogenic emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamble, Ramesh B., E-mail: rbk.physics@coep.ac.in; Department of Physics, College of Engineering, Pune 411005, Maharashtra; Tanty, Narendra
2016-08-22
We report the potential field emission of highly conducting metallic perovskite lanthanum nickelate (LaNiO{sub 3}) from the nanostructured pyramidal and whisker shaped tips as electron emitters. Nano particles of lanthanum nickelate (LNO) were prepared by sol-gel route. Structural and morphological studies have been carried out. Field emission of LNO exhibited high emission current density, J = 3.37 mA/cm{sup 2} at a low threshold electric field, E{sub th} = 16.91 V/μm, obeying Fowler–Nordheim tunneling. The DC electrical resistivity exhibited upturn at 11.6 K indicating localization of electron at low temperature. Magnetoresistance measurement at different temperatures confirmed strong localization in nanostructured LNO obeying Anderson localization effect at low temperature.
Persinger, Michael A; Dotta, Blake T; Karbowski, Lukasz M; Murugan, Nirosha J
2015-01-01
The quantitative relationship between local changes in magnetic fields and photon emissions within ∼2 mm of aggregates of 10(5)-10(6) cells was explored experimentally. The vertical component of the earth's magnetic field as measured by different magnetometers was ∼15 nT higher when plates of cells removed from incubation were measured compared to plates containing only medium. Additional experiments indicated an inverse relationship over the first ∼45 min between changes in photon counts (∼10(-12) W·m(-2)) following removal from incubation and similar changes in magnetic field intensity. Calculations indicated that the energy within the aqueous volume containing the cells was equivalent for that associated with the flux densities of the magnetic fields and the photon emissions. For every approximately 1 nT increase in magnetic field intensity value there was a decrease of ∼2 photons (equivalent of 10(-18) J). These results complement correlation studies and suggest there may be a conservation of energy between expression as magnetic fields that are subtracted or added to the adjacent geomagnetic field and reciprocal changes in photon emissions when aggregates of cells within a specific volume of medium (water) adapt to new environments.
NASA Astrophysics Data System (ADS)
Kang, Sukill; Lowndes, Douglas H.; Ellis, Darren
2001-03-01
Nanostructured carbon films have been grown on uncatalysed n-type Si using a modified HF-CVD process and catalytic decomposition of ethylene (C_2H_4). Various metal catalyst wires such as Ni, Co, Fe and a NiFe composite were placed within the windings of a tungsten filament and the assembly was placed in close proximity ( ~7 mm) to the unheated substrate. Radiative heating of the substrate by the filament results in a substrate temperature of ~ 500^oC after 7 min. Films grown using the Ni catalyst showed a field emission turn-on field that varied from 9 to 15 V/μm and was stable for 30-50 hours (1-10 A/cm^2 emission current density), a result that is comparable to carbon nanotube- and carbon nanofiber-based structures. In this contribution, we present results from field emission scanning electron microscopy, transmission electron microscopy, and electron field emission measurements that elucidate the relationship between field emission properties, film morphology, and type of catalyst.
Comparison of the far-infrared and carbon monoxide emission in Heiles' Cloud 2 and B18
NASA Technical Reports Server (NTRS)
Snell, Ronald L.; Schloerb, F. Peter; Heyer, Mark H.
1989-01-01
A comparison is made of the far-IR emission detected by IRAS at 60 and 100 microns and the emission from C(-13)O in B18 and Heiles' Cloud 2. The results show that both these clouds have extended emission at the studied wavelengths and that this emission is correlated with the integrated intensity of (C-13)O emission. The dust temperature and optical depth, the gas column density, the mass of gas and dust, and the far-IR luminosity are derived and presented. The analysis shows that the dust optical depth is much better correlated with the gas column density than with the far-IR intensity. The dust temperature is found to be anticorrelated with the gas column density, suggesting that these clouds are externally heated by the interstellar radiation field. The far-IR luminosity-to-mass ratios for the clouds are substantially less than the average for the inner Galaxy.
Excellent field emission properties of vertically oriented CuO nanowire films
NASA Astrophysics Data System (ADS)
Feng, Long; Yan, Hui; Li, Heng; Zhang, Rukang; Li, Zhe; Chi, Rui; Yang, Shuaiyu; Ma, Yaya; Fu, Bin; Liu, Jiwen
2018-04-01
Oriented CuO nanowire films were synthesized on a large scale using simple method of direct heating copper grids in air. The field emission properties of the sample can be enhanced by improving the aspect ratio of the nanowires just through a facile method of controlling the synthesis conditions. Although the density of the nanowires is large enough, the screen effect is not an important factor in this field emission process because few nanowires sticking out above the rest. Benefiting from the unique geometrical and structural features, the CuO nanowire samples show excellent field emission (FE) properties. The FE measurements of CuO nanowire films illustrate that the sample synthesized at 500 °C for 8 h has a comparatively low turn-on field of 0.68 V/μm, a low threshold field of 1.1 V/μm, and a large field enhancement factor β of 16782 (a record high value for CuO nanostructures, to the best of our knowledge), indicating that the samples are promising candidates for field emission applications.
sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-10-06
The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The software can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field beingmore » estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.« less
NASA Technical Reports Server (NTRS)
Williams, Robert (Editor); Livio, Mario (Editor); Dufour, Reginald J.
1994-01-01
A review of the field of astronomical spectroscopy with emphasis on emission lines in astrophysical plasmas is presented. A brief history of UV spectroscopy instruments is given, following by a discussion and tabulation of major atlases of UV emission-line objects to date (mid-1994). A discussion of the major diagnostic UV emission lines in the approx. 912-3200 A spectral region that are useful for determining electron densities, temperatures, abundances, and extinction in low- to moderate density plasmas is given, with examples of applications to selected objects. The review concludes by presenting some recent results from HST, HUT, and IUE on UV emission-line spectroscopy of nebulae and active galaxies.
Particles and fields measurements at Neptune with Voyager 2
NASA Astrophysics Data System (ADS)
Krimigis, S. M.
1992-11-01
The first results of measurements performed on the Voyager 2 spacecraft with the Neptune system on August 24-28, 1989 are summarized. These include measurements of the magnetic field, plasma, energetic and high energy particles, plasma waves and radio emissions, and additional information relating to UV emissions. The planetary magnetic field outside about 4 R(N) may be described by an offset, tilted, dipole of moment 0.133 Gauss-R(N) exp 3; inside that distance the field is dominated by higher order terms. Plasma densities are found to be generally low (about 5 exp -3/cu cm), except at magnetic equatorial crossings when densities are up to about 1/cu cm. A variety of plasma wave emissions were seen, including chorus, hiss, electroncyclotron waves, and upper hybrid resonance in the inner magnetosphere. The measured flux of soft electrons and ions over the polar region of about 2 x 10 exp -3 erg/sq cm sec results in an estimated power input of about 3 x 10 exp 7 W, which is substantially less than that at other planets.
Zoppetti, Nicola; Andreuccetti, Daniele; Bellieni, Carlo; Bogi, Andrea; Pinto, Iole
2011-12-01
Portable - or "laptop" - computers (LCs) are widely and increasingly used all over the world. Since LCs are often used in tight contact with the body even by pregnant women, fetal exposures to low frequency magnetic fields generated by these units can occur. LC emissions are usually characterized by complex waveforms and are often generated by the main AC power supply (when connected) and by the display power supply sub-system. In the present study, low frequency magnetic field emissions were measured for a set of five models of portable computers. For each of them, the magnetic flux density was characterized in terms not just of field amplitude, but also of the so called "weighted peak" (WP) index, introduced in the 2003 ICNIRP Statement on complex waveforms and confirmed in the 2010 ICNIRP Guidelines for low frequency fields. For the model of LC presenting the higher emission, a deeper analysis was also carried out, using numerical dosimetry techniques to calculate internal quantities (current density and in-situ electric field) with reference to a digital body model of a pregnant woman. Since internal quantities have complex waveforms too, the concept of WP index was extended to them, considering the ICNIRP basic restrictions defined in the 1998 Guidelines for the current density and in the 2010 Guidelines for the in-situ electric field. Induced quantities and WP indexes were computed using an appropriate original formulation of the well known Scalar Potential Finite Difference (SPFD) numerical method for electromagnetic dosimetry in quasi-static conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kim, Ho Young; Jeong, Sooyeon; Jeong, Seung Yol; Baeg, Kang-Jun; Han, Joong Tark; Jeong, Mun Seok; Lee, Geon-Woong; Jeong, Hee Jin
2015-03-12
Despite the recent progress in the fabrication of field emitters based on graphene nanosheets, their morphological and electrical properties, which affect their degree of field enhancement as well as the electron tunnelling barrier height, should be controlled to allow for better field-emission properties. Here we report a method that allows the synthesis of graphene-based emitters with a high field-enhancement factor and a low work function. The method involves forming monolithic three-dimensional (3D) graphene structures by freeze-drying of a highly concentrated graphene paste and subsequent work-function engineering by chemical doping. Graphene structures with vertically aligned edges were successfully fabricated by the freeze-drying process. Furthermore, their number density could be controlled by varying the composition of the graphene paste. Al- and Au-doped 3D graphene emitters were fabricated by introducing the corresponding dopant solutions into the graphene sheets. The resulting field-emission characteristics of the resulting emitters are discussed. The synthesized 3D graphene emitters were highly flexible, maintaining their field-emission properties even when bent at large angles. This is attributed to the high crystallinity and emitter density and good chemical stability of the 3D graphene emitters, as well as to the strong interactions between the 3D graphene emitters and the substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Avshish; Parveen, Shama; Husain, Samina
2014-02-28
Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current densitymore » of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.« less
Spindt cold cathode electron gun development program
NASA Technical Reports Server (NTRS)
Spindt, C. A.
1983-01-01
A thin film field emission cathode array and an electron gun based on this emitter array are summarized. Fabricating state of the art cathodes for testing at NASA and NRL, advancing the fabrication technology, developing wedge shaped emitters, and performing emission tests are covered. An anistropic dry etching process (reactive ion beam etching) developed that leads to increasing the packing density of the emitter tips to about 5 x 10 to the 6th power/square cm. Tests with small arrays of emitter tips having about 10 tips has demonstrated current densities of over 100 A/sq cm. Several times using cathodes having a packing density of 1.25 x 10 to the 6th power tips/sq cm. Indications are that the higher packing density achievable with the dry etch process may extend this capability to the 500 A/sq cm range and beyond. The wedge emitter geometry was developed and shown to produce emission. This geometry can (in principle) extend the current density capability of the cathodes beyond the 500 A/sq cm level. An emission microscope was built and tested for use with the cathodes.
High intensity, plasma-induced electron emission from large area carbon nanotube array cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao Qingliang; Yang Ya; Qi Junjie
2010-02-15
The plasma-induced electron emission properties of large area carbon nanotube (CNT) array cathodes under different pulse electric fields were investigated. The formation and expansion of cathode plasmas were proved; in addition, the cathodes have higher emission current in the double-pulse mode than that in the single-pulse mode due to the expansion of plasma. Under the double-pulse electric field of 8.16 V/mum, the plasma's expansion velocity is about 12.33 cm/mus and the highest emission current density reached 107.72 A/cm{sup 2}. The Cerenkov radiation was used to diagnose the distribution of electron beams, and the electron beams' generating process was plasma-induced emission.
GAMMA–GAMMA ABSORPTION IN THE BROAD LINE REGION RADIATION FIELDS OF GAMMA-RAY BLAZARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Böttcher, Markus; Els, Paul, E-mail: Markus.Bottcher@nwu.ac.za
2016-04-20
The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ -ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ -ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energymore » density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ -ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ -rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ -ray emission region must therefore be located near the outer boundary of the BLR.« less
M = +1, ± 1 and ± 2 mode helicon wave excitation.
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Yun, S.-M.; Chang, H.-Y.
1996-11-01
The characteristics of M=+1, ± 1 and ± 2 modes helicon wave excited using a solenoid antenna, Nagoya type III and quadrupole antenna respectively are first investigated. The solenoid antenna is constructed by winding a copper cable on a quartz discharge tube. Two dimensional cross-field measurements of ArII optical emission induced by hot electrons are made to investigate RF power deposition: Components of the wave magnetic field measured with a single-turn, coaxial magnetic probe were compared with the field patterns computed for M=+1, ± 1 and ± 2 modes. The M=+1 mode plasma produced by the solenoid antenna has a cylindrical high intensity plasma column, which center is empty. This cylindrical high intensity column results from the rotation of the cross-sectional electric field pattern (right hand circularly polarization). The radial plasma density profile has a peak at r=2.5cm with axisymmetry. It has been found that the radial profile of the plasma density is in good agreement with the computed power deposition profile. The radial profiles of the wave magnetic field are in good agreement with computations. The plasma excited by Nagoya type III antenna has two high intensity columns which results from the linear combination of M=+1 and -1 modes (i.e. plane polarization). The radial plasma density profile is in good agreement with emission intensity profile of ArII line (488nm). The plasma excited by quadrupole antenna has four high intensity columns which results from the linear combination of M=+2 and -2 modes (i.e. plane polarization). In the M=± 2 modes, the radial plasma density profile is also in good agreement with emission intensity profile of ArII line.
Lower Hybrid Wave Induced SOL Emissivity Variation at High Density on the Alcator C-Mod Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faust, I.; Terry, J. L.; Reinke, M. L.
Lower Hybrid Current Drive (LHCD) in the Alcator C-Mod tokamak provides current profile control for the generation of Advanced Tokamak (AT) plasmas. Non-thermal electron bremsstrahlung emission decreases dramatically at n-bar{sub e}>1{center_dot}10{sup 20}[m{sup -3}] for diverted discharges, indicating low current drive efficiency. It is suggested that Scrape-Off-Layer (SOL) collisional absorption of LH waves is the cause for the absence of non-thermal electrons at high density. VUV and visible spectroscopy in the SOL provide direct information on collision excitation processes. Deuterium Balmer-, Lyman- and He-I transition emission measurements were used for initial characterization of SOL electron-neutral collisional absorption. Data from Helium andmore » Deuterium LHCD discharges were characterized by an overall increase in the emissivity as well as an outward radial shift in the emissivity profile with increasing plasma density and applied LHCD power. High-temperature, high-field (T{sub e} = 5keV,B{sub t} = 8T) helium discharges at high density display increased non-thermal signatures as well as reduced SOL emissivity. Variations in emissivity due to LHCD were seen in SOL regions not magnetically connected to the LH Launcher, indicating global SOL effects due to LHCD.« less
AGN coronal emission models - I. The predicted radio emission
NASA Astrophysics Data System (ADS)
Raginski, I.; Laor, Ari
2016-06-01
Accretion discs in active galactic nucleus (AGN) may be associated with coronal gas, as suggested by their X-ray emission. Stellar coronal emission includes radio emission, and AGN corona may also be a significant source for radio emission in radio quiet (RQ) AGN. We calculate the coronal properties required to produce the observed radio emission in RQ AGN, either from synchrotron emission of power-law (PL) electrons, or from cyclosynchrotron emission of hot mildly relativistic thermal electrons. We find that a flat spectrum, as observed in about half of RQ AGN, can be produced by corona with a disc or a spherical configuration, which extends from the innermost regions out to a pc scale. A spectral break to an optically thin power-law emission is expected around 300-1000 GHz, as the innermost corona becomes optically thin. In the case of thermal electrons, a sharp spectral cut-off is expected above the break. The position of the break can be measured with very long baseline interferometry observations, which exclude the cold dust emission, and it can be used to probe the properties of the innermost corona. Assuming equipartition of the coronal thermal energy density, the PL electrons energy density, and the magnetic field, we find that the energy density in a disc corona should scale as ˜R-1.3, to get a flat spectrum. In the spherical case the energy density scales as ˜R-2, and is ˜4 × 10-4 of the AGN radiation energy density. In Paper II we derive additional constraints on the coronal parameters from the Gudel-Benz relation, Lradio/LX-ray ˜ 10- 5, which RQ AGN follow.
Electron beam emission from a diamond-amplifier cathode.
Chang, Xiangyun; Wu, Qiong; Ben-Zvi, Ilan; Burrill, Andrew; Kewisch, Jorg; Rao, Triveni; Smedley, John; Wang, Erdong; Muller, Erik M; Busby, Richard; Dimitrov, Dimitre
2010-10-15
The diamond amplifier (DA) is a new device for generating high-current, high-brightness electron beams. Our transmission-mode tests show that, with single-crystal, high-purity diamonds, the peak current density is greater than 400 mA/mm², while its average density can be more than 100 mA/mm². The gain of the primary electrons easily exceeds 200, and is independent of their density within the practical range of DA applications. We observed the electron emission. The maximum emission gain measured was 40, and the bunch charge was 50 pC/0.5 mm². There was a 35% probability of the emission of an electron from the hydrogenated surface in our tests. We identified a mechanism of slow charging of the diamond due to thermal ionization of surface states that cancels the applied field within it. We also demonstrated that a hydrogenated diamond is extremely robust.
A search for extended radio emission from selected compact galaxy groups
NASA Astrophysics Data System (ADS)
Nikiel-Wroczyński, B.; Urbanik, M.; Soida, M.; Beck, R.; Bomans, D. J.
2017-07-01
Context. Studies on compact galaxy groups have led to the conclusion that a plenitude of phenomena take place in between galaxies that form them. However, radio data on these objects are extremely scarce and not much is known concerning the existence and role of the magnetic field in intergalactic space. Aims: We aim to study a small sample of galaxy groups that look promising as possible sources of intergalactic magnetic fields; for example data from radio surveys suggest that most of the radio emission is due to extended, diffuse structures in and out of the galaxies. Methods: We used the Effelsberg 100 m radio telescope at 4.85 GHz and NRAO VLA Sky Survey (NVSS) data at 1.40 GHz. After subtraction of compact sources we analysed the maps searching for diffuse, intergalactic radio emission. Spectral index and magnetic field properties were derived. Results: Intergalactic magnetic fields exist in groups HCG 15 and HCG 60, whereas there are no signs of them in HCG 68. There are also hints of an intergalactic bridge in HCG 44 at 4.85 GHz. Conclusions: Intergalactic magnetic fields exist in galaxy groups and their energy density may be comparable to the thermal (X-ray) density, suggesting an important role of the magnetic field in the intra-group medium, wherever it is detected.
NASA Astrophysics Data System (ADS)
Cui, Yunkang; Chen, Jing; Di, Yunsong; Zhang, Xiaobing; Lei, Wei
2017-12-01
In this paper, a facile method to fabricate the flexible field emission devices (FEDs) based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED) and energy dispersive X-ray spectrometer (EDX), while the morphology was revealed by field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that the SiC nanowires grew along the [111] direction with the diameter of ˜110 nm and length of˜30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (˜0.95 V/μm) and threshold field (˜3.26 V/μm), and the high field enhancement factor (β=4670). It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.
Field-Induced and Thermal Electron Currents from Earthed Spherical Emitters
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2017-04-01
The theories of electron emission from planar surfaces are well understood, but they are not suitable for describing emission from spherical surfaces; their incorrect application to highly curved, nanometer-scale surfaces can overestimate the emitted current by several orders of magnitude. This inaccuracy is of particular concern for describing modern nanoscale electron sources, which continue to be modeled using the planar equations. In this paper, the field-induced and thermal currents are treated in a unified way to produce Fowler-Nordheim-type and Richardson-Schottky-type equations for the emitted current density from earthed nanoscale spherical surfaces. The limits of applicability of these derived expressions are considered along with the energy spectra of the emitted electrons. Within the relevant limits of validity, these equations are shown to reproduce the results of precise numerical calculations of the emitted current densities. The methods used here are adaptable to other one-dimensional emission problems.
Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A
2018-03-01
We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander
2016-04-01
Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the cyclotron mechanism of generation by non-equilibrium energetic electrons in dense plasma. The reported study was funded by RFBR, according to the research project No. 16-32-60056 mol_a_dk.
Theoretical and Experimental Beam Plasma Physics (TEBPP)
NASA Technical Reports Server (NTRS)
Roberts, W. T.
1985-01-01
The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is deployed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations in the near field ( 10 m) and mid field (10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.
Theoretical and Experimental Beam Plasma Physics (TEBPP)
NASA Technical Reports Server (NTRS)
Roberts, B.
1986-01-01
The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.
Probing local work function of electron emitting Si-nanofacets
NASA Astrophysics Data System (ADS)
Basu, Tanmoy; Som, Tapobrata
2017-10-01
Large area, Si-nanofacets are synthesized by obliquely incident low energy Ar+-ion-beam bombardment at room temperature (RT). The field emission properties of such nanofacets are studied based on current-voltage measurements and the Fowler-Nordheim equation. Low turn-on field with relatively high current density is obtained due to the shape and an overall rough morphology. We demonstrate a tunable field emission property from the silicon nanofacets by varying the ion exposure time. Atomic force microscopy (AFM) in conjunction with Kelvin probe force microscopy (KPFM) measurements provide the information on the aspect ratio and confirms the presence of native oxide layer near the apexes of the facets, respectively. The inhomogeneous oxidation leads to an increase in the local work function at the apexes of the facets, restricting the electron emission from the same. Due to its room temperature fabrication, the present method is of great significance to the low-cost vacuum field emission devices fabrication.
NASA Astrophysics Data System (ADS)
Carley, Eoin P.; Vilmer, Nicole; Simões, Paulo J. A.; Ó Fearraigh, Brían
2017-12-01
Coronal mass ejections (CMEs) are large eruptions of plasma and magnetic field from the low solar corona into interplanetary space. These eruptions are often associated with the acceleration of energetic electrons which produce various sources of high intensity plasma emission. In relatively rare cases, the energetic electrons may also produce gyrosynchrotron emission from within the CME itself, allowing for a diagnostic of the CME magnetic field strength. Such a magnetic field diagnostic is important for evaluating the total magnetic energy content of the CME, which is ultimately what drives the eruption. Here, we report on an unusually large source of gyrosynchrotron radiation in the form of a type IV radio burst associated with a CME occurring on 2014-September-01, observed using instrumentation from the Nançay Radio Astronomy Facility. A combination of spectral flux density measurements from the Nançay instruments and the Radio Solar Telescope Network (RSTN) from 300 MHz to 5 GHz reveals a gyrosynchrotron spectrum with a peak flux density at 1 GHz. Using this radio analysis, a model for gyrosynchrotron radiation, a non-thermal electron density diagnostic using the Fermi Gamma Ray Burst Monitor (GBM) and images of the eruption from the GOES Soft X-ray Imager (SXI), we were able to calculate both the magnetic field strength and the properties of the X-ray and radio emitting energetic electrons within the CME. We find the radio emission is produced by non-thermal electrons of energies >1 MeV with a spectral index of δ 3 in a CME magnetic field of 4.4 G at a height of 1.3 R⊙, while the X-ray emission is produced from a similar distribution of electrons but with much lower energies on the order of 10 keV. We conclude by comparing the electron distribution characteristics derived from both X-ray and radio and show how such an analysis can be used to define the plasma and bulk properties of a CME.
NASA Astrophysics Data System (ADS)
Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah
2018-05-01
Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.
Impact of neutral density fluctuations on gas puff imaging diagnostics
NASA Astrophysics Data System (ADS)
Wersal, C.; Ricci, P.
2017-11-01
A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.
Possible overexposure of pregnant women to emissions from a walk through metal detector.
Wu, Dagang; Qiang, Rui; Chen, Ji; Seidman, Seth; Witters, Donald; Kainz, Wolfgang
2007-10-07
This paper presents a systematic procedure to evaluate the induced current densities and electric fields due to walk-through metal detector (WTMD) exposure. This procedure is then used to assess the exposure of nine pregnant women models exposed to one WTMD model. First, we measured the magnetic field generated by the WTMD, then we extracted the equivalent current source to represent the WTMD emissions and finally we calculated the induced current densities and electric fields using the impedance method. The WTMD emissions and the induced fields in the pregnant women and fetus models are then compared to the ICNIRP Guidelines and the IEEE C95.6 exposure safety standard. The results prove the consistency between maximum permissible exposure (MPE) levels and basic restrictions for the ICNIRP Guidelines and IEEE C95.6. We also found that this particular WTMD complies with the ICNIRP basic restrictions for month 1-5 models, but leads to both fetus and pregnant women overexposure for month 6-9 models. The IEEE C95.6 restrictions (MPEs and basic restrictions) are not exceeded. The fetus overexposure of this particular WTMD calls for carefully conducted safety evaluations of security systems before they are deployed.
Possible overexposure of pregnant women to emissions from a walk through metal detector
NASA Astrophysics Data System (ADS)
Wu, Dagang; Qiang, Rui; Chen, Ji; Seidman, Seth; Witters, Donald; Kainz, Wolfgang
2007-09-01
This paper presents a systematic procedure to evaluate the induced current densities and electric fields due to walk-through metal detector (WTMD) exposure. This procedure is then used to assess the exposure of nine pregnant women models exposed to one WTMD model. First, we measured the magnetic field generated by the WTMD, then we extracted the equivalent current source to represent the WTMD emissions and finally we calculated the induced current densities and electric fields using the impedance method. The WTMD emissions and the induced fields in the pregnant women and fetus models are then compared to the ICNIRP Guidelines and the IEEE C95.6 exposure safety standard. The results prove the consistency between maximum permissible exposure (MPE) levels and basic restrictions for the ICNIRP Guidelines and IEEE C95.6. We also found that this particular WTMD complies with the ICNIRP basic restrictions for month 1-5 models, but leads to both fetus and pregnant women overexposure for month 6-9 models. The IEEE C95.6 restrictions (MPEs and basic restrictions) are not exceeded. The fetus overexposure of this particular WTMD calls for carefully conducted safety evaluations of security systems before they are deployed.
Modeling and simulation for the field emission of carbon nanotubes array
NASA Astrophysics Data System (ADS)
Wang, X. Q.; Wang, M.; Ge, H. L.; Chen, Q.; Xu, Y. B.
2005-12-01
To optimize the field emission of the infinite carbon nanotubes (CNTs) array on a planar cathode surface, the numerical simulation for the behavior of field emission with finite difference method was proposed. By solving the Laplace equation with computer, the influence of the intertube distance, the anode-cathode distance and the opened/capped CNT on the field emission of CNTs array were taken into account, and the results could accord well with the experiments. The simulated results proved that the field enhancement factor of individual CNT is largest, but the emission current density is little. Due to the enhanced screening of the electric field, the enhancement factor of CNTs array decreases with decreasing the intertube distance. From the simulation the field emission can be optimized when the intertube distance is close to the tube height. The anode-cathode distance hardly influences the field enhancement factor of CNTs array, but can low the threshold voltage by decreasing the anode-cathode distance. Finally, the distribution of potential of the capped CNTs array and the opened CNTs array was simulated, which the results showed that the distribution of potential can be influenced to some extent by the anode-cathode distance, especially at the apex of the capped CNTs array and the brim of the opened CNTs array. The opened CNTs array has larger field enhancement factor and can emit more current than the capped one.
Magnetic and Electric Transverse Spin Density of Spatially Confined Light
NASA Astrophysics Data System (ADS)
Neugebauer, Martin; Eismann, Jörg S.; Bauer, Thomas; Banzer, Peter
2018-04-01
When a beam of light is laterally confined, its field distribution can exhibit points where the local magnetic and electric field vectors spin in a plane containing the propagation direction of the electromagnetic wave. The phenomenon indicates the presence of a nonzero transverse spin density. Here, we experimentally investigate this transverse spin density of both magnetic and electric fields, occurring in highly confined structured fields of light. Our scheme relies on the utilization of a high-refractive-index nanoparticle as a local field probe, exhibiting magnetic and electric dipole resonances in the visible spectral range. Because of the directional emission of dipole moments that spin around an axis parallel to a nearby dielectric interface, such a probe particle is capable of locally sensing the magnetic and electric transverse spin density of a tightly focused beam impinging under normal incidence with respect to said interface. We exploit the achieved experimental results to emphasize the difference between magnetic and electric transverse spin densities.
NASA Astrophysics Data System (ADS)
Zhang, Xizhu; Wang, Jinshu; Wang, Yiman; Liu, Wei; Zhou, Meiling; Gao, Zhiyuan
2013-06-01
The microstructure of a fully activated scandia doped dispenser (SDD) cathode has been studied by scanning electron microscope (SEM). The observation results display that nanoparticles appear at the growth steps and the surface of tungsten grains of the fully activated SDD cathode. To study the influence of the nanoparticles on the emission, the local electric field strengths around the nanoparticles have been calculated by Maxwell 2D code and Comsol. The calculation results show that the local electric field strengths are enhanced by 1.1 to 3.8 times to average value based on different model conditions. The highest field strength is about 1.54 × 105 V/cm at an average field strength of 40 KV/cm, which is related to a space-charge limited (SCL) current density of 100 A/cm2 in the experimental configuration. This implies the field strength is not high enough to cause field emission.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2014-05-01
In the framework of the self-interaction-free time-dependent density-functional theory, we have performed three-dimensional (3D) ab initio calculations of He atoms in near-infrared (NIR) laser fields subject to excitation by a single extreme ultraviolet (XUV) attosecond pulse (SAP). We have explored the dynamical behavior of the subcycle high harmonic generation (HHG) for transitions from the excited states to the ground state and found oscillation structures with respect to the time delay between the SAP and NIR fields. The oscillatory pattern in the photon emission spectra has a period of ˜1.3 fs which is half of the NIR laser optical cycle, similar to that recently measured in the experiments on transient absorption of He [M. Chini et al., Sci. Rep. 3, 1105 (2013), 10.1038/srep01105]. We present the photon emission spectra from 1s2p, 1s3p, 1s4p, 1s5p, and 1s6p excited states as functions of the time delay. We explore the subcycle Stark shift phenomenon in NIR fields and its influence on the photon emission process. Our analysis reveals several interesting features of the subcycle HHG dynamics and we identify the mechanisms responsible for the observed peak splitting in the photon emission spectra.
NASA Astrophysics Data System (ADS)
O'Donoghue, James; Melin, Henrik; Stallard, Tom S.; Provan, G.; Moore, Luke; Badman, Sarah V.; Cowley, Stan W. H.; Baines, Kevin H.; Miller, Steve; Blake, James S. D.
2016-01-01
On 19-21 April 2013, the ground-based 10-m W.M. Keck II telescope was used to simultaneously measure H3+ emissions from four regions of Saturn's auroral ionosphere: (1) the northern noon region of the main auroral oval; (2) the northern midnight main oval; (3) the northern polar cap and (4) the southern noon main oval. The H3+ emission from these regions was captured in the form of high resolution spectral images as the planet rotated. The results herein contain twenty-three H3+ temperatures, column densities and total emissions located in the aforementioned regions - ninety-two data points in total, spread over timescales of both hours and days. Thermospheric temperatures in the spring-time northern main oval are found to be cooler than their autumn-time southern counterparts by tens of K, consistent with the hypothesis that the total thermospheric heating rate is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than it is at noon, in agreement with a nearby peak in the electron influx in the post-dawn sector and a minimum flux at midnight. Finally, when arranging the northern main oval H3+ parameters as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ∼115° northern phase, with a full-width at half-maximum (FWHM) of ∼44°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. A combination of the H3+ production and loss timescales and the ±10° uncertainty in the location of a given PPO phase are likely, at least in part, to be responsible for the observed peaks in H3+ density and emission occurring at a later time than the peak precipitation expected at 90° PPO phase.
Field electron extraction from surface modified Cd(OH)2 nanowires
NASA Astrophysics Data System (ADS)
Bagal, Vivekanand S.; Patil, Girish P.; Jadhav, Chandradip; Sharma, Malvika; Shivhare, Sugam; Chavan, Padmakar G.
2018-04-01
The Cd(OH)2 nanowires were grown on Silicon(Si) substrate by simple chemical bath deposition technique and gold(Au) nanoparticles were decorated on surface of the Cd(OH)2 nanowiresby sputtering method. Detail characterization such as morphological and structural analysis of Au/Cd(OH)2 nanowires has been carried out using Field Emission Scanning Electron Microscope and X-ray Diffraction. Low turn-on field of 0.75 V/μm was found forthe emission current density of 10 µA/cm2 and high currentdensity of 1.478mA/cm2 was drawn at an applied field of 1.6 V/μm from Au/Cd(OH)2 nanowires, observed low turn-on field was found superior to other metal nanoparticles decorated semiconducting nanostructures reported in the literature. Also the field emission current stability for the preset value of 10 µA over the period of 3 hr is found to be good. To the best of our knowledge, this is the first report on the synthesis and field emission studies Au/Cd(OH)2 nanowires.
NASA Astrophysics Data System (ADS)
Kolekar, Sadhu; Patole, S. P.; Patil, Sumati; Yoo, J. B.; Dharmadhikari, C. V.
2017-10-01
We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well-defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD) in order to understand the effect of temperature on distribution of electron emission spots and ring like structures in Field Emission Microscope (FEM) image. The FEM images could be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 from FEM image is typically, 4.5 × 107 and the actual number emitters per cm2 present as per Atomic Force Microscopy (AFM) data is 1.2 × 1012. The measured Current-Voltage (I-V) characteristics exhibit non linear Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current were recorded at different temperatures and Fast Fourier transformed into temperature dependent power spectral density. The latter was found to obey power law relation S(f) = A(Iδ/fξ), where δ and ξ are temperature dependent current and frequency exponents respectively.
Diffuse radio emission in the complex merging galaxy cluster Abell2069
NASA Astrophysics Data System (ADS)
Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.
2015-03-01
Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.
Inferring physical properties of galaxies from their emission-line spectra
NASA Astrophysics Data System (ADS)
Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.
2017-02-01
We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.
Experimental Observations of Microwave Emission from a 35 GHz Cyclotron Autoresonant Maser
1990-07-27
available graphite products) with a density of p =1.84 gm/cm 3 . The electron beam in the diode is generated through the process of explosive field emission...introduction to the physics of intense charge particle beams. Plenum Press, 1982. [331 D. Prosnitz %... .. T. Scharlemann. Beam quality definitions
Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Silze, A
2014-05-01
An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10(10) cm(-3) to 1 × 10(11) cm(-3), when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10(18) atoms/s for aluminum, which meets the demand for the production of a milliampere Al(+) ion beam.
NASA Astrophysics Data System (ADS)
Panda, Kalpataru; Sundaravel, B.; Panigrahi, B. K.; Huang, Pin-Chang; Shih, Wen-Ching; Chen, Huang-Chin; Lin, I.-Nan
2012-06-01
The electron field emission (EFE) properties of microcrystalline diamond (MCD) films are significantly enhanced due to the Fe coating and post-annealing processes. The 900 °C post-annealed Fe coated diamond films exhibit the best EFE properties, with a turn on field (E0) of 3.42 V/μm and attain EFE current density (Je) of 170 μA/cm2 at 7.5 V/μm. Scanning tunnelling spectroscopy (STS) in current imaging tunnelling spectroscopy mode clearly shows the increased number density of emission sites in Fe-coated and post-annealed MCD films than the as-prepared ones. Emission is seen from the boundaries of the Fe (or Fe3C) nanoparticles formed during the annealing process. In STS measurement, the normalized conductance dI /dV/I/V versus V curves indicate nearly metallic band gap, at the boundaries of Fe (or Fe3C) nanoparticles. Microstructural analysis indicates that the mechanism for improved EFE properties is due to the formation of nanographite that surrounds the Fe (or Fe3C) nanoparticles.
NASA Astrophysics Data System (ADS)
Rathore, Kavita; Bhattacharjee, Sudeep; Munshi, Prabhat
2017-06-01
A tomographic method based on the Fourier transform is used for characterizing a microwave plasma in a multicusp (MC), in order to obtain 2D distribution of plasma emissions, plasma (electron) density (Ne) and temperature (Te). The microwave plasma in the MC is characterized as a function of microwave power, gas pressure, and axial distance. The experimentally obtained 2D emission profiles show that the plasma emissions are generated in a circular ring shape. There are usually two bright rings, one at the plasma core and another near the boundary. The experimental results are validated using a numerical code that solves Maxwell's equations inside a waveguide filled with a plasma in a magnetic field, with collisions included. It is inferred that the dark and bright circular ring patterns are a result of superposition of Bessel modes (TE11 and TE21) of the wave electric field inside the plasma filled MC, which are in reasonable agreement with the plasma emission profiles. The tomographically obtained Ne and Te profiles indicate higher densities in the plasma core (˜1010 cm-3) and enhanced electron temperature in the ECR region (˜13 eV), which are in agreement with earlier results using a Langmuir probe and optical emission spectroscopy (OES) diagnostics.
A Semi-analytical Line Transfer (SALT) Model. II: The Effects of a Bi-conical Geometry
NASA Astrophysics Data System (ADS)
Carr, Cody; Scarlata, Claudia; Panagia, Nino; Henry, Alaina
2018-06-01
We generalize the semi-analytical line transfer model recently introduced by Scarlata & Panagia for modeling galactic outflows, to account for bi-conical geometries of various opening angles and orientations with respect to the line of sight to the observer, as well as generalized velocity fields. We model the absorption and emission component of the line profile resulting from resonant absorption in the bi-conical outflow. We show how the outflow geometry impacts the resulting line profile. We use simulated spectra with different geometries and velocity fields to study how well the outflow parameters can be recovered. We find that geometrical parameters (including the opening angle and the orientation) are always well recovered. The density and velocity field parameters are reliably recovered when both an absorption and an emission component are visible in the spectra. This condition implies that the velocity and density fields for narrow cones oriented perpendicular to the line of sight will remain unconstrained.
NASA Astrophysics Data System (ADS)
Connell, P. H.
2017-12-01
The University of Valencia has developed a software simulator LEPTRACK to simulate lepton and photon scattering in any kind of media with a variable density, and permeated by electric/magnetic fields of any geometry, and which can handle an exponential runaway avalanche. Here we show results of simulating the interaction of electrons/positrons/photons in an incoming TeV cosmic ray shower with the kind of electric fields expected in a stormcloud after a CG discharge which removes much of the positive charge build up at the centre of the cloud. The point is to show not just a Relativistic Runaway Electron Avalanche (RREA) above the upper negative shielding layer at 12 km but other gamma ray emission due to electron/positron interaction in the remaining positive charge around 9km and the lower negative charge at 6km altitude. We present here images, lightcurves, altitude profiles, spectra and videos showing the different ionization, excitation and photon density fields produced, their time evolution, and how they depend critically on where the cosmic ray shower beam intercepts the electric field geometry. We also show a new effect of incoming positrons, which make up a significant fraction of the shower, where they appear to "orbit" within the high altitude negative shielding layer, and which has been conjectured to produce significant microwave emission, as well as a short range 511 keV annihilation line. The interesting question is if this conjectured emission can be observed and correlated with TGF orbital observations to prove that a TGF originates in the macro-fields of stormclouds or the micro-fields of light leaders and streamers where this "positron orbiting" is not likely to occur.
How Often Do Thermally Excited 630.0 nm Emissions Occur in the Polar Ionosphere?
NASA Astrophysics Data System (ADS)
Kwagala, Norah Kaggwa; Oksavik, Kjellmar; Lorentzen, Dag A.; Johnsen, Magnar G.
2018-01-01
This paper studies thermally excited emissions in the polar ionosphere derived from European Incoherent Scatter Svalbard radar measurements from the years 2000-2015. The peak occurrence is found around magnetic noon, where the radar observations show cusp-like characteristics. The ionospheric, interplanetary magnetic field and solar wind conditions favor dayside magnetic reconnection as the dominant driving process. The thermal emissions occur 10 times more frequently on the dayside than on the nightside, with an average intensity of 1-5 kR. For typical electron densities in the polar ionosphere (2 × 1011 m-3), we find the peak occurrence rate to occur for extreme electron temperatures (>3000 K), which is consistent with assumptions in literature. However, for extreme electron densities (>5 × 1011 m-3), we can now report on a completely new population of thermal emissions that may occur at much lower electron temperatures (˜2300 K). The empirical atmospheric model (NRLMSISE-00) suggests that the latter population is associated with enhanced neutral atomic oxygen densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levko, Dmitry; Raja, Laxminarayan L.
2016-04-21
The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode–anode gap by rather dense plasma (∼10{sup 13 }cm{sup −3}) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizingmore » it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.« less
Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang
2014-01-01
A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.
NASA Astrophysics Data System (ADS)
Megan Gillies, D.; Knudsen, D.; Donovan, E.; Jackel, B.; Gillies, R.; Spanswick, E.
2017-08-01
We present a comprehensive survey of 630 nm (red-line) emission discrete auroral arcs using the newly deployed Redline Emission Geospace Observatory. In this study we discuss the need for observations of 630 nm aurora and issues with the large-altitude range of the red-line aurora. We compare field-aligned currents (FACs) measured by the Swarm constellation of satellites with the location of 10 red-line (630 nm) auroral arcs observed by all-sky imagers (ASIs) and find that a characteristic emission height of 200 km applied to the ASI maps gives optimal agreement between the two observations. We also compare the new FAC method against the traditional triangulation method using pairs of all-sky imagers (ASIs), and against electron density profiles obtained from the Resolute Bay Incoherent Scatter Radar-Canadian radar, both of which are consistent with a characteristic emission height of 200 km.
Long-Term Variability of Jupiter's Magnetodisk and Implications for the Aurora
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Bunce, Emma J.; Nichols, Jonathan D.; Clarke, John T.; Kurth, William S.
2017-12-01
Observations of Jupiter's UV auroral emissions collected over several years show that the ionospheric positions of the main emission and the Ganymede footprint can vary by as much as 3° in latitude. One explanation for this shift is a change of Jupiter's current sheet current density, which would alter the amount of field line stretching and displace the ionospheric mapping of field lines from a given radial distance in the magnetosphere. In this study we measure the long-term variability of Jupiter's magnetodisk using Galileo magnetometer data collected from 1996 to 2003. Using the Connerney et al. (1981) current sheet model, we calculate the current sheet density parameter that gives the best fit to the data from each orbit and find that the current density parameter varies by about 15% of its average value during the Galileo era. We investigate possible relationships between the observed current sheet variability and quantities such as Io's plasma torus production rate inferred from volcanic activity and external solar wind conditions extrapolated from data at 1 AU but find only a weak correlation. Finally, we trace Khurana (1997) model field lines to show that the observed changes in Jupiter's current sheet are sufficient to shift the ionospheric footprint of Ganymede and main auroral emission by a few degrees of latitude, consistent with the magnitude of auroral variability observed by Hubble Space Telescope (HST). However, we find that the measured auroral shifts in HST images are not consistent with concurrent changes in the current density parameter measured by Galileo.
Wu, Chaoxing; Kim, Tae Whan; Guo, Tailiang; Li, Fushan
2016-01-01
The electronic and the optoelectronic properties of graphene-based nanocomposites are controllable, making them promising for applications in diverse electronic devices. In this work, tetrapod-shaped zinc oxide (T-ZnO)/reduced graphene oxide (rGO) core/coating nanocomposites were synthesized by using a hydrothermal-assisted self-assemble method, and their optical, photoelectric, and field-emission properties were investigated. The ZnO, an ideal ultraviolet-light-sensitive semiconductor, was observed to have high sensitivity to visible light due to the rGO coating, and the mechanism of that sensitivity was investigated. We demonstrated for the first time that the field-emission properties of the T-ZnO/rGO core/coating nanocomposites could be dramatically enhanced under visible light by decreasing the turn-on field from 1.54 to 1.41 V/μm and by increasing the current density from 5 to 12 mA/cm2 at an electric field of 3.5 V/μm. The visible-light excitation induces an electron jump from oxygen vacancies on the surface of ZnO to the rGO layer, resulting in a decrease in the work function of the rGO and an increase in the emission current. Furthermore, a field-emission light-emitting diode with a self-enhanced effect was fabricated making full use of the photo-assisted field-emission process. PMID:27941822
Controlled growth of well-aligned GaS nanohornlike structures and their field emission properties.
Sinha, Godhuli; Panda, Subhendu K; Datta, Anuja; Chavan, Padmakar G; Shinde, Deodatta R; More, Mahendra A; Joag, D S; Patra, Amitava
2011-06-01
Here, we report the synthesis of vertically aligned gallium sulfide (GaS) nanohorn arrays using simple vapor-liquid-solid (VLS) method. The morphologies of GaS nano and microstructures are tuned by controlling the temperature and position of the substrate with respect to the source material. A plausible mechanism for the controlled growth has been proposed. It is important to note that the turn-on field value of GaS nanohorns array is found to be the low turn-on field 4.2 V/μm having current density of 0.1 μA/cm(2). The striking feature of the field emission behavior of the GaS nanohorn arrays is that the average emission current remains nearly constant over long time without any degradation. © 2011 American Chemical Society
Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters
NASA Technical Reports Server (NTRS)
Toda, Risaku; Bronikowski, Michael; Luong, Edward; Manohara, Harish
2008-01-01
A continuing effort to develop carbon-nanotube-based field emitters (cold cathodes) as high-current-density electron sources has yielded an optimized device design and a fabrication scheme to implement the design. One major element of the device design is to use a planar array of bundles of carbon nanotubes as the field-emission tips and to optimize the critical dimensions of the array (principally, heights of bundles and distances between them) to obtain high area-averaged current density and high reliability over a long operational lifetime a concept that was discussed in more detail in Arrays of Bundles of Carbon Nanotubes as Field Emitters (NPO-40817), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 58. Another major element of the design is to configure the gate electrodes (anodes used to extract, accelerate, and/or focus electrons) as a ring that overhangs a recess wherein the bundles of nanotubes are located, such that by virtue of the proximity between the ring and the bundles, a relatively low applied potential suffices to generate the large electric field needed for emission of electrons.
NASA Technical Reports Server (NTRS)
Maxson, C. W.; Vaiana, G. S.
1977-01-01
In connection with high-quality solar soft X-ray images the 'quiet' features of the inner corona have been separated into two sharply different components, including the strongly reduced emission areas or coronal holes (CH) and the extended regions of looplike emission features or large-scale structures (LSS). Particular central meridian passage observations of the prominent CH1 on August 21, 1973, are selected for a quantitative study. Histogram photographic density distributions for full-disk images at other central meridian passages of CH 1 are also presented, and the techniques of converting low photographic density data to deposited energy are discussed, with particular emphasis on the problems associated with the CH data.
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Delir Kheirollahi Nezhad, P.; Hosseinian, A.; Vessally, E.
2018-06-01
We have inspected the effect of substituting a boron or nitrogen atom of a BN nanocone (BNNC) by two impurity atoms with lower and higher atomic numbers based on the density functional theory calculations. Our results explain the experimental observations in a molecular level. Orbital and partial density of states analyses show that the doping processes increase the electrical conductivity by creating new states within the gap of BNNC as follows: BeB > ON > CB > CN. The electron emission current from the surface of BNNC is improved after the CB and BeB dopings, and it is decreased by CN and ON dopings. The BeB and CN dopings make the BNNC a p-type semiconductor and the CB and ON dopings make it an n-type one in good agreement with the experimental results. The ON and BeB doping processes are suggested for the field emission current, and electrical conductivity enhancement, respectively.
Photoneutrino energy losses in strong magnetic fields.
NASA Technical Reports Server (NTRS)
Canuto, V.; Fassio-Canuto, L.
1973-01-01
Previously computed rates of energy losses (Petrosian et al., 1967) ignored the presence of strong magnetic fields, hence the change brought in when such a field (about 10 to the 12th to 10 to the 13th power G) is included is studied. The results indicate that for T about 10 to the 8th power K and densities rho of about 10,000 g/cu cm, the presence of a strong H field decreases the energy losses by at the most a factor between 10 and 100 in the region up to rho = 1,000,000 g/cu cm. At higher densities the neutrino emissivities are almost identical.
NASA Astrophysics Data System (ADS)
De Filippo, E.; Pagano, A.; Russotto, P.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Berceanu, I.; Borderie, B.; Bougault, R.; Bruno, M.; Cap, T.; Cardella, G.; Cavallaro, S.; Chatterjee, M. B.; Chbihi, A.; Colonna, M.; D'Agostino, M.; Dayras, R.; Di Toro, M.; Frankland, J.; Galichet, E.; Gawlikowicz, W.; Geraci, E.; Grzeszczuk, A.; Guazzoni, P.; Kowalski, S.; La Guidara, E.; Lanzalone, G.; Lanzanò, G.; Le Neindre, N.; Lombardo, I.; Maiolino, C.; Papa, M.; Piasecki, E.; Pirrone, S.; Płaneta, R.; Politi, G.; Pop, A.; Porto, F.; Rivet, M. F.; Rizzo, F.; Rosato, E.; Schmidt, K.; Siwek-Wilczyńska, K.; Skwira-Chalot, I.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wieleczko, J. P.; Wilczyński, J.; Zetta, L.; Zipper, W.
2012-07-01
We present a new experimental method to correlate the isotopic composition of intermediate mass fragments (IMF) emitted at midrapidity in semiperipheral collisions with the emission timescale: IMFs emitted in the early stage of the reaction show larger values of
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li
2015-05-01
Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).
Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma
NASA Astrophysics Data System (ADS)
Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko
2014-02-01
A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.
Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma.
Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko
2014-02-01
A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.
NASA Astrophysics Data System (ADS)
Ghosh, Pradip; Soga, T.; Tanemura, M.; Zamri, M.; Jimbo, T.; Katoh, R.; Sumiyama, K.
2009-01-01
Vertically aligned carbon nanotubes have been synthesized from botanical hydrocarbons: Turpentine oil and Eucalyptus oil on Si(100) substrate using Fe catalyst by simple spray pyrolysis method at 700°C and at atmospheric pressure. The as-grown carbon nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and Raman spectroscopy. It was observed that nanotubes grown from turpentine oil have better degree of graphitization and field emission performance than eucalyptus oil grown carbon nanotubes. The turpentine oil and eucalyptus oil grown carbon nanotubes indicated that the turn-on field of about 1.7 and 1.93 V/μm, respectively, at 10 μA/cm2. The threshold field was observed to be about 2.13 and 2.9 V/μm at 1 mA/cm2 of nanotubes grown from turpentine oil and eucalyptus oil respectively. Moreover, turpentine oil grown carbon nanotubes show higher current density in relative to eucalyptus oil grown carbon nanotubes. The maximum current density of 15.3 mA/cm2 was obtained for ˜3 V/μm corresponding to the nanotubes grown from turpentine oil. The improved field emission performance was attributed to the enhanced crystallinity, fewer defects, and greater length of turpentine oil grown carbon nanotubes.
X-ray spectroscopy of the mixed morphology supernova remnant W 28 with XMM-Newton
NASA Astrophysics Data System (ADS)
Nakamura, Ryoko; Bamba, Aya; Ishida, Manabu; Yamazaki, Ryo; Tatematsu, Ken'ichi; Kohri, Kazunori; Pühlhofer, Gerd; Wagner, Stefan J.; Sawada, Makoto
2014-06-01
We report on spatially resolved X-ray spectroscopy of the north-eastern part of the mixed morphology supernova remnant (SNR) W 28 with XMM-Newton. The observed field of view includes a prominent and twisted shell emission forming the edge of this SNR as well as part of the center-filled X-ray emission brightening toward the south-west edge of the field of view. The shell region spectra are in general represented by an optically thin thermal plasma emission in collisional ionization equilibrium with a temperature of ˜ 0.3 keV and a density of ˜ 10 cm-3, which is much higher than the density obtained for inner parts. In contrast, we detected no significant X-ray flux from one of the TeV γ-ray peaks with an upper-limit flux of 2.1 × 10-14 erg cm-2 s-1 in the 2-10 keV band. The large flux ratio of TeV to X-ray, larger than 16, and the spatial coincidence of the molecular cloud and the TeV γ-ray emission site indicate that the TeV γ-ray of W 28 is π0-decay emission originating from collisions between accelerated protons and molecular cloud protons. Comparing the spectrum in the TeV band and the X-ray upper limit, we obtained a weak upper limit on the magnetic field strength B ≲ 1500 μG.
NASA Astrophysics Data System (ADS)
Lu, Xianfeng
The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition. The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect. The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp 2 phase concentration. In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.
Ahmad, Mashkoor; Sun, Hongyu; Zhu, Jing
2011-04-01
Vertically oriented well-aligned Indium doped ZnO nanowires (NWs) have been successfully synthesized on Au-coated Zn substrate by controlled thermal evaporation. The effect of indium dopant on the optical and field-emission properties of these well-aligned ZnO NWs is investigated. The doped NWs are found to be single crystals grown along the c-axis. The composition of the doped NWs is confirmed by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and X-ray photospectroscopy (XPS). The photoluminescence (PL) spectra of doped NWs having a blue-shift in the UV region show a prominent tuning in the optical band gap, without any significant peak relating to intrinsic defects. The turn-on field of the field emission is found to be ∼2.4 V μm(-1) and an emission current density of 1.13 mA cm(-2) under the field of 5.9 V μm(-1). The field enhancement factor β is estimated to be 9490 ± 2, which is much higher than that of any previous report. Furthermore, the doped NWs exhibit good emission current stability with a variation of less than 5% during a 200 s under a field of 5.9 V μm(-1). The superior field emission properties are attributed to the good alignment, high aspect ratio, and better crystallinity of In-doped NWs. © 2011 American Chemical Society
Field emission and photoluminescence of ZnO nanocombs
NASA Astrophysics Data System (ADS)
Wang, B.; Wu, H. Y.; Zheng, Z. Q.; Yang, Y. H.
2013-11-01
Three kinds of new comb-shape nanostructures of ZnO have been grown on single silicon substrates without catalyst-assisted thermal evaporation of Zn and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The growth mechanism of the ZnO nanocombs can be explained on the basis of the vapor-solid (VS) processes. In nanocombs 1 and nanocombs 2, the comb teeth grow along [0001] and the comb stem grows along [], while in nanocombs 3, nanoteeth grow along [] and stem grows along [0001]. The photoluminescence and field-emission properties of ZnO nanocombs 1-3 have been investigated. The turn-on electric field of ZnO nanocombs 1-3, which is defined as the field required to producing a current density of 10 μA/cm2, is 9, 7.7 and 7.1 V/μm, respectively. The field-emission performance relies not only on the tip’s radius of curvature and field enhancement factor, but also on the factor evaluating the degree of the screening effect.
NASA Astrophysics Data System (ADS)
Li, Y. C.; Ding, B. J.; Li, M. H.; Wang, M.; Liu, L.; Wang, X. J.; Xu, H. D.; Shan, J. F.; Liu, F. K.
2018-02-01
On the experimental advanced superconducting tokamak (EAST), a series of striations, including a few strong emissivity striations and several low emissivity striations, were observed in front of the 4.6-GHz lower hybrid (LH) launcher with the visible video camera for the LH power discharge. These striations indicate that LH may create significant poloidal scrape-off layer (SOL) density profile asymmetries in front of the LH launcher. These poloidal asymmetric density behaviors are further confirmed with the edge density measured by two Langmuir probes installed at the top and bottom of the LH launcher. The measured density depends on LH power injection and magnetic field direction. A 2D diffusive convective model was used to study the mechanisms of the observed striations and poloidal asymmetric density. The simulation results qualitatively match with the measured density, indicating these poloidal asymmetric effects are ascribed to the LHW-induced E LH × B t drift.
Ground-based observations of Saturn's H3+ aurora and ring rain from Keck in 2013
NASA Astrophysics Data System (ADS)
O'Donoghue, J.; Melin, H.; Stallard, T.; Provan, G.; Moore, L.; Badman, S. V.; Baines, K. H.; Miller, S.; Cowley, S. W. H.
2014-12-01
The ground-based 10-metre Keck telescope was used to probe Saturn's H3+ ionosphere in 2013. The slit on the high resolution near infrared spectrometer (NIRSPEC; (R~25,000) was aligned pole-to-pole along Saturn's rotational axis at local noon. This is also aligned (within uncertainties) to the effectively dipolar magnetic field. Four polar/auroral regions of Saturn's ionosphere were measured simultaneously as the planet rotated: 1) the northern noon main auroral oval; 2) the northern midnight main oval; 3) the northern polar cap and 4) the southern main oval at noon. The results here contain twenty-three H3+ temperatures, column densities and total emissions located at the above regions spread over timescales of both hours and days. The main findings of this study are that ionospheric temperatures in the northern main oval are cooler than their southern counterparts by tens of K; supportive of the hypothesis that the total thermospheric heating rate (Joule heating and ion drag) is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than at noon, and this is in agreement with an electron influx peaking at 08:00 Saturn local time and having a minimum at midnight. When ordering the northern main oval parameters of H3+ as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ˜110° phase, with a full-width at half-maximum (FWHM) of ˜40°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. In addition to the auroral/polar data we also present the latest results from observations of Saturn's mid-to-low latitude H3+ emission. This emission is thought to be modulated by charged water product influx which flows into the planet along magnetic field lines from Saturn's rings, i.e. ring rain. Figure: H3+ Q(1,0) parameters as a functon of northern PPO phase. The x- and y-axes show the PPO phase angle versus the H3+ parameters in each of the four panels: a) Q(1,0) line intensity, b) temperature, c) column density and d) total emission. The blue, green and red correspond to the 19th, 20th and 21st of April, respectively.
Kicks of magnetized strange quark stars induced by anisotropic emission of neutrinos
NASA Astrophysics Data System (ADS)
Ayala, Alejandro; Manreza Paret, D.; Pérez Martínez, A.; Piccinelli, Gabriella; Sánchez, Angel; Ruíz Montaño, Jorge S.
2018-05-01
We study the anisotropic neutrino emission from the core of neutron stars induced by the star's magnetic field. We model the core as made out of a magnetized ideal gas of strange quark matter and implement the conditions for stellar equilibrium in this environment. The calculation is performed without resorting to analytical simplifications and for temperature, density, and magnetic field values corresponding to typical conditions for a neutron star's evolution. The anisotropic neutrino emission produces a rocket effect that contributes to the star's kick velocity. We find that the computed values for the kick velocity lie within the range of the observed values, reaching velocities of the order of ˜1000 km s-1 for magnetic fields between 1015-1018 G and radii of 20 to 5 km, respectively.
47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... operation is as a vehicle-mounted field disturbance sensor. Operation under the provisions of this section...-mounted field disturbance sensors, if the vehicle is in motion the power density of any emission within...
The Fowler-Nordheim behavior and mechanism of photo-sensitive field from SnS{sub 2} nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryawanshi, Sachin R.; Chaudhari, Nilima S.; Warule, Sambhaji S.
2015-06-24
Here in, we report photo-sensitive field emission measurements of SnS{sub 2} nanosheets at base pressure of ∼1×10{sup −8} mbar are reported. The nonlinear Fowler-Nordheim (F-N) plot is elucidate according to a (F-N) model of calculation based on shift in a saturation of conduction band current density after light illumination and prevalence of valence band current density at high electric field values. The model of calculation suggests that the slope variation before and after visible light illumination of the F-N plot, in the high-field and low-field regions, does not depend on the magnitude of saturation but also depend on charge carriermore » (electron) concentration get increased in conduction band. The F-N model of calculation is important for the fundamental understanding of the photo-sensitive field emission mechanism of semiconducting SnS{sub 2}. The replicate F-N plots exhibit similar features to those observed experimentally. The model calculation suggests that the nonlinearity of the F-N plot is a characteristic of the photo-enhanced energy band structure of the photo-sensitive semiconductor material.« less
Intense Ly-alpha emission from Uranus
NASA Technical Reports Server (NTRS)
Durrance, S. T.; Moos, H. W.
1982-01-01
The existence of intense atomic hydrogen Ly-alpha emission from Uranus is demonstrated here by utilizing the monochromatic imaging capabilities of the International Ultraviolet Explorer (IUE) spectrograph. Observations show increased emission in the vicinity of Uranus superimposed on the geocoronal/interplanetary background. If resonant scattering of solar Ly-alpha is the source of the 1.6 + or - 0.4 kR disk averaged brightness, then very high column densities of atomic H above the absorbing methane are required. Precipitation of trapped charged particles, i.e., aurora, could explain the emissions. This would imply a planetary magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubenko, Oksana; Baturin, Stanislav S.; Kovi, Kiran K.
One of the common problems in case of field emission from polycrystalline diamond films, which typically have uniform surface morphology, is uncertainty in determining exact location of electron emission sites across the surface. Although several studies have suggested that grain boundaries are the main electron emission source, it is not particularly clear what makes some sites emit more than the others. It is also practically unclear how one could quantify the actual electron emission area and therefore field emission current per unit area. In this paper we study the effect of actual, locally resolved, field emission (FE) area on electronmore » emission characteristics of uniform planar highly conductive nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) field emitters. It was routinely found that field emission from as-grown planar (N)UNCD films is always confined to a counted number of discrete emitting centers across the surface which varied in size and electron emissivity. It was established that the actual FE area critically depends on the applied electric field, as well as that the actual FE area and the overall electron emissivity improve with sp2 fraction present in the film irrespectively of the original substrate roughness and morphology. To quantify the actual FE area and its dependence on the applied electric field, imaging experiments were carried out in a vacuum system in a parallel-plate configuration with a specialty anode phosphor screen. Electron emission micrographs were taken concurrently with I-V characteristics measurements. In addition, a novel automated image processing algorithm was developed to process extensive imaging datasets and calculate emission area per image. By doing so, it was determined that the emitting area was always significantly smaller than the FE cathode surface area. Namely, the actual FE area would change from 5×10-3 % to 1.5 % of the total cathode area with the applied electric field increased. Finally and most importantly, it was shown that when I-E curves as measured in the experiment were normalized by the field-dependent emission area, the resulting j-E curves demonstrated a strong kink and significant deviation from Fowler-Nordheim (FN) law, and eventually saturated at a current density of ~100 mA/cm2 . This value was nearly identical for all (N)UNCD films measured in this study, regardless of the substrate.« less
Surfing Silicon Nanofacets for Cold Cathode Electron Emission Sites.
Basu, Tanmoy; Kumar, Mohit; Saini, Mahesh; Ghatak, Jay; Satpati, Biswarup; Som, Tapobrata
2017-11-08
Point sources exhibit low threshold electron emission due to local field enhancement at the tip. In the case of silicon, however, the realization of tip emitters has been hampered by unwanted oxidation, limiting the number of emission sites and the overall current. In contrast to this, here, we report the fascinating low threshold (∼0.67 V μm -1 ) cold cathode electron emission from silicon nanofacets (Si-NFs). The ensembles of nanofacets fabricated at different time scales, under low energy ion impacts, yield tunable field emission with a Fowler-Nordheim tunneling field in the range of 0.67-4.75 V μm -1 . The local probe surface microscopy-based tunneling current mapping in conjunction with Kelvin probe force microscopy measurements revealed that the valleys and a part of the sidewalls of the nanofacets contribute more to the field emission process. The observed lowest turn-on field is attributed to the absence of native oxide on the sidewalls of the smallest facets as well as their lowest work function. In addition, first-principle density functional theory-based simulation revealed a crystal orientation-dependent work function of Si, which corroborates well with our experimental observations. The present study demonstrates a novel way to address the origin of the cold cathode electron emission sites from Si-NFs fabricated at room temperature. In principle, the present methodology can be extended to probe the cold cathode electron emission sites from any nanostructured material.
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... the radiating structure. (c) The power density of any emissions outside the operating band shall... GHz shall not exceed the general limits in § 15.209. (2) Radiated emissions outside the operating band...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T.
2014-05-15
An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of themore » ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.« less
NASA Astrophysics Data System (ADS)
Sallander, J.; Hedqvist, A.; Rachlew-Källne, E.
1998-09-01
The investigations of the radial distributions of 0953-4075/31/17/015/img2 emission from the EXTRAP-T2 reversed-field pinch (RFP) plasma show that the emission profile varies a lot, even during one plasma discharge. At central electron temperatures of about 150 eV it was expected that the 0953-4075/31/17/015/img2 emission should emerge from the plasma centre. In comparison, 0953-4075/31/17/015/img4 is always observed to radiate from the centre. Our measurements of 0953-4075/31/17/015/img2 emission have, however, shown that this is not always the case, the emission often comes from the plasma edge. The analysis of the measurements has led us to conclude that the edge emission comes from charge-exchange recombination with neutral hydrogen near the carbon first wall. These observations provide a way to estimate the change in neutral hydrogen density during local plasma-wall interaction.
Relative distribution of cosmic rays and magnetic fields
NASA Astrophysics Data System (ADS)
Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.
2018-02-01
Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.
Park, Sangeun; Song, Wooseok; Kim, Yooseok; Song, Inkyung; Kim, Sung Hwan; Lee, Su Il; Jang, Sung Won; Parkl, Chong-Yun
2014-07-01
When vertically aligned carbon nanotubes (VACNTs) are synthesized by thermal chemical vapor deposition (TCVD), their structural features such as height and density can be determined by TCVD growth conditions. In this study we investigated the effect of growth pressure on the structural features of VACNTs. Changes in growth pressure significantly affected the height, density, and crystalinity of synthesized VACNTs. In addition, we suggest that the growth termination of VACNTs could be due to the lack of carbon feedstock supply to the center of the VACNT film induced by the pressure-dependent adsorption of amorphous carbon at the edge of the VACNT film. In addition, the field emission characteristics of the VACNT film were carried out. The turn-on voltage of the VACNT film was 1.62 V/microm and the field enhancement factor (beta) was 2478. These results provide useful information for practical applications of VACNTs, such as field emission display and X-ray source.
Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters
Bocharov, Grigory S.; Eletskii, Alexander V.
2013-01-01
Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules. PMID:28348342
ORNL diagnostic and modeling development for LAPD ICRF experiments
NASA Astrophysics Data System (ADS)
Isler, R. C.; Caughman, J. B. O.; Lau, C.; Martin, E. H.; Perkins, R. J.; Compernolle, B. Van; Vincena, S.; Tripathi, S. K. P.; Gekelman, W.
2017-10-01
PPPL, UCLA, and ORNL scientists have recently collaborated on a three week ICRF campaign at the upgraded LAPD device to study near field-plasma interactions associated with a single strap antenna driven at 2.38 MHz with 100 kW of RF power. This poster highlights ORNL involvement through implementation of the following diagnostics: an optical emission probe to measure neutral density, a retarding field energy analyzer to measure fast ions, phase locked imaging to measure line integrated RF-driven optical emission fluctuations, and an RF compensated triple Langmuir probe to measure density and temperature. To interpret the results of the experimental campaign a 3D cold plasma finite element model with realistic antenna and vacuum vessel geometry was developed in COMSOL. A summary of these results will be discussed. Highlights include a proof of principle localized and spatially resolved measurement of the neutral density, a strong increase in RF-driven optical emission fluctuations directly in front of the RF antenna strap, a shift in fast ion energies near the plasma edge, and qualitative agreement between the COMSOL cold plasma model with the various diagnostics. Funded by the DOE OFES (DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-07ER54918) and the Univ. of California (12-LR-237124).
Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch
NASA Astrophysics Data System (ADS)
Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.
2005-01-01
A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.
Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters
NASA Astrophysics Data System (ADS)
Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun
2016-07-01
We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.
Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters.
Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-Guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun
2016-07-08
We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro
X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO{sub 3} single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and anmore » external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.« less
Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma
NASA Astrophysics Data System (ADS)
Küttel, Olivier M.; Groening, Oliver; Emmenegger, Christoph; Schlapbach, Louis
1998-10-01
Phase pure nanotube films were grown on silicon substrates by a microwave plasma under conditions which normally are used for the growth of chemical vapor deposited diamond films. However, instead of using any pretreatment leading to diamond nucleation we deposited metal clusters on the silicon substrate. The resulting films contain only nanotubes and also onion-like structures. However, no other carbon allotropes like graphite or amorphous clustered material could be found. The nanotubes adhere very well to the substrates and do not need any further purification step. Electron field emission was observed at fields above 1.5 V/μm and we observed an emission site density up to 104/cm2 at 3 V/μm. Alternatively, we have grown nanotube films by the hot filament technique, which allows to uniformly cover a two inch wafer.
Diagnosing the Prominence-Cavity Connection in the Solar Corona
NASA Astrophysics Data System (ADS)
Schmit, D. J.
The energetic equilibrium of the corona is described by a balance of heating, thermal conduction, and radiative cooling. Prominences can be described by the thermal instability of coronal energy balance which leads to the formation of cool condensations. Observationally, the prominence is surrounded by a density depleted elliptical structure known as a cavity. In this dissertation, we use extreme ultraviolet remote sensing observations of the prominence-cavity system to diagnose the static and dynamic properties of these structures. The observations are compared with numerical models for the time-dependent coronal condensation process and the time-independent corona-prominence magnetic field. To diagnose the density of the cavity, we construct a three-dimensional structural model of the corona. This structural model allows us to synthesize extreme ultraviolet emission in the corona in a way that incorporates the projection effects which arise from the optically thin plasma. This forward model technique is used to constrain a radial density profile simultaneously in the cavity and the streamer. We use a χ2 minimization to find the density model which best matches a density sensitive line ratio (observed with Hinode/Extreme ultraviolet Imaging Spectrometer) and the white light scattered intensity (observed with Mauna Loa Solar Observatory MK4 coronagraph). We use extreme ultraviolet spectra and spectral images to diagnose the dynamics of the prominence and the surrounding corona. Based on the doppler shift of extreme ultraviolet coronal emission lines, we find that there are large regions of flowing plasma which appear to occur within cavities. These line of sight flows have speeds of 10 km/s-1 and projected spatial scales of 100 Mm. Using the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA) dataset, we observe dynamic emission from the prominence-cavity system. The SDO/AIA dataset observes multiple spectral bandpasses with different temperature sensitivities. Time-dependent changes in the observed emission in these bandpass images represent changes in the thermodynamic properties of the emitting plasma. We find that the coronal region surrounding the prominence exhibits larger intensity variations (over tens of hours of observations) as compared to the streamer region. This variability is particularly strong in the cool coronal emission of the 171Å bandpass. We identify the source of this variability as strong brightening events that resemble concave-up loop segments and extend from the cool prominence plasma. Magnetic field lines are the basic structural building block of the corona. Energy and pressure balance in the corona occur along magnetic field lines. The large-scale extreme ultraviolet emission we observe in the corona is a conglomerate of many coronal loops projected along a line of sight. In order to calculate the plasma properties at a particular point in the corona, we use one-dimensional models for energy and pressure balance along field lines. In order to predict the extreme ultraviolet emission along a particular line of sight, we project these one-dimensional models onto the three-dimensional magnetic configuration provided by a MHD model for the coronal magnetic field. These results have allowed us to the establish the first comprehensive picture on the magnetic and energetic interaction of the prominence and the cavity. While the originally hypothesis that the cavity supplies mass to the prominence proved inaccurate, we cannot simply say that these structures are not related. Rather our findings suggest that the prominence and the cavity are distinct magnetic substructures that are complementary regions of a larger whole, specifically a magnetic flux rope. (Abstract shortened by UMI.).
Misaligned Accretion and Jet Production
NASA Astrophysics Data System (ADS)
King, Andrew; Nixon, Chris
2018-04-01
Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.
An array of Eiffel-tower-shape AlN nanotips and its field emission properties
NASA Astrophysics Data System (ADS)
Tang, Yongbing; Cong, Hongtao; Chen, Zhigang; Cheng, Huiming
2005-06-01
An array of Eiffel-tower-shape AlN nanotips has been synthesized and assembled vertically with Si substrate by a chemical vapor deposition method at 700 °C. The single-crystalline AlN nanotips along [001] direction, including sharp tips with 10-100 nm in diameter and submicron-sized bases, are distributed uniformly with density of 106-107tips/cm2. Field emission (FE) measurements show that its turn on field is 4.7 V/μm, which is comparable to that of carbon nanotubes, and the fluctuation of FE current is as small as 0.74% for 4 h. It is revealed this nanostructure is available to optimize the FE properties and make the array a promising field emitter.
2D/3D image charge for modeling field emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.
Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less
2D/3D image charge for modeling field emission
Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.; ...
2017-03-01
Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less
Magnetostrophic balance in planetary dynamos - Predictions for Neptune's magnetosphere
NASA Technical Reports Server (NTRS)
Curtis, S. A.; Ness, N. F.
1986-01-01
With the purpose of estimating Neptune's magnetic field and its implications for nonthermal Neptune radio emissions, a new scaling law for planetary magnetic fields was developed in terms of externally observable parameters (the planet's mean density, radius, mass, rotation rate, and internal heat source luminosity). From a comparison of theory and observations by Voyager it was concluded that planetary dynamos are two-state systems with either zero intrinsic magnetic field (for planets with low internal heat source) or (for planets with the internal heat source sufficiently strong to drive convection) a magnetic field near the upper bound determined from magnetostrophic balance. It is noted that mass loading of the Neptune magnetosphere by Triton may play an important role in the generation of nonthermal radio emissions.
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Note: Simulation and test of a strip source electron gun.
Iqbal, Munawar; Islam, G U; Misbah, I; Iqbal, O; Zhou, Z
2014-06-01
We present simulation and test of an indirectly heated strip source electron beam gun assembly using Stanford Linear Accelerator Center (SLAC) electron beam trajectory program. The beam is now sharply focused with 3.04 mm diameter in the post anode region at 15.9 mm. The measured emission current and emission density were 1.12 A and 1.15 A/cm(2), respectively, that corresponds to power density of 11.5 kW/cm(2), at 10 kV acceleration potential. The simulated results were compared with then and now experiments and found in agreement. The gun is without any biasing, electrostatic and magnetic fields; hence simple and inexpensive. Moreover, it is now more powerful and is useful for accelerators technology due to high emission and low emittance parameters.
Field Emission Characteristics of Carbon Nanotubes and Their Applications in Sensors and Devices
NASA Astrophysics Data System (ADS)
Vaseashta, Ashok
2003-03-01
FIELD EMISSION CHARACTERISTICS OF CARBON NANOTUBES AND THEIR APPLICATIONS IN SENSORS AND DEVICES A. Vaseashta, C. Shaffer, M. Collins, A. Mwuara Dept of Physics, Marshall University, Huntington, WV V. Pokropivny Institute for Materials Sciences of NASU, Kiev, Ukraine. D. Dimova-Malinovska Bulgarian Academy of Sciences, Sofia, Bulgaria. The dimensionality of a system has profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems, such as carbon nanotubes (CNTs). Carbon nanotubes are especially promising candidate for cold cathode field emitter because of their electrical properties, high aspect ratio, and small radius of curvature at the tips. Electron emission from the carbon nanotubes was investigated. Based upon the field emission investigation of carbon nanotubes, several prototype devices have been suggested that operate with low swing voltages with sufficient high current densities. Characteristics that allow improved current stability and long lifetime operation for electrical and opto-electronics devices are presented. The aim of this brief overview is to illustrate the useful characteristics of carbon nanotubes and its possible application.
Multi-tip nano-prisms: Controlled growth and emission enhancement properties
NASA Astrophysics Data System (ADS)
Liu, Ming; Meng, Cong; Xue, Zheng-Hong; Xiong, Xiang; Shu, Da-Jun; Peng, Ru-Wen; Wu, Qiang; Hu, Zheng; Wang, Mu
2013-10-01
We report here the experimental observations that the tip topography of ZnO nano-prisms sensitively depends on the percentage of oxygen in the flux of the carrying gas in vapor growth. At a relatively high oxygen concentration, a number of thin filaments can be nucleated atop nano-prisms, forming a unique fish-spear-like multi-tip morphology. The length and density of the “spear tines” depend on the flux of the carrying gas. The field emission properties of the nanorod array with different tip morphology are investigated. The structures with longer and denser spear tines possess lower turn-on electric field and higher electric current density. The cathodoluminescence properties of the ZnO nano-prisms have also been studied. The luminescence related to defects in multi-tip nano-prisms possesses the strongest intensity, and the nanorod without any tine structure possesses the lowest defect luminescence intensity. The intrinsic luminescence of ZnO around 385 nm, however, has the opposite tendency. We suggest that our observation is inspiring in optimizing the emission properties of the nanowire devices.
Influence of dislocation density on internal quantum efficiency of GaN-based semiconductors
NASA Astrophysics Data System (ADS)
Yu, Jiadong; Hao, Zhibiao; Li, Linsen; Wang, Lai; Luo, Yi; Wang, Jian; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Li, Hongtao
2017-03-01
By considering the effects of stress fields coming from lattice distortion as well as charge fields coming from line charges at edge dislocation cores on radiative recombination of exciton, a model of carriers' radiative and non-radiative recombination has been established in GaN-based semiconductors with certain dislocation density. Using vector average of the stress fields and the charge fields, the relationship between dislocation density and the internal quantum efficiency (IQE) is deduced. Combined with related experimental results, this relationship is fitted well to the trend of IQEs of bulk GaN changing with screw and edge dislocation density, meanwhile its simplified form is fitted well to the IQEs of AlGaN multiple quantum well LEDs with varied threading dislocation densities but the same light emission wavelength. It is believed that this model, suitable for different epitaxy platforms such as MOCVD and MBE, can be used to predict to what extent the luminous efficiency of GaN-based semiconductors can still maintain when the dislocation density increases, so as to provide a reasonable rule of thumb for optimizing the epitaxial growth of GaN-based devices.
Hydrodynamic electronic fluid instability in GaAs MESFETs at terahertz frequencies
NASA Astrophysics Data System (ADS)
Li, Kang; Hao, Yue; Jin, Xiaoqi; Lu, Wu
2018-01-01
III-V compound semiconductor field effect transistors (FETs) are potential candidates as solid state THz emitters and detectors due to plasma wave instability in these devices. Using a 2D hydrodynamic model, here we present the numerical studies of electron fluid instability in a FET structure. The model is implemented in a GaAs MESFET structure with a gate length of 0.2 µm as a testbed by taking into account the non-equilibrium transport and multi-valley non-parabolicity energy bands. The results show that the electronic density instability in the channel can produce stable periodic oscillations at THz frequencies. Along with stable oscillations, negative differential resistance in output characteristics is observed. The THz emission energy density increases monotonically with the drain bias. The emission frequency of electron density oscillations can be tuned by both gate and drain biases. The results suggest that III-V FETs can be a kind of versatile THz devices with good tunability on both radiative power and emission frequency.
Emission Factors of Nitrous Oxide by Organic Manure Fertilizers in Japanese Upland Fields
NASA Astrophysics Data System (ADS)
Sudo, S.
2011-12-01
Preliminary data of field experiments which were conducted to estimate emission factors of nitrous oxide by organic manure fertilizers in 10 Japan-wide experiment sites, 2010 was reported. We compared nitrous oxide emission from urea as chemical fertilizers and cow manure as organic applications, in 1o Japanese prefectures of Yamagata, Fukushima, Ibaraki, Aichi, Shiga, Tokushima, Nagasaki, Kumamoto and Kagoshima. Same amounts of nitrogen were applied in organic and inorganic fertilizers in each field. In each site, 3 replication plots were organized in randomized block design with zero-nitrogen application plots. N2O gas fluxes were measured every one week or more during cultivation seasons. We also measured several soil physical and chemical parameters of inorganic nitrogen species, soil moisture contents or WFPS (Water Filled Pore Space), soil temperatures, bulk densities etc. Gas fluxes ware measured by automated Shimadzu GC-2014 ECD gas chromatograph. Soil moistures were measured by Camplel's Hydrosense in each site. Vegetation of conducting fields were cabbage in 7 fields, wheat in 1, pear orchard and onion in 1. Microorganisms' abundance was also considered to clarify N2O emission processes by the PCR-DGGE method.
Fluorescent H2 Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS
NASA Astrophysics Data System (ADS)
Le, Huynh Anh N.; Pak, Soojong; Kaplan, Kyle; Mace, Gregory; Lee, Sungho; Pavel, Michael; Jeong, Ueejeong; Oh, Heeyoung; Lee, Hye-In; Chun, Moo-Young; Yuk, In-Soo; Pyo, Tae-Soo; Hwang, Narae; Kim, Kang-Min; Park, Chan; Sok Oh, Jae; Yu, Young Sam; Park, Byeong-Gon; Minh, Young Chol; Jaffe, Daniel T.
2017-05-01
We have analyzed the temperature, velocity, and density of H2 gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H2 emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41-0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63-1.82, indicating that the H2 emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients in the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H2 from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H2 should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ˜105 cm-3 with a size smaller than ˜5 × 10-3 pc embedded in lower-density regions of 103-104 cm-3.
Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission
NASA Astrophysics Data System (ADS)
Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.
2009-06-01
Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method'. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States); the Science and Technology Facilities Council (United Kingdom); the National Research Council (Canada), CONICYT (Chile); the Australian Research Council (Australia); Ministério da Ciência e Tecnologia (Brazil) and Secretaria de Ciencia y Tecnologia (Argentina). E-mail: steiner@astro.iag.usp.br
First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks
NASA Astrophysics Data System (ADS)
Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; Du, X. D.; Thome, K. E.; Van Zeeland, M. A.; Collins, C.; Lvovskiy, A.; Moyer, R. A.; Austin, M. E.; Brennan, D. P.; Liu, C.; Jaeger, E. F.; Lau, C.
2018-04-01
DIII-D experiments at low density (ne˜1019 m-3 ) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.
Molecular dynamics simulations of field emission from a planar nanodiode
NASA Astrophysics Data System (ADS)
Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei
2015-03-01
High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.
Molecular dynamics simulations of field emission from a planar nanodiode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei
High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid likemore » model is also developed and its results are in qualitative agreement with the simulations.« less
NASA Astrophysics Data System (ADS)
Franek, James B.
Argon emission lines, particularly those in the near-infrared region (700-900nm), are used to determine plasma properties in low-temperature, partially ionized plasmas to determine effective electron temperature [Boffard et al., 2012], and argon excited state density [Boffard et al., 2009] using appropriately assumed electron energy distributions. While the effect of radiation trapping influences the interpretation of plasma properties from emission-line ratio analysis, eliminating the need to account for these effects by directly observing the 3px-to-1sy transitions [ Boffard et al., 2012] is preferable in most cases as this simplifies the analysis. In this dissertation, a 1-Torr argon, pulsed positive column in a hollow-cathode discharge is used to study the correlation between four quantities: 420.1-419.8nm emission-line ratio, metastable-atom density, reduced electric field, and electron energy distribution. The extended coronal model is used to acquire an expression for 420.1-419.8nm emission-line ratio, which is sensitive to direct electron-impact excitation of argon excited states as well as stepwise electron-impact excitation of argon excited states for the purpose of inferring plasma quantities from experimental measurements. Initial inspection of the 420.1-419.8nm emission-line ratio suggests the pulse may be empirically divided into three distinct stages labelled the Initiation Stage, Transient Stage, and Post-Transient stage. Using equilibrium electron energy distributions from simulation to deduce excitation rates [Adams et al., 2012] in the extended coronal model affords agreement between predicted and observed metastable density in the Post-Transient stage of the discharge [Franek et al., 2015]. Applying this model-assisted diagnostic technique to the characterization of plasma systems utilizing lower-resolution spectroscopic systems is not straightforward, however, as the 419.8nm and 420.1nm emission-line profiles are convolved and become insufficiently resolved for treating the convolution as two separate emission-lines. To remedy this, the argon 425.9nm emission-line is evaluated as a proxy for the 419.8 nm emission-line. Both emission-lines (419.8nm and 425.9nm) are attributed to direct excitation from the argon ground state. The intensity of the 425.9nm emission-line is compared to the intensity of the 419.8nm emission-line over a range of plasma conditions to infer the same plasma quantities from similar experimental measurements. Discrepancies between the observed intensities of the emission-lines (419.8nm, 425.9nm) are explained by electron-impact cross-sections of their parent states. It is shown that the intensity of the argon 425.9nm emission-line is similar to that of the 419.8nm emission-line. The difference between the observed emission lines (425.9nm, 419.8nm) is attributed to the electron energy distribution in the plasma.
NASA Astrophysics Data System (ADS)
Yafarov, R. K.
2017-12-01
Correlation dependences between variations of the structural-phase composition, morphology characteristics, and field-electron-emission (FEE) properties of surface-structured p-type silicon singlecrystalline (100)-oriented wafers have been studied during their stepwise high-dose carbon-ion-beam irradiation. It is established that the stepwise implantation of carbon decreases the FEE threshold and favors an increase in the maximum FEE-current density by more than two orders of magnitude. Physicochemical mechanisms involved in this modification of the properties of near-surface layers of silicon under carbon-ion implantation are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.
We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presencemore » of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.« less
Dynamics of laser-driven proton beam focusing and transport into solid density matter
NASA Astrophysics Data System (ADS)
Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.
2016-10-01
Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.
NASA Astrophysics Data System (ADS)
Bell, Michael; Flechard, Chris; Fauvel, Yannick; Häni, Christoph; Sintermann, Jörg; Jocher, Markus; Menzi, Harald; Hensen, Arjan; Neftel, Albrecht
2017-05-01
Ammonia (NH3) fluxes were estimated from a field being grazed by dairy cattle during spring by applying a backward Lagrangian stochastic model (bLS) model combined with horizontal concentration gradients measured across the field. Continuous concentration measurements at field boundaries were made by open-path miniDOAS (differential optical absorption spectroscopy) instruments while the cattle were present and for 6 subsequent days. The deposition of emitted NH3 to clean
patches on the field was also simulated, allowing both net
and gross
emission estimates, where the dry deposition velocity (vd) was predicted by a canopy resistance (Rc) model developed from local NH3 flux and meteorological measurements. Estimated emissions peaked during grazing and decreased after the cattle had left the field, while control on emissions was observed from covariance with temperature, wind speed and humidity and wetness measurements made on the field, revealing a diurnal emission profile. Large concentration differences were observed between downwind receptors, due to spatially heterogeneous emission patterns. This was likely caused by uneven cattle distribution and a low grazing density, where hotspots
of emissions would arise as the cattle grouped in certain areas, such as around the water trough. The spatial complexity was accounted for by separating the model source area into sub-sections and optimising individual source area coefficients to measured concentrations. The background concentration was the greatest source of uncertainty, and based on a sensitivity/uncertainty analysis the overall uncertainty associated with derived emission factors from this study is at least 30-40 %.Emission factors can be expressed as 6 ± 2 g NH3 cow-1 day-1, or 9 ± 3 % of excreted urine-N emitted as NH3, when deposition is not simulated and 7 ± 2 g NH3 cow-1 day-1, or 10 ± 3 % of excreted urine-N emitted as NH3, when deposition is included in the gross emission model. The results suggest that around 14 ± 4 % of emitted NH3 was deposited to patches within the field that were not affected by urine or dung.
Sampayan, Stephen E.
1998-01-01
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.
Sampayan, S.E.
1998-03-03
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.
Note: Simulation and test of a strip source electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Munawar, E-mail: muniqbal.chep@pu.edu.pk; Institute of High Energy Physics, Chinese Acedemy of Sciences, Beijing 100049; Islam, G. U.
We present simulation and test of an indirectly heated strip source electron beam gun assembly using Stanford Linear Accelerator Center (SLAC) electron beam trajectory program. The beam is now sharply focused with 3.04 mm diameter in the post anode region at 15.9 mm. The measured emission current and emission density were 1.12 A and 1.15 A/cm{sup 2}, respectively, that corresponds to power density of 11.5 kW/cm{sup 2}, at 10 kV acceleration potential. The simulated results were compared with then and now experiments and found in agreement. The gun is without any biasing, electrostatic and magnetic fields; hence simple and inexpensive.more » Moreover, it is now more powerful and is useful for accelerators technology due to high emission and low emittance parameters.« less
On the Foundation of Equipartition in Supernova Remnants
NASA Astrophysics Data System (ADS)
Urošević, Dejan; Pavlović, Marko Z.; Arbutina, Bojan
2018-03-01
A widely accepted paradigm is that equipartition (eqp) between the energy density of cosmic rays (CRs) and the energy density of the magnetic field cannot be sustained in supernova remnants (SNRs). However, our 3D hydrodynamic supercomputer simulations, coupled with a nonlinear diffusive shock acceleration model, provide evidence that eqp may be established at the end of the Sedov phase of evolution in which most SNRs spend the longest portions of their lives. We introduce the term “constant partition” for any constant ratio between the CR energy density and the energy density of the magnetic field in an SNR, while the term “equipartition” should be reserved for the case of approximately the same values of the energy density (also, it is constant partition in the order of magnitude) of ultra-relativistic electrons only (or CRs in total) and the energy density of the magnetic field. Our simulations suggest that this approximate constant partition exists in all but the youngest SNRs. We speculate that since evolved SNRs at the end of the Sedov phase of evolution can reach eqp between CRs and magnetic fields, they may be responsible for initializing this type of eqp in the interstellar medium. Additionally, we show that eqp between the electron component of CRs and the magnetic field may be used for calculating the magnetic field strength directly from observations of synchrotron emission from SNRs. The values of magnetic field strengths in SNRs given here are approximately 2.5 times lower than values calculated by Arbutina et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsova, Ya. V., E-mail: yana@mail.ioffe.ru; Jmerik, V. N.; Nechaev, D. V.
2016-07-15
The specific features of the cathodoluminescence (CL) spectra in AlInGaN heterostructures, caused by the influence of phase separation and internal electric fields, observed at varied CL excitation density, are studied. It is shown that the evolution of the CL spectrum and the variation in the spectral position of emission lines of nanoscale layers with current density in the primary electron beam makes it possible to identify the occurrence of phase separation in the layer and, in the absence of this separation, to estimate the electric-field strength in the active region of the structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P. F.; Han, J. L.; Wang, C., E-mail: pfwang@nao.cas.cn, E-mail: hjl@nao.cas.cn, E-mail: wangchen@nao.cas.cn
Beam radii for cone-dominant pulsars follow a power-law relation with frequency, thetav = ({nu}/{nu}{sub 0}) {sup k} + thetav{sub 0}, which has not been well explained in previous works. We study this frequency dependence of beam radius (FDB) for cone-dominant pulsars by using the curvature radiation mechanism. Considering various density and energy distributions of particles in the pulsar open field-line region, we numerically simulate the emission intensity distribution across emission height and rotation phase, get integrated profiles at different frequencies, and obtain the FDB curves. For the density model of a conal-like distribution, the simulated profiles always shrink to onemore » component at high frequencies. In the density model with two separated density patches, the profiles generally have two distinct components, and the power-law indices k are found to be in the range from -0.1 to -2.5, consistent with observational results. Energy distributions of streaming particles have significant influence on the frequency-dependence behavior. Radial energy decay of particles is desired to get proper thetav{sub 0} in models. We conclude that by using the curvature radiation mechanism, the observed FDB for the cone-dominant pulsars can only be explained by the emission model of particles in two density patches with a Gaussian energy distribution and a radial energy loss.« less
Manifestations of the MHD and kinetic dynamo through soft x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartas, G.A.
1991-08-01
The underlying mechanisms that produce and sustain the reversed toroidal field in RFP's are investigated by analyzing 2Dx-ray emissivity reconstruction and by correlating the evolution of the hot electron properties to the reversed toroidal magnetic field. Reconnection of emissivity surfaces as seen in soft x-ray (SXR) reconstructing occur near the predicted resonant surface for the m=1, n=5, 6,-7 resistive tearing modes. Two distinct rates of reversed magnetic field generation are observed. First, in the MHD relaxation phase a sudden increase in B{sub t}(a) is detected. This event coincides with a large increase in the edge hot electron current density. Themore » second mode of flux generation is observed t have a slower rate and occurs during the diffusion phase. A variation of the edge hot electron current density by a factor of four produced only a small change in the measured B{sub t}(a), implying the contributions of the hot electrons to the dynamo during the diffusion phase is small. {tilde T}{sub e}, / was measured to be approximately 60%, which is much larger than the corresponding quantity for the bulk component which is about 30%. Scaling of the magnetic Reynolds number with the diffusion and MHD relaxation time, {tau}{sub MHD} indicated that the {tau}{sub MHD} does not have a strong dependence on the Spitzer resistivity whereas the diffusion time does depend on the classical resistivity. SXR emission mode analysis during the transition from a rotating to a locked plasma shows a decrease in the m=1 Fourier Bastille component of the emissivity. This is due to the flattening of the emissivity profile as seen in the SXR reconstructions.« less
Theoretical studies of electronically excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besley, Nicholas A.
2014-10-06
Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.
Liao, Wenhua; Liu, Chunjing; Gao, Zhiling
2018-04-09
Patches of dung and urine are major contributors to the feedlot gas emissions. This study investigated the impacts of dung deposition frequency (partly reflecting animal stocking density of a feedlot), dairy feedlot floor conditions (old floor indicated with the presence of consolidated manure pad [CMP] vs. new floor with the absence of consolidated manure pad [CMPn]), and application of dicyandiamide (DCD) and hydroquinone (HQ) on nitrous oxide (N 2 O) and methane (CH 4 ) emissions from patches in the laboratory, and the integrative impacts were expressed in terms of global warming potential (CO 2 -equivalent). Dung deposition frequency, feedlot floor condition, and application of inhibitors showed inverse impacts on N 2 O and CH 4 emissions from patches. Greenhouse gas (GHG) emissions from the dung, urine, and dung+urine patches on the CMP feedlot surface were approximately 7.48, 87.35, and 7.10 times those on the CMPn feedlot surface (P < 0.05). Meanwhile, GHG emissions from CMP and CMPn feedlot surfaces under high deposition frequency condition were approximately 10 and 1.7 times those under low-frequency condition. Moreover, application of HQ slightly reduced the GHG emission from urine patches, by 14.9% (P > 0.05), while applying DCD or DCD+HQ significantly reduced the GHG, by 60.3% and 65.0%, respectively (P < 0.05). Overall, it is necessary to include feedlot management such as animal stocking density and feedlot floor condition to the process of determining emission factors for feedlots. In the future, field measurements to quantitatively evaluate the relative contribution of nitrification and denitrification to the N 2 O emissions of feedlot surfaces are highly required for effective N 2 O control. This study shows that feedlot CH 4 and N 2 O emissions inversely respond to the dicyandiamide (DCD) application. Applying DCD significantly reduces GHG emissions of feedlot urine patches. Feedlot floor condition and stocking density strongly impact feedlot GHG emissions. Including feedlot floor condition and stocking density in the feedlot EF determining process is necessary.
NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, T.; Yokoyama, T., E-mail: kaneko@eps.s.u-tokyo.ac.jp
2015-06-10
We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearingmore » motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the temperature and density of prominences and derive a scaling formula for this relationship. This formula suggests that the proposed model reproduces the observed density of prominences, which is 10–100 times larger than the coronal density. Moreover, the time evolution of the extreme ultraviolet emission synthesized by combining our simulation results with the response function of the Solar Dynamics Observatory Atmospheric Imaging Assembly filters agrees with the observed temporal and spatial intensity shift among multi-wavelength extreme ultraviolet emission during in situ condensation.« less
Wave propagation in pulsar magnetospheres - Refraction of rays in the open flux zone
NASA Technical Reports Server (NTRS)
Barnard, J. J.; Arons, J.
1986-01-01
The propagation of waves through a relativistically outflowing electron-positron plasma in a very strong dipolar magnetic field, conditions expected in pulsar magnetospheres, is investigated. Halmilton's equations is derived for the propagation of rays through a plasma which is inhomogeneous in density, magnetic field directions, and Lorentz factor. These equations are solved for rays propagating through the plasmas outflowing along the 'open' dipolar field lines in which the density decreases inversely as the radius cubed and in the case where gradients transverse to the radial direction exist. In the radial case, the effects of refraction on pulse profiles, spectrum, and polarization are examined, and the effects of a transverse gradient are indicated. Attention is given to models in which the observed broad bandwidth in the radio emission has its origin in a radius to frequency map. Models with broad-band emission at a single radius are also studied. These are compared to observations of pulse width and pulse component separation as a function of frequency. The origin of 'orthogonal modes' is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juárez, Carmen; Girart, Josep M.; Zamora-Avilés, Manuel
We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s{sup −1}, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamicmore » simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.« less
Radiation of X-Rays Using Uniaxially Polarized LiNbO3 Single Crystal
NASA Astrophysics Data System (ADS)
Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro; Ito, Yoshiaki; Nakamura, Toru; Yoshikado, Shinzo
2009-03-01
X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO3 single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and an external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.
The FIELDS Instrument Suite for Solar Probe Plus
NASA Technical Reports Server (NTRS)
Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.;
2016-01-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
The FIELDS Instrument Suite for Solar Probe Plus
Goetz, K.; Harvey, P.R.; Turin, P.; Bonnell, J.W.; de Wit, T. Dudok; Ergun, R.E.; MacDowall, R.J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.A.; Burgess, D.; Cattell, C.A.; Chandran, B.D.G.; Chaston, C.C.; Chen, C.H.K.; Choi, M.K.; Connerney, J.E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.F.; Farrell, W.M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.E.; Hayes, L.M.; Hinze, J.J.; Hollweg, J.V.; Horbury, T.S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.C.; Kellogg, P.J.; Kien, M.; Klimchuk, J.A.; Krasnoselskikh, V.V.; Krucker, S.; Lynch, J.J.; Maksimovic, M.; Malaspina, D.M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.J.; Mozer, F.S.; Murphy, S.D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.W.; Salem, C.; Seitz, D.; Sheppard, D.A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.R.
2018-01-01
NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. PMID:29755144
NASA Astrophysics Data System (ADS)
Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; van Bael, Marlies K.; D' Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken
2016-07-01
Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; Vulcani
We present the first study of the spatial distribution of star formation in z ~ 0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS0717.5+3745 and MACS1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 108-1011 M ⊙, and star formation rates in the range 1-20 M⊙ yr -1. In both environments, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. The Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models and find no conclusive results. The diversity of morphologies and sizes observed in Hα illustrates the complexity of the environmental process that regulate star formation.
Generation of high power sub millimeter radiation using free electron laser
NASA Astrophysics Data System (ADS)
Panwar, J.; Sharma, S. C.; Malik, P.; Yadav, M.; Sharma, R.
2018-03-01
We have developed an analytical formalism to study the emission of high power radiation lying in the sub millimetre range. A relativistic electron beam (REB) is velocity modulated by the pondermotive force exerted by the laser beams. After passing through the drift space, the beam gets density modulated which further interacts with the strong field wiggler and acquires a transverse velocity that couples with the modulated density of the beam in the presence of ion channel which contribute to the non-linear current density which further leads to the emission of the radiation. The output radiation can be modified by changing the wiggler parameters and the energy of the electron beam. The power of the output radiation is found to increase with the modulation. The obtained radiation can be employed for various applications.
Sensitivity of MSE measurements on the beam atomic level population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, C., E-mail: carlos.ruiz@wisc.edu; Kumar, S. T. A.; Anderson, F. S. B.
The effect of variation in atomic level population of a neutral beam on the Motional Stark Effect (MSE) measurements is investigated in the low density plasmas of HSX stellarator. A 30 KeV, 4 A, 3 ms hydrogen diagnostic neutral beam is injected into HSX plasmas of line averaged electron density ranging from 2 to 4 ⋅ 10{sup 18} m{sup −3} at a magnetic field of 1 T. For this density range, the excited level population of the hydrogen neutral beam is expected to undergo variations. Doppler shifted and Stark split H{sub α} and H{sub β} emissions from the beam aremore » simultaneously measured using two cross-calibrated spectrometers. The emission spectrum is simulated and fit to the experimental measurements and the deviation from a statistically populated beam is investigated.« less
Thermal emission from large area chemical vapor deposited graphene devices
NASA Astrophysics Data System (ADS)
Luxmoore, I. J.; Adlem, C.; Poole, T.; Lawton, L. M.; Mahlmeister, N. H.; Nash, G. R.
2013-09-01
The spatial variation of thermal emission from large area graphene grown by chemical vapor deposition, transferred onto SiO2/Si substrates and fabricated into field effect transistor structures, has been investigated using infra-red microscopy. A peak in thermal emission occurs, the position of which can be altered by reversal of the current direction. The experimental results are compared with a one dimensional finite element model, which accounts for Joule heating and electrostatic effects, and it is found that the thermal emission is governed by the charge distribution in the graphene and maximum Joule heating occurs at the point of minimum charge density.
Enhanced field emission properties of carbon nanotube bundles confined in SiO2 pits
NASA Astrophysics Data System (ADS)
Lim, Yu Dian; Grapov, Dmitry; Hu, Liangxing; Kong, Qinyu; Tay, Beng Kang; Labunov, Vladimir; Miao, Jianmin; Coquet, Philippe; Aditya, Sheel
2018-02-01
It has been widely reported that carbon nanotubes (CNTs) exhibit superior field emission (FE) properties due to their high aspect ratios and unique structural properties. Among the various types of CNTs, random growth CNTs exhibit promising FE properties due to their reduced inter-tube screening effect. However, growing random growth CNTs on individual catalyst islands often results in spread out CNT bundles, which reduces overall field enhancement. In this study, significant improvement in FE properties in CNT bundles is demonstrated by confining them in microfabricated SiO2 pits. Growing CNT bundles in narrow (0.5 μm diameter and 2 μm height) SiO2 pits achieves FE current density of 1-1.4 A cm-2, which is much higher than for freestanding CNT bundles (76.9 mA cm-2). From the Fowler Nordheim plots, confined CNT bundles show a higher field enhancement factor. This improvement can be attributed to the reduced bundle diameter by SiO2 pit confinement, which yields bundles with higher aspect ratios. Combining the obtained outcomes, it can be conclusively summarized that confining CNTs in SiO2 pits yields higher FE current density due to the higher field enhancement of confined CNTs.
NASA Astrophysics Data System (ADS)
Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.
2017-06-01
The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.
Can a Penning ionization discharge simulate the tokamak scrape-off plasma conditions?
NASA Technical Reports Server (NTRS)
Finkenthal, M.; Littman, A.; Stutman, D.; Kovnovich, S.; Mandelbaum, P.; Schwob, J. L.; Bhatia, A. K.
1990-01-01
The tokamak scrape-off (the region between the vacuum vessel wall and the magnetically confined fusion plasma edge), represents a source/sink for the hot fusion plasma. The electron densities and temperatures are in the ranges 10 to the 11th - 10 to the 13th/cu cm and 1-40 eV, respectively (depending on the size, magnetic field intensity and configuration, plasma current, etc). In the work reported, the electron temperature and density have been estimated in a Penning ionization discharge by comparing its spectroscopic emission in the VUV with that predicted by a collisional radiative model. An attempt to directly compare this emission with that of the tokamak edge is briefly described.
A rigidly rotating magnetosphere model for circumstellar emission from magnetic OB stars
NASA Astrophysics Data System (ADS)
Townsend, R. H. D.; Owocki, S. P.
2005-02-01
We present a semi-analytical approach for modelling circumstellar emission from rotating hot stars with a strong dipole magnetic field tilted at an arbitrary angle to the rotation axis. By assuming the rigid-field limit in which material driven (e.g. in a wind outflow) from the star is forced to remain in strict rigid-body corotation, we are able to solve for the effective centrifugal-plus-gravitational potential along each field line, and thereby identify the location of potential minima where material is prone to accumulate. Applying basic scalings for the surface mass flux of a radiatively driven stellar wind, we calculate the circumstellar density distribution that obtains once ejected plasma settles into hydrostatic stratification along field lines. The resulting accumulation surface resembles a rigidly rotating, warped disc, tilted such that its average surface normal lies between the rotation and magnetic axes. Using a simple model of the plasma emissivity, we calculate time-resolved synthetic line spectra for the disc. Initial comparisons show an encouraging level of correspondence with the observed rotational phase variations of Balmer-line emission profiles from magnetic Bp stars such as σ Ori E.
NASA Astrophysics Data System (ADS)
Kolekar, Sadhu; Patole, Shashikant P.; Yoo, Ji-Beom; Dharmadhikari, Chandrakant V.
2018-03-01
Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable and uniform emitting sites. In this paper we report a novel approach which involves analysis of Proximity Field Emission Microscopic (PFEM) images using Scanning Probe Image Processing technique. Vertically aligned carbon nanotube emitters have been deposited on tungsten foil by water assisted chemical vapor deposition. Prior to the field electron emission studies, these films were characterized by scanning electron microscopy, transmission electron microscopy, and Atomic Force Microscopy (AFM). AFM images of the samples show bristle like structure, the size of bristle varying from 80 to 300 nm. The topography images were found to exhibit strong correlation with current images. Current-Voltage (I-V) measurements both from Scanning Tunneling Microscopy and Conducting-AFM mode suggest that electron transport mechanism in imaging vertically grown CNTs is ballistic rather than usual tunneling or field emission with a junction resistance of 10 kΩ. It was found that I-V curves for field emission mode in PFEM geometry vary initially with number of I-V cycles until reproducible I-V curves are obtained. Even for reasonably stable I-V behavior the number of spots was found to increase with the voltage leading to a modified Fowler-Nordheim (F-N) behavior. A plot of ln(I/V3) versus 1/V was found to be linear. Current versus time data exhibit large fluctuation with the power spectral density obeying 1/f2 law. It is suggested that an analogue of F-N equation of the form ln(I/Vα) versus 1/V may be used for the analysis of field emission data, where α may depend on nanostructure configuration and can be determined from the dependence of emitting spots on the voltage.
A reexamination of soil textural effects on microwave emission and backscattering
NASA Technical Reports Server (NTRS)
Dobson, M. C.; Kouyate, F.; Ulaby, F. T.
1984-01-01
Microwave frequency measurements of moist soil dielectric properties are noted to challenge the validity of percent-of-field-capacity as a moisture indicator that is independent of soil texture in terms of microwave sensitivity. In arriving at this view, gravimetric, volumetric, and percent-of-field-capacity were tested for their ability to reduce dielectric behavior divergence between soil textures at 1.4 and 5.0 GHz. The most congruent dielectric behavior between soil textures is found to occur when soil moisture is expressed on a volumetric basis that is proportional to the number of water dipoles/unit volume. An inadequate characterization of soil bulk density in the field, combined with the dependency of bulk density on water retention at field capacity, offers the most plausible explanation for the earlier conclusions.
Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks
NASA Astrophysics Data System (ADS)
Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke
2018-05-01
We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydia Vaughn; Biao Zhu; Carolin Bimueller
Measurements made from a 2014-2016 field glucose addition experiment. Dataset includes measurements of surface trace gas emissions (Delta13C of ecosystem respiration and source-partitioned surface CO2 flux, CH4 flux, and GPP), soil profile information (concentrations of carbon, nitrogen, and soil microbial biomass carbon, Delta13C of soil organic matter and microbial biomass, gravimetric water content, and bulk density), soil mineral nitrogen availability, and field-measured soil temperature, air temperature and soil moisture. Experiment was conducted in a region of high-centered polygons on the BEO. Data will be available Fall 2017.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fanciullo, L.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zonca, A.
2015-04-01
Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles ψ. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction pmax decreases with column density NH in the more opaque fields with NH> 1021 cm-2; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum polarization fraction pmax in diffuse regions where the magnetic field is ordered on large scales and perpendicular to the line of sight. This emphasizes the impact of anisotropies of the magnetic field on the emerging polarization signal. The decrease of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti-correlation. In the simulations, polarization fractions are also found to anti-correlate with the angle dispersion function 𝒮. However, the dispersion of the polarization angle for a given polarization fraction is found to be larger in the simulations than in the observations, suggesting a shortcoming in the physical content of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical properties of the dust polarization as observed in a variety of nearby clouds, dense cores excluded, and that the large-scale field orientation with respect to the line of sight plays a major role in the quantitative analysis of these statistical properties. Appendices are available in electronic form at http://www.aanda.org
Analysis of X-ray observations of the 15 June 1973 flare in active region NOAA 131
NASA Technical Reports Server (NTRS)
Krall, K. R.; Reichmann, E. J.; Wilson, R. M.; Henze, W., Jr.; Smith, J. B., Jr.
1978-01-01
Observations and analyses of the 1B/M3 flare of 15 June, 1973 in active region NOAA 131 (McMath 12379) are presented. The X-ray observations, consisting of broadband photographs and proportional counter data from the Skylab/ATM NASA-MSFC/Aerospace S-056 experiment, are used to infer temperatures, emission measures, and densities for the flaring plasma. The peak temperature from the spatially resolved photographs is 25,000,000 K, while the temperature from the full-disk proportional counter data is approximately 15,000,000 K. The density is 3 times 10 to the 10th/cu cm. The X-ray flare emission appears to come primarily from two low-lying curvilinear features lying perpendicular to and centered on the line where the photospheric longitudinal magnetic field is zero. Similarities in the preflare and postflare X-ray emission patterns indicate that no large-scale relaxation of the coronal magnetic configuration was observed. Also discussed are H-alpha and magnetic field observations of the flare and the active region. Finally, results of numerical calculations, including thermal conduction, radiative loss, and chromospheric evaporation, are in qualitative agreement with the decay phase observations.
A preliminary characterization of applied-field MPD thruster plumes
NASA Technical Reports Server (NTRS)
Myers, Roger M.; Wehrle, David; Vernyi, Mark; Biaglow, James; Reese, Shawn
1991-01-01
Electric probes, quantitative imaging, and emission spectroscopy were used to study the plume characteristics of applied field magnetohydrodynamic thrusters. The measurements showed that the applied magnetic field plays the dominant role in establishing the plume structure, followed in importance by the cathode geometry and propellant. The anode radius had no measurable impact on the plume characteristics. For all cases studied the plume was highly ionized, though spectral lines of neutral species were always present. Centerline electron densities and temperatures ranged from 2 times 10 (exp 18) to 8 times 10 (exp 18) m(exp -3) and from 7500 to 20,000 K, respectively. The plume was strongly confined by the magnetic field, with radial density gradients increasing monotonically with applied field strength. Plasma potential measurements show a strong effect of the magnetic field on the electrical conductivity and indicate the presence of radial current conduction in the plume.
Cluster Observations of Non-Time Continuous Magnetosonic Waves
NASA Technical Reports Server (NTRS)
Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.
2016-01-01
Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.
Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Spaans, Marco
1996-01-01
We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.
NASA Astrophysics Data System (ADS)
van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.
2018-01-01
Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.
OH megamasers: dense gas & the infrared radiation field
NASA Astrophysics Data System (ADS)
Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie
2018-06-01
To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}<10L_{⊙}, OH kMs), OH absorbers and OH non-detections (non-OH MM). Through comparative analysis on their infrared emission, CO and HCN luminosities (good tracers for the low-density gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.
Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets
NASA Technical Reports Server (NTRS)
Hartigan, Patrick; Morse, Jon A.; Raymond, John
1994-01-01
In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.
Source of the dayside cusp aurora.
Mende, S B; Frey, H U; Angelopoulos, V
2016-08-01
Monochromatic all-sky imagers at South Pole and other Antarctic stations of the Automatic Geophysical Observatory chain recorded the aurora in the region where the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites crossed the dayside magnetopause. In several cases the magnetic field lines threading the satellites when mapped to the atmosphere were inside the imagers' field of view. From the THEMIS magnetic field and the plasma density measurements, we were able to locate the position of the magnetopause crossings and map it to the ionosphere using the Tsyganenko-96 field model. Field line mapping is reasonably accurate on the dayside subsolar region where the field is strong, almost dipolar even though compressed. From these coordinated observations, we were able to prove that the dayside cusp aurora of high 630 nm brightness is on open field lines, and it is therefore direct precipitation from the magnetosheath. The cusp aurora contained significant highly structured N 2 + 427.8 nm emission. The THEMIS measurements of the magnetosheath particle energy and density taken just outside the magnetopause compared to the intensity of the structured N 2 + 427.8 nm emissions showed that the precipitating magnetosheath particles had to be accelerated. The most likely electron acceleration mechanism is by dispersive Alfvén waves propagating along the field line. Wave-accelerated suprathermal electrons were seen by FAST and DMSP. The 427.8 nm wavelength channel also shows the presence of a lower latitude hard-electron precipitation zone originating inside the magnetosphere.
Source of the dayside cusp aurora
Frey, H. U.; Angelopoulos, V.
2016-01-01
Abstract Monochromatic all‐sky imagers at South Pole and other Antarctic stations of the Automatic Geophysical Observatory chain recorded the aurora in the region where the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites crossed the dayside magnetopause. In several cases the magnetic field lines threading the satellites when mapped to the atmosphere were inside the imagers' field of view. From the THEMIS magnetic field and the plasma density measurements, we were able to locate the position of the magnetopause crossings and map it to the ionosphere using the Tsyganenko‐96 field model. Field line mapping is reasonably accurate on the dayside subsolar region where the field is strong, almost dipolar even though compressed. From these coordinated observations, we were able to prove that the dayside cusp aurora of high 630 nm brightness is on open field lines, and it is therefore direct precipitation from the magnetosheath. The cusp aurora contained significant highly structured N2 + 427.8 nm emission. The THEMIS measurements of the magnetosheath particle energy and density taken just outside the magnetopause compared to the intensity of the structured N2 + 427.8 nm emissions showed that the precipitating magnetosheath particles had to be accelerated. The most likely electron acceleration mechanism is by dispersive Alfvén waves propagating along the field line. Wave‐accelerated suprathermal electrons were seen by FAST and DMSP. The 427.8 nm wavelength channel also shows the presence of a lower latitude hard‐electron precipitation zone originating inside the magnetosphere. PMID:27867797
Satellite observations of type III solar radio bursts at low frequencies
NASA Technical Reports Server (NTRS)
Fainberg, J.; Stone, R. G.
1974-01-01
Type III solar radio bursts have been observed from 10 MHz to 10 kHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 earth radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics, and analysis of individual as well as storms of bursts. Substantial evidence is available to show that the radio emission is observed at the second harmonic instead of the fundamental of the plasma frequency. This brings the density scale derived by radio observations into better agreement with direct solar wind density measurements at 1 AU and relaxes the requirement for type III propagation along large density-enhanced regions. This density scale with the measured direction of arrival of the radio burst allows the trajectory of the exciter path to be determined from 10 earth radii to 1 AU.
Thermal infrared near-field spectroscopy.
Jones, Andrew C; Raschke, Markus B
2012-03-14
Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy. © 2012 American Chemical Society
The formation of arcs in the dynamic spectra of Jovian decameter bursts
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Thieman, J. R.
1980-01-01
A model is presented that can account for several features of the dynamic spectral arcs observed at decameter wavelengths by the planetary radio astronomy experiment on Voyagers 1 and 2. It is shown that refraction of an extraordinary mode wave initially excited nearly orthogonal to the local magnetic field is significantly influenced by the local plasma density, being greater the higher the density. It is assumed that the source of the decameter radiation lies along the L = 6 flux tube and that the highest frequencies are produced at the lowest altitudes, where both the plasma density and magnetic field gradients are largest. It is further assumed that the decameter radiation is emitted into a thin conical sheet, consistent with both observation and theory. In the model the emission cone angle of the sheet is chosen to vary with frequency so that it is relatively small at both high and low frequencies, but approximately 80 deg at intermediate frequencies. The resulting emission pattern as seen by a distant observer is shown to resemble the observed arc pattern. The model is compared and contrasted with examples of Voyager radio data.
Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments
NASA Astrophysics Data System (ADS)
Buckle, J. V.; Richer, J. S.
2015-10-01
We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.
Structural and emission characteristics of ion-irradiated Reticulated Vitreous Carbon
NASA Astrophysics Data System (ADS)
Chacon, Judith Rebecca
Cathodes formed from Reticulated Vitreous Carbon (RVC) were treated under varying conditions of Argon-ion beam current, beam voltage and irradiation duration. Surface structures, such as balls, cones, nanowires, and nanowhiskers were formed in the RVC network through a series of ion-impact sputtering and self-diffusion reactions. Raman shifts to the D and E2g' peak suggest C=C bonding within the original RVC structure was converted to the lesser-bound C-C bonding structure. Cathodes demonstrating the most stable electronic configuration exhibited significant vertical growth to graphitic domains as determined by calculations based on XRD measurements. Carbon nanotubes at the surface were observed at the surface through micro-Raman techniques. The surface structures formed by argon-bombardment, are responsible for cathodes exhibiting lower field-emission extraction fields. The electric field required for the onset of electron emission was measured to change from 6.03 V/micron in non-irradiated RVC to 1.62V/micron for RVC irradiated for 15 minutes at a beam voltage of 1200V and beam current of 200mA (ion-beam current density 2.24mA/cm2). Treated surfaces were also responsible for increased stability in emission over time. For untreated RVC, the field required for emission dropped 25% over a 48 hour training period, whilst modestly treated RVC (15min, 1200V, 100mA, or 1.52mA/cm2) rose as little as 3%. Field-emissive RVC, is an inexpensively produced, mechanically robust cathode with potential applications in lighting, displays and microwave sources.
Plasmon effects in light scalar and pseudo-scalar emission from a supernova.
NASA Astrophysics Data System (ADS)
Altherr, T.
1991-05-01
The emission of light scalars and pseudo-scalars (axion-like particles) coupled to the chromo/electric field from a QCD/AED plasma at high temperature and very high density is studied in detail. The calculation is then applied to the SN 1987A event for which new bounds on the Peccei-Quinn symmetry breaking scale fa are derived, fa ⪆ 3×109GeV in presence of a quark-gluon core and fa ⪆ 107GeV, which is the same bound as the one obtained from red giant stars, by considering axion emission from the electron gas.
A Search for Plasma "Fingers" in the Io Torus
NASA Astrophysics Data System (ADS)
Jaggar, S.; Schneider, N. M.; Bagenal, F.; Trauger, J. T.
1996-09-01
We have compared model and data images of the Io plasma torus to test the radial diffusion model of Yang et al. (J. Geophys. Res., Vol 99, p. 8755, 1994). They predict that radial diffusion takes the form of `fingers' of dense plasma flowing outward due to the centrifugal force. Furthermore, they show that the spatial scale of these significant longitudinal variations is approximately 15(o) . The observations used in this study were obtained using a 2.4m telescope at Las Campanas Observatory using a narrowband filter to isolate emissions from S(++) at 9531 Angstroms. S(++) images are dominated by emission from the warm torus where outward radial transport is expected. Although S(+) images are brighter, they are contaminated by emission from the cold torus where fingers are not expected. We used the Colorado Io Torus Emission Package (CITEP)(Taylor et al., J. Geophys. Res., Vol. 100, p. 19541, 1995) to simulate images of the torus with fingers. CITEP is a comprehensive program which incorporates accurate atomic physics, plasma physics and magnetic field models to simulate the brightness and morphology or torus emissions. We used a Voyager empirical model (Bagenal, J. Geophys. Res., Vol. 99, p. 11043, 1994) modulated by a sinusoidal longitudinal density variation with a 15(o) period and an amplitude proportional to the density at that L-shell. We compared simulated images with data to determine the minimum density contrast necessary to make fingers detectable. We place an upper limit on the density contrast of +/- 20% on a 15(o) spatial scale. We conclude that either the density contrast of this mode of transport is small, or other processes are more important for radial transport. This constraint can also be used in other radial diffusion models which predict density variations on this spatial scale. This work has been supported by NASA's Planetary Astronomy and Planetary Atmospheres programs.
First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks
Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; ...
2018-04-11
DIII-D experiments at low density (n e ~10 19 m -3) have directly measured whistler waves in the 100– 200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limitcycle- like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission thatmore » follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.« less
First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks.
Spong, D A; Heidbrink, W W; Paz-Soldan, C; Du, X D; Thome, K E; Van Zeeland, M A; Collins, C; Lvovskiy, A; Moyer, R A; Austin, M E; Brennan, D P; Liu, C; Jaeger, E F; Lau, C
2018-04-13
DIII-D experiments at low density (n_{e}∼10^{19} m^{-3}) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.
First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.
DIII-D experiments at low density (n e ~10 19 m -3) have directly measured whistler waves in the 100– 200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limitcycle- like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission thatmore » follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.« less
NASA Astrophysics Data System (ADS)
Kamide, Koichi; Araki, Hisashi; Yoshino, Katsumi
2003-12-01
Carbon nanotube (CNT) arrays with a controlled density are prepared on a micropatterned Au/Cr composite film formed on a quartz glass plate by pyrolysis of Ni-phthalocyanine at 800°C. It is clarified from characteristic X-ray analyses for those samples that a catalytic Ni nanoparticle is not contained within the base of the whisker-like CNT in contrast to that of the bamboo-like CNT, suggesting that the growth process of the present novel CNT is incompatible with that of the bamboo-like CNT. In the Au/Cr composite film, both the Cr atomic content of approximately 30% and the presence of the Ni catalyst devoid of a particle-like shape are important factors for the growth of CNTs. Field emission from the novel CNT arrays exhibits a lower turn-on voltage and a higher current density compared with that from the bamboo-like arrays formed on a quartz plate.
Fluorescent H{sub 2} Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Huynh Anh N.; Pak, Soojong; Lee, Hye-In
We have analyzed the temperature, velocity, and density of H{sub 2} gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H{sub 2} emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41−0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63−1.82, indicating that the H{sub 2} emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients inmore » the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H{sub 2} from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H{sub 2} should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ∼10{sup 5} cm{sup −3} with a size smaller than ∼5 × 10{sup −3} pc embedded in lower-density regions of 10{sup 3}–10{sup 4} cm{sup −3}.« less
Hot Water In The ISM: Masing and Non-Masing Emission From Non-Dissociative Shocks
NASA Astrophysics Data System (ADS)
Kaufman, M. J.; Neufeld, D. A.
1993-12-01
We investigate the possibility that dense non-dissociative shocks may be a source of water maser emission in regions of active star formation. Recent observations of maser line ratios in several star forming regions (Melnick et al. 1993 ApJ 416, L37) indicate that water masers are excited in T>1000K gas, temperatures too high for molecular emission behind dissociative shocks. We solve for the structure of, and emission from, multi-fluid shocks in gas with n(H_2)>10(7) cm(-3) and Vshock< 50 km s(-1) , using new treatments of molecular cooling and ion-neutral coupling in dense gas. Such high densities are required by maser collisional pumping schemes. In this gas, the fractional ionization is low and carried on grains; results are presented for a variety of assumed grain size distributions and as a function of shock velocity, magnetic field and preshock density. Suitable preshock conditions yield individual masing regions with sizes of ~ 10(13) cm, consistent with interferometric observations of 22 GHz maser spots, and peak masing gas temperatures of ~ fewtimes 10(3) K, consistent with the temperatures inferred from maser line ratios. Although these masers are an `exotic' manifestation of the passing shock waves, most of the shock energy emerges in non-masing rovibrational line emission from H_2O,OH,CO and H_2, and we investigate this emission from shocks with densities as low as n(H_2) ~ 10(5cm(-3)) . Our study of the expected H_2O far-IR line emissions is motivated, in particular, by the possibility of observing such emissions with the European Space Agency's Infrared Space Observatory.
NASA Astrophysics Data System (ADS)
Mintairov, A. M.; Kapaldo, J.; Merz, J. L.; Rouvimov, S.; Lebedev, D. V.; Kalyuzhnyy, N. A.; Mintairov, S. A.; Belyaev, K. G.; Rakhlin, M. V.; Toropov, A. A.; Brunkov, P. N.; Vlasov, A. S.; Zadiranov, Yu. M.; Blundell, S. A.; Mozharov, A. M.; Mukhin, I.; Yakimov, M.; Oktyabrsky, S.; Shelaev, A. V.; Bykov, V. A.
2018-05-01
Structural and emission properties of few-electron In(Ga)P/GaInP quantum dots (QDs) representing natural Wigner molecules (WM) and whispering gallery mode (WGM) electron (e ) cavities have been investigated. QD structures were grown using self-organized metal-organic vapor phase epitaxy and deposition from ˜3 to 7 monolayers of InP at 700 °C. Using atomic force microscopy, transmission electron microscopy, near-field scanning optical microscopy (NSOM), and μ -photoluminescence (μ -PL) spectra we obtained In(Ga)P/GaInP QDs having lateral size 80-180 nm, height 5-30 nm, Ga content 0.0-0.4, density 2 -10 μm-2 , and electron population up to 20 and demonstrated control of their density and size distribution. Using high-spatial-resolution low-temperature PL spectra, NSOM imaging, and calculations of charge density distributions we observed Wigner localization and e -cavity effects for a series of dots having quantum confinement ℏ ω0=0.5 -6 meV . We used these data together with time-resolved PL measurements to clarify the effect of Coulomb interaction and WM formation on emission spectra of few-electron QDs. We present direct observation of 2 e , 6 e , and 9 e WMs; 2 e and 4 e WGMs; and Fabry-Perot e modes and establish conditions of e -WGM-cavity formation in these QDs.
Electronic field emission models beyond the Fowler-Nordheim one
NASA Astrophysics Data System (ADS)
Lepetit, Bruno
2017-12-01
We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.
Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.; ...
2014-05-23
The effects of applied non-axisymmetric resonant magnetic perturbations (RMPs) are predicted without and with self-consistent plasma response by modeling of the magnetic field structure and two-fluid MHD simulations, respectively. A synthetic diagnostic is used to simulate soft X-ray (SXR) emission within the steep gradient region of the pedestal, 0.98 > ψ > 0.94. The entire pedestal and edge region is characterized by large changes in plasma rotation and current density. Those parameters are expected to strongly affect the plasma response to RMPs. The M3D-C1 code takes into account this response self-consistently. The plasma response is investigated in detail and usedmore » in the forward modeling of the simulated local SXR emission, within the framework of the synthetic diagnostic. The resulting synthetic emission is compared to measured SXR data. The latter clearly shows helical m = 11 ± 1 displacements around the 11/3 rational surface of sizes up to 5 cm, which change with the poloidal angle. The synthetic emission with plasma response is used to explain the nature of the measured displacements. Different approaches are tested. One approach is based on the magnetic field structure to simulate local emission, which shows additional structures at the separatrix, that are caused by the lobes. Especially without plasma response, almost only separatrix structures are generated while no significant displacements are found further inside. Another approach to model local emission uses the fluid quantities electron density and temperature, as calculated by M3D-C1. Compared to the previous approach, based on the magnetic field structure, the emission simulated by the fluid approach with plasma response shows better agreement with the measured SXR data. To be specific, it has comparable displacements in the steep gradient region and no lobe structures at all. The helical displacements around the 11/3 surface are identified to be directly related to the kink response, caused by non-resonant amplification of various poloidal RMP modes due to plasma response. Regarding the latter, the role of different plasma parameters is investigated, but it appears that the electron rotation plays a key role in the formation of screening and resonant amplification, while the kinking appears to be sensitive to the edge current density. As a result, it is also hypothesised that the strength of the kink response is also correlated to edge-localized-mode (ELM) stability.« less
Surface emission from neutron stars and implications for the physics of their interiors.
Ozel, Feryal
2013-01-01
Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.
NASA Astrophysics Data System (ADS)
Sankaran, K. J.; Manoharan, D.; Sundaravel, B.; Lin, I. N.
2016-09-01
Multienergy Au-ion implantation enhanced the electrical conductivity of heterogranular structured diamond films grown on Au-coated Si substrates to a high level of 5076.0 (Ω cm)-1 and improved the field electron emission (FEE) characteristics of the films to low turn-on field of 1.6 V/μm, high current density of 5.4 mA/cm2 (@ 2.65 V/μm), and high lifetime stability of 1825 min. The catalytic induction of nanographitic phases in the films due to Au-ion implantation and the formation of diamond-to-Si eutectic interface layer due to Au-coating on Si together encouraged the efficient conducting channels for electron transport, thereby improved the FEE characteristics of the films.
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; Treu, Tommaso; Schmidt, Kasper B.; Poggianti, Bianca M.; Dressler, Alan; Fontana, Adriano; Bradač, Marusa; Brammer, Gabriel B.; Hoag, Austin; Huang, Kuan-Han; Malkan, Matthew; Pentericci, Laura; Trenti, Michele; von der Linden, Anja; Abramson, Louis; He, Julie; Morris, Glenn
2015-12-01
We present the first study of the spatial distribution of star formation in z ˜ 0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS 0717.5+3745 and MACS 1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as a field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 108-1011 M⊙ and star formation rates in the range 1-20 M⊙ yr-1. Both in clusters and in the field, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside-out growth. In ˜20% of the cases, the Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models, and find no conclusive results. The diversity of morphologies and sizes observed in Hα illustrates the complexity of the environmental processes that regulate star formation. Upcoming analysis of the full GLASS data set will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial data set.
Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...
2016-02-09
Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate in this paper statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, N H. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions rangemore » from N H≈ 10 21 to10 23 cm -2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called “histogram of relative orientations”. Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing N H, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. Finally, we compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.; ...
2016-09-01
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun
NASA Technical Reports Server (NTRS)
Habbal, S. R.
1992-01-01
The energy distribution in the small-scale magnetic field that pervades the solar surface, and its relationship to X-ray/coronal activity are discussed. The observed emission from the small scale structures, at temperatures characteristic of the chromosphere, transition region and corona, emanates from the boundaries of supergranular cells, within coronal bright points. This emission is characterized by a strong temporal and spatial variability with no definite pattern. The analysis of simultaneous, multiwavelength EUV observations shows that the spatial density of the enhanced as well as variable emission from the small scale structures exhibits a pronounced temperature dependence with significant maxima at 100,000 and 1,000,000 K. Within the limits of the spatial (1-5 arcsec) and temporal (1-5 min) resolution of data available at present, the observed variability in the small scale structure cannot account for the coroal heating of the quiet sun. The characteristics of their emission are more likely to be an indicator of the coronal heating mechanisms.
Radio emission from AM Herculis - The quiescent component and an outburst
NASA Technical Reports Server (NTRS)
Dulk, G. A.; Bastian, T. S.; Chanmugam, G.
1983-01-01
The VLA has been used to search for radio emission from the AM Her-type binaries VV Pup, EF Eri, PG 1550 + 191, CW 1103 + 354, and AN UMa, at 4.9 GHz. A remarkable 10-min outburst was detected from AM Her at 4.9 GHz, which was about 20 times more intense than the quiescent emission and was essentially 100 percent circularly polarized. It is suggested that the quiescent emission of AM Her can be accounted for by 500-keV electrons trapped in the magnetosphere of the white dwarf, provided that the electron energy spectrum is quite hard and that the spectral hardness or number density of energetic electrons increases with radius, while the outburst is probably due to an electron-cyclotron maser operating near the surface of the red dwarf companion. The implied existence of a 1000-gauss localized magnetic field and a corona on the red dwarf has consequences for mass transfer, field line interactions, and variable activity.
NASA Technical Reports Server (NTRS)
Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.;
2016-01-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
Bale, S D; Goetz, K; Harvey, P R; Turin, P; Bonnell, J W; de Wit, T Dudok; Ergun, R E; MacDowall, R J; Pulupa, M; Andre, M; Bolton, M; Bougeret, J-L; Bowen, T A; Burgess, D; Cattell, C A; Chandran, B D G; Chaston, C C; Chen, C H K; Choi, M K; Connerney, J E; Cranmer, S; Diaz-Aguado, M; Donakowski, W; Drake, J F; Farrell, W M; Fergeau, P; Fermin, J; Fischer, J; Fox, N; Glaser, D; Goldstein, M; Gordon, D; Hanson, E; Harris, S E; Hayes, L M; Hinze, J J; Hollweg, J V; Horbury, T S; Howard, R A; Hoxie, V; Jannet, G; Karlsson, M; Kasper, J C; Kellogg, P J; Kien, M; Klimchuk, J A; Krasnoselskikh, V V; Krucker, S; Lynch, J J; Maksimovic, M; Malaspina, D M; Marker, S; Martin, P; Martinez-Oliveros, J; McCauley, J; McComas, D J; McDonald, T; Meyer-Vernet, N; Moncuquet, M; Monson, S J; Mozer, F S; Murphy, S D; Odom, J; Oliverson, R; Olson, J; Parker, E N; Pankow, D; Phan, T; Quataert, E; Quinn, T; Ruplin, S W; Salem, C; Seitz, D; Sheppard, D A; Siy, A; Stevens, K; Summers, D; Szabo, A; Timofeeva, M; Vaivads, A; Velli, M; Yehle, A; Werthimer, D; Wygant, J R
2016-12-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
NASA Astrophysics Data System (ADS)
Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.
2016-12-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
Lysenkov, Dmitry; Engstler, Jörg; Dangwal, Arti; Popp, Alexander; Müller, Günter; Schneider, Jörg J; Janardhanan, Vinod M; Deutschmann, Olaf; Strauch, Peter; Ebert, Volker; Wolfrum, Jürgen
2007-06-01
We have developed a chemical vapor deposition (CVD) process for the catalytic growth of carbon nanotubes (CNTs), anchored in a comose-type structure on top of porous alumina substrates. The mass-flow conditions of precursor and carrier gases and temperature distributions in the CVD reactor were studied by transient computational fluid dynamic simulation. Molecular-beam quadrupole mass spectroscopy (MB-QMS) has been used to analyze the gas phase during ferrocene CVD under reaction conditions (1073 K) in the boundary layer near the substrate. Field-emission (FE) properties of the nonaligned CNTs were measured for various coverages and pore diameters of the alumina. Samples with more dense CNT populations provided emitter-number densities up to 48,000 cm(-2) at an electric field of 6 V microm(-1). Samples with fewer but well-anchored CNTs in 22-nm pores yielded the highest current densities. Up to 83 mA cm(-2) at 7 V microm(-1) in dc mode and more than 200 mA cm(-2) at 11 V microm(-1) in pulsed diode operation have been achieved from a cathode size of 24 mm2.
NASA Astrophysics Data System (ADS)
Ali, Mian Ahsan; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Faizan-ul-Haq; Hayat, Asma; Mutaza, G.; Chishti, Naveed Ahmed; Khan, M. Asad; Ahmad, Shahbaz
2018-05-01
Ion-induced modifications of brass in terms of surface morphology, elemental composition, phase changes, field emission properties and electrical conductivity have been investigated. Brass targets were irradiated by proton beam at constant energy of 3 MeV for various doses ranges from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2 using Pelletron Linear Accelerator. Field Emission Scanning Electron Microscope (FESEM) analysis reveals the formation of randomly distributed clusters, particulates, droplets and agglomers for lower ion doses which are explainable on the basis of cascade collisional process and thermal spike model. Whereas, at moderate ion doses, fiber like structures are formed due to incomplete melting. The formation of cellular like structure is observed at the maximum ion dose and is attributed to intense heating, melting and re-solidification. SRIM software analysis reveals that the penetration depth of 3 MeV protons in brass comes out to be 38 μm, whereas electronic and nuclear energy losses come out to be 5 × 10-1 and 3.1 × 10-4 eV/Å respectively. The evaluated values of energy deposited per atom vary from 0.01 to 1.5 eV with the variation of ion doses from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2. Both elemental analysis i.e. Energy Dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD) supports each other and no new element or phase is identified. However, slight change in peak intensity and angle shifting is observed. Field emission properties of ion-structured brass are explored by measuring I-V characteristics of targets under UHV condition in diode-configuration using self designed and fabricated setup. Improvement in field enhancement factor (β) is estimated from the slope of Fowler-Nordheim (F-N) plots and it shows significant increase from 5 to 1911, whereas a reduction in turn on field (Eo) from 65 V/μm to 30 V/μm and increment in maximum current density (Jmax) from 12 μA/cm2 to 3821 μA/cm2 is observed. These enhancements in field emission characteristics are correlated with the growth of surface structures, specifically agglomers which are responsible for electric field convergence. Electrical by four probe method has been correlated with maximum current density and decreasing trend is observed with increasing ion doses.
NASA Astrophysics Data System (ADS)
Kundu, E.; Lundqvist, P.; Pérez-Torres, M. A.; Herrero-Illana, R.; Alberdi, A.
2017-06-01
We modeled the radio non-detection of two Type Ia supernovae (SNe), SN 2011fe and SN 2014J, considering synchrotron emission from the interaction between SN ejecta and the circumstellar medium. For ejecta whose outer parts have a power-law density structure, we compare synchrotron emission with radio observations. Assuming that 20% of the bulk shock energy is being shared equally between electrons and magnetic fields, we found a very low-density medium around both the SNe. A less tenuous medium with particle density ˜1 cm-3, which could be expected around both SNe, can be estimated when the magnetic field amplification is less than that presumed for energy equipartition. This conclusion also holds if the progenitor of SN 2014J was a rigidly rotating white dwarf (WD) with a main-sequence (MS) or red giant companion. For a He star companion, or a MS for SN 2014J, with 10% and 1% of bulk kinetic energy in magnetic fields, we obtain mass-loss rates of < {10}-9 and < ˜ 4× {10}-9 {M}⊙ {{yr}}-1 for a wind velocity of 100 {km} {{{s}}}-1. The former requires a mass accretion efficiency of >99% onto the WD, but is less restricted for the latter case. However, if the tenuous medium is due to a recurrent nova, it is difficult from our model to predict synchrotron luminosities. Although the formation channels of SNe 2011fe and 2014J are not clear, the null detection in radio wavelengths could point toward a low amplification efficiency for magnetic fields in SN shocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku
A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness andmore » shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.« less
X-Ray Emissions from Accreting White Dwarfs: A Review
NASA Technical Reports Server (NTRS)
Mukai, K.
2017-01-01
Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.
NASA Astrophysics Data System (ADS)
Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.
2017-07-01
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.
The SAMI Galaxy Survey: Publicly Available Spatially Resolved Emission Line Data Products
NASA Astrophysics Data System (ADS)
Medling, Anne; Green, Andrew W.; Ho, I.-Ting; Groves, Brent; Croom, Scott; SAMI Galaxy Survey Team
2017-01-01
The SAMI Galaxy Survey is collecting optical integral field spectroscopy of up to 3400 nearby (z<0.1) galaxies with a range of stellar masses and in a range of environments. The first public data release contains nearly 800 galaxies from the Galaxy And Mass Assembly (GAMA) Survey. In addition to releasing the reduced data cubes, we also provide emission line fits (flux and kinematic maps of strong emission lines including Halpha and Hbeta, [OII]3726,29, [OIII]4959,5007, [OI]6300, [NII]6548,83, and [SII]6716,31), extinction maps, star formation classification masks, and star formation rate maps. We give an overview of the data available for your favorite emission line science and present a few early science results. For example, a sample of edge-on disk galaxies show enhanced extraplanar emission related to SF-driven outflows, which are correlated with a bursty star formation history and higher star formation rate surface densities. Interestingly, the star formation rate surface densities of these wind hosts are 5-100 times lower than the canonical threshold for driving winds (0.1 MSun/yr/kpc2), indicating that galactic winds may be more important in normal star-forming galaxies than previously thought.
NASA Astrophysics Data System (ADS)
Lee, Cheoljong; Leroy, Adam K.; Schnee, Scott; Wong, Tony; Bolatto, Alberto D.; Indebetouw, Remy; Rubio, Monica
2015-07-01
To test the theoretical understanding that finding bright CO emission depends primarily on dust shielding, we investigate the relationship between CO emission (ICO) and the amount of dust (estimated from infrared emission and expressed as `AV') across the Large Magellanic Cloud (LMC), the Small Magellanic Cloud, and the Milky Way. We show that at our common resolution of 10 pc scales, ICO given a fixed line of sight AV is similar across all three systems despite the difference in metallicity. We find some evidence for a secondary dependence of ICO on radiation field; in the LMC, ICO at a given AV is smaller in regions of high Tdust, perhaps because of an increased photodissociating radiation field. We suggest a simple but useful picture in which the CO-to-H2 conversion factor (XCO) depends on two separable factors: (1) the distribution of gas column densities, which maps to an extinction distribution via a dust-to-gas ratio; and (2) the dependence of ICO on AV. Assuming that the probability distribution function (PDF) of local Milky Way clouds is universal, this approach predicts a dependence of {X_CO} on Z between Z-1 and Z-2 above about a third solar metallicity. Below this metallicity, CO emerges from only the high column density parts of the cloud and so depends very sensitively on the adopted PDF and the H2/H I prescription. The PDF of low-metallicity clouds is thus of considerable interest and the uncertainty associated with even an ideal prescription for XCO at very low metallicity will be large.
Hinode observations and 3D magnetic structure of an X-ray bright point
NASA Astrophysics Data System (ADS)
Alexander, C. E.; Del Zanna, G.; Maclean, R. C.
2011-02-01
Aims: We present complete Hinode Solar Optical Telescope (SOT), X-Ray Telescope (XRT)and EUV Imaging Spectrometer (EIS) observations of an X-ray bright point (XBP) observed on the 10, 11 of October 2007 over its entire lifetime (~12 h). We aim to show how the measured plasma parameters of the XBP change over time and also what kind of similarities the X-ray emission has to a potential magnetic field model. Methods: Information from all three instruments on-board Hinode was used to study its entire evolution. XRT data was used to investigate the structure of the bright point and to measure the X-ray emission. The EIS instrument was used to measure various plasma parameters over the entire lifetime of the XBP. Lastly, the SOT was used to measure the magnetic field strength and provide a basis for potential field extrapolations of the photospheric fields to be made. These were performed and then compared to the observed coronal features. Results: The XBP measured ~15´´ in size and was found to be formed directly above an area of merging and cancelling magnetic flux on the photosphere. A good correlation between the rate of X-ray emission and decrease in total magnetic flux was found. The magnetic fragments of the XBP were found to vary on very short timescales (minutes), however the global quasi-bipolar structure remained throughout the lifetime of the XBP. The potential field extrapolations were a good visual fit to the observed coronal loops in most cases, meaning that the magnetic field was not too far from a potential state. Electron density measurements were obtained using a line ratio of Fe XII and the average density was found to be 4.95 × 109 cm-3 with the volumetric plasma filling factor calculated to have an average value of 0.04. Emission measure loci plots were then used to infer a steady temperature of log Te [ K] ~ 6.1. The calculated Fe XII Doppler shifts show velocity changes in and around the bright point of ±15 km s-1 which are observed to change on a timescale of less than 30 min.
Hα Emitting Galaxies at z ∼ 0.6 in the Deep And Wide Narrow-band Survey
NASA Astrophysics Data System (ADS)
Coughlin, Alicia; Rhoads, James E.; Malhotra, Sangeeta; Probst, Ronald; Swaters, Rob; Tilvi, Vithal S.; Zheng, Zhen-Ya; Finkelstein, Steven; Hibon, Pascale; Mobasher, Bahram; Jiang, Tianxing; Joshi, Bhavin; Pharo, John; Veilleux, Sylvain; Wang, Junxian; Yang, Huan; Zabl, Johannes
2018-05-01
We present new measurements of the Hα luminosity function (LF) and star formation rate (SFR) volume density for galaxies at z ∼ 0.62 in the COSMOS field. Our results are part of the Deep And Wide Narrow-band Survey (DAWN), a unique infrared imaging program with large areal coverage (∼1.1 deg2 over five fields) and sensitivity (9.9× {10}-18 {erg} {cm}}-2 {{{s}}}-1 at 5σ). The present sample, based on a single DAWN field, contains 116 Hα emission-line candidates at z ∼ 0.62, 25% of which have spectroscopic confirmations. These candidates have been selected through the comparison of narrow and broad-band images in the infrared and through matching with existing catalogs in the COSMOS field. The dust-corrected LF is well described by a Schechter function with {L}* ={10}42.64+/- 0.92 erg s‑1, {{{Φ }}}* ={10}-3.32+/- 0.93 Mpc‑3, {L}* {{{Φ }}}* ={10}39.40+/- 0.15 erg s‑1 Mpc‑3, and α = ‑1.75 ± 0.09. From this LF, we calculate a SFR density of ρ SFR = 10‑1.37 ± 0.08 M ⊙ yr‑1 Mpc‑3. We expect an additional cosmic variance uncertainty of ∼20%. Both the faint end slope and luminosity density that we derive are consistent with prior results at similar redshifts, with reduced uncertainties. We also present an analysis of these Hα emitters’ sizes, which shows a direct correlation between the galaxies’ sizes and their Hα emission.
Extracting physical quantities from BES data
NASA Astrophysics Data System (ADS)
Fox, Michael; Field, Anthony; Schekochihin, Alexander; van Wyk, Ferdinand; MAST Team
2015-11-01
We propose a method to extract the underlying physical properties of turbulence from measurements, thereby facilitating quantitative comparisons between theory and experiment. Beam Emission Spectroscopy (BES) diagnostics record fluctuating intensity time series, which are related to the density field in the plasma through Point-Spread Functions (PSFs). Assuming a suitable form for the correlation function of the underlying turbulence, analytical expressions are derived that relate the correlation parameters of the intensity field: the radial and poloidal correlation lengths and wavenumbers, the correlation time and the fluctuation amplitude, to the equivalent correlation properties of the density field. In many cases, the modification caused by the PSFs is substantial enough to change conclusions about physics. Our method is tested by applying PSFs to the ``real'' density field, generated by non-linear gyrokinetic simulations of MAST, to create synthetic turbulence data, from which the method successfully recovers the correlation function of the ``real'' density field. This method is applied to BES data from MAST to determine the scaling of the 2D structure of the ion-scale turbulence with equilibrium parameters, including the ExB flow shear. Work funded by the Euratom research and training programme 2014-2018 under grant agreement No 633053 and from the RCUK Energy Programme [grant number EP/I501045].
Structures with high number density of carbon nanotubes and 3-dimensional distribution
NASA Technical Reports Server (NTRS)
Chen, Zheng (Inventor); Tzeng, Yonhua (Inventor)
2002-01-01
A composite is described having a three dimensional distribution of carbon nanotubes. The critical aspect of such composites is a nonwoven network of randomly oriented fibers connected at their junctions to afford macropores in the spaces between the fibers. A variety of fibers may be employed, including metallic fibers, and especially nickel fibers. The composite has quite desirable properties for cold field electron emission applications, such as a relatively low turn-on electric field, high electric field enhancement factors, and high current densities. The composites of this invention also show favorable properties for other an electrode applications. Several methods, which also have general application in carbon nanotube production, of preparing these composites are described and employ a liquid feedstock of oxyhydrocarbons as carbon nanotube precursors.
Nonlinear Schrödinger equation and classical-field description of thermal radiation
NASA Astrophysics Data System (ADS)
Rashkovskiy, Sergey A.
2018-03-01
It is shown that the thermal radiation can be described without quantization of energy in the framework of classical field theory using the nonlinear Schrödinger equation which is considered as a classical field equation. Planck's law for the spectral energy density of thermal radiation and the Einstein A-coefficient for spontaneous emission are derived without using the concept of the energy quanta. It is shown that the spectral energy density of thermal radiation is apparently not a universal function of frequency, as follows from the Planck's law, but depends weakly on the nature of atoms, while Planck's law is valid only as an approximation in the limit of weak excitation of atoms. Spin and relativistic effects are not considered in this paper.
NASA Astrophysics Data System (ADS)
J. Lima, I.; Vilega Rodrigues, C.; Medeiros Gomes Silva, K.; Luna, G.; D Amico, F.; Goulart Coelho, J.
2017-10-01
Intermediate polars are compact binaries in which mass transfer occurs from a low-mass star onto a magnetic white dwarf. A shock structure is formed in the magnetic accretion column nearby the white-dwarf surface. High-energy emission is produced in the post-shock region and the main physical process envolved is bremsstrahlung and line emission. Some systems show optical polarization, which may be also originated in the post-shock region. Our main goal is to study the magnetic structure of intermediate polars by simultaneously modelling optical polarimetry and X-ray data using the CYCLOPS code. This code was developed by our group to peform multi-wavelength fitting of the accretion column flux. It considers cyclotron and free-free emission from a 3D post-shock region, which is non-homogeneous in terms of density, temperature, and magnetic field. In this study, we present our modelling of the optical polarization and X-ray emission of V405 Aurigae, the intermediate polar that has the highest magnetic field. Previous studies of this system were not successful in proposing a geometry that explains both the optical and X-ray emissions.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.
Characteristics of electroluminescence phenomenon in virgin and thermally aged LDPE
NASA Astrophysics Data System (ADS)
Bani, N. A.; Abdul-Malek, Z.; Ahmad, H.; Muhammad-Sukki, F.; Mas'ud, A. A.
2015-08-01
High voltage cable requires a good insulating material such as low density polyethylene (LDPE) to be able to operate efficiently in high voltage stresses and high temperature environment. However, any polymeric material will experience degradation after prolonged application of high electrical stresses or other extreme conditions. The continuous degradation will shorten the life of a cable therefore further understanding on the behaviour of the aged high voltage cable needs to be undertaken. This may be observed through electroluminescence (EL) measurement. EL occurs when a solid-state material is subjected to a high electrical field stress and associated with the generation of charge carriers within the polymeric material and that these charges can be produced by injection, de-trapping and field-dissociation at the metal-polymer interface. The behaviour of EL emission can be affected by applied field, applied frequency, ageing time, ageing temperature and types of materials, among others. This paper focuses on the measurement of EL emission of additive-free LDPE thermally aged at different temperature subjected to varying electric stresses at 50Hz. It can be observed that EL emission increases as voltage applied is increased. However, EL emission decreases as ageing temperature is increased for varying applied voltage.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry; Chu, Shih-I.
2013-05-01
We study transient absorption of extreme ultraviolet (XUV) attosecond pulses in presence of near-infrared (NIR) laser fields by analyzing the population and photon emission of excited atomic energy levels. We consider He atoms and apply a self-interaction-free fully ab initio time-dependent density functional theory (TDDFT). Our method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential and incorporates explicitly the self-interaction correction. We focus on the sub-cycle (with respect to NIR field) temporal behavior of the population of the excited energy levels and related dynamics of photon emission. We observe and identify sub-cycle shifts in the photon emission spectrum as a function of the time delay between the XUV and NIR pulses. In the region where the two pulses overlap, the photon emission peaks have an oscillatory structure with a period of 1.3 fs, which is half of the NIR laser optical cycle. Such a structure was also observed in recent experiments on transient absorption. This work was partially supported by DOE and by MOE-NSC-NTU-Taiwan.
NASA Astrophysics Data System (ADS)
Gillies, D. M.; Knudsen, D. J.; Donovan, E.; Jackel, B. J.; Gillies, R.; Spanswick, E.
2017-12-01
We compare field-aligned currents (FACs) measured by the Swarm constellation of satellites with the location of red-line (630 nm) auroral arcs observed by all-sky imagers (ASIs) to derive a characteristic emission height for the optical emissions. In our 10 events we find that an altitude of 200 km applied to the ASI maps gives optimal agreement between the two observations. We also compare the new FAC method against the traditional triangulation method using pairs of all-sky imagers (ASIs), and against electron density profiles obtained from the Resolute Bay Incoherent Scatter Radar-Canadian radar (RISR-C), both of which are consistent with a characteristic emission height of 200 km. We also present the spatial error associated with georeferencing REdline Geospace Observatory (REGO) and THEMIS all-sky imagers (ASIs) and how it applies to altitude projections of the mapped image. Utilizing this error we validate the estimated altitude of redline aurora using two methods: triangulation between ASIs and field-aligned current profiles derived from magnetometers on-board the Swarm satellites.
Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahigir, Amirreza; Chang, Te-Wei; Behnam, Ashkan
In this study, we numerically design and experimentally test a SERS-active substrate for enhancing the SERS signal of a single layer of graphene (SLG) in water. The SLG is placed on top of an array of silver-covered nanoholes in a polymer and is covered with water. Here we report a large enhancement of up to 2×10 5 in the SERS signal of the SLG on the patterned plasmonic nanostructure for a 532nm excitation laser wavelength. We provide a detailed study of the light-graphene interactions by investigating the optical absorption in the SLG, the density of optical states at the locationmore » of the SLG, and the extraction efficiency of the SERS signal of the SLG. Our numerical calculations of both the excitation field and the emission rate enhancements support the experimental results. We find that the enhancement is due to the increase in the confinement of electromagnetic fields on the location of the SLG that results in enhanced light absorption in the graphene at the excitation wavelength. We also find that water droplets increase the density of optical radiative states at the location of the SLG, leading to enhanced spontaneous emission rate of graphene at its Raman emission wavelengths.« less
Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water
Mahigir, Amirreza; Chang, Te-Wei; Behnam, Ashkan; ...
2017-10-25
In this study, we numerically design and experimentally test a SERS-active substrate for enhancing the SERS signal of a single layer of graphene (SLG) in water. The SLG is placed on top of an array of silver-covered nanoholes in a polymer and is covered with water. Here we report a large enhancement of up to 2×10 5 in the SERS signal of the SLG on the patterned plasmonic nanostructure for a 532nm excitation laser wavelength. We provide a detailed study of the light-graphene interactions by investigating the optical absorption in the SLG, the density of optical states at the locationmore » of the SLG, and the extraction efficiency of the SERS signal of the SLG. Our numerical calculations of both the excitation field and the emission rate enhancements support the experimental results. We find that the enhancement is due to the increase in the confinement of electromagnetic fields on the location of the SLG that results in enhanced light absorption in the graphene at the excitation wavelength. We also find that water droplets increase the density of optical radiative states at the location of the SLG, leading to enhanced spontaneous emission rate of graphene at its Raman emission wavelengths.« less
Simulation of Cosmic Ray Acceleration, Propagation and Interaction in SNR Environment
NASA Astrophysics Data System (ADS)
Lee, S. H.; Kamae, T.; Ellison, D. C.
2007-07-01
Recent studies of young supernova remnants (SNRs) with Chandra, XMM, Suzaku and HESS have revealed complex morphologies and spectral features of the emission sites. The critical question of the relative importance of the two competing gamma-ray emission mechanisms in SNRs; inverse-Compton scattering by high-energy electrons and pion production by energetic protons, may be resolved by GLAST-LAT. To keep pace with the improved observations, we are developing a 3D model of particle acceleration, diffusion, and interaction in a SNR where broad-band emission from radio to multi-TeV energies, produced by shock accelerated electrons and ions, can be simulated for a given topology of shock fronts, magnetic field, and ISM densities. The 3D model takes as input, the particle spectra predicted by a hydrodynamic simulation of SNR evolution where nonlinear diffusive shock acceleration is coupled to the remnant dynamics (e.g., Ellison, Decourchelle & Ballet; Ellison & Cassam-Chenai Ellison, Berezhko & Baring). We will present preliminary models of the Galactic Ridge SNR RX J1713-3946 for selected choices of SNR parameters, magnetic field topology, and ISM density distributions. When constrained by broad-band observations, our models should predict the extent of coupling between spectral shape and morphology and provide direct information on the acceleration efficiency of cosmic-ray electrons and ions in SNRs.
Radio emission in Mercury magnetosphere
NASA Astrophysics Data System (ADS)
Varela, J.; Reville, V.; Brun, A. S.; Pantellini, F.; Zarka, P.
2016-10-01
Context. Active stars possess magnetized wind that has a direct impact on planets that can lead to radio emission. Mercury is a good test case to study the effect of the solar wind and interplanetary magnetic field (IMF) on radio emission driven in the planet magnetosphere. Such studies could be used as proxies to characterize the magnetic field topology and intensity of exoplanets. Aims: The aim of this study is to quantify the radio emission in the Hermean magnetosphere. Methods: We use the magnetohydrodynamic code PLUTO in spherical coordinates with an axisymmetric multipolar expansion for the Hermean magnetic field, to analyze the effect of the IMF orientation and intensity, as well as the hydrodynamic parameters of the solar wind (velocity, density and temperature), on the net power dissipated on the Hermean day and night side. We apply the formalism derived by Zarka et al. (2001, Astrophys. Space Sci., 277, 293), Zarka (2007, Planet. Space Sci., 55, 598) to infer the radio emission level from the net dissipated power. We perform a set of simulations with different hydrodynamic parameters of the solar wind, IMF orientations and intensities, that allow us to calculate the dissipated power distribution and infer the existence of radio emission hot spots on the planet day side, and to calculate the integrated radio emission of the Hermean magnetosphere. Results: The obtained radio emission distribution of dissipated power is determined by the IMF orientation (associated with the reconnection regions in the magnetosphere), although the radio emission strength is dependent on the IMF intensity and solar wind hydro parameters. The calculated total radio emission level is in agreement with the one estimated in Zarka et al. (2001, Astrophys. Space Sci., 277, 293) , between 5 × 105 and 2 × 106 W.
NASA Technical Reports Server (NTRS)
Kumar, S.; Broadfoot, A. L.
1979-01-01
A detailed analysis is conducted which shows that signatures in the interplanetary Lyman-alpha emissions observed in three different data sets from Mariner 10 (corresponding to different locations of the spacecraft) provide firm evidence that the intensity departures are correlated with a decrease in solar wind flux with increasing latitude. It is suggested that observations of the interplanetary emission can be used to monitor average solar wind activity at high latitudes. The asymmetry in the solar radiation field as a source of observed departures in L-alpha data is considered and attention is given to the interstellar hydrogen and helium density.
Early evolution of an X-ray emitting solar active region
NASA Technical Reports Server (NTRS)
Wolfson, C. J.; Acton, L. W.; Leibacher, J. W.; Roethig, D. T.
1977-01-01
The birth and early evolution of a solar active region has been investigated using X-ray observations from the mapping X-ray heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of H-alpha plage. At that time, a plasma temperature of four million K in a region having a density on the order of 10 to the 10th power per cu cm is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by the plasma. If the X-rays are assumed to result from heating due to dissipation of current systems or magnetic field reconnection, it may be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration.
Velocity field and physical conditions in the active lenticular galaxy NGC 3998
NASA Technical Reports Server (NTRS)
Blackman, C. P.; Wilson, A. S.; Ward, M. J.
1983-01-01
A rotating and expanding flattened distribution of gas is suggested by measurements of the emission line velocity field for the line elliptical/lenticular galaxy NGC 3998, using seven long slit spectrograms in five position angles. Expanding material kinetic energy values of 10 to the 53rd to 10 to the 54th ergs, together with the flat spectrum radio source and nucleus X-ray emission, indicate pronounced nuclear activity. Spectrophotometry of the galactic nucleus shows emission line strengths typical of shocks rather than of photoionization, and line ratios indicate a postshock temperature of 60,000 K and a preshock density of 25 particles/cu cm. Both the stars and the ionized gas of the galaxy have central velocity dispersions of 260 km/s. In view of the high rotational velocity of the stars, NGC 3998 is a lenticular rather than elliptical galaxy.
Ecton processes in the generation of pulsed runaway electron beams in a gas discharge
NASA Astrophysics Data System (ADS)
Mesyats, G. A.
2017-09-01
As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.
A Robust High Current Density Electron Gun
NASA Astrophysics Data System (ADS)
Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.
1996-11-01
Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.
A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul
2013-01-14
We have fabricated a digital miniature x-ray tube (6 mm in diameter and 32 mm in length) with a high-density triode carbon nanotube (CNT) field emitter for special x-ray applications. The triode CNT emitter was densely formed within a diameter of below 4 mm with the focusing-functional gate. The brazing process enables us to obtain and maintain a desired vacuum level for the reliable electron emission from the CNT emitters after the vacuum packaging. The miniature x-ray tube exhibited a stable and reliable operation over 250 h in a pulse mode at an anode voltage of above 25 kV.
Minor Merger Origin for the Circumnuclear Starburst in NGC 7742
NASA Technical Reports Server (NTRS)
Mazzuca, Lisa M.; Sarzi, M.; Knapen, J. H.; Veilleux, S.; Swaters, R.
2006-01-01
We present an emission-line diagnostic analysis of integral-field spectroscopic observations that cover the central kiloparsec of NGC 7742. This Sa galaxy hosts a spectacular nuclear starburst ring and nuclear regions characterized by low-ionization emission. The gas in the ring rotates in the opposite sense to the stars in the galaxy, suggesting a recent merging or acquisition event. The combination of integral-field measurements for the H alpha+[N II] emission lines from DensePak and the H beta and [O 111] emission from SAURON allow the construction of diagnostic diagrams that highlight the transition from star formation in the nuclear ring to excitation by high-velocity shocks or by a central AGN towards the center. DensePak measurements for the [S II] line ratio reveal very low gas densities in the nuclear ring, N(sub e) less than 100 per cubic centimeters, characteristic of massive H II regions. Comparison with MAPPINGS III models for starbursts with low gas densities show that the ring is of roughly solar metallicity. This suggests that the gas in the nuclear ring originated in a stellar system capable of substantially enriching the gas metallicity through sustained star formation. We propose that NGC 7742 cannibalised a smaller galaxy rich in metal-poor gas, and that star formation episodes in the ring have since increased the metallicity to its present value. The techniques explored here can be widely used to study similar systems, including composite (AGN+starburst) galaxies.
Cross-correlation cosmography with intensity mapping of the neutral hydrogen 21 cm emission
NASA Astrophysics Data System (ADS)
Pourtsidou, A.; Bacon, D.; Crittenden, R.
2015-11-01
The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and neutral hydrogen (HI) intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to ≃8 % for a sky coverage fsky=0.5 and assuming a σ (ΩDE)=0.03 prior for the dark energy density parameter. We also show that using the cosmic microwave background as the second source plane is not competitive, even when considering a COrE-like satellite.
Zhou, Xiongtu; Lin, Tihang; Liu, Yuhui; Wu, Chaoxing; Zeng, Xiangyao; Jiang, Dong; Zhang, Yong-ai; Guo, Tailiang
2013-10-23
High-quality tetrapod-shaped Sn-doped ZnO (T-SZO) nanostructures have been successfully synthesized via the thermal evaporation of mixed Zn and Sn powder. The effects of the Sn dopant on the morphology, microstructure, optical, and field-emission (FE) properties of T-SZO were investigated. It was found that the growth direction of the legs of T-SZO is parallel to the [0001] crystal c-axis direction and that the incorporation of Sn in the ZnO matrix increases the aspect ratio of the tetrapods, leads to blue shift in the UV region, and considerably improves the FE performance. The results also show that tetrapod cathodes with around a 0.84 atom % Sn dosage have the best FE properties, with a turn-on field of 1.95 V/μm, a current density of 950 μA/cm2 at a field of 4.5 V/μm, and a field-enhancement factor as high as 9556.
The Time-Dependent Chemistry of Cometary Debris in the Solar Corona
NASA Technical Reports Server (NTRS)
Pesnell, W. D.; Bryans, P.
2015-01-01
Recent improvements in solar observations have greatly progressed the study of sungrazing comets. They can now be imaged along the entirety of their perihelion passage through the solar atmosphere, revealing details of their composition and structure not measurable through previous observations in the less volatile region of the orbit further from the solar surface. Such comets are also unique probes of the solar atmosphere. The debris deposited by sungrazers is rapidly ionized and subsequently influenced by the ambient magnetic field. Measuring the spectral signature of the deposited material highlights the topology of the magnetic field and can reveal plasma parameters such as the electron temperature and density. Recovering these variables from the observable data requires a model of the interaction of the cometary species with the atmosphere through which they pass. The present paper offers such a model by considering the time-dependent chemistry of sublimated cometary species as they interact with the solar radiation field and coronal plasma. We expand on a previous simplified model by considering the fully time-dependent solutions of the emitting species' densities. To compare with observations, we consider a spherically symmetric expansion of the sublimated material into the corona and convert the time-dependent ion densities to radial profiles. Using emissivities from the CHIANTI database and plasma parameters derived from a magnetohydrodynamic simulation leads to a spatially dependent emission spectrum that can be directly compared with observations. We find our simulated spectra to be consistent with observation.
Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.
Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R
2015-01-01
Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.
Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010
Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S.; Hansen, Matthew C.; Townshend, John R.
2015-01-01
Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates―critical inputs for setting reference emission levels for REDD+―are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr−1 and 0.18 ± 0.07 Pg C•yr−1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha−1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha−1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha−1•yr−1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts. PMID:25951328
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banasek, J. T., E-mail: jtb254@cornell.edu; Engelbrecht, J. T.; Pikuz, S. A.
2016-11-15
We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with amore » return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.« less
Can Flare Loops Contribute to the White-light Emission of Stellar Superflares?
NASA Astrophysics Data System (ADS)
Heinzel, P.; Shibata, K.
2018-06-01
Since the discovery of stellar superflares by the Kepler satellite, these extremely energetic events have been studied in analogy to solar flares. Their white-light (WL) continuum emission has been interpreted as being produced by heated ribbons. In this paper, we compute the WL emission from overlying flare loops depending on their density and temperature and show that, under conditions expected during superflares, the continuum brightening due to extended loop arcades can significantly contribute to stellar flux detected by Kepler. This requires electron densities in the loops of 1012‑1013 cm‑3 or higher. We show that such densities, exceeding those typically present in solar-flare loops, can be reached on M-dwarf and solar-type superflare stars with large starspots and much stronger magnetic fields. Quite importantly, the WL radiation of loops is not very sensitive to their temperature and thus both cool as well as hot loops may contribute. We show that the WL intensity emergent from optically thin loops is lower than the blackbody radiation from flare ribbons, but the contribution of loops to total stellar flux can be quite important due to their significant emitting areas. This new scenario for interpreting superflare emission suggests that the observed WL flux is due to a mixture of the ribbon and loop radiation and can be even loop-dominated during the gradual phase of superflares.
The internal caustic structure of illuminated liquid droplets
NASA Technical Reports Server (NTRS)
Lock, James A.; Hovenac, Edward A.
1991-01-01
The internal electric field of an illuminated liquid droplet is studied in detail using both wave theory and ray theory. The internal field obtains its maximum values on the caustics within the droplet. Ray theory is used to determine the equations of these caustics and the density of rays on them. The Debye series expansion of the interior field Mie amplitudes is used to calculate the wave theory version of these caustics. The physical interpretation of the sources of stimulated Raman scattering and fluorescence emission within a liquid droplet is then given.
Following subtraction of the dipole anisotropy and components of the detected emission arising from
NASA Technical Reports Server (NTRS)
2002-01-01
Following subtraction of the dipole anisotropy and components of the detected emission arising from dust (thermal emission), hot gas (free-free emission), and charged particles interacting with magnetic fields (synchrotron emission) in the Milky Way Galaxy, the cosmic microwave background (CMB) anisotropy can be seen. CMB anisotropy - tiny fluctuations in the sky brightness at a level of a part in one hundred thousand - was first detected by the COBE DMR instrument. The CMB radiation is a remnant of the Big Bang, and the fluctuations are the imprint of density contrast in the early Universe (see slide 24 caption). This image represents the anisotropy detected in data collected during the first two years of DMR operation. Ultimately the DMR was operated for four years. See slide 19 caption for information about map smoothing and projection.
Study on GaN nanostructures: Growth and the suppression of the yellow emission
NASA Astrophysics Data System (ADS)
Wang, Ting; Chen, Fei; Ji, Xiaohong; Zhang, Qinyuan
2018-07-01
GaN nanostructures were synthesized via a simple chemical vapor deposition using Ga2O3 and NH3 as precursors. Structural and morphological properties were systematically characterized by field emission scanning electron microscopy, X-ray diffractometer, transmission electron microscopy, and Raman spectroscopy. The configuration of GaN nanostructures was found to be strongly dependent on the growth temperature and the NH3 flow rate. Photoluminescence analysis revealed that all the fabricated GaN NSs exhibited a strong ultra-violet emission (∼364 nm), and the yellow emission of GaN nanorods can be suppressed at appropriate III/V ratio. The suppression of the yellow emission was attributed to the low density of surface or the VGa defect. The work demonstrates that the GaN nanostructures have potential applications in the optoelectronic and nanoelectronic devices.
High-resolution carbon mapping on the million-hectare Island of Hawaii
Gregory P. Asner; R. Flint Hughes; Joseph Mascaro; Amanda L. Uowolo; David E. Knapp; James Jacobson; Ty Kennedy-Bowdoin; John K . Clark
2011-01-01
Current markets and international agreements for reducing emissions from deforestation and forest degradation (REDD) rely on carbon (C) monitoring techniques. Combining field measurements, airborne light detection and ranging (LiDAR)-based observations, and satellite-based imagery, we developed a 30-meter-resolution map of aboveground C density spanning 40 vegetation...
Entropic and near-field improvements of thermoradiative cells
Hsu, Wei -Chun; Tong, Jonathan K.; Liao, Bolin; ...
2016-10-13
A p-n junction maintained at above ambient temperature can work as a heat engine, converting some of the supplied heat into electricity and rejecting entropy by interband emission. Such thermoradiative cells have potential to harvest low-grade heat into electricity. By analyzing the entropy content of different spectral components of thermal radiation, we identify an approach to increase the efficiency of thermoradiative cells via spectrally selecting long-wavelength photons for radiative exchange. Furthermore, we predict that the near-field photon extraction by coupling photons generated from interband electronic transition to phonon polariton modes on the surface of a heat sink can increase themore » conversion efficiency as well as the power generation density, providing more opportunities to efficiently utilize terrestrial emission for clean energy. An ideal InSb thermoradiative cell can achieve a maximum efficiency and power density up to 20.4% and 327 Wm -2, respectively, between a hot source at 500 K and a cold sink at 300 K. Furthermore, sub-bandgap and non-radiative losses will significantly degrade the cell performance.« less
Entropic and Near-Field Improvements of Thermoradiative Cells
Hsu, Wei-Chun; Tong, Jonathan K.; Liao, Bolin; Huang, Yi; Boriskina, Svetlana V.; Chen, Gang
2016-01-01
A p-n junction maintained at above ambient temperature can work as a heat engine, converting some of the supplied heat into electricity and rejecting entropy by interband emission. Such thermoradiative cells have potential to harvest low-grade heat into electricity. By analyzing the entropy content of different spectral components of thermal radiation, we identify an approach to increase the efficiency of thermoradiative cells via spectrally selecting long-wavelength photons for radiative exchange. Furthermore, we predict that the near-field photon extraction by coupling photons generated from interband electronic transition to phonon polariton modes on the surface of a heat sink can increase the conversion efficiency as well as the power generation density, providing more opportunities to efficiently utilize terrestrial emission for clean energy. An ideal InSb thermoradiative cell can achieve a maximum efficiency and power density up to 20.4% and 327 Wm−2, respectively, between a hot source at 500 K and a cold sink at 300 K. However, sub-bandgap and non-radiative losses will significantly degrade the cell performance. PMID:27734902
The CO Transition from Diffuse Molecular Gas to Dense Clouds
NASA Astrophysics Data System (ADS)
Rice, Johnathan S.; Federman, Steven
2017-06-01
The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.
NASA Astrophysics Data System (ADS)
Jirka, M.; Klimo, O.; Weber, S.; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Korn, G.
2015-05-01
With the continuing development of laser systems, new important and so-far unexplored fields of research related to interaction of ultra-intense laser beams with matter are opening. At intensities of the order of 1022 W=cm2, electrons may be accelerated in the electromagnetic field of the laser wave and achieve such a high energy that they can enter the regime affected by the radiation reaction. Due to the non-linear Thomson and Compton scattering the accelerated electrons emit photons. The interaction of emitted photons with the laser field may result in effective generation of electron-positron pairs by means of the Breit-Wheeler process. In this work we study the influence of laser pulse polarization on gamma-ray generation during interaction of two colliding and tightly focused laser pulses with a low density target composed of electrons. This paper focuses on evolution of electron trajectories and key parameters χe (probability of photon emission) and χγ(probability of pair generation) in the laser field. These interactions are studied using 2D PIC simulations. It is shown that in the case of circularly polarized and tightly focused laser beams, electrons are not following circular trajectories at the magnetic node of the standing wave established in the focus, which leads to lowering the radiation emission efficiency.
Millimeter wave radiative transfer studies for precipitation measurements
NASA Technical Reports Server (NTRS)
Vivekanandan, J.; Evans, Frank
1989-01-01
Scattering calculations using the discrete dipole approximation and vector radiative transfer calculations were performed to model multiparameter radar return and passive microwave emission for a simple model of a winter storm. The issue of dendrite riming was addressed by computing scattering properties of thin ice disks with varying bulk density. It was shown that C-band multiparameter radar contains information about particle density and the number concentration of the ice particles. The radiative transfer modeling indicated that polarized multifrequency passive microwave emission may be used to infer some properties of ice hydrometers. Detailed radar modeling and vector radiative transfer modeling is in progress to enhance the understanding of simultaneous radar and radiometer measurements, as in the case of the proposed TRMM field program. A one-dimensional cloud model will be used to simulate the storm structure in detail and study the microphysics, such as size and density. Multifrequency polarized radiometer measurements from the SSMI satellite instrument will be analyzed in relation to dual-frequency and dual-polarization radar measurements.
NASA Astrophysics Data System (ADS)
Keenan, F. P.; Conlon, E. S.; Rubin, R. H.
1994-10-01
Theoretical O I density-sensitive emission-line ratios R = I(2s2)(2p4)(3P0)-((2s2)(2p4)(3P1))/I((2s2)(2p4)(3P1)-(2s2)(2p4)(3P2)) = I(146 micrometers)/I(63 micrometers) are presented for a range of temperatures (T = 100-10,000 K), neutral hydrogen densities (NH = 10-2 to 107/cu cm) and radiation fields (G0 = 1-106) applicable to both photodissociation regions (PDRs) and H II regions and the diffuse ionized medium (DIM). The observed values of R for several PDRs, measured from far-infrared spectra obtained with the Kuiper Airborne Observatory (KAO), imply hydrogen densities which are in good agreement with those determined using other methods. This provides observational support for the validity of the theoretical O I line ratios, and hence the atomic data used in their derivation.
Correlations between properties and applications of the CVD amorphous silicon carbide films
NASA Astrophysics Data System (ADS)
Kleps, Irina; Angelescu, Anca
2001-12-01
The aim of this paper is to emphasise the correlation between film preparation conditions, film properties and their applications. Low pressure chemical vapour deposition amorphous silicon carbide (a-SiC) and silicon carbonitride (SiCN) films obtained from liquid precursors have different structure and composition depending on deposition conditions. Thus, the films deposited under kinetic working conditions reveal a stable structure and composition. Deposition at moderate temperature leads to stoichiometric SiC, while the films deposited at high temperatures have a composition closer to Si 1- xC x, with x=0.75. These films form a very reactive interface with metallic layers. The films realised under kinetic working regime can be used in Si membrane fabrication process or as coating films for field emission applications. SiC layers field emission properties were investigated; the field emission current density of the a-SiC/Si structures was 2.4 mA/cm 2 at 25 V/μm. An Si membrane technology based on moderate temperatures (770-850 °C) a-SiC etching mask is presented.
Kemp, G. E.; Colvin, J. D.; Blue, B. E.; ...
2016-10-20
Here, we present a path forward for enhancing laser driven, multi-keV line-radiation from mid- to high-Z, sub-quarter-critical density, non-equilibrium plasmas through inhibited thermal transport in the presence of an externally generated magnetic field. Preliminary simulations with Kr and Ag suggest that as much as 50%–100% increases in peak electron temperatures are possible—without any changes in laser drive conditions—with magnetized interactions. The increase in temperature results in ~2–3× enhancements in laser-to-x-ray conversion efficiency for K-shell emission with simultaneous ≲4× reduction in L-shell emission using current field generation capabilities on the Omega laser and near-term capabilities on the National Ignition Facility laser.more » Increased plasma temperatures and enhanced K-shell emission are observed to come at the cost of degraded volumetric heating. Such enhancements in high-photon-energy x-ray sources could expand the existing laser platforms for increasingly penetrating x-ray radiography.« less
NASA Astrophysics Data System (ADS)
Akdim, Brahim; Duan, Xiaofeng; Pachter, Ruth
2003-03-01
We present a comprehensive theoretical study on the effects of Cs and O2 adsorbates on the field emission properties of single-wall carbon nanotubes (SWCNTs). Experimentally, O2 adsorption was shown to cause current suppression [1], while a current enhancement has been reported for Cs deposition on CNTs [2]. In this work, we investigated the adsorption mechanisms of Cs and O2 at the tips of capped and uncapped C(5,5) CNTs, using density functional theory, in order to gain insight into the effects on emission characteristics. Structural and electronic properties will be discussed in detail. We also report on the effects of an applied field on the reaction mechanisms. [1] S. C. Lim, Y. C. Choi, H. J. Jeong, Y. M. Shin, K. H. An, D. J. Bae, Y. H. Lee, N. S. Lee, and J. M. Kim, Adv. Mater. 13, 1563 (2001). [2] A. Wadhawan, R. E. Stallcup II, and J. M. Perez, Apply. Phys. Lett. 78, 108 (2001).
Radio detections of southern ultracool dwarfs
NASA Astrophysics Data System (ADS)
Lynch, C.; Murphy, T.; Ravi, V.; Hobbs, G.; Lo, K.; Ward, C.
2016-04-01
We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 Southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 increasing the number of radio loud ultracool dwarfs to 22. We also observe radio emission from 2MASS J10481463-3956062 and 2MASSI J0339352-352544, two sources with previous radio detections. The radio emission from the three detected sources shows no variability or flare emission. Modelling this quiescent emission we find that it is consistent with optically thin gyrosynchrotron emission from a magnetosphere with an emitting region radius of (1-2)R*, magnetic field inclination 20°-80°, field strength ˜10-200 G, and power-law electron density ˜104-108 cm-3. Additionally, we place upper limits on four ultracool dwarfs with no previous radio observations. This increases the number of ultracool dwarfs studied at radio frequencies to 222. Analysing general trends of the radio emission for this sample of 15 sources, we find that the radio activity increases for later spectral types and more rapidly rotating objects. Furthermore, comparing the ratio of the radio to X-ray luminosities for these sources, we find 2MASS J10481463-3956062 and 2MASSI J0339352-352544 violate the Güdel-Benz relation by more than two orders of magnitude.
NASA Astrophysics Data System (ADS)
Marshall, R. A.; Inan, U. S.; Glukhov, V. S.
2010-04-01
A 3-D finite difference time domain model is used to simulate the lightning electromagnetic pulse (EMP) and its interaction with the lower ionosphere. Results agree with the frequently observed, doughnut-shaped optical signature of elves but show that the structure exhibits asymmetry due to the presence of Earth's ambient magnetic field. Furthermore, in-cloud (horizontal) lightning channels produce observable optical emissions without the doughnut shape and, in fact, produce a much stronger optical output for the same channel current. Electron density perturbations associated with elves are also calculated, with contributions from attachment and ionization. Results presented as a function of parameters such as magnetic field direction, dipole current orientation, altitude and amplitude, and ambient ionospheric density profile demonstrate the highly nonlinear nature of the EMP-ionosphere interaction. Ionospheric effects of a sequence of in-cloud discharges are calculated, simulating a burst of in-cloud lightning activity and resulting in large density changes in the overlying ionosphere.
Density Fluctuation in Asymmetric Nozzle Plumes and Correlation with Far Field Noise
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.
2001-01-01
A comparative experimental study of air density fluctuations in the unheated plumes of a circular, 4-tabbed-circular, chevron-circular and 10-lobed rectangular nozzles was performed at a fixed Mach number of 0.95 using a recently developed Rayleigh scattering based technique. Subsequently, the flow density fluctuations are cross-correlated with the far field sound pressure fluctuations to determine sources for acoustics emission. The nearly identical noise spectra from the baseline circular and the chevron nozzles are found to be in agreement with the similarity in spreading, turbulence fluctuations, and flow-sound correlations measured in the plumes. The lobed nozzle produced the least low frequency noise, in agreement with the weakest overall density fluctuations and flow-sound correlation. The tabbed nozzle took an intermediate position in the hierarchy of noise generation, intensity of turbulent fluctuation and flow-sound correlation. Some of the features in the 4-tabbed nozzle are found to be explainable in terms of splitting of the jet in a central large core and 4 side jetlets.
The detectability of radio emission from exoplanets
NASA Astrophysics Data System (ADS)
Lynch, C. R.; Murphy, Tara; Lenc, E.; Kaplan, D. L.
2018-05-01
Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with 3σ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a 3σ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.
Pradhan, Debabrata; Lin, I Nan
2009-07-01
Diamond films with grain sizes in the range of 5-1000 nm and grain boundaries containing nondiamond carbon are deposited on a silicon substrate by varying the deposition parameters. The overall morphologies of the as-deposited diamond-nondiamond composite films are examined by scanning electron microscopy and atomic force microscopy, which show a decrease in the surface roughness with a decrease in the diamond grain size. Although the Raman spectra show predominately nondiamond carbon features in the diamond films with smaller grain sizes, glancing-angle X-ray diffraction spectra show the absence of graphitic carbon features and the presence of very small amorphous carbon diffraction features. The CH4 percentage (%) in Ar and H2 plasma during deposition plays a crucial role in the formation of diamond films with different grain sizes and nondiamond carbon contents, which, in turn, determines the field-emission behavior of the corresponding diamond films. The smaller the grain size of the diamond, the lower is the turn-on field for electron emission. A lower turn-on field is obtained from the diamond films deposited with 2-5% CH4 than from the films deposited with either 1% or 7.5% CH4 in the Ar medium. A current density greater than 1 mA/cm2 (at 50 V/microm) is obtained from diamond films deposited with a higher percentage of CH4. A model is suggested for the field-emission mechanism from the diamond-nondiamond composite films with different diamond grain sizes and nondiamond contents.
On the application of quantum transport theory to electron sources.
Jensen, Kevin L
2003-01-01
Electron sources (e.g., field emitter arrays, wide band-gap (WBG) semiconductor materials and coatings, carbon nanotubes, etc.) seek to exploit ballistic transport within the vacuum after emission from microfabricated structures. Regardless of kind, all sources strive to minimize the barrier to electron emission by engineering material properties (work function/electron affinity) or physical geometry (field enhancement) of the cathode. The unique capabilities of cold cathodes, such as instant ON/OFF performance, high brightness, high current density, large transconductance to capacitance ratio, cold emission, small size and/or low voltage operation characteristics, commend their use in several advanced devices when physical size, weight, power consumption, beam current, and pulse repletion frequency are important, e.g., RF power amplifier such as traveling wave tubes (TWTs) for radar and communications, electrodynamic tethers for satellite deboost/reboost, and electric propulsion systems such as Hall thrusters for small satellites. The theoretical program described herein is directed towards models to evaluate emission current from electron sources (in particular, emission from WBG and Spindt-type field emitter) in order to assess their utility, capabilities and performance characteristics. Modeling efforts particularly include: band bending, non-linear and resonant (Poole-Frenkel) potentials, the extension of one-dimensional theory to multi-dimensional structures, and emission site statistics due to variations in geometry and the presence of adsorbates. Two particular methodologies, namely, the modified Airy approach and metal-semiconductor statistical hyperbolic/ellipsoidal model, are described in detail in their present stage of development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. BARNES
Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as amore » result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG,
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W. (Principal Investigator)
1996-01-01
The plasma properties and magnetic field structure of the solar corona were determined using coordinated observations obtained with NASA/GSFC's Solar EUV Rocket Telescope and Spectrograph (SERTS), the Very Large Array (VLA), and Kitt Peak photospheric longitudinal magnetograms. A problem was identified with the SERTS calibration as determined from laboratory measurements. A revised calibration curve was derived by requiring that the numerous available measured line intensity ratios agreed with their respective theoretical values. Densities were derived from line intensity ratios, and active region densities were found to typically exceed quiet Sun densities by factors of only about 2. The active region density was found to remain constant across the SERTS slit, despite the fact that the emission line intensities vary significantly. This indicates that the product of the path length and the volume filling factor must vary significantly from the active region outskirts to the central core. Filling factors were derived and found to range from much less than one to nearly unity. Wavelength shifts were examined along the SERTS slit in the spatially resolved spectra, but no evidence was found for significant Doppler shifts in active region 7563 or in the quiet Sun. The numerical procedure developed by Monsignori-Fossi and Landini was used to derive the active region and quiet sun differential emission measure (DEM) from the spatially averaged spectra. A DEM was estimated for each spatial pixel in the two dimensional active region images by scaling the averaged active region DEM based upon corresponding pixel intensities of SERTS Mg IX, Fe XV, and Fe XVI images. These results, along with density measurements, were used in an IDL computer code which calculated the temperature dependence of the coronal magnetic field in each spatial pixel by minimizing the difference between the observed and calculated 20 and 6 cm microwave brightness temperatures.
NASA Astrophysics Data System (ADS)
Obana, Y.; Maruyama, N.; Masahito, N.; Matsuoka, A.; Teramoto, M.; Nomura, R.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Shinohara, I.
2017-12-01
Earth's inner magnetosphere is a complex dynamical region of geo space comprising plasma populations with wide energy ranges, the plasmasphere, ring current, and radiation belts. They form a closely coupled system, thus, the plasmasphere is the lowest energy population in the inner magnetosphere, but the accurate prediction of the evolution of the plasmasphere is critical in understanding the dynamics of the inner magnetosphere, which include even the highest energy population, the radiation belts. In this study, we study plasmaspheric refilling following geomagnetic storms using data from ERG-MGF, ERG-PWE, RBSP-EMFISIS and Ground-based magnetometers. DC magnetic field data measured by ERG-MGF, RBSP-EMFISIS and ground-based magnetometers provides the frequency of the toroidal mode field line resonances. From this information, the equatorial plasma mass density is estimated by solving the MHD wave equation for suitable models of the magnetic field and the field line density distribution. ERG-PWE and RBSP-EMFISIS provide measurements of wave electric and magnetic field, thus we can estimate the local electron density from the plasma wave spectrograms by identifying narrow-band emission at the upper-hybrid resonance frequency. Furthermore, using Ionosphere Plasmasphere Electrodynamics Model (IPE), we calculate the plasmaspheric refilling rates and evaluate the relative contribution of various mechanisms (heating, neutral particle density, composition and wings, etc.) to the refilling rate.
Joule heating and runaway electron acceleration in a solar flare
NASA Technical Reports Server (NTRS)
Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.
1989-01-01
The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.
CO line ratios in molecular clouds: the impact of environment
NASA Astrophysics Data System (ADS)
Peñaloza, Camilo H.; Clark, Paul C.; Glover, Simon C. O.; Klessen, Ralf S.
2018-04-01
Line emission is strongly dependent on the local environmental conditions in which the emitting tracers reside. In this work, we focus on modelling the CO emission from simulated giant molecular clouds (GMCs), and study the variations in the resulting line ratios arising from the emission from the J = 1-0, J = 2-1, and J = 3-2 transitions. We perform a set of smoothed particle hydrodynamics simulations with time-dependent chemistry, in which environmental conditions - including total cloud mass, density, size, velocity dispersion, metallicity, interstellar radiation field (ISRF), and the cosmic ray ionization rate (CRIR) - were systematically varied. The simulations were then post-processed using radiative transfer to produce synthetic emission maps in the three transitions quoted above. We find that the cloud-averaged values of the line ratios can vary by up to ±0.3 dex, triggered by changes in the environmental conditions. Changes in the ISRF and/or in the CRIR have the largest impact on line ratios since they directly affect the abundance, temperature, and distribution of CO-rich gas within the clouds. We show that the standard methods used to convert CO emission to H2 column density can underestimate the total H2 molecular gas in GMCs by factors of 2 or 3, depending on the environmental conditions in the clouds.
Wood, Richard D
2017-09-01
Spray polyurethane foam (SPF) insulation is used as thermal insulation for residential and commercial buildings. It has many advantages over other forms insulation; however, concerns have been raised related to chemical emissions during and after application. The American Chemistry Council's (ACC's) Center for the Polyurethanes Industry (CPI) has gathered previously unpublished industrial hygiene air sampling studies submitted by member companies that were completed during an eight-year period from 2007-2014. These studies address emissions from medium density closed cell and low density open cell formulations. This article summarizes the results of personal and area air samples collected during application and post application of SPF to interior building surfaces in both laboratory and field environments. Chemicals of interest included: Volatile Organic Compounds (VOCs), methylene diphenyl diisocyanate (MDI), flame retardants, amine catalysts, blowing agents, and aldehydes. Overall, the results indicate that SPF applicators and workers in close proximity to the application are potentially exposed to MDI in excess of recommended and governmental occupational exposure limits and should use personal protective equipment (PPE) consisting of air supplied respirators and full-body protective clothing to reduce exposure. Catalyst emissions can be reduced by using reactive catalysts in SPF formulations, and mechanical ventilation is important in controlling emissions during and after application.
Non-LTE diagnositics of infrared radiation of Titan's atmosphere
NASA Astrophysics Data System (ADS)
Feofilov, Artem; Rezac, Ladislav; Kutepov, Alexander; Vinatier, Sandrine; Rey, Michael; Nikitin, Andrew; Tyuterev, Vladimir
2016-06-01
Yelle (1991) and Garcia-Comas et al, (2011) demonstrated the importance of accounting for the local thermodynamic equilibrium (LTE) breakdown in the middle and upper atmosphere of Titan for the interpretation of infrared radiances measured at these heights. In this work, we make further advance in this field by: • updating the non-LTE model of CH4 emissions in Titan's atmosphere and including a new extended database of CH4 spectroscopic parameters • studying the non-LTE CH4 vibrational level populations and the impact of non-LTE on limb infrared emissions of various CH4 ro-vibrational bands including those at 7.6 and 3.3 µm • implementing our non-LTE model into the LTE-based retrieval algorithm applied by Vinatier et al., (2015) for processing the Cassini/CIRS spectra. We demonstrate that accounting for non-LTE leads to an increase in temperatures retrieved from CIRS 7.6 µm limb emissions spectra (˜10 K at 600 km altitude) and estimate how this affects the trace gas density retrieval. Finally, we discuss the effects of including a large number of weak one-quantum and combinational bands on the calculated daytime limb 3.3 µm emissions and the impact they may have on the CH4 density retrievals from the Cassini VIMS 3.3 µm limb emission observations.
Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.
Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir
2017-04-14
We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.
Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin; Liu, Junfeng; Tao, Shu
2013-06-18
Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). The global total annual atmospheric emission of 16 PAHs in 2007 was 504 Gg (331-818 Gg, as interquartile range), with residential/commercial biomass burning (60.5%), open-field biomass burning (agricultural waste burning, deforestation, and wildfire, 13.6%), and petroleum consumption by on-road motor vehicles (12.8%) as the major sources. South (87 Gg), East (111 Gg), and Southeast Asia (52 Gg) were the regions with the highest PAH emission densities, contributing half of the global total PAH emissions. Among the global total PAH emissions, 6.19% of the emissions were in the form of high molecular weight carcinogenic compounds and the percentage of the carcinogenic PAHs was higher in developing countries (6.22%) than in developed countries (5.73%), due to the differences in energy structures and the disparities of technology. The potential health impact of the PAH emissions was greatest in the parts of the world with high anthropogenic PAH emissions, because of the overlap of the high emissions and high population densities. Global total PAH emissions peaked at 592 Gg in 1995 and declined gradually to 499 Gg in 2008. Total PAH emissions from developed countries peaked at 122 Gg in the early 1970s and decreased to 38 Gg in 2008. Simulation of PAH emissions from 2009 to 2030 revealed that PAH emissions in developed and developing countries would decrease by 46-71% and 48-64%, respectively, based on the six IPCC SRES scenarios.
Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin; Liu, Junfeng; Tao, Shu
2013-01-01
Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1°× 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). The global total annual atmospheric emission of 16 PAHs in 2007 was 504 Gg (331-818 Gg, as interquartile range), with residential/commercial biomass burning (60.5%), open-field biomass burning (agricultural waste burning, deforestation, and wildfire, 13.6%), and petroleum consumption by on-road motor vehicles (12.8%) as the major sources. South (87 Gg), East (111 Gg), and Southeast Asia (52 Gg) were the regions with the highest PAH emission densities, contributing half of the global total PAH emissions. Among the global total PAH emissions, 6.19% of the emissions were in the form of high molecular weight carcinogenic compounds and the percentage of the carcinogenic PAHs was higher in developing countries (6.22%) than in developed countries (5.73%), due to the differences in energy structures and the disparities of technology. The potential health impact of the PAH emissions was greatest in the parts of the world with high anthropogenic PAH emissions, because of the overlap of the high emissions and high population densities. Global total PAH emissions peaked at 592 Gg in 1995 and declined gradually to 499 Gg in 2008. Total PAH emissions from developed countries peaked at 122 Gg in the early 1970s and decreased to 38 Gg in 2008. Simulation of PAH emissions from 2009 to 2030 revealed that PAH emissions in developed and developing countries would decrease by 46-71% and 48-64%, respectively, based on the six IPCC SRES scenarios. PMID:23659377
Effect of DC magnetic field on atmospheric pressure argon plasma jet
NASA Astrophysics Data System (ADS)
Safari, R.; Sohbatzadeh, F.
2015-05-01
In this work, external DC magnetic field effect on the atmospheric pressure plasma jet has been investigated, experimentally. The magnetic field has been produced using a Helmholtz coil configuration. It has been applied parallel and transverse to the jet flow. The strength of the DC magnetic field is 0-0.28 and 0-0.57 Tesla between the two coils in parallel and transverse applications, respectively. It has been shown that the plasma gas flow plays the main role in magneto-active collision-dominated plasma. The effect of plasma fluid velocity on the jet emission has been discussed, qualitatively. It has been observed that the external DC magnetic field has different trends in parallel and transverse applications. The measurements reveal that the plasma jet irradiance increases in parallel field, while it decreases in transverse field. The former has been attributed to increasing plasma number density and the latter to loss of plasma species that reduces the magneto-plasma jet irradiance and in turn shrinks plasma jet number density. As a result, the plasma fluid velocity is responsible for such trends though the magneto-active plasma remains isotropic.
Galfsky, Tal; Sun, Zheng; Considine, Christopher R; Chou, Cheng-Tse; Ko, Wei-Chun; Lee, Yi-Hsien; Narimanov, Evgenii E; Menon, Vinod M
2016-08-10
The low quantum yield observed in two-dimensional semiconductors of transition metal dichalcogenides (TMDs) has motivated the quest for approaches that can enhance the light emission from these systems. Here, we demonstrate broadband enhancement of spontaneous emission and increase in Raman signature from archetype two-dimensional semiconductors: molybdenum disulfide (MoS2) and tungsten disulfide (WS2) by placing the monolayers in the near field of a photonic hypercrystal having hyperbolic dispersion. Hypercrystals are characterized by a large broadband photonic density of states due to hyperbolic dispersion while having enhanced light in/out coupling by a subwavelength photonic crystal lattice. This dual advantage is exploited here to enhance the light emission from the 2D TMDs and can be utilized for developing light emitters and solar cells using two-dimensional semiconductors.
40 CFR 89.424 - Dilute emission sampling calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission level (HC, CO, CO2, PM, or NOX) in g/kW-hr. gi = Mass flow in grams per hour, = grams measured...= Hydrocarbon emissions, in grams per test mode. Density HC= Density of hydrocarbons is (.5800 kg/m3) for #1... emissions, in grams per test mode. Density NO 2= Density of oxides of nitrogen is 1.913 kg/m3, assuming they...
40 CFR 89.424 - Dilute emission sampling calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission level (HC, CO, CO2, PM, or NOX) in g/kW-hr. gi = Mass flow in grams per hour, = grams measured...= Hydrocarbon emissions, in grams per test mode. Density HC= Density of hydrocarbons is (.5800 kg/m3) for #1... emissions, in grams per test mode. Density NO 2= Density of oxides of nitrogen is 1.913 kg/m3, assuming they...
40 CFR 89.424 - Dilute emission sampling calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission level (HC, CO, CO2, PM, or NOX) in g/kW-hr. gi = Mass flow in grams per hour, = grams measured...= Hydrocarbon emissions, in grams per test mode. Density HC= Density of hydrocarbons is (.5800 kg/m3) for #1... emissions, in grams per test mode. Density NO 2= Density of oxides of nitrogen is 1.913 kg/m3, assuming they...
Radio-derived three-dimensional structure of a solar active region
NASA Astrophysics Data System (ADS)
Tun, Samuel D.
Solar active regions are the source of the most violent events observed on the Sun, some of which have a direct impact to modern civilization. Efforts to understand and predict such events require determination of the three-dimensional distributions of density, temperature, and magnetic fields above such active regions. This thesis presents the structure of the solar atmosphere above active region AR 10923, observed on 2006 Nov 10, as deduced from multi-wavelength studies including combined microwave observations from the Very Large Array (VLA) and the Owens Valley Solar Array (OVSA). The VLA observations provide excellent image quality at a few widely spaced frequencies while the OVSA data provide information at many intermediate frequencies to fill in the spectral coverage. In order to optimize the OVSA data for spectroscopic studies, the L1 method of self-calibration was implemented at this observatory, producing the best single frequency maps produced to date. Images at the 25 distinct, available frequencies are used to provide spatially resolved spectra along many lines of sight in the active region, from which microwave spectral diagnostics are obtained for deducing two-dimensional maps of temperature, magnetic field strength, and column density. The derived quantities are compared with multi-wavelength observations from SoHO and Hinode spacecraft, and with a standard potential magnetic field extrapolation. It is found that a two component temperature model is required to fit the data, in which a hot (> 2 MK) lower corona above the strong-field plage and sunspot regions (emitting via the gyroresonance process) is overlaid with somewhat cooler (˜ 1 MK) coronal loops that partially absorb the gyroresonance emission through the free-free (Bremsstrahlung) process. It is also found that the potential magnetic field extrapolation model can quantitatively account for the observed gyroresonance emission over most of the active region, but in a few areas a higher field strength is required. These areas of discrepancy are found to coincide with the foot points of hot X-ray loops over the sunspot's penumbra. The results and the extrapolation are used to explore the coronal configuration needed to explain the observations, from which it is found that the bulk of radio and X-ray free-free emission emanates from two loop systems, distinguished by the location of their loop foot points. The proposed stratification may explain the observed distribution of column emission measure and the differences in this quantity as obtained from X-rays or radio emission.
Enhancing radiative energy transfer through thermal extraction
NASA Astrophysics Data System (ADS)
Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu
2016-06-01
Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal extraction. It is organized as follows. In Section 1, we will discuss the theory of thermal extraction [8]. In Section 2, we review an experimental implementation based on natural materials as the thermal extractor [8]. Lastly, in Section 3, we review the experiment that uses structured metamaterials as thermal extractors to enhance optical density of states and far-field emission [9].
THE PHYSICS OF THE FAR-INFRARED-RADIO CORRELATION. I. CALORIMETRY, CONSPIRACY, AND IMPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacki, Brian C.; Thompson, Todd A.; Quataert, Eliot, E-mail: lacki@astronomy.ohio-state.ed
2010-07-01
The far-infrared (FIR) and radio luminosities of star-forming galaxies are linearly correlated over a very wide range in star formation rate, from normal spirals like the Milky Way to the most intense starbursts. Using one-zone models of cosmic ray (CR) injection, cooling, and escape in star-forming galaxies, we attempt to reproduce the observed FIR-radio correlation (FRC) over its entire span. The normalization and linearity of the FRC, together with constraints on the CR population in the Milky Way, have strong implications for the CR and magnetic energy densities in star-forming galaxies. We show that for consistency with the FRC, {approx}2%more » of the kinetic energy from supernova explosions must go into high-energy primary CR electrons and that {approx}10%-20% must go into high-energy primary CR protons. Secondary electrons and positrons are likely comparable to or dominate primary electrons in dense starburst galaxies. We discuss the implications of our models for the magnetic field strengths of starbursts, the detectability of starbursts by Fermi, and CR feedback. Overall, our models indicate that both CR protons and electrons escape from low surface density galaxies, but lose most of their energy before escaping dense starbursts. The FRC is caused by a combination of the efficient cooling of CR electrons (calorimetry) in starbursts and a conspiracy of several factors. For lower surface density galaxies, the decreasing radio emission caused by CR escape is balanced by the decreasing FIR emission caused by the low effective UV dust opacity. In starbursts, bremsstrahlung, ionization, and inverse Compton cooling decrease the radio emission, but they are countered by secondary electrons/positrons and the dependence of synchrotron frequency on energy, both of which increase the radio emission. Our conclusions hold for a broad range of variations in our fiducial model, such as those including winds, different magnetic field strengths, and different diffusive escape times.« less
Clustering the Orion B giant molecular cloud based on its molecular emission.
Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal
2018-02-01
Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO + (1 - 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers.
INTERPRETATION OF THE STRUCTURE FUNCTION OF ROTATION MEASURE IN THE INTERSTELLAR MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Siyao; Zhang, Bing, E-mail: syxu@pku.edu.cn, E-mail: zhang@physics.unlv.edu
2016-06-20
The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian and Pogosyan are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when themore » SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.« less
Emissions and Photochemistry of BVOCs in a Ponderosa Pine woodland
NASA Astrophysics Data System (ADS)
Kim, S.; Karl, T.; Rasmussen, R.; Apel, E.; Harley, P.; Waldo, S.; Roberts, S.; Guenther, A.
2008-12-01
We deployed two proton-transfer-reaction mass spectrometry instruments (PTR-MS, IONICON ANALYTIK) for ambient and branch enclosure measurements at the Manitou Experimental Forest, located in the Southern Rocky Mountain area as a part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen (BEACHON) field campaign in 2008. Vegetation at the field site is dominated by Ponderosa Pine. BVOC emissions from Ponderosa Pine along with temperature, photosynthetic photon flux density (ppfd), relative humidity, and CO2 uptake were measured from two branch-enclosures (shade and sun). Diurnal variations and the emission response to environmental conditions are described and compared to existing models. In addition, we analyzed the speciation of BVOCs from enclosures by GC-MS. We will present quantitative and qualitative characteristics of BVOC emissions from Ponderosa Pine and analytical characteristics of PTR-MS such as fragmentation patterns of semi-volatile compounds (sesquiterpene, bornyl acetate etc) that we identified as major emissions from the enclosures. BVOC emissions observed in the enclosures will be quantitatively compared to BVOC distributions in ambient air. We explore the presence of possibly unidentified BVOCs in the forest canopy by examining PTR-MS mass spectra of enclosure and ambient air samples based on mass scans between 40 - 210 amu.
Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup
2016-11-22
The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.
Gao, X; Xie, J K; Wan, Y X; Ushigusa, K; Wan, B N; Zhang, S Y; Li, J; Kuang, G L
2002-01-01
Stationary multifaceted asymmetric radiation from the edge (MARFE) is studied by gas-puffing feedback control according to an empirical MARFE critical density ( approximately 1.8 x 10(13) cm(-3)) in the HT-7 Ohmic discharges (where the plasma current I(p) is about 170 kA, loop voltage V(loop)=2-3 V, toroidal field B(T)=1.9 T, and Z(eff)=3-4). It is observed that an improved confinement mode characterized by D(alpha) line emissions drops and the line-averaged density increase is triggered in the stationary MARFE discharges. The mode is not a symmetric "detachment" state, because the quasi-steady-state poloidally asymmetric radiation (e.g., C III line emissions) still exists. This phenomenon has not been predicted by the current MARFE theory.
Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks
Paz-Soldan, Carlos; Cooper, Christopher M.; Aleynikov, Pavel; ...
2017-06-22
Novel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature andmore » reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation ofHXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun
Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicularmore » to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.« less
NASA Astrophysics Data System (ADS)
Consalvi, Jean-Louis
2017-01-01
The time-averaged Radiative Transfer Equation (RTE) introduces two unclosed terms, known as `absorption Turbulence Radiation Interaction (TRI)' and `emission TRI'. Emission TRI is related to the non-linear coupling between fluctuations of the absorption coefficient and fluctuations of the Planck function and can be described without introduction any approximation by using a transported PDF method. In this study, a hybrid flamelet/ Stochastic Eulerian Field Model is used to solve the transport equation of the one-point one-time PDF. In this formulation, the steady laminar flamelet model (SLF) is coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities and the PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. Soot production is modeled by a semi-empirical model and the spectral dependence of the radiatively participating species, namely combustion products and soot, are computed by using a Narrow Band Correlated-k (NBCK) model. The model is applied to simulate an ethylene/methane turbulent jet flame burning in an oxygen-enriched environment. Model results are compared with the experiments and the effects of taken into account Emission TRI on flame structure, soot production and radiative loss are discussed.
NASA Astrophysics Data System (ADS)
Nagai, H.; Fujita, Y.; Nakamura, M.; Orienti, M.; Kino, M.; Asada, K.; Giovannini, G.
2017-11-01
We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 105 rad m-2 and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 104 cm-3. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.
7TH International Symposium: Nanostructure: Physics and Technology
1999-01-01
within the density functional theory [8]. The Hamiltonian (fit and/H 4 for spin 4" and spin 4. electrons, respectively) is given by: fi) - i2--V[ + E,(r...population of higher energy levels by electrons with spin -1/2. This results in increased polarization of luminescence which may exceed 50% (see curve 1 in...that higher energy lines quench at high field. In addition a change in the linewidth of the emission is found for high electric fields. Introduction
LOFAR observations of the quiet solar corona
NASA Astrophysics Data System (ADS)
Vocks, C.; Mann, G.; Breitling, F.; Bisi, M. M.; Dąbrowski, B.; Fallows, R.; Gallagher, P. T.; Krankowski, A.; Magdalenić, J.; Marqué, C.; Morosan, D.; Rucker, H.
2018-06-01
Context. The quiet solar corona emits meter-wave thermal bremsstrahlung. Coronal radio emission can only propagate above that radius, Rω, where the local plasma frequency equals the observing frequency. The radio interferometer LOw Frequency ARray (LOFAR) observes in its low band (10-90 MHz) solar radio emission originating from the middle and upper corona. Aims: We present the first solar aperture synthesis imaging observations in the low band of LOFAR in 12 frequencies each separated by 5 MHz. From each of these radio maps we infer Rω, and a scale height temperature, T. These results can be combined into coronal density and temperature profiles. Methods: We derived radial intensity profiles from the radio images. We focus on polar directions with simpler, radial magnetic field structure. Intensity profiles were modeled by ray-tracing simulations, following wave paths through the refractive solar corona, and including free-free emission and absorption. We fitted model profiles to observations with Rω and T as fitting parameters. Results: In the low corona, Rω < 1.5 solar radii, we find high scale height temperatures up to 2.2 × 106 K, much more than the brightness temperatures usually found there. But if all Rω values are combined into a density profile, this profile can be fitted by a hydrostatic model with the same temperature, thereby confirming this with two independent methods. The density profile deviates from the hydrostatic model above 1.5 solar radii, indicating the transition into the solar wind. Conclusions: These results demonstrate what information can be gleaned from solar low-frequency radio images. The scale height temperatures we find are not only higher than brightness temperatures, but also than temperatures derived from coronograph or extreme ultraviolet (EUV) data. Future observations will provide continuous frequency coverage. This continuous coverage eliminates the need for local hydrostatic density models in the data analysis and enables the analysis of more complex coronal structures such as those with closed magnetic fields.
NASA Astrophysics Data System (ADS)
Kita, Hajime; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.
2012-10-01
Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent observations reveal short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed that the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. If such a process occurs at Jupiter, it is also expected that diurnal wind system produces dawn-dusk asymmetry of the JSR brightness distribution. Preceding studies confirmed that the short term variations in total flux density correspond to the solar UV/EUV. However, the effect of solar UV/EUV heating on the brightness distribution has not been confirmed. Hence, the purpose of this study is to confirm the solar UV/EUV heating effect on total flux density and brightness distribution. We made radio imaging analysis using the National Radio Astronomy Observatory (NRAO) archived data of the Very Large Array (VLA) obtained in 2000, and following results were shown. 1, Total flux density varied corresponding to the solar UV/EUV. 2, Dawn side emission was brighter than dusk side emission almost every day. 3, Variations of the dawn-dusk asymmetry did not correspond to the solar UV/EUV. In order to explain the second result, we estimate the diurnal wind velocity from the observed dawn-dusk ratio by using the model brightness distribution of JSR. Estimated neutral wind velocity is 46+/-11 m/s, which reasonably corresponds to the numerical simulation of Jupiter's upper atmosphere. In order to explain the third result, we examined the effect of the global convection electric field driven by tailward outflow of plasma in Jupiter's magnetosphere. As the result, it is suggested that typical fluctuation of the convection electric field strength was enough to cause the observed variations of the dawn-dusk asymmetry.
Multi-hop Whistler-Mode ELF/VLF Signals and Triggered Emissions Excited by the HAARP HF Heater
2004-12-28
distribution along the field line [ Angerami and Thomas, 1964] to infer the equatorial electron density Neq. This analysis revealed values of L ’ 4.9 and...the ELF/VLF receiver used on RV Tangaroa. References Angerami , J. J., and J. O. Thomas (1964), Studies of planetary atmospheres: 1. The distribution of
Field emission from optimized structure of carbon nanotube field emitter array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com; Noguchi, T.; Kato, S.
The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to bemore » 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.« less
Space charge limited current emission for a sharp tip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y. B., E-mail: zhuyingbin@gmail.com; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg
In this paper, we formulate a self-consistent model to study the space charge limited current emission from a sharp tip in a dc gap. The tip is assumed to have a radius in the order of 10s nanometer. The electrons are emitted from the tip due to field emission process. It is found that the localized current density J at the apex of the tip can be much higher than the classical Child Langmuir law (flat surface). A scaling of J ∝ V{sub g}{sup 3/2}/D{sup m}, where V{sub g} is the gap bias, D is the gap size, and m = 1.1–1.2more » (depending on the emission area or radius) is proposed. The effects of non-uniform emission and the spatial dependence of work function are presented.« less
Winds from T Tauri stars. I - Spherically symmetric models
NASA Technical Reports Server (NTRS)
Hartmann, Lee; Avrett, Eugene H.; Loeser, Rudolf; Calvet, Nuria
1990-01-01
Line fluxes and profiles are computed for a sequence of spherically symmetric T Tauri wind models. The calculations indicate that the H-alpha emission of T Tauri stars arises in an extended and probably turbulent circumstellar envelope at temperatures above about 8000 K. The models predict that Mg II resonance line emission should be strongly correlated with H-alpha fluxes; observed Mg II/H-alpha ratios are inconsistent with the models unless extinction corrections have been underestimated. The models predict that most of the Ca II resonance line and IR triplet emission arises in dense layers close to the star rather than in the wind. H-alpha emission levels suggest mass loss rates of about 10 to the -8th solar mass/yr for most T Tauri stars, in reasonable agreement with independent analysis of forbidden emission lines. These results should be useful for interpreting observed line profiles in terms of wind densities, temperatures, and velocity fields.
High-resolution forest carbon stocks and emissions in the Amazon.
Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint
2010-09-21
Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.
NASA Astrophysics Data System (ADS)
Riffel, R. A.; Storchi-Bergmann, T.; Riffel, R.; Davies, R.; Bianchin, M.; Diniz, M. R.; Schönell, A. J.; Burtscher, L.; Crenshaw, M.; Fischer, T. C.; Dahmer-Hahn, L. G.; Dametto, N. Z.; Rosario, D.
2018-02-01
We present and characterize a sample of 20 nearby Seyfert galaxies selected for having BAT 14-195 keV luminosities LX ≥ 1041.5 erg s-1, redshift z ≤ 0.015, being accessible for observations with the Gemini Near-Infrared Field Spectrograph (NIFS) and showing extended [O III]λ5007 emission. Our goal is to study Active Galactic Nucleus (AGN) feeding and feedback processes from near-infrared integral-field spectra, which include both ionized (H II) and hot molecular (H2) emission. This sample is complemented by other nine Seyfert galaxies previously observed with NIFS. We show that the host galaxy properties (absolute magnitudes MB, MH, central stellar velocity dispersion and axial ratio) show a similar distribution to those of the 69 BAT AGN. For the 20 galaxies already observed, we present surface mass density (Σ) profiles for H II and H2 in their inner ˜500 pc, showing that H II emission presents a steeper radial gradient than H2. This can be attributed to the different excitation mechanisms: ionization by AGN radiation for H II and heating by X-rays for H2. The mean surface mass densities are in the range (0.2 ≤ ΣH II ≤ 35.9) M⊙ pc-2, and (0.2 ≤ ΣH2 ≤ 13.9)× 10-3 M⊙ pc-2, while the ratios between the H II and H2 masses range between ˜200 and 8000. The sample presented here will be used in future papers to map AGN gas excitation and kinematics, providing a census of the mass inflow and outflow rates and power as well as their relation with the AGN luminosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busquet, Gemma; Girart, Josep Miquel; Estalella, Robert
We present observations of the 1.3 mm continuum emission toward hub-N and hub-S of the infrared dark cloud G14.225–0.506 carried out with the Submillimeter Array, together with observations of the dust emission at 870 and 350 μm obtained with APEX and CSO telescopes. The large-scale dust emission of both hubs consists of a single peaked clump elongated in the direction of the associated filament. At small scales, the SMA images reveal that both hubs fragment into several dust condensations. The fragmentation level was assessed under the same conditions and we found that hub-N presents 4 fragments while hub-S is moremore » fragmented, with 13 fragments identified. We studied the density structure by means of a simultaneous fit of the radial intensity profile at 870 and 350 μm and the spectral energy distribution adopting a Plummer-like function to describe the density structure. The parameters inferred from the model are remarkably similar in both hubs, suggesting that density structure could not be responsible for determining the fragmentation level. We estimated several physical parameters, such as the level of turbulence and the magnetic field strength, and we found no significant differences between these hubs. The Jeans analysis indicates that the observed fragmentation is more consistent with thermal Jeans fragmentation compared with a scenario in which turbulent support is included. The lower fragmentation level observed in hub-N could be explained in terms of stronger UV radiation effects from a nearby H ii region, evolutionary effects, and/or stronger magnetic fields at small scales, a scenario that should be further investigated.« less
Turbulence and wave particle interactions in solar-terrestrial plasmas
NASA Technical Reports Server (NTRS)
Dulk, G. A.; Goldman, M. V.; Toomre, J.
1985-01-01
Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.
The MUSE Hubble Ultra Deep Field Survey. VII. Fe II* emission in star-forming galaxies
NASA Astrophysics Data System (ADS)
Finley, Hayley; Bouché, Nicolas; Contini, Thierry; Paalvast, Mieke; Boogaard, Leindert; Maseda, Michael; Bacon, Roland; Blaizot, Jérémy; Brinchmann, Jarle; Epinat, Benoît; Feltre, Anna; Marino, Raffaella Anna; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Verhamme, Anne; Weilbacher, Peter M.; Wisotzki, Lutz
2017-11-01
Non-resonant Fe II* (λ2365, λ2396, λ2612, λ2626) emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3.15' × 3.15' mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 Fe II* emitters and 50 MgIII (λλ2796,2803) emitters from a sample of 271 [O II]λλ3726,3729 emitters with reliable redshifts from z = 0.85-1.50 down to 2 × 10-18 (3σ) ergs s-1 cm-2 (for [O II]), covering the M⋆ range from 108-1011 M⊙. The Fe II* and Mg II emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 109 M⊙ and star formation rates (SFRs) of ≲ 1 M⊙ yr-1 have MgIII emission without accompanying Fe II* emission, whereas galaxies with masses above 1010 M⊙ and SFRs ≳ 10 M⊙ yr-1 have Fe II* emission without accompanying MgIII emission. Between these two regimes, galaxies have both MgIII and Fe II* emission, typically with MgIII P Cygni profiles. Indeed, the MgIII profile shows a progression along the main sequence from pure emission to P Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgIII emission profiles have lower SFR surface densities than those with either MgIII P Cygni profiles or Fe II* emission. These spectral signatures produced through continuum scattering and fluorescence, MgIII P Cygni profiles and Fe II* emission, are better candidates for tracing galactic outflows than pure MgIII emission, which may originate from HIII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeIII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.
THE VIRUS-P EXPLORATION OF NEARBY GALAXIES (VENGA): THE X {sub CO} GRADIENT IN NGC 628
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Guillermo A.; Schruba, Andreas; Evans, Neal J. II
2013-02-20
We measure the radial profile of the {sup 12}CO(1-0) to H{sub 2} conversion factor (X {sub CO}) in NGC 628. The H{alpha} emission from the VENGA integral field spectroscopy is used to map the star formation rate (SFR) surface density ({Sigma}{sub SFR}). We estimate the molecular gas surface density ({Sigma}{sub H2}) from {Sigma}{sub SFR} by inverting the molecular star formation law (SFL), and compare it to the CO intensity to measure X {sub CO}. We study the impact of systematic uncertainties by changing the slope of the SFL, using different SFR tracers (H{alpha} versus far-UV plus 24 {mu}m), and COmore » maps from different telescopes (single-dish and interferometers). The observed X {sub CO} profile is robust against these systematics, drops by a factor of two from R {approx} 7 kpc to the center of the galaxy, and is well fit by a gradient {Delta}log(X {sub CO}) = 0.06 {+-} 0.02 dex kpc{sup -1}. We study how changes in X {sub CO} follow changes in metallicity, gas density, and ionization parameter. Theoretical models show that the gradient in X {sub CO} can be explained by a combination of decreasing metallicity, and decreasing {Sigma}{sub H2} with radius. Photoelectric heating from the local UV radiation field appears to contribute to the decrease of X {sub CO} in higher density regions. Our results show that galactic environment plays an important role at setting the physical conditions in star-forming regions, in particular the chemistry of carbon in molecular complexes, and the radiative transfer of CO emission. We caution against adopting a single X {sub CO} value when large changes in gas surface density or metallicity are present.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro
2016-04-11
This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, andmore » a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.« less
Experiment study of bio-tissue's temperature irradiated by laser based on optical fiber F-P sensor
NASA Astrophysics Data System (ADS)
Shan, Ning; Liu, Xia
2014-08-01
Laser has several advantages, such as strong anti-interference ability, quick speed, high power, agility and precision. It is widely applied in military and medicine fields. When laser acts on human body, biological tissue of human body will appear the phenomenon of ablation and carbonization and solidification. In order to effectively defend excess damage by laser, the thermal effect research of skin tissue should be carried out. Temperature is a key parameter in the processing between laser and bio-tissue. It is the mostly foundation using analyze size of thermal damage area and forecast thermal damage degree. In this paper, the low fineness optical fiber F-P sensing system for temperature measurement is designed and established. The real-time measurement system of temperature generated by laser irradiating bio-tissue is build based on the sensing system. The temperature distributing generated by laser in the bio-tissue is studied through experiment when the spot diameter of emission laser is difference with the same energy density and the energy density is difference with the same spot diameter of emission laser. The experimental results show that the sensing system can be used to the real-time temperature measurement of bio-tissue efficiency. It has small bulk. Its outer diameter is 250μm. And the hurt for bio-tissue is small. It has high respond speed. The respond time of temperature is less than 1s. These can be satisfied with practice demand. When the energy density of laser is same, the temperature rising in the same location is low along the spot diameter of emission laser increasing. When the spot diameter of emission laser is same, the temperature rising in the same location is increasing along with the energy density of laser increasing.
How well does CO emission measure the H2 mass of MCs?
NASA Astrophysics Data System (ADS)
Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.
2016-07-01
We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.
Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions
Zulick, C.; Raymond, A.; McKelvey, A.; ...
2016-06-15
Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a K α imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Furthermore, Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.
NASA Astrophysics Data System (ADS)
Langlois, A.; Royer, A.; Derksen, C.; Montpetit, B.; Dupont, F.; GoïTa, K.
2012-12-01
Satellite-passive microwave remote sensing has been extensively used to estimate snow water equivalent (SWE) in northern regions. Although passive microwave sensors operate independent of solar illumination and the lower frequencies are independent of atmospheric conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to the surface heterogeneity within individual pixels. In this article, we investigate the coupling of a thermodynamic multilayered snow model with a passive microwave emission model. Results show that the snow model itself provides poor SWE simulations when compared to field measurements from two major field campaigns. Coupling the snow and microwave emission models with successive iterations to correct the influence of snow grain size and density significantly improves SWE simulations. This method was further validated using an additional independent data set, which also showed significant improvement using the two-step iteration method compared to standalone simulations with the snow model.
Finite-element 3D simulation tools for high-current relativistic electron beams
NASA Astrophysics Data System (ADS)
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
NASA Technical Reports Server (NTRS)
Southard, Adrian E.; Getty, Stephanie A.; Feng, Steven; Glavin, Daniel P.; Auciello, Orlando; Sumant, Anirudha
2012-01-01
Carbon materials, including carbon nanotubes (CNTs) and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD), have been of considerable interest for field emission applications for over a decade. In particular, robust field emission materials are compelling for space applications due to the low power consumption and potential for miniaturization. A reflectron time-of-flight mass spectrometer (TOF-MS) under development for in situ measurements on the Moon and other Solar System bodies uses a field emitter to generate ions from gaseous samples, using electron ionization. For these unusual environments, robustness, reliability, and long life are of paramount importance, and to this end, we have explored the field emission properties and lifetime of carbon nanotubes and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) thin films, the latter developed and patented by Argonne National Laboratory. We will present recent investigations of N-UNCD as a robust field emitter, revealing that this material offers stable performance in high vacuum for up to 1000 hours with threshold voltage for emission of about 3-4 V/lJm and current densities in the range of tens of microA. Optimizing the mass resolution and sensitivity of such a mass spectrometer has also been enabled by a parallel effort to scale up a CNT emitter to an array measuring 2 mm x 40 mm. Through simulation and experiment of the new extended format emitter, we have determined that focusing the electron beam is limited due to the angular spread of the emitted electrons. This dispersion effect can be reduced through modification of the electron gun geometry, but this reduces the current reaching the ionization region. By increasing the transmission efficiency of the electron beam to the anode, we have increased the anode current by two orders of magnitude to realize a corresponding enhancement in instrument sensitivity, at a moderate cost to mass resolution. We will report recent experimental and modeling results to describe the performance of a field emission electron gun as employed in the Volatile Analysis by Pyrolysis of Regolith (VAPoR) TOF-MS prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi
2016-02-15
An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less
The Origin of Radially Aligned Magnetic Fields in Young Supernova Remnants
NASA Astrophysics Data System (ADS)
Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo
2013-08-01
It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)—in other words, the effect of rippled shock—by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability.
Dotta, Blake T; Lafrenie, Robert M; Karbowski, Lukasz M; Persinger, Michael A
2014-01-01
If parameters for lateral diffusion of lipids within membranes are macroscopic metaphors of the angular magnetic moment of the Bohr magneton then the energy emission should be within the visible wavelength for applied ~1 µT magnetic fields. Single or paired digital photomultiplier tubes (PMTs) were placed near dishes of ~1 million B16 mouse melanoma cells that had been removed from incubation. In very dark conditions (10(-11) W/m(2)) different averaged (RMS) intensities between 5 nT and 3.5 µT were applied randomly in 4 min increments. Numbers of photons were recorded directly over or beside the cell dishes by PMTs placed in pairs within various planes. Spectral analyses were completed for photon power density. The peak photon emissions occurred around 1 µT as predicted by the equation. Spectra analyses showed reliable discrete peaks between 0.9 and 1.8 µT but not for lesser or greater intensities; these peak frequencies corresponded to the energy difference of the orbital-spin magnetic moment of the electron within the applied range of magnetic field intensities and the standard solution for Rydberg atoms. Numbers of photons from cooling cells can be modified by applying specific intensities of temporally patterned magnetic fields. There may be a type of "cellular" magnetic moment that, when stimulated by intensity-tuned magnetic fields, results in photon emissions whose peak frequencies reflect predicted energies for fundamental orbital/spin properties of the electron and atomic aggregates with large principal quantum numbers.
Yu, Arthur; Li, Shaowei; Wang, Hui; Chen, Siyu; Wu, Ruqian; Ho, W
2018-05-09
The coupling between localized plasmon and molecular orbital in the light emission from a metallic nanocavity has been directly detected and imaged with sub-0.1 nm resolution. The light emission intensity was enhanced when the energy difference between the tunneling electrons and the lowest unoccupied molecular orbital (LUMO) of an azulene molecule matches the energy of a plasmon mode of the nanocavity defined by the Ag-tip and Ag (110) substrate of a scanning tunneling microscope (STM). The spatially resolved image of the light emission intensity matches the spatial distribution of the LUMO obtained by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. Our results highlight the near-field coupling of a molecular orbital to the radiative decay of a plasmonic excitation in a confined nanoscale junction.
Floating potential of emitting surfaces in plasmas with respect to the space potential
Kraus, B. F.; Raitses, Y.
2018-03-19
The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less
Floating potential of emitting surfaces in plasmas with respect to the space potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, B. F.; Raitses, Y.
The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less
Recommended Practice for Use of Emissive Probes in Electric Propulsion Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehan, J. P.; Raitses, Yevgeny; Hershkowitz, Noah
Here, this article provides recommended methods for building, operating, and taking plasma potential measurements from electron-emitting probes in electric propulsion devices, including Hall thrusters, gridded ion engines, and others. The two major techniques, the floating point technique and the inflection point technique, are described in detail as well as calibration and error-reduction methods. The major heating methods are described as well as the various considerations for emissive probe construction. Lastly, special considerations for electric propulsion plasmas are addressed, including high-energy densities, ion flows, magnetic fields, and potential fluctuations. Recommendations for probe design and operation are provided.
SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 2, 1976
1976-02-01
34""" ■■■I"" ^"■’ " """"^ R-F Heating of Sporadic E-Layer (abstract) Effects of ionospheric heating by powerful r-f emission on the sporadic E-layers are...situation is just the reverse. Here heating by powerful r-f fields decreases its electron density and increases its thickness. At mean latitudes...T - 2, it decreases by 18% [Ignat’yev, Yu. A. Effect on the sporadic E-layer of ionospheric heating by powerful r-f emission. IVUZ
Studies of low-mass star formation with the large deployable reflector
NASA Technical Reports Server (NTRS)
Hollenbach, D. J.; Tielens, Alexander G. G. M.
1984-01-01
Estimates are made of the far-infrared and submillimeter continuum and line emission from regions of low mass star formation. The intensity of this emission is compared with the sensitivity of the large deployable reflector (LDR), a large space telescope designed for this wavelength range. The proposed LDR is designed to probe the temperature, density, chemical structure, and the velocity field of the collapsing envelopes of these protostars. The LDR is also designed to study the accretion shocks on the cores and circumstellar disks of low-mass protostars, and to detect shock waves driven by protostellar winds.
ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian B.; Joy, Marshall
1995-01-01
We present ROSAT high-resolution images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, X-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. If real, the enhancements may be associated with clumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.
ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian; Joy, Marshall
1994-01-01
We present ROSAT HRI images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, x-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. The enhancements may be associated with lumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.
Recommended Practice for Use of Emissive Probes in Electric Propulsion Testing
Sheehan, J. P.; Raitses, Yevgeny; Hershkowitz, Noah; ...
2016-11-03
Here, this article provides recommended methods for building, operating, and taking plasma potential measurements from electron-emitting probes in electric propulsion devices, including Hall thrusters, gridded ion engines, and others. The two major techniques, the floating point technique and the inflection point technique, are described in detail as well as calibration and error-reduction methods. The major heating methods are described as well as the various considerations for emissive probe construction. Lastly, special considerations for electric propulsion plasmas are addressed, including high-energy densities, ion flows, magnetic fields, and potential fluctuations. Recommendations for probe design and operation are provided.
Numerical Simulation of DC Coronal Heating
NASA Astrophysics Data System (ADS)
Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco
2016-05-01
Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.
NASA Astrophysics Data System (ADS)
Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.
2017-12-01
This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.
The density matrix method in photonic bandgap and antiferromagnetic materials
NASA Astrophysics Data System (ADS)
Barrie, Scott B.
In this thesis, a theory for dispersive polaritonic bandgap (DPBG) and photonic bandgap (PBG) materials is developed. An ensemble of multi-level nanoparticles, such as non-interacting two-, three- and four-level atoms doped in DPBG and PBG materials is considered. The optical properties of these materials such as spontaneous emission, line broadening, fluorescence and narrowing of the natural linewidth have been studied using the density matrix method. Numerical simulations for these properties have been performed for the DPBG materials SiC and InAs, and for a PBG material with a 20 percent gap-to-midgap ratio. When a three-level nanoparticle is doped into a DPBG material, it is predicted that one or two bound states exist when one or both resonance energies, respectively, lie in the bandgap. It is shown when a resonance energy lies below the bandgap, its spectral density peak weakens and broadens as the resonance energy increases to the lower band edge. For the first time it is predicted that when a nanoparticle's resonance energy lies above the bandgap, its spectral density peak weakens and broadens as the resonance energy increases. A relation is also found between spectral structure and gap-to-midgap ratios. The dressed states of a two-level atom doped into a DPBG material under the influence of an intense monochromatic laser field are examined. The splitting of the dressed state energies is calculated, and it is predicted that the splitting depends on the polariton density of states and the Rabi frequency of laser field. The fluoresence is also examined, and for the first time two distinct control processes are found for the transition from one peak to three peaks. It was previously known that the Rabi frequency controlled the Stark effect, but this thesis predicts that the local of the peak with respect to the optical bandgap can cause a transition from one to three peaks even with a weak Rabi frequency. The transient linewidth narrowing of PBG crystal emission peaks doped with four-level atoms is studied. It is found that linewidth narrowing is only dependent upon time delay when the resonance energy is not near a band edge. This is a new discovery. The density matrix method is employed to find the critical magnetic field at which spin flopping occurs in antiferromagnetic high temperature superconductors. It is found that this magnetic field depends upon the temperature, the anisotropy parameter and the doping concentration. Results are calculated for 1-2-3 HTSCs. Keywords. Quantum Optics, Density Matrix, Photonic Bandgap Materials, Dispersive Polaritonic Bandgap Materials, Antiferromagnets.
Ultrashort high-brightness pulses from storage rings
NASA Astrophysics Data System (ADS)
Khan, Shaukat
2017-09-01
The brightness of short-wavelength radiation from accelerator-based sources can be increased by coherent emission in which the radiation intensity scales with the number of contributing electrons squared. This requires a microbunched longitudinal electron distribution, which is the case in free-electron lasers. The brightness of light sources based on electron storage rings was steadily improved, but could profit further from coherent emission. The modulation of the electron energy by a continuous-wave laser field may provide steady-state microbunching in the infrared regime. For shorter wavelengths, the energy modulation can be converted into a temporary density modulation by a dispersive chicane. One particular goal is coherent emission from a very short "slice" within an electron bunch in order to produce ultrashort radiation pulses with high brightness.
A photoionization model for the optical line emission from cooling flows
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. M.
1991-01-01
The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.
Excited-state dynamics of acetylene excited to individual rotational level of the V04K01 subband
NASA Astrophysics Data System (ADS)
Makarov, Vladimir I.; Kochubei, Sergei A.; Khmelinskii, Igor V.
2006-01-01
Dynamics of the IR emission induced by excitation of the acetylene molecule using the (32Ka0,1,2,ÃAu1←41la1,X˜Σg+1) transition was investigated. The observed IR emission was assigned to transitions between the ground-state vibrational levels. Acetylene fluorescence quenching induced by external electric and magnetic fields acting upon the system prepared using the (34Ka1,ÃAu1←00la0,X˜Σg+1) excitation was also studied. External electric field creates an additional radiationless pathway to the ground-state levels, coupling levels of the ÃAu1 excited state to the quasiresonant levels of the X˜Σg+1 ground state. The level density of the ground state in the vicinity of the excited state is very high, thus the electric-field-induced transition is irreversible, with the rate constant described by the Fermi rule. Magnetic field alters the decay profile without changing the fluorescence quantum yield in collisionless conditions. IR emission from the CCH transient was detected, and was also affected by the external electric and magnetic fields. Acetylene predissociation was demonstrated to proceed by the direct S1→S0 mechanism. The results were explained using the previously developed theoretical approach, yielding values of the relevant model parameters.
Synthesis of carbon nanofibres from waste chicken fat for field electron emission applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriani, A.B., E-mail: absuriani@yahoo.com; Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900; Dalila, A.R.
Highlights: • Waste chicken fat is used as a starting material to produce CNFs via TCVD method. • High heating rate applied resulted in aggregation of catalyst particles. • Aggregated catalyst produced sea urchin-like CNFs with amorphous nature. • The as-grown CNFs presented a potential for field electron emission applications. - Abstract: Carbon nanofibres (CNFs) with sea urchin-like morphology were synthesised from waste chicken fat precursor via catalytic thermal chemical vapour deposition method at 750 °C. The CNFs showed amorphous structures under high-resolution transmission electron microscopy, micro-Raman spectroscopy and X-ray diffraction examination. X-ray photoelectron spectroscopy analysis confirmed that the coremore » of the sea urchin-like CNFs was composed of Fe{sub 3}C formed within the first 20 min of synthesis time. The growth of amorphous CNFs from agglomerated Fe{sub 3}C particles was favourable due to the high heating rate applied during the synthesis. Field electron emission examination of the CNFs indicated turn-on and threshold field values of 5.4 and 6.6 V μm{sup −1} at current density of 1 and 10 μA cm{sup −2}, respectively. This study demonstrates that waste chicken fat, a low-cost and readily available resource, can be used as an inexpensive carbon source for the production of CNFs with a potential application in field electron emitters.« less
NASA Astrophysics Data System (ADS)
Rani, Reena; Bhatia, Ravi
2018-03-01
In their research paper, M. Song et al. [AIP ADVANCES 5, 097130 (2015)] have claimed to have achieved enhanced field emission (FE) characteristics of carbon nanotubes (CNT)/graphene hybrids experimentally, exhibiting improved FE parameters e.g. turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum emission current density (Jmax) of 5.76 mA/cm2, and field enhancement factor (β) of ˜1.3 × 104. The authors have emphasized on the surprisingly high value of β to be the basis of their claim of achieving superior FE performance which is further attributed to the optimized mass ratio CNT/ graphene, which is 5:1 in the present case. However, the claim based upon high value of β is misleading because it does not corroborate with the obtained Jmax parameter. Also, the obtained value of J is quite low in the mentioned study as compared to the reported values. For an instance, Sameera et al. [J. Appl. Phys. 111, 044307 (2012) & Appl. Phys. Lett. 102, 033102 (2013)] have reported FE properties of CNT composites and reduced graphene oxide with Jmax and β values of the order of ˜102 mA/cm2 and 6 × 103, respectively. Therefore, the conclusions drawn by M. Song et al. [AIP ADVANCES 5, 097130 (2015)] in their paper do no hold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marhavilas, P. K.; Sarris, E. T.; Anagnostopoulos, G. C.
2011-01-04
The ratio of the plasma pressure to the magnetic field pressure (or of their energy densities) which is known as the plasma parameter 'beta'({beta}) has important implications to the propagation of energetic particles and the interaction of the solar wind with planetary magnetospheres. Although in the scientific literature the contribution of the superthermal particles to the plasma pressure is generally assumed negligible, we deduced, by analyzing energetic particles and magnetic field measurements recorded by the Ulysses spacecraft, that in a series of events, the energy density contained in the superthermal tail of the particle distribution is comparable to or evenmore » higher than the energy density of the magnetic field, creating conditions of high-beta plasma. More explicitly, in this paper we analyze Ulysses/HI-SCALE measurements of the energy density ratio (parameter {beta}{sub ep}) of the energetic ions'(20 keV to {approx}5 MeV) to the magnetic field's in order to find occurrences of high-beta ({beta}{sub ep}>1) superthermal plasma conditions in the environment of the Jovian magnetosphere, which is an interesting plasma laboratory and an important source of emissions in our solar system. In particular, we examine high-beta ion events close to Jupiter's bow shock, which are produced by two processes: (a) bow shock ion acceleration and (b) ion leakage from the magnetosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paz-Soldan, C.; La Haye, R. J.; Shiraki, D.
DIII-D plasmas at very low density exhibit onset of n=1 error field (EF) penetration (the `low-density locked mode') not at a critical density or EF, but instead at a critical level of runaway electron (RE) intensity. Raising the density during a discharge does not avoid EF penetration, so long as RE growth proceeds to the critical level. Penetration is preceded by non-thermalization of the electron cyclotron emission, anisotropization of the total pressure, synchrotron emission shape changes, as well as decreases in the loop voltage and bulk thermal electron temperature. The same phenomena occur despite various types of optimal EF correction,more » and in some cases modes are born rotating. Similar phenomena are also found at the low-density limit in JET. These results stand in contrast to the conventional interpretation of the low-density stability limit as being due to residual EFs and demonstrate a new pathway to EF penetration instability due to REs. Existing scaling laws for penetration project to increasing EF sensitivity as bulk temperatures decrease, though other possible mechanisms include classical tearing instability, thermo-resistive instability, and pressure-anisotropy driven instability. Regardless of first-principles mechanism, known scaling laws for Ohmic energy confinement combined with theoretical RE production rates allow rough extrapolation of the RE criticality condition, and thus, the low-density limit to other tokamaks. Furthermore, the extrapolated low-density limit by this pathway decreases with increasing machine size and is considerably below expected operating conditions for ITER. While likely unimportant for ITER, this effect can explain the low-density limit of existing tokamaks operating with small residual EFs.« less
NASA Astrophysics Data System (ADS)
Basu, Aritra; Roychowdhury, Sambit; Heesen, Volker; Beck, Rainer; Brinks, Elias; Westcott, Jonathan; Hindson, Luke
2017-10-01
We present the highest sensitivity and angular resolution study at 0.32 GHz of the dwarf irregular galaxy IC 10, observed using the Giant Metrewave Radio Telescope, probing ˜45 pc spatial scales. We find the galaxy-averaged radio continuum spectrum to be relatively flat, with a spectral index α = -0.34 ± 0.01 (Sν ∝ να), mainly due to a high contribution from free-free emission. At 0.32 GHz, some of the H II regions show evidence of free-free absorption as they become optically thick below ˜0.41 GHz with corresponding free electron densities of ˜ 11-22 cm- 3. After removing the free-free emission, we studied the radio-infrared (IR) relations on 55, 110 and 165 pc spatial scales. We find that on all scales the non-thermal emission at 0.32 and 6.2 GHz correlates better with far-infrared (FIR) emission at 70 μm than mid-IR emission at 24 μm. The dispersion of the radio-FIR relation arises due to variations in both magnetic field and dust temperature, and decreases systematically with increasing spatial scale. The effect of cosmic ray transport is negligible as cosmic ray electrons were only injected ≲5 Myr ago. The average magnetic field strength (B) of 12 μG in the disc is comparable to that of large star-forming galaxies. The local magnetic field is strongly correlated with local star formation rate (SFR) as B ∝ SFR0.35 ± 0.03, indicating a starburst-driven fluctuation dynamo to be efficient (˜10 per cent) in amplifying the field in IC 10. The high spatial resolution observations presented here suggest that the high efficiency of magnetic field amplification and strong coupling with SFR likely sets up the radio-FIR correlation in cosmologically young galaxies.
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Jung, B.; Gillespie, K.; Hemmat, M.; Aslam, A.; Brunfeldt, D.; Dobson, M. C.
1983-01-01
A vegetation and soil-moisture experiment was conducted in order to examine the microwave emission and backscattering from vegetation canopies and soils. The data-acquisition methodology used in conjunction with the mobile radar scatterometer (MRS) systems is described and associated ground-truth data are documented. Test fields were located in the Kansas River floodplain north of Lawrence, Kansas. Ten fields each of wheat, corn, and soybeans were monitored over the greater part of their growing seasons. The tabulated data summarize measurements made by the sensor systems and represent target characteristics. Target parameters describing the vegetation and soil characteristics include plant moisture, density, height, and growth stage, as well as soil moisture and soil-bulk density. Complete listings of pertinent crop-canopy and soil measurements are given.
Initial experimental test of a helicon plasma based mass filter
NASA Astrophysics Data System (ADS)
Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.
2016-06-01
High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. Concurrent spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.
UV Observations of Atomic Oxygen in the Cusp Region
NASA Astrophysics Data System (ADS)
Fritz, B.; Lessard, M.; Dymond, K.; Kenward, D. R.; Lynch, K. A.; Clemmons, J. H.; Hecht, J. H.; Hysell, D. L.; Crowley, G.
2017-12-01
The Rocket Experiment for Neutral Upwelling (RENU) 2 launched into the dayside cusp on 13 December, 2015. The sounding rocket payload carried a comprehensive suite of particle, field, and remote sensing instruments to characterize the thermosphere in a region where pockets of enhanced neutral density have been detected [Lühr et al, 2004]. An ultraviolet photomultiplier tube (UV PMT) was oriented to look along the magnetic field line and remotely detect neutral atomic oxygen (OI) above the payload. The UV PMT measured a clear enhancement as the payload descended through a poleward moving auroral form, an indicator of structure in both altitude and latitude. Context for the UV PMT measurement is provided by the Special Sensor Ultraviolet Imager (SSULI) instrument on the Defense Meteorological Space Program (DMSP) satellite, which also measured OI as it passed through the cusp. UV tomography of SSULI observations produces a two-dimensional cross-section of volumetric emission rates in the high-latitude thermosphere prior to the RENU 2 flight. The volume emission rate may then be inverted to produce a profile of neutral density in the thermosphere. A similar technique is used to interpret the UV PMT measurement and determine structure in the thermosphere as RENU 2 descended through the cusp.
The effect of target materials on the propagation of atmospheric-pressure plasma jets
NASA Astrophysics Data System (ADS)
Ji, Longfei; Yan, Wen; Xia, Yang; Liu, Dongping
2018-05-01
The current study is focused on the effect of target materials (quartz plate, copper sheet, and quartz plate with a grounded copper sheet on the back) on the propagation of atmospheric-pressure helium plasma jets. The dynamics of ionization waves (IWs) and the relative amount of reactive oxygen species (OH and O) in the IW front were compared by using spatial and temporal images and relative optical emission spectroscopy. Our measurements show that the targets can significantly affect the propagation and intensity of the IWs. In addition, strong OH emission lines were detected when the IWs impinged upon the damp surface. Numerical simulations have been carried out to explain the experimental observation. The propagation velocity of IWs predicted by the simulation was in good agreement with the experimental results. Simulation results suggest that the density and velocity of IWs mainly depend on the electric field between the high voltage electrode tip and the target. Analysis indicates that the targets could change the electric field distribution between the high voltage electrode and targets and thus affect the dynamics and the density of the IWs, the generation of reactive oxygen species, and the corresponding sterilization efficiency.
Effects of soil tillage on the microwave emission of soils
NASA Technical Reports Server (NTRS)
Jackson, T. J.; Koopman, G. J.; Oneill, P. E.; Wang, J. R.
1985-01-01
In order to understand the interactions of soil properties and microwave emission better, a series of field experiments were conducted in 1984. Small plots were measured with a truck-mounted passive microwave radiometer operating at 1.4 GHz. These data were collected concurrent with ground observations of soil moisture and bulk density. Treatment effects studied included different soil moisture contents and bulk densities. Evaluations of the data have shown that commonly used models of the dielectric properties of wet soils do not explain the observations obtained in these experiments. This conclusion was based on the fact that the roughness parameters determined through optimization were significantly larger than those observed in similar investigations. These discrepancies are most likely due to the soil structure. Commonly used models assume a homogeneous three phase mixture of soil solids, air and water. Under tilled conditions the soil is actually a two phase mixture of aggregates and voids. Appropriate dielectric models for this tilled condition were evaluated and found to explain the observations. These results indicate that previous conclusions concerning the effects of surface roughness in tilled fields may be incorrect, and they may explain some of the inconsistencies encountered in roughness modeling.
Infrared dust and millimeter-wave carbon monoxide emission in the Orion region
NASA Technical Reports Server (NTRS)
Bally, John; Langer, William D.; Liu, Weihong
1991-01-01
The far-infrared dust emission seen by the IRAS satellite in the Orion region is analyzed as a function of the local radiation field intensity, and the dust temperature and opacity are compared with (C-12)O and (C-13)O emission. The infrared radiation is interpreted within the framework of a single-component large grain model and a multicomponent grain model consisting of subpopulations of grains with size-dependent temperatures. A strong dependence of the 100-micron optical depth derived is found using the large grain model on the average line-of-sight dust temperature and radiation field. In the hot environment surrounding high-luminosity sources and H II regions, all dust along the line-of-sight radiates at 100 microns, and the dust-to-gas ratio, based on the 100-micron opacity and I(/C-13/O), appears to be in agreement with the standard value, about 1 percent by mass. A relationship is found between the inferred dust-to-gas ratio and the radiation field intensity responsible for heating the dust which can be used to estimate the gas column density from the dust opacity derived from the 60- and 100-micron IRAS fluxes.
Gately, Conor K; Hutyra, Lucy R; Wing, Ian Sue; Brondfield, Max N
2013-03-05
On-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories use spatial proxies such as population and road density to downscale national or state-level data. Such procedures introduce errors where the proxy variables and actual emissions are weakly correlated, and limit analysis of the relationship between emissions and demographic trends at local scales. We develop an on-road emission inventory product for Massachusetts-based on roadway-level traffic data obtained from the Highway Performance Monitoring System (HPMS). We provide annual estimates of on-road CO2 emissions at a 1 × 1 km grid scale for the years 1980 through 2008. We compared our results with on-road emissions estimates from the Emissions Database for Global Atmospheric Research (EDGAR), with the Vulcan Product, and with estimates derived from state fuel consumption statistics reported by the Federal Highway Administration (FHWA). Our model differs from FHWA estimates by less than 8.5% on average, and is within 5% of Vulcan estimates. We found that EDGAR estimates systematically exceed FHWA by an average of 22.8%. Panel regression analysis of per-mile CO2 emissions on population density at the town scale shows a statistically significant correlation that varies systematically in sign and magnitude as population density increases. Population density has a positive correlation with per-mile CO2 emissions for densities below 2000 persons km(-2), above which increasing density correlates negatively with per-mile emissions.
Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices.
Bo, Zheng; Yu, Kehan; Lu, Ganhua; Mao, Shun; Chen, Junhong; Fan, Fa-Gung
2010-08-15
Ground-level ozone emitted from indoor corona devices poses serious health risks to the human respiratory system and the lung function. Federal regulations call for effective techniques to minimize the indoor ozone production. In this work, stable atmospheric corona discharges from nanomaterials are demonstrated using horizontally suspended carbon nanotubes (CNTs) as the discharge electrode. Compared with the conventional discharges employing micro- or macroscale electrodes, the corona discharge from CNTs could initiate and operate at a much lower voltage due to the small electrode diameter, and is thus energy-efficient. Most importantly, the reported discharge is environmentally friendly since no ozone (below the detection limit of 0.5 ppb) was detected for area current densities up to 0.744 A/m(2) due to the significantly reduced number of electrons and plasma volume generated by CNT discharges. The resulting discharge current density depends on the CNT loading. Contrary to the conventional wisdom, negative CNT discharges should be used to enhance the current density owing to the efficient field emission of electrons from the CNT surface.
Electron emission and beam generation using ferroelectric cathodes
NASA Astrophysics Data System (ADS)
Flechtner, Donald D.
1999-06-01
In 1989, researchers at CERN published the discovery of significant electron emission (1-100 A/cm2) from Lead-Lanthanum-Zirconate- Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50-500,000 V with anode cathode gaps of.5-6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages >=200 kV, a typical Child-Langmuir V3/2 dependence was observed. Additional experiments have demonstrated repetition rates of up to 50 Hz with current densities of >=20 A/cm2. These results have been used in the ongoing design and construction of the electron gun for a 500 kV pulse modulator capable of repetitive operation at 1 Hz. The electron gun uses a PZT 55/45 (Pb(Zr.55,Ti.45 )O3) cathode to produce a <=400 A electron beam focused by a converging magnetic field. Studies of the emission process itself indicate the initial electrons are produced by field emission from the metallic grid applied to the front surface of the cathode. The field emission is induced by the application of a fast rising 1-3 kV, 150 ns pulse to the rear electrode of the 1 mm thick ferroelectric. Field emission can lead to explosive emission from microprotrusions and metal-ferroelectric-vacuum triple points forming a diffuse plasma on the surface of the sample. Under long pulse experiments (1-5 μs), plasma velocities of ~2 cm/μs were measured from gap closure rates. Results from an ion Faraday cup experiment showed ion velocities of 1-2 cm/μs. Experimental evidence indicates the electron emission is dependent on the field emission initiated by the voltage applied to rear surface of the ferroelectric; however, for current pulse durations on the order of microseconds, the surface plasma expansion into the gap can dominate current flow.
NASA Astrophysics Data System (ADS)
Amin, Saba; Bashir, Shazia; Anjum, Safia; Akram, Mahreen; Hayat, Asma; Waheed, Sadia; Iftikhar, Hina; Dawood, Assadullah; Mahmood, Khaliq
2017-08-01
Optical emission spectra of a laser induced plasma of vanadium pentoxide (V2O5) using a Nd:YAG laser (1064 nm, 10 ns) in the presence and absence of the magnetic field of 0.45 T have been investigated. The effect of the magnetic field (B) on the V2O5 plasma at various laser irradiances ranging from 0.64 GW cm-2 to 2.56 GW cm-2 is investigated while keeping the pressure of environmental gases of Ar and Ne constant at 100 Torr. The magnetic field effect on plasma parameters of V2O5 is also explored at different delay times ranging from 0 μs to 10 μs for both environmental gases of Ar and Ne at the laser irradiance of 1.28 GW cm-2. It is revealed that both the emission intensity and electron temperature of the vanadium pentoxide plasma initially increase with increasing irradiance due to the enhanced energy deposition and mass ablation rate. After achieving a certain maximum, both exhibit a decreasing trend or saturation which is attributable to the plasma shielding effect. However, the electron density shows a decreasing trend with increasing laser irradiance. This trend remains the same for both cases, i.e., in the presence and in the absence of magnetic field and for both background gases of Ar and Ne. However, it is revealed that both the electron temperature and electron density of the V2O5 plasma are significantly enhanced in the presence of the magnetic field for both environments at all laser irradiances and delay times, and more pronounced effects are observed at higher irradiances. The enhancement in plasma parameters is attributed to the confinement as well as Joule heating effects caused by magnetic field employment. The confinement of the plasma is also confirmed by the analytically calculated value of magnetic pressure β, which is smaller than plasma pressure at all irradiances and delay times, and therefore confirms the validity of magnetic confinement of the V2O5 plasma.
Imaging Jupiter's radiation belts down to 127 MHz with LOFAR
NASA Astrophysics Data System (ADS)
Girard, J. N.; Zarka, P.; Tasse, C.; Hess, S.; de Pater, I.; Santos-Costa, D.; Nenon, Q.; Sicard, A.; Bourdarie, S.; Anderson, J.; Asgekar, A.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Breton, R. P.; Broderick, J. W.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; Corbel, S.; Corstanje, A.; de Gasperin, F.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hessels, J. W. T.; Hoeft, M.; Hörandel, J.; Iacobelli, M.; Juette, E.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Loose, M.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Moldon, J.; Munk, H.; Nelles, A.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Schwarz, D.; Smirnov, O.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wucknitz, O.
2016-03-01
Context. With the limited amount of in situ particle data available for the innermost region of Jupiter's magnetosphere, Earth-based observations of the giant planets synchrotron emission remain the sole method today of scrutinizing the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet. Radio observations ultimately provide key information about the origin and control parameters of the harsh radiation environment. Aims: We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR. At a frequency as low as 127 MHz, the radiation from electrons with energies of ~1-30 MeV are expected, for the first time, to be measured and mapped over a broad region of Jupiter's inner magnetosphere. Methods: Measurements consist of interferometric visibilities taken during a single 10-hour rotation of the Jovian system. These visibilities were processed in a custom pipeline developed for planetary observations, combining flagging, calibration, wide-field imaging, direction-dependent calibration, and specific visibility correction for planetary targets. We produced spectral image cubes of Jupiter's radiation belts at the various angular, temporal, and spectral resolutions from which flux densities were measured. Results: The first resolved images of Jupiter's radiation belts at 127-172 MHz are obtained with a noise level ~20-25 mJy/beam, along with total integrated flux densities. They are compared with previous observations at higher frequencies. A greater extent of the synchrotron emission source (≥4 RJ) is measured in the LOFAR range, which is the signature - as at higher frequencies - of the superposition of a "pancake" and an isotropic electron distribution. Asymmetry of east-west emission peaks is measured, as well as the longitudinal dependence of the radial distance of the belts, and the presence of a hot spot at λIII = 230° ± 25°. Spectral flux density measurements are on the low side of previous (unresolved) ones, suggesting a low-frequency turnover and/or time variations of the Jovian synchrotron spectrum. Conclusions: LOFAR proves to be a powerful and flexible planetary imager. In the case of Jupiter, observations at 127 MHz depict the distribution of ~1-30 MeV energy electrons up to ~4-5 planetary radii. The similarities of the observations at 127 MHz with those at higher frequencies reinforce the conclusion that the magnetic field morphology primarily shapes the brightness distribution features of Jupiter's synchrotron emission, as well as how the radiating electrons are likely radially and latitudinally distributed inside about 2 planetary radii. Nonetheless, the detection of an emission region that extends to larger distances than at higher frequencies, combined with the overall lower flux density, yields new information on Jupiter's electron distribution, and this information may ultimately shed light on the origin and mode of transport of these particles.
NASA Astrophysics Data System (ADS)
Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.
2017-10-01
Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jiutian; Cao, Yudong; Fan, Hai
2015-12-15
A color-tunable luminescent material was prepared based on the composition of functionalized graphitic carbon nitride (g-C{sub 3}N{sub 4}) and europium (III). The functionalized g-C{sub 3}N{sub 4} layers not only behave as multifunctional supports including ligand coordinated with europium (III) and a support structure for the formation of the luminescent material, but exhibit excitation wavelength-dependent luminescence, thus the energy transfer between the functionalized g-C{sub 3}N{sub 4} and europium (III) can match very well by controlling the emission wavelength of functionalized g-C{sub 3}N{sub 4}. The as-prepared materials was comprehensively characterized via X-ray photoelectron spectroscopy, Fourier Transform Infrared spectroscopy, X-ray scattering techniques, Ultravioletmore » and Visible spectrophotometer, fluorescence spectrophotometer, thermogravimetric analysis, etc. The luminescent material exhibits multi-color emissions which are consistent with the characteristic emissions of europium (III) and functionalized g-C{sub 3}N{sub 4}, and the photoluminescence quality and density of the europium (III) can be greatly enhanced. The brilliant optical properties of the materials make them suiting for multipurpose applications in practical fields. - Graphical abstract: Schematic illustration of the synthesis and basic composition of the luminescent material. Inset figures were luminescence emission spectra of g-C{sub 3}N{sub 4} (A), europium (III) complex (a) and luminescent material (b) with the same concentration in (B) (K{sub ex}=350 nm) and photographs of (left) H{sub 2}O and (right) the H{sub 2}O dispersion of luminescence emission spectra under 350 nm UV radiation. The energy transfer in the luminescent material matchs very well and it exhibits multi-color emissions simultaneously. The enhanced photoluminescence quality and density of the europium (III) makes them suiting for multipurpose applications in practical fields. - Highlights: • Luminescent material exhibits multi-color emissions when excited by single wavelength. • The energy trsnsfer between functionalized g-C{sub 3}N{sub 4} and europium matches very vell. • Functionalized g-C{sub 3}N{sub 4} exhibits excitation wavelength-depengdent bright blue luminescence. • Functionalized g-C{sub 3}N{sub 4} layer provided as multifunctional supports.« less
A search for radio emission from exoplanets around evolved stars
NASA Astrophysics Data System (ADS)
O'Gorman, E.; Coughlan, C. P.; Vlemmings, W.; Varenius, E.; Sirothia, S.; Ray, T. P.; Olofsson, H.
2018-04-01
The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically ≥150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the LOw Frequency ARray (LOFAR) at 150 MHz (λ = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars β Gem, ι Dra, and β UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3σ upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for β Gem, ι Dra, and β UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1982-01-01
It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.
Electric Field Screening with Backflow at Pulsar Polar Cap
NASA Astrophysics Data System (ADS)
Kisaka, Shota; Asano, Katsuaki; Terasawa, Toshio
2016-09-01
Recent γ-ray observations suggest that particle acceleration occurs at the outer region of the pulsar magnetosphere. The magnetic field lines in the outer acceleration region (OAR) are connected to the neutron star surface (NSS). If copious electron-positron pairs are produced near the NSS, such pairs flow into the OAR and screen the electric field there. To activate the OAR, the electromagnetic cascade due to the electric field near the NSS should be suppressed. However, since a return current is expected along the field lines through the OAR, the outflow extracted from the NSS alone cannot screen the electric field just above the NSS. In this paper, we analytically and numerically study the electric field screening at the NSS, taking into account the effects of the backflowing particles from the OAR. In certain limited cases, the electric field is screened without significant pair cascade if only ultra-relativistic particles (γ \\gg 1) flow back to the NSS. On the other hand, if electron-positron pairs with a significant number density and mildly relativistic temperature, expected to distribute in a wide region of the magnetosphere, flow back to the NSS, these particles adjust the current and charge densities so that the electric field can be screened without pair cascade. We obtain the condition needed for the number density of particles to screen the electric field at the NSS. We also find that in the ion-extracted case from the NSS, bunches of particles are ejected to the outer region quasi-periodically, which is a possible mechanism of observed radio emission.
NASA Astrophysics Data System (ADS)
Martí-Vidal, I.; Marcaide, J. M.; Alberdi, A.; Guirado, J. C.; Pérez-Torres, M. A.; Ros, E.
2011-02-01
We report on a simultaneous modelling of the expansion and radio light curves of the supernova SN1993J. We developed a simulation code capable of generating synthetic expansion and radio light curves of supernovae by taking into consideration the evolution of the expanding shock, magnetic fields, and relativistic electrons, as well as the finite sensitivity of the interferometric arrays used in the observations. Our software successfully fits all the available radio data of SN 1993J with a standard emission model for supernovae, which is extended with some physical considerations, such as an evolution in the opacity of the ejecta material, a radial decline in the magnetic fields within the radiating region, and a changing radial density profile for the circumstellar medium starting from day 3100 after the explosion.
NASA Technical Reports Server (NTRS)
Coffey, Victoria; Chandler, Michael; Singh, Nagendra
2008-01-01
The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.
Quantum confined Stark effect in organic fluorophores.
NASA Astrophysics Data System (ADS)
Peng, Xihong; Anderson, John; Tepper, Gary; Bandyopadhyay, Supriyo; Nayak, Saroj
2008-03-01
Fluorescent molecules have widely been used to detect and visualize structure and processes in biological samples due to its extraordinary sensitivity. However, the emission spectra of flurophores are usually broad and the accurate identification is difficult. Recently, experiments show that energy shifts by Stark effect can be used to aid the identification of organic molecules [1]. Stark effect originates from the shifting/splitting of energy levels when a molecule is under an external electric field, which shows a shift/splitting of a peak in absorption/emission spectra. The size of the shift depends on the magnitude of the external field and the molecular structure. In this talk we will show our theoretical study of the peak shifts on emission spectra for a series of organic fluorophores such as tyrosine, tryptophan, rhodamine123 and coumarin314 using density functional theory. We find that a particular peak shift is determined by the local dipole moments of molecular orbitals rather than the global dipole moment of the molecule. These molecular-specific shifts in emission spectra may enable to improve molecular identification in biosensors. Our results will be compared with experimental data. [1]Unpublished, S. Sarkar, B. Kanchibotla, S. Bandyopadhyay, G. Tepper, J. Edwards, J. Anderson, and R. Kessick.
The Role of Magnetic Fields in Star Formation
NASA Astrophysics Data System (ADS)
Pipher, Judith
2018-06-01
The SOFIA instrument complement makes available the capability to characterize the physical properties (turbulence, dynamics, magnetic field structure and strength, gas density) of the molecular cloud filaments in which stars form.HAWC+, the newest SOFIA instrument, provides a unique opportunity to probe the complex roles that magnetic fields play in the star formation process on spatial scales intermediate to those explored by Planck (5’ scale), to those of ALMA at the smallest spatial scales (<0.6”scale and 2” fields of view). HAWC+ measures the thermal emission from dust grains in molecular cloud star forming regions at wavelengths 53 to 216 mm, as well as the far infrared polarization on diffraction-limited spatial scales of 5” – 20” over fields of view ~2’ – 8’. Complementary near- to mid-IR polarimetry on 8-10m telescopes is available, as is submm polarimetry from both ground-based and balloon-borne telescopes. Currently there is no other far-IR polarimetry facility, and the HAWC+ wavelength ranges allow discrimination among different polarization mechanisms. HAWC+’ angular resolution is particularly well suited to study the magnetic field of entire cloud cores, thus connecting the Planck large scale molecular cloud structure with ALMA’s detailed small-scale structure of the core.SOFIA also offers the advantages of molecular line emission follow-up on regions for which HAWC+ determines magnetic field strength and direction. GREAT and/or FIFI-LS molecular line observations of the region of interest will complement the magnetic field observations: cloud and filament dynamics, the magnitude of the turbulence, and of course the core gas density can be determined through observations of appropriate molecular lines.These observations, as well as synergistic observations with other telescopes, will provide powerful tools to further our understanding of the fundamental physics of both low mass and high mass star formation, including the role that magnetic fields play in each.
A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, Young-Soo; Min, Kyoung-Wook; Seon, Kwang-Il
We present the far-ultraviolet (FUV) fluorescent molecular hydrogen (H{sub 2}) emission map of the Milky Way Galaxy obtained with FIMS/SPEAR covering ∼76% of the sky. The extinction-corrected intensity of the fluorescent H{sub 2} emission has a strong linear correlation with the well-known tracers of the cold interstellar medium (ISM), including color excess E(B–V) , neutral hydrogen column density N (H i), and H α emission. The all-sky H{sub 2} column density map was also obtained using a simple photodissociation region model and interstellar radiation fields derived from UV star catalogs. We estimated the fraction of H{sub 2} ( f {submore » H2}) and the gas-to-dust ratio (GDR) of the diffuse ISM. The f {sub H2} gradually increases from <1% at optically thin regions where E(B–V) < 0.1 to ∼50% for E(B–V) = 3. The estimated GDR is ∼5.1 × 10{sup 21} atoms cm{sup −2} mag{sup −1}, in agreement with the standard value of 5.8 × 10{sup 21} atoms cm{sup −2} mag{sup −1}.« less
Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana
2012-12-01
In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd(2)Fe(14)B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of ~0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is ~2 × 10(11) cm(-3), which is around one order of magnitude larger than that of single ring arrangement.
Review of the 9th NLTE code comparison workshop
Piron, Robin; Gilleron, Franck; Aglitskiy, Yefim; ...
2017-02-24
Here, we review the 9th NLTE code comparison workshop, which was held in the Jussieu campus, Paris, from November 30th to December 4th, 2015. This time, the workshop was mainly focused on a systematic investigation of iron NLTE steady-state kinetics and emissivity, over a broad range of temperature and density. Through these comparisons, topics such as modeling of the dielectronic processes, density effects or the effect of an external radiation field were addressed. The K-shell spectroscopy of iron plasmas was also addressed, notably through the interpretation of tokamak and laser experimental spectra.
Review of the 9th NLTE code comparison workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piron, Robin; Gilleron, Franck; Aglitskiy, Yefim
Here, we review the 9th NLTE code comparison workshop, which was held in the Jussieu campus, Paris, from November 30th to December 4th, 2015. This time, the workshop was mainly focused on a systematic investigation of iron NLTE steady-state kinetics and emissivity, over a broad range of temperature and density. Through these comparisons, topics such as modeling of the dielectronic processes, density effects or the effect of an external radiation field were addressed. The K-shell spectroscopy of iron plasmas was also addressed, notably through the interpretation of tokamak and laser experimental spectra.
Review of the 9th NLTE code comparison workshop
NASA Astrophysics Data System (ADS)
Piron, R.; Gilleron, F.; Aglitskiy, Y.; Chung, H.-K.; Fontes, C. J.; Hansen, S. B.; Marchuk, O.; Scott, H. A.; Stambulchik, E.; Ralchenko, Yu.
2017-06-01
We review the 9th NLTE code comparison workshop, which was held in the Jussieu campus, Paris, from November 30th to December 4th, 2015. This time, the workshop was mainly focused on a systematic investigation of iron NLTE steady-state kinetics and emissivity, over a broad range of temperature and density. Through these comparisons, topics such as modeling of the dielectronic processes, density effects or the effect of an external radiation field were addressed. The K-shell spectroscopy of iron plasmas was also addressed, notably through the interpretation of tokamak and laser experimental spectra.
Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure
NASA Astrophysics Data System (ADS)
Xie, Wanfeng; Fan, Jihui; Song, Hui; Jiang, Feng; Yuan, Huimin; Wei, Zhixian; Ji, Ziwu; Pang, Zhiyong; Han, Shenghao
2016-10-01
We report the controllable growth of rice-shape nanoparticles of Alq3 by an extremely facile self-assembly approach. Possible mechanisms have been proposed to interpret the formation and controlled process of the single crystal nanoparticles. The field-emission performances (turn-on field 7 V μm-1, maximum current density 2.9 mA cm-2) indicate the potential application on miniaturized nano-optoelectronics devices of Alq3-based. This facile method can potentially be used for the controlled synthesis of other functional complexes and organic nanostructures.
An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines
NASA Astrophysics Data System (ADS)
Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima
We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagai, H.; Kino, M.; Fujita, Y.
2017-11-01
We present Very Long Baseline Array polarimetric observations of the innermost jet of 3C 84 (NGC 1275) at 43 GHz. A significant polarized emission is detected at the hotspot of the innermost restarted jet, which is located 1 pc south from the radio core. While the previous report presented a hotspot at the southern end of the western limb, the hotspot location has been moved to the southern end of the eastern limb. Faraday rotation is detected within an entire bandwidth of the 43 GHz band. The measured rotation measure (RM) is at most (6.3 ± 1.9) × 10{sup 5}more » rad m{sup −2} and might be slightly time variable on the timescale of a month by a factor of a few. Our measured RM and the RM previously reported by the CARMA and SMA observations cannot be consistently explained by the spherical accretion flow with a power-law profile. We propose that a clumpy/inhomogeneous ambient medium is responsible for the observed RM. Using an equipartition magnetic field, we derive the electron density of 2 × 10{sup 4} cm{sup −3}. Such an electron density is consistent with the cloud of the narrow line emission region around the central engine. We also discuss the magnetic field configuration from the black hole scale to the parsec scale and the origin of low polarization.« less
NASA Astrophysics Data System (ADS)
Bracco, Andrea; André, Philippe; Boulanger, Francois
2015-08-01
The recent Planck results in polarization at sub-mm wavelengths allow us to gain insight into the Galactic magnetic field topology, revealing its statistical correlation with matter, from the diffuse interstellar medium (ISM), to molecular clouds (MCs) (Planck intermediate results. XXXII, XXXIII, XXXV). This correlation has a lot to tell us about the dynamics of the turbulent ISM, stressing the importance of considering magnetic fields in the formation of structures, some of which eventually undergo gravitational collapse producing new star-forming cores.Investigating the early phases of star formation has been a fundamental scope of the Herschel Gould Belt survey collaboration (http://gouldbelt-herschel.cea.fr), which, in the last years, has thoroughly characterized, at a resolution of few tens of arcseconds, the statistics of MCs, such as their filamentary structure, kinematics and column density.Although at lower angular resolution, the Planck maps of dust emission at 353GHz, in intensity and polarization, show that all MCs are complex environments, where we observe a non-trivial correlation between the magnetic field and their density structure. This result opens new perspectives on their formation and evolution, which we have started to explore.In this talk, I will present first results of a comparative analysis of the Herschel-Planck data, where we combine the high resolution Herschel maps of some MCs of the Gould Belt with the Planck polarization data, which sample the structure of the field weighted by the density.In particular, I will discuss the large-scale envelopes of the selected MCs, and, given the correlation between magnetic field and matter, I will show how to make use of the high resolution information of the density structure provided by Herschel to investigate the statistics of interstellar magnetic fields in the Planck data.
A CASE AGAINST SPINNING PAHS AS THE SOURCE OF THE ANOMALOUS MICROWAVE EMISSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Brandon S.; Draine, B. T.; Meisner, Aaron M., E-mail: brandon.s.hensley@jpl.nasa.gov
2016-08-10
We employ an all-sky map of the anomalous microwave emission (AME) produced by component separation of the microwave sky to study correlations between the AME and Galactic dust properties. We find that while the AME is highly correlated with all tracers of dust emission, the best predictor of the AME strength is the dust radiance. Fluctuations in the AME intensity per dust radiance are uncorrelated with fluctuations in the emission from polycyclic aromatic hydrocarbons (PAHs), casting doubt on the association between AME and PAHs. The PAH abundance is strongly correlated with the dust optical depth and dust radiance, consistent withmore » PAH destruction in low density regions. We find that the AME intensity increases with increasing radiation field strength, at variance with predictions from the spinning dust hypothesis. Finally, the temperature dependence of the AME per dust radiance disfavors the interpretation of the AME as thermal emission. A reconsideration of other AME carriers, such as ultrasmall silicates, and other emission mechanisms, such as magnetic dipole emission, is warranted.« less
The non-thermal origin of the tokamak low-density stability limit
Paz-Soldan, C.; La Haye, R. J.; Shiraki, D.; ...
2016-04-13
DIII-D plasmas at very low density exhibit onset of n=1 error field (EF) penetration (the `low-density locked mode') not at a critical density or EF, but instead at a critical level of runaway electron (RE) intensity. Raising the density during a discharge does not avoid EF penetration, so long as RE growth proceeds to the critical level. Penetration is preceded by non-thermalization of the electron cyclotron emission, anisotropization of the total pressure, synchrotron emission shape changes, as well as decreases in the loop voltage and bulk thermal electron temperature. The same phenomena occur despite various types of optimal EF correction,more » and in some cases modes are born rotating. Similar phenomena are also found at the low-density limit in JET. These results stand in contrast to the conventional interpretation of the low-density stability limit as being due to residual EFs and demonstrate a new pathway to EF penetration instability due to REs. Existing scaling laws for penetration project to increasing EF sensitivity as bulk temperatures decrease, though other possible mechanisms include classical tearing instability, thermo-resistive instability, and pressure-anisotropy driven instability. Regardless of first-principles mechanism, known scaling laws for Ohmic energy confinement combined with theoretical RE production rates allow rough extrapolation of the RE criticality condition, and thus, the low-density limit to other tokamaks. Furthermore, the extrapolated low-density limit by this pathway decreases with increasing machine size and is considerably below expected operating conditions for ITER. While likely unimportant for ITER, this effect can explain the low-density limit of existing tokamaks operating with small residual EFs.« less
Hixson, Mark; Mahmud, Abdullah; Hu, Jianlin; Kleeman, Michael J
2012-05-01
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest undergrowth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources. Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using "as-planned" (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event. The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).
NASA Astrophysics Data System (ADS)
Vulcani, B.; Treu, T.; Schmidt, K. B.; Poggianti, B. M.; Dressler, A.; Fontana, A.; Bradač, M.; Brammer, G. B.; Hoag, A.; Huang, K.; Malkan, M.; Pentericci, L.; Trenti, M.; von der Linden, A.; Abramson, L.; He, J.; Morris, G.
2016-06-01
What physical processes regulate star formation in dense environments? Understanding why galaxy evolution is environment dependent is one of the key questions of current astrophysics. I will present the first characterization of the spatial distribution of star formation in cluster galaxies at z~0.5, and compare to a field control sample, in order to quantify the role of different physical processes that are believed to be responsible for shutting down star formation (Vulcani et al. 2015, Vulcani et al. in prep). The analysis makes use of data from the Grism Lens-Amplified Survey from Space (GLASS), a large HST cycle-21 program targeting 10 massive galaxy clusters with extensive HST imaging from CLASH and the Frontier Field Initiative. The program consists of 140 primary and 140 parallel orbits of near-infrared WCF3 and optical ACS slitless grism observations, which result in 3D spectroscopy of hundreds of galaxies. The grism data are used to produce spatially resolved maps of the star formation density, while the stellar mass density and optical surface brightness are obtained from multiband imaging. I will describe quantitative measures of the spatial location and extent of the star formation rate. I will show that both in clusters and in the field, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. The Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. I will also correlate the properties of the Hα maps to the cluster global properties, such as the hot gas density, and the surface mass density. The characterization of the spatial distribution of Halpha provides a new window, yet poorly exploited, on the mechanisms that regulate star formation and morphological transformation in dense environments.
The 617 MHz-λ 850 μm correlation (cosmic rays and cold dust) in NGC 3044 and NGC 4157
NASA Astrophysics Data System (ADS)
Irwin, J. A.; Brar, R. S.; Saikia, D. J.; Henriksen, R. N.
2013-08-01
We present the first maps of NGC 3044 and NGC 4157 at λ 450 μm and λ 850 μm from the James Clerk Maxwell Telescope as well as the first maps at 617 MHz from the Giant Metrewave Radio Telescope. High-latitude emission has been detected in both the radio continuum and sub-mm for NGC 3044 and in the radio continuum for NGC 4157, including several new features. For NGC 3044, in addition, we find 617 MHz emission extending to the north of the major axis, beginning at the far ends of the major axis. One of these low-intensity features, more than 10 kpc from the major axis, has apparently associated emission at λ 20 cm and may be a result of in-disc activity related to star formation. The dust spectrum at long wavelengths required fitting with a two-temperature model for both galaxies, implying the presence of cold dust (Tc = 9.5 K for NGC 3044 and Tc = 15.3 K for NGC 4157). Dust masses are Md = 1.6 × 108 M⊙ and Md = 2.1 × 107 M⊙ for NGC 3044 and NGC 4157, respectively, and are dominated by the cold component. There is a clear correlation between the 617 MHz and λ 850 μm emission in the two galaxies. In the case of NGC 3044 for which the λ 850 μm data are strongly dominated by cold dust, this implies a relation between the non-thermal synchrotron emission and cold dust. The 617 MHz component represents an integration of massive star formation over the past 107-8 yr and the λ 850 μm emission represents heating from the diffuse interstellar radiation field (ISRF). The 617 MHz-λ 850 μm correlation improves when a smoothing kernel is applied to the λ 850 μm data to account for differences between the cosmic ray (CR) electron diffusion scale and the mean free path of an ISRF photon to dust. The best-fitting relation is L_{617_MHz} ∝ {L_{850μ m}}^{2.1 ± 0.2} for NGC 3044. If variations in the cold dust emissivity are dominated by variations in dust density, and the synchrotron emission depends on magnetic field strength (a function of gas density) as well as CR electron generation (a function of massive star formation rate and therefore density via the Schmidt law) then the expected correlation for NGC 3044 is L_{617_MHz} ∝ {L_{850μ m}}^{2.2}, in agreement with the observed correlation.
High β effects on cosmic ray streaming in galaxy clusters
NASA Astrophysics Data System (ADS)
Wiener, Joshua; Zweibel, Ellen G.; Oh, S. Peng
2018-01-01
Diffuse, extended radio emission in galaxy clusters, commonly referred to as radio haloes, indicate the presence of high energy cosmic ray (CR) electrons and cluster-wide magnetic fields. We can predict from theory the expected surface brightness of a radio halo, given magnetic field and CR density profiles. Previous studies have shown that the nature of CR transport can radically effect the expected radio halo emission from clusters (Wiener, Oh & Guo 2013). Reasonable levels of magnetohydrodynamic (MHD) wave damping can lead to significant CR streaming speeds. But a careful treatment of MHD waves in a high β plasma, as expected in cluster environments, reveals damping rates may be enhanced by a factor of β1/2. This leads to faster CR streaming and lower surface brightnesses than without this effect. In this work, we re-examine the simplified, 1D Coma cluster simulations (with radial magnetic fields) of Wiener et al. (2013) and discuss observable consequences of this high β damping. Future work is required to study this effect in more realistic simulations.
NASA Technical Reports Server (NTRS)
Snyder, A.; Patch, R. W.; Lauver, M. R.
1980-01-01
Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Penning discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathodes. Steady-state plasmas with ion kinetic temperatures from 18 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.
NASA Technical Reports Server (NTRS)
Maestrello, L.
1973-01-01
By measurement and analysis, the relationship between the distribution of the outflow of acoustic energy over the jet boundary and the far-field intensity is considered. The physical quantity used is the gradient of the pressure evaluated on a geometrical plane at the smallest possible radial distance from the jet axis, but outside the vortical region, in the area where the homogeneous wave equation is reasonably well satisfied. The numerical and experimental procedures involved have been checked out by using a known source. Results indicate that the acoustic power output per unit length of the jet, in the region from which the sound emanates, peaks at approximately 9 diameters downstream. The acoustic emission for a jet Strouhal number of about 0.3 exceeds the emission for all other Strouhal numbers nearly everywhere along the measurement plane. However, the far-field peak intensity distribution obtained from the contribution of each station was found to depend on the spatial extent of the region where sound emanates from the jet, which, in turn, depends more on the far-field angle than on the Strouhal number.
NASA Astrophysics Data System (ADS)
Chen, Hone-Zern; Kao, Ming-Cheng; Young, San-Lin; Hwang, Jun-Dar; Chiang, Jung-Lung; Chen, Po-Yen
2015-05-01
Bi0.9Gd0.1FeO3 (BGFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates by using the sol-gel technology. The effects of annealing temperature (400-700 °C) on microstructure and multiferroic properties of thin films were investigated. The X-ray diffraction analysis showed that the BGFO thin films had an orthorhombic structure. The thin films showed ferroelectric and ferromagnetic properties with remanent polarization (2Pr) of 10 μC/cm2, remnant magnetization (2Mr) of 2.4 emu/g and saturation magnetization (Ms) of 5.3 emu/g. A small leakage current density (J) was 4.64×10-8 A/cm2 under applied field 100 kV/cm. It was found that more than one conduction mechanism is involved in the electric field range used in these experiments. The leakage current mechanisms were controlled by Poole-Frenkel emission in the low electric field region and by Schottky emission from the Pt electrode in the high field region.
Neutron stars velocities and magnetic fields
NASA Astrophysics Data System (ADS)
Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.
2018-01-01
We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.
NASA Astrophysics Data System (ADS)
Bock, James Joseph
1994-01-01
We report an observation of 158 micron line emission from singly ionized carbon from the diffuse interstellar medium at high galactic latitude. The integrated line intensity is measured in a 36 arcmin field-of-view along a triangular scan path in a 5 deg x 20 deg region in Ursa Major using a rocket-borne, liquid helium cooled spectrophotometer. The scan includes high latitude infrared cirrus, molecular clouds, a bright external galaxy, M82, and the HI Hole, which is a region of uniquely low neutral hydrogen column density. Emission from (CII) is observed in all regions and, in the absence of appreciable CO emission, is well correlated with neutral hydrogen column density. We observe a (CII) gas cooling rate which varies from (3.25 +/- 0.8 to 1.18 +/- 0.4) x 10-26 ergs-1 H-atom-1, in good agreement with recent observations of UV absorption lines at high galactic latitude. Regions with CO emission have enhanced (CII) line emission over that expected from the correlation with neutral hydrogen column density. The line-to-continuum ratio varies from I(CII)/lambda Ilambda = 0.002 to 0.008 in comparison with the all sky average of 0.0082 reported by FIRAS, which is heavily weighted towards the Galactic plane. The far-infrared continuum intensity, measured at 134 microns, 154 microns, and 186 microns, correlates with the 100 micron brightness measured by IRAS, and in regions excluding molecular clouds, with HI column density. The far-infrared brightness correlated with HI column density is fit by a thermal spectrum with a temperature T = 16.4 (+2.3/-1.8) K assuming an index of emissivity n = 2. The residual brightness after subtracting the emission correlated with neutral hydrogen column density yields an upper limit to the far-infrared extra-galactic background radiation of lambda Ilambda (154 microns) less than 2.6 x 10-12 W cm-2 sr-1. The observation of M82 confirms the laboratory calibration of the instrument. Unique instrumentation was developed to realize the instrument. A high sensitivity detection system consisting of stressed Ge:Ga photoconductors coupled to charge integrating amplifiers is described. We developed a compact, miniature He-4 refrigerator suitable for spaceborne operation. A silicon-gap Fabry-Perot filter, designed for use in high-throughput, compact optical systems, was developed. The performance of a far-infrared low-pass filter stack with high out-of-band rejection is reported. We tested the performance of a telescope baffle system with high-off axis rejection in a combination of ground-based and rocket-borne experiments. A submillimeter-black coating suitable for use in spaceborne telescopes is described. We report the laboratory testing of the instrument and the performance during the flight, and discuss the scientific implications of the observations.
Directive and enhanced spontaneous emission using shifted cubes nanoantenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahari, B.; Tellez-Limon, R.; Kante, B., E-mail: bkante@ucsd.edu
2016-09-07
Recent studies have demonstrated that nano-patch antennas formed by metallic nanocubes placed on top of a metallic film largely enhance the spontaneous emission rate of quantum emitters due to the confinement of the electromagnetic field in the small nanogap cavity. The popularity of this architecture is, in part, due to the ease in fabrication. In this contribution, we theoretically demonstrate that a dimer formed by two metallic nanocubes embedded in a dielectric medium exhibits enhanced emission rate compared to the nano-patch antenna. Furthermore, we compare the directivity and radiation efficiency of both nanoantennas. From these characteristics, we obtained information aboutmore » the “material efficiency” and the coupling mismatch efficiency between a dipole emitter and the nanoantenna. These quantities provide a more intuitive insight than the Purcell factor or localized density of states, opening new perspectives in nanoantenna design for ultra-directive light emission.« less
Destruction and survival of polycyclic aromatic hydrocarbons in active galaxies
NASA Technical Reports Server (NTRS)
Voit, G. M.
1992-01-01
Infrared spectra of dusty galactic environments often contain emission features attributed to polycyclic aromatic hydrocarbons or PAHs, which can be considered to be very small grains or very large molecules. Although IR spectra of starburst galaxies almost always show these emission features, similar spectra of active galaxies are usually featureless. Even in those active galaxies that do exhibit PAH emission, the PAHs still appear to be eradicated from the nuclear region. This dichotomy suggests that PAHs are destroyed by the intense hard radiation field from an AGN. Laboratory experiments show that certain PAHs are, in fact, so effectively destroyed by individual EUV and X-ray photons that they cannot survive even at kiloparsec distances from active nuclei. Regions within active galaxies that do show PAH emission must therefore be shielded from the central X-ray source by a substantial column density of X-ray absorbing gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, A. S., E-mail: alexis-belov@yandex.ru; Markov, G. A.; Ryabov, A. O.
The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radiomore » transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.« less
Hydrothermal synthesis infrared to visible upconversion luminescence of SrMoO4: Er3+/Yb3+ phosphor
NASA Astrophysics Data System (ADS)
Sinha, Shriya; Kumar, Kaushal
2018-04-01
The upconversion emission properties in Er3+/Yb3+ doped SrMoO4 phosphor synthesized via hydrothermal method is investigated upon 980 nm laser light excitation. The crystal structure and morphology of the synthesized phosphor are characterized by X-ray diffraction and field emission scanning electron microscopy. The X-ray diffraction pattern suggests that SrMoO4 phosphor has tetragonal phase structure. The phosphor emits strong green (525 and 552 nm) and red (665 nm) UC emissions along with weak blue (410 and 488 nm) and near infrared (798 nm) emission bands. The color emitted from the phosphor is shifted from yellow to green region with increasing the power density from 15 to 65 W/cm2. The result indicates that the present material is suitable for making infrared to visible up-converts and display devices.
Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho
2014-02-14
Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10,000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm(-2). The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.
NASA Astrophysics Data System (ADS)
Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho
2014-02-01
Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.
Clustering the Orion B giant molecular cloud based on its molecular emission
Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal
2017-01-01
Context Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results A clustering analysis based only on the J = 1 – 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes (nH ~ 100 cm−3, ~ 500 cm−3, and > 1000 cm−3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 − 0 line of HCO+ and the N = 1 − 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH ~ 7 × 103 cm−3 ~ 4 × 104 cm−3) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO+ (1 – 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers. PMID:29456256
Gastelum, Sandra L; Mejía-Velázquez, G M; Lozano-García, D Fabián
2016-06-01
In addition to oxygen, hydrocarbons are the most reactive chemical compounds produced by plants into the atmosphere. These compounds are part of the family of volatile organic compounds (VOCs) and are discharged in a great variety of forms. Among the VOCs produced by natural sources such as vegetation, the most studied until today are the isoprene and monoterpene. These substances can play an important role in the chemical balance of the atmosphere of a region. In this project, we develop a methodology to estimate the natural (vegetation) emission of isoprene and monoterpenes and applied it to the Monterrey Metropolitan Area, Mexico and its surrounding areas. Landsat-TM data was used to identify the dominant vegetation communities and field work to determine the foliage biomass density of key species. The studied communities were submontane scrub, oak, and pine forests and a combination of both. We carried out the estimation of emissions for isoprene and monoterpenes compounds in the different plant communities, with two different criteria: (1) taking into account the average foliage biomass density obtained from the various sample point in each vegetation community, and (2) using the foliage biomass density obtained for each transect, associated to an individual spectral class within a particular vegetation type. With this information, we obtained emission maps for each case. The results show that the main producers of isoprene are the communities that include species of the genus Quercus, located mainly on the Sierra Madre Oriental and Sierra de Picachos, with average isoprene emissions of 314.6 ton/day and 207.3 ton/day for the two methods utilized. The higher estimates of monoterpenes were found in the submontane scrub areas distributed along the valley of the metropolitan zone, with an estimated average emissions of 47.1 ton/day and 181.4 tons for the two methods respectively.
Atomic and molecular emissions in the middle ultraviolet dayglow
NASA Astrophysics Data System (ADS)
Bucsela, Eric J.; Cleary, David D.; Dymond, Kenneth F.; McCoy, Robert P.
1998-12-01
Dayglow spectra in the middle ultraviolet, obtained during a sounding rocket flight from White Sands Missile Range in 1992, have been analyzed to determine the altitude distributions of thermospheric atomic and molecular species and to address a number of problems related to airglow excitation mechanisms. Among the atomic and molecular profiles retrieved are the N2 second positive, N2 Vegard-Kaplan and NO gamma band systems, and the OI 297.2 nm, OII 247.0 nm, and NII 214.3 nm emissions. A self-consistent study of the emission profiles was conducted by comparing observed intensities with one another and to forward models. Model photoelectron and photon fluxes were generated by the field line interhemispheric plasma model (FLIP) and two solar flux models. Neutral densities were obtained from mass-spectrometer/incoherent scatter (MSIS)-90. The results from the data analysis suggest that the major species' densities are within 40% of MSIS values. Evidence for the accuracy of the modeled densities and fluxes is seen in the close agreement between the calculated and observed intensities of the N2 second positive emission. Analysis of the OI 297.2 nm emission shows that the reaction N2(A)+O is the dominant source of O(1S) in the daytime thermosphere. The data imply that the vibrationally averaged yield of O(1S) from the reaction is 0.43+/-0.12, which is smaller than the laboratory value measured for the N2(A,v'=0) level. The cause of a disagreement between model and data for the Vegard-Kaplan emission is unclear, but the discrepancy can be eliminated if the N2(A)+O quenching coefficient or the A state lifetime is increased by a factor between 2 and 4. The observed intensity of OII 247.0 nm is greater than expected by a factor of 2, implying possible inadequacies in the EUVAC and/or EUV91 solar models used in the analysis.
HAWC+/SOFIA observations of Rho Oph A: far-infrared polarization spectrum
NASA Astrophysics Data System (ADS)
Santos, Fabio; Dowell, Charles D.; Houde, Martin; Looney, Leslie; Lopez-Rodriguez, Enrique; Novak, Giles; Ward-Thompson, Derek; HAWC+ Science Team
2018-01-01
In this work, we present preliminary results from the HAWC+ far-infrared polarimeter that operates on the SOFIA airborne observatory. The densest portions of the Rho Ophiuchi molecular complex, known as Rho Oph A, have been mapped using HAWC+ bands C (89 microns) and D (155 microns). Rho Oph A is a well known nearby star forming region. At the target's distance of approximately 130 pc, our observations provide excellent spatial resolution (~5 mpc in band C).The magnetic field map suggests a compressed and distorted field morphology around Oph S1, a massive B3 star that is the main heat source of Rho Oph A. We compute the ratio p(D)/p(C), where p(C) and p(D) are the polarization degree maps at bands C and D, respectively. This ratio estimates the slope of the polarization spectrum in the far-infrared. Although the slope is predicted to be positive by dust grain models, previous observations of other molecular clouds have revealed that negative slopes are common. In Rho Oph A, we find that there is a smooth gradient of p(D)/p(C) across the mapped field. The change in p(D)/p(C) is well correlated with the integrated NH3 (1,1) emission. A positive slope dominates the lower density and well illuminated portions of the cloud, whereas a transition to a negative slope is observed at the denser and less evenly illuminated cloud core.We interpret the positive to negative slope transition as being consistent with the radiative torques (RATs) grain alignment theory. For the sight lines of higher column density, polarized emission from the warmer outer cloud layers is added to emission from the colder inner well-shielded layers lying along the same line-of-sight. Given that the outer layers receive more radiation from Oph S1, their grain alignment efficiency is expected to be higher according to RATs. The combination of warmer, well aligned grains with cooler, poorly aligned grains is what causes the negative slope. This effect is not present in the sight lines of lower column density, due to the much lower extinction.
NASA Technical Reports Server (NTRS)
Guhathakurta, M.; Fisher, R. R.
1994-01-01
In this paper we utilize the latitiude distribution of the coronal temperature during the period 1984-1992 that was derived in a paper by Guhathakurta et al, 1993, utilizing ground-based intensity observations of the green (5303 A Fe XIV) and red (6374 A Fe X) coronal forbidden lines from the National Solar Observatory at Sacramento Peak, and establish it association with the global magnetic field and the density distributions in the corona. A determination of plasma temperature, T, was estimated from the intensity ratio Fe X/Fe XIV (where T is inversely proportional to the ratio), since both emission lines come from ionized states of Fe, and the ratio is only weakly dependent on density. We observe that there is a large-scale organization of the inferred coronal temperature distribution that is associated with the large-scale, weak magnetic field structures and bright coronal features; this organization tends to persist through most of the magnetic activity cycle. These high-temperature structures exhibit time-space characteristics which are similar to those of the polar crown filaments. This distribution differs in spatial and temporal characterization from the traditional picture of sunspot and active region evolution over the range of the sunspot cycle, which are manifestations of the small-scale, strong magnetic field regions.
An Electron Density Model above the Sunspot from a Mapping of NOAA 7260 at 17 GHz
NASA Astrophysics Data System (ADS)
Yu, Xing-Feng; Yao, Jin-Xing Yao
2002-06-01
The brightness temperature distribution of microwave emission in a solar active region generally shows a ring structure, with a dip at the centre. However, no dip was found in the Nobeyama Radioheliograph left handed circular polarization (LCP) image on 1992 August 18; instead, there was a peak. This is a completely LCP source with zero right-handed circular polarization (RCP). We examine this structure in terms of the joint effect of gyroresonance and bremsstrahlung mechanism with a raised electron density above the central part of the sunspot, and the commonly assumed temperature and vertical dipole magnetic field models. The raised electron density is found to be 1.4 × 1011 cm-3 at the chromosphere base.
A MODEL FOR THE ORIGIN OF HIGH DENSITY IN LOOPTOP X-RAY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longcope, D. W.; Guidoni, S. E.
Super-hot (SH) looptop sources, detected in some large solar flares, are compact sources of HXR emission with spectra matching thermal electron populations exceeding 30 MK. High observed emission measure (EM) and inference of electron thermalization within the small source region both provide evidence of high densities at the looptop, typically more than an order of magnitude above ambient. Where some investigators have suggested such density enhancement results from a rapid enhancement in the magnetic field strength, we propose an alternative model, based on Petschek reconnection, whereby looptop plasma is heated and compressed by slow magnetosonic shocks generated self-consistently through fluxmore » retraction following reconnection. Under steady conditions such shocks can enhance density by no more than a factor of four. These steady shock relations (Rankine-Hugoniot relations) turn out to be inapplicable to Petschek's model owing to transient effects of thermal conduction. The actual density enhancement can in fact exceed a factor of 10 over the entire reconnection outflow. An ensemble of flux tubes retracting following reconnection at an ensemble of distinct sites will have a collective EM proportional to the rate of flux tube production. This rate, distinct from the local reconnection rate within a single tube, can be measured separately through flare ribbon motion. Typical flux transfer rates and loop parameters yield EMs comparable to those observed in SH sources.« less
NASA Astrophysics Data System (ADS)
Mesa-Delgado, A.; Núñez-Díaz, M.; Esteban, C.; García-Rojas, J.; Flores-Fajardo, N.; López-Martín, L.; Tsamis, Y. G.; Henney, W. J.
2012-10-01
We present results from integral field spectroscopy of a field located near the Trapezium Cluster using the Potsdam Multi-Aperture Spectrophotometer (PMAS). The observed field contains a variety of morphological structures: five externally ionized protoplanetary discs (also known as proplyds), the high-velocity jet HH 514 and a bowshock. Spatial distribution maps are obtained for different emission line fluxes, the c(Hβ) extinction coefficient, electron densities and temperatures, ionic abundances of different ions from collisionally excited lines (CELs), C2 + and O2 + abundances from recombination lines (RLs) and the abundance discrepancy factor of O2 +, ADF(O2 +). We distinguish the three most prominent proplyds (177-341, 170-337 and 170-334) and analyse their impact on the spatial distributions of the above mentioned quantities. We find that collisional de-excitation has a major influence on the line fluxes in the proplyds. If this is not properly accounted for then physical conditions deduced from commonly used line ratios will be in error, leading to unreliable chemical abundances for these objects. We obtain the intrinsic emission of the proplyds 177-341, 170-337 and 170-334 by a direct subtraction of the background emission, though the last two present some background contamination due to their small sizes. A detailed analysis of 177-341 spectra making use of suitable density diagnostics reveals the presence of high-density gas (3.8 × 105 cm-3) in contrast to the typical values observed in the background gas of the nebula (3800 cm-3). We also explore how the background subtraction could be affected by the possible opacity of the proplyd and its effect on the derivation of physical conditions and chemical abundances of the proplyd 177-341. We construct a physical model for the proplyd 177-341 finding a good agreement between the predicted and observed line ratios. Finally, we find that the use of reliable physical conditions returns an ADF(O2 +) about zero for the intrinsic spectra of 177-341, while the background emission presents the typical ADF(O2 +) observed in the Orion nebula (0.16 ± 0.11 dex). We conclude that the presence of high-density ionized gas is severely affecting the abundances determined from CELs and, therefore, those from RLs should be considered as a better approximation to the true abundances. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
Smooth H I Low Column Density Outskirts in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias
2018-06-01
The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.
Saturn Ring Rain: New Observations and Estimates of Water Influx
NASA Astrophysics Data System (ADS)
Moore, L.; O'Donoghue, J.; Mueller-Wodarg, I.; Galand, M.; Mendillo, M.
2014-04-01
We estimate the maximum rates of water influx from Saturn's rings based on ionospheric model reproductions of derived H3+ column densities. On 17 April 2011 over two hours of near-infrared spectral data were obtained of Saturn using the Near InfraRed Spectrograph (NIRSPEC) instrument on the 10-m Keck II telescope. Two bright H3+ rotationalvibrational emission lines were visible nearly from pole to pole, allowing low-latitude ionospheric emissions to be studied for the first time, and revealing significant latitudinal structure, with local extrema in one hemisphere being mirrored at magnetically conjugate latitudes in the opposite hemisphere. In addition, those minima and maxima mapped to latitudes of increased or decreased density, respectively, in Saturn's rings, implying a direct ringatmosphere connection in which charged water group particles from the rings are guided by magnetic field lines as they "rain" down upon the atmosphere. Water products act to quench the local ionosphere, and therefore modify the H3+ densities and their observed emissions. Using the Saturn Thermosphere Ionosphere Model (STIM), a 3-D model of Saturn's upper atmosphere, we derive the maximum rates of water influx required from the rings in order to reproduce the H3+ column densities observed on 17 April 2011. We estimate the globally averaged maximum ringderived water influx to be (1.6-12)x105 cm-2 sec-1, which represents a maximum total global influx of water from Saturn's rings to its atmosphere of (1.0-6.8)x1026 sec-1. We will also present the initial findings of Keck ring rain observing campaigns from April 2013 and May 2014.
Dielectric barrier structure with hollow electrodes and its recoil effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Shuang; Chen, Qunzhi; Liu, Jiahui
2015-06-15
A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gasmore » flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.« less
NASA Astrophysics Data System (ADS)
Goldsmith, Paul
We propose to combine recently-obtained data on the far-infrared fine structure lines of ionized nitrogen ([NII]) with studies of radio continuum and other far-infrared lines, to address a number of key questions about the structure of the interstellar medium, star formation, and to bootstrap our detailed understanding of processes in the Milky Way to more distant galaxies. The [CII] 158 μm line is the most powerful single far-infrared line emitted by galaxies, but since carbon can be ionized by photons having wavelengths longer than required to ionized hydrogen, [CII] emission can originate in atomic, molecular, and ionized regions. Due to its ionization potential being higher than that of hydrogen, nitrogen is a more selective tracer than carbon, and can serve as a critical ingredient to determine how much of the [CII] emission is produced in HII regions powered by massive young stars. We propose to take advantage of a newly-completed Herschel survey of the Galactic plane in both of the [NII] lines at 205 μm and 122 μm wavelength, complementing the GOT C+ survey of [CII]. The relative intensity of the two [NII] lines is a direct indicator of the electron density, and thus allows determination of the N+ column density. With the two data sets we can then determine what fraction of the [CII] emission is produced in HII regions, and what may be from the more diffuse components, thus enabling reconciliation of the Herschel and COBE measurements of this critical tracer. We also propose to use Planck and WMAP all-sky maps of the radio free-free emission to determine the emission measure. Comparison with the electron density and ionized nitrogen column density enables a novel probe of clumpiness in this component of the interstellar medium in addition to giving an improved method of determining the overall Galactic electron density distribution. A second aspect of our investigation of clumpiness will be to utilize the fact that each [NII] observation with the PACS instrument on Herschel consists of 25 spectra on a 5x5 grid. Using these, we will compare derived column densities and electron densities over these small regions to assess the degree of clumpiness. A third input to our analysis of inhomogeneities will be to compare the Planck & WMAP images of selected regions with much higher resolution ground-based data from survey such as CORNISH and GALFACTS. We also will use the improved understanding of [CII] and [NII] emission to develop a template for use in interpreting emission of these (and possibly other) tracers from other galaxies. We will be able to calculate the relative luminosities of these two tracers as a function of Galactocentric distance in the Milky Way, which will be available for comparison with existing and future data on other galaxies. This very active field suffers from an inability to distinguish the multiple sources of [CII] emission, and the understanding of how this spectral line works as a tracer of star formation is of very great interest to a large community of extragalactic astronomers. Together these studies will significantly improve our understanding of [CII] emission and its role as a coolant of the ISM, and the role of HII regions produced by massive young stars as sources of far-infrared line emission. In addition to a better appreciation of the life cycle of the interstellar medium, this work will also set the stage for better understanding of far-infrared emission from other galaxies though development of an improved Milky Way template. All of the data have been taken and are available including our own Herschel [NII] data, which have been reduced. As indicated in the proposal, we have made a limited demonstration of the required techniques, so that we are confident that this proposal will yield the desired new information and astrophysical results.
Initial experimental test of a helicon plasma based mass filter
Gueroult, R.; Evans, E. S.; Zweben, S. J.; ...
2016-05-12
High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrentmore » spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.« less
A search for radio emission from Galactic supersoft X-ray sources
NASA Astrophysics Data System (ADS)
Ogley, R. N.; Chaty, S.; Crocker, M.; Eyres, S. P. S.; Kenworthy, M. A.; Richards, A. M. S.; Rodríguez, L. F.; Stirling, A. M.
2002-03-01
We have made a deep search for radio emission from all the northern hemisphere supersoft X-ray sources using the Very Large Array (VLA) and multi-element radio-linked interferometer network (MERLIN) telescopes, at 5 and 8.4GHz. Three previously undetected sources, T Pyx, V1974 Cygni and RX J0019.8+2156, were imaged in quiescence using the VLA in order to search for any persistent emission. No radio emission was detected in any of the VLA fields down to a typical 1σ rms noise of 20μJybeam-1, however, 17 new point sources were detected in the fields with 5-GHz fluxes between 100 and 1500μJy, giving an average 100-μJy source density of ~200deg-2, comparable to what was found in the MERLIN Hubble Deep Field survey. The persistent source AG Draconis was observed by MERLIN to provide a confirmation of previous VLA observations and to investigate the source at a higher resolution. The core is resolved at the milliarcsec scale into two components that have a combined flux of ~1mJy. It is possible that we are detecting nebulosity, which is becoming resolved out by the higher MERLIN resolution. We have investigated possible causes of radio emission from a wind environment, both directly from the secondary star, and also consequently, of the high X-ray luminosity from the white dwarf. There is an order of magnitude discrepancy between observed and modelled values that can be explained by the uncertainty in fundamental quantities within these systems.
Thunderstorm observations by air-shower radio antenna arrays
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Ender, M.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.
2011-10-01
Relativistic, charged particles present in extensive air showers (EAS) lead to a coherent emission of radio pulses which are measured to identify the shower initiating high-energy cosmic rays. Especially during thunderstorms, there are additional strong electric fields in the atmosphere, which can lead to further multiplication and acceleration of the charged particles and thus have influence on the form and strength of the radio emission. For a reliable energy reconstruction of the primary cosmic ray by means of the measured radio signal it is very important to understand how electric fields affect the radio emission. In addition, lightning strikes are a prominent source of broadband radio emissions that are visible over very long distances. This, on the one hand, causes difficulties in the detection of the much lower signal of the air shower. On the other hand the recorded signals can be used to study features of the lightning development. The detection of cosmic rays via the radio emission and the influence of strong electric fields on this detection technique is investigated with the LOPES experiment in Karlsruhe, Germany. The important question if a lightning is initiated by the high electron density given at the maximum of a high-energy cosmic-ray air shower is also investigated, but could not be answered by LOPES. But, these investigations exhibit the capabilities of EAS radio antenna arrays for lightning studies. We report about the studies of LOPES measured radio signals of air showers taken during thunderstorms and give a short outlook to new measurements dedicated to search for correlations of lightning and cosmic rays.
On the maximum energy of non-thermal particles in the primary hotspot of Cygnus A
NASA Astrophysics Data System (ADS)
Araudo, Anabella T.; Bell, Anthony R.; Blundell, Katherine M.; Matthews, James H.
2018-01-01
We study particle acceleration and magnetic field amplification in the primary hotspot in the north-west jet of radiogalaxy Cygnus A. By using the observed flux density at 43 GHz in a well-resolved region of this hotspot, we determine the minimum value of the jet density and constrain the magnitude of the magnetic field. We find that a jet with density greater than 5 × 10-5 cm-3 and hotspot magnetic field in the range 50-400 μG are required to explain the synchrotron emission at 43 GHz. The upper-energy cut-off in the hotspot synchrotron spectrum is at a frequency ≲5 × 1014 Hz, indicating that the maximum energy of non-thermal electrons accelerated at the jet reverse shock is Ee, max ∼ 0.8 TeV in a magnetic field of 100 μG. Based on the condition that the magnetic-turbulence scalelength has to be larger than the plasma skin depth, and that the energy density in non-thermal particles cannot violate the limit imposed by the jet kinetic luminosity, we show that Ee, max cannot be constrained by synchrotron losses as traditionally assumed. In addition to that, and assuming that the shock is quasi-perpendicular, we show that non-resonant hybrid instabilities generated by the streaming of cosmic rays with energy Ee, max can grow fast enough to amplify the jet magnetic field up to 50-400 μG and accelerate particles up to the maximum energy Ee, max observed in the Cygnus A primary hotspot.
A STUDY OF RADIO POLARIZATION IN PROTOSTELLAR JETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cécere, Mariana; Velázquez, Pablo F.; De Colle, Fabio
2016-01-10
Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray)more » synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ∼1000 km s{sup −1} and ∼10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.« less
OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, R. B.; Taylor, B. D.; Einaudi, G.
The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scalesmore » that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.« less
Electron Densities Near Io from Galileo Plasma Wave Observations
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Persoon, A. M.; Kurth, W. S.; Roux, A.; Bolton, S. J.
2001-01-01
This paper presents an overview of electron densities obtained near Io from the Galileo plasma wave instrument during the first four flybys of Io. These flybys were Io, which was a downstream wake pass that occurred on December 7, 1995; I24, which was an upstream pass that occurred on October 11, 1999; I25, which was a south polar pass that occurred on November 26, 1999; and I27, which was an upstream pass that occurred on February 22, 2000. Two methods were used to measure the electron density. The first was based on the frequency of upper hybrid resonance emissions, and the second was based on the low-frequency cutoff of electromagnetic radiation at the electron plasma frequency. For three of the flybys, Io, I25, and I27, large density enhancements were observed near the closest approach to Io. The peak electron densities ranged from 2.1 to 6.8 x 10(exp 4) per cubic centimeters. These densities are consistent with previous radio occultation measurements of Io's ionosphere. No density enhancement was observed during the I24 flyby, most likely because the spacecraft trajectory passed too far upstream to penetrate Io's ionosphere. During two of the flybys, I25 and I27, abrupt step-like changes were observed at the outer boundaries of the region of enhanced electron density. Comparisons with magnetic field models and energetic particle measurements show that the abrupt density steps occur as the spacecraft penetrated the boundary of the Io flux tube, with the region of high plasma density on the inside of the flux tube. Most likely the enhanced electron density within the Io flux tube is associated with magnetic field lines that are frozen to Io by the high conductivity of Io's atmosphere, thereby enhancing the escape of plasma along the magnetic field lines that pass through Io's ionosphere.
NASA Technical Reports Server (NTRS)
Fung, Shing F.; Vinas, Adolfo F.
1994-01-01
The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.
Mid-infrared rotational line emission from interstellar molecular hydrogen
NASA Astrophysics Data System (ADS)
Burton, Michael G.; Hollenbach, D. J.; Tielens, A. G. G.
1992-11-01
The line emission from the v = 0-0 S(0), S(2), and S(3), and the v = 1-0 and v = 2-1 S(1) transitions of molecular hydrogen in clouds exposed to high FUV fluxes and in shocks is modeled. Particular attention is given to the lowest pure rotational H2 transitions at 20 and 17 microns, respectively. It is found that, in photodissociation regions (PDRs), the emission comes from warm (greater than about 100 k) molecular gas, situated at optical depths greater than about 1, beyond the hot atomic surface layer of the clouds. For FUV fields, G0 = 1000 to 100,000 times the average interstellar field densities n = 10 exp 3 - 10 exp 7/cu cm, the typical line intensities are in the range 10 exp -6 to 10 exp -4 ergs/s sq cm sr. The predictions for the line intensities from both C-type and J-type shock models are compared. The results are applied to recent observations of the 0-0 S(1) transition in both the PDR and the shocked gas in Orion.
Lahham, Adnan; Alkbash, Jehad Abu; ALMasri, Hussien
2017-04-20
Theoretical assessments of power density in far-field conditions were used to evaluate the levels of environmental electromagnetic frequencies from selected GSM900 macrocell base stations in the West Bank and Gaza Strip. Assessments were based on calculating the power densities using commercially available software (RF-Map from Telstra Research Laboratories-Australia). Calculations were carried out for single base stations with multiantenna systems and also for multiple base stations with multiantenna systems at 1.7 m above the ground level. More than 100 power density levels were calculated at different locations around the investigated base stations. These locations include areas accessible to the general public (schools, parks, residential areas, streets and areas around kindergartens). The maximum calculated electromagnetic emission level resulted from a single site was 0.413 μW cm-2 and found at Hizma town near Jerusalem. Average maximum power density from all single sites was 0.16 μW cm-2. The results of all calculated power density levels in 100 locations distributed over the West Bank and Gaza were nearly normally distributed with a peak value of ~0.01% of the International Commission on Non-Ionizing Radiation Protection's limit recommended for general public. Comparison between calculated and experimentally measured value of maximum power density from a base station showed that calculations overestimate the actual measured power density by ~27%. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Plume characteristics of MPD thrusters: A preliminary examination
NASA Technical Reports Server (NTRS)
Myers, Roger M.
1989-01-01
A diagnostics facility for MPD thruster plume measurements was built and is currently undergoing testing. The facility includes electrostatic probes for electron temperature and density measurements, Hall probes for magnetic field and current distribution mapping, and an imaging system to establish the global distribution of plasma species. Preliminary results for MPD thrusters operated at power levels between 30 and 60 kW with solenoidal applied magnetic fields show that the electron density decreases exponentially from 1x10(2) to 2x10(18)/cu m over the first 30 cm of the expansion, while the electron temperature distribution is relatively uniform, decreasing from approximately 2.5 eV to 1.5 eV over the same distance. The radiant intensity of the ArII 4879 A line emission also decays exponentially. Current distribution measurements indicate that a significant fraction of the discharge current is blown into the plume region, and that its distribution depends on the magnitudes of both the discharge current and the applied magnetic field.
Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field
NASA Astrophysics Data System (ADS)
Ceraj, L.; Smolčić, V.; Delvecchio, I.; Delhaize, J.; Novak, M.
2018-05-01
We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios >=5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ~ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ~ 1.5 followed by a decrease out to a redshift z ~ 6.
Emission measures derived from far ultraviolet spectra of T Tauri stars
NASA Astrophysics Data System (ADS)
Cram, L. E.; Giampapa, M. S.; Imhoff, C. L.
1980-06-01
Spectroscopic diagnostics based on UV emission line observations have been developed to study the solar chromosphere, transition region, and corona. The atmospheric properties that can be inferred from observations of total line intensities include the temperature, by identifying the ionic species present; the temperature distribution of the emission measure, from the absolute intensities; and the electron density of the source, from line intensity ratios sensitive to the electron density. In the present paper, the temperature distribution of the emission measure is estimated from observations of far UV emission line fluxes of the T Tauri stars, RW Aurigae and RU Lupi, made on the IUE. A crude estimate of the electron density of one star is obtained, using density-sensitive line ratios.
Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gouveia Dal Pino, E. M.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Poidevin, F.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zacchei, A.; Zonca, A.
2015-04-01
This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight. Appendices are available in electronic form at http://www.aanda.org
An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.
Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P
2016-02-01
X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.
NASA Technical Reports Server (NTRS)
Broderick, Daniel
2010-01-01
A computational model calculates the excitation of water rotational levels and emission-line spectra in a cometary coma with applications for the Micro-wave Instrument for Rosetta Orbiter (MIRO). MIRO is a millimeter-submillimeter spectrometer that will be used to study the nature of cometary nuclei, the physical processes of outgassing, and the formation of the head region of a comet (coma). The computational model is a means to interpret the data measured by MIRO. The model is based on the accelerated Monte Carlo method, which performs a random angular, spatial, and frequency sampling of the radiation field to calculate the local average intensity of the field. With the model, the water rotational level populations in the cometary coma and the line profiles for the emission from the water molecules as a function of cometary parameters (such as outgassing rate, gas temperature, and gas and electron density) and observation parameters (such as distance to the comet and beam width) are calculated.
NASA's Atmospheric Effects of Aviation Project
NASA Technical Reports Server (NTRS)
Cofer, W. Randy, III; Anderson, Bruce E.; Connors, V. S.; Wey, C. C.; Sanders, T.; Winstead, E. L.; Pui, C.; Chen, Da-ren; Hagen, D. E.; Whitefield, P.
2001-01-01
During August 1-14, 1999, NASA's Atmospheric Effects of Aviation Project (AEAP) convened a workshop at the NASA Langley Research Center to try to determine why such a wide variation in aerosol emissions indices and chemical and physical properties has been reported by various independent AEAP-supported research teams trying to characterize the exhaust emissions of subsonic commercial aircraft. This workshop was divided into two phases, a laboratory phase and a field phase. The laboratory phase consisted of supplying known particle number densities (concentrations) and particle size distributions to a common manifold for the participating research teams to sample and analyze. The field phase was conducted on an aircraft run-up pad. Participating teams actually sampled aircraft exhaust generated by a Langley T-38 Talon aircraft at 1 and 9 m behind the engine at engine powers ranging from 48 to 100 percent. Results from the laboratory phase of this intercomparison workshop are reported in this paper.
Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films
NASA Astrophysics Data System (ADS)
Abazari, M.; Safari, A.
2010-12-01
Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
House, L.L.; Querfeld, C.W.; Rees, D.E.
1982-04-15
Coronal magnetic fields influence in the intensity and linear polarization of light scattered by coronal Fe XIV ions. To interpret polarization measurements of Fe XIV 5303 A coronal emission requires a detailed understanding of the dependence of the emitted Stokes vector on coronal magnetic field direction, electron density, and temperature and on height of origin. The required dependence is included in the solutions of statistical equilibrium for the ion which are solved explicitly for 34 magnetic sublevels in both the ground and four excited terms. The full solutions are reduced to equivalent simple analytic forms which clearly show the requiredmore » dependence on coronal conditions. The analytic forms of the reduced solutions are suitable for routine analysis of 5303 green line polarimetric data obtained at Pic du Midi and from the Solar Maximum Mission Coronagraph/Polarimeter.« less
Effects of magnetic field on the interaction between terahertz wave and non-uniform plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yuan; Han, YiPing; Guo, LiXin
2015-10-15
In this paper, the interaction between terahertz electromagnetic wave and a non-uniform magnetized plasma slab is investigated. Different from most of the published literatures, the plasma employed in this work is inhomogeneous in both collision frequency and electron density. Profiles are introduced to describe the non-uniformity of the plasma slab. At the same time, magnetic field is applied to the background of the plasma slab. It came out with an interesting phenomenon that there would be a valley in the absorption band as the plasma's electromagnetic characteristic is affected by the magnetic field. In addition, the valley located just nearmore » the middle of the absorption peak. The cause of the valley's appearance is inferred in this paper. And the influences of the variables, such as magnetic field strength, electron density, and collision frequency, are discussed in detail. The objective of this work is also pointed out, such as the applications in flight communication, stealth, emissivity, plasma diagnose, and other areas of plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqui, M. Umair, E-mail: musiddiqui@mail.wvu.edu; Thompson, Derek S.; McIlvain, Julianne M.
2015-12-15
Direct laser induced fluorescence measurements are shown of cross-field ion flows normal to an absorbing boundary that is aligned parallel to the axial magnetic field in a helicon plasma. We show Langmuir and emissive probe measurements of local density and plasma potential in the same region, as well as floating probe spectra near the boundary. With these measurements, we investigate the influence of ion-neutral collisionality on radial ion transport by varying the ratio of the ion gyro-radius, ρ{sub i}, to the ion-neutral collision length, λ, over the range 0.34 ≤ ρ{sub i}λ{sup −1} ≤ 1.60. Classical drift-diffusion transport along density and potential gradients ismore » sufficient to describe flow profiles for most cases. For two parameter regimes (ρ{sub i}λ{sup −1} = 0.65 and 0.44), low-frequency electrostatic fluctuations (f < 10 kHz) and enhanced cross-field bulk ion flow to the boundary are observed.« less
Intercomparison of retrospective radon detectors.
Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C
1999-01-01
We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type. Preliminary comparisons of the models used to translate track rate densities to average long-term radon concentrations differ between the two studies. Further calibration of the retrospective detectors' models for interpretation of track rate density may allow the pooling of studies that use glass-based retrospective radon detectors to determine historic residential radon exposures. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10545336
Intercomparison of retrospective radon detectors.
Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C
1999-11-01
We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type. Preliminary comparisons of the models used to translate track rate densities to average long-term radon concentrations differ between the two studies. Further calibration of the retrospective detectors' models for interpretation of track rate density may allow the pooling of studies that use glass-based retrospective radon detectors to determine historic residential radon exposures.
NASA Astrophysics Data System (ADS)
Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.
2011-12-01
Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Omura, Yoshiharu; Grison, Benjamin; Pickett, Jolene; Dandouras, Iannis; Engebretson, Mark
2011-09-01
Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.
The structure and spectrum of a colliding-cloud system and its possible relationship to QSOs
NASA Technical Reports Server (NTRS)
Daltabuit, E.; Macalpine, G. M.; Cox, D. P.
1978-01-01
A collision between two gas clouds with initial densities of approximately 10 million per cu cm, velocities of about 1000 km/s, and radii of approximately 1 pc is investigated quantitatively by coupling a calculation of the radiation spectrum resulting from the anticipated shock fronts with a computation for the conversion of this high-energy radiation into optical emission in adjacent photoionized regions. The detailed structure of the colliding clouds is discussed, and the effects of an ambient magnetic field are considered. The combined emission-line spectrum is presented along with continuum emission estimates for thermal, synchrotron, and very-high-energy bremsstrahlung mechanisms. It is shown that significant continua can be produced over the range from 300 microns to 3 keV, including a blackbody contribution from a high-density neutral region between the shock fronts, free-free and free-bound radiation from the cooling zones directly behind the shocks, and free-free, free-bound, and two-photon radiation from the photoionized regions immediately ahead of and behind the cooling zones. The theoretical spectrum of the structure resulting from the collision is found to be similar in general and in some details to those observed for typical quasars.
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri; Gardner, Brian
2011-12-01
The origin of prompt emission in GRBs is not yet well understood. The simplest and most popular model is Synchrotron Self-Compton (SSC) emission produced by internal shocks inside an ultra-relativistic jet. However, recent observations of a delayed high energy component by the Fermi-LAT instrument have encouraged alternative models. Here we use a recently developed formulation of relativistic shocks for GRBs to simulate light curves and spectra of synchrotron and self-Compton emissions in the framework of internal shock model. This model takes into account the evolution of quantities such as densities of colliding shells, and fraction of kinetic energy transferred to electrons and to induced magnetic field. We also extend this formulation by considering the presence of a precessing external magnetic field. These simulations are very realistic and present significant improvement with respect to previous phenomenological GRB simulations. They reproduce light curves of separate peaks of real GRBs and variety of spectral slopes at E > Epeak observed by the Fermi-LAT instrument. The high energy emission can be explained by synchrotron emission and a subdominant contribution from inverse Compton. We also suggest an explanation for extended tail emission and relate it to the screening of the magnetic field and/or trapping of accelerated electrons in the electromagnetic energy structure of the plasma in the shock front. Spectral slopes of simulated bursts at E << Epeak are consistent with theoretical prediction and at E < Epeak can be flatter if the spectrum of electrons is roughly flat or has a shallow slope at low energies. The observed flat spectra at soft gamma-ray and hard x-ray bands is the evidence that there is a significant contribution at E < Epeak from lower Lorentz factor wing of electron distribution which have a roughly random acceleration rather than being thermal. This means that the state of matter in the jet at the time of ejection is most probably nonthermal. As for the effect of a precessing external magnetic field, we show that due to the fast variation of other quantities, its signature in the Power Distribution Spectrum (PDS) is significantly suppressed and only when the duration of the burst is few times longer than the oscillation period it can be detected, otherwise either it is confused with the Poisson noise or with intrinsic variations of the emission. Therefore, low significant oscillations observed in the PDS of GRB 090709a are most probably due to a precessing magnetic field.
High-Energy Emissions Induced by Air Density Fluctuations of Discharges
NASA Astrophysics Data System (ADS)
Köhn, C.; Chanrion, O.; Neubert, T.
2018-05-01
Bursts of X-rays and γ-rays are observed from lightning and laboratory sparks. They are bremsstrahlung from energetic electrons interacting with neutral air molecules, but it is still unclear how the electrons achieve the required energies. It has been proposed that the enhanced electric field of streamers, found in the corona of leader tips, may account for the acceleration; however, their efficiency is questioned because of the relatively low production rate found in simulations. Here we emphasize that streamers usually are simulated with the assumption of homogeneous gas, which may not be the case on the small temporal and spatial scales of discharges. Since the streamer properties strongly depend on the reduced electric field E/n, where n is the neutral number density, fluctuations may potentially have a significant effect. To explore what might be expected if the assumption of homogeneity is relaxed, we conducted simple numerical experiments based on simulations of streamers in a neutral gas with a radial gradient in the neutral density, assumed to be created, for instance, by a previous spark. We also studied the effects of background electron density from previous discharges. We find that X-radiation and γ-radiation are enhanced when the on-axis air density is reduced by more than ˜25%. Pre-ionization tends to reduce the streamer field and thereby the production rate of high-energy electrons; however, the reduction is modest. The simulations suggest that fluctuations in the neutral densities, on the temporal and spacial scales of streamers, may be important for electron acceleration and bremsstrahlung radiation.
Intermittent behavior of galactic dynamo activities
NASA Technical Reports Server (NTRS)
Ko, C. M.; Parker, E. N.
1989-01-01
Recent observations by Beck and Golla of far-infrared and radio continuum emission from nearby spiral galaxies suggest that the galactic magnetic field strength is connected to the current star formation rate. The role of star formation on the generation of large-scale galactic magnetic field is studied in this paper. Using a simple galactic model, it is shown how the galactic dynamo depends strongly on the turbulent velocity of the interstellar medium. When the star formation efficiency is high, the ISM is churned which in turn amplifies the galactic magnetic field. Between active star formation epochs, the magnetic field is in dormant state and decays at a negligible rate. If density waves trigger star formation, then they also turn on the otherwise dormant dynamo.
Observations of a nearby filament of galaxy clusters with the Sardinia Radio Telescope
NASA Astrophysics Data System (ADS)
Vacca, Valentina; Murgia, M.; Loi, F. Govoni F.; Vazza, F.; Finoguenov, A.; Carretti, E.; Feretti, L.; Giovannini, G.; Concu, R.; Melis, A.; Gheller, C.; Paladino, R.; Poppi, S.; Valente, G.; Bernardi, G.; Boschin, W.; Brienza, M.; Clarke, T. E.; Colafrancesco, S.; Enßlin, T.; Ferrari, C.; de Gasperin, F.; Gastaldello, F.; Girardi, M.; Gregorini, L.; Johnston-Hollitt, M.; Junklewitz, H.; Orrù, E.; Parma, P.; Perley, R.; Taylor, G. B.
2018-05-01
We report the detection of diffuse radio emission which might be connected to a large-scale filament of the cosmic web covering a 8° × 8° area in the sky, likely associated with a z≈0.1 over-density traced by nine massive galaxy clusters. In this work, we present radio observations of this region taken with the Sardinia Radio Telescope. Two of the clusters in the field host a powerful radio halo sustained by violent ongoing mergers and provide direct proof of intra-cluster magnetic fields. In order to investigate the presence of large-scale diffuse radio synchrotron emission in and beyond the galaxy clusters in this complex system, we combined the data taken at 1.4 GHz with the Sardinia Radio Telescope with higher resolution data taken with the NRAO VLA Sky Survey. We found 28 candidate new sources with a size larger and X-ray emission fainter than known diffuse large-scale synchrotron cluster sources for a given radio power. This new population is potentially the tip of the iceberg of a class of diffuse large-scale synchrotron sources associated with the filaments of the cosmic web. In addition, we found in the field a candidate new giant radio galaxy.
Fermi LAT discovery of GeV gamma-ray emission from the young supernova remnan Cassiopeia A
Abdo, A. A.
2010-01-27
Here, we report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant (SNR) with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. Our observations reveal a source with no discernible spatial extension detected at a significance level of 12.2σ above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation—Cassiopeia A (Cas A). The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles acceleratedmore » in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W CR sime (1-4) × 1049 erg thanks to the well-known density in the remnant assuming that the observed gamma ray originates in the SNR shell(s). Finally, the magnetic field in the radio-emitting plasma can be robustly constrained as B ≥ 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.« less
An ultrabright and monochromatic electron point source made of a LaB6 nanowire
NASA Astrophysics Data System (ADS)
Zhang, Han; Tang, Jie; Yuan, Jinshi; Yamauchi, Yasushi; Suzuki, Taku T.; Shinya, Norio; Nakajima, Kiyomi; Qin, Lu-Chang
2016-03-01
Electron sources in the form of one-dimensional nanotubes and nanowires are an essential tool for investigations in a variety of fields, such as X-ray computed tomography, flexible displays, chemical sensors and electron optics applications. However, field emission instability and the need to work under high-vacuum or high-temperature conditions have imposed stringent requirements that are currently limiting the range of application of electron sources. Here we report the fabrication of a LaB6 nanowire with only a few La atoms bonded on the tip that emits collimated electrons from a single point with high monochromaticity. The nanostructured tip has a low work function of 2.07 eV (lower than that of Cs) while remaining chemically inert, two properties usually regarded as mutually exclusive. Installed in a scanning electron microscope (SEM) field emission gun, our tip shows a current density gain that is about 1,000 times greater than that achievable with W(310) tips, and no emission decay for tens of hours of operation. Using this new SEM, we acquired very low-noise, high-resolution images together with rapid chemical compositional mapping using a tip operated at room temperature and at 10-times higher residual gas pressure than that required for W tips.
NASA Astrophysics Data System (ADS)
Ringeval, B.; Houweling, S.; van Bodegom, P. M.; Spahni, R.; van Beek, R.; Joos, F.; Röckmann, T.
2013-10-01
Tropical wetlands are estimated to represent about 50% of the natural wetland emissions and explain a large fraction of the observed CH4 variability on time scales ranging from glacial-interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This study documents the first regional-scale, process-based model of CH4 emissions from tropical floodplains. The LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially-explicit hydrology model PCR-GLOBWB. We introduced new Plant Functional Types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote sensing datasets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX simulated CH4 flux densities are in reasonable agreement with observations at the field scale but with a~tendency to overestimate the flux observed at specific sites. In addition, the model did not reproduce between-site variations or between-year variations within a site. Unfortunately, site informations are too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr-1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin modulated emissions by about 20%. Correcting the LPX simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the seasonality in CH4 emissions. The Inter Annual Variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is account for, but still remains lower than in most of WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results stress the need for more research to constrain floodplain CH4 emissions and their temporal variability.
CdS-metal contact at higher current densities.
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Boeer, K. W.; Dussel, G. A.
1973-01-01
An investigation is conducted concerning the mechanisms by which a steady flow of current proceeds through the contact when an external voltage is applied. The main characteristics of current mechanisms are examined, giving attention to photoemission from the cathode, thermionic emission, minority-carrier extraction, and the tunneling of electrons. A high-field domain analysis is conducted together with experimental studies. Particular attention is given to the range in which tunneling predominates.
Carbon Nanotube Field Emission Arrays
2011-06-01
K , and M [14]. Using the tight binding energy model, the energy dispersion relations for graphene can be calculated for the triangle formed from...The corresponding reciprocal lattice vectors, b1 and b2, and Brillouin zone of graphene [14]. 19 graphene band structure is the six K ...points where the two bands are degenerate and the Fermi level passes. It has been shown through thorough calculations that at T = 0 K , the density
Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles
NASA Astrophysics Data System (ADS)
Sreekanth, M.; Ghosh, S.; Srivastava, P.
2018-01-01
We report the growth of vertically aligned carbon nanotube bundles on Si substrate by thermal chemical vapor deposition technique. Vertical alignment was achieved without any carrier gas or lithography-assisted deposition. Growth has been carried out at 850 °C for different quantities of solution of xylene and ferrocene ranging from 2.25 to 3.00 ml in steps of 0.25 ml at a fixed concentration of 0.02 gm (ferrocene) per ml. To understand the growth mechanism, deposition was carried out for different concentrations of the solution by changing only the ferrocene quantity, ranging from 0.01 to 0.03 gm/ml. A tunable vertical alignment of multi-walled carbon nanotubes (CNTs) has been achieved by this process and examined by scanning and transmission electron microscopic techniques. Micro-crystalline structural analysis has been done using Raman spectroscopy. A systematic variation in field emission (FE) current density has been observed. The highest FE current density is seen for the film grown with 0.02 gm/ml concentration, which is attributed to the better alignment of CNTs, less structural disorder and less entanglement of CNTs on the surface. The alignment of CNTs has been qualitatively understood on the basis of self-assembled catalytic particles.
Simulating Gamma-Ray Emission in Star-forming Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.
Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way–like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate amore » bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.« less
Simulating Gamma-Ray Emission in Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker
2017-10-01
Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way-like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.
Half-Lives of Proton Emitters With a Deformed Density-Dependent Model
NASA Astrophysics Data System (ADS)
Qian, Yi-Bin; Ren, Zhong-Zhou; Ni, Dong-Dong; Sheng, Zong-Qiang
2010-11-01
Half-lives of proton radioactivity are investigated with a deformed density-dependent model. The single folding potential which is dependent on deformation and orientation is employed to calculate the proton decay width through the deformed potential barrier. In addition, the spectroscopic factor is taken into account in the calculation, which is obtained in the relativistic mean field theory with NL3. The calculated results of semi-spherical nuclei are found to be in good agreement with the experimental data, and the results of well-deformed nuclei are also satisfactory. Moreover, a formula for the spherical proton emission half-life based on the Gamow quantum tunneling theory is presented.
NASA Astrophysics Data System (ADS)
Sheeja, Manaf, O.; Sujith, A.
2017-06-01
Polymer modification by radiation grafting of monomers onto polymers has received much attention recently. In the current study, γ-irradiation technique was used to achieve graft copolymerization of maleic anhydride (MA) onto low-density polyethylene (LDPE). To optimize, the process was performed at different γ-irradiation doses and MA concentration. The microstructure of grafted polymer film has been characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, field emission-scanning electron microscopy, and atomic force microscopy. The studies performed made possible the selection of experimental protocols adequate for the production of new copolymeric materials with high grafting yield.
CHANG-ES. VII. Magnetic Outflows from the Virgo Cluster Galaxy NGC 4388
NASA Astrophysics Data System (ADS)
Damas-Segovia, A.; Beck, R.; Vollmer, B.; Wiegert, T.; Krause, M.; Irwin, J.; Weżgowiec, M.; Li, J.; Dettmar, R.-J.; English, J.; Wang, Q. D.
2016-06-01
We investigate the effects of ram pressure on the ordered magnetic field of a galaxy hosting a radio halo and strong nuclear outflows. New radio images in total and polarized intensity of the edge-on Virgo galaxy NGC 4388 were obtained within the CHANG-ES EVLA project. The unprecedented noise level reached allows us to detect striking new features of the ordered magnetic field. The nuclear outflow extends far into the halo to about 5 kpc from the center and is spatially correlated with the {{H}}α and X-ray emission. For the first time, the southern outflow is detected. Above and below both spiral arms we find extended blobs of polarized emission with an ordered field oriented perpendicular to the disk. The synchrotron lifetime of the cosmic-ray electrons (CREs) in these regions yields a mean outflow velocity of 270+/- 70 {km} {{{s}}}-1, in agreement with a galactic wind scenario. The observed symmetry of the polarized halo features in NGC 4388 excludes a compression of the halo gas by the ram pressure of the intracluster medium (ICM). The assumption of equilibrium between the halo pressure and the ICM ram pressure yields an estimate of the ICM density that is consistent with both the ICM density derived from X-ray observations and the recent Planck Sunyaev-Zel’dovich measurements. The detection of a faint radio halo around cluster galaxies could thus be used for an estimate of ICM ram pressure.
Nonequilibrium calculations of the role of electron impact in the production of NO and its emissions
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2009-04-01
We review our recent work on nonequilibrium modelling of the density of nitric oxide and its infrared emissions in the Earth's upper atmosphere. The aim of these studies was to investigate the contribution of electron impact excitation to the NO density and the sensitivity of this process to the electron impact cross sections. The results are compared with satellite measurements of NO densities in equatorial and auroral high-latitude conditions and with rocket measurements of infrared emissions in auroral conditions. Particular findings are that electron impact excitation of N2 makes a significant contribution to the NO density at altitudes around 105 km and to auroral infrared emissions for the (1 → 0) ground-state emission from NO. The sensitivity of the NO fundamental emissions to various measured and theoretical integral cross sections is investigated and found to be significant.
Dynamo magnetic-field generation in turbulent accretion disks
NASA Technical Reports Server (NTRS)
Stepinski, T. F.
1991-01-01
Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.