Science.gov

Sample records for density fluctuation measurement

  1. Density fluctuation measurements by using the Fraunhofer diffraction method in GAMMA10

    NASA Astrophysics Data System (ADS)

    Morikawa, Y.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Hasegawa, Y.; Sakamoto, M.; Imai, T.; Ichimura, M.

    2013-12-01

    We applied Fraunhofer diffraction (FD) method to GAMMA10 plasma. The FD method can measure the density fluctuation in detail and the wave number of the fluctuation. We successfully obtained the density fluctuation spectra in GAMMA 10. Analyzing the FD method signals of radial fluctuation intensity profile, we can successfully obtain the wave number and the phase velocity of the low frequency density fluctuation.

  2. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    SciTech Connect

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f<50 kHz) current density fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 50 kHz, the magnetic fluctuations were detected to be localized with a radial correlation length of about 1--2 cm. These modes are locally resonant modes since the measured dominant mode number spectra match the local safety factor q. The net charged particle flux induced by magnetic fluctuations was obtained by measuring the correlation term <{tilde j}{sub {parallel}} {tilde B}{sub r}>. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence.

  3. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    SciTech Connect

    Shen, Weimin

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f<50 kHz) current density fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 50 kHz, the magnetic fluctuations were detected to be localized with a radial correlation length of about 1--2 cm. These modes are locally resonant modes since the measured dominant mode number spectra match the local safety factor q. The net charged particle flux induced by magnetic fluctuations was obtained by measuring the correlation term <$\\tilde{j}$$\\parallel$ $\\tilde{B}$r>. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence.

  4. Measurements of Electron Density Profile and Fluctuations on HSX*

    NASA Astrophysics Data System (ADS)

    Deng, C.; Brower, D. L.; Ding, W. X.; Almagri, A. F.; Anderson, D. T.; Anderson, F. S. B.; Gerhardt, S. P.; Probert, P.; Radder, J.; Talmadge, J. N.

    2001-10-01

    The 288 GHz interferometer system on the quasi-helical stellarator HSX views the plasma cross section along 9 adjacent chords with 1.5 cm spacing. At this frequency refraction is manageable but requires correction when performing inversions. The interferometer has sensitivity n_edl = 8 x 10^11 cm-2 and frequency response up to 1 MHz. Improved time response permits measurement of high-frequency density fluctuations as well as fast changes to the equilibrium profile. First results from HSX with 2nd harmonic ECH at 28 GHz, using a 5 chord version of the interferometer, indicate that the density profile is quite peaked for both quasi-helically symmetric (QHS) plasmas and those where the quasisymmetry is broken (mirror mode) for ne = 1 x 10^12 cm-3. However, for densities ne = 3 x 10^11 cm-3, the profile for the QHS plasma (high stored energy) is narrower when compared to the mirror mode (low stored energy). Density profile variation with plasma configuration and resonant heating location using the 9 channel interferometer will be described. For high density HSX plasmas, ne > 3 x 10^12 cm-3, coherent oscillations are observed in the line-integrated density traces which are out of phase across the magnetic axis. These m=1 oscillations are observed at frequencies of 1-2 kHz and result in a periodic displacement of the density profile. *Supported by USDOE under grant DE-FG03-01ER-54615, Task III and DE-FG02-93ER54222.

  5. MEASUREMENTS OF RAPID DENSITY FLUCTUATIONS IN THE SOLAR WIND

    SciTech Connect

    Malaspina, D. M.; Ergun, R. E.; Kellogg, P. J.; Bale, S. D.

    2010-03-01

    The power spectrum of density fluctuations in the solar wind is inferred by tracking small timescale changes in the electron plasma frequency during periods of strong Langmuir wave activity. STEREO electric field waveform data are used to produce time profiles of plasma density from which the density power spectrum is derived. The power spectra obtained by this method extend the observed frequency range by an order of magnitude while remaining consistent with previous results near a few Hertz. Density power spectral indices are found to be organized by the angle between the local magnetic field and the solar wind direction, indicating significant anisotropy in solar wind high-frequency density turbulence.

  6. Electron density fluctuation measurements using a multichannel microwave interferometer in GAMMA 10

    SciTech Connect

    Yoshikawa, M.; Shima, Y.; Matsumoto, T.; Nakahara, A.; Yanagi, N.; Itakura, A.; Hojo, H.; Kobayashi, T.; Matama, K.; Tatematsu, Y.; Imai, T.; Kohagura, J.; Hirata, M.; Nakashima, Y.; Cho, T.

    2006-10-15

    Measurement of fluctuation in plasma is important for studying the improvement in plasma confinement by the formation of the plasma confinement potential. The density fluctuation is observed by microwaves by methods such as interferometry, reflectometry and Fraunhofer diffraction method. We have constructed a new multichannel microwave interferometer to measure the plasma density and fluctuation radial profiles in a single plasma shot. We successfully measured the time-dependent density and line-integrated density fluctuation radial profiles in a single plasma shot using the multichannel microwave interferometer. Thus, we have developed a useful tool for studying the improvement in plasma confinement by the formation of plasma confinement potential.

  7. High Speed Digital Holography for Density and Fluctuation Measurements

    SciTech Connect

    ThomasJr., C. E.; Baylor, Larry R; Combs, Stephen Kirk; Meitner, Steven J; Rasmussen, David A; Granstedt, E. M.; Majeski, R.; Kaita, R.

    2010-01-01

    The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras up to 40 000 fps at 644 pixels with resolutions up to 640512 pixels suitable for use with a CO2 laser are readily available, if expensive.

  8. High speed digital holography for density and fluctuation measurements (invited)

    SciTech Connect

    Thomas, C. E. Jr.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rasmussen, D. A.; Granstedt, E. M.; Majeski, R. P.; Kaita, R.

    2010-10-15

    The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to {approx}40 000 fps at {approx}64x4 pixels) with resolutions up to 640x512 pixels suitable for use with a CO{sub 2} laser are readily available, if expensive.

  9. High speed digital holography for density and fluctuation measurements (invited).

    PubMed

    Thomas, C E; Baylor, L R; Combs, S K; Meitner, S J; Rasmussen, D A; Granstedt, E M; Majeski, R P; Kaita, R

    2010-10-01

    The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to ∼40,000 fps at ∼64×4 pixels) with resolutions up to 640×512 pixels suitable for use with a CO(2) laser are readily available, if expensive.

  10. Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations.

    PubMed

    Yun, G S; Lee, W; Choi, M J; Kim, J B; Park, H K; Domier, C W; Tobias, B; Liang, T; Kong, X; Luhmann, N C; Donné, A J H

    2010-10-01

    The ECE imaging (ECEI) diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport [H. K. Park, N. C. Luhmann, Jr., A. J. H. Donné et al., Phys. Rev. Lett. 96, 195003 (2006)]. An improved ECEI system capable of visualizing both high- and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfvén eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.

  11. Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations

    SciTech Connect

    Yun, G. S.; Lee, W.; Choi, M. J.; Kim, J. B.; Park, H. K.; Domier, C. W.; Tobias, B.; Liang, T.; Kong, X.; Luhmann, N. C. Jr.; Donne, A. J. H.

    2010-10-15

    The ECE imaging (ECEI) diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport [H. K. Park, N. C. Luhmann, Jr., A. J. H. Donneet al., Phys. Rev. Lett. 96, 195003 (2006)]. An improved ECEI system capable of visualizing both high- and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfven eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.

  12. Density fluctuations in solar wind flow types at 1 AU: Comparison to Doppler scintillation measurements

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Woo, R.; Neugebauer, M.

    1995-01-01

    Density fluctuations with periods 10 minutes to 1 hour have been investigated in ISEE 3 plasma measurements of solar wind flows at l AU. Coronal hole, interstream, plasma sheet, coronal mass ejection, and interaction region flow types are considered. The ISEE 3 results support the interpretation of the large-scale variations in density fluctuations observed by Doppler scintillation measurement techniques inside 0.2 AU. The highest absolute and relative density fluctuations occur ahead of and within the plasma from coronal mass ejections, with the maximum values occurring between the associated interplanetary shocks and the driver gas. For the quasi-stationary solar wind, density and relative density fluctuations are highest around the heliospheric current sheet and lowest in the high-speed coronal flow. Superposed epoch analysis shows that the region of enhanced density fluctuations and its abrupt boundaries observed in the vicinity of the heliospheric current sheet near the Sun persists to l AU, providing further support for the filamentary nature of the extensions of coronal streamers. The results of this study confirm the advantages of using density fluctuations rather than density as a tracer of solar wind flows with differing origins at the Sun and as a detector of propagating interplanetary disturbances.

  13. Measurement of high-frequency, small scale density fluctuations in improved confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, J. R.; Chapman, B. E.; Sarff, J. S.; Carmody, D.; Terry, P. W.; den Hartog, D. J.; Morton, L. A.; Lin, L.; Ding, W. X.; Brower, D. L.; MST Team

    2014-10-01

    In standard MST RFP plasmas, core transport is governed by magnetic fluctuations associated with global tearing modes. Using pulsed parallel current drive, tearing is significantly reduced and smaller-scale fluctuations are likely important to electron particle and heat transport for these improved confinement plasmas. On MST, an 11-chord FIR laser-based interferometry diagnostic, with ~ 8 cm chord spacing, is used to measure electron density fluctuations with wavenumbers k < 1-2 cm-1. An upgrade underway will allow resolution up to k ~ 15 cm-1. A fast magnetic coil array is employed for magnetic fluctuations. High-frequency (>50 kHz) small-scale (n > 15) density and magnetic fluctuations have been observed in the edge plasma, where density and temperature gradients are largest. These fluctuations are distinct from tearing and have amplitudes that correlate with the density gradient and electron beta. The MST is well suited to explore beta scaling given the large dynamic range (9-26%) found in the device. Correlation of the measured density fluctuations with plasma parameters in high beta plasmas will serve to identify the drive and contribute to validation of gyrokinetic codes. Work supported by DOE and NSF.

  14. Density fluctuation measurement using motional Stark effect optics in JT-60U

    SciTech Connect

    Suzuki, T.; Fujita, T.; Oyama, N.; Isayama, A.; Matsunaga, G.; Oikawa, T.; Asakura, N.; Takechi, M.

    2006-10-15

    The multichannel motional Stark effect (MSE) diagnostic system in JT-60U has been upgraded to measure density fluctuation profile. A 16-channel fast-sampling digitizer has been added in order to measure photomultiplier-tube signals at measurement frequency of 0.5-1 MHz. The new system works as a MSE and beam emission spectroscopy diagnostic. Spatially resolved electron density fluctuation profile measurement in various operation regimes is presented. In the core plasma, density fluctuation induced by rotation of tearing mode islands was observed. Temporal evolution of the fluctuation frequency agrees with that measured by Mirnov coils (poloidal and toroidal mode numbers: 2 and 1, respectively). The phases of the fluctuations on either side of the q=2 surface are inverted, which is consistent with electron cyclotron emission. These measurements show that the density fluctuation is caused by a rotating magnetic island structure induced by the tearing mode. In the scrape-off layer of a H-mode plasma with edge-localized-mode (ELM), i. e., ELMy H-mode outward propagation of strong intermittent emission corresponding to ELM crash was also observed. The propagation velocity is 0.69-2.2 km/s along the MSE measurement points, the time lag and distance between adjacent channels being 67{+-}35 {mu}s and 70 mm, respectively.

  15. Core density gradient fluctuation measurement by differential interferometry in the helically symmetric experiment stellaratora)

    NASA Astrophysics Data System (ADS)

    Deng, C. B.; Brower, D. L.

    2012-10-01

    The interferometer system on the Helically Symmetric eXperiment (HSX) stellarator uses an expanded beam and linear detector array to realize a multichord measurement. Unlike conventional interferometry which determines the plasma phase shift with respect to a reference, directly evaluating the phase between two adjacent chords can be employed to measure the change in plasma phase with impact parameter. This approach provides a measure of the equilibrium density gradient or the density gradient fluctuations and is referred to as differential interferometry. For central chords, measurements are spatially localized due to a geometrical weighting factor and can provide information on core density gradient fluctuations. The measurement requires finite coherence between fluctuations in the two spatially offset chords. This technique is applied on the HSX stellarator to measure both broadband turbulence and coherent modes. Spatial localization is exploited to isolate core turbulence changes associated with change in magnetic configuration or heating location.

  16. Investigation of zonal flows by using the collective scattering measurement of density fluctuations

    NASA Astrophysics Data System (ADS)

    Shen, H. G.; Yu, Y.; Lan, T.; Li, Y. D.; Liu, A. D.; Xie, J. L.; Liu, W. D.; Yu, C. X.; Zhang, W. Y.; Ti, A.; Li, J. G.

    2015-09-01

    The poloidal {{E}r}× {{B}\\text{T}} rotation velocities in the core plasma region are studied using the instantaneous frequency method (IFM) with the density fluctuations measured by the CO2 laser collective scattering diagnostics on the HT-7 tokamak. A coherent mode is observed in the fluctuations of poloidal velocities with the mode frequency from 10 to 20 kHz. It is identified as geodesic acoustic mode (GAM) zonal flow with poloidal symmetry (m = 0) and its mode frequency coinciding with the theoretical expected GAM frequency. The nonlinear interactions are investigated by applying the envelope analysis on the density fluctuations. The results confirm that the envelope modulation in the high frequency density fluctuations only comes from the shearing by GAM. The comparison between IFM and envelope analysis is also discussed.

  17. Density fluctuation measurements on the ATF (Advanced Toroidal Facility) using a two-frequency reflectometer

    SciTech Connect

    Anabitarte, E. . Inst. de Energias Renovables); Hanson, G.R.; Harris, J.H.; Wilgen, J.B.; Bell, J.D.; Dunlap, J.L.; Hidalgo, C.; Thomas, C.E.; Uckan, T. )

    1990-01-01

    A microwave reflectometer system has been installed and operated on the Advanced Toroidal Facility (ATF) to measure density fluctuations. This system consists of two individual reflectometers that use the same antenna system and operate in the 30- to 40-GHz band. This arrangement allows operation at two frequencies along the same radial chord so that radial coherence measurements are possible. During the initial operating period of the reflectometer, a correlation was observed between a change in the edge density fluctuation spectrum and a transition to improved confinement. Recently, local measurements of the density fluctuation spectra in electron-cyclotron-heated (ECH) plasmas has been shown to agree with Langmuir probe measurements at the edge. Furthermore, structure in the spectra has been observed in some ECH plasmas. 4 refs., 3 figs.

  18. A molecular Rayleigh scattering setup to measure density fluctuations in thermal boundary layers

    NASA Astrophysics Data System (ADS)

    Panda, J.

    2016-12-01

    A Rayleigh scattering-based density fluctuation measurement system was set up inside a low-speed wind tunnel of NASA Ames Research Center. The immediate goal was to study the thermal boundary layer on a heated flat plate. A large number of obstacles had to be overcome to set up the system, such as the removal of dust particles using air filters, the use of photoelectron counting electronics to measure low intensity light, an optical layout to minimize stray light contamination, the reduction in tunnel vibration, and an expanded calibration process to relate photoelectron arrival rate to air density close to the plate surface. To measure spectra of turbulent density fluctuations, a two-PMT cross-correlation system was used to minimize the shot noise floor. To validate the Rayleigh measurements, temperature fluctuations spectra were calculated from density spectra and then compared with temperature spectra measured with a cold-wire probe operated in constant current mode. The spectra from the downstream half of the plate were found to be in good agreement with cold-wire probe, whereas spectra from the leading edge differed. Various lessons learnt are discussed. It is believed that the present effort is the first measurement of density fluctuations spectra in a boundary layer flow.

  19. Measurement of high-frequency density fluctuations in improved confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, J. R.; Chapman, B. E.; Anderson, J. K.; Sarff, J. S.; Lin, L.; Ding, W. X.; Brower, D. L.

    2013-10-01

    In standard RFP plasmas, transport is dominated by global magnetic tearing modes. For improved-confinement plasmas using inductive current profile control (PPCD), smaller-scale fluctuations at higher frequencies (>50 kHz) may become more important as the global tearing modes are significantly reduced. In particular, drift-wave-like instabilities are theoretically unstable to the higher temperature and density gradients achieved during PPCD discharges. On the MST, an eleven chord Far-Infrared (FIR) laser-based diagnostic system with ~ 8 cm spacing is used to measure electron density fluctuations by interferometry and far-forward collective scattering. The existing diagnostic measures line-integrated density fluctuations within the divergence of the probe beam covering a wavenumber range k-< 1.3 cm-1, corresponding to k-ρs < 1.3 (ρs is the ion-sound Larmor radius). Experimentally, in PPCD plasmas, global tearing modes are reduced while high frequency coherent modes (50 < f < 140 kHz) emerge among broadband fluctuations. Correlations of these modes with sources of free energy, such as temperature and density gradients, will be investigated. Additionally, effects of increased plasma flow from a 1MW tangential NBI on high frequency density fluctuations will also be explored. Work Supported by U.S.D.O.E.

  20. Comparison of density fluctuation measurements between O-mode and X-mode reflectometry on Tore Supra

    SciTech Connect

    Gerbaud, T.; Clairet, F.; Sabot, R.; Sirinelli, A.; Heuraux, S.; Leclert, G.; Vermare, L.

    2006-10-15

    Reflectometry is a versatile diagnostic which allows both electronic density profile and density fluctuation measurements. Fast sweep heterodyne technique is particularly suitable for precise measurement of the phase of the reflected signal, which records the story of the wave propagation through the plasma up to the cutoff layer, including the density fluctuations. The present article exhibits a comparison of the density fluctuation radial profile measurements between fast sweep frequency technique, both using O-mode and X-mode polarizations, and fixed frequency technique. The correct agreement between all measurements of the relative values of the density fluctuation profiles reinforces the validity of the approximations used.

  1. Preliminary measurements of velocity, density and total temperature fluctuations in compressible subsonic flow

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.; Johnson, C. B.; Basnett, C. B.

    1983-01-01

    The heat transfer characteristics of a three-wire hot-wire probe operated with a constant temperature anemometer were investigated in the subsonic compressible flow regime. The sensitivity coefficients, with respect to velocity, density and total temperature, were measured and the results were used to calculate the velocity, density, and total temperature fluctuations in the test section of the Langley 0.3-m Transonic Cryogenic Tunnel (TCT). These results were extended to give estimates for fluctuations due to vorticity, sound, and entropy. In addition, attempts were made to determine the major source of disturbances in the 0.3-m TCT.

  2. Turbulent magnetohydrodynamic density fluctuations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Montgomery, David

    1988-01-01

    A spectral-method numerical code is used to compute mass-density fluctuation spectra in turbulent magnetofluids. The computations are used to test and extend the analytical theory of density variations in slightly compressible magnetofluids given by Montgomery, et al. (1987) and used to infer inertial-range density-fluctuation spectra for the nearby interstellar medium and solar wind. A local equation of state is assumed, relating density to pressure. Constant, scalar resistivities and viscosities are used. In the limit of low Mach numbers and high mechanical-to-magnetic pressure ratios, the fit of the computations to the analytical theory is seen to be close.

  3. Measurements of density, temperature, and their fluctuations in turbulent supersonic flow using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, Douglas G.; Mckenzie, R. L.

    1992-01-01

    Nonintrusive measurements of density, temperature, and their turbulent fluctuation levels were obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment are compared with previous measurements obtained in the same facility using conventional probes and an earlier spectroscopic technique. Densities and temperatures measured with the current technique agree with the previous surveys to within 3 percent and 2 percent, respectively. The fluctuation amplitudes for both variables agree with the measurements obtained using the earlier spectroscopic technique and show evidence of an unsteady, weak shock wave that perturbs the boundary layer.

  4. Two Point Space-Time Correlation of Density Fluctuations Measured in High Velocity Free Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta

    2006-01-01

    Two-point space-time correlations of air density fluctuations in unheated, fully-expanded free jets at Mach numbers M(sub j) = 0.95, 1.4, and 1.8 were measured using a Rayleigh scattering based diagnostic technique. The molecular scattered light from two small probe volumes of 1.03 mm length was measured for a completely non-intrusive means of determining the turbulent density fluctuations. The time series of density fluctuations were analyzed to estimate the integral length scale L in a moving frame of reference and the convective Mach number M(sub c) at different narrow Strouhal frequency (St) bands. It was observed that M(sub c) and the normalized moving frame length scale L*St/D, where D is the jet diameter, increased with Strouhal frequency before leveling off at the highest resolved frequency. Significant differences were observed between data obtained from the lip shear layer and the centerline of the jet. The wave number frequency transform of the correlation data demonstrated progressive increase in the radiative part of turbulence fluctuations with increasing jet Mach number.

  5. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    SciTech Connect

    H. Park; E. Mazzucato; T. Munsat; C.W. Domier; M. Johnson; N.C. Luhmann, Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-05-07

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q {approx} 1 surface for the first time.

  6. Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.; Logan, P.

    1987-01-01

    A laser-induced fluorescence method has been developed that provides simultaneous measurements of temperature, density, and their fluctuations owing to turbulence in unheated compressible flows. Pressure and its fluctuations are also deduced using the equation of state. Fluorescence is induced in nitric oxide that has been seeded into a nitrogen flow in concentrations of 100 ppm. Measurements are obtained from each laser pulse, with a spatial resolution of 1 mm and a temporal resolution of 125 ns. The method was applied to a supersonic, turbulent, boundary-layer flow with a free-stream Mach number of 2. For stream conditions in the range from 150-300 K and 0.3-1 atm, temperature is measured with an uncertainty of approximately 1 percent rms, while density and pressure uncertainties are approximately 2 percent rms.

  7. Rayleigh Scattering Diagnostic for Measurement of Temperature, Velocity, and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.

  8. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  9. Initial density fluctuation measurements from the NSTX Beam Emission Spectroscopy diagnostic system*

    NASA Astrophysics Data System (ADS)

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Schoenbeck, N. L.; Thompson, D.; Uzun-Kaymak, I. U.; Stratton, B. C.

    2010-11-01

    Density fluctuation measurements on the ion gyroscale have been obtained on NSTX with a newly commissioned beam emission spectroscopy (BES) diagnostic system. The BES system measures red-shifted Dα emission near 660 nm from deuterium neutral beams with high throughput optics and high efficiency detectors. The system presently employs 16 detection channels arranged in radial and poloidal arrays, and an expansion to 32 channels is planned. Radial arrays can measure fluctuations from r/a 0.1 to beyond the last closed flux surface and resolve fluctuations with kρi<=1.5. Initial BES measurements reveal broadband turbulence and coherent modes below 300 kHz for r/a>=0.4. The broadband turbulence appears in high gradient regions and increases at H-L transitions. The frequency characteristics of the coherent modes correlate with Alfvén/energetic particle modes in Mirnov probe measurements, but some coherent modes appear in BES measurements only. *Supported by the U.S. Department of Energy under Contract Nos. DE-FG02-89ER53296, DE-AC02-09CH11466 and DE-SC0001288.

  10. Parallel-beam correlation technique for measuring density fluctuations in plasmas with strong magnetic shear

    SciTech Connect

    Jacobson, A.R.

    1981-04-01

    A laser diagnostic scheme is described which facilitates localization of density fluctuations along the line of sight. The method exploits both the generally observed anisotropy of density fluctuations in low-beta plasmas, as well as the twisting of the magnetic field which occurs across the minor diameter of reversed-field pinches, spheromaks, etc. Both interferometric and schlieren variations are discussed.

  11. Measurement of temperature and density fluctuations in turbulence using an ultraviolet laser

    NASA Technical Reports Server (NTRS)

    Massey, G. A.

    1984-01-01

    Noninvasive measurement of density and temperature fluctuations in turbulent air flow was examined. The approach used fluorescence of oxygen molecules which are selectively excited by a tunable vacuum ultraviolet laser beam. The strength of the fluorescence signal and its dependence on laser wavelength vary with the density and temperature of the air in the laser beam. Because fluorescence can be detected at 90 degrees from the beam propagation direction, spatial resolution in three dimensions, rather than path-integrated measurements can be achieved. With spatial resolutions of the order of a millimeter and at supersonic air velocities it is necessary to perform each measurement in a time of the order of a microsecond; this is possible by by using laser pulses of ten nanosecond duration. In this method atmospheric O2 is excited by the emission of a tunable ArF excimer laser, and the fluorescence, which spans the 210 to 420 range, is detected by an ultraviolet phototube.

  12. Density fluctuation measurements by far-forward collective scattering in the MST reversed-field pincha)

    NASA Astrophysics Data System (ADS)

    Ding, W. X.; Lin, L.; Duff, J. R.; Brower, D. L.; Sarff, J. S.

    2012-10-01

    The multichannel polarimeter-interferometer system on the MST reversed-field pinch can be utilized to measure far-forward collective scattering from electron density fluctuations. The collective scattering system has 11 viewing chords with ˜8 cm spacing. The source is a 432 μm (694 GHz) far infrared laser and the scattered power is measured using a heterodyne detection scheme. Collective scattering provides a line-integrated measurement of fluctuations within the divergence of the probe beam covering wavenumber range: k⊥ < 1.3 cm-1, corresponding k⊥ρs < 1.3 (ρs is the ion-sound Larmor radius), the region of primary interest for turbulent fluctuation-induced transport. The perpendicular wavenumber consists of toroidal, poloidal, and radial contributions, which vary with chord position. Coherent modes associated with tearing instabilities and neutral-beam driven fast particles are observed along with broadband turbulence at frequencies up to 500 kHz. Changes in frequency are consistent with a Doppler shift due to parallel plasma flow.

  13. Density fluctuation measurements by far-forward collective scattering in the MST reversed-field pinch

    SciTech Connect

    Ding, W. X.; Lin, L.; Brower, D. L.; Duff, J. R.; Sarff, J. S.

    2012-10-15

    The multichannel polarimeter-interferometer system on the MST reversed-field pinch can be utilized to measure far-forward collective scattering from electron density fluctuations. The collective scattering system has 11 viewing chords with {approx}8 cm spacing. The source is a 432 {mu}m (694 GHz) far infrared laser and the scattered power is measured using a heterodyne detection scheme. Collective scattering provides a line-integrated measurement of fluctuations within the divergence of the probe beam covering wavenumber range: k{sub Up-Tack} < 1.3 cm{sup -1}, corresponding k{sub Up-Tack }{rho}{sub s} < 1.3 ({rho}{sub s} is the ion-sound Larmor radius), the region of primary interest for turbulent fluctuation-induced transport. The perpendicular wavenumber consists of toroidal, poloidal, and radial contributions, which vary with chord position. Coherent modes associated with tearing instabilities and neutral-beam driven fast particles are observed along with broadband turbulence at frequencies up to 500 kHz. Changes in frequency are consistent with a Doppler shift due to parallel plasma flow.

  14. Rayleigh Scattering Diagnostic Used to Measure Velocity and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.

    2003-01-01

    A new, molecular Rayleigh-scattering-based flow diagnostic developed at the NASA Glenn Research Center has been used for the first time to measure the power spectrum of both gas density and radial velocity components in the plumes of high-speed jets. The objective of the work is to develop an unseeded, nonintrusive dynamic measurement technique for studying turbulent flows in NASA test facilities. This technique provides aerothermodynamic data not previously obtainable. It is particularly important for supersonic flows, where hot wire and pitot probes are difficult to use and disturb the flow under study. The effort is part of the nonintrusive instrumentation development program supporting propulsion research at the NASA Glenn Research Center. In particular, this work is measuring fluctuations in flow velocity, density, and temperature for jet noise studies. These data are valuable to researchers studying the correlation of flow fluctuations with far-field noise. One of the main objectives in jet noise research is to identify noise sources in the jet and to determine their contribution to noise generation. The technique is based on analyzing light scattered from molecules within the jet using a Fabry-Perot interferometer operating in a static imaging mode. The PC-based data acquisition system can simultaneously sample velocity and density data at rates to about 100 kHz and can handle up to 10 million data records. We used this system to interrogate three different jet nozzle designs in a Glenn free-jet facility. Each nozzle had a 25.4-mm exit diameter. One was convergent, used for subsonic flow measurements and to produce a screeching underexpanded jet with a fully expanded Mach number of 1.42. The other nozzles (Mach 1.4 and 1.8) were convergent-divergent types. The radial component of velocity and gas density were simultaneously measured in this work.

  15. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2014-11-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (˜1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ˜0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  16. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements.

    PubMed

    Lin, L; Ding, W X; Brower, D L

    2014-11-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  17. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    SciTech Connect

    Lin, L. Ding, W. X.; Brower, D. L.

    2014-11-15

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  18. Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; McKee, G. R.; Shafer, M. W.; Holland, C.; Tynan, G. R.; Austin, M. E.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.; Makowski, M. A.

    2008-05-15

    For the first time, profiles (0.3<{rho}<0.9) of electron temperature and density fluctuations in a tokamak have been measured simultaneously and the results compared to nonlinear gyrokinetic simulations. Electron temperature and density fluctuations measured in neutral beam-heated, sawtooth-free low confinement mode (L-mode) plasmas in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] are found to be similar in frequency and normalized amplitude, with amplitude increasing with radius. The measured radial profile of two fluctuation fields allows for a new and rigorous comparison with gyrokinetic results. Nonlinear gyrokinetic flux-tube simulations predict that electron temperature and density fluctuations have similar normalized amplitudes in L-mode. At {rho}=0.5, simulation results match experimental heat diffusivities and density fluctuation amplitude, but overestimate electron temperature fluctuation amplitude and particle diffusivity. In contrast, simulations at {rho}=0.75 do not match either the experimentally derived transport properties or the measured fluctuation levels.

  19. Measurements of drift-wave-induced density and velocity fluctuations using high-speed passive impurity spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Craig, D.; den Hartog, D. J.; Nornberg, M. D.

    2016-10-01

    Passive impurity spectroscopy is used to study high frequency ( 100 kHz) electron density and ion velocity fluctuations in the edge of MST reversed field pinch plasmas. When tearing modes are suppressed, stochastic transport is greatly reduced and microturbulence is anticipated to become important. Gyrokinetic simulations predict unstable trapped electron modes (TEM) in the edge region of these improved-confinement MST plasmas. Interferometry measurements reveal electron density fluctuations with wavenumbers, propagation direction, and a density-gradient threshold in good agreement with predictions for TEMs. These density fluctuations are also observed as emission fluctuations using a recently upgraded Ion Dynamics Spectrometer (IDS II) through edge passive C +2 measurements. The particle transport associated with TEMs will be evaluated directly by correlating the IDS-measured ion velocity and density fluctuations. The measurement is localized to the C +2 emission shell in the edge of the plasma, which is determined by a coronal charge-state balance model using ADAS. We used a large-throughput spectrometer originally developed for fast CHERS measurements and PMTs for light detection to achieve high time resolution. This work is supported by the US DOE.

  20. A high speed compact microwave interferometer for density fluctuation measurements in Sino-UNIted Spherical Tokamak

    SciTech Connect

    Zhong, H. Tan, Y.; Liu, Y. Q.; Xie, H. Q.; Gao, Z.

    2016-11-15

    A single-channel 3 mm interferometer has been developed for plasma density diagnostics in the Sino-UNIted Spherical Tokamak (SUNIST). The extremely compact microwave interferometer utilizes one corrugated feed horn antenna for both emitting and receiving the microwave. The beam path lies on the equatorial plane so the system would not suffer from beam path deflection problems due to the symmetry of the cross section. A focusing lens group and an oblique vacuum window are carefully designed to boost the signal to noise ratio, which allows this system to show good performance even with the small-diameter central column itself as a reflector, without a concave mirror. The whole system discards the reference leg for maximum compactness, which is particularly suitable for the small-sized tokamak. An auto-correcting algorithm is developed to calculate the phase evolution, and the result displays good phase stability of the whole system. The intermediate frequency is adjustable and can reach its full potential of 2 MHz for best temporal resolution. Multiple measurements during ohmic discharges proved the interferometer’s capability to track typical density fluctuations in SUNIST, which enables this system to be utilized in the study of MHD activities.

  1. A high speed compact microwave interferometer for density fluctuation measurements in Sino-UNIted Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Tan, Y.; Liu, Y. Q.; Xie, H. Q.; Gao, Z.

    2016-11-01

    A single-channel 3 mm interferometer has been developed for plasma density diagnostics in the Sino-UNIted Spherical Tokamak (SUNIST). The extremely compact microwave interferometer utilizes one corrugated feed horn antenna for both emitting and receiving the microwave. The beam path lies on the equatorial plane so the system would not suffer from beam path deflection problems due to the symmetry of the cross section. A focusing lens group and an oblique vacuum window are carefully designed to boost the signal to noise ratio, which allows this system to show good performance even with the small-diameter central column itself as a reflector, without a concave mirror. The whole system discards the reference leg for maximum compactness, which is particularly suitable for the small-sized tokamak. An auto-correcting algorithm is developed to calculate the phase evolution, and the result displays good phase stability of the whole system. The intermediate frequency is adjustable and can reach its full potential of 2 MHz for best temporal resolution. Multiple measurements during ohmic discharges proved the interferometer's capability to track typical density fluctuations in SUNIST, which enables this system to be utilized in the study of MHD activities.

  2. A high speed compact microwave interferometer for density fluctuation measurements in Sino-UNIted Spherical Tokamak.

    PubMed

    Zhong, H; Tan, Y; Liu, Y Q; Xie, H Q; Gao, Z

    2016-11-01

    A single-channel 3 mm interferometer has been developed for plasma density diagnostics in the Sino-UNIted Spherical Tokamak (SUNIST). The extremely compact microwave interferometer utilizes one corrugated feed horn antenna for both emitting and receiving the microwave. The beam path lies on the equatorial plane so the system would not suffer from beam path deflection problems due to the symmetry of the cross section. A focusing lens group and an oblique vacuum window are carefully designed to boost the signal to noise ratio, which allows this system to show good performance even with the small-diameter central column itself as a reflector, without a concave mirror. The whole system discards the reference leg for maximum compactness, which is particularly suitable for the small-sized tokamak. An auto-correcting algorithm is developed to calculate the phase evolution, and the result displays good phase stability of the whole system. The intermediate frequency is adjustable and can reach its full potential of 2 MHz for best temporal resolution. Multiple measurements during ohmic discharges proved the interferometer's capability to track typical density fluctuations in SUNIST, which enables this system to be utilized in the study of MHD activities.

  3. Supersonic helium beam diagnostic for fluctuation measurements of electron temperature and density at the Tokamak TEXTOR.

    PubMed

    Kruezi, U; Stoschus, H; Schweer, B; Sergienko, G; Samm, U

    2012-06-01

    A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n(0) = 1.5 × 10(18) m(-3) and a low beam divergence of ±1° simultaneously, achieving a poloidal resolution of Δ(poloidal) = 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of Δ(radial) = 2 mm and a maximum temporal resolution of Δt ≃ 2 μs (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.

  4. Supersonic helium beam diagnostic for fluctuation measurements of electron temperature and density at the Tokamak TEXTOR

    SciTech Connect

    Kruezi, U.; Stoschus, H.; Schweer, B.; Sergienko, G.; Samm, U.

    2012-06-15

    A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n{sub 0}= 1.5 Multiplication-Sign 10{sup 18} m{sup -3} and a low beam divergence of {+-}1 Degree-Sign simultaneously, achieving a poloidal resolution of {Delta}{sub poloidal}= 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of {Delta}{sub radial}= 2 mm and a maximum temporal resolution of {Delta}t Asymptotically-Equal-To 2 {mu}s (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.

  5. Supersonic helium beam diagnostic for fluctuation measurements of electron temperature and density at the Tokamak TEXTOR

    NASA Astrophysics Data System (ADS)

    Kruezi, U.; Stoschus, H.; Schweer, B.; Sergienko, G.; Samm, U.

    2012-06-01

    A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n0 = 1.5 × 1018 m-3 and a low beam divergence of ±1° simultaneously, achieving a poloidal resolution of Δpoloidal = 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of Δradial = 2 mm and a maximum temporal resolution of Δt ≃ 2 μs (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.

  6. Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Massey, G. A.; Lemon, C. J.

    1984-01-01

    A tunable line-narrowed ArF laser can selectively excite several rotation al lines of the Schumann-Runge band system of O2 in air. The resulting ultraviolet fluorescence can be monitored at 90 deg to the laser beam axis, permitting space and time resolved observation of density and temperature fluctuations in turbulence. Experiments and calculations show that + or - 1 K, + or - 1 percent density, 1 cu mm spatial, and 1 microsecond temporal resolution can be achieved simultaneously under some conditions.

  7. Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Rhodes, T. L.; Carter, T. A.; McKee, G. R.; Shafer, M. W.; Staebler, G. M.; Burrell, K. H.; DeBoo, J. C.; Prater, R.

    2010-02-15

    New measurements show that long-wavelength (k{sub t}hetarho{sub s}<0.5) electron temperature fluctuations can play an important role in determining electron thermal transport in low-confinement mode (L-mode) tokamak plasmas. In neutral beam-heated L-mode tokamak plasmas, electron thermal transport and the amplitude of long-wavelength electron temperature fluctuations both increase in cases where local electron cyclotron heating (ECH) is used to modify the plasma profiles. In contrast, the amplitude of simultaneously measured long-wavelength density fluctuations does not significantly increase. Linear stability analysis indicates that the ratio of the trapped electron mode (TEM) to ion temperature gradient (ITG) mode growth rates increases in the cases with ECH. The increased importance of the TEM drive relative to the ITG mode drive in the cases with ECH may be associated with the increases in electron thermal transport and electron temperature fluctuations.

  8. Turbulent small-scale neutral and ion density fluctuations as measured during MAC/Epsilon

    NASA Technical Reports Server (NTRS)

    Luebken, F.-J.; Hillert, W.; Vonzahn, U.; Blix, T. A.; Thrane, E. V.

    1989-01-01

    During the MAC/Epsilon campaign (Fall 1987, from Andoya, Northern Norway, 69 N, 16 E) a total of four altitude profiles of neutral gas number densities and six profiles of ion number densities were measured with high spatial resolution in the height range from 60 to 120 km. First results of these rocket-borne experiments are presented with emphasis on small scale turbulent density variations and related turbulent parameter as structure function constants and energy dissipation rates.

  9. Measuring long wavelength plasma density fluctuations by CO2 laser scattering (abstract)

    NASA Astrophysics Data System (ADS)

    Evans, D. E.

    1985-05-01

    Long wavelength density fluctuations can be observed by scattering even with a probe beam of much shorter wavelength provided the scattering angle is small enough. This paper is concerned with experiments in which the scattering angle is comparable with the probe beam divergence so the scattered and incident radiation never achieve spatial separation. Under these circumstances, the role of diffraction is preeminent and Fourier optics methods are used to describe the propagation of the beam, which is taken to be TEM00 mode Gaussian. Interaction between the probe beam and the plasma disturbance is described by refraction and no appeal is made to explicit scattering theory. Analysis of the effect of a monochromatic wave disturbance confined to a plane perpendicular to the probe beam (a plane grating in effect) reveals oscillations at the wave frequency induced on the probe with an intensity varying over the beam profile in a regular pattern symmetric about the beam axis. Detail of the pattern depends on the wavelength of the disturbance, its direction, and its axial position relative to a local beam waist. These oscillations are readily identified as due to radiation scattered by the plasma wave into diffraction orders, beating with the unperturbed part of the beam. Indeed, it can be shown1 that Fourier optics plus refraction produce almost the same result as conventional scattering theory,2 the small discrepancy being traceable to the neglect in the latter of incident beam wavefront curvature. The results of the two approaches coincide in the Fraunhofer limit. Computations of this sort have been confirmed by experiments using transducer-driven waves in air3 and by plasma experiments where the same regular patterns are observed from spontaneous plasma waves.4,5 Calculation suggests and experiments have demonstrated6 that additional information, such as the absolute direction of wave propagation, can be deduced from phase, measured with a multichannel detector array

  10. Density Fluctuations in Liquid Water

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Tse, John S.

    2011-01-01

    The density distributions and fluctuations in grids of varying size in liquid water at ambient pressure, both above the freezing point and in the supercooled state, are analyzed from the trajectories obtained from large-scale molecular dynamics simulations. It is found that the occurrence of low- and high-density regions (LDL and HDL) is transient and their respective residence times are dependent on the size of the simulated system. The spatial extent of density-density correlation is found to be within 7 Å or less. The temporal existence of LDL and HDL arises as a result of natural density fluctuations of an equilibrium system. The density of bulk water at ambient conditions is homogenous.

  11. Rayleigh Scattering Diagnostic for Measurement of Velocity and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.

    2002-01-01

    A new molecular Rayleigh scattering based flow diagnostic is used for the first time to measure the power spectrum of gas density and radial velocity component in the plumes of high speed jets. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer used in the static, imaging mode. The PC based data acquisition system is capable of simultaneous sampling of velocity and density at rates to 100 kHz and data record lengths to 10 million. Velocity and density power spectra and velocity-density cross spectra are presented for a subsonic jet, an underexpanded screeching jet, and for Mach 1.4 and Mach 1.8 supersonic jets. Software and hardware interfaces were developed to allow computer control of all aspects of the experiment and data acquisition.

  12. Rayleigh Scattering Diagnostic for Measurement of Velocity and Density Fluctuation Spectra

    NASA Astrophysics Data System (ADS)

    Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.

    2002-04-01

    A new molecular Rayleigh scattering based flow diagnostic is used for the first time to measure the power spectrum of gas density and radial velocity component in the plumes of high speed jets. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer used in the static, imaging mode. The PC based data acquisition system is capable of simultaneous sampling of velocity and density at rates to 100 kHz and data record lengths to 10 million. Velocity and density power spectra and velocity-density cross spectra are presented for a subsonic jet, an underexpanded screeching jet, and for Mach 1.4 and Mach 1.8 supersonic jets. Software and hardware interfaces were developed to allow computer control of all aspects of the experiment and data acquisition.

  13. Fluctuation Measurements in MRX

    NASA Astrophysics Data System (ADS)

    Carter, T.; Hsu, S.; Zaharia, S.; Ji, H.; Yamada, M.; Kulsrud, R.; Mazzucato, E.

    1998-11-01

    Recently, data(H. Ji, et al), Phys. Rev. Lett., 80, 3256 (1998) from the Magnetic Reconnection Experiment (MRX) have shown agreement with an MHD (Sweet-Parker) scaling modified to include, among other effects, an experimentally measured resistivity in collisionless current sheets for which η > η_Spitzer. Consistent with the observation of enhanced resistivity in these experiments was the measurement of current sheet widths on the order of ρ_i. Current sheet width scaling with ρi implies a drift parameter (v_d,i-v_d,e)/v_th,i which is constant with density. A potential explanation for these three observations is the existence of a current-driven instability in the current sheet of MRX which limits the relative drift speed, enhances the resistivity and widens the reconnection layer. Studies of fluctuations in the current sheet of MRX have begun, and preliminary fluctuation measurements using floating Langmuir and magnetic pick-up probes reveal frequency spectra with strong features near 30 MHz (≈ ω_LH). Theoretical studies of instabilities in the MRX current sheet and detailed measurements of frequency spectra using these diagnostics will be presented along with preliminary measurements using a new 35.6 cm-1 microwave scattering system.

  14. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    SciTech Connect

    Nam, Y. U. Wi, H. M.; Zoletnik, S.; Lampert, M.; Kovácsik, Ákos

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  15. Density fluctuations from warm inflation

    SciTech Connect

    Graham, Chris; Moss, Ian G. E-mail: ian.moss@ncl.ac.uk

    2009-07-01

    Thermal fluctuations provide the main source of large scale density perturbations in warm inflationary models of the early universe. For the first time, general results are obtained for the power spectrum in the case when the friction coefficient in the inflaton equation of motion depends on temperature. A large increase in the amplitude of perturbations occurs when the friction coefficient increases with temperature. This has to be taken into account when constructing models of warm inflation. New results are also given for the thermal fluctuations in the weak regime of warm inflation when the friction coefficient is relatively small.

  16. Origin of cosmological density fluctuations

    SciTech Connect

    Carr, B.J.

    1984-11-01

    The density fluctuations required to explain the large-scale cosmological structure may have arisen spontaneously as a result of a phase transition in the early Universe. There are several ways in which such fluctuations may have ben produced, and they could have a variety of spectra, so one should not necessarily expect all features of the large-scale structure to derive from a simple power law spectrum. Some features may even result from astrophysical amplification mechanisms rather than gravitational instability. 128 references.

  17. Multicellular density fluctuations in epithelial monolayers

    NASA Astrophysics Data System (ADS)

    Zehnder, Steven M.; Wiatt, Marina K.; Uruena, Juan M.; Dunn, Alison C.; Sawyer, W. Gregory; Angelini, Thomas E.

    2015-09-01

    Changes in cell size often accompany multicellular motion in tissue, and cell number density is known to strongly influence collective migration in monolayers. Density fluctuations in other forms of active matter have been explored extensively, but not the potential role of density fluctuations in collective cell migration. Here we investigate collective motion in cell monolayers, focusing on the divergent component of the migration velocity field to probe density fluctuations. We find spatial patterns of diverging and converging cell groups throughout the monolayers, which oscillate in time with a period of approximately 3-4 h. Simultaneous fluorescence measurements of a cytosol dye within the cells show that fluid passes between groups of cells, facilitating these oscillations in cell density. Our findings reveal that cell-cell interactions in monolayers may be mediated by intercellular fluid flow.

  18. Density Fluctuation measurement with Upgraded FIR System on the HSX Stellarator

    NASA Astrophysics Data System (ADS)

    Deng, C. B.; Brower, D. L.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.; Talmadge, J. N.

    2016-10-01

    Going forward, a primary physics goal for HSX is to study configuration optimization for reducing turbulence which requires measurement of turbulence with kyρs up to 1. For characteristic HSX parameters (Te 200 eV at r/a 0.5 where the density gradient peaks), this condition corresponds to kyup to 7 cm-1. To accommodate this goal, the 9-chord HSX interferometer/far-forward scattering system (k<2 cm-1) will be upgraded to measure density turbulence at higher k. The existing source (4 mW, 288 GHz) employing frequency modulation will be replaced with two high power (30 mW each, 320 GHz), solid-state sources with fixed frequency offset 4 MHz. This will permit true heterodyne detection, thereby realizing faster measurement time response, increased bandwidth and reduced noise. High power sources and high sensitivity planar-diode mixers will allow us to reduce the aperture of the receiver optics to a few mm thereby increasing the maximum wavenumber to k 15 cm-1. Reconfiguring the interferometer system into a finite-angle collective scattering arrangement is also planned as it will increase the measured k-spectrum up to 18 cm-1 with some spatial resolution (core or edge). Supported by USDOE Grants DE-FG03-01ER54615 and DE-FG02-93ER54222.

  19. A real time dynamic data acquisition and processing system for velocity, density, and total temperature fluctuation measurements

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1991-01-01

    The real time Dynamic Data Acquisition and Processing System (DDAPS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAPS replaces both a recording mechanism and a separate data processing system. DDAPS receives input from hot wire anemometers. Amplifiers and filters condition the signals with computer controlled modules. The analog signals are simultaneously digitized and digitally recorded on disk. Automatic acquisition collects necessary calibration and environment data. Hot wire sensitivities are generated and applied to the hot wire data to compute fluctuations. The presentation of the raw and processed data is accomplished on demand. The interface to DDAPS is described along with the internal mechanisms of DDAPS. A summary of operations relevant to the use of the DDAPS is also provided.

  20. Simultaneous measurement of magnetic and density fluctuations via cross-polarization scattering and Doppler backscattering on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Rhodes, T. L.; Barada, K.; Peebles, W. A.; Crocker, N. A.

    2016-11-01

    An upgraded cross-polarization scattering (CPS) system for the simultaneous measurement of internal magnetic fluctuations B ˜ and density fluctuations ñ is presented. The system has eight radial quadrature channels acquired simultaneously with an eight-channel Doppler backscattering system (measures density fluctuations ñ and flows). 3-D ray tracing calculations based on the GENRAY ray tracing code are used to illustrate the scattering and geometric considerations involved in the CPS implementation on DIII-D. A unique quasi-optical design and IF electronics system allow direct comparison of B ˜ and ñ during dynamic or transient plasma events (e.g., Edge Localized Modes or ELMs, L to H-mode transitions, etc.). The system design allows the interesting possibility of both magnetic-density ( B ˜ -ñ) fluctuation and magnetic-temperature ( B ˜ - T ˜ ) fluctuation cross-phase measurements suitable for detailed tests of turbulence simulations.

  1. Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Peiwan; Shi, Zhongbing; Chen, Wei; Zhong, Wulyu; Yang, Zengchen; Jiang, Min; Zhang, Boyu; Li, Yonggao; Yu, Liming; Liu, Zetian; Ding, Xuantong

    2016-07-01

    A multichannel microwave interferometer system has been developed on the HL-2A tokomak. Its working frequency is well designed to avoid the fringe jump effect. Taking the structure of HL-2A into account, its antennas are installed in the horizontal direction, i.e. one launcher in high field side (HFS) and four receivers in low field side (LFS). The fan-shaped measurement area covers those regions where the magnetohydrodynamics (MHD) instabilities are active. The heterodyne technique contributes to its high temporal resolution (1 μs). It is possible for the multichannel system to realize simultaneous measurements of density and its fluctuation. The quadrature phase detection based on the zero-crossing method is introduced to density measurement. With this system, reliable line-averaged densities and density profiles are obtained. The location of the saturated internal kink mode can be figured out from the mode showing different intensities on four channels, and the result agrees well with that measured by electron cyclotron emission imaging (ECEI). supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB104002, 2013GB107002, 2014GB107001) and National Natural Science Foundation of China (Nos. 11475058, 11475057, 11261140326, 11405049)

  2. Turbulence velocimetry of density fluctuation imaging data

    NASA Astrophysics Data System (ADS)

    McKee, G. R.; Fonck, R. J.; Gupta, D. K.; Schlossberg, D. J.; Shafer, M. W.; Holland, C.; Tynan, G.

    2004-10-01

    Analysis techniques to measure the time-resolved flow field of turbulence are developed and applied to images of density fluctuations obtained with the beam emission spectroscopy diagnostic system on the DIII-D tokamak. Velocimetry applications include measurement of turbulent particle flux, zonal flows, and the Reynolds stress. The flow field of turbulent eddies exhibits quasisteady poloidal flows as well as high-frequency radial and poloidal motion associated with electrostatic potential fluctuations and strongly nonlinear multifield interactions. The orthogonal dynamic programming technique, developed for fluid-based particle and amorphous shape (smoke) flow analysis, is investigated to measure such turbulence flows. Sensitivity and accuracy are assessed and sample results discussed.

  3. Doppler backscattering for spherical tokamaks and measurement of high-k density fluctuation wavenumber spectrum in MAST

    NASA Astrophysics Data System (ADS)

    Hillesheim, J. C.; Crocker, N. A.; Peebles, W. A.; Meyer, H.; Meakins, A.; Field, A. R.; Dunai, D.; Carr, M.; Hawkes, N.; the MAST Team

    2015-07-01

    The high-k (7≲ {{k}\\bot}{ρi}≲ 11 ) wavenumber spectrum of density fluctuations has been measured for the first time in MAST (Lloyd et al 2003 Nucl. Fusion 43 1665). This was accomplished with the first implementation of Doppler backscattering (DBS) for core measurements in a spherical tokamak. DBS has become a well-established and versatile diagnostic technique for the measurement of intermediate- k ({{k}\\bot}{ρi}˜ 1 , and higher) density fluctuations and flows in magnetically confined fusion experiments. Previous implementations of DBS for core measurements have been in standard, large aspect ratio tokamaks. A novel implementation with two-dimensional (2D) steering was necessary to enable DBS measurements in MAST, where the large variation of the magnetic field pitch angle presents a challenge. We report on the scattering considerations and ray tracing calculations used to optimize the design and present data demonstrating measurement capabilities. Initial results confirm the applicability of the design and implementation approaches, showing the strong dependence of scattering alignment on the toroidal launch angle and demonstrating that DBS is sensitive to the local magnetic field pitch angle. We also present comparisons of DBS plasma velocity measurements with charge exchange recombination and beam emission spectroscopy measurements, which show reasonable agreement over most of the minor radius, but imply large poloidal flows approaching the magnetic axis in a discharge with an internal transport barrier. The 2D steering is shown to enable high-k measurements with DBS, at {{k}\\bot}>20 cm-1 ({{k}\\bot}{ρi}>10 ) for launch frequencies less than 75 GHz; this capability is used to measure the wavenumber spectrum of turbulence and we find \\mid n≤ft({{k}\\bot}\\right){{\\mid}2}\\propto k\\bot-4.7+/- 0.2 for {{k}\\bot}{ρi}≈ 7 -11, which is similar to the expectation for the turbulent kinetic cascade of \\mid n≤ft({{k}\\bot}\\right){{\\mid}2}\\propto

  4. Analysis of edge density fluctuation measured by trial KSTAR beam emission spectroscopy system

    SciTech Connect

    Nam, Y. U.; Zoletnik, S.; Lampert, M.; Kovacsik, A.

    2012-10-15

    A beam emission spectroscopy (BES) system based on direct imaging avalanche photodiode (APD) camera has been designed for Korea Superconducting Tokamak Advanced Research (KSTAR) and a trial system has been constructed and installed for evaluating feasibility of the design. The system contains two cameras, one is an APD camera for BES measurement and another is a fast visible camera for position calibration. Two pneumatically actuated mirrors were positioned at front and rear of lens optics. The front mirror can switch the measurement between edge and core region of plasma and the rear mirror can switch between the APD and the visible camera. All systems worked properly and the measured photon flux was reasonable as expected from the simulation. While the measurement data from the trial system were limited, it revealed some interesting characteristics of KSTAR plasma suggesting future research works with fully installed BES system. The analysis result and the development plan will be presented in this paper.

  5. Alfven resonance mode conversion in the Phaedrus-T current drive experiments: Modelling and density fluctuations measurements

    SciTech Connect

    Vukovic, M.; Harper, M.; Breun, R.; Wukitch, S.

    1995-12-31

    Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode converted kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.

  6. Density fluctuations in vibrated granular materials

    SciTech Connect

    Nowak, E.R.; Knight, J.B.; Ben-Naim, E.; Jaeger, H.M.; Nagel, S.R.

    1998-02-01

    We report systematic measurements of the density of a vibrated granular material as a function of time. Monodisperse spherical beads were confined to a cylindrical container and shaken vertically. Under vibrations, the density of the pile slowly reaches a final steady-state value about which the density fluctuates. We have investigated the frequency dependence and amplitude of these fluctuations as a function of vibration intensity {Gamma}. The spectrum of density fluctuations around the steady state value provides a probe of the internal relaxation dynamics of the system and a link to recent thermodynamic theories for the settling of granular material. In particular, we propose a method to evaluate the compactivity of a powder, first put forth by Edwards and co-workers, that is the analog to temperature for a quasistatic powder. We also propose a stochastic model based on free volume considerations that captures the essential mechanism underlying the slow relaxation. We compare our experimental results with simulations of a one-dimensional model for random adsorption and desorption. {copyright} {ital 1998} {ital The American Physical Society}

  7. Quantum density fluctuations in classical liquids.

    PubMed

    Ford, L H; Svaiter, N F

    2009-01-23

    We discuss the density fluctuations of a fluid due to zero point motion, assuming a linear dispersion relation. We argue that density fluctuations in a fluid can be a useful analog model for better understanding fluctuations in relativistic quantum field theory. We calculate the differential cross section for light scattering by the zero point density fluctuations, and find a result proportional to the fifth power of the light frequency. We give some estimates of the relative magnitude of this effect compared to the scattering by thermal density fluctuations, and find that it can be of the order 13% for liquid neon at optical frequencies. This relative magnitude is proportional to frequency and inversely proportional to temperature. Although the scattering by zero point density fluctuation is small, it may be observable.

  8. Coherent Density Fluctuations in the HSX Stellarator

    NASA Astrophysics Data System (ADS)

    Deng, C. B.; Brower, D. L.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.; Smoniewski, J.; Talmadge, J. N.

    2015-11-01

    A multi-channel interferometer system is used to measure equilibrium density profile and its fluctuations in the HSX stellarator. Low-frequency, coherent density fluctuations are observed in certain quasi-helically symmetric (QHS) plasma conditions and has characteristic frequency of 15kHz. The mode is observed for small displacement of the 1st harmonic O-mode ECRH location inward from the magnetic axis. This mode is also observed on magnetic fluctuation signal, using external coils, which shows n =1. When HSX is operated without quasi-helical symmetry (mirror configuration), a coherent electrostatic mode at 28 kHz is observed. While the coherent mode in QHS plasmas shows ballooning effect, the coherent mode in Mirror plasma exhibits an anti-ballooning characteristic. Mode radial structure can be obtained from inversion of interferometer measurement when the m number is known. Under certain Mirror conditions, the coherent modes display strong bi-coherence on Langmuir probe signals. Detailed characterization of the observed coherent modes will be reported and their identification will be explored. Supported by USDOE grants DE-FG03-01ER54615 and DE-FG02-93ER54222.

  9. Measurements of the cross-phase angle between density and electron temperature fluctuations and comparison with gyrokinetic simulations

    SciTech Connect

    White, A. E.; Peebles, W. A.; Rhodes, T. L.; Schmitz, L.; Carter, T. A.; Hillesheim, J. C.; Doyle, E. J.; Zeng, L.; Holland, C. H.; Wang, G.; McKee, G. R.; Staebler, G. M.; Waltz, R. E.; DeBoo, J. C.; Petty, C. C.; Burrell, K. H.

    2010-05-15

    This paper presents new measurements of the cross-phase angle, alpha{sub n{sub eT{sub e}}}, between long-wavelength (k{sub t}hetarho{sub s}<0.5) density, n-tilde{sub e}, and electron temperature, T-tilde{sub e}, fluctuations in the core of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] tokamak plasmas. The coherency and cross-phase angle between n-tilde{sub e} and T-tilde{sub e} are measured using coupled reflectometer and correlation electron cyclotron emission diagnostics that view the same plasma volume. In addition to the experimental results, two sets of local, nonlinear gyrokinetic turbulence simulations that are performed with the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are described. One set, called the pre-experiment simulations, was performed prior to the experiment in order to predict a change in alpha{sub n{sub eT{sub e}}} given experimentally realizable increases in the electron temperature, T{sub e}. In the experiment the cross-phase angle was measured at three radial locations (rho=0.55, 0.65, and 0.75) in both a 'Base' case and a 'High T{sub e}' case. The measured cross-phase angle is in good qualitative agreement with the pre-experiment simulations, which predicted that n-tilde{sub e} and T-tilde{sub e} would be out of phase. The pre-experiment simulations also predicted a decrease in cross-phase angle as T{sub e} is increased. Experimentally, this trend is observed at the inner two radial locations only. The second set of simulations, the postexperiment simulations, is carried out using local parameters taken from measured experimental profiles as input to GYRO. These postexperiment simulation results are in good quantitative agreement with the measured cross-phase angle, despite disagreements with transport fluxes. Directions for future modeling and experimental work are discussed.

  10. Electron cyclotron emission as a density fluctuation diagnostic

    SciTech Connect

    Lynn, A.G.; Phillips, P.E.; Hubbard, A.

    2004-10-01

    A new technique for measuring density fluctuations using a high-resolution heterodyne electron cyclotron emission (ECE) radiometer has been developed. Although ECE radiometry is typically used for electron temperature measurements, the unique viewing geometry of this system's quasioptical antenna has been found to make the detected emission extremely sensitive to refractive effects under certain conditions. This sensitivity gives the diagnostic the ability to measure very low levels of density fluctuations in the core of Alcator C-Mod tokamak. The refractive effects have been modeled using ray-tracing methods, allowing estimates of the density fluctuation magnitude and spatial localization.

  11. Measurement of high-frequency density fluctuations using far-forward collective scattering and interferometric techniques in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James; Chapman, Brett; Sarff, John; Ding, Weixing; Brower, David; Lin, Liang

    2012-10-01

    In standard RFP plasmas, transport is governed by magnetic fluctuations associated with global tearing modes. For improved-confinement plasmas using inductive current profile control (PPCD), smaller-scale fluctuations at higher frequencies might become important for transport, especially drift-wave-like instabilities which may be theoretically unstable for the larger temperature gradients achieved. On the MST-RFP, an 11-chord laser-based diagnostic with ˜8 cm chord spacing is and frequency 694 GHz used to measure electron density fluctuations both interferometrically and by far-forward collective scattering. The existing diagnostic configuration measures the line-integrated fluctuations within the divergence of the probe beam covering a wavenumber range k<1.3 cm-1, corresponding to kρs <1.3 (ρs is the ion-sound Larmor radius). Of particular interest is comparing fluctuations in standard and PPCD plasmas. Relative to standard plasmas, tearing mode and higher frequency broadband fluctuations (up to 600 kHz) are suppressed with PPCD. This suppression in PPCD plasmas corresponds to the improved confinement. A diagnostic upgrade, in progress, will improve sensitivity and cover shorter wavelengths. Work supported by U.S.D.O.E.

  12. Origin of density fluctuations in extended inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Salopek, David S.; Turner, Michael S.

    1990-01-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies.

  13. Density fluctuations from strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Vilenkin, A.; Shafi, Q.

    1983-01-01

    The spectra of density fluctuations caused by strings in a universe dominated either by baryons, neutrinos, or axions are presented. Realistic scenarios for galaxy formation seem possible in all three cases. Examples of grand unified theories which lead to strings with the desired mass scales are given.

  14. Density fluctuations and correlations of confined fluids

    NASA Astrophysics Data System (ADS)

    Varea, C.; Robledo, A.

    The density fluctuations about the equilibrium structure of fluids confined by parallel planar walls are analyzed for the cases of identical and symmetrically opposed fields at the walls. We determine the stability matrix (of the second derivatives of the free energy functional with respect to the density) for conditions both above and below the wetting transition temperature Tw of the semi-infinite system and corroborate in all cases that the equilibrium configurations are stable. We identify the fluctuations close to the walls and in the middle of the slab and discuss their effect when the wall separation L diverges. For competing walls above Tw the localized fluctuation with lowest eigenvalue describes the displacements of the incipient wetting films that become unimpeded interfacial translations for L→∞. Below Tw the fluctuations with lowest eigenvalue correspond to stiffer deformations extended across the slab. For identical walls above Tw coexisting states display incipient prewetting films and the lowest eigenvalue describes the nature of their growth as L increases. We also calculate the pair correlation function for the inhomogeneous states and, for symmetrically opposed walls, we obtain standard Ornstein-Zernike (OZ) behavior at the walls, but find significant deviations from this law at the interface-like region in the middle of the slab. To model fluids with short-ranged forces we use a ferromagnetic Ising-type Hamiltonian in mean-field approximation.

  15. Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas

    SciTech Connect

    Sanner, Christian; Su, Edward J.; Keshet, Aviv; Gommers, Ralf; Shin, Yong-il; Huang Wujie; Ketterle, Wolfgang

    2010-07-23

    We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations (atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed for probe volumes containing more than 10 000 atoms. Measuring the level of suppression provides sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly correlated many-body systems.

  16. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  17. Establishing a Nonequilibrium Fluctuation-Dissipation Theorem Through Simultaneous Measurement of the Power Spectral Density and Transfer Function of Driven Systems

    NASA Astrophysics Data System (ADS)

    Trevelyan, Alexander; Corwin, Eric

    2014-03-01

    We explore the response of a model statistical system to strong, non-linear perturbations to its state variables. Specifically, we work with a tunable model of Johnson-Nyquist noise, designed to permit a driving of both the drift and diffusion terms in the associated White Noise Langevin Equation. We achieve a simultaneous measurement of both sides of the Fluctuation Dissipation Theorem (FDT) by driving the circuit with digitally generated white noise and measuring the output. This allows us to calculate a frequency-dependent effective temperature for the driven system, which for an equilibrium system should be set by the energy scale of the input white noise. Comparison of the two sides of FDT-the circuit's transfer function and the power spectral density of the voltage fluctuations-across frequency-space proves non-trivial, and methods are discussed for achieving the most reliable estimate. After comparing the response for a series of functional signals, we find that FDT, measured in this simultaneous fashion, remains intact even while the system is being actively driven out of equilibrium.

  18. Chemical Measurement and Fluctuation Scaling.

    PubMed

    Hanley, Quentin S

    2016-12-20

    Fluctuation scaling reports on all processes producing a data set. Some fluctuation scaling relationships, such as the Horwitz curve, follow exponential dispersion models which have useful properties. The mean-variance method applied to Poisson distributed data is a special case of these properties allowing the gain of a system to be measured. Here, a general method is described for investigating gain (G), dispersion (β), and process (α) in any system whose fluctuation scaling follows a simple exponential dispersion model, a segmented exponential dispersion model, or complex scaling following such a model locally. When gain and dispersion cannot be obtained directly, relative parameters, GR and βR, may be used. The method was demonstrated on data sets conforming to simple, segmented, and complex scaling. These included mass, fluorescence intensity, and absorbance measurements and specifications for classes of calibration weights. Changes in gain, dispersion, and process were observed in the scaling of these data sets in response to instrument parameters, photon fluxes, mathematical processing, and calibration weight class. The process parameter which limits the type of statistical process that can be invoked to explain a data set typically exhibited 0 < α < 1, with α > 4 possible. With two exceptions, calibration weight class definitions only affected β. Adjusting photomultiplier voltage while measuring fluorescence intensity changed all three parameters (0 < α < 0.8; 0 < βR < 3; 0 < GR < 4.1). The method provides a framework for calibrating and interpreting uncertainty in chemical measurement allowing robust comparison of specific instruments, conditions, and methods.

  19. Vacuum density fluctuations in extended chaotic inflation

    NASA Astrophysics Data System (ADS)

    Deruelle, Nathalie; Gundlach, Carsten; Langlois, David

    1992-12-01

    An inflaton (scalar field) with the potential cσ2n is coupled to gravity within the Jordan-Brans-Dicke theory. The corresponding inflationary model (that is, a flat Friedmann-Robertson-Walker solution with a slowly varying inflaton) is constructed for all values of the coupling β of the inflaton to the dilaton (Brans-Dicke scalar field). The linearized perturbations of the metric, the dilaton, and the inflaton are then quantized within a gauge-invariant formalism. The power spectrum of the vacuum density fluctuations is calculated as a function of c,n, and β. It is the juxtaposition of two powers of the wave number corresponding, respectively, to the contribution of the inflaton and the dilaton. We find the value of β for which the dilaton contribution dominates on observable cosmological scales.

  20. Energy density fluctuations in early universe

    SciTech Connect

    Guardo, G. L.; Ruggieri, M.; Greco, V.

    2014-05-09

    The primordial nucleosinthesys of the element can be influenced by the transitions of phase that take place after the Big Bang, such as the QCD transition. In order to study the effect of this phase transition, in this work we compute the time evolution of thermodynamical quantities of the early universe, focusing on temperature and energy density fluctuations, by solving the relevant equations of motion using as input the lattice QCD equation of state to describe the strongly interacting matter in the early universe plasma. We also study the effect of a primordial strong magnetic field by means of a phenomenological equation of state. Our results show that small inhomogeneities of strongly interacting matter in the early Universe are moderately damped during the crossover.

  1. In situ measurements of density fluctuations and compressibility in silica glasses as a function of temperature and thermal history

    SciTech Connect

    Levelut, C.; Faivre, A; Le Parc, R.; Champagnon, B.; Hazemann, J.-L.; Simon, J.-P.

    2005-12-01

    In this paper, small-angle x-ray scattering measurements are used to determine the different compressibility contributions, as well as the isothermal compressibility {chi}{sub T}{sup 0} in thermal equilibrium in silica glasses having different thermal histories. Using two different methods of analysis, in the supercooled liquid and in the glassy state, we obtain, respectively, the temperature and fictive temperature dependences of {chi}{sub T}{sup 0}. The values obtained in the glass and supercooled liquid states are very close to each other. They agree with previous determinations of the literature. The compressibility in the glass state slightly decreases with increasing fictive temperature. The relaxational part of the compressibility is also calculated and compared to previous determinations. We discussed the small differences between the different determinations.

  2. Compaction and density fluctuations in vibrated granular media

    NASA Astrophysics Data System (ADS)

    Barnum, A. C. B.; Ozbay, A.; Nowak, E. R.

    2002-03-01

    We report measurements of the density of a vibrated granular material as a function of time or taps. The material studied consists of monodisperse spherical glass beads confined to a long, thin cylindrical tube. Changes in vibration intensity are used to induce transitions between two steady state densities that depend on the intensity of the vibrations. We find a complex time evolution similar to previous work on the irreversible relaxation from a loose state toward a steady state. In addition, frequency dependent third order moments of the density fluctuations are measured. The data indicate a coupling between large variations in density on one time scale and noise power over a broad range of higher-frequency scales. This work was partly supported by Petroleum Research Foundation under award No. 35861-G5.

  3. Compaction and Density Fluctuations in Vibrated Granular Media

    NASA Astrophysics Data System (ADS)

    Barnum, A. C. B.; Ozbay, Arif; Nowak, E. R.

    We report measurements of the density of a vibrated granular material as a function of time or taps. The material studied consists of monodisperse spherical glass beads confined to a long, thin cylindrical tube. Changes in vibration intensity are used to induce transitions between two steady state densities that depend on the intensity of the vibrations. We find a complex time evolution similar to previous work on the irreversible relaxation from a loose state toward a steady state. In addition, frequency dependent third order moments of the density fluctuations are measured. The data indicate a coupling between large variations in density on one time scale and noise power over a broad range of higher-frequency scales.

  4. Critical Slowing of Density Fluctuations Approaching the Isotropic-Nematic Transition in Liquid Crystals: 2D IR Measurements and Mode Coupling Theory.

    PubMed

    Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D

    2016-07-21

    Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid.

  5. Laser-Based Faraday-Effect Measurement of Magnetic Fluctuations and Fluctuation-Induced Transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Brower, D. L.; Ding, W. X.; Sarff, J. S.

    2013-10-01

    A multichord far-infrared laser-based Faraday-effect polarimetry diagnostic has been well developed on MST. Combined polarimetry-interferometry capability permits simultaneous measurement of internal structure of density and magnetic field with fast time response (~ 4 μs) and low phase noise (< 0 .01°) . With this diagnostic, the impact on toroidal current profile from a tangentially injected neutral beam is directly measured, allowing evaluation of non-inductive current drive. In addition, 0 .05° Faraday-effect fluctuations associated with global tearing modes are resolved with an uncertainty below 0 .01° . For physics investigations, these Faraday-effect fluctuations are complicated by contributions from both density and magnetic fluctuations. In our analysis, the local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic fluctuations are then reconstructed using a parameterized fit of the polarimetry data, accounting for both the density and magnetic contributions. For the same mode, density and radial magnetic fluctuations exhibit very different spatial structure. In this process, their relative phase is also determined, thereby allowing the determination of magnetic-fluctuation-induced transport. Work supported by US DoE.

  6. The Transport of Density Fluctuations Throughout the Heliosphere

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Jetha, N.; Hu, Q.; Hunana, P.

    2012-01-01

    The solar wind is recognized as a turbulent magnetofluid, for which the properties of the turbulent velocity and magnetic field fluctuations are often described by the equations of incompressible magnetohydrodynamics (MHD). However, low-frequency density turbulence is also ubiquitous. On the basis of a nearly incompressible formulation of MHD in the expanding inhomogeneous solar wind, we derive the transport equation for the variance of the density fluctuations (Rho(exp 2)). The transport equation shows that density fluctuations behave as a passive scalar in the supersonic solar wind. In the absence of sources of density turbulence, such as within 1AU, the variance (Rho(exp 2)) approximates r(exp -4). In the outer heliosphere beyond 1 AU, the shear between fast and slow streams, the propagation of shocks, and the creation of interstellar pickup ions all act as sources of density turbulence. The model density fluctuation variance evolves with heliocentric distance within approximately 300 AU as (Rho(exp 2)) approximates r(exp -3.3) after which it flattens and then slowly increases. This is precisely the radial profile for the density fluctuation variance observed by Voyager 2. Using a different analysis technique, we confirm the radial profile for Rho(exp 2) of Bellamy, Cairns, & Smith using Voyager 2 data. We conclude that a passive scalar description for density fluctuations in the supersonic solar wind can explain the density fluctuation variance observed in both the inner and the outer heliosphere.

  7. Density-noise power fluctuations in vibrated granular media

    NASA Astrophysics Data System (ADS)

    Nowak, E. R.; Grushin, A.; Barnum, A. C.; Weissman, M. B.

    2001-02-01

    The noise power spectra of the fluctuations in density of a vibrated column of granular material are found to be time dependent. Spectral analysis of these noise power fluctuations shows nontrivial frequency dependences. The noise powers at different frequencies are also found to fluctuate in a partially correlated way. In most instances, the slow variations of the noise are strongly correlated over a broad range of frequencies. These results indicate that highly cooperative interactions exist between fluctuators. In contrast, effects of such strongly coupled fluctuators are absent in the one-dimensional parking-lot-model, one of the simplest systems used to provide a model for recent granular compaction experiments.

  8. Analog measurement of scattered optical fluctuations

    NASA Astrophysics Data System (ADS)

    Smith, P. R.; Green, D. A.

    1995-12-01

    A statistical model that describes the analog measurement of a fluctuating light intensity that arises from a non-Gaussian scattering process is developed. The higher-order statistical moments are derived for a p-i-n diode receiver model and gamma-distributed intensity fluctuations. Criteria for the accurate measurement of the scattering fluctuations are found, and these are used to analyze data derived from an on-line scatterometer system. Implications for future on-line measurement technology are discussed.

  9. Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes.

    PubMed

    Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I

    2006-04-07

    We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.

  10. Designing density fluctuation spectra in inflation

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Bond, J. R.; Bardeen, J. M.

    1989-09-01

    Scale-invariant (flat) fluctuation spectra are the most natural outcomes of inflation. Nonetheless current large-scale-structure observations seem to indicate more fluctuation power on large scales than flat spectra give. We consider a wide variety of models based on the chaotic inflation paradigm and sketch the effects that varying the expansion rate, structure of the potential surface, and the curvature coupling constants have on the quantum fluctuation spectra. We calculate in detail the quantum generation of fluctuation spectra by numerically solving the linearized perturbation equations for multiple scalar fields, the metric, and the radiation into which the scalars dissipate, following the evolution from inside the horizon through reheating. We conclude that (1) useful extended nonflat power laws are very difficult to realize in inflation, (2) double inflation leading to a mountain leveling off at a high-amplitude plateau at long wavelengths is generic, but to tune the cliff rising up to the plateau to lie in an interesting wavelength range, a special choice of initial conditions and/or scalar field potentials is required, and (3) small mountains (moguls) on the potential surface lead to mountains of extra power in the fluctuations added on top of an underlying flat spectrum. For quadratic and quartic couplings, the mountain fluctuations may obey Gaussian statistics but the spectral form will be very sensitive to initial conditions as well as potential parameters; non-Gaussian mountain fluctuations which depend upon potential parameters but not on initial field conditions will be the more likely outcome. However, adding cubic couplings can give mountains obeying Gaussian statistics independently of initial conditions. Since observations only probe a narrow patch of the potential surface, it is possible that it is littered with moguls, leading to arbitrarily complex ``mountain range'' spectra that can only be determined phenomenologically. We also construct an

  11. Interplay between density and superconducting quantum critical fluctuations.

    PubMed

    Caprara, S; Bergeal, N; Lesueur, J; Grilli, M

    2015-10-28

    We consider the case of a density-driven metal-superconductor transition in the proximity of an electronic phase separation. In particular, we investigate the interplay between superconducting fluctuations and density fluctuations, which become quantum critical when the electronic phase separation vanishes at zero temperature into a quantum critical point. In this situation, the critical dynamical density fluctuations strongly affect the dynamics of the Cooper-pair fluctuations, which acquire a more singular character with a z  =  3 dynamical critical index. This gives rise to a scenario that possibly rules the disappearance of superconductivity when the electron density is reduced by electrostatic gating at the LaAlO3/SrTiO3 interface.

  12. Direct measurement of antiferromagnetic domain fluctuations.

    PubMed

    Shpyrko, O G; Isaacs, E D; Logan, J M; Feng, Yejun; Aeppli, G; Jaramillo, R; Kim, H C; Rosenbaum, T F; Zschack, P; Sprung, M; Narayanan, S; Sandy, A R

    2007-05-03

    Measurements of magnetic noise emanating from ferromagnets owing to domain motion were first carried out nearly 100 years ago, and have underpinned much science and technology. Antiferromagnets, which carry no net external magnetic dipole moment, yet have a periodic arrangement of the electron spins extending over macroscopic distances, should also display magnetic noise. However, this must be sampled at spatial wavelengths of the order of several interatomic spacings, rather than the macroscopic scales characteristic of ferromagnets. Here we present a direct measurement of the fluctuations in the nanometre-scale superstructure of spin- and charge-density waves associated with antiferromagnetism in elemental chromium. The technique used is X-ray photon correlation spectroscopy, where coherent X-ray diffraction produces a speckle pattern that serves as a 'fingerprint' of a particular magnetic domain configuration. The temporal evolution of the patterns corresponds to domain walls advancing and retreating over micrometre distances. This work demonstrates a useful measurement tool for antiferromagnetic domain wall engineering, but also reveals a fundamental finding about spin dynamics in the simplest antiferromagnet: although the domain wall motion is thermally activated at temperatures above 100 K, it is not so at lower temperatures, and indeed has a rate that saturates at a finite value-consistent with quantum fluctuations-on cooling below 40 K.

  13. Density fluctuations at high density in the ergodic divertor configuration of Tore Supra

    NASA Astrophysics Data System (ADS)

    Devynck, P.; Gunn, J.; Ghendrih, Ph.; Garbet, X.; Antar, G.; Beyer, P.; Boucher, C.; Honore, C.; Gervais, F.; Hennequin, P.; Quémeneur, A.; Truc, A.

    2001-03-01

    The effect of the ergodic divertor on the plasma edge in Tore Supra is to enhance the perpendicular transport through ergodization of the magnetic field lines [Ph. Ghendrih et al., Contrib. Plasma Phys. 32 (3&4) (1992) 179]. Nevertheless, the hot spots observed on the divertor plates during ergodic divertor operation indicate that the cross-field transport driven by the fluctuations is still playing an important role, although measurements by CO 2 laser scattering and reflectometry show a decrease of the turbulence level [J. Payan, X. Garbet, J.H. Chatenet et al., Nucl. Fusion 35 (1995) 1357; P. Beyer, X. Garbet, P. Ghendrih, Phys. Plasmas 5 (12) (1998) 4271]. In order to gain more understanding, fluctuation level and poloidal velocity have been measured with a reciprocating Langmuir probe biased to collect the ion saturation current ( jsat) and with a CO 2 laser scattering diagnostic. Though the relative fluctuation level behaves as previously observed at low density, a new interesting result is that this picture is gradually modified when the density is increased. Both diagnostics observe an increase of δn/ n with density in the ergodic region, which is not the usual behavior observed in limiter configuration. This increase is detected on both sides of the Er inversion radius and is therefore also affecting the plasma bulk. Finally, the confinement time is found to follow an L-mode law at all densities indicating that the ergodic divertor does not change the global confinement properties of the plasma.

  14. Extension of the coherence function to quadratic models. [applied to plasma density and potential fluctuations

    NASA Technical Reports Server (NTRS)

    Kim, Y. C.; Wong, W. F.; Powers, E. J.; Roth, J. R.

    1979-01-01

    It is shown how the use of higher coherence functions can recover some of the lost coherence due to nonlinear relationship between two fluctuating quantities whose degree of mutual coherence is being measured. The relationship between the two processes is modeled with the aid of a linear term and a quadratic term. As a specific example, the relationship between plasma density and potential fluctuations in a plasma is considered. The fraction of power in the auto-power spectrum of the potential fluctuations due to a linear relationship and to a quadratic relationship between the density and potential fluctuations is estimated.

  15. Density Fluctuation Induced Kinetic Dynamo and Tearing Mode Nonlinear Saturation in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Lin, Liang; Duff, J. R.; Brower, D. L.; Sarff, J. S.

    2014-10-01

    In the MST reversed field pinch (RFP), the evolution of core tearing mode nonlinear evolution is partially determined by the electron current density profile along with nonlinear interactions among multiple tearing modes. Density fluctuations driven by intrinsic magnetic perturbations are usually large, approximately 1%, in RFP plasmas. These density fluctuations can modify the current density profile via the kinetic dynamo effect, defined as the correlated product of parallel electron pressure and radial magnetic field fluctuations, which alters the temporal dynamics of tearing modes in MST. A component of the kinetic dynamo originating from the correlated product of density and radial magnetic fluctuations has been measured using a high-speed, low phase noise polarimetry-interferometry diagnostic. Between sawtooth crashes it is found that the measured kinetic dynamo has finite amplitude that generates an anti-dynamo in the plasma core, which would tend to flatten the current density profile. These measurements suggest that density fluctuations passively driven by magnetic fluctuations can actively alter tearing modes via fluctuation-induced current transport. Work supported by US DOE and NSF.

  16. The Phase Coherence of Interstellar Density Fluctuations

    NASA Astrophysics Data System (ADS)

    Burkhart, Blakesley; Lazarian, A.

    2016-08-01

    Studies of MHD turbulence often investigate the Fourier power spectrum to provide information on the nature of the turbulence cascade. However, the Fourier power spectrum only contains the Fourier amplitudes and rejects all information regarding the Fourier phases. Here, we investigate the utility of two statistical diagnostics for recovering information on Fourier phases in ISM column density maps: the averaged amplitudes of the bispectrum and the phase coherence index (PCI), a new phase technique for the ISM. We create three-dimensional density and two-dimensional column density maps using a set of simulations of isothermal ideal MHD turbulence with a wide range of sonic and Alfvénic Mach numbers. We find that the bispectrum averaged along different angles with respect to either the k 1 or k 2 axis is primarily sensitive to the sonic Mach number while averaging the bispectral amplitudes over different annuli is sensitive to both the sonic and Alfvénic Mach numbers. The PCI of density suggests that the most correlated phases occur in supersonic sub-Alfvénic turbulence and near the shock scale. This suggests that nonlinear interactions with correlated phases are strongest in shock-dominated regions, in agreement with findings from the solar wind. Our results suggest that the phase information contained in the bispectrum and PCI can be used to find the turbulence parameters in column density maps.

  17. Intermittency of density fluctuations upstream and downstream interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Riazantseva, Maria; Budaev, Viacheslav; Rakhmanova, Lyudmila; Borodkova, Natalia; Zastenker, Georgy; Yermolaev, Yuri; Safrankova, Jana; Nemecek, Zdenek; Pitna, Alexander; Prech, Lubomir

    2017-04-01

    The statistical properties of density fluctuations in a turbulent solar wind flow in the vicinity of interplanetary (IP) shocks are observed. We analyze probability distribution functions (PDFs) of density fluctuations in the frequency range of 0.01-10 Hz according to measurements of the BMSW instrument on board of Spektr-R. We determine high order structure functions, their moments and scaling properties of PDFs upstream and downstream IP shocks. The experimental scaling is compared with the scaling predicted by the traditional Kolmogorov and by log-Poisson models taking into account intermittency. We produce the parameterization of scaling using She-Leveque-Dubrulle implementation of the log-Poisson model and reveal the difference in the level of intermittency. These levels can vary depending on many plasma agents, but generally, solar wind plasma shows the universal statistical properties not depending on a level of intermittency upstream and downstream IP shocks. The best agreement of experimental scaling is shown for the log-Poisson model with assumption of predominance of a filamentary geometry for singular dissipative structures.

  18. The power associated with density fluctuations and velocity fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.

    1974-01-01

    Direct observations from Pioneer 6 of solar-wind-proton fluctuations have been used to obtain the power spectra associated with solar-wind-proton number density and velocity fluctuations in the frequency range of 0.001 to 0.01 Hz, extending previous analyses by an order of magnitude at the higher frequencies. The slopes of the power spectra associated with the density fluctuations and the velocity fluctuations are similar and are in agreement with the shape of the power spectra found at the lower frequencies. The power spectra indicate that the power-law density spectrum observed at lower frequencies extends to at least 0.01 Hz. This smooth variation in the spectrum at these frequencies is consistent with previous extrapolations of both spacecraft and interplanetary scintillation observations.

  19. The power associated with density fluctuations and velocity fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.

    1974-01-01

    Direct observations from Pioneer 6 of solar-wind-proton fluctuations have been used to obtain the power spectra associated with solar-wind-proton number density and velocity fluctuations in the frequency range of 0.001 to 0.01 Hz, extending previous analyses by an order of magnitude at the higher frequencies. The slopes of the power spectra associated with the density fluctuations and the velocity fluctuations are similar and are in agreement with the shape of the power spectra found at the lower frequencies. The power spectra indicate that the power-law density spectrum observed at lower frequencies extends to at least 0.01 Hz. This smooth variation in the spectrum at these frequencies is consistent with previous extrapolations of both spacecraft and interplanetary scintillation observations.

  20. Density fluctuations of polymers in disordered media

    SciTech Connect

    Deutsch, Joshua M.; Olvera de la Cruz, Monica

    2011-03-02

    We study self-avoiding random walks in an environment where sites are excluded randomly, in two and three dimensions. For a single polymer chain, we study the statistics of the time averaged monomer density and show that these are well described by multifractal statistics. This is true even far from the percolation transition of the disordered medium. We investigate solutions of chains in a disordered environment and show that the statistics cease to be multifractal beyond the screening length of the solution.

  1. Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement

    SciTech Connect

    Nygård, Kim; Sarman, Sten; Hyltegren, Kristin; Chodankar, Shirish; Perret, Edith; Buitenhuis, Johan; van der Veen, J. Friso; Kjellander, Roland

    2016-02-16

    Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.

  2. Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement

    NASA Astrophysics Data System (ADS)

    Nygârd, Kim; Sarman, Sten; Hyltegren, Kristin; Chodankar, Shirish; Perret, Edith; Buitenhuis, Johan; van der Veen, J. Friso; Kjellander, Roland

    2016-01-01

    Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.

  3. The interpretation of reflectometry measurements of plasma fluctuations

    SciTech Connect

    Bretz, N.

    1991-10-01

    Wave reflections from density fluctuations with magnitudes and frequencies typical of drift waves have been investigated. Both drift waves and the reflected phase and amplitude depend on the density gradient scale length, and this common feature implies that both the angular deviation of a normally propagating wave and the phase change on reflection are of order unity. Thus the surface will always appear rough'' and amplitude variations will always be large. For smaller amplitude waves numerical solutions of the one dimensional full wave equation for the propagation near cutoff frequencies has been used to show how to interpret reflectometry measurements. For density perturbations with wavelengths near the density scale length, the external fluctuating phase can be simply interpreted in terms of a fluctuating density near the cutoff layer. However, the amplitude of the phase response falls substantially as the fluctuation wavelength, {Lambda}, approaches the free space wavelength of the reflected wave, {lambda}{sub o}, and the location of the maximum response moves out in front of the cutoff layer following the wave matching condition k{sub {Lambda}} = 2k {approx} 2{eta}(x)k{sub 0}. Similarly, correlation measurements of density fluctuations from probe waves of different wavelengths are shown to be limited to about four times the average reflected wavelength. 12 refs., 9 figs.

  4. Measuring shape fluctuations in biological membranes

    NASA Astrophysics Data System (ADS)

    Monzel, C.; Sengupta, K.

    2016-06-01

    Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes.

  5. Density dependence in demography and dispersal generates fluctuating invasion speeds.

    PubMed

    Sullivan, Lauren L; Li, Bingtuan; Miller, Tom E X; Neubert, Michael G; Shaw, Allison K

    2017-05-09

    Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities-i.e., an Allee effect-combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting.

  6. Plasma density fluctuations observed during Space Shuttle Orbiter water releases

    NASA Technical Reports Server (NTRS)

    Pickett, J. S.; D'Angelo, N.; Kurth, W. S.

    1989-01-01

    Observations by the Langmuir probe on the Plasma Diagnostics Package flown as part of the Spacelab 2 mission in the summer of 1985 show a strong increase in the level of turbulence near the Shuttle Orbiter during operations in which liquid water is released. The spectrum of the plasma density fluctuations peaks at the lowest frequencies measured (a few Hz) and extends up to a few kHz, near the lower hybrid frequency. Two potential mechanisms for generating the plasma turbulence are suggested which are both based on the production of water ions as a result of charge exchange with the ambient oxygen ions in the ionosphere. The first mechanism proposed is the ion-plasma instability which arises from the drift of the contaminant with respect to the ambient oxygen ions. The other mechanism proposed is the Ott-Farley instability, which is a result of the ring distribution formed by the 'pick-up' water ions.

  7. Mesonic and nucleon fluctuation effects at finite baryon density

    NASA Astrophysics Data System (ADS)

    Fejős, G.; Hosaka, A.

    2017-06-01

    Mesonic and nucleon fluctuation effects are investigated in medium. We couple the nucleon field to the 2 +1 flavor meson model and investigate the finite temperature and density behavior of the system, in particular, the axial anomaly function. Somewhat contrary to earlier expectations, we find that it tends to strengthen at finite density. At lower temperatures, nucleon density fluctuations can cause a relative difference in the UA(1 ) axial anomaly of about 20%. This has important consequences on the mesonic spectra, especially on the η -η' system, as we observe no drop in the η' mass as a function of the baryochemical potential, irrespective of the temperature. Based on the details of chiral symmetry restoration, it is argued that there has to be a competition between underlying QCD effects of the anomaly and fluctuations of the low energy hadronic degrees of freedom, and the fate of the UA(1 ) coefficient should be decided by taking into account both effects simultaneously.

  8. Measurement of quantum fluctuations in geometry

    SciTech Connect

    Hogan, Craig J.

    2008-05-15

    A particular form for the quantum indeterminacy of relative spacetime position of events is derived from the context of a holographic geometry with a minimum length at the Planck scale. The indeterminacy predicts fluctuations from a classically defined geometry in the form of ''holographic noise'' whose spatial character, absolute normalization, and spectrum are predicted with no parameters. The noise has a distinctive transverse spatial shear signature and a flat power spectral density given by the Planck time. An interferometer signal displays noise due to the uncertainty of relative positions of reflection events. The noise corresponds to an accumulation of phase offset with time that mimics a random walk of those optical elements that change the orientation of a wavefront. It only appears in measurements that compare transverse positions and does not appear at all in purely radial position measurements. A lower bound on holographic noise follows from a covariant upper bound on gravitational entropy. The predicted holographic noise spectrum is estimated to be comparable to measured noise in the currently operating interferometric gravitational-wave detector GEO600. Because of its transverse character, holographic noise is reduced relative to gravitational wave effects in other interferometer designs, such as the LIGO observatories, where beam power is much less in the beam splitter than in the arms.

  9. Collective motion and density fluctuations in bacterial colonies

    NASA Astrophysics Data System (ADS)

    Zhang, Hepeng; Be'Er, Avraham; Florin, E.-L.; Swinney, Harry L.

    2010-03-01

    The emergence of collective motion such as in fish schools and swarming bacteria is a ubiquitous self-organization phenomenon. Such collective behavior plays an important role in a range of phenomenon, such as formation and migration of animal or fish groups. To understand the collective motion, tracking of large numbers of individuals is needed, but such measurements have been lacking. Here we examine a microscopic system, where we are able to measure simultaneously the positions, velocities, and orientations of up to a thousand bacteria in a colony. The motile bacteria form closely-packed dynamic clusters within which they move cooperatively. The number of bacteria in a cluster exhibits a power-law distribution truncated by an exponential tail, and the probability of finding large clusters grows markedly as bacterial density increases. Mobile clusters exhibit anomalous fluctuations in bacterial density: the standard deviation (δN) grows with the mean (N) of the number of bacteria as δN˜N^3/4 rather than δN˜N^1/2, as in thermal equilibrium systems.

  10. Quantum phase fluctuations and density of states in superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Radkevich, Alexey; Semenov, Andrew G.; Zaikin, Andrei D.

    2017-08-01

    We argue that quantum fluctuations of the phase of the order parameter may strongly affect the electron density of states (DOS) in ultrathin superconducting wires. We demonstrate that the effect of such fluctuations is equivalent to that of a quantum dissipative environment formed by soundlike plasma modes propagating along the wire. We derive a nonperturbative expression for the local electron DOS in superconducting nanowires which fully accounts for quantum phase fluctuations. At any nonzero temperature these fluctuations smear out the square-root singularity in DOS near the superconducting gap and generate quasiparticle states at subgap energies. Furthermore, at sufficiently large values of the wire impedance this singularity is suppressed down to T =0 in which case DOS tends to zero at subgap energies and exhibits the power-law behavior above the gap. Our predictions can be directly tested in tunneling experiments with superconducting nanowires.

  11. Collective motion and density fluctuations in swimming bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Hepeng

    2011-03-01

    The emergence of collective motion such as in fish schools, mammal herds, and insect swarms is a ubiquitous self-organization phenomenon. Such collective behavior plays an important role in a range of problems, such as spreading of deceases in animal or fish groups. Current models have provided a qualitative understanding of collective motion, but progress in quantitative modeling in hindered by the lack of experimental data. Here we examine a model microscopic system, where we are able to measure simultaneously the positions, velocities, and orientations of up to a thousand bacteria in a colony. The motile bacteria form closely-packed dynamic clusters within which they move cooperatively. The number of bacteria in a cluster exhibits a power-law distribution truncated by an exponential tail, and the probability of finding large clusters grows markedly as bacterial density increases. Mobile clusters cause anomalous fluctuations in bacterial density as found in mathematical theories and numerical models. Our results demonstrate that bacteria are an excellent system to study general phenomena of collective motion.

  12. Micrometer-scale electrical breakdown in high-density fluids with large density fluctuations: Numerical model and experimental assessment.

    PubMed

    Muneoka, Hitoshi; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2015-04-01

    Experimentally observed electrical breakdown voltages (U(B)) in high-pressure gases and supercritical fluids deviate from classical theories for low-pressure gas discharges, and the underlying breakdown mechanisms for the high-density fluids making the U(B) differ from those in the classical discharges are not yet well understood. In this study, we developed an electrical breakdown model for the high-density fluids taking into account the effects of density fluctuations and ion-enhanced field emission (IEFE). The model is based on the concept that a critical anomaly of the U(B) (local minimum near the critical point) is caused by long mean free electron path leading to a large first Townsend coefficient in locally low-density spatial domains generated by the density fluctuations. Also, a modified Paschen's curve considering the effect of the IEFE on the second Townsend coefficient was used to reproduce the U(B) curve in the high-density fluids. Calculations based on the novel model showed good agreements with the experimentally measured U(B) even near the critical point and it also suggested that the critical anomaly of the U(B) depends on the gap distance. These results indicate that both the density fluctuations and the IEFE have to be considered to comprehend the plasmas in high-density and density-fluctuating fluids.

  13. Discriminating the trapped electron modes contribution in density fluctuation spectra

    NASA Astrophysics Data System (ADS)

    Arnichand, H.; Sabot, R.; Hacquin, S.; Krämer-Flecken, A.; Bourdelle, C.; Citrin, J.; Garbet, X.; Giacalone, J. C.; Guirlet, R.; Hillesheim, J. C.; Meneses, L.

    2015-09-01

    Quasi-coherent (QC) modes have been reported for more than 10 years in reflectometry fluctuations spectra in the core region of fusion plasmas. They have characteristics in-between coherent and broadband fluctuations as they oscillate at a marked frequency but have a wide spectrum. This work presents further evidences of the link recently established between QC modes and the trapped electron modes (TEM) instabilities (Arnichand et al 2014 Nucl. Fusion 54 123017). In electron cyclotron resonance heated discharges of Tore Supra, an enhancement of QC modes amplitude is observed in a region where TEM cause impurity transport and turbulence. In JET Ohmic plasmas, QC modes disappear during density ramp-up and current ramp-down. This is reminiscent of Tore Supra and TEXTOR observations during transitions from the linear Ohmic confinement (LOC) to the saturated Ohmic confinement (SOC) regimes. Evidencing TEM activity then becomes experimentally possible via analysis of fluctuation spectra.

  14. Baryon number fluctuations at finite temperature and density

    NASA Astrophysics Data System (ADS)

    Fu, Wei-jie; Pawlowski, Jan M.; Rennecke, Fabian; Schaefer, Bernd-Jochen

    2016-12-01

    We investigate baryon number fluctuations for finite temperature and density in two-flavor QCD. This is done within a QCD-improved low-energy effective theory in an extension of the approach put forward by Fu and Pawlowski [Phys. Rev. D 92, 116006 (2015), 10.1103/PhysRevD.92.116006 and Phys. Rev. D 93, 091501 (2016), 10.1103/PhysRevD.93.091501]. In the present work, we aim to improve the predictive power of this approach for large temperatures and, in partitular, large densities, that is, for small collision energies. This is achieved by taking into account the full frequency dependence of the quark dispersion. This ensures the necessary Silver Blaze property of finite density QCD for the first time, which so far was only implemented approximately. Moreover, we show that Polyakov-loop fluctuations have a sizeable impact at large temperatures and density. The results for the kurtosis of baryon number fluctuations are compared to previous effective theory results, lattice results, and recent experimental data from STAR.

  15. Multifield measurement of magnetic fluctuation-induced particle flux in a high-temperature toroidal plasma

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2016-12-01

    Magnetic fluctuation-induced particle transport is explored in the high-temperature, high-beta interior of the Madison symmetric torus (MST) reversed-field pinch by performing a multifield measurement of the correlated product of magnetic and density fluctuations associated with global resistive tearing modes. Local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of Faraday-effect polarimetry measurements. Reconstructed 2D images of density and current density perturbations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved. The convective magnetic fluctuation-induced particle flux profile is measured for both standard and high-performance plasmas in MST with tokamak-like confinement, showing large reduction in the flux during improved confinement.

  16. An instrument for measuring turbulent pressure fluctuations

    NASA Astrophysics Data System (ADS)

    Papadimitrakis, Yiannis Alex; Hsu, En Yu; Street, Robert L.

    1986-04-01

    An instrument is described for laboratory measurements of the fluctuating static pressure in the turbulent boundary layer above progressive water waves. It consists of a disk-shaped sensing head properly designed to minimize the dynamic pressure variation to an acceptable level, a commercially available piezocrystal transducer housed inside a casing, and a forward-bent connecting tube. Pressure fluctuations sampled by the disk are converted into an electrical signal by the piezocrystal transducer. Through low-pass filtering, only the frequency range of interest is retained. The instrument was tested successfully for frequency response, dynamic and mechanical noise sensitivity, and response to spurious pressure fluctuations (produced when operating in a Eulerian wave-following mode) inside a cylindrical chamber and in a wind-wave facility, and some sample results along with the calibration procedures and data analysis are presented.

  17. Radial evolution of the energy density of solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Smith, C. W.

    1995-01-01

    On the basis of transport theories appropriate to a radially expanding solar wind, we describe new results for the radial evolution of the energy density in solar wind fluctuations at MHD scales. These models include the effects of 'mixing' and driving as well as the possibility of non-isotropic MHD turbulence. Implications of these results for solar wind heating, cosmic ray diffusion and interstellar pick-up ions will also be addressed.

  18. Radial evolution of the energy density of solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Smith, C. W.

    1995-01-01

    On the basis of transport theories appropriate to a radially expanding solar wind, we describe new results for the radial evolution of the energy density in solar wind fluctuations at MHD scales. These models include the effects of 'mixing' and driving as well as the possibility of non-isotropic MHD turbulence. Implications of these results for solar wind heating, cosmic ray diffusion and interstellar pick-up ions will also be addressed.

  19. Investigation of Density Fluctuations in Supersonic Free Jets and Correlation with Generated Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2000-01-01

    The air density fluctuations in the plumes of fully-expanded, unheated free jets were investigated experimentally using a Rayleigh scattering based technique. The point measuring technique used a continuous wave laser, fiber-optic transmission and photon counting electronics. The radial and centerline profiles of time-averaged density and root-mean-square density fluctuation provided a comparative description of jet growth. To measure density fluctuation spectra a two-Photomultiplier tube technique was used. Crosscorrelation between the two PMT signals significantly reduced electronic shot noise contribution. Turbulent density fluctuations occurring up to a Strouhal number (Sr) of 2.5 were resolved. A remarkable feature of density spectra, obtained from the same locations of jets in 0.5< M<1.5 range, is a constant Strouhal frequency for peak fluctuations. A detailed survey at Mach numbers M = 0.95, 1.4 and 1.8 showed that, in general, distribution of various Strouhal frequency fluctuations remained similar for the three jets. In spite of the similarity in the flow fluctuation the noise characteristics were found to be significantly different. Spark schlieren photographs and near field microphone measurements confirmed that the eddy Mach wave radiation was present in Mach 1.8 jet, and was absent in Mach 0.95 jet. To measure correlation between the flow and the far field sound pressure fluctuations, a microphone was kept at a distance of 50 diameters, 30 deg. to the flow direction, and the laser probe volume was moved from point to point in the flow. The density fluctuations in the peripheral shear layer of Mach 1.8 jet showed significant correlation up to the measurement limit of Sr = 2.5, while for Mach 0.95 jet no correlation was measured. Along the centerline measurable correlation was found from the end of the potential core and at the low frequency range (Sr less than 0.5). Usually the normalized correlation values increased with an increase of the jet Mach

  20. Radial evolution of the intermittency of density fluctuations in the fast solar wind

    SciTech Connect

    Bruno, R.; D'Amicis, R.; Telloni, D.; Primavera, L.; Sorriso-Valvo, L.; Carbone, V.; Malara, F.; Veltri, P.

    2014-05-01

    We study the radial evolution of the intermittency of density fluctuations in the fast solar wind. The study is performed by analyzing the plasma density measurements provided by Helios 2 in the inner heliosphere between 0.3 and 0.9 AU. The analysis is carried out by means of a complete set of diagnostic tools, including the flatness factor at different timescales to estimate intermittency, the Kolmogorov-Smirnov test to estimate the degree of intermittency, and the Fourier transform to estimate the power spectral densities of these fluctuations. Density fluctuations within the fast wind are rather intermittent and their level of intermittency, together with the amplitude of intermittent events, decreases with the distance from the Sun, at odds with the intermittency of both magnetic field and all other plasma parameters. Furthermore, the intermittent events are strongly correlated, exhibiting temporal clustering. This indicates that the mechanism underlying their generation departs from a time-varying Poisson process. A remarkable, qualitative similarity with the behavior of plasma density fluctuations obtained from a numerical study of the nonlinear evolution of parametric instability in the solar wind supports the idea that this mechanism has an important role in governing density fluctuations in the inner heliosphere.

  1. Amplitude of primeval fluctuations from cosmological mass density reconstructions

    NASA Technical Reports Server (NTRS)

    Seljak, Uros; Bertschinger, Edmund

    1994-01-01

    We use the POTENT reconstruction of the mass density field in the nearby universe to estimate the amplitude of the density fluctuation power spectrum for various cosmological models. We find that sigma(sub 8) Omega(sub m sup 0.6) = 1.3(sub -0.3 sup +0.4), almost independently of the power spectrum. This value agrees well with the Cosmic Background Explorer (COBE) normalization for the standard cold dark matter model, while alternative models predict an excessive amplitude compared with COBE. Flat, low Omega(sub m) models and tilted models with spectral index n less than 0.8 are particularly discordant.

  2. Amplitude of primeval fluctuations from cosmological mass density reconstructions

    NASA Technical Reports Server (NTRS)

    Seljak, Uros; Bertschinger, Edmund

    1994-01-01

    We use the POTENT reconstruction of the mass density field in the nearby universe to estimate the amplitude of the density fluctuation power spectrum for various cosmological models. We find that sigma(sub 8) Omega(sub m sup 0.6) = 1.3(sub -0.3 sup +0.4), almost independently of the power spectrum. This value agrees well with the Cosmic Background Explorer (COBE) normalization for the standard cold dark matter model, while alternative models predict an excessive amplitude compared with COBE. Flat, low Omega(sub m) models and tilted models with spectral index n less than 0.8 are particularly discordant.

  3. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A.; Fawcett, E.; Elmiger, M.W.; Shirane, G.

    1992-11-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  4. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A. . Dept. of Physics); Fawcett, E. . Dept. of Physics); Elmiger, M.W.; Shirane, G. )

    1992-01-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  5. Spatial density fluctuations and selection effects in galaxy redshift surveys

    SciTech Connect

    Labini, Francesco Sylos; Tekhanovich, Daniil; Baryshev, Yurij V. E-mail: d.tekhanovich@spbu.ru

    2014-07-01

    One of the main problems of observational cosmology is to determine the range in which a reliable measurement of galaxy correlations is possible. This corresponds to determining the shape of the correlation function, its possible evolution with redshift and the size and amplitude of large scale structures. Different selection effects, inevitably entering in any observation, introduce important constraints in the measurement of correlations. In the context of galaxy redshift surveys selection effects can be caused by observational techniques and strategies and by implicit assumptions used in the data analysis. Generally all these effects are taken into account by using pair-counting algorithms to measure two-point correlations. We review these methods stressing that they are based on the a-priori assumption that galaxy distribution is spatially homogeneous inside a given sample. We show that, when this assumption is not satisfied by the data, results of the correlation analysis are affected by finite size effects. In order to quantify these effects, we introduce a new method based on the computation of the gradient of galaxy counts along tiny cylinders. We show, by using artificial homogeneous and inhomogeneous point distributions, that this method identifies redshift dependent selection effects and disentangles them from the presence of large scale density fluctuations. We then apply this new method to several redshift catalogs and we find evidence that galaxy distribution, in those samples where selection effects are small enough, is characterized by power-law correlations with exponent γ=0.9 up to 20 Mpc/h followed by a change of slope that, in the range 20–100 Mpc/h, corresponds to a power-law exponent γ=0.25. Whether a crossover to spatial uniformity occurs at ∼ 100 Mpc/h or larger scales cannot be clarified by the present data.

  6. Spontaneous density fluctuations in granular flow and traffic

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans J.

    It is known that spontaneous density waves appear in granular material flowing through pipes or hoppers. A similar phenomenon is known from traffic jams on highways. Using numerical simulations we show that several types of waves exist and find that the density fluctuations follow a power law spectrum. We also investigate one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. Lattice gas and lattice Boltzmann models reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a non-linear dependence on density or shear rate as it is the case in traffic or granular flow.

  7. Cluster evolution as a probe of primordial density fluctuations

    NASA Technical Reports Server (NTRS)

    Bond, J. Richard; Myers, Steven T.

    1993-01-01

    Although COBE's detection of large angle microwave background anisotropies fixes the amplitude of density fluctuations on length scales k exp -1 approximately = (300-6000) h(exp -1)Mpc, what is crucial for the level of large scale clustering is the amplitude of density fluctuations on scales (5-50) h(exp -1)Mpc. The level of dynamical clustering is usually parameterized by the size of the mass fluctuations in 8 h exp -1 Mpc spheres, sigma sub 8. For the cold dark matter model, COBE gives sigma sub 8 approximately = 1, while models with extra large scale power give sigma sub 8 approximately = 1/2. The most massive clusters of galaxies (greater than or approximately = 10 exp 15 solar mass) form from rare 'peak patches' found in the initial mass density distribution. Their abundance as a function of redshift is a sensitive probe of the wave number band k(exp -1) approx. (3-8) h(exp -1)Mpc, hence of sigma sub 8, and so cluster evolution can discriminate among models allowed by the COBE results. We use our Hierarchical Peaks Method, which accurately reproduces the results of P3M N-body simulations, to calculate the evolution of cluster x-ray flux counts, luminosity, and temperature functions as a function of sigma sub 8 for CDM models and those with more large scale power. We find that the EMSS and Edge et al. cluster samples support sigma sub 8 in the range from approx. 0.6-0.9, and that models with more large scale power (and hence flatter fluctuation spectra in the cluster regime) fit the x-ray bright end better.

  8. Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.

    2004-01-01

    Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.

  9. Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.

    2004-01-01

    Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.

  10. Density fluctuations and dielectric constant of water in low and high density liquid states

    NASA Astrophysics Data System (ADS)

    Lascaris, Erik; Zhang, Cui; Galli, Giulia A.; Franzese, Giancarlo; Stanley, H. Eugene

    2012-02-01

    The hypothesis of a liquid-liquid critical point (LLCP) in the phase diagram of water, though first published many years ago, still remains the subject of a heated debate. According to this hypothesis there exists a critical point near T 244 K, and P 215 MPa, located at the end of a coexistence line between a high density liquid (HDL) and a low density liquid state (LDL). The LLCP lies below the homogenous nucleation temperature of water and it has so far remained inaccessible to experiments. We study a model of water exhibiting a liquid-liquid phase transition (that is a liquid interacting through the ST2 potential) and investigate the properties of dipolar fluctuations as a function of density, in the HDL and LDL. We find an interesting correlation between the macroscopic dielectric constants and the densities of the two liquids in the vicinity of the critical point, and we discuss possible implications for measurements close to the region where the LLCP may be located.

  11. Fluctuation-induced pair density wave in itinerant ferromagnets

    NASA Astrophysics Data System (ADS)

    Conduit, G. J.; Pedder, C. J.; Green, A. G.

    2013-03-01

    Magnetic fluctuations near to quantum criticality can have profound effects. They lead to characteristic scaling at high temperature which may ultimately give way to a reconstruction of the phase diagram and the formation of new phases at low temperatures. The ferromagnet UGe2 is unstable to p-wave superconducting order—an effect presaged by the superfluidity in 3He—whereas in CeFePO fluctuations drive the formation of spiral magnetic order. Here we develop a general quantum order-by-disorder description of these systems that encompasses both of these instabilities within a unified framework. This allows us to demonstrate that in fact these instabilities intertwine to form a pair density wave.

  12. Density fluctuations due to Raman forward scattering in quantum plasma

    SciTech Connect

    Kumar, Punit Singh, Shiv; Rathore, Nisha Singh

    2016-05-06

    Density fluctuations due Raman forward scattering (RFS) is analysed in the interaction of a high intensity laser pulse with high density quantum plasma. The interaction model is developed using the quantum hydrodynamic (QHD) model which consist of a set of equations describing the transport of charge, density, momentum and energy of a charged particle system interacting through a self-consistent electrostatic potential. The nonlinear source current has been obtained incorporating the effects of quantum Bohm potential, Fermi pressure and electron spin. The laser spectrum is strongly modulated by the interaction, showing sidebands at the plasma frequency. Furthermore, as the quiver velocity of the electrons in the high electric field of the laser beam is quit large, various quantum effects are observed which can be attributed to the variation of electron mass with laser intensity.

  13. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

    NASA Astrophysics Data System (ADS)

    Zhuravleva, I.; Churazov, E.; Arévalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2015-07-01

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ˜10-30 kpc within radii of 30-220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90-140 km s-1 on ˜20-30 kpc scales and 70-100 km s-1 on smaller scales ˜7-10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7-8 per cent for radii ˜30-220 kpc from the centre, leading to a density bias of less than 3-4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density-velocity perturbation relation and further reduce systematic uncertainties in this analysis.

  14. Strongly intensive measures for multiplicity fluctuations

    NASA Astrophysics Data System (ADS)

    Begun, V. V.; Konchakovski, V. P.; Gorenstein, M. I.; Bratkovskaya, E. L.

    2013-04-01

    The two recently proposed families of strongly intensive measures of fluctuations and correlations are studied within the hadron-string-dynamics (HSD) transport approach to nucleus-nucleus collisions. We consider the measures ΔKπ and ΣKπ for kaon and pion multiplicities in Au+Au collisions in a wide range of collision energies and centralities. These strongly intensive measures appear to cancel the participant number fluctuations. This allows to enlarge the centrality window in the analysis of event-by-event fluctuations for up to at least 10% of the most central collisions. We also present a comparison of the HSD results with the data of the NA49 and STAR Collaborations. HSD describes ΣKπ reasonably well. However, the HSD results depend monotonously on collision energy and do not reproduce the bump-dip structure of ΔKπ observed from the NA49 data in the region of the center of mass energy of the nucleon pair \\sqrt{s_{NN}}= 8{--}12 GeV. This observation deserves further study. The origin of this ‘structure’ is not connected with simple geometrical or limited acceptance effects, as these effects are taken into account in HSD simulations.

  15. Density Fluctuation in Asymmetric Nozzle Plumes and Correlation with Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    2001-01-01

    A comparative experimental study of air density fluctuations in the unheated plumes of a circular, 4-tabbed-circular, chevron-circular and 10-lobed rectangular nozzles was performed at a fixed Mach number of 0.95 using a recently developed Rayleigh scattering based technique. Subsequently, the flow density fluctuations are cross-correlated with the far field sound pressure fluctuations to determine sources for acoustics emission. The nearly identical noise spectra from the baseline circular and the chevron nozzles are found to be in agreement with the similarity in spreading, turbulence fluctuations, and flow-sound correlations measured in the plumes. The lobed nozzle produced the least low frequency noise, in agreement with the weakest overall density fluctuations and flow-sound correlation. The tabbed nozzle took an intermediate position in the hierarchy of noise generation, intensity of turbulent fluctuation and flow-sound correlation. Some of the features in the 4-tabbed nozzle are found to be explainable in terms of splitting of the jet in a central large core and 4 side jetlets.

  16. Large-amplitude electron density and Hα fluctuations in the sustained spheromak physics experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Barnes, Cris W.; Wurden, G. A.; Hill, D. N.; Hooper, E. B.; McLean, H. S.; Wood, R. D.; Woodruff, S.

    2002-06-01

    New types of toroidally rotating fluctuations (toroidal mode numbers n = 1 and n = 2) of line-integrated electron density and Hα emission, with frequencies ranging from 10 to 100 kHz, are observed in the sustained spheromak physics experiment (SSPX). The rotating directions of these fluctuations are the same as the direction determined by E×B, while the E and B directions are determined by the gun voltage and gun magnetic flux polarities, respectively. These results take advantage of one distinctive signature of spheromaks, i.e. it is possible to observe toroidal MHD activity during decay and sustainment at any toroidal angle. A theoretical constraint on line-integrated measurement is proposed and is found to be consistent with experimental observations. Fluctuation analysis in the time and frequency domains indicates that the observed density and Hα fluctuations correlate with magnetic modes. Observation of Hα fluctuations correlating with magnetic fluctuations indicates that, at least in some cases, MHD n = 1 modes are due to the so-called `dough-hook' current paths that connect the coaxial gun to the flux conserver, rather than internal kink instabilities. These results also show that electron density and Hα emission diagnostics complement other tools for spheromak mode study.

  17. Observations of ULF wave related equatorial electrojet and density fluctuations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Zesta, E.; Moldwin, M.; Damtie, B.; Mebrahtu, A.; Anad, F.; Pfaff, R. F.

    2011-12-01

    Global magnetospheric Ultra Low Frequency (ULF) pulsations with frequencies in the Pc 4-5 range (f = 1.0 - 8 mHz) have been observed for decades in space and on Earth. ULF pulsations contribute to magnetospheric particle transport and diffusion and play an important role in magnetospheric dynamics. However, only a few studies have been performed on ionospheric observations of ULF wave-related perturbations in the vicinity of the equatorial region. In this paper we report on Pc5 wave related electric field and thus vertical drift velocity oscillations at the equator as observed by ground magnetometers and radar. We show that the magnetometer estimated equatorial ExB drift oscillate with the same frequency as ULF Pc5 waves, creating significant ionospheric density fluctuations. For independent confirmation of the vertical drift velocity fluctuation, we used JULIA 150 km radar drift velocities and found similar fluctuation with the period of 8-10 minutes. We also show ionospheric density fluctuations during the period when we observed ULF wave activities. All these demonstrate that the Pc5 wave can penetrate to the equatorial ionosphere and modulate the equatorial electrodynamics. Finally, in order to detect the ULF activities both on the ground and in space, we use groundbased magnetometer data from African Meridian B-field Education and Research (AMBER) and the South American Meridional B-field Array (SAMBA). From space, we use magnetic field observations from the GOES 12 and the Communication/Navigation Outage and Forecast System (C/NOFS) satellites. Using the WIND spacecraft as the upstream solar wind monitor, we present direct evidence that solar wind number density and ram pressure fluctuations observed far upstream from the terrestrial magnetosphere are the main drivers of ULF wave activity inside the magnetosphere. Finally, we show that the ULF waves in the same frequency range are observed in the magnetosphere by the geosynchronous GOES spacecraft, in the

  18. Penetration and scattering of lower hybrid waves by density fluctuations

    SciTech Connect

    Horton, W.; Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X.

    2014-02-12

    Lower Hybrid [LH] ray propagation in toroidal plasma is controlled by a combination of the azimuthal spectrum launched from the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the density fluctuations. The width of the poloidal and radial RF wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the turbulence. The electron temperature gradient [ETG] spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and parallel phase velocities. ETG turbulence is also driven by the radial gradient of the electron current density giving rise to an anomalous viscosity spreading the LH-driven plasma currents. The scattered LH spectrum is derived from a Fokker-Planck equation for the distribution of the ray trajectories with a diffusivity proportional to the fluctuations. The LH ray diffusivity is large giving transport in the poloidal and radial wavenumber spectrum in one - or a few passes - of the rays through the core plasma.

  19. Density fluctuation spectrum of two-dimensional correlated fermion systems

    NASA Astrophysics Data System (ADS)

    Kotani, Akihiro; Hirashima, Dai

    2012-12-01

    Density fluctuation spectrum of two-dimensional fermions that interact with short-range repulsive interaction is calculated with the self-consistent perturbation theory. The spectrum extends beyond the particle-hole continuum band in the noninteracting case because of the multiparticle excitations. At a large wave vector, a peak develops in the spectrum near the lower threshold of the particle-hole continuum. These results are compared with the recent inelastic neutron scattering experiment on two-dimensional 3He adsorbed on graphite.

  20. First in-situ observations of neutral and plasma density fluctuations within a PMSE layer

    NASA Technical Reports Server (NTRS)

    Lubken, Franz-Josef; Lehmacher, Gerald; Blix, Tom; Hoppe, Ulf-Peter; Thrane, Eivind; Cho, John; Swartz, Wesley

    1993-01-01

    The NLC-91 rocket and radar campaign provided the first opportunity for high resolution neutral and plasma turbulence measurements with simultaneous observations of PMSE (Polar Mesospheric Summer Echoes). During the flight of the TURBO payload on August 1, 1991, Cornell University Portable Radar Interferometer (CUPRI) and European Incoherent Scattter facility (EISCAT) observed double PMSE layers located at 86 and 88 km altitude, respectively. Strong neutral density fluctuations were observed in the upper layer but not in the lower layer. The fluctuation spectra of the ions and neutrals within the upper layer are consistent with standard turbulence theories. However, we show that there is no neutral turbulence present in the lower layer and that something else must have been operating here to create the plasma fluctuations and hence the radar echoes. Although the in situ measurements of the electron density fluctuations are much stronger in the lower layer, the higher absolute electron density of the upper layer more than compensated for the weaker fluctuations yielding comparable radar echo powers.

  1. First in-situ observations of neutral and plasma density fluctuations within a PMSE layer

    NASA Technical Reports Server (NTRS)

    Lubken, Franz-Josef; Lehmacher, Gerald; Blix, Tom; Hoppe, Ulf-Peter; Thrane, Eivind; Cho, John; Swartz, Wesley

    1993-01-01

    The NLC-91 rocket and radar campaign provided the first opportunity for high resolution neutral and plasma turbulence measurements with simultaneous observations of PMSE (Polar Mesospheric Summer Echoes). During the flight of the TURBO payload on August 1, 1991, Cornell University Portable Radar Interferometer (CUPRI) and European Incoherent Scattter facility (EISCAT) observed double PMSE layers located at 86 and 88 km altitude, respectively. Strong neutral density fluctuations were observed in the upper layer but not in the lower layer. The fluctuation spectra of the ions and neutrals within the upper layer are consistent with standard turbulence theories. However, we show that there is no neutral turbulence present in the lower layer and that something else must have been operating here to create the plasma fluctuations and hence the radar echoes. Although the in situ measurements of the electron density fluctuations are much stronger in the lower layer, the higher absolute electron density of the upper layer more than compensated for the weaker fluctuations yielding comparable radar echo powers.

  2. First in-situ observations of neutral and plasma density fluctuations within a PMSE layer

    NASA Astrophysics Data System (ADS)

    Lubken, Franz-Josef; Lehmacher, Gerald; Blix, Tom; Hoppe, Ulf-Peter; Thrane, Eivind; Cho, John; Swartz, Wesley

    1993-10-01

    The NLC-91 rocket and radar campaign provided the first opportunity for high resolution neutral and plasma turbulence measurements with simultaneous observations of PMSE (Polar Mesospheric Summer Echoes). During the flight of the TURBO payload on August 1, 1991, Cornell University Portable Radar Interferometer (CUPRI) and European Incoherent Scattter facility (EISCAT) observed double PMSE layers located at 86 and 88 km altitude, respectively. Strong neutral density fluctuations were observed in the upper layer but not in the lower layer. The fluctuation spectra of the ions and neutrals within the upper layer are consistent with standard turbulence theories. However, we show that there is no neutral turbulence present in the lower layer and that something else must have been operating here to create the plasma fluctuations and hence the radar echoes. Although the in situ measurements of the electron density fluctuations are much stronger in the lower layer, the higher absolute electron density of the upper layer more than compensated for the weaker fluctuations yielding comparable radar echo powers.

  3. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

    SciTech Connect

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2015-05-20

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s-1 on ~20–30 kpc scales and 70–100 km s-1 on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.

  4. Kinetic effects of Alfven wave nonlinearity. I - Ponderomotive density fluctuations

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1989-01-01

    The Vlasov theory is used to study kinetic corrections to fluid descriptions of Alfven wave nonlinearity. The method is to obtain an expression for the second-order perturbed distribution function produced by a nonlinear Alfven wave. From this distribution function a kinetically correct expression is obtained for the plasma density perturbation associated with an envelope-modulated Alfven wave. This kinetic theory result differs substantially from the fluid expression when the plasma beta is greater than about 1, and the electron and ion temperatures are approximately equal. This result is of interest because density fluctuations are an observationally accessible indicator of wave nonlinearity in solar system Alfven waves. It also will assist in the determination of properties of Alfven waves in the interstellar medium. Finally, this analysis also yields a kinetically correct expression for u, the magnetic field-aligned component of the plasma fluid velocity.

  5. Spatial structure of lemming populations (Dicrostonyx groenlandicus) fluctuating in density.

    PubMed

    Ehrich, D; Jorde, P E; Krebs, C J; Kenney, A J; Stacy, J E; Stenseth, N C

    2001-02-01

    The pattern and scale of the genetic structure of populations provides valuable information for the understanding of the spatial ecology of populations, including the spatial aspects of density fluctuations. In the present paper, the genetic structure of periodically fluctuating lemmings (Dicrostonyx groenlandicus) in the Canadian Arctic was analysed using mitochondrial DNA (mtDNA) control region sequences and four nuclear microsatellite loci. Low genetic variability was found in mtDNA, while microsatellite loci were highly variable in all localities, including localities on isolated small islands. For both genetic markers the genetic differentiation was clear among geographical regions but weaker among localities within regions. Such a pattern implies gene flow within regions. Based on theoretical calculations and population census data from a snap-trapping survey, we argue that the observed genetic variability on small islands and the low level of differentiation among these islands cannot be explained without invoking long distance dispersal of lemmings over the sea ice. Such dispersal is unlikely to occur only during population density peaks.

  6. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    SciTech Connect

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  7. Intermediate-k density and magnetic field fluctuations during inter-ELM pedestal evolution in MAST

    NASA Astrophysics Data System (ADS)

    Hillesheim, J. C.; Dickinson, D.; Roach, C. M.; Saarelma, S.; Scannell, R.; Kirk, A.; Crocker, N. A.; Peebles, W. A.; Meyer, H.; the MAST Team

    2016-01-01

    Measurements of local density and magnetic field fluctuations near the pedestal top, conditionally averaged over the edge localized mode (ELM) cycle, have been made in Mega Amp Spherical Tokamak (MAST). A Doppler backscattering (DBS) system installed at MAST was used to measure intermediate-k ≤ft({{k}\\bot}{ρi}≈ 3~\\text{to}~4\\right) density fluctuations at the top of the pedestal. A novel diagnostic technique combining DBS with cross-polarization scattering (CP-DBS) enabled magnetic field fluctuations to also be locally measured at similar wave numbers. Polarization isolation and other effects for CP-DBS are discussed. Both measurements were used in a series of high-β ≤ft({βn}≈ 4.0\\right. -4.5) MAST plasmas with large type-I ELMs with an ˜ 8~\\text{to}~9~\\text{ms} period where microtearing modes (MTMs) had been predicted to be unstable in similar conditions (Dickinson 2012 Phys. Rev. Lett. 108 135002). The measured density fluctuation level increased by a factor of about 4 between 2 and 4 ms after the ELM, which was correlated with the recovery of the density profile while the temperature pedestal height continued to increase slowly. Magnetic field fluctuations showed different temporal behaviors, slowly increasing throughout the ELM cycle as the local β increased. Linear GS2 calculations show both MTM and electron temperature gradient (ETG) modes unstable at similar wave numbers as the measurements (although with more overlap between ETG wave numbers and diagnostic spectral resolution) at the top of the pedestal, along with kinetic ballooning modes are unstable lower in the pedestal (at larger wavelengths). The inferred ratio of fluctuation levels from experiment was ≤ft(δ B/B\\right)/≤ft(δ n/n\\right)≈ 1/20 . The comparable ratios from GS2 were ≤ft(δ B/B\\right)/≤ft(δ n/n\\right)≈ 0.4 for the MTM and ≤ft(δ B/B\\right)/≤ft(δ n/n\\right)≈ 0.02 for the ETG. Both the experimental wave number range and the fluctuation ratio

  8. Density of States and Its Local Fluctuations Determined by Capacitance of Strongly Disordered Graphene

    PubMed Central

    Li, Wei; Chen, Xiaolong; Wang, Lin; He, Yuheng; Wu, Zefei; Cai, Yuan; Zhang, Mingwei; Wang, Yang; Han, Yu; Lortz, Rolf W.; Zhang, Zhao-Qing; Sheng, Ping; Wang, Ning

    2013-01-01

    We demonstrate that fluctuations of the local density of states (LDOS) in strongly disordered graphene play an important role in determining the quantum capacitance of the top-gate graphene devices. Depending on the strength of the disorder induced by metal-cluster decoration, the measured quantum capacitance of disordered graphene can dramatically decrease in comparison with pristine graphene. This is opposite to the common belief that quantum capacitance should increase with disorder. To explain this counterintuitive behavior, we present a two-parameter model which incorporates both the non-universal power law behavior for the ADOS and a lognormal distribution of LDOS. We find excellent quantitative agreements between the model and measured quantum capacitance for three disordered samples in a wide range of Fermi energies. Thus, by measuring the quantum capacitance, we can simultaneously determine the ADOS and its fluctuations. It is the LDOS fluctuations that cause the dramatic reduction of the quantum capacitance.

  9. Fluctuation-Induced Particle Transport and Density Relaxation in a Stochastic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Brower, David L.

    2009-11-01

    Particle transport and density relaxation associated with electromagnetic fluctuations is an unresolved problem of long standing in plasma physics and magnetic fusion research. In toroidal fusion plasmas, magnetic field fluctuations can arise spontaneously from global MHD instabilities, e.g., tearing fluctuations associated with sawtooth oscillations. Resonant magnetic perturbations (RMP) have also been externally imposed to mitigate the effect of edge localized modes (ELMs) by locally enhancing edge transport in Tokamaks. Understanding stochastic-field-driven transport processes is thus not only of basic science interest but possibly critical to ELM control in ITER. We report on the first direct measurement of magnetic fluctuation-induced particle transport in the core of a high-temperature plasma, the MST reversed field pinch. Measurements focus on the sawtooth crash, when the stochastic field resulting from tearing reconnection is strongest, and are accomplished using newly developed, laser-based, differential interferometry and Faraday rotation techniques. The measured electron particle flux, resulting from the correlated product of electron density (δn) and radial magnetic fluctuations (δbr), accounts for density profile relaxation during these magnetic reconnection events. Surprisingly, the electron diffusion is 30 times larger than estimates of ambipolarity-constrained transport in a stochastic magnetic field. A significant ion flux associated with parallel ion flow velocity fluctuations (δvi,//) correlated with δbr appears responsible for transport larger than predictions from the quasi-linear test particle model. These results indicate the need for improved understanding of particle transport in a stochastic magnetic field. Work performed in collaboration with W.X. Ding, W.F. Bergerson, T.F. Yates, UCLA; D.J. Den Hartog, G. Fiksel, S.C. Prager, J.S. Sarff and the MST Group, University of Wisconsin-Madison.

  10. Probe Measurements of Electrostatic Fluctuations in LDX

    NASA Astrophysics Data System (ADS)

    Ortiz, E. E.; Mauel, M. E.; Garnier, D. T.; Hansen, A. K.; Levitt, B. J.; Kesner, J.; Boxer, A.; Ellsworth, J. L.; Karim, I.; Mahar, S.; Roach, A. H.; Zimmermann, M.

    2004-11-01

    Electrostatic fluctuations play an important role in the equilibrium and stability of a high-beta plasma confined in a dipolar magnetic field. Initial plasma experiments in LDX will use movable edge probes to measure plasma potential, plasma characteristics, and plasma mass flow. Three probe systems have been installed: a triple Langmuir probe (constructed of 1 cm long, 0.5 mm dia. tungsten wire probe tips), an emissive probe (constructed of 0.9 cm long, 1 mm dia. thoriated tungsten wire), and a Mach probe (constructed with two 0.7 cm long, 1.5 mm dia. tungsten wires). Each probe is mounted on an adjustable feed-through capable of scanning parameters along a 40 cm cord at the plasma edge. Initial measurements and interpretations from first plasma experiments will be presented.

  11. Characterising density fluctuations in liquid yttria aluminates with small angle x-ray scattering

    SciTech Connect

    Greaves, G. Neville; Wilding, Martin C.; Vu Van, Quang; Majerus, Odile; Hennet, Louis

    2009-01-29

    Small angle x-ray scattering (SAXS) has been measured in the wavevector range 0.01density fluctuations deriving from isothermal compressibility. With decreasing Q a minimum is located close to 0.1 A{sup -1} at the foot of the inter-atomic structure factor, below which SAXS rises, suggesting scatter from longer range fluctuating volumes.

  12. Absolute density measurements in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Rapp, M.; Gumbel, J.; Lübken, F.-J.

    2001-05-01

    In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N) to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT) region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

  13. STATISTICS OF DENSITY FLUCTUATIONS DURING THE TRANSITION FROM THE OUTER SOLAR CORONA TO THE INTERPLANETARY SPACE

    SciTech Connect

    Telloni, D.; Antonucci, E.; Bruno, R.; D'Amicis, R.; Carbone, V.

    2009-11-20

    This paper investigates the evolution of the plasma density fluctuations of the fast and slow solar wind from the solar corona into the interplanetary space. The study is performed by comparing the low-frequency spectra and the phase correlation of the proton density oscillations, measured in the inner heliosphere with the Helios 2 in situ instrumentation, with those due to the large-scale density perturbations observed with UVCS/SOHO in the outer corona. We find that the characteristics of density fluctuations of the fast solar wind are maintained in the transition from the outer corona to the inner heliosphere, thus suggesting a coronal imprint for the heliospheric large-scale 1/f {sup 2} noise spectrum. In contrast, a quick dynamical evolution is observed in the slow wind, which, starting from large-scale fluctuations with strong phase correlations in the outer corona, gives rise to a Kolmogorov-like spectrum and an accumulation of density structures at small scales at 0.3 AU. This can be explained in the framework of nearly incompressible turbulence.

  14. Universal Property of Quantum Measurements of Equilibrium Fluctuations and Violation of the Fluctuation-Dissipation Theorem.

    PubMed

    Fujikura, Kyota; Shimizu, Akira

    2016-07-01

    For macroscopic quantum systems, we study what is measured when equilibrium fluctuations of macrovariables are measured in an ideal way that mimics classical ideal measurements as closely as possible. We find that the symmetrized time correlation is always obtained for such measurements. As an important consequence, we show that the fluctuation-dissipation theorem is partially violated as a relation between observed quantities in macroscopic quantum systems even if measurements are made in such an ideal way.

  15. Are metastable, precrystallisation, density-fluctuations a universal phenomena?

    PubMed

    Heeley, Ellen L; Poh, C Kit; Li, Wu; Maidens, Anna; Bras, Wim; Dolbnya, Igor P; Gleeson, Anthony J; Terrill, Nicolas J; Fairclough, J Patrick A; Olmsted, Peter D; Ristic, Rile I; Hounslow, Micheal J; Ryan, Anthony J

    2003-01-01

    In-situ observations of crystallisation in minerals and organic polymers have been made by simultaneous, time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) techniques. In isotactic polypropylene slow quiescent crystallisation shows the onset of large scale ordering prior to crystal growth. Rapid crystallisations studied by melt extrusion indicate the development of well resolved oriented SAXS patterns associated with long range order before the development of crystalline peaks in the WAXS region. Block copolymers self-assemble into mesophases in polymer melts above a critical chain length (or above a critical temperature) and this self-assembly process is shown to be susceptible to an incipient crystallisation. Mesophase formation is observed at anomalously high temperatures in ethylene-oxide containing block copolymers below the normal melting point of the polyoxy ethylene chains. Formation of calcium carbonate from aqueous solutions of sodium carbonate and calcium nitrate is observed to be a two-stage process and precipitation proceeds by the production of an amorphous metastable phase. This phase grows until it is volume filling and leads to the formation of the two polymorphs Calcite and Vaterite. These three sets of results suggest pre-nucleation density fluctuations, leading to a metastable phase, play an integral role in all three classes of crystallisation. In due course, this phase undergoes transformation to "normal" crystals.

  16. A new interferometry-based electron density fluctuation diagnostic on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Kasten, C. P.; Irby, J. H.; Murray, R.; White, A. E.; Pace, D. C.

    2012-10-01

    The two-color interferometry diagnostic on the Alcator C-Mod tokamak has been upgraded to measure fluctuations in the electron density and density gradient for turbulence and transport studies. Diagnostic features and capabilities are described. In differential mode, fast phase demodulation electronics detect the relative phase change between ten adjacent, radially-separated (ΔR = 1.2 cm, adjustable), vertical-viewing chords, which allows for measurement of the line-integrated electron density gradient. The system can be configured to detect the absolute phase shift of each chord by comparison to a local oscillator, measuring the line-integrated density. Each chord is sensitive to density fluctuations with kR < 20.3 cm-1 and is digitized at up to 10 MS/s, resolving aspects of ion temperature gradient-driven modes and other long-wavelength turbulence. Data from C-Mod discharges is presented, including observations of the quasi-coherent mode in enhanced D-alpha H-mode plasmas and the weakly coherent mode in I-mode.

  17. A new interferometry-based electron density fluctuation diagnostic on Alcator C-Mod.

    PubMed

    Kasten, C P; Irby, J H; Murray, R; White, A E; Pace, D C

    2012-10-01

    The two-color interferometry diagnostic on the Alcator C-Mod tokamak has been upgraded to measure fluctuations in the electron density and density gradient for turbulence and transport studies. Diagnostic features and capabilities are described. In differential mode, fast phase demodulation electronics detect the relative phase change between ten adjacent, radially-separated (ΔR = 1.2 cm, adjustable), vertical-viewing chords, which allows for measurement of the line-integrated electron density gradient. The system can be configured to detect the absolute phase shift of each chord by comparison to a local oscillator, measuring the line-integrated density. Each chord is sensitive to density fluctuations with k(R) < 20.3 cm(-1) and is digitized at up to 10 MS/s, resolving aspects of ion temperature gradient-driven modes and other long-wavelength turbulence. Data from C-Mod discharges is presented, including observations of the quasi-coherent mode in enhanced D-alpha H-mode plasmas and the weakly coherent mode in I-mode.

  18. Nonlinear saturation spectra of electric fields and density fluctuations in drift wave turbulence

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    1982-01-01

    The detection of drift waves in the nonlinear evolution of a space plasma process driven at long wavelengths is considered, adducing measurements of the electric field and density fluctuation power spectra as evidence. Since the driving mechanism is clearly at long wavelengths, the detection of drift waves suggests that they may play an important role in the transfer of wave energy from long to short wavelengths in a low beta plasma. The saturated spectral density is compared with theoretical results in order to estimate the anomalous diffusion rate. The observed spectral form and amplitude is in excellent agreement with drift wave predictions.

  19. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    NASA Astrophysics Data System (ADS)

    Brookman, M. W.; Austin, M. E.; Petty, C. C.

    2015-12-01

    Theoretical work, computation, and results from TCV [J. Decker "Effect of density fluctuations on ECCD in ITER and TCV," EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle "Electron energy transport inferences from modulated electron cyclotron heating in DIII-D," Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the Te measurements from the University of Texas's 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  20. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    SciTech Connect

    Brookman, M. W. Austin, M. E.; Petty, C. C.

    2015-12-10

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T{sub e} measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  1. Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere.

    PubMed

    Banakh, V A; Smalikho, I N

    2014-09-22

    Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere have been studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It has been shown that under conditions of strong optical turbulence, the relative variance of energy density fluctuations of pulsed radiation of femtosecond duration becomes much less than the relative variance of intensity fluctuations of continuous-wave radiation. The spatial structure of fluctuations of the energy density with a decrease of the pulse duration becomes more large-scale and homogeneous. For shorter pulses the maximal value of the probability density distribution of energy density fluctuations tends to the mean value of the energy density.

  2. Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST

    SciTech Connect

    Cao, Qifo; Liu, Yong; Zhao, Hailin Zhou, Tianfu; Ti, Ang; Hu, Liqun

    2016-11-15

    A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R − R{sub 0})/a, R{sub 0} = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation with a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of k{sub θ} < 2.4 cm{sup −1}. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).

  3. Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST.

    PubMed

    Cao, Qifo; Liu, Yong; Zhao, Hailin; Zhou, Tianfu; Ti, Ang; Hu, Liqun

    2016-11-01

    A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R - R0)/a, R0 = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation with a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of kθ < 2.4 cm(-1). The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).

  4. Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST

    NASA Astrophysics Data System (ADS)

    Cao, Qifo; Liu, Yong; Zhao, Hailin; Zhou, Tianfu; Ti, Ang; Hu, Liqun

    2016-11-01

    A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R - R0)/a, R0 = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation with a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of kθ < 2.4 cm-1. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).

  5. Turbulent pressure fluctuations measured during CHATS

    Treesearch

    Steven P. Oncley; William J. Massman; Edward G. Patton

    2008-01-01

    Fast-response pressure fluctuations were included in the Canopy Horizontal Array of Turbulence Study (CHATS) at several heights within and just above the canopy in a walnut orchard. Two independent systems were intercompared and then separated. We present an evaluation of turbulence statistics - including the pressure transport term in the turbulence kinetic energy...

  6. Experimental Investigation of Short Scalelength Density Fluctuations in Laser-Produced Plasmas

    SciTech Connect

    Moody, J.D.; MacGowan, B.J.; Glenzer, S.H.; Kirkwood, R.K.; Kruer, W.L.; Williams, E.A.; Stone, G.F.; Montgomery, D.S.; Schmitt, A.J.

    1999-11-01

    The technique of near forward laser. scattering is used to infer characteristics of intrinsic and controlled density fluctuations in laser-produced plasmas. Intrinsic fluctuations are studied in long scalelength plasmas where the fluctuations exhibit scale sizes related to the size of the intensity variations in the plasma forming and interaction beams. Stimulated Brillouin forward scattering and filamentation appear to be the primary mechanism through which these fluctuations originate. The beam spray which results from these fluctuations is important to understand since it can affect symmetry in an inertial confinement fusion (ICF) experiment. Controlled fluctuations are studied in foam and exploding foil targets. Forward scattered light from foam targets shows evidence that the initial target inhomogeneities remain after the target is laser heated. Forward scattered light from an exploding foil plasma shows that a regular intensity pattern can be used to produce a spatially correlated density fluctuation pattern. These results provide data which can be used to benchmark numerical models of beam spray.

  7. Effects of Finite Density Fluctuations and of the Upper Hybrid Resonance on O-X Correlation Reflectometry

    SciTech Connect

    Kramer, G.J.; Nazikian, R.; Valeo, E.

    2001-02-10

    The correlation between O-mode and X-mode reflectometer signals is studied with a 1-D reflectometer model taking into account the influence of finite density fluctuation levels and the upper hybrid resonance. It is found that a high level of O-X correlation can only be achieved for sufficiently small density fluctuation levels (typically much less than 1%) or very low magnetic field strengths. The influence of the upper hybrid resonance on the O-X correlation was found to also degrade the correlation between the O and X mode signals for very low magnetic field strengths or for very short density scale lengths. The extrapolation of these results to reactor-scale parameters indicates that the magnetic field strength can reliably be measured in the core plasma provided the density fluctuation level is typically much less than 1%.

  8. The origin of density fluctuations in the 'new inflationary universe'

    NASA Technical Reports Server (NTRS)

    Turner, M. S.

    1983-01-01

    Cosmological mysteries which are not explained by the Big Bang hypothesis but may be approached by a revamped inflationary universe model are discussed. Attention is focused on the isotropy, the large-scale homogeneity, small-scale inhomogeneity, the oldness/flatness of the universe, and the baryon asymmetry. The universe is assumed to start in the lowest energy state, be initially dominated by false vacuum energy, enter a de Sitter phase, and then cross a barrier which is followed by the formation of fluctuation regions that lead to structure. The scalar fields (perturbation regions) experience quantum fluctuations which produce spontaneous symmetry breaking on a large scale. The scalar field value would need to be much greater than the expansion rate during the de Sitter epoch. A supersymmetric (flat) potential which satisfies the requirement, yields fluctuations of the right magnitude, and allows inflation to occur is described.

  9. The origin of density fluctuations in the 'new inflationary universe'

    NASA Technical Reports Server (NTRS)

    Turner, M. S.

    1983-01-01

    Cosmological mysteries which are not explained by the Big Bang hypothesis but may be approached by a revamped inflationary universe model are discussed. Attention is focused on the isotropy, the large-scale homogeneity, small-scale inhomogeneity, the oldness/flatness of the universe, and the baryon asymmetry. The universe is assumed to start in the lowest energy state, be initially dominated by false vacuum energy, enter a de Sitter phase, and then cross a barrier which is followed by the formation of fluctuation regions that lead to structure. The scalar fields (perturbation regions) experience quantum fluctuations which produce spontaneous symmetry breaking on a large scale. The scalar field value would need to be much greater than the expansion rate during the de Sitter epoch. A supersymmetric (flat) potential which satisfies the requirement, yields fluctuations of the right magnitude, and allows inflation to occur is described.

  10. The origin of density fluctuations in the 'new inflationary universe'

    NASA Astrophysics Data System (ADS)

    Turner, M. S.

    Cosmological mysteries which are not explained by the Big Bang hypothesis but may be approached by a revamped inflationary universe model are discussed. Attention is focused on the isotropy, the large-scale homogeneity, small-scale inhomogeneity, the oldness/flatness of the universe, and the baryon asymmetry. The universe is assumed to start in the lowest energy state, be initially dominated by false vacuum energy, enter a de Sitter phase, and then cross a barrier which is followed by the formation of fluctuation regions that lead to structure. The scalar fields (perturbation regions) experience quantum fluctuations which produce spontaneous symmetry breaking on a large scale. The scalar field value would need to be much greater than the expansion rate during the de Sitter epoch. A supersymmetric (flat) potential which satisfies the requirement, yields fluctuations of the right magnitude, and allows inflation to occur is described.

  11. Non-equilibrium steady states: fluctuations and large deviations of the density and of the current

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard

    2007-07-01

    These lecture notes give a short review of methods such as the matrix ansatz, the additivity principle or the macroscopic fluctuation theory, developed recently in the theory of non-equilibrium phenomena. They show how these methods allow us to calculate the fluctuations and large deviations of the density and the current in non-equilibrium steady states of systems like exclusion processes. The properties of these fluctuations and large deviation functions in non-equilibrium steady states (for example, non-Gaussian fluctuations of density or non-convexity of the large deviation function which generalizes the notion of free energy) are compared with those of systems at equilibrium.

  12. Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles

    NASA Astrophysics Data System (ADS)

    Chakraborti, Subhadip; Mishra, Shradha; Pradhan, Punyabrata

    2016-05-01

    Using an additivity property, we study particle-number fluctuations in a system of interacting self-propelled particles, called active Brownian particles (ABPs), which consists of repulsive disks with random self-propulsion velocities. From a fluctuation-response relation, a direct consequence of additivity, we formulate a thermodynamic theory which captures the previously observed features of nonequilibrium phase transition in the ABPs from a homogeneous fluid phase to an inhomogeneous phase of coexisting gas and liquid. We substantiate the predictions of additivity by analytically calculating the subsystem particle-number distributions in the homogeneous fluid phase away from criticality where analytically obtained distributions are compatible with simulations in the ABPs.

  13. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Woo, R.; Armstrong, J. W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2-215 solar radii and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances of about 20 solar radii the equivalent spacecraft-measured one-dimensional density spectrum is well modeled by a single power law in the frequency range 0.0001-0.05 Hz. The flattening of the density spectrum within 20 solar radii is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind.

  14. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Woo, R.; Armstrong, J. W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2-215 solar radii and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances of about 20 solar radii the equivalent spacecraft-measured one-dimensional density spectrum is well modeled by a single power law in the frequency range 0.0001-0.05 Hz. The flattening of the density spectrum within 20 solar radii is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind.

  15. The finite probe size effect in fluctuation measurements; application to dusty plasmas

    NASA Astrophysics Data System (ADS)

    Tolias, P.; Ratynskaia, S.; de Angelis, U.; Lazzaro, E.

    2016-04-01

    > The effect of the finite probe size in plasma fluctuation measurements is revisited for dusty plasmas, where it has been argued that dust leads to a significant low-frequency enhancement in the spectral densities of ion density fluctuations, which can constitute the physical basis of a dust diagnostic technique. Theoretical predictions for the spectral modifications are presented and the dust acoustic mode contribution is analysed. The finite probe size effect is treated within the volume average approach, which introduces geometry dependent form factors that are calculated for spherical and cylindrical probes. The volume average approach is compared with the typically employed cutoff wavenumber approximation for various dust and plasma parameters. The contribution of temperature fluctuations to the spectral density of current fluctuations is also evaluated.

  16. How plasma parameters fluctuations influence emissive probe measurements

    SciTech Connect

    Bousselin, G. Plihon, N.; Lemoine, N.; Heuraux, S.; Cavalier, J.

    2015-05-15

    Relationship between the floating potential of an emissive probe and plasma potential oscillations is studied in the case of controlled oscillations of plasma parameters. This relationship is compared to a quasi-static model for floating potential oscillations that assumes a constant emission current and includes the fluctuations of plasma parameters (density and electron temperature). Two different plasma regimes are considered. In the first one, the model is coherent with experimental results. In the second, the model does not fulfill one of the assumption due to the evidence of emission current oscillations when the mean emission current exceeds a given threshold. This second regime highlights the importance of taking into account emission current oscillations in the interpretation of emissive probe measurements. Nevertheless, discrepancies are still observed between emissive probe floating potential and plasma potential oscillations.

  17. The Reliability of Density Measurements.

    ERIC Educational Resources Information Center

    Crothers, Charles

    1978-01-01

    Data from a land-use study of small- and medium-sized towns in New Zealand are used to ascertain the relationship between official and effective density measures. It was found that the reliability of official measures of density is very low overall, although reliability increases with community size. (Author/RLV)

  18. Density fluctuation spectrum of solar wind turbulence between ion and electron scales.

    PubMed

    Chen, C H K; Salem, C S; Bonnell, J W; Mozer, F S; Bale, S D

    2012-07-20

    We present a measurement of the spectral index of density fluctuations between ion and electron scales in solar wind turbulence using the EFI instrument on the ARTEMIS spacecraft. The mean spectral index at 1 AU was found to be -2.75±0.06, steeper than predictions for pure whistler or kinetic Alfvén wave turbulence but consistent with previous magnetic field measurements. The steep spectra are also consistent with expectations of increased intermittency or damping of some of the turbulent energy over this range of scales. Neither the spectral index nor the flattening of the density spectra before ion scales were found to depend on the proximity to the pressure anisotropy instability thresholds, suggesting that they are features inherent to the turbulent cascade.

  19. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model.

    PubMed

    Tarp, Jens M; Angheluta, Luiza; Mathiesen, Joachim; Goldenfeld, Nigel

    2014-12-31

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density 1/f2 at high frequencies f. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternates at irregular times with high populations of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.

  20. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  1. Wave-like Fluctuations of The Total Neutral Density of Amplitude Increasing With Altitude In The Upper Thermosphere

    NASA Astrophysics Data System (ADS)

    Bencze, P.; Illés-Almár, E.; Almár, I.

    The study of the high resolution total neutral density measurements of the San Marco V satellite revealed also wave-like fluctuations of the density of amplitude increas- ing with height above a given height. The height at which the amplitude of these fluctuations begins to increase has been found to occur in the height range 300-500 km. Analysis of this phenomenon indicated that this height displays a diurnal varia- tion lower heights occurring by day. On the basis of this findings it is assumed that fluctuations of amplitude increasing with height found in the total neutral density are due to convective instability related to the quasi isothermal state of this part of the thermosphere. Under these conditions an infinitesimal disturbance is enough for the development of instability.

  2. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    SciTech Connect

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  3. Density Fluctuations Upstream and Downstream of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream-stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  4. Scattering from edge density fluctuations on the lower hybrid waves in FTU

    SciTech Connect

    Calabro, Giuseppe; Ridolfini, V. Pericoli

    2007-09-28

    Careful measurements of density fluctuations in the scrape-off layer (SOL) of Frascati Tokamak Upgrade (FTU) plasma have been carried out. The analytical model proposed by Andrews and Perkins for the scattering of lower hybrid (LH) waves by density fluctuations will constitute the basis of our discussion. The envelop of the scattering processes occurring on single points sampled along the poloidal profile of the launching antenna at fixed step {delta}{theta} is considered. The trajectories and N{sub parallel} (LH parallel refraction index) evolution of the corresponding ray bundles are followed using the fast ray tracing code (FRTC), coupled to the transport code ASTRA to infer the radial absorption profile on a given target plasma. Interpretative ASTRA simulations are presented to support the correctness of the scattering model assumed. The current drive (CD) efficiency calculated is then compared with that measured for the shot assumed as reference and with the scaling valid for FTU. Comparison of measured pump frequency spectral broadening on FTU and theoretical prediction is also presented.

  5. Measurement of energetic-particle-driven core magnetic fluctuations and induced fast-ion transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J. A.; Anderson, J. K.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2013-03-01

    Internal fluctuations arising from energetic-particle-driven instabilities, including both density and radial magnetic field, are measured in a reversed-field-pinch plasma. The fluctuations peak near the core where fast ions reside and shift outward along the major radius as the instability transits from the n = 5 to n = 4 mode. During this transition, strong nonlinear three-wave interaction among multiple modes accompanied by enhanced fast-ion transport is observed.

  6. Time evolution of density fluctuation in supercritical region. I. Non-hydrogen-bonded fluids studied by dynamic light scattering.

    PubMed

    Saitow, Ken-Ichi; Kajiya, Daisuke; Nishikawa, Keiko

    2005-01-13

    The time evolution of the density fluctuation of molecules inhomogeneously dispersing in a mesoscopic volume is investigated by dynamic light scattering in several fluids in supercritical states. This study is the first time-domain investigation to compare the dynamics of density fluctuation among several fluids. The samples used are non-hydrogen-bonded fluids in the supercritical states: CHF(3), C(2)H(4), CO(2), and xenon. These four molecules have different properties but are of similar size. Under these conditions, the relationship between dynamic and static density inhomogeneities is studied by measuring the time correlation function of the density fluctuation. In all cases, this function is characterized by a single exponential function, decaying within a few microseconds. While the correlation times in the four fluids show noncoincidence, those values agree well with each other when scaled to a dimensionless parameter. From the results of this scaling based on the Kawasaki theory and Landau-Placzek theory, the relation between dynamics and static structures is analyzed, and the following four insights are obtained: (i) viscosity is the main contributor to the time evolution of density fluctuation; (ii) the principle of corresponding state is observed by the use of time-domain data; (iii) the Kawasaki theory and the Landau-Placzek theory are confirmed to be applicable to polar, nonpolar, and nondipolar fluids that have no hydrogen bonding, at temperatures relatively far from critical temperature; and (iv) the density fluctuation correlation length and the value of density fluctuation are estimated from the time-domain data and agree with the values from other experiments and calculations.

  7. Measurement of magnetic fluctuations on ZT-40(M)

    SciTech Connect

    Miller, G.

    1990-01-01

    The mathematical basis for experimental measurement of magnetic fluctuations in a Reversed Field Pinch is reviewed. A quasi-static drift model is introduced as the frame-work for analysis of the five-fixed-probe technique. The extrapolation of edge-measured {rvec B}{sub r} fluctuations into the plasma is discussed. Correlations between magnetic and other fluctuations expected from a quasi-static model are derived and transport-relevant correlations are discussed. Data from ZT-40(M) are presented.

  8. Instrumentation for bone density measurement

    NASA Technical Reports Server (NTRS)

    Meharg, L. S.

    1968-01-01

    Measurement system evaluates the integrated bone density over a specific cross section of bone. A digital computer converts stored bone scan data to equivalent aluminum calibration wedge thickness, and bone density is then integrated along the scan by using the trapezoidal approximation integration formula.

  9. Radial density profile measurement by using the multichannel microwave interferometer in GAMMA 10

    SciTech Connect

    Yoshikawa, M.; Matsumoto, T.; Shima, Y.; Negishi, S.; Miyata, Y.; Mizuguchi, M.; Imai, N.; Yoneda, Y.; Hojo, H.; Itakura, A.; Imai, T.

    2008-10-15

    Plasma density radial profile measurements are an important study for fusion plasma researches. We reconstructed a multichannel microwave interferometer for radial plasma electron density and density fluctuation measurements with both changing the transmission horn position and using the Teflon lens by only using this system in a single plasma shot. By using this system, we can successfully measure the radial density and density fluctuation spectra in a single plasma shot.

  10. Properties of Geodesic Acoustic Modes and the Relation to Density Fluctuations

    SciTech Connect

    Kraemer-Flecken, A.; Soldatov, S.; Koslowski, H. R.; Zimmermann, O.

    2006-07-28

    The geodesic acoustic mode (GAM) is a high frequency branch of zonal flows, which is observed in toroidal plasmas. Because of toroidal curvature effects, density fluctuations are excited, which are investigated with the O-mode correlation reflectometer at TEXTOR. This Letter reports on the poloidal distribution of GAM induced density fluctuation and compares them with theoretical predictions. The influence of the GAM flows on the ambient turbulence is studied, too.

  11. Measuring single-cell density

    PubMed Central

    Grover, William H.; Bryan, Andrea K.; Diez-Silva, Monica; Suresh, Subra; Higgins, John M.; Manalis, Scott R.

    2011-01-01

    We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of approximately 500 cells per hour with a density precision of 0.001 g mL-1. We observe that the intrinsic cell-to-cell variation in density is nearly 100-fold smaller than the mass or volume variation. As a result, we can measure changes in cell density indicative of cellular processes that would be otherwise undetectable by mass or volume measurements. Here, we demonstrate this with four examples: identifying Plasmodium falciparum malaria-infected erythrocytes in a culture, distinguishing transfused blood cells from a patient’s own blood, identifying irreversibly sickled cells in a sickle cell patient, and identifying leukemia cells in the early stages of responding to a drug treatment. These demonstrations suggest that the ability to measure single-cell density will provide valuable insights into cell state for a wide range of biological processes. PMID:21690360

  12. Critical density fluctuations in lipid bilayers detected by fluorescence lifetime heterogeneity.

    PubMed Central

    Ruggiero, A; Hudson, B

    1989-01-01

    The heterogeneity of the decay of the fluorescence of transparinaric acid in single-component lipid bilayers at temperatures above their gel/liquid crystalline phase transition is shown to be due to the presence of regions of higher local density and higher acyl chain order than the predominant fluid regions. This conclusion is based on selective excitation behavior and the observation of time-resolved fluorescence anisotropies that increase at long times. The fractional amplitude of the long lifetime component of the fluorescence shows a temperature variation that conforms to conventional descriptions of critical behavior. The critical exponent extracted from this variation is 1.1, close to the value of 1.0 that describes ultrasonic data. We therefore conclude that liquid crystalline lipid bilayers exhibit critical behavior with significant density and order fluctuations. This behavior must be taken into account in the interpretation of fluorescence and other spectroscopic measurements of the properties of bilayers. PMID:2765649

  13. Bulk Density Measurements of Meteorites

    NASA Astrophysics Data System (ADS)

    Wilkison, S. L.; Robinson, M. S.

    1999-03-01

    We present density measurements of meteorites detailing the precision and errors associated with the modified Archimedian method of Consolmagno and Britt. We find that the method is accurate to better than 1%.

  14. Microwave Imaging Reflectometry for the Measurement of Turbulent Fluctuations in Tokamaks

    SciTech Connect

    E. Mazzucato

    2004-02-19

    This article describes a numerical study of microwave reflectometry for the measurement of turbulent fluctuations in tokamak-like plasmas with a cylindrical geometry. Similarly to what was found previously in plane-stratified plasmas, the results indicate that the characteristics of density fluctuations cannot be uniquely determined from the reflected waves if the latter are allowed to propagate freely to the point of detection, as in standard reflectometry. Again, we find that if the amplitude of fluctuations is below a threshold that is set by the spectrum of poloidal wave numbers, the local characteristics of density fluctuations can be obtained from the phase of reflected waves when these are collected with a wide aperture antenna, and an image of the cutoff is formed onto an array of phase-sensitive detectors.

  15. Extraction of the Density Fluctuations in Diatomic Fluids Around the Critical Points Using Molecular Dynamics Simulation.

    PubMed

    Tsuda, Shin-Ichi; Tomi, Masato; Tsuboi, Nobuyuki; Ikawa, Shohei; Tokumasu, Takashi

    2015-04-01

    The objective in this study is the investigation of the principle of corresponding state for the density fluctuation around the critical points of non-polar diatomic fluids. In this paper, we conducted Molecular Dynamics (MD) simulation for the extraction of the fluctuation structure around the critical points of 2-Center-Lennard-Jones (2CLJ) fluids, which have anisotropy depending on the molecular elongation. As a result, in the 2CLJ fluids which have comparatively shorter molecular elongations, the principle of corresponding state can be satisfied because almost all density fluctuations in each elongation showed the similar values. On the other hand, some of the results suggested that the 2CLJ fluids which have the longer elongation decrease the density fluctuation although the further detailed investigation is necessary.

  16. Pedestal density fluctuation dynamics during the inter-ELM cycle in DIII-D a)

    NASA Astrophysics Data System (ADS)

    Yan, Z.; McKee, G. R.; Groebner, R. J.; Snyder, P. B.; Osborne, T. H.; Beurskens, M. N.; Burrell, K. H.

    2011-05-01

    Detailed 2D measurements of long-wavelength density fluctuations in the pedestal region with beam emission spectroscopy during the period between edge localized modes (ELMs) indicate two distinct bands of fluctuations propagating in opposite poloidal directions in the plasma frame: one lower frequency band (50-150 kHz) advects in the ion-diamagnetic drift direction (ion mode) and a higher frequency band (200-400 kHz) advects in the electron diamagnetic drift direction (electron mode). The ion mode amplitude is modulated with the ELM cycle: it increases rapidly after an ELM and then saturates, similar to the evolution of the pedestal electron pressure and density gradients. The electron mode, in contrast, has no significant time evolution between ELMs. The decorrelation time of the ion mode is <5 μs [τc(cs/csa a)≤1], the radial correlation length is of order 10 ρi and has poloidal wave-number kθρi~0.1, and the mode advects at near the ion diamagnetic velocity in the plasma frame. These spatiotemporal dynamics are qualitatively similar to features predicted for kinetic ballooning modes.

  17. Pedestal density fluctuation dynamics during the inter-ELM cycle in DIII-D

    SciTech Connect

    Yan, Z.; McKee, G. R.; Groebner, R. J.; Snyder, P. B.; Osborne, T. H.; Burrell, K. H.; Beurskens, M. N.

    2011-05-15

    Detailed 2D measurements of long-wavelength density fluctuations in the pedestal region with beam emission spectroscopy during the period between edge localized modes (ELMs) indicate two distinct bands of fluctuations propagating in opposite poloidal directions in the plasma frame: one lower frequency band (50-150 kHz) advects in the ion-diamagnetic drift direction (ion mode) and a higher frequency band (200-400 kHz) advects in the electron diamagnetic drift direction (electron mode). The ion mode amplitude is modulated with the ELM cycle: it increases rapidly after an ELM and then saturates, similar to the evolution of the pedestal electron pressure and density gradients. The electron mode, in contrast, has no significant time evolution between ELMs. The decorrelation time of the ion mode is <5 {mu}s[{tau}{sub c}(c{sub s}/c{sub s}aa){<=}1], the radial correlation length is of order 10 {rho}{sub i} and has poloidal wave-number k{sub {theta}{rho}i{approx}}0.1, and the mode advects at near the ion diamagnetic velocity in the plasma frame. These spatiotemporal dynamics are qualitatively similar to features predicted for kinetic ballooning modes.

  18. On the Role of Nonspherical Cavities in Short Length-Scale Density Fluctuations in Water.

    PubMed

    Sosso, Gabriele Cesare; Caravati, Sebastiano; Rotskoff, Grant; Vaikuntanathan, Suriyanarayan; Hassanali, Ali

    2017-01-12

    Density fluctuations in liquid water are at the heart of numerous phenomena associated with hydrophobic effects such as protein folding and the interaction between biomolecules. One of the most fundamental processes in this regard is the solvation of hydrophobic solutes in water. The vast majority of theoretical and numerical studies examine density fluctuations at the short length scale focusing exclusively on spherical cavities. In this work, we use both first-principles and classical molecular dynamics simulations to demonstrate that density fluctuations in liquid water can deviate significantly from the canonical spherical shapes. We show that regions of empty space are frequently characterized by exotic, highly asymmetric shapes that can be quite delocalized over the hydrogen bond network. Interestingly, density fluctuations of these shapes are characterized by Gaussian statistics with larger fluctuations. An important consequence of this is that the work required to create non spherical cavities can be substantially smaller than that of spheres. This feature is also qualitatively captured by the Lum-Chandler-Weeks theory. The scaling behavior of the free energy as a function of the volume at short length scales is qualitatively different for the nonspherical entities. We also demonstrate that nonspherical density fluctuations are important for accommodating the hydrophobic amino acid alanine and are thus likely to have significant implications when it comes to solvating highly asymmetrical species such as alkanes, polymers, or biomolecules.

  19. Study of Density Fluctuations and Particle Transport at the Edge of I-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Dominguez, Arturo

    fluctuations have been decomposed into a broadband component and a WCM component. The latter is then used to estimate the intensity of the WCM. In parallel, the particle transport across the LCFS in I-mode plasmas has been estimated using a volume integrated particle transport model, where ionization source measurements are acquired using D alpha profiles measured near the outboard midplane. This model takes into account the anisotropic ionization source density around the periphery of the plasma by introducing an asymmetry factor, sigma, which is then estimated using a study of I-Mode to H-Mode transitions. The results imply that measurements at the outboard midplane overestimate the surface-averaged influx. Finally, a comparison has been made between the particle flux across the LCFS of the I-mode and the intensity of the WCM, which shows a generally positive correlation between the two. This is supporting evidence that the WCM is, in fact, responsible for maintaining particle and impurity transport across the edge of the I-mode energy transport barrier. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  20. Modeling of Fluctuating Mass Flux in Variable Density Flows

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mongia, H. C.; Nikjooy, M.

    1983-01-01

    The approach solves for both Reynolds and Favre averaged quantities and calculates the scalar pdf. Turbulent models used to close the governing equations are formulated to account for complex mixing and variable density effects. In addition, turbulent mass diffusivities are not assumed to be in constant proportion to turbulent momentum diffusivities. The governing equations are solved by a combination of finite-difference technique and Monte-Carlo simulation. Some preliminary results on simple variable density shear flows are presented. The differences between these results and those obtained using conventional models are discussed.

  1. Contrasting effects of large density changes on relative testes size in fluctuating populations of sympatric vole species

    PubMed Central

    Klemme, Ines; Soulsbury, Carl D.; Henttonen, Heikki

    2014-01-01

    Across species, there is usually a positive relationship between sperm competition level and male reproductive effort on ejaculates, typically measured using relative testes size (RTS). Within populations, demographic and ecological processes may drastically alter the level of sperm competition and thus, potentially affect the evolution of testes size. Here, we use longitudinal records (across 38 years) from wild sympatric Fennoscandian populations of five species of voles to investigate whether RTS responds to natural fluctuations in population density, i.e. variation in sperm competition risk. We show that for some species RTS increases with density. However, our results also show that this relationship can be reversed in populations with large-scale between-year differences in density. Multiple mechanisms are suggested to explain the negative RTS–density relationship, including testes size response to density-dependent species interactions, an evolutionary response to sperm competition levels that is lagged when density fluctuations are over a certain threshold, or differing investment in pre- and post-copulatory competition at different densities. The results emphasize that our understanding of sperm competition in fluctuating environments is still very limited. PMID:25122229

  2. Quenching of the beam-plasma instability by 3-D spectra of large scale density fluctuations

    NASA Technical Reports Server (NTRS)

    Muschietti, L.; Goldman, M. V.; Newman, D.

    1984-01-01

    A model is presented to explain the highly variable yet low level of Langmuir waves measured in situ by spacecraft when electron beams associated with Type III solar bursts are passing by; the low level of excited waves allows the propagation of such streams from the Sun to well past 1 AU without catastrophic energy losses. The model is based, first, on the existence of large scale density fluctuations that are able to efficiently diffuse small k beam unstable Langmuir waves in phase space, and, second, on the presence of a significantly isotropic nonthermal tail in the distribution function of the background electron population, which is capable of stabilizing larger k modes. The strength of the model lies in its ability to predict various levels of Langmuir waves depending on the parameters. This feature is consistent with the high variability actually observed in the measurements.

  3. Mobility of electrons in supercritical krypton: Role of density fluctuations

    SciTech Connect

    Nishikawa, Masaru; Holroyd, Richard A.; Preses, Jack M.

    2007-07-07

    Excess electrons were generated in supercritical krypton by means of pulsed x-ray irradiation, and the electron transport phenomena were studied. Electron signals immediately after a 30 ps pulse showed a distinctive feature characteristic of the presence of the Ramsauer-Townsend minimum in the momentum transfer cross section. The dependence of the drift velocity v{sub D} on field strength was found to be concave upward in the low field region and then to go through a maximum with increasing field strength, which is also typical of the presence of a minimum in the scattering cross section at an intermediate field strength. A minimum in the electron mobility was observed at about one-half the critical density. The acoustical phonon scattering model, which successfully explained the mobility change in this density region in supercritical xenon, was again found to account for the mobility in supercritical krypton.

  4. Dynamical Selection of the Primordial Density Fluctuation Amplitude

    SciTech Connect

    Lehners, Jean-Luc; Steinhardt, Paul J.

    2011-02-25

    In inflationary models, the predicted amplitude of primordial density perturbations Q is much larger than the observed value ({approx}10{sup -5}) for natural choices of parameters. To explain the requisite exponential fine-tuning, anthropic selection is often invoked, especially in cases where microphysics is expected to produce a complex energy landscape. By contrast, we find examples of ekpyrotic models based on heterotic M theory for which dynamical selection naturally favors the observed value of Q.

  5. Sound Sources Identified in High-Speed Jets by Correlating Flow Density Fluctuations With Far-Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.

    2003-01-01

    Noise sources in high-speed jets were identified by directly correlating flow density fluctuation (cause) to far-field sound pressure fluctuation (effect). The experimental study was performed in a nozzle facility at the NASA Glenn Research Center in support of NASA s initiative to reduce the noise emitted by commercial airplanes. Previous efforts to use this correlation method have failed because the tools for measuring jet turbulence were intrusive. In the present experiment, a molecular Rayleigh-scattering technique was used that depended on laser light scattering by gas molecules in air. The technique allowed accurate measurement of air density fluctuations from different points in the plume. The study was conducted in shock-free, unheated jets of Mach numbers 0.95, 1.4, and 1.8. The turbulent motion, as evident from density fluctuation spectra was remarkably similar in all three jets, whereas the noise sources were significantly different. The correlation study was conducted by keeping a microphone at a fixed location (at the peak noise emission angle of 30 to the jet axis and 50 nozzle diameters away) while moving the laser probe volume from point to point in the flow. The following figure shows maps of the nondimensional coherence value measured at different Strouhal frequencies ([frequency diameter]/jet speed) in the supersonic Mach 1.8 and subsonic Mach 0.95 jets. The higher the coherence, the stronger the source was.

  6. Response of seabirds to fluctuations in forage fish density

    USGS Publications Warehouse

    Piatt, John F.

    2002-01-01

    Following the Exxon Valdez Oil Spill (EVOS), one concern was that prevailing ecological conditions in the Gulf of Alaska (GOA) would not favor recovery of damaged seabird populations. To address this issue, we examined relationships between oceanography, forage fish and seabirds near three seabird colonies in lower Cook Inlet (LCI) in 1995-1999 (some colony work continued until 2001). Upwelling of cold, nutrient-rich GOA waters at the entrance to the shallow LCI estuary supports a high density of juvenile pollock, sand lance, and capelin; which in turn are exploited by high densities of breeding seabirds (murres, kittiwakes, puffins, etc.) on the east side of LCI. Waters on the west side of LCI are oceanographically distinct (warmer, less saline, outflowing), and much less productive for forage fish and seabirds. Patterns of seabird foraging behavior, productivity and population change reflected patterns of forage fish abundance and distribution, which in turn depended on local oceanography. Most seabird parameters varied with forage fish density in a non-linear (e.g., sigmoidal, exponential) fashion, and in some areas and years, productivity was limited by food availability.  Current and projected ecological conditions favor recovery of seabirds from the EVOS at some colonies. In 14 chapters, this report summarizes data and compiles it into 247 tables, figures and appendices. Chapter 14 provides a thorough synthesis of overall project findings. Final analyses and interpretations of data will be published later in peer-reviewed journals (in addition to 61 articles already completed).

  7. BABE - a brush cathode discharge for thermal fluctuation measurements

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Dilecce, G.; Tolias, P.

    2015-04-01

    For experimental tests of fluctuation theory in ideal plasmas and plasmas seeded with dust, the ideal environment would be that of stable quiescent plasma. In most laboratory plasmas the homogeneous state of the positive column is often unstable, rare exceptions are the so-called brush cathode discharges, proposed in the 60s, where a specially manufactured cathode allows stable operation in the abnormal glow regime and the only fluctuations present are those due the thermal motion of the particles. Such a device, the BAri Brush Electrode (BABE), has recently been built in a novel configuration that combines the advantages of the inverse design with those of the reflex geometry. The region between the two anodes is essentially field-free and extremely stable in wide range of plasma densities and collisionalities. Unprecedented low fluctuation levels of δn/n <= 10-5 in He and δn/n <= 5 × 10-6 in Ar discharges have been achieved.

  8. Density Measurements of Be Shells

    SciTech Connect

    Cook, R C

    2005-02-15

    The purpose of this memo is to lay out the uncertainties associated with the measurement of density of Be ablators by the weigh and volume method. I am counting on the readers to point out any faulty assumptions about the techniques or uncertainties associated with them. Based on the analysis presented below we should expect that 30 {micro}m thick shells will have an uncertainty in the measured density of about 2% of the value, coming more or less equally from the mass and volume measurement. The uncertainty is roughly inversely proportional to the coating thickness, thus a 60 {micro}m walled shell would result in a 1% uncertainty in the density.

  9. Stochastic density effects on adult fish survival and implications for population fluctuations.

    PubMed

    Okamoto, Daniel K; Schmitt, Russell J; Holbrook, Sally J

    2015-11-26

    The degree to which population fluctuations arise from variable adult survival relative to variable recruitment has been debated widely for marine organisms. Disentangling these effects remains challenging because data generally are not sufficient to evaluate if and how adult survival rates are regulated by stochasticity and/or population density. Using unique time series for a largely unexploited reef fish, we found both population density and stochastic food supply impacted adult survival. The estimated effect of variable survival on adult abundance (both mean and variability) rivalled that of variable recruitment. Moreover, we show density-dependent adult survival can dampen impacts of stochastic recruitment. Thus, food variability may alter population fluctuations by simultaneously regulating recruitment and compensatory adult survival. These results provide an additional mechanism for why intensified density-independent mortality (via harvest or other means) amplifies population fluctuations and emphasises need for research evaluating the causes and consequences of variability in adult survival. © 2015 John Wiley & Sons Ltd/CNRS.

  10. Cosmological models with the energy density of random fluctuations and the Hubble-constant problem

    NASA Astrophysics Data System (ADS)

    Tomita, Kenji

    2017-08-01

    The fluctuation energy is derived from adiabatic random fluctuations due to second-order perturbation theory, and the evolutionary relation for it is expressed in the form of ρ_f = ρ_f (ρ), where ρ and ρ_f are the densities of ordinary dust and the fluctuation energy, respectively. The pressureless matter as a constituent of the universe at the later stage is assumed to consist of ordinary dust and the fluctuation energy. Next, cosmological models including the fluctuation energy as a kind of dark matter are derived using the above relation, and it is found that the Hubble parameter and the other model parameters in the derived models can be consistent with the recent observational values. Moreover, the perturbations of ρ and ρ_f are studied.

  11. An upgraded interferometer-polarimeter system for broadband fluctuation measurements

    NASA Astrophysics Data System (ADS)

    Parke, E.; Ding, W. X.; Duff, J.; Brower, D. L.

    2016-11-01

    Measuring high-frequency fluctuations (above tearing mode frequencies) is important for diagnosing instabilities and transport phenomena. The Madison Symmetric Torus interferometer-polarimeter system has been upgraded to utilize improved planar-diode mixer technology. The new mixers reduce phase noise and allow more sensitive measurements of fluctuations at high frequency. Typical polarimeter rms phase noise values of 0.05°-0.07° are obtained with 400 kHz bandwidth. The low phase noise enables the resolution of fluctuations up to 250 kHz for polarimetry and 600 kHz for interferometry. The importance of probe beam alignment for polarimetry is also verified; previously reported tolerances of ≤0.1 mm displacement for equilibrium and tearing mode measurements minimize contamination due to spatial misalignment to within acceptable levels for chords near the magnetic axis.

  12. An upgraded interferometer-polarimeter system for broadband fluctuation measurements

    SciTech Connect

    Parke, E. Ding, W. X.; Brower, D. L.; Duff, J.

    2016-11-15

    Measuring high-frequency fluctuations (above tearing mode frequencies) is important for diagnosing instabilities and transport phenomena. The Madison Symmetric Torus interferometer-polarimeter system has been upgraded to utilize improved planar-diode mixer technology. The new mixers reduce phase noise and allow more sensitive measurements of fluctuations at high frequency. Typical polarimeter rms phase noise values of 0.05°–0.07° are obtained with 400 kHz bandwidth. The low phase noise enables the resolution of fluctuations up to 250 kHz for polarimetry and 600 kHz for interferometry. The importance of probe beam alignment for polarimetry is also verified; previously reported tolerances of ≤0.1 mm displacement for equilibrium and tearing mode measurements minimize contamination due to spatial misalignment to within acceptable levels for chords near the magnetic axis.

  13. Shock-associated MHD waves - A model for interstellar density fluctuations

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1988-01-01

    The possibility that the density fluctuations responsible for radio scintillations could be due to ion-beam-generated MHD waves near interstellar shock waves is discussed. This suggestion is inspired by spacecraft observations which reveal these phenomena near shocks in the solar system. The model quite naturally accounts for the scale on which these fluctuations occur; it is dictated by the wavelength of the unstable waves.

  14. Density fluctuations represent a key process maintaining personality variation in a wild passerine bird.

    PubMed

    Nicolaus, Marion; Tinbergen, Joost M; Ubels, Richard; Both, Christiaan; Dingemanse, Niels J

    2016-04-01

    Heritable personality variation is subject to fluctuating selection in many animal taxa; a major unresolved question is why this is the case. A parsimonious explanation must involve a general ecological process: a likely candidate is the omnipresent spatiotemporal variation in conspecific density. We tested whether spatiotemporal variation in density within and among nest box plots of great tits (Parus major) predicted variation in selection acting on exploratory behaviour (n = 48 episodes of selection). We found viability selection favouring faster explorers under lower densities but slower explorers under higher densities. Temporal variation in local density represented the primary factor explaining personality-related variation in viability selection. Importantly, birds did not anticipate changes in selection by means of adaptive density-dependent plasticity. This study thereby provides an unprecedented example of the key importance of the interplay between fluctuating selection and lack of adaptive behavioural plasticity in maintaining animal personality variation in the wild. © 2016 John Wiley & Sons Ltd/CNRS.

  15. Experimental Investigation of Short Scalelength Density Fluctuations in Laser-Produced Plasmas

    SciTech Connect

    Moody, J.D.; MacGowan, B.J.; Glenzer, S.H.; Kirkwood, R.K.; Kruer, W.L.; Montgomery, D.S.; Schmitt, A.J.; Williams, E.A.; Stone, G.F.

    2000-01-05

    The technique of near forward laser scattering is used to infer characteristics of intrinsic and controlled density fluctuations in laser-produced plasmas. Intrinsic fluctuations are studied in long-scale length plasmas where we find that the fluctuations exhibit scale sizes related to the intensity variation scales in the plasma-forming and interaction beams. Stimulated Brillouin forward scattering and filamentation appear to be the primary mechanism through which these fluctuations originate. The beam spray resulting from these fluctuations is important to understand since it can affect symmetry in an inertial confinement fusion (ICF) experiment. Controlled fluctuations are studied in foam and exploding foil targets. Forward scattered light from foam targets shows evidence that the initial target inhomogeneities remain after the target is laser heated. Forward scattered light from an exploding foil plasma shows that a regular intensity pattern can be used to produce a spatially correlated density fluctuation pattern. These results provide data which are being used to benchmark numerical models of beam spray.

  16. Maps of the little bangs through energy density and temperature fluctuations

    SciTech Connect

    Basu, Sumit Chatterjee, Rupa; Nayak, Tapan K.

    2016-01-22

    Heavy-ion collisions at ultra-relativistic energies are often referred to as little bangs. We propose for the first time to map the heavy-ion collisions at ultra-relativistic energies, similar to the maps of the cosmic microwave background radiation, using fluctuations of energy density and temperature in small phase space bins. We study the evolution of fluctuations at each stage of the collision using an event-by-event hydrodynamic framework. We demonstrate the feasibility of making fluctuation maps from experimental data and its usefulness in extracting considerable information regarding the early stages of the collision and its evolution.

  17. Cosmological Inflation with Multiple Fields and the Theory of Density Fluctuations

    NASA Astrophysics Data System (ADS)

    van Tent, B. J. W.

    2002-09-01

    Inflation is a stage of extremely rapid expansion in the very early universe. It was proposed to solve a number of problems in the standard Big Bang theory. In particular it others an explanation for the origin of structures like (clusters of) galaxies on the one hand (by generating small density fluctuations that act as gravitational seeds), and for the largescale homogeneity of the universe on the other hand (because of the enormous expansion). Inflation is driven by one or more scalar fields with an appropriate potential. In this thesis we develop an analytical formalism to describe the generation of density fluctuations during inflation with multiple scalar fields. We allow these fields to live on a non-trivial (curved) field manifold, as is often the case in high-energy theories. We also treat the evolution of the fluctuations after inflation, until the time of recombination when the cosmic microwave background radiation was formed. Using our formalism observations of the CMBR can then be used to set constraints on the parameters in (multiple-field) inflation models. In more detail this thesis covers the following topics. After introductory chapters on cosmology in general and single-field inflation, the theory of inflation with multiple fields and a general (non-trivial) field metric is derived. In particular we introduce a basis in field space that is induced by the background dynamics and allows a clear distinction between effectively single-field and truly multiple-field effects. The important slow-roll approximation is generalized to the case of multiple fields. Next we derive how scalar and tensor fluctuations are generated from a quantum origin during multiple-field inflation, paying special attention to the transition that occurs when a perturbation mode crosses the Hubble scale. Using some simplifying assumptions the evolution of both adiabatic and isocurvature perturbation modes after inflation is treated. The final results are expressions for the

  18. Poynting vector, energy densities, and pressure of collective transverse electromagnetic fluctuations in unmagnetized plasmas

    SciTech Connect

    Schlickeiser, R.

    2012-01-15

    A systematic calculation of the electromagnetic properties (Poynting vector, electromagnetic energy, and pressure) of the collective transverse fluctuations in unmagnetized plasmas with velocity-anisotropic plasma particle distributions functions is presented. Time-averaged electromagnetic properties for monochromatic weakly damped wave-like fluctuations and space-averaged electromagnetic properties for monochromatic weakly propagating and aperiodic fluctuations are calculated. For aperiodic fluctuations, the Poynting vector as well as the sum of the space-averaged electric and magnetic field energy densities vanish. However, aperiodic fluctuations possess a positive pressure given by its magnetic energy density. This finite pressure density p{sub a} of aperiodic fluctuations has important consequences for the dynamics of cosmic unmagnetized plasmas such as the intergalactic medium after reionization. Adopting the standard cosmological evolution model, we show that this additional pressure changes the expansion law of the universe leading to further deceleration. Negative vacuum pressure counterbalances this deceleration to an accelerating universe provided that the negative vacuum pressure is greater than 1.5p{sub a}, which we estimate to be of the order 2.1 {center_dot} 10{sup -16} dyn cm{sup -2}.

  19. Fluctuation Measurements on the Madison Symmetric Torus with a Heavy Ion Beam Probe

    NASA Astrophysics Data System (ADS)

    Lei, J.; Schoch, P. M.; Demers, D. R.; Shah, U.; Connor, K. A.; Crowley, T. P.

    2000-10-01

    Measurements of electron density fluctuations (tilden_e) and electrostatic potential fluctuations (tildeφ) on the Madison Symmetric Torus (MST) reversed field pinch (RFP) are undertaken with a newly installed 200keV Heavy Ion beam Probe (HIBP) system. Initial fluctuation signals observed are closely coupled to low frequency MHD activity. tilde φ induced particle transport can be addressed by simultaneous measurements of tildene and tilde φ. Langmuir probes have been used on MST to measure this kind of transport at low plasma current level and at the edge of the plasma. By changing the beam energy and beam injection conditions, the MST-HIBP can provide localized fluctuation measurements at almost all radii for a broad range of plasma parameters, and thus enrich our understanding of turbulent transport in reversed field pinch plasmas. Current working issues include isolating electrostatic fluctuation signals from those caused by magnetic fluctuations, increasing the ion beam intensity to increase signal-to-noise ratios, and looking for the best operational regime (sample volume locations, plasma parameters, etc.) for this diagnostic. *WORK SUPPORTED BY USDOE

  20. Control of density fluctuations in atomistic-continuum simulations of dense liquids

    NASA Astrophysics Data System (ADS)

    Kotsalis, E. M.; Walther, J. H.; Koumoutsakos, P.

    2007-07-01

    We present a control algorithm to eliminate spurious density fluctuations associated with the coupling of atomistic and continuum descriptions for dense liquids. A Schwartz domain decomposition algorithm is employed to couple molecular dynamics for the simulation of the atomistic system with a continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force is usually employed to remedy this situation. We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity of the method makes it suitable for any type of coupling between atomistic and continuum descriptions of dense fluids.

  1. Control of density fluctuations in atomistic-continuum simulations of dense liquids.

    PubMed

    Kotsalis, E M; Walther, J H; Koumoutsakos, P

    2007-07-01

    We present a control algorithm to eliminate spurious density fluctuations associated with the coupling of atomistic and continuum descriptions for dense liquids. A Schwartz domain decomposition algorithm is employed to couple molecular dynamics for the simulation of the atomistic system with a continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force is usually employed to remedy this situation. We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity of the method makes it suitable for any type of coupling between atomistic and continuum descriptions of dense fluids.

  2. On the phase shift between electric potential and plasma density fluctuations in the edge turbulence

    SciTech Connect

    Shchepetov, S. V. Kholnov, Yu. V.; Vasil'kov, D. G.

    2013-02-15

    In some cases, the phase shift between fluctuations of the electric potential and plasma density helps to identify the instability that governs the turbulent state. In this paper, the basic experimental and theoretical results that denote the possibility (or impossibility) of such identification are briefly discussed. The experimental data based on measurements of the phase shift between the floating potential and ion saturation current fluctuations in the L-2M stellarator-a system with externally imposed magnetic surfaces-are presented (Shchepetov, Kholnov, Fedyanin, et al., Plasma Phys. Controlled Fusion 50, 045001 (2008)). It is shown that the observed phase shift {Omega} varies in a wide range from {pi} to 0, gradually decreasing with deepening inside the plasma. A number of arguments are presented suggesting that {Omega} Almost-Equal-To {pi} can indicate that the process is nonlocal, i.e., oscillations at a given spatial point are driven and mainly determined by the processes localized outside of the observation point. We note that, within the framework of the magnetohydrodynamic theory, plasma was definitely unstable with respect to resistive interchange modes in all cases under study. It is demonstrated experimentally that the widespread notion that the phase shift {Omega} Almost-Equal-To {pi}/2 is characteristic of only resistive interchange modes is hardly universal. The experimental results are analyzed on the basis of analytical estimates.

  3. Structure and Function of Intra–Annual Density Fluctuations: Mind the Gaps

    PubMed Central

    Battipaglia, Giovanna; Campelo, Filipe; Vieira, Joana; Grabner, Michael; De Micco, Veronica; Nabais, Cristina; Cherubini, Paolo; Carrer, Marco; Bräuning, Achim; Čufar, Katarina; Di Filippo, Alfredo; García-González, Ignacio; Koprowski, Marcin; Klisz, Marcin; Kirdyanov, Alexander V.; Zafirov, Nikolay; de Luis, Martin

    2016-01-01

    Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events. PMID:27200063

  4. Structure and Function of Intra-Annual Density Fluctuations: Mind the Gaps.

    PubMed

    Battipaglia, Giovanna; Campelo, Filipe; Vieira, Joana; Grabner, Michael; De Micco, Veronica; Nabais, Cristina; Cherubini, Paolo; Carrer, Marco; Bräuning, Achim; Čufar, Katarina; Di Filippo, Alfredo; García-González, Ignacio; Koprowski, Marcin; Klisz, Marcin; Kirdyanov, Alexander V; Zafirov, Nikolay; de Luis, Martin

    2016-01-01

    Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events.

  5. Fluctuating surface pressure measurements on USB wing using two types of transducers

    NASA Technical Reports Server (NTRS)

    Reed, J. B.

    1975-01-01

    Measurements of the fluctuating pressures on the wing surface of an upper-surface-blown powered-lift model and a JT15 engine were obtained using two types of pressure transducers. The pressures were measured using overall-fluctuating pressures and power spectral density analyses for various thrust settings and two jet impingement angles. Comparison of the data from the two transducers indicate that similar results are obtained in the lower frequency ranges for both transducers. The data also indicate that for this configuration, the highest pressure levels occur at frequencies below 2000 Hz.

  6. Dispersion relations of electron density fluctuations in a Hall thruster plasma, observed by collective light scattering

    SciTech Connect

    Tsikata, S.; Pisarev, V.; Gresillon, D. M.; Lemoine, N.

    2009-03-15

    Kinetic models and numerical simulations of E-vectorxB-vector plasma discharges predict microfluctuations at the scales of the electron cyclotron drift radius and the ion plasma frequency. With the help of a specially designed collective scattering device, the first experimental observations of small-scale electron density fluctuations inside the plasma volume are obtained, and observed in the expected ranges of spatial and time scales. The anisotropy, dispersion relations, form factor, amplitude, and spatial distribution of these electron density fluctuations are described and compared to theoretical expectations.

  7. Magnetic fluctuation profile measurement using optics of motional Stark effect diagnostics in JT-60U

    SciTech Connect

    Suzuki, T.; Isayama, A.; Matsunaga, G.; Oyama, N.; Fujita, T.; Oikawa, T.

    2008-10-15

    Motional Stark effect (MSE) diagnostics in JT-60U works as polarimeter to measure the pitch angle of magnetic field as well as beam-emission-spectroscopy (BES) monochromator simultaneously at 30 spatial channels. Fluctuation in the BES signal using MSE optics (MSE/BES) contains fluctuations in not only the density but also the pitch angle (or the magnetic field). Correlation analysis of the magnetic fluctuation between two spatial channels is applied to high-beta plasma with a magnetohydrodynamic activity at frequency of about 0.9 kHz. It has been found that the magnetic fluctuation measured by the MSE/BES is spatially localized near the magnetic flux surface having safety factor and that the phase of the fluctuation is inverted at about the surface, suggesting magnetic island structure by tearing mode. The phase of the magnetic fluctuation measured by the MSE/BES at outside of the q=2 surface is consistent with that by the pickup coil placed outside the plasma.

  8. Measurements of Electric Field Fluctuations Using a Capacitive Probe on the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Tan, Mingsheng; Almagri, A. F.; Sarff, J. S.; McCollam, K. J.; Triana, J. C.; Li, H.; Ding, W. X.; Liu, W.

    2015-11-01

    Experimental measurements and extended MHD computation reveal that both flow and current density fluctuations are important for the magnetic relaxation of RFP plasmas via tearing fluctuations. Motivated by these results, we have developed a multi-electrode capacitive probe for radial profile measurements of the electrostatic potential deep in the plasma. The capacitive probe measures the ac plasma potential via electrodes insulated from the plasma using an annular boron nitride dielectric (also the particle shield), provided the secondary emission is sufficiently large (Te>20 eV). The probe has ten sets of four capacitors with 1.5 cm radial separation. At each radius, four capacitors are arranged on a 1.3 cm square grid. This probe has been inserted up to 15 cm from the wall in 200 kA deuterium plasmas. The fluctuation amplitudes increase during the sawtooth crash and the power spectrum broadens (similar to the behavior of magnetic field fluctuations). The frequency bandwidth allows measurements of the radial coherence and phase of the fluctuations associated with rotating tearing modes up to the Alfvénic range. A next-step goal is measurement of the total dynamo emf, ~ < E ~ . B ~ > /B0 , to complement ongoing measurements of the Hall dynamo emf, < J ~ × B ~ > / ne , using a deep-insertion magnetic probe. M. Tan is supported by ITER-China Program. Work is supported by US DOE.

  9. Enhanced stochastic fluctuations to measure steep adhesive energy landscapes.

    PubMed

    Haider, Ahmad; Potter, Daniel; Sulchek, Todd A

    2016-12-13

    Free-energy landscapes govern the behavior of all interactions in the presence of thermal fluctuations in the fields of physical chemistry, materials sciences, and the biological sciences. From the energy landscape, critical information about an interaction, such as the reaction kinetic rates, bond lifetimes, and the presence of intermediate states, can be determined. Despite the importance of energy landscapes to understanding reaction mechanisms, most experiments do not directly measure energy landscapes, particularly for interactions with steep force gradients that lead to premature jump to contact of the probe and insufficient sampling of transition regions. Here we present an atomic force microscopy (AFM) approach for measuring energy landscapes that increases sampling of strongly adhesive interactions by using white-noise excitation to enhance the cantilever's thermal fluctuations. The enhanced fluctuations enable the recording of subtle deviations from a harmonic potential to accurately reconstruct interfacial energy landscapes with steep gradients. Comparing the measured energy landscape with adhesive force measurements reveals the existence of an optimal excitation voltage that enables the cantilever fluctuations to fully sample the shape and depth of the energy surface.

  10. Enhanced stochastic fluctuations to measure steep adhesive energy landscapes

    PubMed Central

    Haider, Ahmad; Potter, Daniel; Sulchek, Todd A.

    2016-01-01

    Free-energy landscapes govern the behavior of all interactions in the presence of thermal fluctuations in the fields of physical chemistry, materials sciences, and the biological sciences. From the energy landscape, critical information about an interaction, such as the reaction kinetic rates, bond lifetimes, and the presence of intermediate states, can be determined. Despite the importance of energy landscapes to understanding reaction mechanisms, most experiments do not directly measure energy landscapes, particularly for interactions with steep force gradients that lead to premature jump to contact of the probe and insufficient sampling of transition regions. Here we present an atomic force microscopy (AFM) approach for measuring energy landscapes that increases sampling of strongly adhesive interactions by using white-noise excitation to enhance the cantilever’s thermal fluctuations. The enhanced fluctuations enable the recording of subtle deviations from a harmonic potential to accurately reconstruct interfacial energy landscapes with steep gradients. Comparing the measured energy landscape with adhesive force measurements reveals the existence of an optimal excitation voltage that enables the cantilever fluctuations to fully sample the shape and depth of the energy surface. PMID:27911778

  11. Effects of periodic fluctuations of photon flux density on anatomical and photosynthetic characteristics of soybean leaves.

    PubMed

    Gaudillere, J P; Drevon, J J; Bernoud, J P; Jardinet, F; Euvrard, M

    1987-01-01

    The development of soybean leaves grown at fluctuating photon flux density between 100 and 1500μM m(-2)s(-1) with a period of 160 sec were compared to leaves developed under continuous light with the same mean photon flux density. Number of epidermal cells and stomata, leaf area and specific leaf weight were not affected by the periodic fluctuation of photon flux density. Chloroplastic pigment concentration and chlorophyll fluorescence reveal some photoinhibitory effects of the high photon flux density phase. Stomatal and internal CO2 conductance and the quantum yield were not affected by the light regime. In contrast ribulose 1.5 bisphosphate carboxylase/oxygenase activity before in vitro activation by CO2 and Mg(++) was stimulated by the periodic illumination whereas the total amount of the enzyme and the internal leaf CO2 conductance remained steady. In conclusion, there was no major difference between leaves of plant grown either under a steady or under a periodic fluctuation of the photon flux density except some photoinhibitory symptoms under fluctuating illumination, and a higher in vivo level of activation of the Rubisco.

  12. Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation

    NASA Astrophysics Data System (ADS)

    Phillips, Nicholas G.; Hu, B. L.

    2000-10-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.

  13. High bandwidth linear viscoelastic properties of complex fluids from the measurement of their free surface fluctuations

    NASA Astrophysics Data System (ADS)

    Pottier, Basile; Talini, Laurence; Frétigny, Christian

    2012-02-01

    We present a new optical method to measure the linear viscoelastic properties of materials, ranging from complex fluids to soft solids, within a large frequency range (about 0.1--10^4 Hz). The surface fluctuation specular reflection technique is based on the measurement of the thermal fluctuations of the free surfaces of materials at which a laser beam is specularly reflected. The propagation of the thermal surface waves depends on the surface tension, density, and complex viscoelastic modulus of the material. For known surface tension and density, we show that the frequency dependent elastic and loss moduli can be deduced from the fluctuation spectrum. Using a viscoelastic solid (a cross-linked PDMS), which linear viscoelastic properties are known in a large frequency range from rheometric measurements and the time--temperature superposition principle, we show that there is a good agreement between the rheological characterization provided by rheometric and fluctuation measurements. We also present measurements conducted with complex fluids that are supramolecular polymer solutions. The agreement with other low frequency and high frequency rheological measurements is again very good, and we discuss the sensitivity of the technique to surface viscoelasticity.

  14. A high speed data acquisition system for the analysis of velocity, density, and total temperature fluctuations at transonic speeds

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.; Jones, Gregory S.; Stainback, P. Calvin

    1988-01-01

    The use of a high-speed Dynamic Data Acquisition System (DDAS) to measure simultaneously velocity, density, and total temperature fluctuations is described. The DDAS is used to automate the acquisition of hot-wire calibration data. The data acquisition, data handling, and data reporting techiques used by DDAS are described. Sample data are used to compare results obtained with the DDAS with those obtained from the FM tape and post-test digitization method.

  15. A high speed data acquisition system for the analysis of velocity, density, and total temperature fluctuations at transonic speeds

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.; Jones, Gregory S.; Stainback, P. Calvin

    1988-01-01

    The use of a high-speed Dynamic Data Acquisition System (DDAS) to measure simultaneously velocity, density, and total temperature fluctuations is described. The DDAS is used to automate the acquisition of hot-wire calibration data. The data acquisition, data handling, and data reporting techiques used by DDAS are described. Sample data are used to compare results obtained with the DDAS with those obtained from the FM tape and post-test digitization method.

  16. Three-dimensional structure of electron density fluctuations in the Hall thruster plasma: ExB mode

    SciTech Connect

    Tsikata, S.; Honore, C.; Gresillon, D. M.; Lemoine, N.

    2010-11-15

    Collective scattering measurements have been conducted on the plasma of a Hall thruster, in which the electron density fluctuations are fully characterized by the dynamic form factor. The dynamic form factor amplitude distribution has been measured depending on the k-vector spatial and frequency components at different locations. Fluctuations are seen as propagating waves. The largest amplitude mode propagates nearly along the cross-field direction but at a phase velocity that is much smaller than the ExB drift velocity. Refined directional analysis of this largest amplitude mode shows a thin angular emission diagram with a mean direction that is not strictly along the ExB direction but at small angles near it. The deviation is oriented toward the anode in the (E,ExB) plane and toward the exterior of the thruster channel in the (B,ExB) plane. The density fluctuation rate is on the order of 1%. These experimentally determined directional fluctuation characteristics are discussed with regard to the linear kinetic theory model and particle-in-cell simulation results.

  17. Density matrix of radiation of a black hole with a fluctuating horizon

    NASA Astrophysics Data System (ADS)

    Iofa, Mikhail Z.

    2016-09-01

    The density matrix of Hawking radiation is calculated in the model of a black hole with a fluctuating horizon. Quantum fluctuations smear the classical horizon of a black hole and modify the density matrix of radiation producing the off-diagonal elements. The off-diagonal elements may store information on correlations between the radiation and the black hole. The smeared density matrix was constructed by convolution of the density matrix calculated with the instantaneous horizon with the Gaussian distribution over the instantaneous horizons. The distribution has the extremum at the classical radius of the black hole and the width of order of the Planck length. Calculations were performed in the model of a black hole formed by the thin collapsing shell which follows a trajectory that is a solution of the matching equations connecting the interior and exterior geometries.

  18. Measurement of magnetic fluctuation-induced particle flux (invited).

    PubMed

    Ding, W X; Brower, D L; Yates, T Y

    2008-10-01

    Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial particle transport is achieved by combining various interferometry techniques, including Faraday rotation, conventional interferometry, and differential interferometry. It is observed that electron convective particle flux and its divergence exhibit a significant increase during a sawtooth crash. In this paper, we describe the basic techniques employed to determine the particle flux.

  19. Generalized time-dependent density-functional-theory response functions for spontaneous density fluctuations and nonlinear response: Resolving the causality paradox in real time

    NASA Astrophysics Data System (ADS)

    Mukamel, Shaul

    2005-02-01

    Time-ordered superoperators are used to develop a unified description of nonlinear density response and spontaneous fluctuations of many-electron systems. The pth -order density response functions are decomposed into 2p+1 non-causal Liouville space pathways. Individual pathways are symmetric to the interchange of their space, time, and superoperator indices and can thus be calculated as functional derivatives. Other combinations of these pathways represent spontaneous density fluctuations and the response of such fluctuations to an external field. The resolution of the causality paradox of time-dependent density-functional theory (TDDFT) is shown to be intimately connected with the nonretarded nature of fluctuations.

  20. Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations

    SciTech Connect

    Krafft, C.; Volokitin, A.

    2016-03-25

    The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts’ conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.

  1. Time evolution of density fluctuation in the supercritical region. 2. Comparison of hydrogen- and non-hydrogen-bonded fluids.

    PubMed

    Kajiya, Daisuke; Nishikawa, Keiko; Saitow, Ken-ichi

    2005-08-25

    The time evolution of the density fluctuation of molecules is investigated by dynamic light scattering in six neat fluids in supercritical states. This study is the first to compare the dynamics of density inhomogeneity between hydrogen- and non-hydrogen-bonded fluids. Supercritical methanol and ethanol are used as hydrogen-bonded fluids, whereas four non-hydrogen-bonded fluids were used: CHF(3), C(2)H(4), CO(2), and Xe. We measure the time correlation function of the density fluctuation of each fluid at the same reduced temperatures and densities and investigate the relationship between the dynamic and static density inhomogeneities of those supercritical fluids. In all cases, the profile of the time correlation function of the density fluctuation is characterized by a single-exponential function, whose decay is responsible for the dynamics characterized by hydrodynamic conditions. We obtain correlation times from the time correlation function and discuss dynamic and static inhomogeneity using the Kawasaki theory and the Landau-Placzek theory. While the correlation times in the six fluids show noncoincidence, those values agree well with each other except for the supercritical alcohols when scaled to a dimensionless parameter. Although the principle of corresponding state is observed in the non-hydrogen-bonded fluids, both the supercritical methanol and ethanol deviate from that principle. This deviation is attributed to the presence of hydrogen bonding among alcohol molecules at high temperature and low density. The average cluster size of each fluid is estimated under the same thermodynamic conditions, and it is shown that the clusters of supercritical alcohols are on average 1.5-1.7 times larger than those of the four non-hydrogen-bonded fluids. Moreover, the thermal diffusivity of each neat fluid is obtained over wide ranges of density and temperature.

  2. A multi-chain polymer slip-spring model with fluctuating number of entanglements: Density fluctuations, confinement, and phase separation.

    PubMed

    Ramírez-Hernández, Abelardo; Peters, Brandon L; Schneider, Ludwig; Andreev, Marat; Schieber, Jay D; Müller, Marcus; de Pablo, Juan J

    2017-01-07

    Coarse grained simulation approaches provide powerful tools for the prediction of the equilibrium properties of polymeric systems. Recent efforts have sought to develop coarse-graining strategies capable of predicting the non-equilibrium behavior of entangled polymeric materials. Slip-link and slip-spring models, in particular, have been shown to be capable of reproducing several key aspects of the linear response and rheology of polymer melts. In this work, we extend a previously proposed multi-chain slip-spring model in a way that correctly incorporates the effects of the fluctuating environment in which polymer segments are immersed. The model is used to obtain the equation of state associated with the slip-springs, and the results are compared to those of related numerical approaches and an approximate analytical expression. The model is also used to examine a polymer melt confined into a thin film, where an inhomogeneous distribution of polymer segments is observed, and the corresponding inhomogeneities associated with density fluctuations are reflected on the spatial slip-spring distribution.

  3. Observation of the electron density fluctuations by using the O-mode Microwave Imaging Reflectometry in LHD

    NASA Astrophysics Data System (ADS)

    Nagayama, Yoshio; Yamaguchi, Soichiro; Tsuchiya, Hayato; Kuwahara, Daisuke; LHD Experimental Team

    2016-10-01

    Visualization of local electron density fluctuations will be very useful to study the physics of confinement and instabilities in fusion plasma. In the Large Helical Device (LHD), the O-mode microwave imaging reflectometry (O-MIR) has been intensively developed in order to visualize the electron density fluctuations. The frequency is 26 - 34 GHz. This corresponds to the electron density of 0.8 - 1.5 × 1019 m-3. The plasma is illuminated by the Gaussian beam with four frequencies. The imaging optics make a plasma image onto the newly developed 2D (8 × 8) Horn-antenna Millimeter-wave Imaging Device (HMID). In HMID, the signal wave that is accumulated by the horn antenna is transduced to the micro-strip line by using the finline transducer. The signal wave is mixed by the double balanced mixer with the local wave that is delivered by cables. By using O-MIR, electron density fluctuations are measured at the H-mode edge and the ITB layer in LHD. This work is supported by NIFS/NINS under the project of Formation of International Scientific Base and Network, by the NIFS LHD project, by KAKENHI, and by IMS.

  4. Temporal evolution of lower hybrid waves in the presence of ponderomotive density fluctuations

    SciTech Connect

    Karney, C.F.F.

    1980-06-01

    The propagation of lower hybrid waves in the presence of ponderomotive density density fluctuations is considered. The problem is treated in two dimensions and, in order to be able to correctly impose the boundary conditions, the waves are allowed to evolve in time. The fields are described by i upsilon/sub tau/ - ..integral.. upsilon/sub xi/d/sub zeta/ + upsilon/sub zeta zeta/ + upsilon//sup 2/ upsilon = 0 where upsilon is proportional to the electric field, tau to time, and zeta and xi measure distances across and along the lower hybrid ray. The behavior of the waves is investigated numerically. If the amplitude of the waves is large enough, the spectrum of the waves broadens and their parallel wavelength becomes shorter. The assumptions made in the formulation preclude the application of these results to the lower hybrid heating experiment on Alcator-A. Nevertheless, there are indications that the physics embodied in this problem are responsible for some of the results of that experiment.

  5. Linear magnetoresistance in n-type silicon due to doping density fluctuations

    PubMed Central

    Porter, Nicholas A.; Marrows, Christopher H.

    2012-01-01

    We report the observation of a large linear magnetoresistance in the ohmic regime in commonplace commercial n-type silicon wafer with a P dopant density of (1.4±0.1) ×1015 cm–3, and report measurements of it in the temperature range 30–200 K. It arises from the deformation of current paths, which causes a part of the Hall field to be detected at the voltage probes. In short, wide samples we found linear magnetoresistance as large as 4707% in an 8 tesla field at 35 K. Sample geometry effects like these are commonplace in commercial Hall sensors. However, we found that the effect persisted in long, thin samples where the macroscopic current flow should be uniform between the voltage probes: we observed a magnetoresistance of 445% under the same conditions as above. We interpret this result as arising due to spatial fluctuations in the donor density, in the spirit of the Herring model. PMID:22876340

  6. A high speed data acquisition and analysis system for transonic velocity, density, and total temperature fluctuations

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1988-01-01

    The high speed Dynamic Data Acquisition System (DDAS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAS replaces both a recording mechanism and a separate data processing system. The data acquisition and data reduction process has been combined within DDAS. DDAS receives input from hot wires and anemometers, amplifies and filters the signals with computer controlled modules, and converts the analog signals to digital with real-time simultaneous digitization followed by digital recording on disk or tape. Automatic acquisition (either from a computer link to an existing wind tunnel acquisition system, or from data acquisition facilities within DDAS) collects necessary calibration and environment data. The generation of hot wire sensitivities is done in DDAS, as is the application of sensitivities to the hot wire data to generate turbulence quantities. The presentation of the raw and processed data, in terms of root mean square values of velocity, density and temperature, and the processing of the spectral data is accomplished on demand in near-real-time- with DDAS. A comprehensive description of the interface to the DDAS and of the internal mechanisms will be prosented. A summary of operations relevant to the use of the DDAS will be provided.

  7. Simultaneous observations of density fluctuations, trimethyl aluminum trail diffusion, wind shears and gravity waves in the turbopause region

    NASA Astrophysics Data System (ADS)

    Lehmacher, Gerald; Larsen, Miguel; Collins, Richard; Bilen, Sven; Croskey, Charles; Mitchell, John; Luebken, Franz-Josef; Rapp, Markus

    In February 2009, a rocket experiment was launched from Alaska entitled: Where is the tur-bopause? Instabilities, generation and development of turbulence in the 100-km region. The salvo of four rockets obtained in situ wind and temperature profiles, neutral and plasma fluctu-ations, and wave and tidal activity from ground based lidar, radar, and other instrumentation. Among the goals are comparisons of turbulent energy dissipation rates measured by spectral analysis and from chemical trail expansion rates. Based on trimethyl aluminum trail diffusion we identified regions of mixing around 90 km, 95 km, and also above 100 km. The lower re-gion coincided with layers of density fluctuations, while the upper region was characterized by strong wind shear and kilometer-size density structures in the lower thermosphere. Rayleigh and sodium lidar observed a dominant 4-hour wave motion in the upper mesosphere.

  8. Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL)

    NASA Astrophysics Data System (ADS)

    Madi, M.; Peysson, Y.; Decker, J.; Kabalan, K. Y.

    2015-12-01

    The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and Fokker-Planck calculations.

  9. Measuring Happiness: From Fluctuating Happiness to Authentic–Durable Happiness

    PubMed Central

    Dambrun, Michaël; Ricard, Matthieu; Després, Gérard; Drelon, Emilie; Gibelin, Eva; Gibelin, Marion; Loubeyre, Mélanie; Py, Delphine; Delpy, Aurore; Garibbo, Céline; Bray, Elise; Lac, Gérard; Michaux, Odile

    2012-01-01

    On the basis of the theoretical distinction between self-centeredness and selflessness (Dambrun and Ricard, 2011), the main goal of this research was to develop two new scales assessing distinct dimensions of happiness. By trying to maximize pleasures and to avoid displeasures, we propose that a self-centered functioning induces a fluctuating happiness in which phases of pleasure and displeasure alternate repeatedly (i.e., Fluctuating Happiness). In contrast, a selfless psychological functioning postulates the existence of a state of durable plenitude that is less dependent upon circumstances but rather is related to a person’s inner resources and abilities to deal with whatever comes his way in life (i.e., Authentic–Durable Happiness). Using various samples (n = 735), we developed a 10-item Scale measuring Subjective Fluctuating Happiness (SFHS) and a 13-item scale assessing Subjective Authentic–Durable Happiness (SA–DHS). Results indicated high internal consistencies, satisfactory test–retest validities, and adequate convergent and discriminant validities with various constructs including a biological marker of stress (salivary cortisol). Consistent with our theoretical framework, while self-enhancement values were related only to fluctuating happiness, self-transcendence values were related only to authentic–durable happiness. Support for the distinction between contentment and inner-peace, two related markers of authentic happiness, also was found. PMID:22347202

  10. Measuring happiness: from fluctuating happiness to authentic-durable happiness.

    PubMed

    Dambrun, Michaël; Ricard, Matthieu; Després, Gérard; Drelon, Emilie; Gibelin, Eva; Gibelin, Marion; Loubeyre, Mélanie; Py, Delphine; Delpy, Aurore; Garibbo, Céline; Bray, Elise; Lac, Gérard; Michaux, Odile

    2012-01-01

    On the basis of the theoretical distinction between self-centeredness and selflessness (Dambrun and Ricard, 2011), the main goal of this research was to develop two new scales assessing distinct dimensions of happiness. By trying to maximize pleasures and to avoid displeasures, we propose that a self-centered functioning induces a fluctuating happiness in which phases of pleasure and displeasure alternate repeatedly (i.e., Fluctuating Happiness). In contrast, a selfless psychological functioning postulates the existence of a state of durable plenitude that is less dependent upon circumstances but rather is related to a person's inner resources and abilities to deal with whatever comes his way in life (i.e., Authentic-Durable Happiness). Using various samples (n = 735), we developed a 10-item Scale measuring Subjective Fluctuating Happiness (SFHS) and a 13-item scale assessing Subjective Authentic-Durable Happiness (SA-DHS). Results indicated high internal consistencies, satisfactory test-retest validities, and adequate convergent and discriminant validities with various constructs including a biological marker of stress (salivary cortisol). Consistent with our theoretical framework, while self-enhancement values were related only to fluctuating happiness, self-transcendence values were related only to authentic-durable happiness. Support for the distinction between contentment and inner-peace, two related markers of authentic happiness, also was found.

  11. Electric Field and Density Measurements with STEREO-SWaves.

    NASA Astrophysics Data System (ADS)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.; Bale, S. D.; Maksimovic, M.

    2007-12-01

    The STEREO experiment SWaves has a low frequency part which is designed to make measurements of low frequency electric fields and rapid measurements of density fluctuations, using the three 6 meter stacer monopole antennas. The short antennas of STEREO respond both to density fluctuations and to electric fields. Therefore, it is desired to obtain four quantities, density and 3 components of electric field, from three measurements, the potentials on the three orthogonal antennas relative to the spacecraft, which requires some additional information. One possibility is to add a fourth equation implied by the large plasma conductivity, so large that electric field parallel to the magnetic field is zero, a condition which has often been used in electric field measurements. Under selected conditions, this seems to work. There are also conditions, for example ion acoustic waves, where the responses to density fluctuations and to electric fields are available from dispersion relations, and this provides another possible solution. A situation where it is not likely that the parallel electric field is zero is the case of solitary, intense bursts of Langmuir waves. For this case, it is expected that there is an electron density depression due to the ponderomotive pressure, and a resulting low frequency electric field from the non-neutrality which would be expected to have components parallel to the magnetic field. Examples will be discussed.

  12. Ion temperature fluctuation measurements using a retarding field analyzer

    SciTech Connect

    Nedzelskiy, I. S.; Silva, C.; Duarte, P.; Fernandes, H.

    2011-04-15

    The retarding field analyzer (RFA) is a widely used diagnostic tool for the ion temperature measurement in the scrape-off-layer (SOL) of the thermonuclear plasma devices. However, the temporal resolution in the standard RFA application is restricted to the ms timescale. In this paper, a dc operation of the RFA is considered, which allows for the measurement of the plasma ion temperature fluctuations. The method is based on the relation for the RFA current-voltage (I-V) characteristic resulted from a common RFA model of shifted Maxwellian distribution of the analyzed ions, and the measurements of two points on the exponentially decaying region of the I-V characteristic with two differently dc biased RFA electrodes. The method has been tested and compared with conventional RFA measurements of the ion temperature in the tokamak ISTTOK SOL plasma. An ion temperature of T{sub i}= 17 eV is obtained near the limiter position. The agreement between the results of the two methods is within {approx}25%. The amplitude of the ion temperature fluctuations is found to be around 5 eV at this location. The method has been validated by taking into account the effect of fluctuations in the plasma potential and the noise contamination, proving the reliability of the results obtained. Finally, constrains to the method application are discussed that include a negligible electron emission from the RFA grids and the restriction to operate in the exponentially decaying region of the I-V characteristic.

  13. Ion temperature fluctuation measurements using a retarding field analyzer.

    PubMed

    Nedzelskiy, I S; Silva, C; Duarte, P; Fernandes, H

    2011-04-01

    The retarding field analyzer (RFA) is a widely used diagnostic tool for the ion temperature measurement in the scrape-off-layer (SOL) of the thermonuclear plasma devices. However, the temporal resolution in the standard RFA application is restricted to the ms timescale. In this paper, a dc operation of the RFA is considered, which allows for the measurement of the plasma ion temperature fluctuations. The method is based on the relation for the RFA current-voltage (I-V) characteristic resulted from a common RFA model of shifted Maxwellian distribution of the analyzed ions, and the measurements of two points on the exponentially decaying region of the I-V characteristic with two differently dc biased RFA electrodes. The method has been tested and compared with conventional RFA measurements of the ion temperature in the tokamak ISTTOK SOL plasma. An ion temperature of T(i) = 17 eV is obtained near the limiter position. The agreement between the results of the two methods is within ∼25%. The amplitude of the ion temperature fluctuations is found to be around 5 eV at this location. The method has been validated by taking into account the effect of fluctuations in the plasma potential and the noise contamination, proving the reliability of the results obtained. Finally, constrains to the method application are discussed that include a negligible electron emission from the RFA grids and the restriction to operate in the exponentially decaying region of the I-V characteristic.

  14. Effective parameters of metal-dielectric composites: influence of eddy currents due to density fluctuations

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. P.; Burokur, N.; Zouhdi, S.

    2009-06-01

    It is shown that the space fluctuations of concentration of conducting inclusions might be responsible for the well-known disagreement between theory and experiment at determining microwave losses in metal-dielectric mixture: the theories (percolation theory, effective medium theory, etc.) predict much lower losses than those measured in experiment. It is demonstrated that if the effective skin depth in the regions occupied by the fluctuation is comparable to the mean diameter of these regions we can expect additional losses.

  15. The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe

    SciTech Connect

    Li, Rong; Wu, Yongquan Xiao, Junjiang

    2014-01-21

    We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clusters and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms.

  16. The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe

    NASA Astrophysics Data System (ADS)

    Li, Rong; Wu, Yongquan; Xiao, Junjiang

    2014-01-01

    We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clusters and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms.

  17. Lyman-alpha clouds as a relic of primordial density fluctuations

    NASA Technical Reports Server (NTRS)

    Bond, J. R.; Szalay, A. S.; Silk, J.

    1988-01-01

    Primordial density fluctuations are studied using a CDM model and primordial clouds some of which are expanding, driven by pressure gradients created when the medium is photionized, and some of which are massive enough to continue collapsing in spite of the pressure. Normalization of CDM models to the clustering properties on large scales are used to predict the parameters of collapsing clouds of subgalactic mass at early epochs. It is shown that the abundance and dimensions of these clouds are comparable to those of the Lyman-alpha systems. The evolutionary history of the clouds is computed, utilizing a spherically symmetric hydrodynamics code with the dark matter treated as a collisionless fluid, and the H I column density distribution is evaluated as a function of N(H I) and redshift. The observed cloud parameters come out naturally in the CDM model and suggest that Lyman-alpha clouds are the missing link between primordial density fluctuations and the formation of galaxies.

  18. Small-scale plasma, magnetic, and neutral density fluctuations in the nightside Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Brace, L. H.; Kasprzak, W. T.; Russell, C. T.

    1990-01-01

    The evolution of the Venus small-scale waves as they propagate into the nightsite is examined, and the small-scale structures are compared with the waves in the three components of the magnetic field, magnetic dip angle, and neutral density. It is demonstrated that the small-scale fluctuations evolve between the transterminator and antisolar regions. It is shown that atmospheric gravity waves may also be producing some of the fluctuations observed at longer wavelengths. The electron temperature and density are shown to be approximately 180 deg out of phase and exhibiting the highest correlation of any pair of variables. Waves in the electron and neutral densities are found to be correlated moderately on most orbits, while the average electron temperature is higher when the average magnetic field is more horizontal.

  19. Global-density fluctuations in methane clathrate hydrates in externally applied electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Waldron, Conor J.; English, Niall J.

    2017-07-01

    Non-equilibrium molecular-dynamics simulations of bulk methane clathrate hydrates have been conducted in a range of externally applied electromagnetic (e/m) fields. Studies into frequencies of system(or "global")-mass-density fluctuations showed that these clathrates have three major modes: the dominant one is attributable to water molecules' librations and occurs at 720 cm-1, regardless of any applied e/m fields. One of the more minor system-density fluctuations arises at 10-12 cm-1 and is caused by the propagation of local-density fluctuations; again, this is independent of e/m fields. The final density fluctuation is caused by e/m fields, and it only becomes apparent for field strengths of 1.2 V/nm or higher. The frequency of this mode is always twice the frequency of the applied e/m field. It was shown that the main qualitative features of the translational and librational densities of states (DOSs) were unaffected by the application of e/m fields; however, a slight coupling effect was observed, producing a peak in all DOSs at the frequency of the applied field. This study showed that e/m fields below a certain intensity threshold do not lead to any marked structural distortion or dissociation effect on pre-existing bulk clathrates, in which the hydrogen-bonding structure of the lattice remains intact. This is verified by system-density and configurational-energy values as well as radial distribution functions.

  20. Global-density fluctuations in methane clathrate hydrates in externally applied electromagnetic fields.

    PubMed

    Waldron, Conor J; English, Niall J

    2017-07-14

    Non-equilibrium molecular-dynamics simulations of bulk methane clathrate hydrates have been conducted in a range of externally applied electromagnetic (e/m) fields. Studies into frequencies of system(or "global")-mass-density fluctuations showed that these clathrates have three major modes: the dominant one is attributable to water molecules' librations and occurs at 720 cm(-1), regardless of any applied e/m fields. One of the more minor system-density fluctuations arises at 10-12 cm(-1) and is caused by the propagation of local-density fluctuations; again, this is independent of e/m fields. The final density fluctuation is caused by e/m fields, and it only becomes apparent for field strengths of 1.2 V/nm or higher. The frequency of this mode is always twice the frequency of the applied e/m field. It was shown that the main qualitative features of the translational and librational densities of states (DOSs) were unaffected by the application of e/m fields; however, a slight coupling effect was observed, producing a peak in all DOSs at the frequency of the applied field. This study showed that e/m fields below a certain intensity threshold do not lead to any marked structural distortion or dissociation effect on pre-existing bulk clathrates, in which the hydrogen-bonding structure of the lattice remains intact. This is verified by system-density and configurational-energy values as well as radial distribution functions.

  1. High altitude measurements of fluctuations in the CMB

    SciTech Connect

    Davies, R.D. )

    1990-01-15

    The detection of fluctuations in the primordial CMB emission requires long integrations on limited areas of the sky; such extensive observations are best made from the ground on (high) dry sites. A current programme of measurements is described covering the frequency range 5 to 32 GHz using equipment at Teide Observatory, Tenerife, and in Antarctica. A bolometer system is under development for observations in the range 100 to 300 GHz to be made on Mauna Kea.

  2. Absolute Bunch Length Measurements by Incoherent Radiation Fluctuation Analysis

    SciTech Connect

    Sannibale, F.; Stupakov, G.V.; Zolotorev, M.S.; Filippetto, D.; Jagerhofer, L.; /Vienna, Tech. U.

    2009-12-09

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  3. Absolute bunch length measurements by incoherent radiation fluctuation analysis

    SciTech Connect

    Sannibale, Fernando; Stupakov, Gennady; Zolotorev, Max; Filippetto, Daniele; Jagerhofer, Lukas

    2008-09-29

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  4. Generalized energy measurements and modified transient quantum fluctuation theorems.

    PubMed

    Watanabe, Gentaro; Venkatesh, B Prasanna; Talkner, Peter

    2014-05-01

    Determining the work which is supplied to a system by an external agent provides a crucial step in any experimental realization of transient fluctuation relations. This, however, poses a problem for quantum systems, where the standard procedure requires the projective measurement of energy at the beginning and the end of the protocol. Unfortunately, projective measurements, which are preferable from the point of view of theory, seem to be difficult to implement experimentally. We demonstrate that, when using a particular type of generalized energy measurements, the resulting work statistics is simply related to that of projective measurements. This relation between the two work statistics entails the existence of modified transient fluctuation relations. The modifications are exclusively determined by the errors incurred in the generalized energy measurements. They are universal in the sense that they do not depend on the force protocol. Particularly simple expressions for the modified Crooks relation and Jarzynski equality are found for Gaussian energy measurements. These can be obtained by a sequence of sufficiently many generalized measurements which need not be Gaussian. In accordance with the central limit theorem, this leads to an effective error reduction in the individual measurements and even yields a projective measurement in the limit of infinite repetitions.

  5. Direct measurement of friction of a fluctuating contact line

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-03-01

    What happens at a moving contact line, where one fluid displaces another (immiscible) fluid over a solid surface, is a fundamental issue in fluid dynamics. In this presentation, we report a direct measurement of the friction coefficient in the immediate vicinity of a fluctuating contact line using a micron-sized vertical glass fiber with one end glued to an atomic force microscope (AFM) cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonance peak of the cantilever system with varying liquid viscosity η, we obtain the friction coefficient ξc associated with the contact line fluctuations on the glass fiber of diameter d and find it has the universal form, ξc = 0 . 8 πdη , independent of the contact angle. The result is further confirmed by using a soap film system whose bulk effect is negligibly small. This is the first time that the friction coefficient of a fluctuating contact line is measured. *Work supported by the Research Grants Council of Hong Kong SAR.

  6. Reducing and measuring fluctuations in the MST RFP: Enhancement of energy confinement and measurement of the MHD dynamo

    SciTech Connect

    Den Hartog, D.J.; Almagri, A.F.; Cekic, M.

    1996-09-01

    A three- to five-fold enhancement of the energy confinement time in a reversed-field pinch (RFP) has been achieved in the Madison Symmetric Torus (MST) by reducing the amplitude of tearing mode fluctuations responsible for anomalous transport in the core of the RFP. By applying a transient poloidal inductive electric field to flatten the current density profile, the fluctuation amplitude {tilde b}/B decreases from 1.5% to 0.8%, the electron temperature T{sub e0} increases from 250 eV to 370 eV, the ohmic input power decreases from 4.5 MW to approximately 1.5 MW, the poloidal beta {beta}{sub 0} increases from 6% to 9%, and the energy confinement time {tau}{sub E} increases from 1 ms to {approximately}5 ms in I{sub {phi}} = 340 kA plasmas with density {tilde n} = 1 {times} 10{sup 19} m{sup -3}. Current profile control methods are being developed for the RFP in a program to eliminate transport associated with these current-gradient-driven fluctuations. In addition to controlling the amplitude of the tearing modes, we are vigorously pursuing an understanding of the physics of these fluctuations. In particular, plasma flow, both equilibrium and fluctuating, plays a critical role in a diversity of physical phenomena in MST. The key results: 1) Edge probe measurements show that the MHD dynamo is active in low collisionality plasmas, while at high collisionality a new mechanism, the `electron diamagnetic dynamo,` is observed. 2) Core spectroscopic measurements show that the toroidal velocity fluctuations of the plasma are coherent with the large-scale magnetic tearing modes; the scalar product of these two fluctuating quantities is similar to that expected for the MHD dynamo electromotive force. 3) Toroidal plasma flow in MST exhibits large radial shear and can be actively controlled, including unlocking locked discharges, by modifying E{sub r} with a robust biased probe. 24 refs.

  7. COSMOLOGICAL DENSITY FLUCTUATIONS ON 100 Mpc SCALES AND THEIR ISW EFFECT

    SciTech Connect

    Papai, Peter; Szapudi, Istvan

    2010-12-20

    We measure the matter probability distribution function (PDF) via counts in cells in a volume-limited subsample of the Sloan Digital Sky Survey Luminous Red Galaxy Catalog on scales from 30 h {sup -1} Mpc to 150 h {sup -1} Mpc and estimate the linear Integrated Sachs-Wolfe effect produced by supervoids and superclusters in the tail of the PDF. We characterize the PDF by the variance, S{sub 3}, and S{sub 4}, and study in simulations the systematic effects due to finite volume, survey shape, and redshift distortion. We compare our measurement to the prediction of {Lambda}CDM with linear bias and find a good agreement. We use the moments to approximate the tail of the PDF with analytic functions. A simple Gaussian model for the superstructures appears to be consistent with the claim by Granett et al. that density fluctuations on 100 h {sup -1} Mpc scales produce hot and cold spots with {Delta}T {approx} 10 {mu}K on the cosmic microwave background.

  8. Spin density wave fluctuations and p-wave pairing in Sr2RuO4.

    PubMed

    Huo, Jia-Wei; Rice, T M; Zhang, Fu-Chun

    2013-04-19

    Recently, a debate has arisen over which of the two distinct parts of the Fermi surface of Sr(2)RuO(4) is the active part for the chiral p-wave superconductivity exhibited. Early theories proposed p-wave pairing on the two-dimensional γ band, whereas a recent proposal focuses on the one-dimensional (α, β) bands whose nesting pockets are the source of the strong incommensurate spin density wave (SDW) fluctuations. We apply a renormalization group theory to study quasi-one-dimensional repulsive Hubbard chains and explain the form of SDW fluctuations, reconciling the absence of long-range order with their nesting Fermi surface. The mutual exclusion of p-wave pairing and SDW fluctuations in repulsive Hubbard chains favors the assignment of the two-dimensional γ band as the source of p-wave pairing.

  9. Progress Toward a Technique for Measuring Electric Field Fluctuations in Tokamak Core Plasmas

    NASA Astrophysics Data System (ADS)

    Thompson, D. S.; Bakken, M. R.; Burke, M. G.; Couto, H. P.; Fonck, R. J.; Lewicki, B. T.; Winz, G. R.

    2014-10-01

    Measurements of electric field fluctuations in magnetic confinement experiments are desired for validating turbulence and transport models. A new diagnostic to measure Ez (r , t) fluctuations is in development on the Pegasus Toroidal Experiment. The approach is based on neutral beam emission spectroscopy using a high-throughput, high-resolution spectrometer to resolve fluctuations in wavelength separation between components of the motional Stark effect spectrum. Fluctuations at mid-minor-radius, normalized to an estimated MSE field, are estimated to be δE /EMSE ~ 10-3. In order to resolve fluctuations at turbulent time scales (fNy ~ 500 kHz), beam and spectrometer designs minimize broadening and maximize signal-to-noise ratio. The diagnostic employs a Fabry-Pérot spectrometer with étendue-matched collection optics and low noise detectors. The interferometer spacing is varied across the face of the etalon to mitigate geometric Doppler broadening. An 80 keV H0 beam from PBX-M with a divergence Ω < 0.5 degrees is being refurbished for this project. The beam includes a new ion source to maximize full energy species fraction and is designed to provide ~ 2 cm spatial resolution and 50 ms of 6 mA/cm2current density at the focal plane. Successful development and demonstration on Pegasus will guide future deployment on larger fusion facilities. Work supported by US DOE Grant DE-FG02-89ER53296.

  10. Stirring Coronal Spaghetti: Exploring Multiple Interactions Between MHD Waves and Density Fluctuations

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2016-05-01

    The solar corona has been revealed in the past few decades to be a highly dynamic nonequilibrium plasma environment. Both the loop-filled coronal base and the extended acceleration region of the solar wind appear to be strongly turbulent, and models that invoke the dissipation of incompressible Alfvenic fluctuations have had some success in explaining the heating. However, many of these models neglect the mounting evidence that density and pressure variations may play an important role in the mass and energy balance of this system. In this presentation I will briefly review observations of both compressible and incompressible MHD fluctuations in the corona and solar wind, and discuss future prospects with DKIST. I will also attempt to outline the many ways that these different fluctuation modes have been proposed to interact with one another -- usually with an eye on finding ways to enhance their dissipation and heating. One under-appreciated type of interaction is the fact that Alfven waves will undergo multiple reflections and refractions in a "background plasma" filled with localized density fluctuations. It is becoming increasingly clear that models must not only include the effects of longitudinal variability (e.g., magnetoacoustic waves and pulse-like jets) but also transverse "striations" that appear naturally in a structured magnetic field with small-scale footpoint variability. Future off-limb observations, such as those with DKIST's Cryo-NIRSP instrument, will be crucial for providing us with a detailed census of MHD waves and their mutual interactions in the corona.

  11. Measurement of small temperature fluctuations at high average temperature

    NASA Technical Reports Server (NTRS)

    Scholl, James W.; Scholl, Marija S.

    1988-01-01

    Both absolute and differential temperature measurements were simultaneously performed as a function of time for a pixel on a high-temperature, multi-spectral, spatially and temporally varying infrared target simulator. A scanning laser beam was used to maintain a pixel at an on-the-average constant temperature of 520 K. The laser refresh rate of up to 1 kHz resulted in small-amplitude temperature fluctuations with a peak-to-peak amplitude of less than 1 K. The experimental setup to accurately measure the differential and the absolute temperature as a function of time is described.

  12. Numerical simulation of solar wind density fluctuations and their effects on VLF radio interferometry

    NASA Technical Reports Server (NTRS)

    Williamson, Robert S., III; Jones, Dayton L.

    1990-01-01

    A mission consisting of an array of small satellites has been proposed to investigate radio sources at frequencies from approximately 2 to 20 MHz, a range unobservable from the ground because of ionospheric absorption and aberrations. Such a mission seems feasible and relatively inexpensive, but further investigation is still necessary. The solar wind is a major concern because it contains turbulence-induced random density variations that cause a fluctuating phase shift in any electromagnetic signal passing through, sometimes making radio source imaging by interferometry impossible. A numerical simulation has been developed which attempts to accurately characterize solar wind density fluctuations. Results have allowed more concrete conclusions to be drawn about observing constraints and have shown that interferometric imaging at radio frequencies below 10 MHz with baselines up to 100 km is possible at solar elongation angles of about 90 deg or more.

  13. Wavelike charge density fluctuations and van der Waals interactions at the nanoscale.

    PubMed

    Ambrosetti, Alberto; Ferri, Nicola; DiStasio, Robert A; Tkatchenko, Alexandre

    2016-03-11

    Recent experiments on noncovalent interactions at the nanoscale have challenged the basic assumptions of commonly used particle- or fragment-based models for describing van der Waals (vdW) or dispersion forces. We demonstrate that a qualitatively correct description of the vdW interactions between polarizable nanostructures over a wide range of finite distances can only be attained by accounting for the wavelike nature of charge density fluctuations. By considering a diverse set of materials and biological systems with markedly different dimensionalities, topologies, and polarizabilities, we find a visible enhancement in the nonlocality of the charge density response in the range of 10 to 20 nanometers. These collective wavelike fluctuations are responsible for the emergence of nontrivial modifications of the power laws that govern noncovalent interactions at the nanoscale. Copyright © 2016, American Association for the Advancement of Science.

  14. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    SciTech Connect

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Chatziantonaki, Ioanna; Vlahos, Loukas; Strintzi, Dafni

    2009-11-15

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  15. First results of Faraday-effect polarimeter measurements of internal magnetic fluctuation in DIII-D

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ding, W. X.; Brower, D. L.

    2016-10-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures and core magnetic fluctuations (coherent and broadband), a 694 GHz Faraday-effect polarimeter has recently been installed on the DIII-D tokamak. A novel detection scheme is utilized, which results in simultaneous integral density measurement, to isolate the magnetic component, along with fast time response (up to 3MHz) and high phase resolution (1 ×10-4 degree2/kHz, equivalent to <1 Gauss at medium to high electron density conditions). Spatial resolution is provided by three radial chords located at z = 0 cm and z = +/- 13.5 cm (z = 0 cm is machine center). Simultaneous Faraday rotation and integral density measurements have been demonstrated in the experimental campaign of 2016, with good agreement with MSE-constrained EFIT. The change of Faraday rotation during sawteeth indicates periodic evolution of current density in the core plasma. Coherent and broadband fluctuations associated with plasma instabilities and turbulence, up to 500 kHz, have been observed on both Faraday rotation and integral density data. Supported by USDOE Grant DE-FC02-04ER54698 and DE-FG03-01ER54615.

  16. Chaotic density fluctuations in L-mode plasmas of the DIII-D tokamak

    SciTech Connect

    Maggs, J. E.; Rhodes, Terry L.; Morales, G. J.

    2015-03-05

    Analysis of the time series obtained with the Doppler backscattering system (DBS) in the DIII-D tokamak shows that intermediate wave number plasma density fluctuations in low confinement (L-mode) tokamak plasmas are chaotic. Here, the supporting evidence is based on the shape of the power spectrum; the location of the signal in the complexity-entropy plane (C-H plane); and the population of the corresponding Bandt-Pompe probability distributions.

  17. Ion gyroscale fluctuation measurement with microwave imaging reflectometer on KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, W.; Leem, J.; Yun, G. S.; Park, H. K.; Ko, S. H.; Wang, W. X.; Budny, R. V.; Luhmann, N. C.; Kim, K. W.

    2016-11-01

    Ion gyroscale turbulent fluctuations with the poloidal wavenumber kθ ˜ 3 cm-1 have been measured in the core region of the neutral beam (NB) injected low confinement (L-mode) plasmas on Korea superconducting tokamak advanced research. The turbulence poloidal wavenumbers are deduced from the frequencies and poloidal rotation velocities in the laboratory frame, measured by the multichannel microwave imaging reflectometer. Linear and nonlinear gyrokinetic simulations also predict the unstable modes with the normalized wavenumber kθρs ˜ 0.4, consistent with the measurement. Comparison of the measured frequencies with the intrinsic mode frequencies from the linear simulations indicates that the measured ones are primarily due to the E × B flow velocity in the NB-injected fast rotating plasmas.

  18. Interaction between the lower hybrid wave and density fluctuations in the scrape-off layer

    NASA Astrophysics Data System (ADS)

    Peysson, Y.; Madi, M.; Decker, J.; Kabalan, K.

    2015-12-01

    In the present paper, the perturbation of the launched power spectrum of the Lower Hybrid wave at the separatrix by electron density fluctuations in the scrape-off layer is investigated. Considering a slab geometry with magnetic field lines parallel to the toroidal direction, the full wave equation is solved using Comsol Multiphysics® for a fully active multi-junction like LH antenna made of two modules. When electron density fluctuations are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, it is shown that the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the wave propagates. The diffraction effect leads to the appearance of multiple satellite lobes with randomly varying positions, a feature consistent with the recently developed model that has been applied successfully to high density discharges on the Tokamak Tore Supra corresponding to the large spectral gap regime [Decker J. et al. Phys. Plasma 21 (2014) 092504]. The perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength.

  19. Interaction between the lower hybrid wave and density fluctuations in the scrape-off layer

    SciTech Connect

    Peysson, Y.; Madi, M.; Kabalan, K.; Decker, J.

    2015-12-10

    In the present paper, the perturbation of the launched power spectrum of the Lower Hybrid wave at the separatrix by electron density fluctuations in the scrape-off layer is investigated. Considering a slab geometry with magnetic field lines parallel to the toroidal direction, the full wave equation is solved using Comsol Multiphysics® for a fully active multi-junction like LH antenna made of two modules. When electron density fluctuations are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, it is shown that the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the wave propagates. The diffraction effect leads to the appearance of multiple satellite lobes with randomly varying positions, a feature consistent with the recently developed model that has been applied successfully to high density discharges on the Tokamak Tore Supra corresponding to the large spectral gap regime [Decker J. et al. Phys. Plasma 21 (2014) 092504]. The perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength.

  20. Characterization of density fluctuations during the search for an I-mode regime on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Marinoni, A.; Rost, J. C.; Porkolab, M.; Hubbard, A. E.; Osborne, T. H.; White, A. E.; Whyte, D. G.; Rhodes, T. L.; Davis, E. M.; Ernst, D. R.; Burrell, K. H.

    2015-09-01

    The I-mode regime, routinely observed on the Alcator C-Mod tokamak, is characterized by an edge energy transport barrier without an accompanying particle barrier and with broadband instabilities, known as weakly coherent modes (WCM), believed to regulate particle transport at the edge. Recent experiments on the DIII-D tokamak exhibit I-mode characteristics in various physical quantities. These DIII-D plasmas evolve over long periods, lasting several energy confinement times, during which the edge electron temperature slowly evolves towards an H-mode-like profile, while maintaining a typical L-mode edge density profile. During these periods, referred to as I-mode phases, the radial electric field at the edge also gradually reaches values typically observed in H-mode. Density fluctuations measured with the phase contrast imaging diagnostic during I-mode phases exhibit three features typically observed in H-mode on DIII-D, although they develop progressively with time and without a sharp transition: the intensity of the fluctuations is reduced; the frequency spectrum is broadened and becomes non-monotonic; two dimensional space-time spectra appear to approach those in H-mode, showing phase velocities of density fluctuations at the edge increasing to about 10 km s-1. However, in DIII-D there is no clear evidence of the WCM. Preliminary linear gyro-kinetic simulations are performed in the pedestal region with the GS2 code and its recently upgraded model collision operator that conserves particles, energy and momentum. The increased bootstrap current and flow shear generated by the temperature pedestal are shown to decrease growth rates, thus possibly generating a feedback mechanism that progressively stabilizes fluctuations.

  1. Multi-chord Faraday-Effect measurements of fluctuations in C-Mod

    NASA Astrophysics Data System (ADS)

    Bergerson, William; Xu, P.; Brower, D. L.; Ding, W. X.; Irby, J. H.

    2012-10-01

    Three chords measuring the Faraday effect are operated routinely across all machine conditions in C-mod and allow for internal measurements of the equilibrium poloidal magnetic field. Absolute error attributed to stray magnetic field effects is below 0.5 degree and noise related to contamination from the lower hybrid and ion cyclotron radio frequency systems are not observed. Tests indicate there is no measurable signal contamination from the toroidal magnetic field due to the Cotton-Mouton effect or misalignment. Polarization sensitivity of the wire mesh beamsplitters requires system calibration which is achieved using a rotating half-wave plate. Individual channels can be modified to measure the Cotton-Mouton effect directly and yield a line integrated density measurement without ``fringe skips.'' Fluctuations on the Faraday signal associated with sawteeth, tearing modes, the quasi-coherent mode, broadband turbulence, and fast particle driven modes are observed at frequencies up to 1 MHz. Efforts are underway to differentiate between density and magnetic fluctuations in the polarimetry measurement via cross correlation techniques and combined density measurements. This work supported by DOE contract DE-FG02-01ER54615 and DE-FC02-99ER54512-CMOD.

  2. Binary collision approximations for the memory function for density fluctuations in equilibrium atomic liquids

    NASA Astrophysics Data System (ADS)

    Noah, Joyce E.

    Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and

  3. Thermospheric Density Fluctuations Derived from the Atmospheric Neutral Density Experiment Risk Reduction Mission

    NASA Astrophysics Data System (ADS)

    Nicholas, A. C.; Budzien, S. A.; Healy, L.; Davis, M.

    2008-12-01

    The Atmospheric Neutral Density Experiment (ANDE) Risk Reduction flight was launched on Dec 9, 2006 and deployed into orbit by the Space Shuttle Discovery on December 21, 2006. The primary mission objective is to test the deployment mechanism from the Shuttle for the ANDE flight in mid 2009. Scientific objectives of the ANDE risk reduction flight include: monitor total neutral density along the orbit for improved orbit determination of resident space objects, monitor the spin rate and orientation of the spacecraft, and provide a test object for polarimetry studies. The two ANDERR spacecraft decayed on December 25, 2007 and May 21, 2008, atmospheric densities derived from observations of the ANDERR spacecraft will be presented and compared to atmospheric models and drivers.

  4. Probability density of strong intensity fluctuations of laser radiation in a weakly absorbing random medium

    SciTech Connect

    Almaev, R Kh; Suvorov, A A

    2010-01-31

    Based on the quasi-optic parabolic equation, we derived analytically an expression for the probability density of strong intensity fluctuations of radiation propagating in a random attenuating medium. This probability density is compared with that obtained experimentally. It is shown that the agreement between the theory and the experiment in the entire range of variations in the radiation intensity is achieved by the combined account for the effect of small random attenuation on the radiation propagation and the action of noises on the radiation receiver. (lasers)

  5. Scale invariance of the density fluctuations in films and macromolecular aggregates in poly(styrene) solutions

    NASA Astrophysics Data System (ADS)

    Novikov, D. V.; Krasovskiĭ, A. N.; Osmolovskaya, N. A.; Efremov, V. I.

    2007-02-01

    The specific features of the transformation of a polymer solution into a solid state (film) of an amorphous polymer are investigated using electron microscopy. The correspondence between the characteristics of fractal macromolecular aggregates in a solution and the parameters of the spatial distribution of density fluctuations at the surface of the film is established using a linear atactic poly(styrene) as an example. The correspondence exists under the condition that the packing density of coils does not exceed a critical value at the liquid-solid phase transition point and the polymer concentration in the solution provides the formation of a continuous network of entangled macromolecules.

  6. The Remarkable Similarity Between the Scaling of Kurtosis with Squared Skewness for TORPEX Density Fluctuations and Sea-surface Temperature Fluctuations

    SciTech Connect

    John A. Krommes

    2008-02-28

    The striking similarity between the statistics of plasma density fluctuations in the TORPEX device [B. Labit et al., Phys. Rev. Lett. 98, 255002 (2007)] and sea-surface temperature fluctuations [Po Sura and P. D. Sardeshmukh, J. Phys. Oceanogr. 38, 638 (2007)] (SS) is discussed. A nonlinear Langevin theory due to SS is generalized to include linear wave propagation. An interpretation of the nonlinear Langevin equation based on statistical closure theory is proposed.

  7. A phase contrast imaging–interferometer system for detection of multiscale electron density fluctuations on DIII-D

    SciTech Connect

    Davis, E. M.; Rost, J. C.; Porkolab, M.; Marinoni, A.; Van Zeeland, M. A.

    2016-11-15

    Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. This work describes the first-ever implementation of a combined PCI–interferometer. The combined system uses a single 10.6 μm probe beam, two interference schemes, and two detectors to measure electron density fluctuations at large spatiotemporal bandwidth (10 kHz measurement of ion- and electron-scale instabilities. Further, correlating our interferometer’s measurements with those from DIII-D’s pre-existing, toroidally separated interferometer allows core-localized, low-n MHD studies that may otherwise be inaccessible via external magnetic measurements. The combined diagnostic’s small port requirements and minimal access restrictions make it well-suited to the harsh neutron environments and limited port space expected in next-step devices.

  8. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Gaidarov, M. K.; Sarriguren, P.; Moya de Guerra, E.

    2016-07-01

    The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains, studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS), and also with results of other theoretical methods.

  9. Measurements of fluctuating gas temperatures using compensated fine wire thermocouples

    NASA Astrophysics Data System (ADS)

    Nina, M. N. R.; Pita, G. P.

    1985-09-01

    Thermocouples with three different wire diameters (15, 40 and 50 microns) were used in association with an analog compensation circuit connected to a data acquisition system. Measurements of the time constant were performed using two different heating techniques; Joule effect and external heating by laser beam. The thermocouples were used to quantify the fluctuating temperature field in a hot air jet and in a premixed propane flame. In the reacting case the catalytic effect was evaluated by comparing coated and uncoated wires. Conclusions were also obtained regarding frequency spectra, temperature probability distribution function and time constant.

  10. Entanglement, number fluctuations and optimized interferometric phase measurement

    NASA Astrophysics Data System (ADS)

    He, Q. Y.; Vaughan, T. G.; Drummond, P. D.; Reid, M. D.

    2012-09-01

    We derive a phase-entanglement criterion for two bosonic modes that is immune to number fluctuations, using the generalized Moore-Penrose inverse to normalize the phase-quadrature operator. We also obtain a phase-squeezing criterion that is immune to number fluctuations using similar techniques. These are used to obtain an operational definition of relative phase-measurement sensitivity via the analysis of phase measurement in interferometry. We show that these criteria are proportional to the enhanced phase-measurement sensitivity. The phase-entanglement criterion is the hallmark of a new type of quantum-squeezing, namely planar quantum-squeezing. This has the property that it squeezes simultaneously two orthogonal spin directions, which is possible owing to the fact that the SU(2) group that describes spin symmetry has a three-dimensional parameter space of higher dimension than the group for photonic quadratures. A practical advantage of planar quantum-squeezing is that, unlike conventional spin-squeezing, it allows noise reduction over all phase angles simultaneously. The application of this type of squeezing is to the quantum measurement of an unknown phase. We show that a completely unknown phase requires two orthogonal measurements and that with planar quantum-squeezing it is possible to reduce the measurement uncertainty independently of the unknown phase value. This is a different type of squeezing compared to the usual spin-squeezing interferometric criterion, which is applicable only when the measured phase is already known to a good approximation or can be measured iteratively. As an example, we calculate the phase entanglement of the ground state of a two-well, coupled Bose-Einstein condensate, similarly to recent experiments. This system demonstrates planar squeezing in both the attractive and the repulsive interaction regime.

  11. Temporal fluctuations in oribatid mites indicate that density-independent factors favour parthenogenetic reproduction.

    PubMed

    Bluhm, Christian; Scheu, Stefan; Maraun, Mark

    2016-04-01

    We investigated the oribatid mite density, community structure and the percentage of parthenogenetic individuals in four different forest types across three regions in Germany in 2008 and once again in 2011. We compared temporal (inter-annual) fluctuations in population densities between sexually and parthenogenetically reproducing species of oribatid mites. We hypothesized that population densities in parthenogenetic oribatid mite species fluctuate more than in sexual ones. Further, we expected species composition and dominance of parthenogenetic species to differ between forest types and regions. Oribatid mite community structure did not differ between years but varied with forest type and region, indicating low species turnover in time. As hypothesized, temporal fluctuations were more pronounced in parthenogenetic as compared to sexual species. The percentage of parthenogenetic individuals was significantly higher in coniferous than in beech forests and significantly higher in Schorfheide-Chorin than in Hainich-Dün and Schwäbische Alb. The results indicate that parthenogenetic species flourish if populations are controlled by density-independent factors and dominate at sites were resources are plentiful and easily available, such as coniferous forests, and in regions with more acidic soils and thick organic layers, such as Schorfheide-Chorin. However, historical factors also may have contributed to the increased dominance of parthenogenetic species in the Schorfheide-Chorin, as this region was more heavily glaciated and this may have favoured parthenogenetic species. Overall, our study supports the hypothesis that parthenogenetic species benefit from the lack of density-dependent population control whereas the opposite is true for sexual species.

  12. The influence of stochastic density fluctuations on the infrared emissions of interstellar dark clouds

    NASA Astrophysics Data System (ADS)

    Schunck, M.; Hegmann, M.; Sedlmayr, E.

    2007-01-01

    We investigate the effects of stochastic density fluctuations on the dust temperatures and the resulting infrared (IR) emission spectra of interstellar clouds as an extension of preceding investigations by Hegmann & Kegel. We consider absorption and scattering by dust grains in spherical clouds which are, on average, homogeneous but have a fluctuating density. The spatial variation of the density is described by means of a Markov process. This clump model introduces two parameters: the correlation length ln and the Gaussian width σn of the density fluctuations. As the intensity Iλ,n inherits the randomness of the density n, the ordinary radiative transfer equation has to be replaced by a generalized transfer equation of Fokker-Planck type. In the first part, we investigate the influence of our model parameters on the radiative transport in the ultraviolet (UV) and use the results to calculate the dust temperature in radiative equilibrium. Afterwards, the IR emission of the dust is modelled for the same set of clump parameters. We find that the presence of clumps decreases the effective extinction and therefore leads to substantial differences in UV illumination and dust temperatures, compared with the homogeneous case. Because of the distribution of dust temperatures, the presence of clumps also affects the IR emission and thus possible observations. In the second part, we use a fit with two blackbody spectra to determine the cloud dust mass from our synthetic IR fluxes. It is shown that in a clumpy environment the overall dust mass is generally underestimated. This effect correlates with the degree of cloud fragmentation.

  13. Kinetic field theory: effects of momentum correlations on the cosmic density-fluctuation power spectrum

    NASA Astrophysics Data System (ADS)

    Bartelmann, Matthias; Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Dombrowski, Johannes; Mildenberger, Julius

    2017-08-01

    In earlier work, we have developed a kinetic field theory (KFT) for cosmological structure formation and showed that the nonlinear density-fluctuation power spectrum known from numerical simulations can be reproduced quite well even if particle interactions are taken into account to first order only. Besides approximating gravitational interactions, we had to truncate the initial correlation hierarchy of particle momenta at the second order. Here, we substantially simplify KFT. We show that its central object, the free generating functional, can be factorised, taking the full hierarchy of momentum correlations into account. The factors appearing in the generating functional, which we identify as nonlinearly evolved density-fluctuation power spectra, have a universal form and can thus be tabulated for fast access in perturbation schemes. In this paper, we focus on a complete evaluation of the free generating functional of KFT, not including particle interactions yet. This implies that the nonlinearly evolved power spectra contain a damping term which reflects that structures are being wiped out at late times by free streaming. Once particle interactions will be taken into account, they will compensate this damping. If we suppress this damping in a way suggested by the fluctuation-dissipation relations of KFT, our results show that the complete hierarchy of initial momentum correlations is responsible for a large part of the characteristic nonlinear deformation and the mode transport in the density-fluctuation power spectrum. Without any adjustable parameters, KFT accurately reproduces the scale at which nonlinear evolution sets in. Finally, we further develop perturbation theory based on the factorisation of the generating functional and propose a diagrammatic scheme for the perturbation terms.

  14. Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2005-01-01

    A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.

  15. Measurements of surface-pressure fluctuations on the XB-70 airplane at local Mach numbers up to 2.45

    NASA Technical Reports Server (NTRS)

    Lewis, T. L.; Dods, J. B., Jr.; Hanly, R. D.

    1973-01-01

    Measurements of surface-pressure fluctuations were made at two locations on the XB-70 airplane for nine flight-test conditions encompassing a local Mach number range from 0.35 to 2.45. These measurements are presented in the form of estimated power spectral densities, coherence functions, and narrow-band-convection velocities. The estimated power spectral densities compared favorably with wind-tunnel data obtained by other experimenters. The coherence function and convection velocity data supported conclusions by other experimenters that low-frequency surface-pressure fluctuations consist of small-scale turbulence components with low convection velocity.

  16. Density fluctuations from the quark-hadron epoch and primordial nucleosynthesis

    SciTech Connect

    Fuller, G.M.; Mathews, G.J.; Alcock, C.R.

    1987-12-01

    We present a simple thermodynamic model of the quark-hadron transition in the early universe and use this model to estimate how the size of isothermal baryon number fluctuations which emerge from this epoch depend on the temperature of the transition and other uncertain quantities of the underlying QCD physics. We calculate primordial nucleosynthesis in the presence of these fluctuations and find that ..cap omega.. = 1 in baryons is possible only if the measured abundances of /sup 7/Li and /sup 2/H reflect substantial destruction during the evolution of the galaxy. 29 refs., 7 figs.

  17. An edge density fluctuation diagnostic for DIII-D using lithium beams

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.

    1991-12-01

    This report covers the research conducted under DOE grant FG03-90ER-081 during the period August 15, 1990 through November 15, 1991. Progress during the period March 15, 1990 through August 15, 1990 was covered in a previous report. Highlights during this period include the development of a compact neutral lithium accelerator capable of producing several mA at up to 30 kV, measurements of intrinsic beam fluctuation levels, and the design and partial completion of the diagnostic installation on the D3-D tokamak. We also had one journal article describing the system published in Reviews of Scientific Instruments, presented a poster on our recent progress at the APS Plasma Physics conference, and submitted an abstract to the 9th Topical Conference on Plasma Diagnostics. The overall objective of this project is to provide detailed information about the behavior of the electron density in the edge region of D3-D, and in particular to examine the local character of the associated degradation in confinement properties. Measurements should provide important data for testing theories of the L-H transition in tokamaks and should help in assessing the role of various instabilities in anomalous transport. The work on this project may be naturally organized according to the following six subareas: Ion source/beam system, neutralizer system, optical system, data acquisition, data analysis, and machine (D3-D) interface. Progress in each of these areas will be discussed briefly. We also briefly discuss our plans for future work on this program.

  18. Density and magnetic fluctuations at JET: experimental observation and numerical characterization

    NASA Astrophysics Data System (ADS)

    de Masi, Gianluca; Predebon, Italo; Spagnolo, Silvia; Lupelli, Ivan; Hillesheim, Jon; Meneses, Luis; Maggi, Costanza; Delabie, Ephrem; JET Contributors Team

    2016-10-01

    Density and magnetic fluctuations have been experimentally observed on JET in the inter ELM phases in low beta discharges.They have been characterized in terms of typical frequency range (60-80 kHz), wavenumber (0.01 <=ky ρi <=0.1), radial localization (pedestal top) and correlation with the relevant kinetic quantities. A linear simulation with gyrokinetic code GENE, matching the experimental edge condition has been performed to gain insight on their possible physical interpretation. ITG modes turn out to be the most unstable modes for 0 <=ky ρi <=1, while microtearing modes (MTMs) are the dominant instabilities for ky ρi <= 0.1.A typical oscillation frequency of about 50-100 kHz is associated to both unstable modes, with opposite propagation direction.Different considerations suggest an interpretation in terms of MTMs for the observed magnetic fluctuations, while density fluctuations appear to be dominated by ITG instabilities. EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK.

  19. How reproducible are the measurements of leaf fluctuating asymmetry?

    PubMed Central

    2015-01-01

    Fluctuating asymmetry (FA) represents small, non-directional deviations from perfect symmetry in morphological characters. FA is generally assumed to increase in response to stress; therefore, FA is frequently used in ecological studies as an index of environmental or genetic stress experienced by an organism. The values of FA are usually small, and therefore the reliable detection of FA requires precise measurements. The reproducibility of fluctuating asymmetry (FA) was explored by comparing the results of measurements of scanned images of 100 leaves of downy birch (Betula pubescens) conducted by 31 volunteer scientists experienced in studying plant FA. The median values of FA varied significantly among the participants, from 0.000 to 0.074, and the coefficients of variation in FA for individual leaves ranged from 25% to 179%. The overall reproducibility of the results among the participants was rather low (0.074). Variation in instruments and methods used by the participants had little effect on the reported FA values, but the reproducibility of the measurements increased by 30% following exclusion of data provided by seven participants who had modified the suggested protocol for leaf measurements. The scientists working with plant FA are advised to pay utmost attention to adequate and detailed description of their data acquisition protocols in their forthcoming publications, because all characteristics of instruments and methods need to be controlled to increase the quality and reproducibility of the data. Whenever possible, the images of all measured objects and the results of primary measurements should be published as electronic appendices to scientific papers. PMID:26157612

  20. How reproducible are the measurements of leaf fluctuating asymmetry?

    PubMed

    Kozlov, Mikhail V

    2015-01-01

    Fluctuating asymmetry (FA) represents small, non-directional deviations from perfect symmetry in morphological characters. FA is generally assumed to increase in response to stress; therefore, FA is frequently used in ecological studies as an index of environmental or genetic stress experienced by an organism. The values of FA are usually small, and therefore the reliable detection of FA requires precise measurements. The reproducibility of fluctuating asymmetry (FA) was explored by comparing the results of measurements of scanned images of 100 leaves of downy birch (Betula pubescens) conducted by 31 volunteer scientists experienced in studying plant FA. The median values of FA varied significantly among the participants, from 0.000 to 0.074, and the coefficients of variation in FA for individual leaves ranged from 25% to 179%. The overall reproducibility of the results among the participants was rather low (0.074). Variation in instruments and methods used by the participants had little effect on the reported FA values, but the reproducibility of the measurements increased by 30% following exclusion of data provided by seven participants who had modified the suggested protocol for leaf measurements. The scientists working with plant FA are advised to pay utmost attention to adequate and detailed description of their data acquisition protocols in their forthcoming publications, because all characteristics of instruments and methods need to be controlled to increase the quality and reproducibility of the data. Whenever possible, the images of all measured objects and the results of primary measurements should be published as electronic appendices to scientific papers.

  1. Impact of density and environmental factors on population fluctuations in a migratory passerine.

    PubMed

    Pasinelli, Gilberto; Schaub, Michael; Häfliger, Guido; Frey, Monika; Jakober, Hans; Müller, Mathis; Stauber, Wolfgang; Tryjanowski, Piotr; Zollinger, Jean-Luc; Jenni, Lukas

    2011-01-01

    1. Populations of plants and animals typically fluctuate because of the combined effects of density-dependent and density-independent processes. The study of these processes is complicated by the fact that population sizes are typically not known exactly, because population counts are subject to sampling variance. Although the existence of sampling variance is broadly acknowledged, relatively few studies on time-series data have accounted for it, which can result in wrong inferences about population processes. 2. To increase our understanding of population dynamics, we analysed time series from six Central European populations of the migratory red-backed shrike Lanius collurio by simultaneously assessing the strength of density dependence, process and sampling variance. In addition, we evaluated hypotheses predicting effects of factors presumed to operate on the breeding grounds, at stopover sites in eastern Africa during fall and spring migration and in the wintering grounds in southern Africa. We used both simple and state-space formulations of the Gompertz equation to model population size. 3. Across populations and modelling approaches, we found consistent evidence for negative density-dependent population regulation. Further, process variance contributed substantially to variation in population size, while sampling variance did not. Environmental conditions in eastern and southern Africa appear to influence breeding population size, as rainfall in the Sahel during fall migration and in the south African wintering areas were positively related to population size in the following spring in four of six populations. In contrast, environmental conditions in the breeding grounds were not related to population size. 4. Our findings suggest negative density-dependent regulation of red-backed shrike breeding populations and are consistent with the long-standing hypothesis that conditions in the African staging and wintering areas influence population numbers of species

  2. Fast Thermal Helium Beam diagnostic for measurements of edge electron profiles and fluctuations

    SciTech Connect

    Agostini, M. Scarin, P.; Cavazzana, R.; Carraro, L.; Grando, L.; Taliercio, C.; Franchin, L.; Tiso, A.

    2015-12-15

    The edge of fusion experiments is a region where strong gradients develop, together with the presence of strong fluctuations due to turbulence. The thermal helium beam diagnostic developed for the RFX-mod experiment allows the measurements with a single diagnostic of both low frequency time evolution of the edge radial profiles of electron density and temperature (tens of hertz), and the high frequency fluctuations (hundreds of kHz). To maximize the collected light, the three HeI lines necessary to be measured for the evaluation of n{sub e} and T{sub e} are separated with a spectrograph, and multianode photomultipliers are used as light detectors. The paper describes the diagnostic setup, with the interface hardware with the machine and the optical layout, and the characterization of its performances.

  3. Use of fast scopes to enable Thomson scattering measurement in presence of fluctuating plasma light.

    SciTech Connect

    McLean, H; Moller, J; Hill, D

    2004-04-19

    The addition of inexpensive high-speed oscilloscopes has enabled higher Te Thomson scattering measurements on the SSPX spheromak. Along with signal correlation techniques, the scopes allow new analyses based on the shape of the scattered laser pulse to discriminate against fluctuating background plasma light that often make gated-integrator measurements unreliable. A 1.4 J Nd:YAG laser at 1064 nm is the scattering source. Spatial locations are coupled by viewing optics and fibers to 4-wavelength-channel filter polychrometers. Ratios between the channels determine Te while summations of the channels determine density. Typically, the channel that provides scattered signal at higher Te is contaminated by fluctuating background light. Individual channels are correlated with either a modeled representation of the laser pulse or a noise-free stray light signal to extract channel amplitudes.

  4. Density fluctuations and rotational isomerization in phospholipid bilayers as studied by ultrasonic absorption spectroscopy.

    PubMed

    Kaatze, U; Brai, M

    1993-04-01

    Broadband ultrasonic absorption spectra are discussed for some aqueous solutions of single-walled phospholipid bilayer vesicles. It is shown that the excess absorption found with all samples can be represented by a sum of a Debye-type relaxation term with discrete relaxation time and a Fixman-Kawasaki term. The former term reflects the kinetics of structural isomerization of the hydrocarbon chains. The values of its relaxation time (0.09-0.56 ns) agree with those for pure n-alkanes of comparable length. The latter terms seems to be due to density fluctuations in the hydrocarbon part of the double layer. Fluctuation correlation lengths between 1 and 30 A result from the analysis of the ultrasonic spectra.

  5. Scaling Laws of Turbulence and Heating of Fast Solar Wind: The Role of Density Fluctuations

    SciTech Connect

    Carbone, V.; Sorriso-Valvo, L.; Bruno, R.

    2009-08-07

    Incompressible and isotropic magnetohydrodynamic turbulence in plasmas can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfvenic state. An analogous phenomenological scaling law, suitably modified to take into account compressible fluctuations, is observed more frequently in the same data set. Large-scale density fluctuations, despite their low amplitude, thus play a crucial role in the basic scaling properties of turbulence. The turbulent cascade rate in the compressive case can, moreover, supply the energy dissipation needed to account for the local heating of the nonadiabatic solar wind.

  6. Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations.

    PubMed

    Carbone, V; Marino, R; Sorriso-Valvo, L; Noullez, A; Bruno, R

    2009-08-07

    Incompressible and isotropic magnetohydrodynamic turbulence in plasmas can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfvénic state. An analogous phenomenological scaling law, suitably modified to take into account compressible fluctuations, is observed more frequently in the same data set. Large-scale density fluctuations, despite their low amplitude, thus play a crucial role in the basic scaling properties of turbulence. The turbulent cascade rate in the compressive case can, moreover, supply the energy dissipation needed to account for the local heating of the nonadiabatic solar wind.

  7. The statistics of peaks of Gaussian random fields. [cosmological density fluctuations

    NASA Technical Reports Server (NTRS)

    Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.

    1986-01-01

    A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.

  8. Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining

    NASA Astrophysics Data System (ADS)

    Leonard, T.; Lander, B.; Seifert, U.; Speck, T.

    2013-11-01

    We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for the work still hold albeit for a different, apparent, change of free energy.

  9. Stochastic thermodynamics of fluctuating density fields: non-equilibrium free energy differences under coarse-graining.

    PubMed

    Leonard, T; Lander, B; Seifert, U; Speck, T

    2013-11-28

    We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for the work still hold albeit for a different, apparent, change of free energy.

  10. Long-range correlations of density fluctuations in the Kerner-Klenov-Wolf cellular automata three-phase traffic flow model.

    PubMed

    Wu, J J; Sun, H J; Gao, Z Y

    2008-09-01

    Detrended fluctuation analysis (DFA) is a useful tool to measure the long-range power-law correlations in 1f noise. In this paper, we investigate the power-law dynamics behavior of the density fluctuation time series generated by the famous Kerner-Klenov-Wolf cellular automata model in road traffic. Then the complexities of spatiotemporal, average speed, and the average density have been analyzed in detail. By introducing the DFA method, our main observation is that the free flow and wide moving jam phases correspond to the long-range anticorrelations. On the contrary, at the synchronized flow phase, the long-range correlated property is observed.

  11. Calibration of a Thomson scattering diagnostic for fluctuation measurements

    SciTech Connect

    Stephens, H. D.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Holly, D. J.; O'Connell, R.; Reusch, J. A.

    2008-10-15

    Detailed calibrations of the Madison Symmetric Torus polychromator Thomson scattering system have been made suitable for electron temperature fluctuation measurements. All calibrations have taken place focusing on accuracy, ease of use and repeatability, and in situ measurements wherever possible. Novel calibration processes have been made possible with an insertable integrating sphere (ISIS), using an avalanche photodiode (APD) as a reference detector and optical parametric oscillator (OPO). Discussed are a novel in situ spatial calibration with the use of the ISIS, the use of an APD as a reference detector to streamline the APD calibration process, a standard dc spectral calibration, and in situ pulsed spectral calibration made possible with a combination of an OPO as a light source, the ISIS, and an APD used as a reference detector. In addition a relative quantum efficiency curve for the APDs is obtained to aid in uncertainty analysis.

  12. Theory of small-scale density and electric field fluctuations in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.

    1992-01-01

    Recently, it has been reported that small-scale (lambda about 0.1-2 km) density irregularities occur during 100-Hz electric field bursts in the nightside ionosphere of Venus. This paper provides a detailed analysis of the lower-hybrid-drift instability as a mechanism to generate the observed irregularities. A fully electromagnetic theory is developed that is relevant to the finite beta plasma in Venus's ionosphere and includes collisional effects (e.g., electron-ion, electron-neutral, and ion-neutral collisions). The key features of the analysis that favor this instability are the following: (1) it is a flute mode and propagates orthogonal to the ambient magnetic field; (2) it is a relatively short wavelength mode and the Doppler-shifted frequency can be greater than about 100 Hz; (3) it can produce both electric field and density fluctuations, as well as magnetic field fluctuations in a finite beta plasma; and (4) it is most unstable in low-beta plasmas so that it is likely to occur in the low-density, high-magnetic-field ionospheric holes. These features are consistent with observational results.

  13. Quantification of nanoscale density fluctuations using electron microscopy: Light-localization properties of biological cells

    SciTech Connect

    Pradhan, Prabhakar; Damania, Dhwanil; Turzhitsky, Vladimir; Subramanian, Hariharan; Backman, Vadim; Joshi, Hrushikesh M.; Dravid, Vinayak P.; Roy, Hemant K.; Taflove, Allen

    2010-12-13

    We report a study of the nanoscale mass-density fluctuations of heterogeneous optical dielectric media, including nanomaterials and biological cells, by quantifying their nanoscale light-localization properties. Transmission electron microscope images of the media are used to construct corresponding effective disordered optical lattices. Light-localization properties are studied by the statistical analysis of the inverse participation ratio (IPR) of the localized eigenfunctions of these optical lattices at the nanoscale. We validated IPR analysis using nanomaterials as models of disordered systems fabricated from dielectric nanoparticles. As an example, we then applied such analysis to distinguish between cells with different degrees of aggressive malignancy.

  14. Communication: Linking the dielectric Debye process in mono-alcohols to density fluctuations

    NASA Astrophysics Data System (ADS)

    Hecksher, Tina

    2016-04-01

    This work provides the first direct evidence that the puzzling dielectric Debye process observed in mono-alcohols is coupled to density fluctuations. The results open up for an explanation of the Debye process within the framework of conventional liquid-state theory. The spectral shape of the dynamical bulk modulus of the two studied mono-alcohols, 2-ethyl-1-hexanol and 4-methyl-3-heptanol, is nearly identical to that of their corresponding shear modulus, and thus the supramolecular structures believed to be responsible for the slow dielectric Debye process are manifested in the bulk modulus in the same way as in the shear modulus.

  15. Upgraded two-dimensional phase contrast imaging system for fluctuation profile measurement on LHD

    SciTech Connect

    Michael, C. A.; Tanaka, K.; Vyacheslavov, L.; Sanin, A.; Kawahata, K.; Okajima, S.

    2006-10-15

    The two-dimensional (2D) phase contrast imaging system on LHD can measure the k spectrum of line-integrated density fluctuations (k{approx}0.2-3 mm{sup -1} and k{sub perpendicular}{rho}{sub i}{approx}0.1-1.5) with modest spatial resolution ({delta}{rho}{approx}0.1) along a line of sight passing close to the magnetic axis, sensitive to radial fluctuations in the core and poloidal fluctuations in the edge. The spatial resolution is attained using a 6x8 2D detector array taking advantage of the strong magnetic shear in LHD. The system can be configured with different magnification factors to investigate different ranges of k (in 'overview' mode from 0.2 to 0.6 mm{sup -1}, characteristic of ITG/TEM scale turbulence; and 'zoom' mode from 1 to 3 mm{sup -1}, which may access to the lower limit of the ETG range). Zoom mode additionally employs cylindrical optics to stretch the image by a factor of 4 in order to provide better spatial resolution for high k fluctuations within a narrow spatial region. The highest detected value of k in zoom mode, for which the signal-to-noise ratio is better than 1, is 2.5 mm{sup -1} (at around 1.5 MHz)

  16. Opening a nodal gap by fluctuating spin-density wave in lightly doped La2 -xSrxCuO4

    NASA Astrophysics Data System (ADS)

    Kapon, Itzik; Ellis, David S.; Drachuck, Gil; Bazalitski, Galina; Weschke, Eugen; Schierle, Enrico; Strempfer, Jörg; Niedermayer, Christof; Keren, Amit

    2017-03-01

    We investigate whether the spin or charge degrees of freedom are responsible for the nodal gap in underdoped cuprates by performing inelastic neutron scattering and x-ray diffraction measurements on La2 -xSrxCuO4 , which is on the edge of the antiferromagnetic phase. We found that a fluctuating incommensurate spin-density wave (SDW) with a bottom part of an hourglass dispersion exists even in this magnetic sample. The strongest component of these fluctuations diminishes at the same temperature where the nodal gap opens. X-ray scattering measurements on the same crystal show no signature of a charge-density wave (CDW). Therefore, we suggest that the nodal gap in the electronic band of this cuprate opens due to fluctuating SDW with no contribution from CDW.

  17. Faraday-Effect Polarimeter Diagnostic for Internal Magnetic Field Fluctuation Measurements in DIII-D

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Ding, W. X.; Brower, D. L.

    2015-11-01

    A high-resolution Faraday-effect polarimeter-interferometer diagnostic currently under construction at the DIII-D tokamak has three overall measurement goals: (1) determine the current density dynamics at the magnetic axis, J(0,t), for torque-free plasmas (no NBI) and bootstrap current in the pedestal region; (2) resolve both coherent and broadband magnetic fluctuations [at the level δb <= 1 Gauss with up to 2 MHz bandwidth] associated with MHD perturbations, energetic particle driven modes and broadband turbulence (e.g. microtearing modes), and (3) identify non-axisymmetric structures and plasma response to externally applied RMP (resonant magnetic perturbation) fields being developed for ELM control as well as MHD events. These goals will be achieved using a 650-700 GHz source and heterodyne receiver system to measure the line-integrated Faraday-effect and density along three horizontal chords positioned at the magnetic axis and +/-15 cm off-axis. The system will be double-pass and cornercube retroreflectors have already been installed. Simultaneous measurement of density and Faraday effect allows isolation of the fluctuating magnetic field component in the radial direction. Supported by US DOE under DE-FG03-01ER54615 and DE-FC02-04ER54698.

  18. Effect of fluctuation measures on the uncertainty relations between two observables: Different measures lead to opposite conclusions

    SciTech Connect

    Luis, Alfredo

    2011-09-15

    We show within a very simple framework that different measures of fluctuations lead to uncertainty relations resulting in contradictory conclusions. More specifically we focus on Tsallis and Renyi entropic uncertainty relations and we get that the minimum joint uncertainty states for some fluctuation measures are the maximum joint uncertainty states of other fluctuation measures, and vice versa.

  19. Quasi-linear theory of electron density and temperature fluctuations with application to MHD generators and MPD arc thrusters

    NASA Technical Reports Server (NTRS)

    Smith, M.

    1972-01-01

    Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.

  20. Quasi-linear theory of electron density and temperature fluctuations with application to MHD generators and MPD arc thrusters.

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1972-01-01

    Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.

  1. Quasi-linear theory of electron density and temperature fluctuations with application to MHD generators and MPD arc thrusters.

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1972-01-01

    Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.

  2. The effect of density fluctuations on ECRH beam broadening and implications to NTM mitigation on ITER

    NASA Astrophysics Data System (ADS)

    Snicker, Antti; Guidi, Lorenzo; Kohn, Alf; Maj, Omar; Weber, Hannes; Poli, Emanuele

    2016-10-01

    We present state-of-the-art computations of propagation and absorption of electron cyclotron waves, retaining the effects of scattering due to density fluctuations. In ITER, injected microwaves are foreseen to suppress NTMs by driving current at the resonant surface(s). The good localization of the absorption profile can be spoiled by beam scattering and impair the NTM control capabilities. A novel tool based on the wave kinetic equation has been developed, which retains diffraction, an integral form of the scattering operator assuming the Born scattering approximation, full tokamak geometry and determination of the power absorption profile. This approach has been implemented in the code WKBeam, which has been benchmarked against the beam-tracing code TORBEAM and the full-wave code IPF-FDMC, in particular to verify usage of the Born approximation for ITER parameters. We show that in ITER the radiation transport is diffusive unlike in existing machines. Using WKBeam we demonstrate through parameter scans that the width of the deposition profile in ITER depends on the assumptions on the fluctuations and beam parameters: the effect can be of the order of 100%. A method to quantify mode-to-mode scattering induced by fluctuations has been developed and first results are presented.

  3. Characterization of density fluctuations during ELMs in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Coda, S.; Porkolab, M.; Burrell, K. H.

    2001-12-01

    Bursts of turbulence associated with ELMs have been studied systematically in DIII-D with a multichannel phase contrast imaging (PCI) diagnostic, which is sensitive to the long poloidal wavelength components of the density fluctuations in the outer edge of the tokamak. A comparison of the temporal dynamics of the turbulence with the signature Dα signal from the divertor has revealed systematic differences between type I and type III ELMs: even though precursor fluctuations are sometimes seen before type I ELMs, the PCI signal level remains high until the peak in the Dα signal; by contrast, in type III ELMs the fluctuation burst precedes the Dα peak by 0.4-0.6 ms. Type I ELMs can generate `echoes', i.e. secondary bursts, in the scrape-off layer. Coherent modes are observed during type III ELMs only. The radial and temporal correlation structures and the spectral properties of the turbulence during the transient ELM phase have been reconstructed by averaging over multiple ELMs, in order to improve the statistical accuracy. ELM turbulence is found to share many properties with L mode turbulence, including the main qualitative features of radial wavenumber and frequency spectra and radial dispersion relations. However, features unique to ELM turbulence are also identified.

  4. Optical observation of spin-density-wave fluctuations in Ba122 iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Xu, B.; Dai, Y. M.; Xiao, H.; Shen, B.; Ye, Z. R.; Forget, A.; Colson, D.; Feng, D. L.; Wen, H. H.; Qiu, X. G.; Lobo, R. P. S. M.

    2016-08-01

    In iron-based superconductors, a spin-density-wave (SDW) magnetic order is suppressed with doping, and unconventional superconductivity appears in close proximity to the SDW instability. The optical response of the SDW order shows clear gap features: substantial suppression in the low-frequency optical conductivity, alongside a spectral weight transfer from low to high frequencies. Here, we study the detailed temperature dependence of the optical response in three different series of the Ba122 system [Ba1 -xKxFe2As2 , Ba (Fe1-xCox) 2As2 , and BaFe2(As1-xPx) 2 ]. Intriguingly, we find that the suppression of the low-frequency optical conductivity and spectral weight transfer appear at a temperature T* much higher than the SDW transition temperature TSDW. Since this behavior has the same optical feature and energy scale as the SDW order, we attribute it to SDW fluctuations. Furthermore, T* is suppressed with doping, closely following the doping dependence of the nematic fluctuations detected by other techniques. These results suggest that the magnetic and nematic orders have an intimate relationship, in favor of the magnetic-fluctuation-driven nematicity scenario in iron-based superconductors.

  5. Should One Measure Radial Velocity or Brightness Fluctuations

    NASA Astrophysics Data System (ADS)

    Fossat, E.

    Low degree p-modes of the sun have been measured in spatially integrated sunlight both in Doppler shift and intensity fluctuations. The guideline of this paper is to assume that the sun is removed far enough in space to become an ordinary star of magnitude zero to one. Evidently, another star will oscillate with different frequencies and different amplitudes, but one must use some reference to start with. With this scheme, a detailed investigation of the limitations of observational accuracy in the search for global p-modes is made. The sources of noise stand in the sun itself, in the instrumentation, in the observing time duration, in the corpuscular nature of the light and mostly in the earth atmosphere (for ground-based observations). Finally, a detection of five minute p-modes on α Cen are reported.

  6. Dynamic structure factor of density fluctuations from direct imaging very near (both above and below) the critical point of SF(6).

    PubMed

    Oprisan, Ana; Oprisan, Sorinel A; Bayley, Brittany; Hegseth, John J; Garrabos, Yves; Lecoutre-Chabot, Carole; Beysens, Daniel

    2012-12-01

    Large density fluctuations were observed by illuminating a cylindrical cell filled with sulfur hexafluoride (SF(6)), very near its liquid-gas critical point (|T-T(c)|< 300 μK) and recorded using a microscope with 3 μm spatial resolution. Using a dynamic structure factor algorithm, we determined from the recorded images the structure factor (SF), which measures the spatial distribution of fluctuations at different moments, and the correlation time of fluctuations. This method authorizes local measurements in contrast to the classical scattering techniques that average fluctuations over the illuminating beam. We found that during the very early stages of phase separation the SF scales with the wave vector q according to the Lorentzian q(-2), which shows that the liquid and vapor domains are just emerging. The critical wave number, which is related to the characteristic length of fluctuations, steadily decreases over time, supporting a sustained increase in the spatial scale of the fluctuating domains. The scaled evolution of the critical wave number obeys the universal evolution for the interconnected domains at high volume fraction with an apparent power law exponent of -0.35 ± 0.02. We also determined the correlation time of the fluctuations and inferred values for thermal diffusivity coefficient very near the critical point, above and below. The values were used to pinpoint the crossing of T(c) within 13 μK.

  7. A Tutorial on Basic Principles of Microwave Reflectometry Applied to Fluctuation Measurements in Fusion Plasmas

    SciTech Connect

    Nazikian, R.; Kramer, G.J.; Valeo, E.

    2001-02-16

    Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices.

  8. Morphology of solar wind fluctuations and structure in the vicinity of the Sun from radio propagation measurements

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1995-01-01

    Radio propagation measurements represent a powerful means for remote probing of electron density and solar wind speed in the acceleration region of the solar wind not yet explored by in situ measurements. Recent investigations based on radio propagation measurements have led to considerable progress in our knowledge of the general morphology of solar wind fluctuations and structure, especially in terms of their relationship to solar wind properties that have been observed directly by fields and particles measurements, and to coronal features observed in white-light measurements. The purpose of this paper is to present an overview of the latest results on quasi-stationary structure covering the large scale variation of solar wind speed over the streamer belt and coronal hole regions, coronal streamers (source of slow solar wind) and their associated small-scale electron density structure, plumes, density and fractional or relative density fluctuations, and the spectral characteristics of the electron density fluctuations. The radio propagation measurements not only reveal new information on the structure near the Sun, but also show that the structure appears to undergo substantial evolution on its way to 0.3 AU, the closest radial distance for which direct in situ spacecraft measurements are available.

  9. A Fluctuation Equation of State for Prediction of High-Pressure Densities of Ionic Liquids.

    PubMed

    Chorążewski, Mirosław; Postnikov, Eugene B; Jasiok, Bernadeta; Nedyalkov, Yuriy V; Jacquemin, Johan

    2017-07-17

    During this work, we demonstrate, for the first time, that the volumetric properties of pure ionic liquids could be truly predicted as a function of temperature from 219 K to 473 K and pressure up to 300 MPa. This has been achieved by using only density and isothermal compressibility data at atmospheric pressure through the Fluctuation Theory-based Tait-like Equation of State (FT-EoS). The experimental density data of 80 different ionic liquids, described in the literature by several research groups as a function of temperature and pressure, was then used to provide comparisons. Excellent predictive capability of FT-EoS was observed with an overall relative absolute average deviation close to 0.14% for the 15,298 data points examined during this work.

  10. Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations.

    PubMed

    Klatt, Michael A; Torquato, Salvatore

    2016-08-01

    In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g_{2}(r) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the

  11. Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations

    NASA Astrophysics Data System (ADS)

    Klatt, Michael A.; Torquato, Salvatore

    2016-08-01

    In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g2(r ) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the

  12. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Zhang, Bing; Li, Hui; Stone, James M.

    2017-08-01

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ, of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  13. The effect of Electron Cyclotron Heating on density fluctuations at ion and electron scales in ITER Baseline Scenario discharges on the DIII-D tokamak

    DOE PAGES

    Marinoni, Alessandro; Pinsker, Robert I.; Porkolab, Miklos; ...

    2017-08-01

    Experiments simulating the ITER Baseline Scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the Phase Contrast Imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of Electron Cyclotron Heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed β N . Within 20 msmore » after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz; in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. Furthermore, these results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.« less

  14. Radar measurement of L-band signal fluctuations caused by propagation through trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  15. Radar measurement of L-band signal fluctuations caused by propagation through trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  16. Atmospheric Fluctuation Measurements with the Palomar Testbed Interferometer

    NASA Astrophysics Data System (ADS)

    Linfield, R. P.; Lane, B. F.; Colavita, M. M.; PTI Collaboration

    Observations of bright stars with the Palomar Testbed Interferometer, at a wavelength of 2.2 microns, have been used to measure atmospheric delay fluctuations. The delay structure function Dτ(Δ t) was calculated for 66 scans (each >= 120s in length) on seven nights in 1997 and one in 1998. For all except one scan, Dτ exhibited a clean power law shape over the time interval 50-500 msec. Over shorter time intervals, the effect of the delay line servo loop corrupts Dτ. Over longer time intervals (usually starting at > 1s), the slope of Dτ decreases, presumably due to some combination of saturation e.g. finite turbulent layer thickness) and the effect of the finite wind speed crossing time on our 110 m baseline. The mean power law slopes for the eight nights ranged from 1.16 to 1.36, substantially flatter than the value of 1.67 for three dimensional Kolmogorov turbulence. Such sub-Kolmogorov slopes will result in atmospheric seeling (θ) that improves rapidly with increasing wavelength: θ propto λ1-(2β), where β is the observed power law slope of Dτ. The atmospheric errors in astrometric measurements with an interferometer will average down more quickly than in the Kolmogorov case.

  17. Mammographic density estimation with automated volumetric breast density measurement.

    PubMed

    Ko, Su Yeon; Kim, Eun-Kyung; Kim, Min Jung; Moon, Hee Jung

    2014-01-01

    To compare automated volumetric breast density measurement (VBDM) with radiologists' evaluations based on the Breast Imaging Reporting and Data System (BI-RADS), and to identify the factors associated with technical failure of VBDM. In this study, 1129 women aged 19-82 years who underwent mammography from December 2011 to January 2012 were included. Breast density evaluations by radiologists based on BI-RADS and by VBDM (Volpara Version 1.5.1) were compared. The agreement in interpreting breast density between radiologists and VBDM was determined based on four density grades (D1, D2, D3, and D4) and a binary classification of fatty (D1-2) vs. dense (D3-4) breast using kappa statistics. The association between technical failure of VBDM and patient age, total breast volume, fibroglandular tissue volume, history of partial mastectomy, the frequency of mass > 3 cm, and breast density was analyzed. The agreement between breast density evaluations by radiologists and VBDM was fair (k value = 0.26) when the four density grades (D1/D2/D3/D4) were used and moderate (k value = 0.47) for the binary classification (D1-2/D3-4). Twenty-seven women (2.4%) showed failure of VBDM. Small total breast volume, history of partial mastectomy, and high breast density were significantly associated with technical failure of VBDM (p = 0.001 to 0.015). There is fair or moderate agreement in breast density evaluation between radiologists and VBDM. Technical failure of VBDM may be related to small total breast volume, a history of partial mastectomy, and high breast density.

  18. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    PubMed

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  19. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Rhodes, T. L.; Doyle, E. J.; Gourdain, P. A.; Hillesheim, J. C.; Wang, G.; Holland, C.; Tynan, G. R.; Austin, M. E.; McKee, G. R.; Shafer, M. W.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.

    2008-10-15

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w{sub o}{approx}1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k{sub {theta}}{<=}1.8 cm{sup -1} and k{sub r}{<=}4 cm{sup -1}, relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating 'synthetic diagnostics' to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a=0.5, but not at a second location, r/a=0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  20. A phase contrast imaging–interferometer system for detection of multiscale electron density fluctuations on DIII-D

    DOE PAGES

    Davis, E. M.; Rost, J. C.; Porkolab, M.; ...

    2016-08-15

    Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. Here, we describe the first-ever implementation of a combined PCI-interferometer. The combined system uses a single 10:6 μm probe beam, two interference schemes, and two detectors to measure electron density uctuations at large spatiotemporal bandwidth (10 kHz < f < 5MHz and 0 cm-1 ≤ k ≤ 20 cm-1), allowing simultaneous measurement of ion- and electron-scale instabilities. Further, correlating our interferometer's measurements with those from DIII-D's pre-existing, toroidally separated interferometer allows core-localized, low-n MHD studies that may otherwise be inaccessiblemore » via external magnetic measurements. In the combined diagnostic's small port requirements and minimal access restrictions make it well-suited to the harsh neutron environments and limited port space expected in next-step devices.« less

  1. A phase contrast imaging–interferometer system for detection of multiscale electron density fluctuations on DIII-D

    SciTech Connect

    Davis, E. M.; Rost, J. C.; Porkolab, M.; Marinoni, A.; Van Zeeland, M. A.

    2016-08-15

    Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. Here, we describe the first-ever implementation of a combined PCI-interferometer. The combined system uses a single 10:6 μm probe beam, two interference schemes, and two detectors to measure electron density uctuations at large spatiotemporal bandwidth (10 kHz < f < 5MHz and 0 cm-1 ≤ k ≤ 20 cm-1), allowing simultaneous measurement of ion- and electron-scale instabilities. Further, correlating our interferometer's measurements with those from DIII-D's pre-existing, toroidally separated interferometer allows core-localized, low-n MHD studies that may otherwise be inaccessible via external magnetic measurements. In the combined diagnostic's small port requirements and minimal access restrictions make it well-suited to the harsh neutron environments and limited port space expected in next-step devices.

  2. Microwave imaging reflectometry (MIR) for visualization of the 2-dimensional structure of density fluctuations on DIII-D

    NASA Astrophysics Data System (ADS)

    Muscatello, C. M.; Domier, C. W.; Luhmann, N. C., Jr.; Ren, X.; Spear, A.; Tobias, B. J.

    2012-10-01

    An imaging diagnostic capable of measuring simultaneously the poloidal and radial structure of density fluctuations is being developed for DIII-D. The success of electron-cyclotron emission imaging developed by UC Davis for DIII-D is a testament to the powerful utility of microwave imaging diagnostics for tokamaks. Since its first deployment on TEXTOR, the MIR concept has undergone several improvements in optical and electronics design. For example, the shape of the wavefront of the probing beam and the curvature of the cutoff layer strongly affect the integrity of the reflected signal. This is addressed with transmitting optical elements that are designed to control the shape of the probing beam. Advances in microwave electronics make it possible to transmit and detect multiple frequencies simultaneously, permitting fluctuation measurements at multiple radial locations. Interesting physics occurs over the entire poloidal cross-section of the plasma, on disparate spatial scales. MIR is flexible in this respect, allowing a remote user to rapidly tune the individual probing frequencies for a variety of correlation studies. Synthetic diagnostic simulations and extensive laboratory tests corroborate our confidence in a successful implementation of MIR on DIII-D.

  3. X-ray Fluctuation Power Spectral Density Survey of Six Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2002-05-01

    By combining low-density RXTE long- and medium-term monitoring with high-density, short-term monitoring from XMM and Chandra long-looks, we have constructed X-ray fluctuation power spectral densities (PSDs) for six Seyfert 1 galaxies. These PSDs cover unprecedented dynamic ranges, continuously spanning up to or beyond 4 orders of magnitude in temporal frequency. The PSDs of four targets show significant flattening towards lower frequencies and bear remarkable similarity to X-ray Binary PSDs, strengthening the argument that similar emission processes occur in both types of compact accreting systems, spanning a factor of ~106-7 in luminosity and putative black hole mass. Assuming a linear mass-timescale relation, the resulting PSD break frequencies imply black hole masses which generally agree with reverberation-mapped mass estimates. If the geometric origin of the variability is close to the X-ray corona, then the physical timescales associated with thermal and acoustic disk variations may be relevant.

  4. Competing Unconventional Charge-Density-Wave States in Cuprate Superconductors: Spin-Fluctuation-Driven Mechanism

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kouki; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi

    2017-06-01

    To understand the origin of unconventional charge-density-wave (CDW) states in cuprate superconductors, we establish the self-consistent CDW equation, and analyze the CDW instabilities based on the realistic Hubbard model, without assuming any q-dependence and the form factor. Many higher-order many-body processes, which are called the vertex corrections, are systematically generated by solving the CDW equation. When the spin fluctuations are strong, the uniform q = 0 nematic CDW with d-form factor shows the leading instability. The axial nematic CDW instability at q = Qa = (δ ,0) (δ ≈ π/2) is the second strongest, and its strength increases under the static uniform CDW order. The present theory predicts that uniform CDW transition emerges at a high temperature, and it stabilize the axial q = Qa CDW at T = TCDW. It is confirmed that the higher-order Aslamazov-Larkin processes cause the CDW orders at both q = 0 and Qa.

  5. Mass density fluctuations in quantum and classical descriptions of liquid water

    NASA Astrophysics Data System (ADS)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick; Baer, Marcel D.; Schenter, Gregory K.; Hutter, Jürg; Mundy, Christopher J.

    2017-06-01

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  6. Density fluctuation dynamics in a dissipative self-gravitating dilute gas revisited

    NASA Astrophysics Data System (ADS)

    Méndez, A. R.; García-Perciante, A. L.

    2016-11-01

    The analysis of the behavior of density fluctuations in a dissipative self gravitating gas in the linear regime is revisited. A factorization for the dispersion relation given by approximate roots is proposed, which is analogous to the one introduced in the case without gravitational field. The threshold for the onset of a gravitational instability, namely Jeans wavenumber, is found to be unaltered by the presence of thermal and viscous dissipation. However, the behavior of damped modes does not correspond to the usual Rayleigh-Brillouin spectrum when the gravitational field is taken into account. Additional to the usual central Rayleigh peak and Brillouin doublet, both corrected due to the presence of the field, non-Lorentizan terms are included in the structure factor. These terms are larger in the presence of the gravitational field and may lead in principle to relevant differences in the general properties of the spectrum. The possible mathematical origin of these modifications is briefly discussed.

  7. Density fluctuations and topological structures in collective surface motion of microswimmers

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Shelley, Michael

    2014-11-01

    Active matter that consists of self-propelled particles, such as bacterial suspensions and assays of self-driven biofilaments, can exhibit collective motions with large-scale complex flows and topological defect dynamics. Using a Doi-Onsager kinetic theory, we study suspensions of microswimmers confined to an air/liquid interface, and identify correlations between particle density fluctuations, defect structures, nematic order, and surface flows. When considering a free-standing liquid film where the microswimmers are distributed on the air/liquid interfaces, we capture hydrodynamic coupling of the two active surface, characterized by synchronization of motile disclination defects. We estimate the effective ``penetration distance'' between the two coupled surfaces through a linear stability analysis.

  8. Multifractal analysis of high resolution solar wind proton density measurements

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, Luca; Carbone, Francesco; Leonardis, Ersilia; Chen, Christopher H. K.; Šafránková, Jana; Němeček, Zdenek

    2017-03-01

    The solar wind is a highly turbulent medium, with a high level of field fluctuations throughout a broad range of scales. These include an inertial range where a turbulent cascade is assumed to be active. The solar wind cascade shows intermittency, which however may depend on the wind conditions. Recent observations have shown that ion-scale magnetic turbulence is almost self-similar, rather than intermittent. A similar result was observed for the high resolution measurements of proton density provided by the spacecraft Spektr-R. Intermittency may be interpreted as the result of the multifractal properties of the turbulent cascade. In this perspective, this paper is devoted to the description of the multifractal properties of the high resolution density measurements. In particular, we have used the standard coarse-graining technique to evaluate the generalized dimensions Dq , and from these the multifractal spectrum f (α) , in two ranges of scale. A fit with the p-model for intermittency provided a quantitative measure of multifractality. Such indicator was then compared with alternative measures: the width of the multifractal spectrum, the peak of the kurtosis, and its scaling exponent. The results indicate that the small-scale fluctuations are multifractal, and suggest that different measures of intermittency are required to fully understand the small scale cascade.

  9. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    NASA Technical Reports Server (NTRS)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  10. Solar wind measurements of the spectrum of magnetic field fluctuations at scales between the ion and electron gyro-radius

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.

    2012-12-01

    High time resolution magnetic field measurements in the range from 1 Hz to 100 Hz enable improved studies of solar wind fluctuations between ion and electron kinetic scales. Theory predicts that a turbulent energy cascade supported by Alfvenic fluctuations or Alfven waves at inertial range scales is supported predominantly by obliquely propagating kinetic Alfven waves (KAWs) or kinetic Alfven fluctuations at scales ranging from approximately the thermal proton gyro-radius to the electron gyro-radius. The phase speed of KAWs with highly oblique, nearly perpendicular wave-vectors is roughly on the order of the Alfven speed and, since it is much less than the solar wind speed, Taylor's frozen-in flow hypothesis implies that the frequency spectrum observed in the spacecraft frame can be interpreted as the wavenumber spectrum in the plasma frame. Studies by Sahraoui and coworkers have shown that the magnetic field fluctuations typically exhibit a power-law spectrum with a spectral index near 2.7; and recent studies by Chen and coworkers have shown that the spectrum of electron density fluctuations typically follows the behavior of the magnetic field spectrum with a spectral index near 2.7. These observations are consistent with theories and simulations of KAW turbulence which predict that electron density fluctuations and magnetic field fluctuations should both follow the same scaling law. Here, I present new measurements of solar wind magnetic field spectra obtained using the search coil magnetometers on board the Artemis (previously Themis) spacecraft and compare these results with previously published measurements.

  11. Influence of monovalent ions on density fluctuations in hydrothermal aqueous solutions by small angle X-ray scattering.

    PubMed

    Da Silva-Cadoux, Cécile; Hazemann, Jean-Louis; Testemale, Denis; Proux, Olivier; Rochas, Cyrille

    2012-01-28

    Synchrotron small angle X-ray scattering measurements on water and alkaline bromine aqueous solutions (XBr, with X = Li, Rb, or Cs) were carried out from ambient to supercritical conditions. The temperature was increased from 300 to 750 K along several isobars between 24 and 35 MPa. The correlation length and the structure factor were extracted from the data following the Ornstein-Zernike formalism. We obtained experimental evidence of the shift of the critical point and isochore and their dependence on the ions concentration (0.33 mol/kg and 1.0 mol/kg). We also observed that the size of the density fluctuations and the structure factor increase with the presence of the ions and that this effect is positively correlated with the atomic number of the cation. These behaviors were compared with ZnBr(2) and NaCl systems from the literature.

  12. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D

    SciTech Connect

    Chen, J.; Ding, W. X.; Brower, D. L.; Finkenthal, D.; Muscatello, C.; Taussig, D.; Boivin, R.

    2016-11-15

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  13. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ding, W. X.; Brower, D. L.; Finkenthal, D.; Muscatello, C.; Taussig, D.; Boivin, R.

    2016-11-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ˜ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  14. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D.

    PubMed

    Chen, J; Ding, W X; Brower, D L; Finkenthal, D; Muscatello, C; Taussig, D; Boivin, R

    2016-11-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  15. Fast response densitometer for measuring liquid density

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Densitometer was developed which produces linear voltage proportional to changes in density of flowing liquid hydrogen. Unit has fast response time and good system stability, statistical variation, and thermal equilibrium. System accuracy is 2 percent of total density span. Basic design may be altered to include measurement of other flowing materials.

  16. A perfect storm: the combined effects on population fluctuations of autocorrelated environmental noise, age structure, and density dependence.

    PubMed

    Wilmers, Christopher C; Post, Eric; Hastings, Alan

    2007-05-01

    While it is widely appreciated that climate can affect the population dynamics of various species, a mechanistic understanding of how climate interacts with life-history traits to influence population fluctuations requires development. Here we build a general density-dependent age-structured model that accounts for differential responses in life-history traits to increasing population density. We show that as the temporal frequency of favorable environmental conditions increases, population fluctuations also increase provided that unfavorable environmental conditions still occur. As good years accumulate and the number of individuals in a population increases, successive life-history traits become vulnerable to density dependence once a return to unfavorable conditions prevails. The stronger this ratcheting of density dependence in life-history traits by autocorrelated climatic conditions, the larger the population fluctuations become. Highly fecund species, and those in which density dependence occurs in juvenile and adult vital rates at similar densities, are most sensitive to increases in the frequency of favorable conditions. Understanding the influence of global warming on temporal correlation in regional environmental conditions will be important in identifying those species liable to exhibit increased population fluctuations that could lead to their extinction.

  17. Measurement and Simulation of Signal Fluctuations Caused by Propagation through Trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1993-01-01

    We present measured magnitude and phase fluctuations of UHF, L band, and C band signals that were transmitted from the ground through a forest canopy to an airborne radar. We find that the measured fluctuations are similar to those calculated by a simple Monte Carlo simulation. Both observed and calculated RMS fluctuations are typically several decibels in magnitude and tens of degrees in phase at all three frequencies.

  18. Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier.

    PubMed Central

    Conti, F; Hille, B; Neumcke, B; Nonner, W; Stämpfli, R

    1976-01-01

    Single myelinated nerve fibres of Rana esculenta were investigated under voltage clamp conditions at 13 degrees C. Fluctuations of steady-state membrane current were measured during the last 152 msec of 190-225 msec pulses depolarizing the membrane by 8-48 mV. Noise power spectral densities were calculated in the frequency range of 6-6-6757 Hz. 2. External application of 150 nM tetrodotoxin (TTX) and/or 10 mM tetraethylammonium (TEA) ion reduced the current fluctuations. The difference of current noise spectra measured in the presence and absence of TTX (TEA) was not changed by the presence of TEA (TTX) during both measurements, and was taken as the spectrum of the Na (K) current fluctuations. 3. Residual current noise during application of both TTX and TEA was, except for some excess noise at the low and high frequency ends of the spectrum, similar to the noise measured from a passive nerve model and could be understood in terms of Nyquist noise of the known resistances and the amplifier noise. 4. Na current fluctuation spectra were interpreted as the sum N/f+SNa(f) where SNa(F) represents the spectrum expected for a set of equal, independent Na channels with only two conductance states (open or closed) which follow Hodgkin-Huxley kinetics. With values of hinfinity, tauh and minfinity measured from macroscopic Na currents, the measured spectra were fitted well by optimizing N, SNa(0) and taum. Values of taum obtained by this method were in fair agreement with values found from macroscopic currents. 5. The 1/f component of Na current noise was roughly proportional to the square of the steady-state Na current, I2. The mean value of N/I2 was (1-1 +/- 0-3) X 10(-4). 6. The current carried by a single Na channel was calculated from fitted spectra and steady-state Na currents measured simultaneously with the current fluctuations. The single channel conductance gamma normalized to zero absolute membrane potential was calculated. The average gamma from twelve measurements

  19. Spacetime Average Density (SAD) cosmological measures

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  20. Spacetime Average Density (SAD) cosmological measures

    SciTech Connect

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  1. Density nonlinearities in field theories for a toy model of fluctuating nonlinear hydrodynamics of supercooled liquids.

    PubMed

    Yeo, Joonhyun

    2009-11-01

    We study a zero-dimensional version of the fluctuating nonlinear hydrodynamics (FNH) of supercooled liquids originally investigated by Das and Mazenko (DM) [Shankar P. Das and Gene F. Mazenko Phys. Rev. A 34, 2265 (1986)]. The time-dependent density-like and momentum-like variables are introduced with no spatial degrees of freedom in this toy model. The structure of nonlinearities takes the similar form to the original FNH, which allows one to study in a simpler setting the issues raised recently regarding the field theoretical approaches to glass forming liquids. We study the effects of density nonlinearities on the time evolution of correlation and response functions by developing field theoretic formulations in two different ways: first by following the original prescription of DM and then by constructing a dynamical action which possesses a linear time-reversal symmetry as proposed recently. We show explicitly that, at the one-loop order of the perturbation theory, the DM-type field theory does not support a sharp ergodic-nonergodic transition, while the other admits one. The simple nature of the toy model in the DM formulation allows us to develop numerical solutions to a complete set of coupled dynamical equations for the correlation and response functions at the one-loop order.

  2. Image correlation spectroscopy for measurements of particle densities and colocalization.

    PubMed

    Rappaz, Benjamin; Wiseman, Paul W

    2013-06-01

    Cells interact with their environment through receptor proteins expressed at their plasma membrane, and protein-protein interactions govern the transduction of signals across the membrane into the cell. Therefore, the ability to measure receptor densities and protein colocalization within the membrane of intact cells is of paramount importance. This unit describes a technique to extract these parameters from fluorescence microscopy images obtained using a commercial confocal laser scanning microscope (CLSM) and other similar types of microscopes. It is based on the analysis of spatial fluorescence intensity fluctuations in the images, which can then be related to particle density and aggregation state via calculation of a spatial autocorrelation function, or used to measure particle colocalization via calculation of a spatial cross-correlation function from dual-color images of proteins tagged with two different fluorophores and imaged in two detection channels. These parameters offer key insights on the interaction of the cell with its environment. © 2013 by John Wiley & Sons, Inc.

  3. BOOK REVIEW: Practical Density Measurement and Hydrometry

    NASA Astrophysics Data System (ADS)

    Gupta, S. V.

    2003-01-01

    Density determinations are very important not only for science and production but also in everyday life, since very often a product is sold by mass but the content of the package is measured by volume (or vice versa) so that the density is needed to convert the values. In production processes the density serves as a measure of mixing ratios and other properties. In science, the determination of Avogadro's constant using silicon single crystals and the potential replacement of the kilogram prototype boost density determination to an extremely low relative uncertainty of 10-7 or less. The book by S V Gupta explains in detail the foundations of any density measurement, namely the volume determination of solid artefacts in terms of the SI base unit of length and the density of water and mercury. Both the history and the actual state of science are reported. For practical density measurements, these chapters contain very useful formulae and tables. Water is treated in detail since it is most widely used as a standard not only for density determination but also to gravimetrically calibrate the capacity of volumetric glassware. Two thirds of the book are devoted to the practical density measurement of solids and liquids, mainly using classical instruments like pycnometers and hydrometers. Methods using free flotation of samples in a liquid without suspension are especially useful for small samples. Also, density determinations of powders and granular or porous samples are explained. Unfortunately, modern density meters of the oscillation type are dealt with in only a few pages. The book is clearly written and easy to understand. It contains a lot of evaluations of formulae that for practical measurements are represented in detailed tables. Methods and measurement procedures are described in detail, including also the calculation of uncertainty. Listings of the advantages and disadvantages of the different methods are very helpful. S V Gupta has written a book that will be

  4. Measuring liquid density using Archimedes' principle

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.

    2006-09-01

    A simple technique is described for measuring absolute and relative liquid density based on Archimedes' principle. The technique involves placing a container of the liquid under test on an electronic balance and suspending a probe (e.g. a glass marble) attached to a length of line beneath the surface of the liquid. If the volume of the probe is known, the density of liquid is given by the difference between the balance reading before and after immersion of the probe divided by the volume of the probe. A test showed that the density of water at room temperature could be measured to an accuracy and precision of 0.01 ± 0.1%. The probe technique was also used to measure the relative density of milk, Coca-Cola, fruit juice, olive oil and vinegar.

  5. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited)

    SciTech Connect

    Barada, K. Rhodes, T. L.; Crocker, N. A.; Peebles, W. A.

    2016-11-15

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  6. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited).

    PubMed

    Barada, K; Rhodes, T L; Crocker, N A; Peebles, W A

    2016-11-01

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  7. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Barada, K.; Rhodes, T. L.; Crocker, N. A.; Peebles, W. A.

    2016-11-01

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  8. Measurement of density gradient across wind turbine interface

    NASA Astrophysics Data System (ADS)

    Gomez, Virgilio; Taylor, Amelia; Ruiz-Columbie, Arquimedes; Pol, Suhas; Westergaard, Carsten; Castillo, Luciano

    2014-11-01

    The wake of a field installed model turbine was visualized using a large-scale shadowgraph apparatus. To enable a large field of view a focused shadowgraph apparatus was used where the camera lens and the light source axis were aligned. A retroreflective screen is used as a back plane to reflect the image back to the camera. Sonic anemometer measurements of velocity and temperature were obtained at points overlapping the field of view. As much as 2% change in temperature has been observed within wake, enough to cause measurable index of refraction fluctuations. Schlieren method will be used to directly measure the density gradient across the wake interface. These measurements will be used to explain the dynamics at the wake interface for different atmospheric boundary layer stability (stratification) conditions.

  9. Time-dependent local density measurements in unsteady flows

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.; Monson, D. J.; Exberger, R. J.

    1979-01-01

    A laser-induced fluorescence technique for measuring the relative time-dependent density fluctuations in unsteady or turbulent flows is demonstrated. Using a 1.5-W continuous-wave Kr(+) laser, measurements have been obtained in 0.1-mm diameter by 1-mm-long sampling volumes in a Mach 3 flow of N2 seeded with biacetyl vapor. A signal amplitude resolution of 2% was achieved for a detection frequency bandwidth of 10 kHz. The measurement uncertainty was found to be dominated by noise behaving as photon statistical noise. The practical limits of signal-to-noise ratios have been characterized for a wide range of detection frequency bandwidths that encompasses those of interest in supersonic turbulence measurements.

  10. Absolute measurement of enhanced fluctuations in assemblies of biomolecules by ultrasonic techniques.

    PubMed Central

    Cerf, R

    1985-01-01

    By expressing the fluctuation-dissipation theorem explicitly, equations are obtained for the ultrasonic relaxation amplitudes that contain one single molecular parameter, i.e., the fluctuation, or the sum of fluctuations. The absolute measurement of this parameter is therefore possible. The equations apply to a two-state system, to a multistate system and to a linear Ising chain as well. In an aqueous medium, where molar volume changes are important, the ultrasonic relaxation amplitudes are proportional to the volume fluctuations. For assemblies of biomolecules that exhibit enhanced ultrasonic absorption on assembly it is possible to measure the increase on assembly of the sum of fluctuations. In view of application to tobacco mosaic virus protein aggregates, examples are given in which the fluctuations associated with two normal modes of relaxation are equally enhanced when the difference of conformational stability of the states is reduced. The corresponding observable changes of the ultrasonic spectra are described. PMID:4016196

  11. Reflectometry: A Reliable And Sensitive Plasma Diagnostic For Density Profile And Turbulence Measurements On Tore-Supra

    SciTech Connect

    Sabot, R.; Clairet, F.; Giacalone, J. C.; Molina, D.; Sirinelli, A.; Vermare, L.; Heuraux, S.; Leclert, G.

    2006-01-15

    A set of four reflectometers has been installed on Tore-Supra to measure the density profiles and the properties of density fluctuations with good spatial resolution. Fast swept X-mode reflectometers covering the range 50 to 155 GHz provide reliable and accurate measurements of the whole density profile from the edge on the outer side up to the core on the high field side even during large and fast profile evolution. Precise evaluation of the density profile is crucial for particle transport studies. A particular feature, a local peaking, has been observed in the core during ohmic discharge. Density fluctuations are measured with three different techniques. The classical fixed frequency method looks at large scale fluctuations (kr < 3 cm-1) . It measures the radial profile of fluctuations and can detect density perturbation associated to high frequency modes. A new method has been validated to measure the radial profile of small scale density fluctuations from fast FM-CW phase reflected signal. This method could also retrieve the radial wavenumber spectrum. The last method Doppler reflectometry is based on back scattering. It measures the poloidal rotation and fluctuations amplitude at different poloidal wave numbers (3 < k{theta} < 20 cm-1). This collection of diagnostics achieves complementary measurements from the low to the high field side of the discharge and from large to small scale.

  12. Instrument continuously measures density of flowing fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, R. B.; Macinko, J.; Miller, C. E.

    1967-01-01

    Electromechanical densitometer continuously measures the densities of either single-phase or two-phase flowing cryogenic fluids. Measurement is made on actual flow. The instrument operates on the principle that the mass of any vibrating system is a primary factor in determining the dynamic characteristics of the system.

  13. Effects of density fluctuations on nonlinear evolution of low-frequency Alfven waves in solar wind plasmas

    NASA Astrophysics Data System (ADS)

    Nariyuki, Y.; Seough, J.

    2015-12-01

    It is well known that low-frequency Alfven waves are unstable to parametric instabilities, in which these waves are nonlinearly coupled with density fluctuations [e.g, Nariyuki+Hada, JGR, 2007 and references therein]. In solar wind plasmas, low-frequency fluctuations with non-zero cross-helicity are frequently observed [e.g., Bruno+Carbone, Living Rev. Solar Phys. (2013) and references therein]. When the absolute values of normalized cross helicities are close to the unity, the fluctuations may be composed of uni-directionally (anti-sunward) propagating Alfven waves. The derivative nonlinear Schrodinger equation (DNLS) has been known as the mode of modulational instabilities of unidirectional Alfven waves [Mio et al, JPSJ, 1976; Mjolhus, JPP, 1976]. In the DNLS, the density fluctuations are assumed to be the quasi-static state, which is determined according to the ponderomotive force of envelope-modulated Alfven waves. The DNLS was extended to include the obliquely propagating, compressional component of magnetic field by Mjolhus and Wyller (JPP, 1988). The kinetically modified DNLS (KDNLS) has also been discussed by many authors [Rogister, POF, 1971; Mjolhus and Wyller, Phys. Scr, 1986; JPP, 1988; Spangler, POF B, 1989; 1990; Medvedev+Diamond, POP, 1996; Nariyuki et al, POP, 2013]. On the other hand, ion acoustic modes [Hada, 1993], large scale inhomogeneity of plasmas [Buti et al, APJ, 1999; Nariyuki, POP, 2015] and random density fluctuations [Ruderman, POP, 2002] can also affect nonlinear evolution of Alfven waves. At the present time, combined effects of these effects are not fully understood. In this presentation, we discuss two models: one of them is the model including both ion kinetic effects and ion acoustic mode and another is the model including finite thermal effects and random density fluctuations. In the former case, ion kinetic effects on both longitudinal [Nariyuki+Hada, JPSJ, 2007] and transverse modulational instabilities are discussed, while the

  14. Confidence Intervals for Concentration and Brightness from Fluorescence Fluctuation Measurements

    PubMed Central

    Pryse, Kenneth M.; Rong, Xi; Whisler, Jordan A.; McConnaughey, William B.; Jiang, Yan-Fei; Melnykov, Artem V.; Elson, Elliot L.; Genin, Guy M.

    2012-01-01

    The theory of photon count histogram (PCH) analysis describes the distribution of fluorescence fluctuation amplitudes due to populations of fluorophores diffusing through a focused laser beam and provides a rigorous framework through which the brightnesses and concentrations of the fluorophores can be determined. In practice, however, the brightnesses and concentrations of only a few components can be identified. Brightnesses and concentrations are determined by a nonlinear least-squares fit of a theoretical model to the experimental PCH derived from a record of fluorescence intensity fluctuations. The χ2 hypersurface in the neighborhood of the optimum parameter set can have varying degrees of curvature, due to the intrinsic curvature of the model, the specific parameter values of the system under study, and the relative noise in the data. Because of this varying curvature, parameters estimated from the least-squares analysis have varying degrees of uncertainty associated with them. There are several methods for assigning confidence intervals to the parameters, but these methods have different efficacies for PCH data. Here, we evaluate several approaches to confidence interval estimation for PCH data, including asymptotic standard error, likelihood joint-confidence region, likelihood confidence intervals, skew-corrected and accelerated bootstrap (BCa), and Monte Carlo residual resampling methods. We study these with a model two-dimensional membrane system for simplicity, but the principles are applicable as well to fluorophores diffusing in three-dimensional solution. Using simulated fluorescence fluctuation data, we find the BCa method to be particularly well-suited for estimating confidence intervals in PCH analysis, and several other methods to be less so. Using the BCa method and additional simulated fluctuation data, we find that confidence intervals can be reduced dramatically for a specific non-Gaussian beam profile. PMID:23009839

  15. Absolute electron density measurements in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Baker, K. D.; Howlett, L. C.; Rao, N. B.; Ulwick, J. C.; Labelle, J.

    1985-01-01

    Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the Condor rocket campaign conducted from Peru in March 1983. This paper presents density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 x 10 to the 5th per cu cm at 106 km, with large scale fluctuations having amplitudes of roughly 10 percent seen only in the upward gradient in electron density. This is in agreement with plasma instability theory. It is further shown that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.

  16. Absolute electron density measurements in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Baker, K. D.; Howlett, L. C.; Rao, N. B.; Ulwick, J. C.; Labelle, J.

    1985-01-01

    Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the Condor rocket campaign conducted from Peru in March 1983. This paper presents density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 x 10 to the 5th per cu cm at 106 km, with large scale fluctuations having amplitudes of roughly 10 percent seen only in the upward gradient in electron density. This is in agreement with plasma instability theory. It is further shown that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.

  17. Measurement of the orbit fluctuation caused by an insertion device with the amplitude modulation method

    SciTech Connect

    Nakatani, T.; Agui, A.; Yoshigoe, A.; Matsushita, T.; Takao, M.; Aoyagi, H.; Takeuchi, M.; Tanaka, H.

    2004-05-12

    We have developed a new method to extract only the orbit fluctuation caused by changing magnetic field error of an insertion device (ID). This method consists of two main parts. (i) The orbit fluctuation is measured with modulating the error field of the ID by using the real-time beam position measuring system. (ii) The orbit fluctuation depending on the variation of the error field of the ID is extracted by the filter applying the Wavelet Transform. We call this approach the amplitude modulation method. This analysis technique was applied to measure the orbit fluctuation caused by the error field of APPLE-2 type undulator (ID23) installed in the SPring-8 storage ring. We quantitatively measured two kinds of the orbit fluctuation which are the static term caused by the magnetic field error and the dynamic term caused by the eddy current on the ID23 chamber.

  18. Climatic Signals from Intra-annual Density Fluctuation Frequency in Mediterranean Pines at a Regional Scale

    PubMed Central

    Zalloni, Enrica; de Luis, Martin; Campelo, Filipe; Novak, Klemen; De Micco, Veronica; Di Filippo, Alfredo; Vieira, Joana; Nabais, Cristina; Rozas, Vicente; Battipaglia, Giovanna

    2016-01-01

    Tree rings provide information about the climatic conditions during the growing season by recording them in different anatomical features, such as intra-annual density fluctuations (IADFs). IADFs are intra-annual changes of wood density appearing as latewood-like cells within earlywood, or earlywood-like cells within latewood. The occurrence of IADFs is dependent on the age and size of the tree, and it is triggered by climatic drivers. The variations of IADF frequency of different species and their dependence on climate across a wide geographical range have still to be explored. The objective of this study is to investigate the effect of age, tree-ring width and climate on IADF formation and frequency at a regional scale across the Mediterranean Basin in Pinus halepensis Mill., Pinus pinaster Ait., and Pinus pinea L. The analyzed tree-ring network was composed of P. pinea trees growing at 10 sites (2 in Italy, 4 in Spain, and 4 in Portugal), P. pinaster from 19 sites (2 in Italy, 13 in Spain, and 4 in Portugal), and P. halepensis from 38 sites in Spain. The correlations between IADF frequency and monthly minimum, mean and maximum temperatures, as well as between IADF frequency and total precipitation, were analyzed. A significant negative relationship between IADF frequency and tree-ring age was found for the three Mediterranean pines. Moreover, IADFs were more frequent in wider rings than in narrower ones, although the widest rings showed a reduced IADF frequency. Wet conditions during late summer/early autumn triggered the formation of IADFs in the three species. Our results suggest the existence of a common climatic driver for the formation of IADFs in Mediterranean pines, highlighting the potential use of IADF frequency as a proxy for climate reconstructions with geographical resolution. PMID:27200052

  19. Climatic Signals from Intra-annual Density Fluctuation Frequency in Mediterranean Pines at a Regional Scale.

    PubMed

    Zalloni, Enrica; de Luis, Martin; Campelo, Filipe; Novak, Klemen; De Micco, Veronica; Di Filippo, Alfredo; Vieira, Joana; Nabais, Cristina; Rozas, Vicente; Battipaglia, Giovanna

    2016-01-01

    Tree rings provide information about the climatic conditions during the growing season by recording them in different anatomical features, such as intra-annual density fluctuations (IADFs). IADFs are intra-annual changes of wood density appearing as latewood-like cells within earlywood, or earlywood-like cells within latewood. The occurrence of IADFs is dependent on the age and size of the tree, and it is triggered by climatic drivers. The variations of IADF frequency of different species and their dependence on climate across a wide geographical range have still to be explored. The objective of this study is to investigate the effect of age, tree-ring width and climate on IADF formation and frequency at a regional scale across the Mediterranean Basin in Pinus halepensis Mill., Pinus pinaster Ait., and Pinus pinea L. The analyzed tree-ring network was composed of P. pinea trees growing at 10 sites (2 in Italy, 4 in Spain, and 4 in Portugal), P. pinaster from 19 sites (2 in Italy, 13 in Spain, and 4 in Portugal), and P. halepensis from 38 sites in Spain. The correlations between IADF frequency and monthly minimum, mean and maximum temperatures, as well as between IADF frequency and total precipitation, were analyzed. A significant negative relationship between IADF frequency and tree-ring age was found for the three Mediterranean pines. Moreover, IADFs were more frequent in wider rings than in narrower ones, although the widest rings showed a reduced IADF frequency. Wet conditions during late summer/early autumn triggered the formation of IADFs in the three species. Our results suggest the existence of a common climatic driver for the formation of IADFs in Mediterranean pines, highlighting the potential use of IADF frequency as a proxy for climate reconstructions with geographical resolution.

  20. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE PAGES

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    2016-06-08

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  1. Simultaneous excitation of large-scale geomagnetic field fluctuations and plasma density irregularities by powerful radio waves

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1985-01-01

    The physical mechanism of thermal filamentation instability of radio waves whose frequencies can be as low as in the VLF band and as high as in the SHF band are investigated. This instability can excite large-scale magnetic and plasma density fluctuations simultaneously in the ionosphere and magnetosphere. Relevant experiments are reviewed in terms of this instability and other mechanisms.

  2. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    NASA Astrophysics Data System (ADS)

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    2016-06-01

    The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This produces a natural method for generating new thermal exchange-correlation approximations.

  3. Simultaneous excitation of large-scale geomagnetic field fluctuations and plasma density irregularities by powerful radio waves

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1985-01-01

    The physical mechanism of thermal filamentation instability of radio waves whose frequencies can be as low as in the VLF band and as high as in the SHF band are investigated. This instability can excite large-scale magnetic and plasma density fluctuations simultaneously in the ionosphere and magnetosphere. Relevant experiments are reviewed in terms of this instability and other mechanisms.

  4. The THz Spectrum of Density Fluctuations of Water: The Viscoelastic Regime

    SciTech Connect

    Cunsolo, Alessandro

    2015-01-01

    Relevant advances in the knowledge of the water dynamics at mesoscopic scales are reviewed, while mainly focusing on the contribution provided by high resolution inelastic X-ray scattering (IXS). In particular it is discussed how the use of IXS has improved our understanding of viscoelastic properties of water at THz frequencies. This specifically involves some solid-like features such as the onset of shear wave propagation, a sound velocity surprisingly similar to the one of ice, and an anomalously low sound absorption coefficient. All these properties can be explained by assuming the coupling of THz density fluctuations with a structural relaxation process connected to the breaking and forming of hydrogen bonds (HBs). This review also includes more recent IXS results demonstrating that, upon approaching supercritical conditions, relaxation phenomena in water gradually lose their structural character becoming essentially collisional in character. Furthermore, GHz spectroscopy results on supercooled water, suggesting the occurrence of a structural arrest, are discussed. An overview of the new opportunities offered by next generation IXS spectrometers finally concludes this review.

  5. Dynamics of density fluctuations of a glass-forming epoxy resin revealed by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Fioretto, D.; Comez, L.; Socino, G.; Verdini, L.; Corezzi, S.; Rolla, P. A.

    1999-02-01

    Brillouin light scattering is used for studying the spectrum of density fluctuations of the glass-forming epoxy resin diglycidyl ether of bisphenol-A. Spectra at different temperatures ranging from the glassy to the liquid phase are obtained from a direct subtraction of depolarized from polarized spectra. In addition to the structural relaxation, evidence is given of a fast secondary relaxation process, which affects Brillouin spectra also at temperatures lower than that of the glass transition Tg. For the elaboration of isotropic spectra, we exploit the possibility of using the same relaxation function gained from dielectric spectra taken from the same sample. The temperature behavior of the relaxation strength shows the existence of an onset for the structural relaxation, located at a temperature about 93 K higher than Tg, consistent with the results of previous dielectric spectroscopy and depolarized light scattering investigations. The role of secondary relaxations of intramolecular nature in the mode-coupling analysis of real glass formers is also discussed.

  6. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  7. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for liquid mixtures

    SciTech Connect

    Ploetz, Elizabeth A.; Smith, Paul E.

    2015-03-07

    Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations, and/or integrals over the pair distribution functions, from experimental thermodynamic data on liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations, and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely thermodynamic manner that avoids the use of structure factors. The approach is then applied to binary mixtures of water + methanol and benzene + methanol over the full composition range under ambient conditions. The observed correlations between the different species vary significantly with composition. The magnitude of the fluctuations and integrals appears to increase as the number of the most polar molecule involved in the fluctuation or integral also increases. A simple physical picture of the fluctuations is provided to help rationalize some of these variations.

  8. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for liquid mixtures

    PubMed Central

    2015-01-01

    Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations, and/or integrals over the pair distribution functions, from experimental thermodynamic data on liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations, and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely thermodynamic manner that avoids the use of structure factors. The approach is then applied to binary mixtures of water + methanol and benzene + methanol over the full composition range under ambient conditions. The observed correlations between the different species vary significantly with composition. The magnitude of the fluctuations and integrals appears to increase as the number of the most polar molecule involved in the fluctuation or integral also increases. A simple physical picture of the fluctuations is provided to help rationalize some of these variations. PMID:25747091

  9. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  10. Ultra-fast charge exchange spectroscopy for turbulent ion temperature fluctuation measurements on the DIII-D tokamak (invited)

    SciTech Connect

    Uzun-Kaymak, I. U.; Fonck, R. J.; McKee, G. R.

    2012-10-15

    A novel two-channel, high throughput, high efficiency spectrometer system has been developed to measure impurity ion temperature and toroidal velocity fluctuations associated with long-wavelength turbulence and other plasma instabilities. The spectrometer observes the emission of the n= 8-7 hydrogenic transition of C{sup +5} ions ({lambda}{sub air}= 529.06 nm) resulting from charge exchange reactions between deuterium heating beams and intrinsic carbon. Novel features include a large, prism-coupled high-dispersion, volume-phase-holographic transmission grating and high-quantum efficiency, high-gain, low-noise avalanche photodiode detectors that sample emission at 1 MHz. This new diagnostic offers an order-of-magnitude increase in sensitivity compared to earlier ion thermal turbulence measurements. Increased sensitivity is crucial for obtaining enough photon statistics from plasmas with much less impurity content. The irreducible noise floor set by photon statistics sets the ultimate sensitivity to plasma fluctuations. Based on the measured photon flux levels for the entire spectral line, photon noise levels for T(tilde sign){sub i}/T{sub i} and V(tilde sign){sub i}/V{sub i} of {approx}1% are expected, while statistical averaging over long data records enables reduction in the detectable plasma fluctuation levels to values less than that. Broadband ion temperature fluctuations are observed to near 200 kHz in an L-mode discharge. Cross-correlation with the local beam emission spectroscopy measurements demonstrates a strong coupling of the density and temperature fields, and enables the cross-phase measurements between density and ion temperature fluctuations.

  11. Behavior of Small-Scale Density Fluctuations in Discharges with Off-Axis Electron-Cyclotron Resonance Heating in the T-10 Tokamak

    SciTech Connect

    Shelukhin, D.A.; Vershkov, V.A.; Razumova, K.A.

    2005-12-15

    In experiments on off-axis electron-cyclotron resonance heating in the T-10 tokamak, a steep gradient of the electron temperature was observed to form for a short time at a relative radius of {rho} {approx_equal} 0.25 after the heating power was switched off. Small-scale fluctuations of the electron density were studied with the help of correlation reflectometry. It was found that, in a narrow region near {rho} {approx_equal} 0.25, the amplitude of the density fluctuations was two times lower than that in the ohmic heating phase. Quasi-coherent fluctuations were suppressed over a period of time during which the steep temperature gradient existed. Measurements of the poloidal rotation velocity of turbulent fluctuations show that there is no velocity shear after the heating is switched off. An analysis of the linear growth rates of instabilities shows that the ion-temperature-gradient mode is unstable at {rho} {approx_equal} 0.25 throughout the entire discharge phase. The effect observed can be explained by an increase in the distance between the rational surfaces near the radius at which the safety factor is q = 1 due to the temporary flattening of the q profile after the off-axis electron-cyclotron resonance heating is switched off.

  12. Propagation of a cloud of hot electrons through a plasma in the presence of Langmuir scattering by ambient density fluctuations

    SciTech Connect

    Foroutan, G. R.; Robinson, P. A.; Sobhanian, S.; Moslehi-Fard, M.; Li, B.; Cairns, I. H.

    2007-01-15

    Gas-dynamic theory is generalized to incorporate the effects of beam-driven Langmuir waves scattering off ambient density fluctuations, and the consequent effects on the propagation of a cloud of hot electrons in an inhomogeneous plasma. Assuming Langmuir scattering as the limit of nonlinear three-wave interactions with fluctuations that are weak, low-frequency, long-wavelength ion-sound waves, the net effect of scattering is equivalent to effective damping of the Langmuir waves. Under the assumption of self-similarity in the evolution of the beam and Langmuir wave distribution functions, gas-dynamic theory shows that the effects of Langmuir scattering on the beam distribution are equivalent to a perturbation in the injection profile of the beam. Analytical expressions are obtained for the height of the plateau of the beam distribution function, wave spectral number density, total wave and particle energy density, and the beam number density. The main results of gas-dynamic theory are then compared with simulation results from numerical solutions of quasilinear equations. The relaxation of the beam in velocity space is retarded in the presence of density fluctuations and the magnitude of the upper velocity boundary is less than that in the absence of fluctuations. There are four different regimes for the height of the plateau, corresponding to different stages of relaxation of the beam in velocity space. Moreover, Langmuir scattering results in transfer of electrons from moderate velocity to low velocity; this effect produces an enhancement in the beam number density at small distances near the injection site and a corresponding decrease at large distances. There are sharp decreases in the profiles of the beam and total wave energy densities, which are related to dissipation of energy at large phase velocities. Due to a slower velocity space diffusion of the beam distribution in the presence of scattering effects, the spatial width of the beam is reduced while its

  13. Observation of magnetic fluctuations and rapid density decay of magnetospheric plasma in Ring Trap 1

    SciTech Connect

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.

    2012-06-15

    The Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet, has created high-{beta} (local {beta} {approx} 70%) plasma by using electron cyclotron resonance heating (ECH). When a large population of energetic electrons is generated at low neutral gas pressure operation, high frequency magnetic fluctuations are observed. When the fluctuations are strongly excited, rapid loss of plasma was simultaneously observed especially in a quiet decay phase after the ECH microwave power is turned off. Although the plasma is confined in a strongly inhomogeneous dipole field configuration, the frequency spectra of the fluctuations have sharp frequency peaks, implying spatially localized sources of the fluctuations. The fluctuations are stabilized by decreasing the hot electron component below approximately 40%, realizing stable high-{beta} confinement.

  14. Quantum structures due to fluctuations of the measurement situation

    NASA Astrophysics Data System (ADS)

    Aerts, Diederik

    1993-12-01

    We analyze the meaning of the nonclassical aspects of quantum structures. We proceed by introducing a simple mechanistic macroscopic experimental situation that gives rise to quantum-like structures. We use this situation as a guiding example for our attempts to explain the origin of the nonclassical aspects of quantum structures. We see that the quantum probabilities can be introduced as a consequence of the presence of fluctuations on the experimental apparatuses, and show that the full quantum structure can be obtained in this way. We define the classical limit as the physical situation that arises when the fluctuations on the experiment apparatuses disappear. In the limit case we come to a classical structure, but in between we find structures that are neither quantum nor classical. In this sense, our approach not only gives an explanation for the nonclassical structure of quantum theory, but also makes it possible to define and study the structure describing the intermediate new situations. By investigating how the nonlocal quantum behavior disappears during the limiting process, we can explain the“apparent”locality of the classical macroscopic world. We come to the conclusion that quantum structures are the ordinary structures of reality, and that our difficulties of becoming aware of this fact are due to prescientific prejudices, some of which we point out.

  15. High power fast wave experiments in LAPD: interaction with density fluctuations and status/plans for ICRH

    NASA Astrophysics Data System (ADS)

    Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel

    2016-10-01

    The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.

  16. Measuring Air Density in the Introductory Lab

    ERIC Educational Resources Information Center

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  17. Measuring Air Density in the Introductory Lab

    ERIC Educational Resources Information Center

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  18. Sound Source Identification Through Flow Density Measurement and Correlation With Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2001-01-01

    Sound sources in the plumes of unheated round jets, in the Mach number range 0.6 to 1.8, were investigated experimentally using "casuality" approach, where air density fluctuations in the plumes were correlated with the far field noise. The air density was measured using a newly developed Molecular Rayleigh scattering based technique, which did not require any seeding. The reference at the end provides a detailed description of the measurement technique.

  19. Intercalibration of neutral density measurements for mapping the thermosphere

    NASA Astrophysics Data System (ADS)

    Weimer, D. R.; Sutton, E. K.; Mlynczak, M. G.; Hunt, L. A.

    2016-06-01

    This paper describes a technique for mapping exospheric temperatures, derived from neutral density measurements from the Challenging Mini-satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites. The Naval Reasearch Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRLMSISE-00) thermosphere model is used for the conversion. Adjustments for each satellite were needed in order for the time-averaged densities to agree with the model. It was necessary to correct for inexact modeling of the annual and semiannual oscillations in the density, as well as the declining densities during the solar minimum. It was found that a time-varying perturbation in the atomic oxygen in the model could produce a good agreement at both altitudes. The time series of this oxygen variation was found to have a very high correlation with independent measurements of CO2 emissions measured with the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The temperature data are averaged on a spherical grid having equal areas in each pixel, avoiding functional fits that would blur finer details. The use of solar magnetic rather than geographic coordinates enhances the auroral ovals. There are strong elevations in the exospheric temperatures in the polar regions, particularly near the dayside cusp. Spatial filtering with spherical wavelets is used to remove statistical fluctuations, although some details are lost. The exospheric temperature maps are well ordered by the nitric oxide emission measurements from SABER. The technique that is described here could be applied to future improvements of empirical density models, having an accuracy and spatial resolution that is not presently available.

  20. Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics.

    PubMed

    Büttner, Lars; Leithold, Christoph; Czarske, Jürgen

    2013-12-16

    Optical transmission through fluctuating interfaces of mediums with different refractive indexes is limited by the occurring distortions. Temporal fluctuations of such distortions deteriorate optical measurements. In order to overcome this shortcoming we propose the use of adaptive optics. For the first time, an interferometric velocity measurement technique with embedded adaptive optics is presented for flow velocity measurements through a fluctuating air-water interface. A low order distortion correction technique using a fast deformable mirror and a Hartmann-Shack camera with high frame rate is employed. The obtained high control bandwidth enables precise measurements also at fast fluctuating media interfaces. This methodology paves the way for several kinds of optical flow measurements in various complex environments.

  1. Planets in other universes: habitability constraints on density fluctuations and galactic structure

    SciTech Connect

    Adams, Fred C.; Coppess, Katherine R.; Bloch, Anthony M. E-mail: kcoppess@umich.edu

    2015-09-01

    Motivated by the possibility that different versions of the laws of physics could be realized within other universes, this paper delineates the galactic structure parameters that allow for habitable planets and revisits constraints on the amplitude Q of the primordial density fluctuations. Previous work indicates that large values of Q lead to galaxies so dense that planetary orbits cannot survive long enough for life to develop. Small values of Q lead to delayed star formation, loosely bound galaxies, and compromised heavy element retention. This work generalizes previous treatments in the following directions: [A] We consider models for the internal structure of the galaxies, including a range of stellar densities, and find the fraction of the resulting galactic real estate that allows for stable, long-lived planetary orbits. [B] For high velocity encounters, we perform a large ensemble of numerical simulations to estimate cross sections for the disruption of planetary orbits due to interactions with passing stars. [C] We consider the background radiation fields produced by the galaxies: if a galaxy is too compact, the night sky seen from a potentially habitable planet can provide more power than the host star. [D] One consequence of intense galactic background radiation fields is that some portion of the galaxy, denoted as the Galactic Habitable Zone, will provide the right flux levels to support habitable planets for essentially any planetary orbit including freely floating bodies (but excluding close-in planets). As the value of Q increases, the fraction of stars in a galaxy that allow for (traditional) habitable planets decreases due to both orbital disruption and the intense background radiation. However, the outer parts of the galaxy always allow for habitable planets, so that the value of Q does not have a well-defined upper limit (due to scattering or radiation constraints). Moreover, some Galactic Habitable Zones are large enough to support more

  2. Planets in other universes: habitability constraints on density fluctuations and galactic structure

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Coppess, Katherine R.; Bloch, Anthony M.

    2015-09-01

    Motivated by the possibility that different versions of the laws of physics could be realized within other universes, this paper delineates the galactic structure parameters that allow for habitable planets and revisits constraints on the amplitude Q of the primordial density fluctuations. Previous work indicates that large values of Q lead to galaxies so dense that planetary orbits cannot survive long enough for life to develop. Small values of Q lead to delayed star formation, loosely bound galaxies, and compromised heavy element retention. This work generalizes previous treatments in the following directions: [A] We consider models for the internal structure of the galaxies, including a range of stellar densities, and find the fraction of the resulting galactic real estate that allows for stable, long-lived planetary orbits. [B] For high velocity encounters, we perform a large ensemble of numerical simulations to estimate cross sections for the disruption of planetary orbits due to interactions with passing stars. [C] We consider the background radiation fields produced by the galaxies: if a galaxy is too compact, the night sky seen from a potentially habitable planet can provide more power than the host star. [D] One consequence of intense galactic background radiation fields is that some portion of the galaxy, denoted as the Galactic Habitable Zone, will provide the right flux levels to support habitable planets for essentially any planetary orbit including freely floating bodies (but excluding close-in planets). As the value of Q increases, the fraction of stars in a galaxy that allow for (traditional) habitable planets decreases due to both orbital disruption and the intense background radiation. However, the outer parts of the galaxy always allow for habitable planets, so that the value of Q does not have a well-defined upper limit (due to scattering or radiation constraints). Moreover, some Galactic Habitable Zones are large enough to support more

  3. Cassini INMS measurements of Enceladus plume density

    NASA Astrophysics Data System (ADS)

    Perry, M. E.; Teolis, B. D.; Hurley, D. M.; Magee, B. A.; Waite, J. H.; Brockwell, T. G.; Perryman, R. S.; McNutt, R. L.

    2015-09-01

    During six encounters between 2008 and 2013, the Cassini Ion and Neutral Mass Spectrometer (INMS) made in situ measurements deep within the Enceladus plumes. Throughout each encounter, those measurements contained density variations that reflected the nature of the source, particularly of the high-velocity jets. Since the dominant constituent of the vapor, H2O, interacted with the walls of the INMS inlet, we track changes in the external vapor density by using more-volatile species that responded promptly to those changes. However, the most-abundant volatiles, at 28 u and 44 u, behaved differently from each other in the plume. At least a portion of their differences may be attributed to mass-dependent thermal velocity that affects Mach number in the high-velocity jets. Variations between volatiles place an emphasis on modeling as a means to construct overall plume density from the volatile densities and to investigate the velocity, gas temperature, and location of the jets. Ice grains, entering the INMS aperture add complexity and uncertainty to the physical interpretation of the data because the grains modified the INMS measurements. A comparison of data from the last three encounters, E14, E17, and E18, are consistent with the VIMS observation of variability in jet production and a slower, more diffuse gas flux from the four sulci or tiger stripes. We provide and describe the INMS data, its processing, and its uncertainty.

  4. SNW 2000 Proceedings. Oxide Thickness Variation Induced Threshold Voltage Fluctuations in Decanano MOSFETs: a 3D Density Gradient Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Kaya, S.; Davies, J. H.; Saini, S.

    2000-01-01

    We use the density gradient (DG) simulation approach to study, in 3D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs in a statistical manner. A description of the reconstruction procedure for the random 2D surfaces representing the 'atomistic' Si-SiO2 interface variations is presented. The procedure is based on power spectrum synthesis in the Fourier domain and can include either Gaussian or exponential spectra. The simulations show that threshold voltage variations induced by oxide thickness fluctuation become significant when the gate length of the devices become comparable to the correlation length of the fluctuations. The extent of quantum corrections in the simulations with respect to the classical case and the dependence of threshold variations on the oxide thickness are examined.

  5. Low Mach number two-dimensional hydrodynamic turbulence - Energy budgets and density fluctuations in a polytropic fluid

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Matthaeus, W. H.

    1992-01-01

    Theory suggests that three distinct types of turbulence can occur in the low Mach number limit of polytropic flow: nearly incompressible flows dominated by vorticity, nearly pure acoustic turbulence dominated by compression, and flows characterized by near statistical equipartition of vorticity and compressions. Distinctions between these kinds of turbulence are investigated here by direct numerical simulation of two-dimensional compressible hydrodynamic turbulence. Dynamical scalings of density fluctuations, examination of the ratio of transverse to longitudinal velocity fluctuations, and spectral decomposition of the fluctuations are employed to distinguish the nature of these low Mach number solutions. A strong dependence on the initial data is observed, as well as a tendency for enhanced effects of compressibility at later times and at higher wave numbers, as suggested by theories of nearly incompressible flows.

  6. Progress Toward a New Technique for Measuring Local Electric Field Fluctuations in High Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Liben, M. M.; Thompson, D. S.; Winz, G. R.

    2015-11-01

    A new diagnostic measuring local Ez(r,t) fluctuations is being developed at the Pegasus Toroidal Experiment. A novel multiple volume phase holographic grating spectrometer, designed to have high resolution (0.25Å) and high étendue (U = 0.01cm2-ster), measures the line separation of the π components of the Hα motional Stark spectrum of emitted beam light. The spectra are recorded at high frequency (fNy ~ 500kHz) by a high speed CMOS imaging detector. The groove density of the objective grating is varied linearly along its surface to counter geometric Doppler broadening. A low divergence (Ω ~ 0.5o) , 80kV, 2.5A H0 diagnostic neutral beam is being deployed on Pegasus. The beam uses a washer-stack arc ion source to maximize full energy species fraction in the injected neutral beam. Laboratory tests of the ion source demonstrate stable, repeatable plasmas with Te <= 20eV and ne ~ 5x1017m-3, sufficient to sustain a 6mA/cm2 current density at the focal plane for up to 20ms. A three phase resonant converter power supply, with low amplitude (δV/80kV ~ 0.05%), high frequency (frip ~ 280kHz) ripple, is in development to provide the 80kV accelerator power. This research supported by US D.O.E. Grant DE-FG02-89ER53296.

  7. Acoustic levitation methods for density measurements

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Hsu, C. J.

    1986-01-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  8. Fiber-optic interferometric sensors for measurements of pressure fluctuations: Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    This paper addresses an anechoic chamber evaluation of a fiber-optic interferometric sensor (fiber-optic microphone), which is being developed at NASA Ames Research Center for measurements of pressure fluctuations in wind tunnels.

  9. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  10. Radiance Measurement for Low Density Mars Entry

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    We report measurements of radiance behind a shock wave in Martian simulant (96% CO2, 4% N2) atmosphere at conditions relevant for aerodynamic decelerators. Shock waves are generated in the NASA Ames Electric Arc Shock Tube (EAST) facility at velocities from 6-8 km/s and freestream densities from 1.2-5.9 x 10(exp -4) kilograms per cubic meter (0.05-0.25 Torr, corresponding to 35-50 km altitude). Absolute radiance is measured as a function of wavelength and position in the shock. Radiance measurements extend from the vacuum ultraviolet to near infrared (120-1650 nm). As at higher density/velocity, radiation is dominate by CO 4th positive radiation in the vacuum ultraviolet, though CN contribution is also significant. At most low density conditions, the shock does not relax to equilibrium over several centimeters. A small number of measurements in the mid-infrared were performed to quantify radiation from the fundamental vibrational transition in CO, and this is found to be a minor contributor to the overall radiance at these speeds. Efforts to extend test time and reliability in the 60 cm (24) shock tube will be discussed in the full paper.

  11. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for pure liquids

    PubMed Central

    Karunaweera, Sadish

    2015-01-01

    Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined. PMID:25637990

  12. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for pure liquids

    SciTech Connect

    Ploetz, Elizabeth A.; Karunaweera, Sadish; Smith, Paul E.

    2015-01-28

    Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.

  13. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for pure liquids.

    PubMed

    Ploetz, Elizabeth A; Karunaweera, Sadish; Smith, Paul E

    2015-01-28

    Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.

  14. Local density of states and its mesoscopic fluctuations near the transition to a superconducting state in disordered systems

    NASA Astrophysics Data System (ADS)

    Burmistrov, I. S.; Gornyi, I. V.; Mirlin, A. D.

    2016-05-01

    We develop a theory of the local density of states (LDOS) of disordered superconductors, employing the nonlinear sigma-model formalism and the renormalization-group framework. The theory takes into account the interplay of disorder and interaction couplings in all channels, treating the systems with short-range and Coulomb interactions on equal footing. We explore two-dimensional systems that would be Anderson insulators in the absence of interaction and two- or three-dimensional systems that undergo an Anderson transition in the absence of interaction. We evaluate both the average tunneling density of states and its mesoscopic fluctuations which are related to the LDOS multifractality in normal disordered systems. The obtained average LDOS shows a pronounced depletion around the Fermi energy, both in the metallic phase (i.e., above the superconducting critical temperature Tc) and in the insulating phase near the superconductor-insulator transition (SIT). The fluctuations of the LDOS are found to be particularly strong for the case of short-range interactions, especially, in the regime when Tc is enhanced by Anderson localization. On the other hand, the long-range Coulomb repulsion reduces the mesoscopic LDOS fluctuations. However, also in a model with Coulomb interaction, the fluctuations become strong when the systems approach the SIT.

  15. The reliability of parafoveal cone density measurements

    PubMed Central

    Liu, Benjamin S; Tarima, Sergey; Visotcky, Alexis; Pechauer, Alex; Cooper, Robert F; Landsem, Leah; Wilk, Melissa A; Godara, Pooja; Makhijani, Vikram; Sulai, Yusufu N; Syed, Najia; Yasumura, Galen; Garg, Anupam K; Pennesi, Mark E; Lujan, Brandon J; Dubra, Alfredo; Duncan, Jacque L; Carroll, Joseph

    2014-01-01

    Background Adaptive optics scanning light ophthalmoscopy (AOSLO) enables direct visualisation of the cone mosaic, with metrics such as cone density and cell spacing used to assess the integrity or health of the mosaic. Here we examined the interobserver and inter-instrument reliability of cone density measurements. Methods For the interobserver reliability study, 30 subjects with no vision-limiting pathology were imaged. Three image sequences were acquired at a single parafoveal location and aligned to ensure that the three images were from the same retinal location. Ten observers used a semiautomated algorithm to identify the cones in each image, and this was repeated three times for each image. To assess inter-instrument reliability, 20 subjects were imaged at eight parafoveal locations on one AOSLO, followed by the same set of locations on the second AOSLO. A single observer manually aligned the pairs of images and used the semiautomated algorithm to identify the cones in each image. Results Based on a factorial study design model and a variance components model, the interobserver study's largest contribution to variability was the subject (95.72%) while the observer's contribution was only 1.03%. For the inter-instrument study, an average cone density intraclass correlation coefficient (ICC) of between 0.931 and 0.975 was calculated. Conclusions With the AOSLOs used here, reliable cone density measurements can be obtained between observers and between instruments. Additional work is needed to determine how these results vary with differences in image quality. PMID:24855115

  16. Intermittency analyses on the SIERRA measurements of the electric field fluctuations in the auroral zone

    NASA Astrophysics Data System (ADS)

    Tam, Sunny W. Y.; Chang, Tom; Kintner, Paul M.; Klatt, Eric

    2005-03-01

    We perform intermittency analyses on the electric field data obtained by the SIERRA sounding rocket in the auroral zone. The electric field fluctuations are broadband, covering the extremely low-frequency range with a power-law relation, similar to the type of fluctuations commonly observed at various altitudes of the auroral region. Our preliminary analyses of the data based on the technique of probability distribution functions indicate that the electric field fluctuations are intermittent in the spacecraft frame. Using the methods of wavelet analyses and local intermittency measures, we determine the degree of intermittency of the fluctuations at various scales. It is found that the electric field fluctuations are more intermittent at smaller scales.

  17. Measurements of temperature and pressure fluctuations in the T prime 2 cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Blanchard, A.; Dor, J. B.; Breil, J. F.

    1980-01-01

    Cold wire measurement of temperature fluctuations were made in a DERAT T'2 induction powered cryogenic wind tunnel for 2 types of liquid nitrogen injectors. Thermal turbulence measured in the tranquilization chamber depends to a great extent on the injector used; for fine spray of nitrogen drops, this level of turbulence seemed completely acceptable. Fluctuations in static pressure taken from the walls of the vein by Kulite sensors showed that there was no increase in aerodynamic noise during cryogenic gusts.

  18. Development of a cross-polarization scattering system for the measurement of internal magnetic fluctuations in the DIII-D tokamak

    SciTech Connect

    Rhodes, T. L. Peebles, W. A.; Crocker, N. A.; Nguyen, X.

    2014-11-15

    The design and performance of a new cross-polarization scattering (CPS) system for the localized measurement of internal magnetic fluctuations is presented. CPS is a process whereby magnetic fluctuations scatter incident electromagnetic radiation into a perpendicular polarization which is subsequently detected. A new CPS design that incorporates a unique scattering geometry was laboratory tested, optimized, and installed on the DIII-D tokamak. Plasma tests of signal-to-noise, polarization purity, and frequency response indicate proper functioning of the system. CPS data show interesting features related to internal MHD perturbations known as sawteeth that are not observed on density fluctuations.

  19. Development of a cross-polarization scattering system for the measurement of internal magnetic fluctuations in the DIII-D tokamak

    DOE PAGES

    Rhodes, Terry L.; Peebles, William A.; Crocker, Neal A.; ...

    2014-08-05

    The design and performance of a new cross-polarization scattering (CPS) system for the localized measurement of internal magnetic fluctuations is presented. CPS is a process whereby magnetic fluctuations scatter incident electromagnetic radiation into a perpendicular polarization which is subsequently detected. A new CPS design that incorporates a unique scattering geometry was laboratory tested, optimized, and installed on the DIII-D tokamak. Plasma tests of signal-to-noise, polarization purity, and frequency response indicate proper functioning of the system. Lastly, CPS data show interesting features related to internal MHD perturbations known as sawteeth that are not observed on density fluctuations.

  20. Measurements of Magnetic Fluctuations in Magnetic Reconnection Experiment

    NASA Astrophysics Data System (ADS)

    Ji, H.; Yamada, M.; Terry, S.; Kulsrud, R.; Ren, Y.; Kuritsyn, A.

    2004-04-01

    Magnetic reconnection plays an important role in determining the evolution of magnetic topology in laboratory and astrophysical plasmas. A central question concerns why the observed reconnection rates are much faster than predictions made by classical theories, such as the Sweet-Parker model based on MHD with classical Spitzer resistivity. Often, the local resistivity is conjectured to be enhanced by micro-instabilities to accelerate reconnection rates either in the context of the Sweet-Parker model or by facilitating setup of the Pestchek model. Although it is commonly believed that there is plenty of free energy available at the reconnection region to destabilize some sort of micro-instability, a clear identification of this instability and its exact role in reconnection has never been established experimentally. We report the first such experimental evidence of a clear and positive correlation between magnetic fluctuations in the lower-hybrid frequency range and resistivity enhancement during fast reconnection in the low-collisionality regimes in the Magnetic Reconnection Experiment (MRX). The waves have been identified as right-hand polarized whistler waves, propagating obliquely to the reconnecting field, with a phase velocity comparable to the relative drift velocity. These waves are consistent with the modified two-stream instability driven by large drift speeds compared to the Alfven speed in high-beta plasmas. The short coherence length and large variation along the propagation direction indicate their strongly nonlinear nature.

  1. Electron density measurements during the NLC-91 campaign

    NASA Technical Reports Server (NTRS)

    Ulwick, J. C.; Kelley, Michael C.; Alcala, C.

    1994-01-01

    A Super Arcas rocket, MISTI B, containing DC and RF probes, was launched as a part of the PMSE (Polar Mesosphere Summer Echoes) Salvo during the NLC-91 (Noctilucent Cloud) campaign to measure electron density irregularities with high spatial resolution. Measurements of large and small scale structures in the electron density were made on rocket ascent and descent at the altitudes of 86.5 and 88.5 +/- 0.5 km corresponding to the two altitudes of strongest backscatter recorded by the nearby CUPRI (Cornell University Portable Radar Interferometer) radar. Power spectra of the fluctuations shows two different structuring and scattering mechanisms exist at altitudes only 1 km apart. Since the rocket apogee was 89 km, the rocket was in the height range 88.5 +/- 0.5 km for 30 seconds giving an unusual measurement of horizontal structure over a distance of 5.5 km. Using the simultaneous DC and RF probe measurements of electron depletions and sharp gradient in the lower layer, the role of aerosols in creating these depletions and gradients is speculated upon.

  2. Electron density measurements during the NLC-91 campaign

    NASA Technical Reports Server (NTRS)

    Ulwick, J. C.; Kelley, Michael C.; Alcala, C.

    1994-01-01

    A Super Arcas rocket, MISTI B, containing DC and RF probes, was launched as a part of the PMSE (Polar Mesosphere Summer Echoes) Salvo during the NLC-91 (Noctilucent Cloud) campaign to measure electron density irregularities with high spatial resolution. Measurements of large and small scale structures in the electron density were made on rocket ascent and descent at the altitudes of 86.5 and 88.5 +/- 0.5 km corresponding to the two altitudes of strongest backscatter recorded by the nearby CUPRI (Cornell University Portable Radar Interferometer) radar. Power spectra of the fluctuations shows two different structuring and scattering mechanisms exist at altitudes only 1 km apart. Since the rocket apogee was 89 km, the rocket was in the height range 88.5 +/- 0.5 km for 30 seconds giving an unusual measurement of horizontal structure over a distance of 5.5 km. Using the simultaneous DC and RF probe measurements of electron depletions and sharp gradient in the lower layer, the role of aerosols in creating these depletions and gradients is speculated upon.

  3. The study of coronal plasma structures and fluctuations with Faraday rotation measurements

    NASA Astrophysics Data System (ADS)

    Sakurai, Takayuki; Spangler, Steven R.

    1994-10-01

    We report dual-frequency, polarimetric measurements of Faraday rotation of extragalactic radio sources viewed through the solar corona. The observations were made at the Very Large Array in 1990 during solar maximum. Of the nine observed, an excess rotation measure of -12.6 rad/sq m was detected for one source (0010+005), which was observed at an elongation of about 9 solar radii. This measurement is in fair agreement with an a priori model rotation measure of -8.6 rad/sq m estimated from coronal potential field models and the electron density model of Paetzold et al. (1992). Our measurement provides a value for the coronal magnetic field strength at 9 solar radii given a knowledge of the magnetic field sector structure, of 12.5 +/- 2.3 mG. Rotation measurements of 0010+005 were made approximately once per hour over an 11 hr period. During this interval, a slow change of about 1 rad/sq m/hr in rotation measure was detected. Although we are not absolutely certain that this drift is not unremoved ionospheric Faraday rotation, extensive analysis of data from the other sources suggests that this is not the case (Sakurai & Spangler 1994). The very long timescale for this variation argues against the agency of magnetohydrodynamics (MHD) waves, and we suggest occultation of 0010+005 by relatively static plasma structures in the corona. We filtered our rotation measure time series to search for variations on an hourly timescale, such as those reported by Hollweg et al. (1992), which could be attributed to coronal MHD waves. We were unable to detect such fluctuations and can report only an upper limit to the rms variation of 1.6 rad/sq m. This upper limit is of the same order, but slightly larger than the values typically reported by Hollweg et al. (1982). This upper limit to the rotation measure fluctuations limits the dimensionless wave amplitude (delta B)/B in the corona to be less than 0.7. Using the number, we estimate the MHD wave flux at the coronal base to be less

  4. The study of coronal plasma structures and fluctuations with Faraday rotation measurements

    NASA Technical Reports Server (NTRS)

    Sakurai, Takayuki; Sprangler, Steven R.

    1994-01-01

    We report dual-frequency, polarimetric measurements of Faraday rotation of extragalactic radio sources viewed through the solar corona. The observations were made at the Very Large Array in 1990 during solar maximum. Of the nine observed, an excess rotation measure of -12.6 rad/sq m was detected for one source (0010+005), which was observed at an elongation of about 9 solar radii. This measurement is in fair agreement with an a priori model rotation measure of -8.6 rad/sq m estimated from coronal potential field models and the electron density model of Paetzold et al. (1992). Our measurement provides a value for the coronal magnetic field strength at 9 solar radii given a knowledge of the magnetic field sector structure, of 12.5 +/- 2.3 mG. Rotation measurements of 0010+005 were made approximately once per hour over an 11 hr period. During this interval, a slow change of about 1 rad/sq m/hr in rotation measure was detected. Although we are not absolutely certain that this drift is not unremoved ionospheric Faraday rotation, extensive analysis of data from the other sources suggests that this is not the case (Sakurai & Spangler 1994). The very long timescale for this variation argues against the agency of magnetohydrodynamics (MHD) waves, and we suggest occultation of 0010+005 by relatively static plasma structures in the corona. We filtered our rotation measure time series to search for variations on an hourly timescale, such as those reported by Hollweg et al. (1992), which could be attributed to coronal MHD waves. We were unable to detect such fluctuations and can report only an upper limit to the rms variation of 1.6 rad/sq m. This upper limit is of the same order, but slightly larger than the values typically reported by Hollweg et al. (1982). This upper limit to the rotation measure fluctuations limits the dimensionless wave amplitude (delta B)/B in the corona to be less than 0.7. Using the number, we estimate the MHD wave flux at the coronal base to be less

  5. The study of coronal plasma structures and fluctuations with Faraday rotation measurements

    NASA Technical Reports Server (NTRS)

    Sakurai, Takayuki; Sprangler, Steven R.

    1994-01-01

    We report dual-frequency, polarimetric measurements of Faraday rotation of extragalactic radio sources viewed through the solar corona. The observations were made at the Very Large Array in 1990 during solar maximum. Of the nine observed, an excess rotation measure of -12.6 rad/sq m was detected for one source (0010+005), which was observed at an elongation of about 9 solar radii. This measurement is in fair agreement with an a priori model rotation measure of -8.6 rad/sq m estimated from coronal potential field models and the electron density model of Paetzold et al. (1992). Our measurement provides a value for the coronal magnetic field strength at 9 solar radii given a knowledge of the magnetic field sector structure, of 12.5 +/- 2.3 mG. Rotation measurements of 0010+005 were made approximately once per hour over an 11 hr period. During this interval, a slow change of about 1 rad/sq m/hr in rotation measure was detected. Although we are not absolutely certain that this drift is not unremoved ionospheric Faraday rotation, extensive analysis of data from the other sources suggests that this is not the case (Sakurai & Spangler 1994). The very long timescale for this variation argues against the agency of magnetohydrodynamics (MHD) waves, and we suggest occultation of 0010+005 by relatively static plasma structures in the corona. We filtered our rotation measure time series to search for variations on an hourly timescale, such as those reported by Hollweg et al. (1992), which could be attributed to coronal MHD waves. We were unable to detect such fluctuations and can report only an upper limit to the rms variation of 1.6 rad/sq m. This upper limit is of the same order, but slightly larger than the values typically reported by Hollweg et al. (1982). This upper limit to the rotation measure fluctuations limits the dimensionless wave amplitude (delta B)/B in the corona to be less than 0.7. Using the number, we estimate the MHD wave flux at the coronal base to be less

  6. Density and particle-hole fluctuation effects on the position of Feshbach resonances in atomic Fermi gases

    NASA Astrophysics Data System (ADS)

    Chen, Qijin

    2013-03-01

    Feshbach resonances have been the key to achieve tunable effective pairing interaction strength in atomic Fermi gases. Most important experiments, as well as their theoretical explanations, rely on precise determination of the locations of these resonances. For the extensively studied 6Li and 40K Fermi gases, the positions of the widely used s-wave Feshbach resonances have been regarded as being measured with high precision. In this talk, we show that due to inevitable particle-hole fluctuations, there is a significant density effect on the resonance locations. For a 6Li gas with a realistic TF = 1 μK, the shift in location in terms of magnetic field can be as high as 8G at low temperature T, and this effect does not necessarily go away at high T. This will cause important consequences as to whether and how the scattering length taken from the literature need to be re-calibrated for the concrete parameters specific to a given experiment. Supported by NSF, MOE and MOST of China.

  7. Correlations of Entangled Systems from Fluctuations of the Prequantum Field: the Case of an Arbitrary Density Operator

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2010-05-01

    Prequantum classical statistical field theory (PCSFT) is a new attempt to consider quantum mechanics (QM) as an emergent phenomenon, cf. with De Broglie's "double solution" approach, Bohmian mechanics, stochastic electrodynamics (SED), Nelson's stochastic QM and its generalization by Davidson, `t Hooft's models and their development by Elze. PCSFT is a comeback to a purely wave viewpoint on QM, cf. with early Schrödinger. There is no quantum particles at all, only waves. In particular, photons are simply wave-pulses of the classical electromagnetic field, cf. SED. Moreover, even massive particles are special "prequantum fields": the electron field, the neutron field and so on. PCSFT claims that (soon or later) people will be able to measure components of these fields: components of the "photonic field" (the classical electromagnetic field of low intensity), electronic field, neutronic field and so on. However, at the moment (in this paper) we restrict our efforts to reproduce "simply" predictions of QM in the classical field framework. We will show that correlations of entangled systems can be obtained from fluctuations of the prequantum field. We consider the most general case: in QM the state is given by the density operator.

  8. Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy).

    PubMed

    Battipaglia, Giovanna; DE Micco, Veronica; Brand, Willi A; Saurer, Matthias; Aronne, Giovanna; Linke, Petra; Cherubini, Paolo

    2014-02-01

    Erica arborea (L) is a widespread Mediterranean species, able to cope with water stress and colonize semiarid environments. The eco-physiological plasticity of this species was evaluated by studying plants growing at two sites with different soil moistures on the island of Elba (Italy), through dendrochronological, wood-anatomical analyses and stable isotopes measurements. Intra-annual density fluctuations (IADFs) were abundant in tree rings, and were identified as the key parameter to understand site-specific plant responses to water stress. Our findings showed that the formation of IADFs is mainly related to the high temperature, precipitation patterns and probably to soil water availability, which differs at the selected study sites. The recorded increase in the (13) C-derived intrinsic water use efficiency at the IADFs level was linked to reduced water loss rather than to increasing C assimilation. The variation in vessel size and the different absolute values of δ(18) O among trees growing at the two study sites underlined possible differences in stomatal control of water loss and possible differences in sources of water uptake. This approach not only helped monitor seasonal environmental differences through tree-ring width, but also added valuable information on E. arborea responses to drought and their ecological implications for Mediterranean vegetation dynamics. © 2013 John Wiley & Sons Ltd.

  9. Constraints on the neutrino mass and the primordial magnetic field from the matter density fluctuation parameter {sigma}{sub 8}

    SciTech Connect

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Kajino, Toshitaka; Mathews, Grant J.

    2010-05-15

    We have made an analysis of limits on the neutrino mass based upon the formation of large-scale structure in the presence of a primordial magnetic field. We find that a new upper bound on the neutrino mass is possible based upon fits to the cosmic microwave background and matter power spectrum when the existing independent constraints on the matter density fluctuation parameter {sigma}{sub 8} and the primordial magnetic field are taken into account.

  10. Characterizing intra-annual density fluctuations using fine-spatial resolution blue intensity profiles

    NASA Astrophysics Data System (ADS)

    Babst, Flurin; Wright, William; Szejner, Paul; Wells, Leon; Belmecheri, Soumaya; Monson, Russell

    2016-04-01

    Rapidly rising evaporative demand threatens forests in semi-arid areas around the world, but the timing of stem growth response to drought is often coarsely known. This is partly due to a shortage of sub-annual growth records, particularly outside the Mediterranean region where most intra-annual density fluctuation (IADF) chronologies are based. We anticipate that an automated, cost-effective, and easily implementable method to characterize IADFs could foster more widespread development of sub-annual chronologies. Here, we applied a peak detection algorithm to fine-spatial resolution blue intensity (BI) profiles of Ponderosa pine tree rings from two sites located in neighboring mountain ranges in southern Arizona (~300 m elevation difference). This automated procedure proved reliable to isolate and characterize IADFs, thus offering an efficient and objective alternative to visual identification. Out of seven investigated BI parameters, peak height, width, and area showed satisfactory chronology statistics. We assessed the response of these BI and radial growth parameters to six monthly-resolved climate variables and to the onset date of the North American summer monsoon (NAM). The NAM is an atmospheric mode that provides a clear time marker for the termination of a pre-summer drought period (May-June) causing regular IADFs in trees growing near the dry margin of their distribution range. We observed divergent water limitation at the two sites, despite comparable site characteristics. Radial growth at the lower-elevation site depended mainly on winter precipitation, whereas the higher site relied on spring and monsoon precipitation. The pre-summer drought period indeed promoted IADFs in early ring portions at both sites. Yet, IADFs at the higher site were only formed, if spring was sufficiently humid to assume enough radial growth. Late-position IADFs were caused by a weak monsoon and additionally promoted by favorable conditions towards the end of the growing

  11. Radial profile measurements of plasma pressure-like fluctuations with the heavy ion beam diagnostic on the tokamak ISTTOK

    SciTech Connect

    Henriques, R. B. Malaquias, A.; Nedzelskiy, I. S.; Silva, C.; Coelho, R.; Figueiredo, H.; Fernandes, H.

    2014-11-15

    The Heavy Ion Beam Diagnostic (HIBD) on the tokamak ISTTOK (Instituto Superior Técnico TOKamak) has been modified, in terms of signal conditioning, to measure the local fluctuations of the n{sub e}σ{sub 1,2}(T{sub e}) product (plasma density times the effective ionization cross-section) along the tokamak minor diameter, in 12 sample volumes in the range of −0.7a < r < 0.7a, with a maximum delay time of 1 μs. The corresponding signals show high correlation with the magnetic Mirnov coils in the characteristic MHD frequency range of ISTTOK plasmas and enable the identification of tearing modes. This paper describes the HIBD signal conditioning system and presents a preliminary analysis of the radial profile measurements of local n{sub e}σ{sub 1,2}(T{sub e}) fluctuations.

  12. Radial profile measurements of plasma pressure-like fluctuations with the heavy ion beam diagnostic on the tokamak ISTTOK.

    PubMed

    Henriques, R B; Malaquias, A; Nedzelskiy, I S; Silva, C; Coelho, R; Figueiredo, H; Fernandes, H

    2014-11-01

    The Heavy Ion Beam Diagnostic (HIBD) on the tokamak ISTTOK (Instituto Superior Técnico TOKamak) has been modified, in terms of signal conditioning, to measure the local fluctuations of the neσ1,2(Te) product (plasma density times the effective ionization cross-section) along the tokamak minor diameter, in 12 sample volumes in the range of -0.7a < r < 0.7a, with a maximum delay time of 1 μs. The corresponding signals show high correlation with the magnetic Mirnov coils in the characteristic MHD frequency range of ISTTOK plasmas and enable the identification of tearing modes. This paper describes the HIBD signal conditioning system and presents a preliminary analysis of the radial profile measurements of local neσ1,2(Te) fluctuations.

  13. Electric field and plasma density measurements in the auroral electrojet

    NASA Astrophysics Data System (ADS)

    Pfaff, R. F.; Kelley, M. C.; Fejer, B. G.; Kudeki, E.; Carlson, C. W.; Pedersen, A.; Hausler, B.

    1984-01-01

    Extensive experimental and theoretical studies of auroral and equatorial electrojet irregularities have been conducted for the last two decades. The present investigation is concerned with electric field and plasma density fluctuation measurements made on board of the Porcupine II sounding rocket and on a free-flyer ejected from the main spacecraft. The Porcupine II sounding rocket payload was launched at 1922:00 UT from Kiruna, Sweden, on March 20, 1977. The considered results show electrostatic turbulence in the unstable auroral E region confined to a layer between 96 and 121 km. The similarities between the observations of two simultaneous payloads spaced a few kilometers apart indicate that on a large scale, the electrojet turbulence displays uniform characteristics.

  14. Continuous Measurement Of Mass Density Of Yarn

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Marchello, Joseph M.; Johnston, John D.

    1993-01-01

    Prototype instrument provides measurement data from which one computes mass density of strand of yarn. Includes fixtures placing known length of yarn under known tension across fixed and movable support. Transverse vibrations induced in yarn by moving movable support up and down. Source of light illuminates photodetector at midlength of yarn, and photodetector senses repeated shadowing caused by vibration of yarn through light, thereby measuring vibrations. Also used for continuous real-time monitoring of such yarn-manufacturing processes as coating or impregnation.

  15. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  16. Transport of Carbon Tetrachloride in a Fractured Vadose Zone due to Atmospheric Pressure Fluctuations, Diffusion, and Vapor Density

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Downs, W.; Falta, R. W.; Housley, T.

    2005-12-01

    DNAPL sources of carbon tetrachloride (CT) vapors are of interest at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The site is underlain by thick fractured basalt that includes sedimentary interbeds, each are a few meters thick. Daily atmospheric pressure fluctuations serve as driving forces for CT vapor transport in the subsurface. Other important transport processes for vapor movement include gas-phase diffusion and density-driven transport. The objective of this research is to investigate the influence and relative importance of these processes on gaseous transport of CT. Gas pressure and vapor concentration measurements were conducted at various depths in two wells. A numerical multiphase flow model (TOUGH2), calibrated to field pressure data, is used to conduct sensitivity analyses to elucidate the importance of the different transport mechanisms. Results show that the basalt is highly permeable to vertical air flow. The pressure dampening occurs mainly in the sedimentary interbeds. Model-calibrated permeability values for the interbeds are similar to those obtained in a study by the U.S. Geological Survey for shallow sediments, and an order of magnitude higher than column-scale values obtained by previous studies conducted by INEEL scientists. The transport simulations indicate that considering the effect of barometric pressure changes is critical to simulating transport of pollutants in the vadose zone above the DNAPL source. Predicted concentrations can be orders of magnitude smaller than actual concentrations if the effect is not considered. Below the DNAPL vapor source, accounting for density and diffusion alone would yield acceptable results provided that a 20% error in concentrations are acceptable, and that simulating concentrations trends (and not actual concentrations) is the primary goal.

  17. Measurement of Correlation Between Flow Density, Velocity, and Density*velocity(sup 2) with Far Field Noise in High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.

    2002-01-01

    To locate noise sources in high-speed jets, the sound pressure fluctuations p', measured at far field locations, were correlated with each of radial velocity v, density rho, and phov(exp 2) fluctuations measured from various points in jet plumes. The experiments follow the cause-and-effect method of sound source identification, where correlation is related to the first, and correlation to the second source terms of Lighthill's equation. Three fully expanded, unheated plumes of Mach number 0.95, 1.4 and 1.8 were studied for this purpose. The velocity and density fluctuations were measured simultaneously using a recently developed, non-intrusive, point measurement technique based on molecular Rayleigh scattering. It was observed that along the jet centerline the density fluctuation spectra S(sub rho) have different shapes than the radial velocity spectra S(sub v), while data obtained from the peripheral shear layer show similarity between the two spectra. Density fluctuations in the jet showed significantly higher correlation, than either rhov(sub 2) or v fluctuations. It is found that a single point correlation from the peak sound emitting region at the end of the potential core can account for nearly 10% of all noise at 30 to the jet axis. The correlation, representing the effectiveness of a longitudinal quadrupole in generating noise 90 to the jet axis, is found to be zero within experimental uncertainty. In contrast rhov(exp 2) fluctuations were better correlated with sound pressure fluctuation at the 30 location. The strongest source of sound is found to lie at the centerline and beyond the end of potential core.

  18. Measurement of the internal magnetic fluctuation by the transport of runaways on J-TEXT

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Yan, W.; Wei, Y. N.; Ma, T. K.; Jiang, Z. H.; Zhang, X. Q.; Chen, Z. P.; Yang, Z. J.; Zhuang, G.

    2016-11-01

    The measurement of internal magnetic fluctuation is important for the study of transport in tokamak plasmas. The runaway electron transport induced by the sawtooth crash can be used to obtain the internal magnetic fluctuation. Inversed sawtooth-like activities on hard x-ray (HXR) fluxes following sawtooth activities were observed after the application of electrode biasing on J-TEXT tokamak. The runaway diffusion coefficient Dr is deduced to be about 30 m2/s according to the time delay of HXR flux peaks to the sawtooth crashes. The averaged value of normalized magnetic fluctuation in the discharges with electrode biasing was increased to the order of 1 × 10-4.

  19. Measurement of the internal magnetic fluctuation by the transport of runaways on J-TEXT.

    PubMed

    Chen, Z Y; Huang, D W; Tong, R H; Yan, W; Wei, Y N; Ma, T K; Jiang, Z H; Zhang, X Q; Chen, Z P; Yang, Z J; Zhuang, G

    2016-11-01

    The measurement of internal magnetic fluctuation is important for the study of transport in tokamak plasmas. The runaway electron transport induced by the sawtooth crash can be used to obtain the internal magnetic fluctuation. Inversed sawtooth-like activities on hard x-ray (HXR) fluxes following sawtooth activities were observed after the application of electrode biasing on J-TEXT tokamak. The runaway diffusion coefficient Dr is deduced to be about 30 m(2)/s according to the time delay of HXR flux peaks to the sawtooth crashes. The averaged value of normalized magnetic fluctuation in the discharges with electrode biasing was increased to the order of 1 × 10(-4).

  20. Effects of 2D and Finite Density Fluctuations on O-X Correlation Reflectometry

    SciTech Connect

    G.J. Kramer; R. Nazikian; E. Valeo

    2001-07-05

    The correlation between O-mode and X-mode reflectometer signals is studied with a 1D and 2D reflectometer model in order to explore its feasibilities as a q-profile diagnostic. It was found that 2D effects and finite fluctuation levels both decrease the O-X correlation. At very low fluctuation levels, which are usually present in the plasma core, there is good possibility to determine the local magnetic field strength and use that as a constraint for the equilibrium reconstruction.

  1. Measuring Air Density in the Introductory Lab

    NASA Astrophysics Data System (ADS)

    Calzà, G.; Gratton, L. M.; López-Arias, T.; Oss, S.

    2010-03-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion—buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the measurement, and the reason for the choice of the procedure, among others. One of the most widespread approaches makes use of rubber balloons. Such an approach can be misleading if attention is not paid to the effect of the buoyant force on the balloon, exerted by the surrounding air. Air is weightless in an environment full of it. While this fact can usually be neglected in daily, nontechnical weight measurements, it is not the case when we are interested in the weight of air itself. A sketch such as the one depicted in Fig. 1 is often presented in elementary science textbooks, as a demonstration that air has weight. A search of the Internet will reveal that this misleading approach is often presented as the simplest one for this kind of measurement at an elementary level and represents one among other common misconceptions that can be found in K-6 science textbooks as discussed, for instance, in Ref. 2. For a more detailed description of the flaws inherent to the measurement of air's weight with a rubber balloon, see Ref. 3. In this paper we will describe two procedures to measure the density of air: weighing a PET bottle and a vacuum rigid container. There are other interesting ways to estimate the weight of air; see, for instance, the experiment of Zhu and Se-yuen using carbon dioxide and Archimedes' principle.4 We emphasize the experimental implications and the physical reasons for the accuracy and conceptual correctness of each method. It is important not to undervalue the importance of both simplicity and reliability for any experimental measurement made in a didactic context.

  2. Measurement and discussion of potash alum crystal growth rate fluctuations and dispersion

    NASA Astrophysics Data System (ADS)

    Tulke, Arnd; Offerman, Hans

    1993-03-01

    The results of fluidized bed experiments for the two systems, potash alum/water and sodium chloride/water, can be described using the random fluctuation model. The growth rate fluctuations postulated by this model are confirmed in single crystal measurements for {111} faces of potash alum crystals. It is shown how the parameter DG ( = effective growth rate diffusivity) can be determined using the results of the single crystal experiments.

  3. Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations

    DTIC Science & Technology

    2009-08-01

    be tested for noise reduction . Better grounding of the data acquisition system or greater amplification of the sensor signals may also improve results...laminar boundary layers reflected tunnel noise levels. Laminar boundary-layer measurements under quiet flow were an order of magnitude lower than under...the peak, depended on tunnel noise parameters. Turbulent boundary-layer fluctuations were lower than transitional fluctuations and also reflected

  4. Effects of temporal fluctuations, fluid density effects and heterogeneity on mixing of two fluids for a stable stratification

    NASA Astrophysics Data System (ADS)

    Pool, Maria; Dentz, Marco; Post, Vincent E. A.

    2017-04-01

    Mixing and dispersion in coastal aquifers are controlled by density variations, which are influenced by temporal fluctuations on multiple time-scales ranging from days (tides), seasons (pumping and recharge) to glacial cycles (regression and transgressions). Transient forcing effects lead to a complex space and time dependent flow response which induces enhanced spreading and mixing of dissolved substances. We study effective mixing and solute transport in temporally fluctuating flow for a stable stratification of two fluids of different density using detailed numerical simulation as well as accurate column experiments. For the homogeneous case, we quantify the observed transport behaviors and interface evolution by a time-averaged model that is obtained from a two-scale expansion of the full transport problem, and derive explicit expressions for the center of mass and width of the mixing zone between the two fluids (Pool et al., 2016). We find that the magnitude of transient-driven mixing is mainly controlled by the hydraulic diffusivity, the period, and the initial interface location. For the heterogeneous case, transient forcing and density-dependent transport is investigated considering multigaussian random log conductivity fields and more complex heterogeneous fields characterized by connected patterns of high and low conductivity. We find that the mixing potential and 'hot spots' are directly related to the deformation properties and topology of the flow field, specifically its stretching behavior in response to temporal fluctuations. We also find that gravity forces due to density variations cause smoother concentration distribution leading to a decrease in the width of the transition zone. However the mixing potential is similar as the one obtained with constant density. Reference: Pool, M., M. Dentz, and V.E.A. Post (2016), Transient forcing effects on mixing of two fluids for a stable stratification, Water Resour. Res., 52, 7178-7197, doi:10.1002/2016WR

  5. Determinants of Wealth Fluctuation: Changes in Hard-To-Measure Economic Variables in a Panel Study

    PubMed Central

    Pfeffer, Fabian T.; Griffin, Jamie

    2017-01-01

    Measuring fluctuation in families’ economic conditions is the raison d’être of household panel studies. Accordingly, a particularly challenging critique is that extreme fluctuation in measured economic characteristics might indicate compounding measurement error rather than actual changes in families’ economic wellbeing. In this article, we address this claim by moving beyond the assumption that particularly large fluctuation in economic conditions might be too large to be realistic. Instead, we examine predictors of large fluctuation, capturing sources related to actual socio-economic changes as well as potential sources of measurement error. Using the Panel Study of Income Dynamics, we study between-wave changes in a dimension of economic wellbeing that is especially hard to measure, namely, net worth as an indicator of total family wealth. Our results demonstrate that even very large between-wave changes in net worth can be attributed to actual socio-economic and demographic processes. We do, however, also identify a potential source of measurement error that contributes to large wealth fluctuation, namely, the treatment of incomplete information, presenting a pervasive challenge for any longitudinal survey that includes questions on economic assets. Our results point to ways for improving wealth variables both in the data collection process (e.g., by measuring active savings) and in data processing (e.g., by improving imputation algorithms). PMID:28316752

  6. Determinants of Wealth Fluctuation: Changes in Hard-To-Measure Economic Variables in a Panel Study.

    PubMed

    Pfeffer, Fabian T; Griffin, Jamie

    2017-01-01

    Measuring fluctuation in families' economic conditions is the raison d'être of household panel studies. Accordingly, a particularly challenging critique is that extreme fluctuation in measured economic characteristics might indicate compounding measurement error rather than actual changes in families' economic wellbeing. In this article, we address this claim by moving beyond the assumption that particularly large fluctuation in economic conditions might be too large to be realistic. Instead, we examine predictors of large fluctuation, capturing sources related to actual socio-economic changes as well as potential sources of measurement error. Using the Panel Study of Income Dynamics, we study between-wave changes in a dimension of economic wellbeing that is especially hard to measure, namely, net worth as an indicator of total family wealth. Our results demonstrate that even very large between-wave changes in net worth can be attributed to actual socio-economic and demographic processes. We do, however, also identify a potential source of measurement error that contributes to large wealth fluctuation, namely, the treatment of incomplete information, presenting a pervasive challenge for any longitudinal survey that includes questions on economic assets. Our results point to ways for improving wealth variables both in the data collection process (e.g., by measuring active savings) and in data processing (e.g., by improving imputation algorithms).

  7. Comparison of results obtained with various sensors used to measure fluctuating quantities in jets.

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Massier, P. F.; Cuffel, R. F.

    1973-01-01

    An experimental investigation has been conducted to compare the results obtained with six different instruments that sense fluctuating quantities in free jets. These sensors are typical of those that have recently been used by various investigators who are engaged in experimental studies of jet noise. Intensity distributions and two-point correlations with space separation and time delay were obtained. The static pressure, density, and velocity fluctuations are well correlated over the entire cross section of the jet and the cross-correlations persist for several jet diameters along the flow direction. The eddies appear to be flattened in the flow direction by a ratio of 0.4.

  8. Interactive Database of Pulsar Flux Density Measurements

    NASA Astrophysics Data System (ADS)

    Koralewska, O.; Krzeszowski, K.; Kijak, J.; Lewandowski, W.

    2012-12-01

    The number of astronomical observations is steadily growing, giving rise to the need of cataloguing the obtained results. There are a lot of databases, created to store different types of data and serve a variety of purposes, e. g. databases providing basic data for astronomical objects (SIMBAD Astronomical Database), databases devoted to one type of astronomical object (ATNF Pulsar Database) or to a set of values of the specific parameter (Lorimer 1995 - database of flux density measurements for 280 pulsars on the frequencies up to 1606 MHz), etc. We found that creating an online database of pulsar flux measurements, provided with facilities for plotting diagrams and histograms, calculating mean values for a chosen set of data, filtering parameter values and adding new measurements by the registered users, could be useful in further studies on pulsar spectra.

  9. MESA: a new configuration for measuring electromagnetic field fluctuations.

    PubMed

    Harte, T M; Black, D L; Hollinshead, M T

    1999-11-01

    This paper describes how the multi-energy sensor array has been refitted to meet the needs of measuring geomagnetic and other types of electromagnetic phenomena in an environment. This portable laptop computer system was designed to measure the interaction of multiple frequencies with the psychological and physiological processes that underlie human exposure to electromagnetic fields across the spectra. New sensors and analytical software have been implemented in the new configuration.

  10. Current Fluctuations in One Dimensional Diffusive Systems with a Step Initial Density Profile

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Gerschenfeld, Antoine

    2009-12-01

    We show how to apply the macroscopic fluctuation theory (MFT) of Bertini, De Sole, Gabrielli, Jona-Lasinio, and Landim to study the current fluctuations of diffusive systems with a step initial condition. We argue that one has to distinguish between two ways of averaging (the annealed and the quenched cases) depending on whether we let the initial condition fluctuate or not. Although the initial condition is not a steady state, the distribution of the current satisfies a symmetry very reminiscent of the fluctuation theorem. We show how the equations of the MFT can be solved in the case of non-interacting particles. The symmetry of these equations can be used to deduce the distribution of the current for several other models, from its knowledge (Derrida and Gerschenfeld in J. Stat. Phys. 136, 1-15, 2009) for the symmetric simple exclusion process. In the range where the integrated current Qt˜sqrt{t} , we show that the non-Gaussian decay exp [- Q {/t 3}/ t] of the distribution of Q t is generic.

  11. Density-Dependent Prevalence of Francisella tularensis in Fluctuating Vole Populations, Northwestern Spain

    PubMed Central

    Rodríguez-Pastor, Ruth; Escudero, Raquel; Vidal, Dolors; Mougeot, François; Arroyo, Beatriz; Lambin, Xavier; Vila-Coro, Ave Maria; Rodríguez-Moreno, Isabel; Anda, Pedro

    2017-01-01

    Tularemia in humans in northwestern Spain is associated with increases in vole populations. Prevalence of infection with Francisella tularensis in common voles increased to 33% during a vole population fluctuation. This finding confirms that voles are spillover agents for zoonotic outbreaks. Ecologic interactions associated with tularemia prevention should be considered. PMID:28726608

  12. Measuring Entanglement Spectrum via Density Matrix Exponentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Guanyu; Seif, Alireza; Pichler, Hannes; Zoller, Peter; Hafezi, Mohammad

    Entanglement spectrum (ES), the eigenvalues of the reduced density matrix of a subsystem, serves as a powerful theoretical tool to study many-body systems. For example, the gap and degeneracies of the entanglement spectrum have been used to identify various topological phases. However, the usefulness of such a concept in real experiments has been debated, since it is believed that obtaining the ES requires full state tomography, at a cost which exponentially grows with the systems size. Inspired by a recent density matrix exponentiation technique, we propose a scheme to measure ES by evolving the system with a Hamiltonian that is the subsystem's own reduced density matrix. Such a time evolution can be induced by an ancilla photon that is coupled to multiple qubits at the same time. The phase associated with the time evolution can be detected and converted into ES through either a digital or an analogue scheme. The digital scheme involves a modified quantum phase estimation algorithm based on random time evolution, while the analogue scheme is in the spirit of Ramsey interferometry. Both schemes are not limited by the size of the system, and are especially sensitive to the gap and degeneracies. We also discuss the implementation in cavity/circuit-QED and ion trap systems.

  13. The I-mode confinement regime at ASDEX Upgrade: global properties and characterization of strongly intermittent density fluctuations

    NASA Astrophysics Data System (ADS)

    Happel, T.; Manz, P.; Ryter, F.; Bernert, M.; Dunne, M.; Hennequin, P.; Hetzenecker, A.; Stroth, U.; Conway, G. D.; Guimarais, L.; Honoré, C.; Viezzer, E.; The ASDEX Upgrade Team

    2017-01-01

    Properties of the I-mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak dependence of the power threshold for the L-I transition on the toroidal magnetic field strength is found. During improved confinement, the edge radial electric field well deepens. Stability calculations show that the I-mode pedestal is peeling-ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality increases. Across all investigated structure sizes ({{k}\\bot}≈ 5 -12 cm-1, with {{k}\\bot} the perpendicular wavenumber of turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data shows that they move poloidally toward the X-point and finally end up in the divertor. This might be indicative that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density profile.

  14. A measurement of noise created by fluctuating electrostatic charges on dielectric surfaces using a torsion balance

    NASA Astrophysics Data System (ADS)

    Campsie, P.; Hough, J.; Rowan, S.; Hammond, G. D.

    2014-09-01

    Future gravitational wave detectors could have their sensitivity significantly limited, at frequencies below 10 Hz, by the presence of fluctuating electrostatic charges on the dielectric surfaces of the detector optics. A confirmed observation of the effect of fluctuating charges, or charging noise, in a gravitational wave detector has still to be made and it has never been experimentally verified by any other means. This paper presents a direct measurement of the fluctuating force noise created by moving charges on a dielectric surface using a servo controlled torsion balance. The results confirm that the fluctuating force noise caused by excess charges can be best described by a Markov process with a single correlation time and has a frequency dependence of {{f}^{-1}}.

  15. Investigation on pressure fluctuation in a Francis turbine with improvement measures

    NASA Astrophysics Data System (ADS)

    Feng, J. J.; Li, W. F.; Wu, H.; Lu, J. L.; Liao, W. L.; Luo, X. Q.

    2014-03-01

    For a prototype turbine operating under part load conditions, the turbine output power is fluctuating strongly. The test for the prototype turbine at site shows that the main reason is the resonance between the draft tube vortex frequency and the generator natural frequency. In order to reduce the fluctuation of power output, different measures are investigated with using CFD methods. To keep the turbine unchanged, four kinds of draft tubes are examined, including the original draft, the draft tube with extending runner cone, the draft tube with damping gates and the draft tube with flow deflectors. The results are analyzed and compared in order to examine the effects on pressure fluctuation and formation of vortex rope of draft tube. It is found that adding flow deflector is the most effective to change the frequency of the draft tube vortex rope and reduce the amplitude of pressure fluctuation.

  16. Density Measurement of Ethanol Blended Fuels

    NASA Astrophysics Data System (ADS)

    Man, John

    Density measurements for petro-ethanol blended fuels of various mixture ratios were conducted at temperatures from 5°C to 40°C using an oscillatory densitometer at the National Measurement Institute, Australia (NMIA). The petrol and ethanol fuels used for the preparation of samples of ethanol blends were supplied directly from a local petroleum refinery. Results were within the lower end of 0.06% repeatability and 0.3% reproducibility of the ASTM D4052-2011 method. The volume correction factors (VCF) for petrol and ethanol obtained from the measurement results agreed to within 0.1% and 0.01% of the values calculated as per American Petroleum Institute Standard 2540 Chapter 11.1 and 11.3.3 respectively. Based on a simple volume-mixture model, an equation was derived to calculate the VCF for petrol-ethanol blends. The measured and calculated values of VCF were in agreement within 0.1%. This paper presents the measurement method, results and the development of an equation for calculation of VCF for petro-ethanol blends. Note from Publisher: This article contains the abstract only.

  17. Correlation Electron Temperature Fluctuation Measurements on Alcator C-Mod and ASDEX Upgrade: Cross Machine Comparisons and Transport Model Validation

    NASA Astrophysics Data System (ADS)

    White, A. E.; Creely, A. J.; Freethy, S.; Cao, N.; Conway, G. D.; Goerler, T.; Happel, T.; Howard, N. T.; Inman, C.; Rice, J. E.; Rodriguez Fernandez, P.; Sung, C.; C-Mod, Alcator; Upgrade, Asdex

    2016-10-01

    Correlation Electron Cyclotron Emission diagnostics have been developed for Alcator C-Mod and ASDEX Upgrade. Measurements of long wavelength (ktheta rhos <0.5) electron temperature fluctuations have been measured in the core plasma (0.5 fluctuations, and the correlation with density fluctuations, which can be measured with coupled radiometer / reflectometer diagnostics, provide valuable constraints on gyrokinetic models. Recent results in transport model validation at both C-Mod and AUG are presented. This work is supported by the US DOE under Grants DE-SC0006419 and DEFC02-99ER54512-CMOD.

  18. Fluctuating defect density probed with noise spectroscopy in hydrogenated amorphous silicon

    SciTech Connect

    Verleg, P.A.W.E.; Uca, O.; Dijkhuis, J.I.

    1997-07-01

    Resistance fluctuations have been studied in hydrogenated amorphous silicon in the temperature range between 300 K and 450 K. The primary noise source has a power spectrum of approximately 1/f and is ascribed to hydrogen motion. Hopping of weakly bound hydrogen is thermally activated at such low temperatures with an average activation energy of 0.85 eV. The attempt rate amounts to 7 {center_dot} 10{sup 12} s{sup {minus}1}.

  19. in vivo Measurements of Conformational Fluctuations of Chromosomal DNA in Escherichia Coli

    NASA Astrophysics Data System (ADS)

    Kafle, Rudra; Meiners, Jens-Christian

    2013-03-01

    The cell is the site of active, motor-driven processes far from thermodynamic equilibrium. Therefore, the intracellular dynamics are complex and subject to a multitude of constraints and forces. We study the conformational fluctuations of chromosomal DNA in vivo in live and dead E. coli cells by Fluorescence Correlation Spectroscopy (FCS). The fluctuations move the DNA-bound fluorophores stochastically into the diffraction-limited excitation volume of a focused laser beam in a confocal microscope. From the time correlation functions of the fluorescence intensity, we obtain the mean square displacements of the DNA on a time scale from microseconds to seconds. We see a substantial decrease in the power spectral density (PSD) of the displacement fluctuations at frequencies below 10 Hz in the dead cells, compared to the live cells. The larger fluctuations in the living cells may indicate that the fluctuations on this time scale may be driven by active processes involving molecular motors that generate forces by ATP hydrolysis. A small difference in PSD between live and dead cells on shorter time scales suggests that the processes on corresponding short length scales rely primarily on thermally-driven diffusive mechanisms.

  20. Using intra annual density fluctuations and d13C to assess the impact of summer drought on Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Battipaglia, G.; Brand, W. A.; Linke, P.; Schaefer, I.; Noetzli, M.; Cherubini, P.

    2009-04-01

    Tree- ring growth and wood density have been used extensively as indicators of climate change, and tree-ring has been commonly applied as a proxy estimate for seasonal integration of temperatures and precipitation with annual resolution (Hughes 2002). While these relationships have been well established in temperate ecosystems (Fritts, 1976; Schweingruber, 1988, Briffa et al., 1998, 2004), in Mediterranean region dendrochronological studies are still scarce (Cherubini et al, 2003). In Mediterranean environment, trees may form intra-annual density fluctuations, also called "false rings" or "double rings" (Tingley 1937; Schulman 1938). They are usually induced by sudden drought events, occurring during the vegetative period, and, allowing intra-annual resolution, they may provide detailed information at a seasonal level, as well as species-specific sensitivity to drought. We investigated the variability of tree- ring width and carbon stable isotopes of a Mediterranean species, Arbutus unedo L., sampled on Elba island, (Tuscany, Italy). The samples were taken at two different sites, one characterized by wet and one by dry conditions. d13C was measured using Laser- Ablation- Combustion -GC-IRMS. Here, we present first results showing the impact of drought on tree growth and on false ring formation at the different sites and we underline the importance of using Laser Ablation to infer drought impact at the intra -annual level. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Harris IC, Shiyatov SG, Vaganov EA, Grudd H (1998) Trees tell of past climates: but are they speaking less clearly today? Phil Transact Royal Soc London 353:65-73 Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Panet Change 40:11-26 Cherubini, P., B.L. Gartner, R. Tognetti, O.U. Bräker, W. Schoch & J.L. Innes. 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev

  1. Vortex fluctuation measurements in high-Tc SQUIDs

    NASA Astrophysics Data System (ADS)

    Flament, S.; Sing, M. Lam Chok; Warsito, W.; Ridereau, X.; Gunther, C.; Méchin, L.; Bloyet, D.; Abell, S.

    2004-05-01

    The correlation of the outputs of two dc-SQUIDs connected to the same solid washer was studied. A dedicated electronic system was used in order to operate both SQUIDs at the same time. It was found that the temporal correlation of the SQUID outputs is strongly dependent on the geometry of the SQUID loop. For a solid washer, the flux noise is mainly due to vortices located close to the SQUIDs. However, by surrounding the SQUID loop with a hole patterned in the superconducting solid washer, it is possible to drastically reduce the flux penetration around the loop. The resulting flux noise becomes dominated by vortices located inside the washer far from the SQUIDs. Magneto-optical images were also used to visualize the flux penetration inside the washer around the slit of such SQUIDs. These confirm previous descriptions of vortex penetration deduced from the electrical measurements.

  2. Fiber-optic interferometric sensors for measurements of pressure fluctuations - Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    A fiber optic interferometric sensor that is being developed at NASA Ames Research Center for pressure fluctuation measurements in wind tunnels is considered. Preliminary evaluation indicates that the fiber optic interferometric sensor can be successfully used as an aeroacoustic sensor and is capable of providing a powerful instrument to solve complex acoustic measurement problems in wind tunnels.

  3. EGR distribution and fluctuation probe based on CO2 measurements

    SciTech Connect

    Parks, II, James E.; Partridge, Jr., William P.; Yoo, Ji Hyung

    2015-06-30

    A diagnostic system having a laser, an EGR probe, a detector and a processor. The laser may be a swept-.lamda. laser having a sweep range including a significant CO.sub.2 feature and substantially zero absorption regions. The sweep range may extend from about 2.708 .mu.m to about 2.7085 .mu.m. The processor may determine CO.sub.2 concentration as a function of the detector output signal. The processor may normalize the output signal as a function of the zero absorption regions. The system may include a plurality of EGR probes receiving light from a single laser. The system may include a separate detector for each probe. Alternatively, the system may combine the light returning from the different probes into a composite beam that is measured by a single detector. A unique modulation characteristic may be introduced into each light beam before combination so that the processor can discriminate between them in the composite beam.

  4. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  5. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  6. Accurate Measurement of Bone Density with QCT

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Beaupre, Gary S.; Matsubara, Miki; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    The objective of this study was to determine the accuracy of bone density measurement with a new OCT technology. A phantom was fabricated using two materials, a water-equivalent compound and hydroxyapatite (HA), combined in precise proportions (QRM GrnbH, Germany). The phantom was designed to have the approximate physical size and range in bone density as a human calcaneus, with regions of 0, 50, 100, 200, 400, and 800 mg/cc HA. The phantom was scanned at 80, 120 and 140 KVp with a GE CT/i HiSpeed Advantage scanner. A ring of highly attenuating material (polyvinyl chloride or teflon) was slipped over the phantom to alter the image by introducing non-axi-symmetric beam hardening. Images were corrected with a new OCT technology using an estimate of the effective X-ray beam spectrum to eliminate beam hardening artifacts. The algorithm computes the volume fraction of HA and water-equivalent matrix in each voxel. We found excellent agreement between expected and computed HA volume fractions. Results were insensitive to beam hardening ring material, HA concentration, and scan voltage settings. Data from all 3 voltages with a best fit linear regression are displays.

  7. Interstellar turbulence, random density variations, and scintillation measurements

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.

    1985-01-01

    The presence of random electron variations suggests that the ionized interstellar medium is turbulent. In the interstellar plasma the presence of power spectra of such variations extending to spatial scales much less than a Coulomb mean free path, Lambda sub c, is required by analyses of measurements of scintillation and angular broadening of pulsar radio signals. The existence of corresponding variations in magnetic field strength could efficiently scatter cosmic rays and thus constrain cosmic-ray propagation. Unfortunately both the origin of the electron density variations and mechanisms by which these variations couple to fluctuations in magnetic field strength are unknown. It is conjectured that the small-scale density variations are generated by the convective distortion of initially large-scale isobaric entropy structures in the turbulent interstellar plasma. An investigation of the spectra of turbulent entropy structures, velocity, and magnetic fields at small spatial scales is made. The modifier small is employed to characterize length scales much less than the dimension, L, containing the bulk of the turbulent energy.

  8. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z {approx} 0.8 IN CROSS-CORRELATION

    SciTech Connect

    Masui, K. W.; Switzer, E. R.; Calin, L.-M.; Pen, U.-L.; Shaw, J. R.; Banavar, N.; Bandura, K.; Blake, C.; Chang, T.-C.; Liao, Y.-W.; Chen, X.; Li, Y.-C.; Natarajan, A.; Peterson, J. B.; Voytek, T. C.

    2013-01-20

    In this Letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling {approx}41 deg. sq. and 190 hr of radio integration time. The cross-correlation constrains {Omega}{sub HI} b{sub HI} r = [0.43 {+-} 0.07(stat.) {+-} 0.04(sys.)] Multiplication-Sign 10{sup -3}, where {Omega}{sub HI} is the neutral hydrogen (H I) fraction, r is the galaxy-hydrogen correlation coefficient, and b{sub HI} is the H I bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z {approx} 0.8 both in its precision and in the range of scales probed.

  9. Measurements of fluctuations in the flux of runaway electrons to the PLT tokamak limiter

    SciTech Connect

    Barnes, C.W.; Strachan, J.D.

    1983-09-01

    Fluctuations in the flux of runaway electrons to the limiter are measured during many PLT (Princeton Large Torus) discharges. Oscillations at 60, 120, and 720 Hz are driven by variations in the vertical magnetic field which moves the plasma major radius. Fluctuations are seen with frequencies in the range of 2--20 kHz because of magnetohydrodynamic (MHD) magnetic islands which extend to the plasma surface. A continuous spectrum of fluctuations is observed up to 200 kHz which correlates with drift-wave turbulence. The magnitude of the driven fluctuations can be used to measure transport properties of the runaway electrons. The amplitude of electron motion due to the MHD and drift-wave oscillations, and hence a measure of the radial size of the instability, can be determined as a function of frequency. The slope of the frequency power spectrum of the drift-wave-induced fluctuations steepens with increasing runaway-electron drift orbit displacement during the current drop at the end of the discharge, and as the power in the MHD oscillations increases. A magnetic probe is used to confirm the presence of oscillating magnetic fields capable of perturbing the electron orbits.

  10. Measurements of fluctuations in the flux of runaway electrons to the PLT limiter

    SciTech Connect

    Barnes, C.W.; Strachan, J.D.

    1982-07-01

    Fluctuations in the flux of runaway electrons to the limiter have been measured during many PLT discharges. Oscillations at 60, 120, and 720 Hz are driven by variations in the vertical magnetic field which moves the plasma major radius. Fluctuations are seen in the range of 2 ..-->.. 20 kHz due to MHD magnetic islands which extend to the plasma surface. A continuous spectrum of fluctuations is observed up to 200 kHz which correlates with drift-wave turbulence. The magnitude of the driven fluctuations can be used to measure transport properties of the runaway electrons. The amplitude of electron motion due to the MHD and drift-wave oscillations, and hence a measure of the radial size of the instability, can be determined as a function of frequency. The slope of the frequency power spectrum of the drift-wave-induced fluctuations steepens with increasing runaway electron drift orbit displacement during the current drop at the end of the discharge, and as the power in the MHD oscillations increases. A magnetic probe was used to confirm the presence of oscillating magnetic fields capable of perturbing the electron orbits.

  11. Spectral density measurements of gyro noise

    NASA Technical Reports Server (NTRS)

    Truncale, A.; Koenigsberg, W.; Harris, R.

    1972-01-01

    Power spectral density (PSD) was used to analyze the outputs of several gyros in the frequency range from 0.01 to 200 Hz. Data were accumulated on eight inertial quality instruments. The results are described in terms of input angle noise (arcsec 2/Hz) and are presented on log-log plots of PSD. These data show that the standard deviation of measurement noise was 0.01 arcsec or less for some gyros in the passband from 1 Hz down 10 0.01 Hz and probably down to 0.001 Hz for at least one gyro. For the passband between 1 and 100 Hz, uncertainties in the 0.01 and 0.05 arcsec region were observed.

  12. Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations

    NASA Astrophysics Data System (ADS)

    de Visser, P. J.; Baselmans, J. J. A.; Yates, S. J. C.; Diener, P.; Endo, A.; Klapwijk, T. M.

    2012-04-01

    We have measured the number of quasiparticles and their lifetime in aluminium superconducting microwave resonators. The number of excess quasiparticles below 160 mK decreases from 72 to 17 μm-3 with a 6 dB decrease of the microwave power. The quasiparticle lifetime increases accordingly from 1.4 to 3.5 ms. These properties of the superconductor were measured through the spectrum of correlated fluctuations in the quasiparticle system and condensate of the superconductor, which show up in the resonator amplitude and phase, respectively. Because uncorrelated noise sources vanish, fluctuations in the superconductor can be studied with a sensitivity close to the vacuum noise.

  13. Air Shower Fluctuations and the Measurement of the Proton-Air Cross Section

    NASA Astrophysics Data System (ADS)

    Alvarez-Muniz, J.; Engel, R.; Gaisser, T.K.; Ortiz, J.A.; Stanev, T.

    2003-07-01

    We explore the influence of fluctuations in the extensive air shower (EAS) development on the possibility to determine the proton-air cross section at high energy. This contribution concentrates on the two classical methods of obtaining the cross section in EAS experiments, (i) the measurement of the attenuation of the rate of showers with fixed muon and electron sizes with zenith angle, namely the constant intensity cut method, and (ii) the measurement of the distribution of the depth of maximum. We demonstrate that, depending on the selection method, shower fluctuations can strongly influence the characteristics of the selected showers in method (i). method (ii) is sub ject to model dependence.

  14. Effect of Transducer Flushness on Measured Surface Pressure Fluctuations in Flight

    NASA Technical Reports Server (NTRS)

    Efimtsov, B. M.; Golubev, A. Yu.; Kuznetsov, V. B.; Rizzi, S. A.; Andersson, A. O.; Racki, R. G.; Andrianov, E. V

    2004-01-01

    The procedure for investigating the effect of deviation from flush mounting of pressure transducers on the exterior of Tu-144LL in flight is described. Experimental data in the mach-number range 0.58 - 2.0 are presented for distortion of the measured wall-pressure fluctuation spectra of the turbulent boundary layer by recessed and protruding transducers. The results of flight experiments are compared with data of wind tunnel experiments. The distortion of measured turbulent boundary layer wall pressure fluctuations caused by transducer-surface deviation from the surrounding surface as a function of dimensionless parameters is predicted and presented on the basis of dimensional analysis.

  15. Putting Water on a Lattice: The Importance of Long Wavelength Density Fluctuations in Theories of Hydrophobic and Interfacial Phenomena

    NASA Astrophysics Data System (ADS)

    Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L.

    2014-01-01

    The physics of air-water interfaces plays a central role in modern theories of the hydrophobic effect. Implementing these theories, however, has been hampered by the difficulty of addressing fluctuations in the shape of such soft interfaces. We show that this challenge is a fundamental consequence of mapping long wavelength density variations onto discrete degrees of freedom. Drawing from studies of surface roughness in lattice models, we account for the resulting nonlinearities simply but accurately. Simulations show that this approach captures complex solvation behaviors quantitatively.

  16. Modulation of Core Turbulent Density Fluctuations by Large-Scale Neoclassical Tearing Mode Islands in the DIII-D Tokamak.

    PubMed

    Bardóczi, L; Rhodes, T L; Carter, T A; Bañón Navarro, A; Peebles, W A; Jenko, F; McKee, G

    2016-05-27

    We report the first observation of localized modulation of turbulent density fluctuations n[over ˜] (via beam emission spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n[over ˜] was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that n[over ˜] could be dominantly driven by the ion temperature gradient instability.

  17. Improving the reconstruction of the velocity potential and primordial density fluctuations by choice of smoothing windows. [for cosmological theory

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1993-01-01

    Recently considerable attention has been focused on improving algorithms for restoring primordial density fluctuations in the universe or investigating large-scale velocity fields by going to higher order approximations relating nonlinear states to their initial conditions. An alternative approach is to investigate the use of alternative smoothing windows within the context of first-order approximations. I present evidence that the universally used Gaussian smoothing window is far from optimal. A sharp truncation P(k) = 0 for k greater than k(c) leads to a much more direct connection to initial conditions for either 'Gaussianization' methods or use of the Zel'dovich approximation, as discussed in the text.

  18. Putting water on a lattice: the importance of long wavelength density fluctuations in theories of hydrophobic and interfacial phenomena.

    PubMed

    Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L

    2014-01-17

    The physics of air-water interfaces plays a central role in modern theories of the hydrophobic effect. Implementing these theories, however, has been hampered by the difficulty of addressing fluctuations in the shape of such soft interfaces. We show that this challenge is a fundamental consequence of mapping long wavelength density variations onto discrete degrees of freedom. Drawing from studies of surface roughness in lattice models, we account for the resulting nonlinearities simply but accurately. Simulations show that this approach captures complex solvation behaviors quantitatively.

  19. Random fluctuations and validity in measuring disease management effectiveness for small populations.

    PubMed

    Farah, J Ramsay; Kamali, Kyahn; Harner, Jeffrey; Duncan, Ian G; Messer, Thomas C

    2008-12-01

    One objective of a disease management (DM) program is the reduction of members' claims costs. A considerable amount of effort has been dedicated to standardizing the outcomes of DM measurement. An area that has not received as much attention is that of random fluctuations in measured outcomes and the related issue of the validity of outcomes subject to random fluctuation. From year to year, large random fluctuations in claims costs can increase or reduce actual savings from a DM program. Sponsors of DM programs want to know how large a group or sample is necessary to prevent the effect of random fluctuations from overwhelming the effect of claims reductions. In this paper, we measure the fluctuations in calculated DM savings in a large commercial population using an adjusted historical control methodology--the methodology that has become the industry standard and which is codified by DMAA's Guidelines. We then determine the sample size necessary to demonstrate DM program savings at different levels of confidence and model the effect on fluctuations in observed outcomes under different methods of choosing trend, different levels of truncation, and for different estimates of program savings. Some groups, particularly employers, will be smaller than the minimum size required for credible outcomes measurement. For groups smaller than this minimum size, we suggest a utilization-based outcomes measure that can be used as a proxy. For both claims- and utilization-based calculations, we provide confidence intervals to be placed around savings estimates. We do this for group sizes ranging from 1000 to 100,000 members.

  20. Techniques for correcting velocity and density fluctuations of ion beams in ion inducti on accelerators

    NASA Astrophysics Data System (ADS)

    Woo, K. M.; Yu, S. S.; Barnard, J. J.

    2013-06-01

    It is well known that the imperfection of pulse power sources that drive the linear induction accelerators can lead to time-varying fluctuation in the accelerating voltages, which in turn leads to longitudinal emittance growth. We show that this source of emittance growth is correctable, even in space-charge dominated beams with significant transients induced by space-charge waves. Two correction methods are proposed, and their efficacy in reducing longitudinal emittance is demonstrated with three-dimensional particle-in-cell simulations.

  1. CRIT II electric, magnetic, and density measurements within an ionizing neutral stream

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.

    1990-01-01

    Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.

  2. MAGNETIC FLUX DENSITY MEASURED IN FAST AND SLOW SOLAR WIND STREAMS

    SciTech Connect

    Erdos, G.; Balogh, A.

    2012-07-10

    The radial component of the heliospheric magnetic field vector is used to estimate the open magnetic flux density of the Sun. This parameter has been calculated using observations from the Ulysses mission that covered heliolatitudes from 80 Degree-Sign S to 80 Degree-Sign N, from 1990 to 2009 and distances from 1 to 5.4 AU, the Advanced Composition Explorer mission at 1 AU from 1997 to 2010, the OMNI interplanetary database from 1971, and the Helios 1 and 2 missions that covered the distance range from 0.3 to 1 AU. The flux density was found to be much affected by fluctuations in the magnetic field which make its calculated value dependent on heliospheric location, type of solar wind (fast or slow), and the level of solar activity. However, fluctuations are distributed symmetrically perpendicular to the average Parker direction. Therefore, distributions of the field vector in the two-dimensional plane defined by the radial and azimuthal directions in heliospheric coordinates provide a way to reduce the effects of the fluctuations on the measurement of the flux density. This leads to a better defined flux density parameter; the distributions modified by removing the effects of fluctuations then allow a clearer assessment of the dependence of the flux density on heliospheric location, solar wind type, and solar activity. This assessment indicates that the flux density normalized to 1 AU is independent of location and solar wind type (fast or slow). However, there is a residual dependence on solar activity which can be studied using the modified flux density measurements.

  3. Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Berthier, Ludovic; Charbonneau, Patrick; Yaida, Sho

    2016-01-01

    Cavity point-to-set correlations are real-space tools to detect the roughening of the free-energy landscape that accompanies the dynamical slowdown of glass-forming liquids. Measuring these correlations in model glass formers remains, however, a major computational challenge. Here, we develop a general parallel-tempering method that provides orders-of-magnitude improvement for sampling and equilibrating configurations within cavities. We apply this improved scheme to the canonical Kob-Andersen binary Lennard-Jones model for temperatures down to the mode-coupling theory crossover. Most significant improvements are noted for small cavities, which have thus far been the most difficult to study. This methodological advance also enables us to study a broader range of physical observables associated with thermodynamic fluctuations. We measure the probability distribution of overlap fluctuations in cavities, which displays a non-trivial temperature evolution. The corresponding overlap susceptibility is found to provide a robust quantitative estimate of the point-to-set length scale requiring no fitting. By resolving spatial fluctuations of the overlap in the cavity, we also obtain quantitative information about the geometry of overlap fluctuations. We can thus examine in detail how the penetration length as well as its fluctuations evolve with temperature and cavity size.

  4. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone and Microgravity

    NASA Technical Reports Server (NTRS)

    Schweizer, Markus; Croell, Arne

    1999-01-01

    A silicon crystal growth experiment has been accomplished using the floating-zone technique under microgravity on a sounding rocket (TEXUS 36). Measurements of temperature fluctuations in the silicon melt zone due to time dependent thermocapillary convection (Marangoni convection) and an observation of the microscopic growth rate were simultaneously performed during the experiment. Temperature fluctuations of about 0.5 - 0.7 C with a frequency range < 0.5Hz were detectable. The microscopic growth rate fluctuates considerably around the average growth rate of 1 mm/min: Growth rates up to 3 to 4mm/min, close to zero mm/min, as well as negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. They were characterized by Spreading Resistance measurements and Differential Interference Contrast microscopy. The frequencies of temperature fluctuations, microscopic growth rates, and the dopant inhomogeneities correspond quite well, with main frequencies between 0.1 and 0.3 Hz. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, and the characteristic temperature amplitudes and frequencies. At a position 3.4mm above the interface and 1.4mm inside the melt, equivalent to the sensor tip position in the experiment, temperature fluctuations up to 1.8 C and frequencies ? 0.25Hz were found in the simulations.

  5. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone and Microgravity

    NASA Technical Reports Server (NTRS)

    Schweizer, Markus; Croell, Arne

    1999-01-01

    A silicon crystal growth experiment has been accomplished using the floating-zone technique under microgravity on a sounding rocket (TEXUS 36). Measurements of temperature fluctuations in the silicon melt zone due to time dependent thermocapillary convection (Marangoni convection) and an observation of the microscopic growth rate were simultaneously performed during the experiment. Temperature fluctuations of about 0.5 - 0.7 C with a frequency range < 0.5Hz were detectable. The microscopic growth rate fluctuates considerably around the average growth rate of 1 mm/min: Growth rates up to 3 to 4mm/min, close to zero mm/min, as well as negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. They were characterized by Spreading Resistance measurements and Differential Interference Contrast microscopy. The frequencies of temperature fluctuations, microscopic growth rates, and the dopant inhomogeneities correspond quite well, with main frequencies between 0.1 and 0.3 Hz. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, and the characteristic temperature amplitudes and frequencies. At a position 3.4mm above the interface and 1.4mm inside the melt, equivalent to the sensor tip position in the experiment, temperature fluctuations up to 1.8 C and frequencies ? 0.25Hz were found in the simulations.

  6. Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids

    SciTech Connect

    Berthier, Ludovic; Charbonneau, Patrick; Yaida, Sho

    2016-01-14

    Cavity point-to-set correlations are real-space tools to detect the roughening of the free-energy landscape that accompanies the dynamical slowdown of glass-forming liquids. Measuring these correlations in model glass formers remains, however, a major computational challenge. Here, we develop a general parallel-tempering method that provides orders-of-magnitude improvement for sampling and equilibrating configurations within cavities. We apply this improved scheme to the canonical Kob-Andersen binary Lennard-Jones model for temperatures down to the mode-coupling theory crossover. Most significant improvements are noted for small cavities, which have thus far been the most difficult to study. This methodological advance also enables us to study a broader range of physical observables associated with thermodynamic fluctuations. We measure the probability distribution of overlap fluctuations in cavities, which displays a non-trivial temperature evolution. The corresponding overlap susceptibility is found to provide a robust quantitative estimate of the point-to-set length scale requiring no fitting. By resolving spatial fluctuations of the overlap in the cavity, we also obtain quantitative information about the geometry of overlap fluctuations. We can thus examine in detail how the penetration length as well as its fluctuations evolve with temperature and cavity size.

  7. Spinodal amplification of density fluctuations in fluid-dynamical simulations of relativistic nuclear collisions.

    PubMed

    Steinheimer, Jan; Randrup, Jørgen

    2012-11-21

    Extending a previously developed two-phase equation of state, we simulate head-on relativistic lead-lead collisions with fluid dynamics, augmented with a finite-range term, and study the effects of the phase structure on the evolution of the baryon density. For collision energies that bring the bulk of the system into the mechanically unstable spinodal region of the phase diagram, the density irregularities are being amplified significantly. The resulting density clumping may be exploited as a signal of the phase transition, possibly through an enhanced production of composite particles.

  8. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  9. Usefulness of bone density measurement in fallers.

    PubMed

    Blain, Hubert; Rolland, Yves; Beauchet, Olivier; Annweiler, Cedric; Benhamou, Claude-Laurent; Benetos, Athanase; Berrut, Gilles; Audran, Maurice; Bendavid, Sauveur; Bousson, Valérie; Briot, Karine; Brazier, Michel; Breuil, Véronique; Chapuis, Laure; Chapurlat, Roland; Cohen-Solal, Martine; Cortet, Bernard; Dargent, Patricia; Fardellone, Patrice; Feron, Jean-Marc; Gauvain, Jean-Bernard; Guggenbuhl, Pascal; Hanon, Olivier; Laroche, Michel; Kolta, Sami; Lespessailles, Eric; Letombe, Brigitte; Mallet, Eric; Marcelli, Christian; Orcel, Philippe; Puisieux, François; Seret, Patrick; Souberbielle, Jean-Claude; Sutter, Bruno; Trémollières, Florence; Weryha, Georges; Roux, Christian; Thomas, Thierry

    2014-10-01

    The objective of this systematic literature review is to discuss the latest French recommendation issued in 2012 that a fall within the past year should lead to bone mineral density (BMD) measurement using dual-energy X-ray absorptiometry (DXA). This recommendation rests on four facts. First, osteoporosis and fall risk are the two leading risk factors for nonvertebral fractures in postmenopausal women. Second, BMD measurement using DXA supplies significant information on the fracture risk independently from the fall risk. Thus, when a fall occurs, the fracture risk increases as BMD decreases. Third, osteoporosis drugs have been proven effective in preventing fractures only in populations with osteoporosis defined based on BMD criteria. Finally, the prevalence of osteoporosis is high in patients who fall and increases in the presence of markers for frailty (e.g., recurrent falls, sarcopenia [low muscle mass and strength], limited mobility, and weight loss), which are risk factors for both osteoporosis and falls. Nevertheless, life expectancy should be taken into account when assessing the appropriateness of DXA in fallers, as osteoporosis treatments require at least 12months to decrease the fracture risk. Another relevant factor is the availability of DXA, which may be limited due to geographic factors, patient dependency, or severe cognitive impairments, for instance. Studies are needed to better determine how the fall risk and frailty should be incorporated into the fracture risk evaluation based on BMD and the FRAX® tool. Copyright © 2014. Published by Elsevier SAS.

  10. Local Density Fluctuations Predict Photoisomerization Quantum Yield of Azobenzene-Modified DNA.

    PubMed

    Kingsland, Addie; Samai, Soumyadyuti; Yan, Yunqi; Ginger, David S; Maibaum, Lutz

    2016-08-04

    Azobenzene incorporated into DNA has a photoisomerization quantum yield that depends on the DNA sequence near the azobenzene attachment site. We use Molecular Dynamics computer simulations to elucidate which physical properties of the modified DNA determine the quantum yield. We show for a wide range of DNA sequences that the photoisomerization quantum yield is strongly correlated with the variance of the number of atoms in close proximity to the outer phenyl ring of the azobenzene group. We infer that quantum yield is controlled by the availability of fluctuations that enable the conformational change. We demonstrate that these simulations can be used as a qualitative predictive tool by calculating the quantum yield for several novel DNA sequences, and confirming these predictions using UV-vis spectroscopy. Our results will be useful for the development of a wide range of applications of photoresponsive DNA nanotechnology.

  11. Conserved charge fluctuations using the D measure in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Netrakanti, P. K.; Garg, P.

    2017-05-01

    We study the net-charge fluctuation D -measure variable, in high-energy heavy-ion collisions in heavy-ion jet interaction generator (HIJING), ultrarelativistic quantum molecular dynamics (UrQMD), and hadron resonance gas (HRG) models for various center-of-mass energies (√{sNN}). The effects of kinematic acceptance and resonance decay, in the pseudorapidity acceptance interval (Δ η ) and lower transverse momentum (pTmin) threshold, on fluctuation measures are discussed. A strong dependence of D with the Δ η in HIJING and UrQMD models is observed as opposed to results obtained from the HRG model. The dissipation of fluctuation signal is estimated by fitting the D measure as a function of the Δ η . An extrapolated function for higher Δ η values at lower √{sNN} is different from the results obtained from models. Particle species dependence of D and the effect of the pTmin selection threshold are discussed in HIJING and HRG models. The comparison of D , at midrapidity, of net-charge fluctuations at various √{sNN} obtained from the models with the data from the A Large Ion Collider Experiment (ALICE) experiment is discussed. The results from the present paper as a function of Δ η and √{sNN} will provide a baseline for comparison to experimental measurements.

  12. Measurement of laser quantum frequency fluctuations using a Pound-Drever stabilization system

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jen; Mussche, Paul L.; Siegman, Anthony E.

    1994-06-01

    We describe a method for measuring the frequency fluctuation spectrum of a laser oscillator, especially the weak noise contributions in the wings of the spectrum, and apply this method to confirm the existence of large excess quantum frequency fluctuations in a laser oscillator using an unstable optical resonator. Our measurement apparatus uses the Pound-Drever technique, which employs an RF phase modulator and a Fabry-Perot cavity to produce a sensitive high-speed frequency discrimination signal. We show that this signal can also be used to measure the quantum noise contributions to the frequency spectrum of a laser oscillator. Experimental measurements on a miniature diode-pumped Nd:YAG laser using a stable optical cavity closely match the predictions of the usual Schawlow-Townes theory, while the frequency fluctuations in a nearly identical laser employing an unstable optical resonator are approximately 1300 times larger. These much larger fluctuations arise in part from the larger output coupling and cavity bandwidth of the unstable cavity, but they also appear to confirm a predicted excess spontaneous emission factor (Petermann excess noise factor) of approximately = 180 times arising from the nonorthogonal transverse mode properties of the unstable cavity.

  13. New plasma measurements with a multichannel millimeter-wave fluctuation diagnostic system in the DIII-D tokamak (invited).

    PubMed

    Hillesheim, J C; Peebles, W A; Rhodes, T L; Schmitz, L; White, A E; Carter, T A

    2010-10-01

    A novel multichannel, tunable Doppler backscattering (DBS)/reflectometry system has recently been developed and applied to a variety of DIII-D plasmas. Either DBS or reflectometry can be easily configured for use in a wide range of plasma conditions using a flexible quasi-optical antenna system. The multiple closely spaced channels, when combined with other fluctuation diagnostic systems, have opened up new measurements of plasma properties. For example, the toroidal and fine-scale radial structure of coherent plasma oscillations, such as geodesic acoustic modes, have been probed simultaneously in the core of high temperature plasmas by applying correlation analysis between two toroidally separated DBS systems, as well as within the multichannel array. When configured as a reflectometer, cross-correlation with electron cyclotron emission radiometry has uncovered detailed information regarding the crossphase relationship between density and temperature fluctuations. The density-temperature crossphase measurement yields insight into the physics of tokamak turbulence at a fundamental level that can be directly compared with predictions from nonlinear gyrokinetic simulations.

  14. Spontaneous low-frequency fluctuations in finger blood volume, measured by photoplethysmography

    NASA Astrophysics Data System (ADS)

    Nitzan, Meir; Babchenko, Anatoly; Milston, Adina; Khanokh, Boris; Turivnenko, Sergei

    1995-01-01

    Several parameters of the cardiovascular system such as heart rate, arterial blood pressure and blood flow fluctuate spontaneously. These fluctuations are related to the autonomic nervous system activity. In particular the low frequency fluctuations are mediated by the sympathetic nervous system. In the cuttent study, the low frequency fluctuations of the tissue blood volume and the blood volume pulse in the fingertips of healthy subjects were investigated using photoplethysmography (PPG). The baseline of the PPG signal (BL) is inversely related to tissue blood volume so that the parameter BV, defined by: BV equals Const. minus BL is directly related to the blood volume. The amplitude (AM) is directly related to the systolic blood volume increase. For most of the examinations BV and AM show positive correlation but in some examinations the two parameters were inversely correlated. PPG measurements performed in near infrared radiation, showed better correlation between BV and AM than for red light PPG. The results show that several mechanisms are involved in the low frequency fluctuations in the tissue blood volume. The analysis of the PPG signal provides, therefore, a potential tool for studying the mechanism of the regulation of the microcirculation by the sympathetic nerves.

  15. Water vapor radiometer measurements of the tropospheric delay fluctuations at Goldstone over a full year

    NASA Technical Reports Server (NTRS)

    Keihm, S. J.

    1995-01-01

    One year of near-continuous water vapor radiometer (WVR) measurements at DSS 13 has provided a database for characterizing the Goldstone tropospheric delay properties in a statistical sense. The results have been expressed in terms of the Allan standard deviation of delay and compared to a previous model for Goldstone fluctuations and the specifications of the Cassini Gravitational Wave Experiment (GWE). The new WVR data indicate that average fluctuation levels at hour time scales or less are approximately 30 percent lower than the earlier Goldstone model predictions. At greater than 1 h time scales, the WVR indicated fluctuation levels are in closer agreement with the model, although noise floor limitations may be artificially raising the average WVR-derived atmospheric fluctuation levels at the longer time scales. When scaled to two-way Doppler tracking at 20 deg elevation, as will occur for the GWE, these results indicate that Goldstone winter tropospheric delay fluctuations will typically be a factor of 10 larger than the GWE requirements at 1000 s and a factor of 4 larger at 10,000 s.

  16. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone on TEXUS36

    NASA Technical Reports Server (NTRS)

    Croell, Arne; Schweizer, Markus; Dold, P.; Kaiser, Th.; Benz, K. W.; Lichtensteiger, M.

    1999-01-01

    Several earlier (micro)g experiments have shown that time-dependent thermocapillary (Marangoni) convection is the major cause for the formation of dopant striations in floating-zone grown semiconductor crystals, at least in small-scale systems not employing RF heating. To quantify this correlation, a silicon floating-zone experiment was performed on the TEXUS36 flight (February 7, 1 998) in the monoellipsoid mirror furnace TEM02-ELLI. During the experiment, temperature fluctuations in the silicon melt zone and the microscopic growth rate were simultaneously measured. Temperature fluctuations of 0.5 C - 0.7 C with main frequencies between 0.1 Hz and 0.3 Hz were detectable. The microscopic growth rate fluctuated considerably around the average growth rate of 1 mm/min: rates from 4mm/min to negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. The frequencies associated with the dopant inhomogeneities correspond quite well with those of the temperature fluctuations and microscopic growth rates. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, to evaluate characteristic temperature amplitudes and frequencies, and to give insight into the instability mechanisms of Maran-goni convection in this configuration. The simulations were in good agreement with the experimental values, showing temperature fluctuations with frequencies f? 0.25 Hz and amplitudes up to 1.8 C at a position equivalent to that of the sensor tip in the experiment.

  17. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone on TEXUS36

    NASA Technical Reports Server (NTRS)

    Croell, Arne; Schweizer, Markus; Dold, P.; Kaiser, Th.; Benz, K. W.; Lichtensteiger, M.

    1999-01-01

    Several earlier (micro)g experiments have shown that time-dependent thermocapillary (Marangoni) convection is the major cause for the formation of dopant striations in floating-zone grown semiconductor crystals, at least in small-scale systems not employing RF heating. To quantify this correlation, a silicon floating-zone experiment was performed on the TEXUS36 flight (February 7, 1 998) in the monoellipsoid mirror furnace TEM02-ELLI. During the experiment, temperature fluctuations in the silicon melt zone and the microscopic growth rate were simultaneously measured. Temperature fluctuations of 0.5 C - 0.7 C with main frequencies between 0.1 Hz and 0.3 Hz were detectable. The microscopic growth rate fluctuated considerably around the average growth rate of 1 mm/min: rates from 4mm/min to negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. The frequencies associated with the dopant inhomogeneities correspond quite well with those of the temperature fluctuations and microscopic growth rates. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, to evaluate characteristic temperature amplitudes and frequencies, and to give insight into the instability mechanisms of Maran-goni convection in this configuration. The simulations were in good agreement with the experimental values, showing temperature fluctuations with frequencies f? 0.25 Hz and amplitudes up to 1.8 C at a position equivalent to that of the sensor tip in the experiment.

  18. Corrections on LIFPA velocity measurements in microchannel with moderate velocity fluctuations

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Khan, Jamil; Reifsnider, Ken; Wang, Guiren

    2015-02-01

    Laser-induced fluorescence photobleaching anemometer (LIFPA) has been developed in order to measure velocity fluctuations of the unsteady micro electrokinetic turbulent flows in microfluidics. The statistical errors of LIFPA measurement, because of 3-D flows and Taylor's hypothesis (compared with local Taylor's hypothesis Pinton and Labbé in J Phys II 4:1461-1468, 1994), are theoretically estimated and compared to hot-wire anemometer (HWA) measurement that is used for conventional turbulence measurement. The correction factor in the direction parallel to the laser beam is estimated, and the influence of directional correction factors of LIFPA is also investigated. It is found that in our investigation, the error due to Taylor's hypothesis is negligible. The influence of 3-D flows on the first derivative variance of velocity fluctuations in LIFPA is smaller than that in HWA measurement.

  19. The Measurement of Fluctuations of Air Speed by the Hot-Wire Anemometer

    NASA Technical Reports Server (NTRS)

    Dryden, H L; Kuethe, A M

    1930-01-01

    The hot-wire anemometer suggests itself as a promising method for measuring the fluctuating air velocities found in turbulent flow. The only obstacle is the presence of a lag due to the limited energy input which makes even a fairly small wire incapable of following rapid fluctuations with accuracy. This paper gives the theory of the lag and describes an experimental arrangement for compensating for the lag for frequencies up to 100 or more per second when the amplitude of the fluctuation is not too great. An experimental test of the accuracy of compensation and some results obtained with the apparatus in a wind-tunnel air stream are described. While the apparatus is very bulky in its present form, it is believed possible to develop a more portable arrangement. (author)

  20. Measurement of the internal magnetic fluctuation by the transport of runaways on J-TEXT

    SciTech Connect

    Chen, Z. Y. Huang, D. W.; Tong, R. H.; Yan, W.; Wei, Y. N.; Ma, T. K.; Jiang, Z. H.; Zhang, X. Q.; Chen, Z. P.; Yang, Z. J.; Zhuang, G.

    2016-11-15

    The measurement of internal magnetic fluctuation is important for the study of transport in tokamak plasmas. The runaway electron transport induced by the sawtooth crash can be used to obtain the internal magnetic fluctuation. Inversed sawtooth-like activities on hard x-ray (HXR) fluxes following sawtooth activities were observed after the application of electrode biasing on J-TEXT tokamak. The runaway diffusion coefficient D{sub r} is deduced to be about 30 m{sup 2}/s according to the time delay of HXR flux peaks to the sawtooth crashes. The averaged value of normalized magnetic fluctuation in the discharges with electrode biasing was increased to the order of 1 × 10{sup −4}.