The statistics of primordial density fluctuations
NASA Astrophysics Data System (ADS)
Barrow, John D.; Coles, Peter
1990-05-01
The statistical properties of the density fluctuations produced by power-law inflation are investigated. It is found that, even the fluctuations present in the scalar field driving the inflation are Gaussian, the resulting density perturbations need not be, due to stochastic variations in the Hubble parameter. All the moments of the density fluctuations are calculated, and is is argued that, for realistic parameter choices, the departures from Gaussian statistics are small and would have a negligible effect on the large-scale structure produced in the model. On the other hand, the model predicts a power spectrum with n not equal to 1, and this could be good news for large-scale structure.
Isocurvature fluctuations through axion trapping by cosmic string wakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layek, Biswanath
2005-03-15
We consider wakelike density fluctuations produced by cosmic strings at the quark-hadron transition in the early universe. We show that low momentum axions which are produced through the radiation from the axionic string at an earlier stage, may get trapped inside these wakes due to delayed hadronization in these overdense regions. As the interfaces, bordering the wakes, collapse, the axions pick-up momentum from the walls and finally leave the wake regions. These axions thus can produce large scale isocurvature fluctuations. We have calculated the detailed profile of these axionic density fluctuations and discuss its astrophysical consequences.
Density Fluctuation in Asymmetric Nozzle Plumes and Correlation with Far Field Noise
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.
2001-01-01
A comparative experimental study of air density fluctuations in the unheated plumes of a circular, 4-tabbed-circular, chevron-circular and 10-lobed rectangular nozzles was performed at a fixed Mach number of 0.95 using a recently developed Rayleigh scattering based technique. Subsequently, the flow density fluctuations are cross-correlated with the far field sound pressure fluctuations to determine sources for acoustics emission. The nearly identical noise spectra from the baseline circular and the chevron nozzles are found to be in agreement with the similarity in spreading, turbulence fluctuations, and flow-sound correlations measured in the plumes. The lobed nozzle produced the least low frequency noise, in agreement with the weakest overall density fluctuations and flow-sound correlation. The tabbed nozzle took an intermediate position in the hierarchy of noise generation, intensity of turbulent fluctuation and flow-sound correlation. Some of the features in the 4-tabbed nozzle are found to be explainable in terms of splitting of the jet in a central large core and 4 side jetlets.
Cosmological density fluctuations produced by vacuum strings
NASA Astrophysics Data System (ADS)
Vilenkin, A.
1981-04-01
Consideration is given to the possible role of vacuum domain strings produced in the grand unification phase transition in the early universe in the generation of the density fluctuations giving rise to galaxies. The cosmological evolution of the strings formed in the grand unification phase transition is analyzed, with attention given to possible mechanisms for the damping out of oscillations produced by tension in convoluted strings and closed loops. The cosmological density fluctuations introduced by infinite strings and closed loops smaller than the horizon are then shown to be capable of giving rise to mass condensations on a scale of approximately 10 to the 9th solar masses at the time of the decoupling of radiation from matter, around which the galaxies condense. Differences between the present theory and that suggested by Zel'dovich (1980) are pointed out, and it is noted that string formation at the grand unification phase transition is possible only if the manifold of the degenerate vacua of the gauge theory is not simply connected.
Density dependence in demography and dispersal generates fluctuating invasion speeds
Li, Bingtuan; Miller, Tom E. X.
2017-01-01
Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities—i.e., an Allee effect—combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting. PMID:28442569
Large-Scale Structure and Hyperuniformity of Amorphous Ices
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto
2017-09-01
We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
2016-06-08
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
NASA Technical Reports Server (NTRS)
Fritts, David
1987-01-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
Seeded hot dark matter models with inflation
NASA Technical Reports Server (NTRS)
Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.
1993-01-01
We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zang, L., E-mail: l-zang@center.iae.kyoto-u.ac.jp; Kasajima, K.; Hashimoto, K.
Edge fluctuation in a supersonic molecular-beam injection (SMBI) fueled plasma has been measured using an electrostatic probe array. After SMBI, the plasma stored energy (W{sub p}) temporarily decreased then started to increase. The local plasma fluctuation and fluctuation induced particle transport before and after SMBI have been analyzed. In a short duration (∼4 ms) just after SMBI, the density fluctuation of broad-band low frequency increased, and the probability density function (PDF) changed from a nearly Gaussian to a positively skewed non-Gaussian one. This suggests that intermittent structures were produced due to SMBI. Also the fluctuation induced particle transport was greatly enhancedmore » during this short duration. About 4 ms after SMBI, the low frequency broad-band density fluctuation decreased, and the PDF returned to a nearly Gaussian shape. Also the fluctuation induced particle transport was reduced. Compared with conventional gas puff, W{sub p} degradation window is very short due to the short injection period of SMBI. After this short degradation window, fluctuation induced particle transport was reduced and W{sub p} started the climbing phase. Therefore, the short period of the influence to the edge fluctuation might be an advantage of this novel fueling technique. On the other hand, although their roles are not identified at present, coherent MHD modes are also suppressed as well by the application of SMBI. These MHD modes are thought to be de-exited due to a sudden change of the edge density and/or excitation conditions.« less
Exact solution of the Lifshitz equations governing the growth of fluctuations in cosmology
NASA Technical Reports Server (NTRS)
Adams, P. J.; Canuto, V.
1975-01-01
The exact solution of the Lifshitz equations governing the cosmological evolution of an initial fluctuation is presented. Lifshitz results valid for squares of the sound velocity equal to zero and 1/3 are extended in closed form to any equation of state where the pressure equals the total energy density times the square of the sound velocity. The solutions embody all the results found previously for special cases of the square of the sound velocity. It is found that the growth of any initial fluctuation is only an exponential function of time with an exponent of not more than 4/3 and is insufficient to produce galaxies unless the initial fluctuation is very large. A possible way to produce very large initial fluctuations by modifying the equation of state by including gravitational interactions is also examined. It is found that a phase transition can occur at baryonic density of 1 nucleon per cubic Planck length or equivalently, at a time of about 10 to the -43rd power sec. At those early times, the masses allowed by causality requirements are too small to be of interest in galaxy formation.
Density of states and magnetotransport in Weyl semimetals with long-range disorder
NASA Astrophysics Data System (ADS)
Pesin, D. A.; Mishchenko, E. G.; Levchenko, A.
2015-11-01
We study the density of states and magnetotransport properties of disordered Weyl semimetals, focusing on the case of a strong long-range disorder. To calculate the disorder-averaged density of states close to nodal points, we treat exactly the long-range random potential fluctuations produced by charged impurities, while the short-range component of disorder potential is included systematically and controllably with the help of a diagram technique. We find that, for energies close to the degeneracy point, long-range potential fluctuations lead to a finite density of states. In the context of transport, we discuss that a self-consistent theory of screening in magnetic field may conceivably lead to nonmonotonic low-field magnetoresistance.
Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.
Bell, John B; Garcia, Alejandro L; Williams, Sarah A
2007-07-01
The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full LLNS equations. Several computational fluid dynamics approaches are considered (including MacCormack's two-step Lax-Wendroff scheme and the piecewise parabolic method) and are found to give good results for the variance of momentum fluctuations. However, neither of these schemes accurately reproduces the fluctuations in energy or density. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal integrator that does accurately produce fluctuations in density, energy, and momentum. A variety of numerical tests, including the random walk of a standing shock wave, are considered and results from the stochastic LLNS solver are compared with theory, when available, and with molecular simulations using a direct simulation Monte Carlo algorithm.
Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma
NASA Astrophysics Data System (ADS)
Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.
2012-10-01
Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.
Attenuation of sound in sand sediments due to porosity fluctuations.
Hefner, Brian T; Jackson, Darrell R
2014-08-01
At high frequencies, the attenuation measured in sand sediments is larger than that predicted by Biot theory. To account for this discrepancy, perturbation theory is used to incorporate losses due to scattering by porosity variations into both Biot's poroelastic equations and the effective density fluid model. While previous results showed that fluctuations in the bulk frame modulus were insufficient to produce significant attenuation in a sand sediment, modest levels of fluctuations in the porosity produce significant scattering loss. By using the sediment parameters and the heterogeneity power spectrum measured during the Sediment Acoustics Experiment in 2004, the perturbation theory result shows good agreement with the sound speed and attenuation data without any free parameters.
Turbulence and transport in high density, increased β LAPD plasmas
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Carter, Troy; Guice, Danny
2014-10-01
A new LaB6 cathode plasma source has recently been deployed on the Large Plasma Device (LAPD), allowing for the production of significantly higher plasma density (ne ~ 3 ×1013 cm-3) and temperature (Te ~ 12 eV and Ti ~ 6 eV). This source produces a smaller core plasma (~20cm diameter) that can be embedded in the lower temperature, lower density standard LAPD plasma (60 cm diameter, 1012 cm-3, Te ~ 5 eV, Ti ~ 1 eV). We will present first results from experiments exploring the nature of turbulence and transport produced by this high density core plasma. In contrast to the edge of the standard LAPD plasma, coherent fluctuations are observed in the edge of the high density core plasma. These coherent modes are dominant at low field (~400 G) with a transition to a more broadband spectrum at higher fields (~1 kG). The combination of increased density and temperature with lowered field in LAPD leads to significant increases in plasma β (in fact β ~ 1 can be achieved for B ~ 100 G). As the field is lowered, the strength of correlated magnetic fluctuations increases substantially.
Double inflation - A possible resolution of the large-scale structure problem
NASA Technical Reports Server (NTRS)
Turner, Michael S.; Villumsen, Jens V.; Vittorio, Nicola; Silk, Joseph; Juszkiewicz, Roman
1987-01-01
A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Omega = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of about 100 Mpc, while the small-scale structure over less than about 10 Mpc resembles that in a low-density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations.
Thomson scattering measurements from asymmetric interpenetrating plasma flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.
2014-11-15
Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities formore » each plasma flow are determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenbuerger, S.; Brandt, C.; Brochard, F.
2010-06-15
Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the goodmore » correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.« less
NASA Astrophysics Data System (ADS)
Oldenbürger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.
2010-06-01
Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.
Energy dynamics in a simulation of LAPD turbulence
NASA Astrophysics Data System (ADS)
Friedman, B.; Carter, T. A.; Umansky, M. V.; Schaffner, D.; Dudson, B.
2012-10-01
Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k∥=0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k∥≠0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k∥=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data. This indicates the importance of the nonlinear instability in producing experimentally consistent turbulence.
PATCHY BLAZAR HEATING: DIVERSIFYING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberts, Astrid; Chang, Philip; Pfrommer, Christoph
TeV-blazars potentially heat the intergalactic medium (IGM) as their gamma rays interact with photons of the extragalactic background light to produce electron–positron pairs, which lose their kinetic energy to the surrounding medium through plasma instabilities. This results in a heating mechanism that is only weakly sensitive to the local density, and therefore approximately spatially uniform, naturally producing an inverted temperature–density relation in underdense regions. In this paper we go beyond the approximation of uniform heating and quantify the heating rate fluctuations due to the clustered distribution of blazars and how this impacts the thermal history of the IGM. We analyticallymore » compute a filtering function that relates the heating rate fluctuations to the underlying dark matter density field. We implement it in the cosmological code GADGET-3 and perform large-scale simulations to determine the impact of inhomogeneous heating. We show that because of blazar clustering, blazar heating is inhomogeneous for z ≳ 2. At high redshift, the temperature–density relation shows an important scatter and presents a low temperature envelope of unheated regions, in particular at low densities and within voids. However, the median temperature of the IGM is close to that in the uniform case, albeit slightly lower at low redshift. We find that blazar heating is more complex than initially assumed and that the temperature–density relation is not unique. Our analytic model for the heating rate fluctuations couples well with large-scale simulations and provides a cost-effective alternative to subgrid models.« less
Critical fluctuations of the proton density in A+A collisions at 158A GeV
Anticic, T.; Baatar, B.; Bartke, J.; ...
2015-12-12
Here, we look for fluctuations expected for the QCD critical point using an intermittency analysis in the transverse momentum phase space of protons produced around midrapidity in the 12.5 % most central C+C, Si+Si and Pb+Pb collisions at the maximum SPS energy of 158A GeV. We find evidence of power-law fluctuations for the Si+Si data. The fitted power-law exponent Φ 2=0.96 +0.38 –0.25 (stat.) ± 0.16 (syst.) is consistent with the value expected for critical fluctuations. Power-law fluctuations had previously also been observed in low-mass π +π – pairs in the same Si+Si collisions.
Precombination Cloud Collapse and Baryonic Dark Matter
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
NASA Technical Reports Server (NTRS)
Kashlinsky, A.
1992-01-01
It is shown here that, by using galaxy catalog correlation data as input, measurements of microwave background radiation (MBR) anisotropies should soon be able to test two of the inflationary scenario's most basic predictions: (1) that the primordial density fluctuations produced were scale-invariant and (2) that the universe is flat. They should also be able to detect anisotropies of large-scale structure formed by gravitational evolution of density fluctuations present at the last scattering epoch. Computations of MBR anisotropies corresponding to the minimum of the large-scale variance of the MBR anisotropy are presented which favor an open universe with P(k) significantly different from the Harrison-Zeldovich spectrum predicted by most inflationary models.
The correlation function of galaxy ellipticities produced by gravitational lensing
NASA Technical Reports Server (NTRS)
Miralda-Escude, Jordi
1991-01-01
The correlation of galaxy ellipticities produced by gravitational lensing is calculated as a function of the power spectrum of density fluctuations in the universe by generalizing an analytical method developed by Gunn (1967). The method is applied to a model where identical objects with spherically symmetric density profiles are randomly laid down in space, and to the cold dark matter model. The possibility of detecting this correlation is discussed. Although an ellipticity correlation can also be caused by an intrinsic alignment of the axes of galaxies belonging to a cluster or a supercluster, a method is suggested by which one type of correlation can be distinguished from another. The advantage of this ellipticity correlation is that it is one of the few astronomical observations that can directly probe large-scale mass fluctuations in the universe.
LETTER: Biased limiter experiments on the Advanced Toroidal Facility (ATF) torsatron
NASA Astrophysics Data System (ADS)
Uckan, T.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Aceto, S. C.; Zielinski, J. J.
1994-02-01
The Advanced Toroidal Facility (ATF) torsatron incorporates two rail limiters that can be positioned by external controls. The influence on the plasma parameters of biasing these limiters both positively and negatively with respect to the walls has been investigated. Experiments have been carried out in the electron cyclotron heated plasmas at 200 kW with a typical density of 5 × 1012 cm-3 and a central electron temperature of ~900 eV. Negative biasing produces only small changes in the plasma parameters, but positive biasing increases the particle confinement by about a factor of 5, although the plasma stored energy does fall at the higher voltages. In addition, positive biasing produces the following effects compared with floating limiter discharges: the core density profiles become peaked rather than hollow, the electric field at the edge becomes more negative (pointing radially inward), the magnitudes of the edge fluctuations and the fluctuation induced transport are reduced, the fluctuation wavelengths become longer and their propagation direction reverses from the electron to the ion diamagnetic direction. Neither polarity of biasing appears to affect the impurity content or transport
NASA Technical Reports Server (NTRS)
Yokoyama, Jun'ichi; Suto, Yasushi
1991-01-01
A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.
Coulomb disorder in three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Skinner, Brian
2015-03-01
In three-dimensional materials with a Dirac spectrum, weak short-ranged disorder is essentially irrelevant near the Dirac point. This is manifestly not the case for Coulomb disorder, where the long-ranged nature of the potential produced by charged impurities implies large fluctuations of the disorder potential even when impurities are sparse, and these fluctuations are screened by the formation of electron/hole puddles. Here I outline a theory of such nonlinear screening of Coulomb disorder in three-dimensional Dirac systems, and present results for the typical magnitude of the disorder potential, the corresponding density of states, and the size and density of electron/hole puddles. The resulting conductivity is also discussed.
Sæther, Bernt-Erik; Visser, Marcel E; Grøtan, Vidar; Engen, Steinar
2016-04-27
Understanding the variation in selection pressure on key life-history traits is crucial in our rapidly changing world. Density is rarely considered as a selective agent. To study its importance, we partition phenotypic selection in fluctuating environments into components representing the population growth rate at low densities and the strength of density dependence, using a new stochastic modelling framework. We analysed the number of eggs laid per season in a small song-bird, the great tit, and found balancing selection favouring large clutch sizes at small population densities and smaller clutches in years with large populations. A significant interaction between clutch size and population size in the regression for the Malthusian fitness reveals that those females producing large clutch sizes at small population sizes also are those that show the strongest reduction in fitness when population size is increased. This provides empirical support for ongoing r- and K-selection in this population, favouring phenotypes with large growth rates r at small population sizes and phenotypes with high competitive skills when populations are close to the carrying capacity K This selection causes long-term fluctuations around a stable mean clutch size caused by variation in population size, implying that r- and K-selection is an important mechanism influencing phenotypic evolution in fluctuating environments. This provides a general link between ecological dynamics and evolutionary processes, operating through a joint influence of density dependence and environmental stochasticity on fluctuations in population size. © 2016 The Author(s).
Quantum critical scaling and fluctuations in Kondo lattice materials
Yang, Yi-feng; Pines, David; Lonzarich, Gilbert
2017-01-01
We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308
Impact of neutral density fluctuations on gas puff imaging diagnostics
NASA Astrophysics Data System (ADS)
Wersal, C.; Ricci, P.
2017-11-01
A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.
Primordial black holes from fifth forces
NASA Astrophysics Data System (ADS)
Amendola, Luca; Rubio, Javier; Wetterich, Christof
2018-04-01
Primordial black holes can be produced by a long-range attractive fifth force stronger than gravity, mediated by a light scalar field interacting with nonrelativistic "heavy" particles. As soon as the energy fraction of heavy particles reaches a threshold, the fluctuations rapidly become nonlinear. The overdensities collapse into black holes or similar screened objects, without the need for any particular feature in the spectrum of primordial density fluctuations generated during inflation. We discuss whether such primordial black holes can constitute the total dark matter component in the Universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Heesun; Cho, Jungyeon; Kim, Jongsoo, E-mail: hsyoon@cnu.ac.kr, E-mail: jcho@cnu.ac.kr, E-mail: jskim@kasi.re.kr
Turbulent motions naturally produce density and magnetic-field fluctuations. Correlation between the two fluctuations is important for interpretation of observations, such as observations of the rotation measure (RM). In this paper, we study the effect of driving schemes on the density-magnetic-field correlation. In particular, we numerically investigate how the correlation time of driving affects the correlation between density and magnetic field. We perform compressible magnetohydrodynamic turbulence simulations at different sonic Mach numbers ( M {sub s} ), using two different driving schemes—a finite-correlated driving and a delta-correlated driving. In the former, the forcing vectors change continuously with a correlation time comparablemore » to the large-eddy turnover time. In the latter, the direction (and amplitude) of driving changes in a very short timescale. The finite-correlated driving results in strong anti-correlation between two fields when the sonic and the Alfvénic Mach numbers are similar to unity (i.e., when M {sub s} ∼ 1 and M {sub A} ∼ 1, respectively). However, the anti-correlation becomes weaker and approaches zero for higher values of M {sub s} or M {sub A}. The delta-correlated driving produces virtually no correlation between two fields when M {sub s} ∼ 1 and M {sub A} ∼ 1, and produces more and more positive correlations as M {sub s} or M {sub A} increases. We conjecture that two competing effects, tendency for achieving balance between the gas and the magnetic pressure and simultaneous compression of fluid and magnetic field, determine the correlation behavior. We also investigate how different driving schemes affect the Probability Density Function of three-dimensional density, dispersion measure, and RM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashlinsky, A., E-mail: Alexander.Kashlinsky@nasa.gov
LIGO's discovery of a gravitational wave from two merging black holes (BHs) of similar masses rekindled suggestions that primordial BHs (PBHs) make up the dark matter (DM). If so, PBHs would add a Poissonian isocurvature density fluctuation component to the inflation-produced adiabatic density fluctuations. For LIGO's BH parameters, this extra component would dominate the small-scale power responsible for collapse of early DM halos at z ≳ 10, where first luminous sources formed. We quantify the resultant increase in high- z abundances of collapsed halos that are suitable for producing the first generation of stars and luminous sources. The significantly increasedmore » abundance of the early halos would naturally explain the observed source-subtracted near-IR cosmic infrared background (CIB) fluctuations, which cannot be accounted for by known galaxy populations. For LIGO's BH parameters, this increase is such that the observed CIB fluctuation levels at 2–5 μ m can be produced if only a tiny fraction of baryons in the collapsed DM halos forms luminous sources. Gas accretion onto these PBHs in collapsed halos, where first stars should also form, would straightforwardly account for the observed high coherence between the CIB and unresolved cosmic X-ray background in soft X-rays. We discuss modifications possibly required in the processes of first star formation if LIGO-type BHs indeed make up the bulk or all of DM. The arguments are valid only if the PBHs make up all, or at least most, of DM, but at the same time the mechanism appears inevitable if DM is made of PBHs.« less
Does lower Omega allow a resolution of the large-scale structure problem?
NASA Technical Reports Server (NTRS)
Silk, Joseph; Vittorio, Nicola
1987-01-01
The intermediate angular scale anisotropy of the cosmic microwave background, peculiar velocities, density correlations, and mass fluctuations for both neutrino and baryon-dominated universes with Omega less than one are evaluated. The large coherence length associated with a low-Omega, hot dark matter-dominated universe provides substantial density fluctuations on scales up to 100 Mpc: there is a range of acceptable models that are capable of producing large voids and superclusters of galaxies and the clustering of galaxy clusters, with Omega roughly 0.3, without violating any observational constraint. Low-Omega, cold dark matter-dominated cosmologies are also examined. All of these models may be reconciled with the inflationary requirement of a flat universe by introducing a cosmological constant 1-Omega.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grierson, B. A.; Staebler, G. M.; Solomon, W. M.
Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less
Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; ...
2018-02-01
Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less
NASA Astrophysics Data System (ADS)
Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team
2018-02-01
Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.
Observation of improved and degraded confinement with driven flow on the LAPD
NASA Astrophysics Data System (ADS)
Schaffner, David
2012-10-01
External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.
The Transport of Density Fluctuations Throughout the Heliosphere
NASA Technical Reports Server (NTRS)
Zank, G. P.; Jetha, N.; Hu, Q.; Hunana, P.
2012-01-01
The solar wind is recognized as a turbulent magnetofluid, for which the properties of the turbulent velocity and magnetic field fluctuations are often described by the equations of incompressible magnetohydrodynamics (MHD). However, low-frequency density turbulence is also ubiquitous. On the basis of a nearly incompressible formulation of MHD in the expanding inhomogeneous solar wind, we derive the transport equation for the variance of the density fluctuations (Rho(exp 2)). The transport equation shows that density fluctuations behave as a passive scalar in the supersonic solar wind. In the absence of sources of density turbulence, such as within 1AU, the variance (Rho(exp 2)) approximates r(exp -4). In the outer heliosphere beyond 1 AU, the shear between fast and slow streams, the propagation of shocks, and the creation of interstellar pickup ions all act as sources of density turbulence. The model density fluctuation variance evolves with heliocentric distance within approximately 300 AU as (Rho(exp 2)) approximates r(exp -3.3) after which it flattens and then slowly increases. This is precisely the radial profile for the density fluctuation variance observed by Voyager 2. Using a different analysis technique, we confirm the radial profile for Rho(exp 2) of Bellamy, Cairns, & Smith using Voyager 2 data. We conclude that a passive scalar description for density fluctuations in the supersonic solar wind can explain the density fluctuation variance observed in both the inner and the outer heliosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu; Lei, Jiuhou, E-mail: leijh@ustc.edu.cn; Collaborative Innovation Center of Astronautical Science and Technology, Harbin 150001
Ionospheric depletions, produced by release of attachment chemicals into the ionosphere, were widely investigated and taken as a potential technique for the artificial modification of space weather. In this work, we reported the experimental evidence of spontaneously generated electromagnetic fluctuations in the boundary layer of laboratory-created ionospheric depletions. These depletions were produced by releasing attachment chemicals into the ambient plasmas. Electron density gradients and sheared flows arose in the boundary layer between the ambient and the negative ions plasmas. These generated electromagnetic fluctuations with fundamental frequency f{sub 0} = 70 kHz lie in the lower hybrid frequency range, and the mode propagates withmore » angles smaller than 90° (0.3π–0.4π) relative to the magnetic field. Our results revealed that these observed structures were most likely due to electromagnetic components of the electron-ion hybrid instability. This research demonstrates that electromagnetic fluctuations also can be excited during active release experiments, which should be considered as an essential ingredient in the boundary layer processes of ionospheric depletions.« less
Study of Linear and Nonlinear Wave Excitation
NASA Astrophysics Data System (ADS)
Chu, Feng; Berumen, Jorge; Hood, Ryan; Mattingly, Sean; Skiff, Frederick
2013-10-01
We report an experimental study of externally excited low-frequency waves in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional. Wave excitation in the drift wave frequency range is accomplished by low-percentage amplitude modulation of the RF plasma source. Laser-induced fluorescence is adopted to study ion-density fluctuations in phase space. The laser is chopped to separate LIF from collisional fluorescence. A single negatively-biased Langmuir probe is used to detect ion-density fluctuations in the plasma. A ring array of Langmuir probes is also used to analyze the spatial and spectral structure of the excited waves. We apply coherent detection with respect to the wave frequency to obtain the ion distribution function associated with externally generated waves. Higher-order spectra are computed to evaluate the nonlinear coupling between fluctuations at various frequencies produced by the externally generated waves. Parametric decay of the waves is observed. This work is supported by U.S. DOE Grant No. DE-FG02-99ER54543.
Superconducting fluctuations at arbitrary disorder strength
NASA Astrophysics Data System (ADS)
Stepanov, Nikolai A.; Skvortsov, Mikhail A.
2018-04-01
We study the effect of superconducting fluctuations on the conductivity of metals at arbitrary temperatures T and impurity scattering rates τ-1. Using the standard diagrammatic technique but in the Keldysh representation, we derive the general expression for the fluctuation correction to the dc conductivity applicable for any space dimensionality and analyze it in the case of the film geometry. We observe that the usual classification in terms of the Aslamazov-Larkin, Maki-Thompson, and density-of-states diagrams is to some extent artificial since these contributions produce similar terms, which partially cancel each other. In the diffusive limit, our results fully coincide with recent calculations in the Keldysh technique. In the ballistic limit near the transition, we demonstrate the absence of a divergent term (Tτ ) 2 attributed previously to the density-of-states contribution. In the ballistic limit far above the transition, the temperature-dependent part of the conductivity correction is shown to grow as T τ /ln(T /Tc) , where Tc is the critical temperature.
Lin, L; Ding, W X; Brower, D L
2014-11-01
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.
2014-11-15
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less
NASA Astrophysics Data System (ADS)
White, A. E.
2009-11-01
Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Daniel; Horn, Bart; /SLAC /Stanford U., Phys. Dept.
2009-06-19
We analyze a distinctive mechanism for inflation in which particle production slows down a scalar field on a steep potential, and show how it descends from angular moduli in string compactifications. The analysis of density perturbations - taking into account the integrated effect of the produced particles and their quantum fluctuations - requires somewhat new techniques that we develop. We then determine the conditions for this effect to produce sixty e-foldings of inflation with the correct amplitude of density perturbations at the Gaussian level, and show that these requirements can be straightforwardly satisfied. Finally, we estimate the amplitude of themore » non-Gaussianity in the power spectrum and find a significant equilateral contribution.« less
Modelling the energy dependence of black hole binary flows
NASA Astrophysics Data System (ADS)
Mahmoud, Ra'ad D.; Done, Chris
2018-01-01
We build a full spectral-timing model for the low/hard state of black hole binaries assuming that the spectrum of the X-ray hot flow can be produced by two Comptonization zones. Slow fluctuations generated at the largest radii/softest spectral region of the flow propagate down to modulate the faster fluctuations produced in the spectrally harder region close to the black hole. The observed spectrum and variability are produced by summing over all regions in the flow, including its emission reflected from the truncated disc. This produces energy-dependent Fourier lags qualitatively similar to those in the data. Given a viscous frequency prescription, the model predicts Fourier power spectral densities and lags for any energy bands. We apply this model to archival Rossi X-ray Timing Explorer data from Cyg X-1, using the time-averaged energy spectrum together with an assumed emissivity to set the radial bounds of the soft and hard Comptonization regions. We find that the power spectra cannot be described by any smooth model of generating fluctuations, instead requiring that there are specific radii in the flow where noise is preferentially produced. We also find fluctuation damping between spectrally distinct regions is required to prevent all the variability power generated at large radii being propagated into the inner regions. Even with these additions, we can fit either the power spectra at each energy or the lags between energy bands, but not both. We conclude that either the spectra are more complex than two zone models, or that other processes are important in forming the variability.
Properties of density and magnetic fluctuations occurring in density striations in the new LAPD
NASA Astrophysics Data System (ADS)
Maggs, J. E.; Morales, G. J.
2001-10-01
Previous studies of density striations (long, narrow magnetic-field-aligned density depletions) in the LAPD plasma device at UCLA revealed an eigenmode structure to fluctuations driven by the pressure gradient in the striation wall (Maggs and Morales, Phys. Plasmas, 4, 1997). The nature of these fluctuations depended on the plasma beta external to the striation, with shear Alfvén wave turbulence developing at betas less than the mass ratio and drift-Alfvén waves at betas above the mass ratio. These fluctuations were found to have a direct connection to turbulence observed at the plasma edge. The new LAPD is 18 meters in length with a background field up to twice previously attainable values. We report on the properties of fluctuations associated with density striations in the new device over a wider range of beta, and compare them to previous results. The behavior of fluctuations in density striations created in flared-field and magnetic-mirror geometries will also be presented. Research sponsored by ONR and NSF
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
Capillary waves and the decay of density correlations at liquid surfaces
NASA Astrophysics Data System (ADS)
Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro
2016-12-01
Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.
NASA Astrophysics Data System (ADS)
Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-06-01
The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.
The faint galaxy contribution to the diffuse extragalactic background light
NASA Technical Reports Server (NTRS)
Cole, Shaun; Treyer, Marie-Agnes; Silk, Joseph
1992-01-01
Models of the faint galaxy contribution to the diffuse extragalactic background light are presented, which are consistent with current data on faint galaxy number counts and redshifts. The autocorrelation function of surface brightness fluctuations in the extragalactic diffuse light is predicted, and the way in which these predictions depend on the cosmological model and assumptions of biasing is determined. It is confirmed that the recent deep infrared number counts are most compatible with a high density universe (Omega-0 is approximately equal to 1) and that the steep blue counts then require an extra population of rapidly evolving blue galaxies. The faintest presently detectable galaxies produce an interesting contribution to the extragalactic diffuse light, and still fainter galaxies may also produce a significant contribution. These faint galaxies still only produce a small fraction of the total optical diffuse background light, but on scales of a few arcminutes to a few degrees, they produce a substantial fraction of the fluctuations in the diffuse light.
Temperature-Robust Neural Function from Activity-Dependent Ion Channel Regulation.
O'Leary, Timothy; Marder, Eve
2016-11-07
Many species of cold-blooded animals experience substantial and rapid fluctuations in body temperature. Because biological processes are differentially temperature dependent, it is difficult to understand how physiological processes in such animals can be temperature robust [1-8]. Experiments have shown that core neural circuits, such as the pyloric circuit of the crab stomatogastric ganglion (STG), exhibit robust neural activity in spite of large (20°C) temperature fluctuations [3, 5, 7, 8]. This robustness is surprising because (1) each neuron has many different kinds of ion channels with different temperature dependencies (Q 10 s) that interact in a highly nonlinear way to produce firing patterns and (2) across animals there is substantial variability in conductance densities that nonetheless produce almost identical firing properties. The high variability in conductance densities in these neurons [9, 10] appears to contradict the possibility that robustness is achieved through precise tuning of key temperature-dependent processes. In this paper, we develop a theoretical explanation for how temperature robustness can emerge from a simple regulatory control mechanism that is compatible with highly variable conductance densities [11-13]. The resulting model suggests a general mechanism for how nervous systems and excitable tissues can exploit degenerate relationships among temperature-sensitive processes to achieve robust function. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adshead, Peter; Sfakianakis, Evangelos I.
2017-08-01
We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. We work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ < 2, where γ = g 2 ψ 2/ H 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density fluctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wave spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at inflationary energy scales well below the GUT scale.
Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence
Squire, J.; Bhattacharjee, A.
2015-11-02
Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less
The origin of density fluctuations in the 'new inflationary universe'
NASA Technical Reports Server (NTRS)
Turner, M. S.
1983-01-01
Cosmological mysteries which are not explained by the Big Bang hypothesis but may be approached by a revamped inflationary universe model are discussed. Attention is focused on the isotropy, the large-scale homogeneity, small-scale inhomogeneity, the oldness/flatness of the universe, and the baryon asymmetry. The universe is assumed to start in the lowest energy state, be initially dominated by false vacuum energy, enter a de Sitter phase, and then cross a barrier which is followed by the formation of fluctuation regions that lead to structure. The scalar fields (perturbation regions) experience quantum fluctuations which produce spontaneous symmetry breaking on a large scale. The scalar field value would need to be much greater than the expansion rate during the de Sitter epoch. A supersymmetric (flat) potential which satisfies the requirement, yields fluctuations of the right magnitude, and allows inflation to occur is described.
Radio-frequency current drive efficiency in the presence of ITBs and a dc electric field
NASA Astrophysics Data System (ADS)
Rosa, P. R. da S.; Mourão, R.; Ziebell, L. F.
2009-05-01
This paper discusses the current drive efficiency by the combined action of EC and LH waves in the presence of a dc electric field and transport, with an internal transport barrier. The transport is assumed to be produced by magnetic fluctuations. The study explores the different barrier parameters and their influence on the current drive efficiency. We study the subject by numerically solving the Fokker-Planck equation. Our main result is that the barrier depth and barrier width are important to determine the correct shape of the current density profile but not to determine the current drive efficiency, which is very little influenced by these parameters. We also found similar results for the influence of the level of magnetic fluctuations on the current density profile and on the current drive efficiency.
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.; Peters, Kevein; Boone, Kevin
1995-01-01
The current requirements for the Laboratory for Astronomy and Solar Physics, sends rocket satellites and in the near future will involve flights in the shuttle to the upper reaches of the Earth's atmosphere where they will be subjected to the atomic particles and electromagnetic radiation produced by the Sun and other cosmic radiation. It is therefore appropriate to examine the effect of neutrons, gamma rays, beta particles, and X-rays on the film currently being used by the Laboratory for current and future research requirements. It is also hoped by examining these particles in their effect that we will have simulated the space environment of the rockets, satellites, and shuttles. Several samples of the IIaO film were exposed to a neutron howitzer with a source energy of approximately 106 neutrons/steradians. We exposed several samples of the film to a 10 second blast of neutrons in both metal and plastic containers which exhibited higher density readings which indicated the possibility of some secondary nuclear interactions between neutrons and the aluminum container. The plastic container showed some variations at the higher densities. Exposure of the samples of IIaO film to a neutron beam of approximately 10 neutrons per steradians for eight minutes produces approximately a 13% difference in the density readings of the dark density grids. It is not noticeable that at the lighter density grid the neutrons have minimal effects, but on a whole the trend of the eight minute exposed IIaO film density grids at the darker end had a 7.1% difference than the control. Further analysis is anticipated by increasing the exposure time. Two sets of film were exposed to a beta source in a plastic container. The beta source was placed at the bottom so that the cone of rays striking the film would be conical for a period of seven days. It was observed in the films, designated 4a and 4b, a dramatic increase in the grid densities had occurred. The attenuation of beta particles due to the presence of air were observed. The darker density grids, whose positions were the furthest from the beta source, displayed minimal fluctuations as compared with the control. It is suspected that the orientation of the film in the cansister with the beta source is the key factor responsible for the dramatic increases of the lighter density grids. Emulsions 3a and 3b exposed for a period of six days with the grid orientation reserved produced substantial differences in the darker grids as shown in the graphs. There is a great deal of fluctuations in this sample between the beta exposed density grids and the control density grids. The lighter density grids whose orientations were reversed displays minimal fluctuations due to the presence of this beta source and the attenuation that is taking place.
Fluctuations and symmetry energy in nuclear fragmentation dynamics.
Colonna, M
2013-01-25
Within a dynamical description of nuclear fragmentation, based on the liquid-gas phase transition scenario, we explore the relation between neutron-proton density fluctuations and nuclear symmetry energy. We show that, along the fragmentation path, isovector fluctuations follow the evolution of the local density and approach an equilibrium value connected to the local symmetry energy. Higher-density regions are characterized by smaller average asymmetry and narrower isotopic distributions. This dynamical analysis points out that fragment final state isospin fluctuations can probe the symmetry energy of the density domains from which fragments originate.
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Hietzke, W. H.
1982-01-01
The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L.; Ding, W. X.; Brower, D. L.
2010-10-15
Differential interferometry employs two parallel laser beams with a small spatial offset (less than beam width) and frequency difference (1-2 MHz) using common optics and a single mixer for a heterodyne detection. The differential approach allows measurement of the electron density gradient, its fluctuations, as well as the equilibrium density distribution. This novel interferometry technique is immune to fringe skip errors and is particularly useful in harsh plasma environments. Accurate calibration of the beam spatial offset, accomplished by use of a rotating dielectric wedge, is required to enable broad application of this approach. Differential interferometry has been successfully used onmore » the Madison Symmetric Torus reversed-field pinch plasma to directly measure fluctuation-induced transport along with equilibrium density profile evolution during pellet injection. In addition, by combining differential and conventional interferometry, both linear and nonlinear terms of the electron density fluctuation energy equation can be determined, thereby allowing quantitative investigation of the origin of the density fluctuations. The concept, calibration, and application of differential interferometry are presented.« less
NASA Astrophysics Data System (ADS)
Armendariz, Raul L.
Measuring energy produced in relativistic heavy-ion collisions is a way to investigate if a model of quark participants, or nucleon participants better describes the internal dynamics of the collision. The energy produced is proportional to the energy density in the interaction region; changes in fluctuations of energy production could be a signature for a phase transition between ordinary hadronic matter to a liberated quark-gluon plasma phase, QGP, thought to have existed one millionth of a second after the Big Bang creation of the Universe and before protons and neutrons had formed. Three experimental nuclear physics data-analyses were conducted using the sum energy of all particles produced in the direction transverse to the beam, ET, when nuclei collide in a 2.4 mile long circular atom smasher. The nuclei are accelerated in opposite directions at 99.995% the speed of light, and center-of-mass energies available for new particle production of sNN = 62.4 GeV, and 200 GeV per colliding nucleon pair were studied. The ET was recorded by the lead-scintillator electromagnetic calorimeter detectors of the Pioneering High Energy Interactions Experiment (PHENIX), at the Relativistic heavy Ion Collider (RHIC), of Brookhaven National Laboratory (BNL). The collision systems studied were 200 GeV protons with protons ( p + p), deuterons with Au ions (d+Au), and 62.4 GeV and 200 GeV gold ions with gold ions (Au+Au). The first analysis, mean ET in collision centrality, explores whether a model of nucleon participants, or quark participants, better describes energy production with collision impact. The second analysis, ET fluctuations in collision centrality, looks for non-random fluctuations in ET distributions when the density of colliding partons becomes high. The third analysis, ET fluctuations in geometric acceptance, examines fluctuations as a function of detector fiducial volume in a search for correlated energy distribution in space (correlations ), known to occur in phenomena such as elliptic flow and particle jets. The Au+Au results are as follows. In both 62.4 GeV and 200 GeV interactions mean ET production per participant nucleon rises steadily, and per participant quark remains constant to within the identified errors. In both 62.4 GeV and 200 GeV collisions energy densities estimated for QGP formation were measured: at 200 GeV these levels of 1 GeV/fm 3, to 3 GeV/fm3 were measured in interactions of 30 and 150 participant nucleons respectively (corresponding to the 60-65%, and 25-30% centrality classes of data). In neither 62.4 GeV nor 200 GeV interactions are changes in fluctuations over collision impact observed above the 40% systematic errors introduced by the centrality definitions. Fluctuations in acceptance for the 200 GeV 0-5% most central class of collisions, corresponding to 350 participant nucleons, exhibit a 115% rise in a 6-fold increase of the transverse angle; from this a correlation-length of 3.1° is calculated; removal of known contamination effects to the fluctuations from event reaction-plane rotation and elliptic-flow are under investigation.
Density fluctuation in HT-6M tokamak by CO2 laser scattering
NASA Astrophysics Data System (ADS)
Zeng, Lei; Cao, Jinxiang; Zhu, Guoliang; Ding, Weixing; Yu, Chang-Xuan; Zhang, Daqing; Li, Youyi
1993-09-01
The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a wide range of nqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time (tau) E decreases with the fluctuation level increasing in the region where (tau) E linearly increases with nq0.5a and satisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.
Ross, J S; Glenzer, S H; Palastro, J P; Pollock, B B; Price, D; Tynan, G R; Froula, D H
2010-10-01
We present simultaneous Thomson-scattering measurements of light scattered from ion-acoustic and electron-plasma fluctuations in a N(2) gas jet plasma. By varying the plasma density from 1.5×10(18) to 4.0×10(19) cm(-3) and the temperature from 100 to 600 eV, we observe the transition from the collective regime to the noncollective regime in the high-frequency Thomson-scattering spectrum. These measurements allow an accurate local measurement of fundamental plasma parameters: electron temperature, density, and ion temperature. Furthermore, experiments performed in the high densities typically found in laser produced plasmas result in scattering from electrons moving near the phase velocity of the relativistic plasma waves. Therefore, it is shown that even at low temperatures relativistic corrections to the scattered power must be included.
Observation of low magnetic field density peaks in helicon plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.
2013-04-15
Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peakmore » value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.« less
Density Fluctuations in a Polar Coronal Hole
NASA Astrophysics Data System (ADS)
Hahn, Michael; D’Huys, Elke; Savin, Daniel Wolf
2018-06-01
We have measured the root-mean-square (rms) amplitude of intensity fluctuations, ΔI, in plume and interplume regions of a polar coronal hole. These intensity fluctuations correspond to density fluctuations. Using data from the Sun Watcher using the Active Pixel System detector and Image Processing on the Project for Onboard Autonomy (Proba2), our results extend up to a height of about 1.35 R ⊙. One advantage of the rms analysis is that it does not rely on a detailed evaluation of the power spectrum, which is limited by noise levels to low heights in the corona. The rms approach can be performed up to larger heights where the noise level is greater, provided that the noise itself can be quantified. At low heights, both the absolute ΔI, and the amplitude relative to the mean intensity, ΔI/I, decrease with height. However, starting at about 1.2 R ⊙, ΔI/I increases, reaching 20%–40% by 1.35 R ⊙. This corresponds to density fluctuations of Δn e/n e ≈ 10%–20%. The increasing relative amplitude implies that the density fluctuations are generated in the corona itself. One possibility is that the density fluctuations are generated by an instability of Alfvén waves. This generation mechanism is consistent with some theoretical models and with observations of Alfvén wave amplitudes in coronal holes. Although we find that the energy of the observed density fluctuations is small, these fluctuations are likely to play an important indirect role in coronal heating by promoting the reflection of Alfvén waves and driving turbulence.
Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I
2006-04-07
We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Relic gravitational waves and extended inflation
NASA Technical Reports Server (NTRS)
Turner, Michael S.; Wilczek, Frank
1990-01-01
In extended inflation, a new version of inflation where the transition from the false-vacuum phase to a radiation-dominated Universe is accomplished by bubble nucleation and percolation, bubble collisions supply a potent-and potentially detectable-source of gravitational waves. The present energy density in relic gravity waves from bubble collisions is expected to be about 10(exp -5) of closure density-many orders of magnitude greater than that of the gravity waves produced by quantum fluctuations. Their characteristic wavelength depends upon the reheating temperature T(sub RH): lambda is approximately 10(exp 4) cm (10(exp 14) GeV/T(sub RH)). If large numbers of black holes are produced, a not implausible outcome, they will evaporate producing comparable amounts of shorter wavelength waves, lambda is approximately 10(exp -6) cm (T(sub RH)/10(exp 14) GeV).
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1980-01-01
The residual spectra of matter and radiation fluctuations in the early universe are investigated, and the evolution of primordial adiabatic and isothermal fluctuations through the decoupling epoch is studied. Amplification of adiabatic density fluctuations during decoupling, or velocity 'overshoot', is largely suppressed by Compton drag. Consequently, the amplitude of density fluctuations entering the horizon prior to decoupling is larger than hitherto assumed in the adiabatic theory. Damping of primordial adiabatic density fluctuations by an order of magnitude occurs on mass-scales of 3 x 10 to the 13th solar masses (Omega = 1) or 10 to the 14th solar masses (Omega = 0.2). Comparison of the residual radiation fluctuations with observational limits indicates that the adiabatic theory is only acceptable if re-ionization of the intergalactic medium results in additional scattering of the radiation after decoupling. Primordial isothermal fluctuations are found to yield radiation fluctuations which are insensitive to the assumed spectrum and lie a factor of about 5 below current limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.
Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less
Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.; ...
2017-07-28
Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less
NASA Astrophysics Data System (ADS)
Nikolaeva, V.; Guimarais, L.; Manz, P.; Carralero, D.; Manso, M. E.; Stroth, U.; Silva, C.; Conway, G. D.; Seliunin, E.; Vicente, J.; Brida, D.; Aguiam, D.; Santos, J.; Silva, A.; ASDEX Upgrade team; MST1 team
2018-05-01
Transport in the scrape-off layer (SOL) depends on the state of divertor detachment. L-mode discharges were analyzed where the state of divertor detachment is varied through a density ramp-up. By means of reflectometry measurements at the low (LFS) and the high field side (HFS), midplane density fluctuations are studied for the first time in ASDEX Upgrade simultaneously at both sides of the tokamak. Radial density fluctuation profiles (δ {n}e/{n}e) increase with radius in both the HFS and the LFS. It is found that in the SOL density fluctuations at the LFS have about a factor of two larger amplitude than at the HFS in agreement with ballooned transport. Density fluctuations at the LFS show a modest variation with increasing background density resulting mainly from a rise of low frequency components. Experimental results are in good agreement with an enhanced convection of filaments at the LFS at the beginning of outer divertor detachment leading to a flatter SOL density profile. In this phase of the discharge, density fluctuations measured at the HFS far-SOL display a strong increase, which may be associated with the presence of faster filaments originated at the LFS.
Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.
2004-01-01
Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.
Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi
1994-01-01
We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.
Investigation of Density Fluctuations in Supersonic Free Jets and Correlation with Generated Noise
NASA Technical Reports Server (NTRS)
Panda, J.; Seasholtz, R. G.
2000-01-01
The air density fluctuations in the plumes of fully-expanded, unheated free jets were investigated experimentally using a Rayleigh scattering based technique. The point measuring technique used a continuous wave laser, fiber-optic transmission and photon counting electronics. The radial and centerline profiles of time-averaged density and root-mean-square density fluctuation provided a comparative description of jet growth. To measure density fluctuation spectra a two-Photomultiplier tube technique was used. Crosscorrelation between the two PMT signals significantly reduced electronic shot noise contribution. Turbulent density fluctuations occurring up to a Strouhal number (Sr) of 2.5 were resolved. A remarkable feature of density spectra, obtained from the same locations of jets in 0.5< M<1.5 range, is a constant Strouhal frequency for peak fluctuations. A detailed survey at Mach numbers M = 0.95, 1.4 and 1.8 showed that, in general, distribution of various Strouhal frequency fluctuations remained similar for the three jets. In spite of the similarity in the flow fluctuation the noise characteristics were found to be significantly different. Spark schlieren photographs and near field microphone measurements confirmed that the eddy Mach wave radiation was present in Mach 1.8 jet, and was absent in Mach 0.95 jet. To measure correlation between the flow and the far field sound pressure fluctuations, a microphone was kept at a distance of 50 diameters, 30 deg. to the flow direction, and the laser probe volume was moved from point to point in the flow. The density fluctuations in the peripheral shear layer of Mach 1.8 jet showed significant correlation up to the measurement limit of Sr = 2.5, while for Mach 0.95 jet no correlation was measured. Along the centerline measurable correlation was found from the end of the potential core and at the low frequency range (Sr less than 0.5). Usually the normalized correlation values increased with an increase of the jet Mach number. The experimental data point out eddy Mach waves as a strong source of sound generation in supersonic jets and fail to locate the primary noise mechanism in subsonic jets.
White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A
2008-10-01
A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.
NASA Astrophysics Data System (ADS)
Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju
2012-09-01
The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.
Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion
NASA Technical Reports Server (NTRS)
Chapman, J. M.; Kevorkian, J.
1978-01-01
The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.
NASA Astrophysics Data System (ADS)
De Masi, G.; Predebon, I.; Spagnolo, S.; Meneses, L.; Delabie, E.; Lupelli, I.; Hillesheim, J. C.; Maggi, C.; Contributors, JET
2018-04-01
Density and magnetic fluctuation measurements in low-β type-III ELM discharges are obtained in the Joint European Torus (JET). They are observed during the inter-ELM pedestal evolution, after the LH transition phase, at about 60-70 kHz. Density fluctuations are measured with a correlation reflectometer system installed on the low-field side and they are localized at the pedestal top. Magnetic fluctuations with a spatial scale k_yρ_i˜ 0.1 are measured through a high resolution coil array. The main features and the relations with local plasma parameters are presented. The nature of these fluctuations is discussed along with linear gyrokinetic simulations. Ion temperature gradient (ITG) modes are the dominant instabilities in the frequency range of interest. In terms of radial localization, typical oscillation frequency and qualitative relation with the possible linear drive, ITG modes are consistent with the experimental density fluctuations measurements. Micro-tearing modes (MTMs), found unstable with a lower growth rate, appear a possible explanation for magnetic fluctuations in terms of typical wavenumbers and direction of propagation.
NASA Astrophysics Data System (ADS)
Schlickeiser, R.
2012-01-01
A systematic calculation of the electromagnetic properties (Poynting vector, electromagnetic energy, and pressure) of the collective transverse fluctuations in unmagnetized plasmas with velocity-anisotropic plasma particle distributions functions is presented. Time-averaged electromagnetic properties for monochromatic weakly damped wave-like fluctuations and space-averaged electromagnetic properties for monochromatic weakly propagating and aperiodic fluctuations are calculated. For aperiodic fluctuations, the Poynting vector as well as the sum of the space-averaged electric and magnetic field energy densities vanish. However, aperiodic fluctuations possess a positive pressure given by its magnetic energy density. This finite pressure density pa of aperiodic fluctuations has important consequences for the dynamics of cosmic unmagnetized plasmas such as the intergalactic medium after reionization. Adopting the standard cosmological evolution model, we show that this additional pressure changes the expansion law of the universe leading to further deceleration. Negative vacuum pressure counterbalances this deceleration to an accelerating universe provided that the negative vacuum pressure is greater than 1.5pa, which we estimate to be of the order 2.1 . 10-16 dyn cm-2.
NASA Astrophysics Data System (ADS)
Sirmas, Nick; Radulescu, Matei
2016-11-01
The present study addresses the stability of piston driven shock waves through a system of hard particles subject to activated inelastic collisions. Molecular Dynamics (MD) simulations have previously revealed an unstable structure for such a system in the form of high density non-uniformities and convective rolls within the shock structure. The work has now been extended to the continuum level by considering the Euler and Navier-Stokes equations for granular gases with a modified cooling rate to include an impact threshold necessary for inelastic collisions. We find that the pattern formations produced in MD can be reproduced at the continuum level by continually perturbing the incoming density field. By varying the perturbation amplitude and wavelength, we find that fluctuations consistent with the statistical fluctuations seen in MD yield similar instabilities to those previously observed. While the inviscid model predicts a highly chaotic structure from these perturbations, the inclusion of viscosity and heat conductivity yields equivalent wavelengths of pattern formations to those seen in MD, which is equal to the relaxation length scale of the dissipative shock structure. The authors acknowledged funding through the Alexander Graham Bell Canada Graduate Scholarship (NSERC) and Ontario Graduate Scholarship.
Developmental instability: measures of resistance and resilience using pumpkin (Cucurbita pepo L.)
Freeman, D. Carl; Brown, Michelle L.; Dobson, Melissa; Jordan, Yolanda; Kizy, Anne; Micallef, Chris; Hancock, Leandria C.; Graham, John H.; Emlen, John M.
2003-01-01
Fluctuating asymmetry measures random deviations from bilateral symmetry, and thus estimates developmental instability, the loss of ability by an organism to regulate its development. There have been few rigorous tests of this proposition. Regulation of bilateral symmetry must involve either feedback between the sides or independent regulation toward a symmetric set point. Either kind of regulation should decrease asymmetry over time, but only right–left feedback produces compensatory growth across sides, seen as antipersistent growth following perturbation. Here, we describe the developmental trajectories of perturbed and unperturbed leaves of pumpkin, Cucurbita pepoL., grown at three densities. Covering one side of a leaf with aluminium foil for 24 h perturbed leaf growth. Reduced growth on the perturbed side caused leaves to become more asymmetrical than unperturbed controls. After the treatment the size-corrected asymmetry decreased over time. In addition, rescaled range analysis showed that asymmetry was antipersistent rather than random, i.e. fluctuation in one direction was likely to be followed by fluctuations in the opposite direction. Development involves right–left feedback. This feedback reduced size-corrected asymmetry over time most strongly in the lowest density treatment suggesting that developmental instability results from a lack of resilience rather than resistance.
Drift turbulence, particle transport, and anomalous dissipation at the reconnecting magnetopause
NASA Astrophysics Data System (ADS)
Le, A.; Daughton, W.; Ohia, O.; Chen, L.-J.; Liu, Y.-H.; Wang, S.; Nystrom, W. D.; Bird, R.
2018-06-01
Using fully kinetic 3D simulations, the reconnection dynamics of asymmetric current sheets are examined at the Earth's magnetopause. The plasma parameters are selected to model MMS magnetopause diffusion region crossings with guide fields of 0.1, 0.4, and 1 of the reconnecting magnetosheath field. In each case, strong drift-wave fluctuations are observed in the lower-hybrid frequency range at the steep density gradient across the magnetospheric separatrix. These fluctuations give rise to cross-field electron particle transport. In addition, this turbulent mixing leads to significantly enhanced electron parallel heating in comparison to 2D simulations. We study three different methods of quantifying the anomalous dissipation produced by the drift fluctuations, based on spatial averaging, temporal averaging, and temporal averaging followed by integrating along magnetic field lines. A comparison of different methods reveals complications in identifying and measuring the anomalous dissipation. Nevertheless, the anomalous dissipation from short wavelength drift fluctuations appears weak for each case, and the reconnection rates observed in 3D are nearly the same as in 2D models. The 3D simulations feature a number of interesting new features that are consistent with recent MMS observations, including cold beams of magnetosheath electrons that penetrate into the hotter magnetospheric inflow, the related observation of decreasing temperature in regions of increasing total density, and an effective turbulent diffusion coefficient that agrees with predictions from quasi-linear theory.
Characterisation of SOL density fluctuations in front of the LHCD PAM launcher in Tore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oosako, T.; Ekedahl, A.; Goniche, M.
2011-12-23
The density fluctuations, modified by Lower Hybrid Wave (LHW), is analyzed in Tore Supra with reference to the injected LHW power, density and the gap between LCFS (Last Closed Flux Surface) and the PAM (passive-active-multijunction) launcher. The density fluctuations are measured with RF probes installed at the PAM launcher front. A density scan at nominal toroidal field (3.8 T) shows that the fluctuations rate stays nearly constant ({approx}50%) for
Temperature and density anti-correlations in solar wind fluctuations
NASA Technical Reports Server (NTRS)
Zank, G. P.; Matthaeus, W. H.; Klein, L. W.
1990-01-01
Recent theoretical investigations of low Mach number flows, that describe two distinct approaches by fluids to the incompressible regime are summarized. The first includes the effects of relatively strong density and temperature fluctuations (Type I), while the second places fluctuations in mechanical pressure, density, and temperature on an equal footing (Type II). In the latter case, the relations between density and pressure are recovered, whereas the former case yields departures from incompressible behavior in that density and temperature fluctuations are predicted to be anti-correlated. It is suggested that nearly incompressible fluids can be classified as either Type I or II, and it is shown that the well-known pressure-balanced structures represent a subclass of static solutions within this classification. Two examples from Voyager data illustrate the potential for observing these distinct nearly incompressible dynamical ordering in the solar wind.
Vortex-Density Fluctuations, Energy Spectra, and Vortical Regions in Superfluid Turbulence
NASA Astrophysics Data System (ADS)
Baggaley, Andrew W.; Laurie, Jason; Barenghi, Carlo F.
2012-11-01
Measurements of the energy spectrum and of the vortex-density fluctuation spectrum in superfluid turbulence seem to contradict each other. Using a numerical model, we show that at each instance of time the total vortex line density can be decomposed into two parts: one formed by metastable bundles of coherent vortices, and one in which the vortices are randomly oriented. We show that the former is responsible for the observed Kolmogorov energy spectrum, and the latter for the spectrum of the vortex line density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, E. M.; Rost, J. C.; Porkolab, M.
2016-11-15
Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. This work describes the first-ever implementation of a combined PCI–interferometer. The combined system uses a single 10.6 μm probe beam, two interference schemes, and two detectors to measure electron density fluctuations at large spatiotemporal bandwidth (10 kHz
Electronic Noise and Fluctuations in Solids
NASA Astrophysics Data System (ADS)
Kogan, Sh.
2008-07-01
Preface; Part I. Introduction. Some Basic Concepts of the Theory of Random Processes: 1. Probability density functions. Moments. Stationary processes; 2. Correlation function; 3. Spectral density of noise; 4. Ergodicity and nonergodicity of random processes; 5. Random pulses and shot noise; 6. Markov processes. General theory; 7. Discrete Markov processes. Random telegraph noise; 8. Quasicontinuous (Diffusion-like) Markov processes; 9. Brownian motion; 10. Langevin approach to the kinetics of fluctuations; Part II. Fluctuation-Dissipation Relations in Equilibrium Systems: 11. Derivation of fluctuation-dissipation relations; 12. Equilibrium noise in quasistationary circuits. Nyquist theorem; 13. Fluctuations of electromagnetic fields in continuous media; Part III. Fluctuations in Nonequilibrium Gases: 14. Some basic concepts of hot-electrons' physics; 15. Simple model of current fluctuations in a semiconductor with hot electrons; 16. General kinetic theory of quasiclassical fluctuations in a gas of particles. The Boltzmann-Langevin equation; 17. Current fluctuations and noise temperature; 18. Current fluctuations and diffusion in a gas of hot electrons; 19. One-time correlation in nonequilibrium gases; 20. Intervalley noise in multivalley semiconductors; 21. Noise of hot electrons emitting optical phonons in the streaming regime; 22. Noise in a semiconductor with a postbreakdown stable current filament; Part IV. Generation-recombination noise: 23. G-R noise in uniform unipolar semiconductors; 24. Noise produced by recombination and diffusion; Part V. Noise in quantum ballistic systems: 25. Introduction; 26. Equilibrium noise and shot noise in quantum conductors; 27. Modulation noise in quantum point contacts; 28. Transition from a ballistic conductor to a macroscopic one; 29. Noise in tunnel junctions; Part VI. Resistance noise in metals: 30. Incoherent scattering of electrons by mobile defects; 31. Effect of mobile scattering centers on the electron interference pattern; 32. Fluctuations of the number of diffusing scattering centers; 33. Temperature fluctuations and the corresponding noise; Part VII. Noise in strongly disordered conductors: 34. Basic ideas of the percolation theory; 35. Resistance fluctuations in percolation systems. 36. Experiments; Part VIII. Low-frequency noise with an 1/f-type spectrum and random telegraph noise: 37. Introduction; 38. Some general properties of 1/f noise; 39. Basic models of 1/f noise; 40./f noise in metals; 41. Low-frequency noise in semiconductors; 42. Magnetic noise in spin glasses and some other magnetic systems; 43. Temperature fluctuations as a possible source of 1/f noise; 44. Random telegraph noise; 45. Fluctuations with 1/f spectrum in other systems; 46. General conclusions on 1/f noise; Part IX. Noise in Superconductors and Superconducting Structures: 47. Noise in Josephson junctions; 48. Noise in type II superconductors; References; Subject index.
Thermal and active fluctuations of a compressible bilayer vesicle
NASA Astrophysics Data System (ADS)
Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki
2018-05-01
We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.
Traffic jams induced by fluctuation of a leading car.
Nagatani, T
2000-04-01
We present a phase diagram of the different kinds of congested traffic triggered by fluctuation of a leading car in an open system without sources and sinks. Traffic states and density waves are investigated numerically by varying the amplitude of fluctuation using a car following model. The phase transitions among the free traffic, oscillatory congested traffic, and homogeneous congested traffic occur by fluctuation of a leading car. With increasing the amplitude of fluctuation, the transition between the free traffic and oscillatory traffic occurs at lower density and the transition between the homogeneous congested traffic and the oscillatory traffic occurs at higher density. The oscillatory congested traffic corresponds to the coexisting phase. Also, the moving localized clusters appear just above the transition lines.
Fluctuation diagrams for hot-wire anemometry in subsonic compressible flows
NASA Technical Reports Server (NTRS)
Stainback, P. C.; Nagabushana, K. A.
1991-01-01
The concept of using 'fluctuation diagrams' for describing basic fluctuations in compressible flows was reported by Kovasznay in the 1950's. The application of this technique, for the most part, was restricted to supersonic flows. Recently, Zinovev and Lebiga published reports where they considered the fluctuation diagrams in subsonic compressible flows. For the above studies, the velocity and density sensitivities of the heated wires were equal. However, there are considerable data, much taken in the 1950's, which indicate that under some conditions the velocity and density sensitivities are not equal in subsonic compressible flows. Therefore, possible fluctuation diagrams are described for the cases where the velocity and density sensitivities are equal and the more general cases where they are unequal.
Effect of magnetic and density fluctuations on the propagation of lower hybrid waves in tokamaks
NASA Astrophysics Data System (ADS)
Vahala, George; Vahala, Linda; Bonoli, Paul T.
1992-12-01
Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization. The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For Alcator-C-Mod [I. H. Hutchinson and the Alcator Group, Proceedings of the IEEE 13th Symposium on Fusion Engineering (IEEE, New York, 1990), Cat. No. 89CH 2820-9, p. 13] parameters, it seems possible to be able to infer information on internal magnetic fluctuations from hard x-ray data—especially since the effects of fluctuations on electron power density can explain the hard x-ray data from the JT-60 tokamak [H. Kishimoto and JT-60 Team, in Plasma Physics and Controlled Fusion (International Atomic Energy Agency, Vienna, 1989), Vol. I, p. 67].
Dynamic phases, pinning, and pattern formation for driven dislocation assemblies
Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...
2015-01-23
We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less
Brownian Motion with Active Fluctuations
NASA Astrophysics Data System (ADS)
Romanczuk, Pawel; Schimansky-Geier, Lutz
2011-06-01
We study the effect of different types of fluctuation on the motion of self-propelled particles in two spatial dimensions. We distinguish between passive and active fluctuations. Passive fluctuations (e.g., thermal fluctuations) are independent of the orientation of the particle. In contrast, active ones point parallel or perpendicular to the time dependent orientation of the particle. We derive analytical expressions for the speed and velocity probability density for a generic model of active Brownian particles, which yields an increased probability of low speeds in the presence of active fluctuations in comparison to the case of purely passive fluctuations. As a consequence, we predict sharply peaked Cartesian velocity probability densities at the origin. Finally, we show that such a behavior may also occur in non-Gaussian active fluctuations and discuss briefly correlations of the fluctuating stochastic forces.
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.
2002-01-01
To locate noise sources in high-speed jets, the sound pressure fluctuations p', measured at far field locations, were correlated with each of radial velocity v, density rho, and phov(exp 2) fluctuations measured from various points in jet plumes. The experiments follow the cause-and-effect method of sound source identification, where
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach
2017-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.
On optical imaging through aircraft turbulent boundary layers
NASA Technical Reports Server (NTRS)
Sutton, G. W.
1980-01-01
Optical resolution quality as affected by aircraft turbulent boundary layers is analyzed. Wind-tunnel data was analyzed to obtained the variation of boundary layer turbulence scale length and mass density rms fluctuations with Mach number. The data gave good agreement with a mass density fluctuation turbulence spectrum that is either isotropic of orthogonally anisotropic. The data did not match an isotropic turbulence velocity spectrum which causes an anisotropic non-orthogonal mass density fluctuation spectrum. The results indicate that the average mass density rms fluctuation is about 10% of the maximum mass density across the boundary layer and that the transverse turbulence scale size is about 10% of the boundary layer thickness. The results indicate that the effect of the turbulent boundary layer is large angle scattering which decreases contrast but not resolution. Using extinction as a criteria the range of acceptable aircraft operating conditions are given.
The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations.
Mast, T D; Hinkelman, L M; Orr, M J; Waag, R C
1998-12-01
Wavefront propagation through the abdominal wall was simulated using a finite-difference time-domain implementation of the linearized wave propagation equations for a lossless, inhomogeneous, two-dimensional fluid as well as a simplified straight-ray model for a two-dimensional absorbing medium. Scanned images of six human abdominal wall cross sections provided the data for the propagation media in the simulations. The images were mapped into regions of fat, muscle, and connective tissue, each of which was assigned uniform sound speed, density, and absorption values. Propagation was simulated through each whole specimen as well as through each fat layer and muscle layer individually. Wavefronts computed by the finite-difference method contained arrival time, energy level, and wave shape distortion similar to that in measurements. Straight-ray simulations produced arrival time fluctuations similar to measurements but produced much smaller energy level fluctuations. These simulations confirm that both fat and muscle produce significant wavefront distortion and that distortion produced by fat sections differs from that produced by muscle sections. Spatial correlation of distortion with tissue composition suggests that most major arrival time fluctuations are caused by propagation through large-scale inhomogeneities such as fatty regions within muscle layers, while most amplitude and waveform variations are the result of scattering from smaller inhomogeneities such as septa within the subcutaneous fat. Additional finite-difference simulations performed using uniform-layer models of the abdominal wall indicate that wavefront distortion is primarily caused by tissue structures and inhomogeneities rather than by refraction at layer interfaces or by variations in layer thicknesses.
Fluctuations around equilibrium laws in ergodic continuous-time random walks.
Schulz, Johannes H P; Barkai, Eli
2015-06-01
We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.
Modeling the Lyα Forest in Collisionless Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorini, Daniele; Oñorbe, José; Lukić, Zarija
2016-08-11
Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining the high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present in this paper "Iteratively Matched Statistics" (IMS), a novel method to accurately model the Lyα forest with collisionless N-body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) andmore » the power spectrum of the real-space Lyα forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N-body simulation, which we construct from the matter density. We demonstrate that our method can reproduce the PDF, line of sight and 3D power spectra of the Lyα forest with good accuracy (7%, 4%, and 7% respectively). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20%–80%), especially for N-body simulations with achievable mean inter-particle separations in large-volume simulations. Finally, in addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic "mock" skies for Lyα forest surveys.« less
MODELING THE Ly α FOREST IN COLLISIONLESS SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorini, Daniele; Oñorbe, José; Hennawi, Joseph F.
2016-08-20
Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining the high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present “Iteratively Matched Statistics” (IMS), a novel method to accurately model the Ly α forest with collisionless N -body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) and themore » power spectrum of the real-space Ly α forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N -body simulation, which we construct from the matter density. We demonstrate that our method can reproduce the PDF, line of sight and 3D power spectra of the Ly α forest with good accuracy (7%, 4%, and 7% respectively). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20%–80%), especially for N -body simulations with achievable mean inter-particle separations in large-volume simulations. In addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic “mock” skies for Ly α forest surveys.« less
Stochastic transport models for mixing in variable-density turbulence
NASA Astrophysics Data System (ADS)
Bakosi, J.; Ristorcelli, J. R.
2011-11-01
In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.
NASA Astrophysics Data System (ADS)
Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Kuhri, Susanne; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef
2017-02-01
Polymer electrolyte membrane (PEM) water electrolysis generates 'green' hydrogen when conducted with electricity from renewable - but fluctuating - sources like wind or solar photovoltaic. Unfortunately, the long-term stability of the electrolyzer performance is still not fully understood under these input power profiles. In this study, we contrast the degradation behavior of our PEM water electrolysis single cells that occurs under operation with constant and intermittent power and derive preferable operating states. For this purpose, five different current density profiles are used, of which two were constant and three dynamic. Cells operated at 1 A cm-2 show no degradation. However, degradation was observed for the remaining four profiles, all of which underwent periods of high current density (2 A cm-2). Hereby, constant operation at 2 A cm-2 led to the highest degradation rate (194 μV h-1). Degradation can be greatly reduced when the cells are operated with an intermittent profile. Current density switching has a positive effect on durability, as it causes reversible parts of degradation to recover and results in a substantially reduced degradation per mole of hydrogen produced. Two general degradation phenomena were identified, a decreased anode exchange current density and an increased contact resistance at the titanium porous transport layer (Ti-PTL).
CMB hemispherical asymmetry from non-linear isocurvature perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan
2015-04-01
We investigate whether non-adiabatic perturbations from inflation could produce an asymmetric distribution of temperature anisotropies on large angular scales in the cosmic microwave background (CMB). We use a generalised non-linear δ N formalism to calculate the non-Gaussianity of the primordial density and isocurvature perturbations due to the presence of non-adiabatic, but approximately scale-invariant field fluctuations during multi-field inflation. This local-type non-Gaussianity leads to a correlation between very long wavelength inhomogeneities, larger than our observable horizon, and smaller scale fluctuations in the radiation and matter density. Matter isocurvature perturbations contribute primarily to low CMB multipoles and hence can lead to a hemisphericalmore » asymmetry on large angular scales, with negligible asymmetry on smaller scales. In curvaton models, where the matter isocurvature perturbation is partly correlated with the primordial density perturbation, we are unable to obtain a significant asymmetry on large angular scales while respecting current observational constraints on the observed quadrupole. However in the axion model, where the matter isocurvature and primordial density perturbations are uncorrelated, we find it may be possible to obtain a significant asymmetry due to isocurvature modes on large angular scales. Such an isocurvature origin for the hemispherical asymmetry would naturally give rise to a distinctive asymmetry in the CMB polarisation on large scales.« less
Fast visible imaging of turbulent plasma in TORPEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iraji, D.; Diallo, A.; Fasoli, A.
2008-10-15
Fast framing cameras constitute an important recent diagnostic development aimed at monitoring light emission from magnetically confined plasmas, and are now commonly used to study turbulence in plasmas. In the TORPEX toroidal device [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], low frequency electrostatic fluctuations associated with drift-interchange waves are routinely measured by means of extensive sets of Langmuir probes. A Photron Ultima APX-RS fast framing camera has recently been acquired to complement Langmuir probe measurements, which allows comparing statistical and spectral properties of visible light and electrostatic fluctuations. A direct imaging system has been developed, which allows viewingmore » the light, emitted from microwave-produced plasmas tangentially and perpendicularly to the toroidal direction. The comparison of the probability density function, power spectral density, and autoconditional average of the camera data to those obtained using a multiple head electrostatic probe covering the plasma cross section shows reasonable agreement in the case of perpendicular view and in the plasma region where interchange modes dominate.« less
Intermittent strong transport of the quasi-adiabatic plasma state.
Kim, Chang-Bae; An, Chan-Yong; Min, Byunghoon
2018-06-05
The dynamics of the fluctuating electrostatic potential and the plasma density couched in the resistive-drift model at nearly adiabatic state are simulated. The linear modes are unstable if the phase difference between the potential and the density are positive. Exponential growth of the random small perturbations slows down due to the nonlinear E × B flows that work in two ways. They regulate the strength of the fluctuations by transferring the energy from the energy-producing scale to neighboring scales and reduce the cross phase at the same time. During quasi-steady relaxation sporadic appearance of very strong turbulent particle flux is observed that is characterized by the flat energy spectrum and the broad secondary peak in the mesoscale of the order of the gyro-radius. Such boost of the transport is found to be caused by presence of relatively large cross phase as the E × B flows are not effective in cancelling out the cross phase.
Spatial charge inhomogeneity and defect states in topological Dirac semimetal thin films of Na3Bi
Edmonds, Mark T.; Collins, James L.; Hellerstedt, Jack; Yudhistira, Indra; Gomes, Lídia C.; Rodrigues, João N. B.; Adam, Shaffique; Fuhrer, Michael S.
2017-01-01
Topological Dirac semimetals (TDSs) are three-dimensional analogs of graphene, with carriers behaving like massless Dirac fermions in three dimensions. In graphene, substrate disorder drives fluctuations in Fermi energy, necessitating construction of heterostructures of graphene and hexagonal boron nitride (h-BN) to minimize the fluctuations. Three-dimensional TDSs obviate the substrate and should show reduced EF fluctuations due to better metallic screening and higher dielectric constants. We map the potential fluctuations in TDS Na3Bi using a scanning tunneling microscope. The rms potential fluctuations are significantly smaller than the thermal energy room temperature (ΔEF,rms = 4 to 6 meV = 40 to 70 K) and comparable to the highest-quality graphene on h-BN. Surface Na vacancies produce a novel resonance close to the Dirac point with surprisingly large spatial extent and provide a unique way to tune the surface density of states in a TDS thin-film material. Sparse defect clusters show bound states whose occupation may be changed by applying a bias to the scanning tunneling microscope tip, offering an opportunity to study a quantum dot connected to a TDS reservoir. PMID:29291249
Fluctuating Hydrodynamics Confronts the Rapidity Dependence of Transverse Momentum Fluctuations
NASA Astrophysics Data System (ADS)
Pokharel, Rajendra; Gavin, Sean; Moschelli, George
2012-10-01
Interest in the development of the theory of fluctuating hydrodynamics is growing [1]. Early efforts suggested that viscous diffusion broadens the rapidity dependence of transverse momentum correlations [2]. That work stimulated an experimental analysis by STAR [3]. We attack this new data along two fronts. First, we compute STAR's fluctuation observable using the NeXSPheRIO code, which combines fluctuating initial conditions from a string fragmentation model with deterministic viscosity-free hydrodynamic evolution. We find that NeXSPheRIO produces a longitudinal narrowing, in contrast to the data. Second, we study the hydrodynamic evolution using second order causal viscous hydrodynamics including Langevin noise. We obtain a deterministic evolution equation for the transverse momentum density correlation function. We use the latest theoretical equations of state and transport coefficients to compute STAR's observable. The results are in excellent accord with the measured broadening. In addition, we predict features of the distribution that can distinguish 2nd and 1st order diffusion. [4pt] [1] J. Kapusta, B. Mueller, M. Stephanov, arXiv:1112.6405 [nucl-th].[0pt] [2] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302 (2006)[0pt] [3] H. Agakishiev et al., STAR, STAR, Phys. Lett. B704
NASA Astrophysics Data System (ADS)
Zelinsky, N. R.; Kleimenova, N. G.; Malysheva, L. M.
2014-07-01
Ground-based geomagnetic Pc5 (2-7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ˜ 30-50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called "anomaly rectification" in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth's magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.
Simulation Analysis of Zero Mean Flow Edge Turbulence in LAPD
NASA Astrophysics Data System (ADS)
Friedman, Brett Cory
I model, simulate, and analyze the turbulence in a particular experiment on the Large Plasma Device (LAPD) at UCLA. The experiment, conducted by Schaffner et al. [D. Schaffner et al., Phys. Rev. Lett. 109, 135002 (2012)], nulls out the intrinsic mean flow in LAPD by limiter biasing. The model that I use in the simulation is an electrostatic reduced Braginskii two-fluid model that describes the time evolution of density, electron temperature, electrostatic potential, and parallel electron velocity fluctuations in the edge region of LAPD. The spatial domain is annular, encompassing the radial coordinates over which a significant equilibrium density gradient exists. My model breaks the independent variables in the equations into time-independent equilibrium parts and time-dependent fluctuating parts, and I use experimentally obtained values as input for the equilibrium parts. After an initial exponential growth period due to a linear drift wave instability, the fluctuations saturate and the frequency and azimuthal wavenumber spectra become broadband with no visible coherent peaks, at which point the fluctuations become turbulent. The turbulence develops intermittent pressure and flow filamentary structures that grow and dissipate, but look much different than the unstable linear drift waves, primarily in the extremely long axial wavelengths that the filaments possess. An energy dynamics analysis that I derive reveals the mechanism that drives these structures. The long k|| ˜ 0 intermittent potential filaments convect equilibrium density across the equilibrium density gradient, setting up local density filaments. These density filaments, also with k || ˜ 0, produce azimuthal density gradients, which drive radially propagating secondary drift waves. These finite k|| drift waves nonlinearly couple to one another and reinforce the original convective filament, allowing the process to bootstrap itself. The growth of these structures is by nonlinear instability because they require a finite amplitude to start, and they require nonlinear terms in the equations to sustain their growth. The reason why k|| ˜ 0 structures can grow and support themselves in a dynamical system with no k|| = 0 linear instability is because the linear eigenmodes of the system are nonorthogonal. Nonorthogonal eigenmodes that individually decay under linear dynamics can transiently inject energy into the system, allowing for instability. The instability, however, can only occur when the fluctuations have a finite starting amplitude, and nonlinearities are available to mix energy among eigenmodes. Finally, I attempt to figure out how many effective degrees of freedom control the turbulence to determine whether it is stochastic or deterministic. Using two different methods - permutation entropy analysis by means of time delay trajectory reconstruction and Proper Orthogonal Decomposition - I determine that more than a few degrees of freedom, possibly even dozens or hundreds, are all active. The turbulence, while not stochastic, is not a manifestation of low-dimensional chaos - it is high-dimensional.
Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations
NASA Astrophysics Data System (ADS)
Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team
2017-10-01
Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.
Equatorial Density Irregularity Structures at Intermediate Scales and Their Temporal Evolution
NASA Technical Reports Server (NTRS)
Kil, Hyosub; Heelis, R. A.
1998-01-01
We examine high resolution measurements of ion density in the equatorial ionosphere from the AE-E satellite during the years 1977-1981. Structure over spatial scales from 18 km to 200 m is characterized by the spectrum of irregularities at larger and smaller scales and at altitudes above 350 km and below 300 km. In the low-altitude region, only small amplitude large-scale (lambda greater than 5 km) density modulations are often observed, and thus the power spectrum of these density structures exhibits a steep spectral slope at kilometer scales. In the high-altitude region, sinusoidal density fluctuations, characterized by enhanced power near 1-km scale, are frequently observed during 2000-0200 LT. However, such fluctuations are confined to regions at the edges of larger bubble structures where the average background density is high. Small amplitude irregularity structures, observed at early local time hours, grow rapidly to high-intensity structures in about 90 min. Fully developed structures, which are observed at late local time hours, decay very slowly producing only-small differences in spectral characteristics even 4 hours later. The local time evolution of irregularity structure is investigated by using average statistics for low-(1% less than sigma less than 5%) and high-intensity (sigma greater than 10%) structures. At lower altitudes, little chance in the spectral slope is seen as a function of local time, while at higher attitudes the growth and maintenance of structures near 1 km scales dramatically affects the spectral slope.
Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment
NASA Astrophysics Data System (ADS)
Ernst, D. R.
2012-10-01
A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W. Hughes, M. Landreman, B. Li, Y. Ma, P. Phillips, M. Porkolab, W. Rowan, S. Wolfe, and S. Wukitch.[4pt] [1] D. R. Ernst et al., Proc. 21st IAEA Fusion Energy Conference, Chengdu, China, paper IAEA-CN-149/TH/1-3 (2006). http://www-pub.iaea.org/MTCD/Meetings/FEC200/th1-3.pdf[0pt] [2] B. Li and D.R. Ernst, Phys. Rev. Lett. 106, 195002 (2011).
Transition from order to chaos, and density limit, in magnetized plasmas.
Carati, A; Zuin, M; Maiocchi, A; Marino, M; Martines, E; Galgani, L
2012-09-01
It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so-called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.
NASA Technical Reports Server (NTRS)
Smith, M.
1972-01-01
Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.
Electrostatic and magnetic measurements of turbulence and transport in Extrap T2
NASA Astrophysics Data System (ADS)
Möller, Anders; Sallander, Eva
1999-10-01
Langmuir probe and magnetic pick-up coil measurements are used to study edge turbulence in the Extrap T2 reversed field pinch. Magnetic fluctuations resonant outside the toroidal field reversal surface are observed where previously only fluctuations in the spectra of potential and electron density and temperature have been measured. Results are presented which imply that these fluctuations are coupled to and also correlated to the internally resonant tearing mode fluctuations. Evidence of coupling between low-frequency (<100 kHz) and high-frequency fluctuations is also presented. The normalized floating potential fluctuations are seen to increase with the edge electron temperature. This causes an increase of the potential and density fluctuation driven transport with the temperature which is faster than linear. These results, in combination, are consistent with a picture where internally resonant fluctuations couple to edge fluctuations through radial heat conduction from the stochastic core to the edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukovic, M.; Harper, M.; Breun, R.
1995-12-31
Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode convertedmore » kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.« less
A molecular Rayleigh scattering setup to measure density fluctuations in thermal boundary layers
NASA Astrophysics Data System (ADS)
Panda, J.
2016-12-01
A Rayleigh scattering-based density fluctuation measurement system was set up inside a low-speed wind tunnel of NASA Ames Research Center. The immediate goal was to study the thermal boundary layer on a heated flat plate. A large number of obstacles had to be overcome to set up the system, such as the removal of dust particles using air filters, the use of photoelectron counting electronics to measure low intensity light, an optical layout to minimize stray light contamination, the reduction in tunnel vibration, and an expanded calibration process to relate photoelectron arrival rate to air density close to the plate surface. To measure spectra of turbulent density fluctuations, a two-PMT cross-correlation system was used to minimize the shot noise floor. To validate the Rayleigh measurements, temperature fluctuations spectra were calculated from density spectra and then compared with temperature spectra measured with a cold-wire probe operated in constant current mode. The spectra from the downstream half of the plate were found to be in good agreement with cold-wire probe, whereas spectra from the leading edge differed. Various lessons learnt are discussed. It is believed that the present effort is the first measurement of density fluctuations spectra in a boundary layer flow.
On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations
NASA Astrophysics Data System (ADS)
Keenan, Brett D.
Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments. In effect, we demonstrate how the diffusive and radiative properties of plasmas with small-scale, turbulent, electromagnetic fluctuations may serve as a powerful tool for the diagnosis of laboratory, astrophysical, and space plasmas.
Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements
NASA Technical Reports Server (NTRS)
Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.
Microturbulence in HT-6M Tokamak
NASA Astrophysics Data System (ADS)
Zeng, Lei; Yu, Changxuan; Cao, Jinxiang; Zhu, Guoliang; Zhang, Daqing; Li, Youyi
1993-08-01
The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a range of bar neqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time τE decreases with the fluctuation level increasing in the region where τE linearly increases with bar neqa and statisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.
Origin of density fluctuations in extended inflation
NASA Technical Reports Server (NTRS)
Kolb, Edward W.; Salopek, David S.; Turner, Michael S.
1990-01-01
The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies.
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
NASA Astrophysics Data System (ADS)
Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.
2018-02-01
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.
Dynamics of a Two-Dimensional System of Quantum Dipoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzanti, F.; Astrakharchik, G. E.; Boronat, J.
2009-03-20
A detailed microscopic analysis of the dynamic structure function S(k,{omega}) of a two-dimensional Bose system of dipoles polarized along the direction perpendicular to the plane is presented and discussed. Starting from ground-state quantities obtained using a quantum diffusion Monte Carlo algorithm, the density-density response is evaluated in the context of the correlated basis functions (CBF) theory. CBF predicts a sharp peak and a multiexcitation component at higher energies produced by the decay of excitations. We discuss the structure of the phonon-roton peak and show that the Feynman and Bogoliubov predictions depart from the CBF result already at low densities. Wemore » finally discuss the emergence of a roton in the spectrum, but find the roton energy not low enough to make the system unstable under density fluctuations up to the highest density considered that is close to the freezing point.« less
Cosmic string with a light massive neutrino
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Stebbins, Albert
1992-01-01
We have estimated the power spectra of density fluctuations produced by cosmic strings with neutrino hot dark matter (HDM). Normalizing at 8/h Mpc, we find that the spectrum has more power on small scales than HDM + inflation, less than cold dark matter (CDM) + inflation, and significantly less the CDM + strings. With HDM, large wakes give significant contribution to the power on the galaxy scale and may give rise to large sheets of galaxies.
Constraints for proton structure fluctuations from exclusive scattering
NASA Astrophysics Data System (ADS)
Mäntysaari, H.; Schenke, B.
2017-08-01
We constrain the average density profile of the proton and the amount of event-by-event fluctuations by simultaneously calculating the coherent and incoherent exclusive diffractive vector meson production cross section in deep inelastic scattering. Working within the Color Glass Condensate picture, we find that the gluonic density of the proton must have large geometric fluctuations in order to describe the experimentally measured large incoherent cross section.
Radiative transfer in scattering stochastic atmospheres
NASA Astrophysics Data System (ADS)
Silant'ev, N. A.; Alekseeva, G. A.; Novikov, V. V.
2017-12-01
Many stars, active galactic nuclei, accretion discs etc. are affected by the stochastic variations of temperature, turbulent gas motions, magnetic fields, number densities of atoms and dust grains. These stochastic variations influence on the extinction factors, Doppler widths of lines and so on. The presence of many reasons for fluctuations gives rise to Gaussian distribution of fluctuations. The usual models leave out of account the fluctuations. In many cases the consideration of fluctuations improves the coincidence of theoretical values with the observed data. The objective of this paper is the investigation of the influence of the number density fluctuations on the form of radiative transfer equations. We consider non-magnetized atmosphere in continuum.
Rayleigh Scattering Diagnostic Used to Measure Velocity and Density Fluctuation Spectra
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.
2003-01-01
A new, molecular Rayleigh-scattering-based flow diagnostic developed at the NASA Glenn Research Center has been used for the first time to measure the power spectrum of both gas density and radial velocity components in the plumes of high-speed jets. The objective of the work is to develop an unseeded, nonintrusive dynamic measurement technique for studying turbulent flows in NASA test facilities. This technique provides aerothermodynamic data not previously obtainable. It is particularly important for supersonic flows, where hot wire and pitot probes are difficult to use and disturb the flow under study. The effort is part of the nonintrusive instrumentation development program supporting propulsion research at the NASA Glenn Research Center. In particular, this work is measuring fluctuations in flow velocity, density, and temperature for jet noise studies. These data are valuable to researchers studying the correlation of flow fluctuations with far-field noise. One of the main objectives in jet noise research is to identify noise sources in the jet and to determine their contribution to noise generation. The technique is based on analyzing light scattered from molecules within the jet using a Fabry-Perot interferometer operating in a static imaging mode. The PC-based data acquisition system can simultaneously sample velocity and density data at rates to about 100 kHz and can handle up to 10 million data records. We used this system to interrogate three different jet nozzle designs in a Glenn free-jet facility. Each nozzle had a 25.4-mm exit diameter. One was convergent, used for subsonic flow measurements and to produce a screeching underexpanded jet with a fully expanded Mach number of 1.42. The other nozzles (Mach 1.4 and 1.8) were convergent-divergent types. The radial component of velocity and gas density were simultaneously measured in this work.
Two Point Space-Time Correlation of Density Fluctuations Measured in High Velocity Free Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta
2006-01-01
Two-point space-time correlations of air density fluctuations in unheated, fully-expanded free jets at Mach numbers M(sub j) = 0.95, 1.4, and 1.8 were measured using a Rayleigh scattering based diagnostic technique. The molecular scattered light from two small probe volumes of 1.03 mm length was measured for a completely non-intrusive means of determining the turbulent density fluctuations. The time series of density fluctuations were analyzed to estimate the integral length scale L in a moving frame of reference and the convective Mach number M(sub c) at different narrow Strouhal frequency (St) bands. It was observed that M(sub c) and the normalized moving frame length scale L*St/D, where D is the jet diameter, increased with Strouhal frequency before leveling off at the highest resolved frequency. Significant differences were observed between data obtained from the lip shear layer and the centerline of the jet. The wave number frequency transform of the correlation data demonstrated progressive increase in the radiative part of turbulence fluctuations with increasing jet Mach number.
Fluctuations and intermittent poloidal transport in a simple toroidal plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goud, T. S.; Ganesh, R.; Saxena, Y. C.
In a simple magnetized toroidal plasma, fluctuation induced poloidal flux is found to be significant in magnitude. The probability distribution function of the fluctuation induced poloidal flux is observed to be strongly non-Gaussian in nature; however, in some cases, the distribution shows good agreement with the analytical form [Carreras et al., Phys. Plasmas 3, 2664 (1996)], assuming a coupling between the near Gaussian density and poloidal velocity fluctuations. The observed non-Gaussian nature of the fluctuation induced poloidal flux and other plasma parameters such as density and fluctuating poloidal velocity in this device is due to intermittent and bursty nature ofmore » poloidal transport. In the simple magnetized torus used here, such an intermittent fluctuation induced poloidal flux is found to play a crucial role in generating the poloidal flow.« less
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Tracing the First Stars with Fluctuations of the Cosmic Infrared Background
NASA Technical Reports Server (NTRS)
Kashlinsky, A.; Arendt, R. G.; Mather, J.; Moseley, S. H.
2005-01-01
The deepest space- and ground-based observations find metal-enriched galaxies at cosmic times when the Universe was less than 1 Gyr old. These stellar populations had to be preceded by the metal-free first stars, known as 'population III'. Recent cosmic microwave background polarization measurements indicate that stars started forming early-when the Universe was 5200 Myr old. It is now thought that population III stars were significantly more massive than the present metal-rich stellar populations. Although such sources will not be individually detectable by existing or planned telescopes, they would have produced significant cosmic infrared background radiation in the near-infrared, whose fluctuations reflect the conditions in the primordial density field. Here we report a measurement of diffuse flux fluctuations after removing foreground stars and galaxies. The anisotropies exceed the instrument noise and the more local foregrounds; they can be attributed to emission from population III stars, at an era dominated by these objects.
Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind
NASA Astrophysics Data System (ADS)
Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.
2018-04-01
Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations < δ {n}{{e}}> /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.
A Next-Generation Apparatus for Lithium Optical Lattice Experiments
NASA Astrophysics Data System (ADS)
Keshet, Aviv
Quantum simulation is emerging as an ambitious and active subfield of atomic physics. This thesis describes progress towards the goal of simulating condensed matter systems, in particular the physics of the Fermi-Hubbard model, using ultracold Lithium atoms in an optical lattice. A major goal of the quantum simulation program is to observe phase transitions of the Hubbard model, into Neal antiferromagnetic phases and d-wave superfluid phases. Phase transitions are generally accompanied by a change in an underlying correlation in a physical system. Such correlations may be most amenable to probing by looking at fluctuations in the system. Experimental techniques for probing density and magnetization fluctuations in a variety of atomic Fermi systems are developed. The suppression of density fluctuations (or atom "shot noise") in an ideal degenerate Fermi gas is observed by absorption imaging of time-of-flight expanded clouds. In-trap measurements of density and magnetization fluctuations are not easy to probe with absorption imaging, due to their extremely high attenuation. A method to probe these fluctuations based on speckle patterns, caused by fluctuations in the index of refraction for a detuned illumination beam, is developed and applied first to weakly interacting and then to strongly interacting in-trap gases. Fluctuation probes such as these will be a crucial tool in future quantum simulation of condensed matter systems. The quantum simulation experiments that we want to perform require a complex sequence of precisely timed computer controlled events. A distributed GUI-based control system designed with such experiments in mind, The Cicero Word Generator, is described. The system makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature allows this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using an FPGA-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100ns achieved over effectively arbitrary sequence lengths. Experimental set-ups for producing, manipulating, and probing ultracold atomic gases can be quite complicated. To move forward with a quantum simulation program, it is necessary to have an apparatus that operates with a reliability that is not easily achieved in the face of this complexity. The design of a new apparatus is discussed. This Sodium-Lithium ultracold gas production machine has been engineered to incorporate as much experimental experience as possible to enhance its reliability. Particular attention has been paid to maximizing optical access and the utilization of this optical access, controlling the ambient temperature of the experiment, achieving a high vacuum, and simplifying subsystems where possible. The apparatus is now on the verge of producing degenerate gases, and should serve as a stable platform on which to perform future lattice quantum simulation experiments. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
High-Beta Electromagnetic Turbulence in LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, G.; Carter, T. A.; Pueschel, M. J.; Jenko, F.; Told, D.; Terry, P. W.
2015-11-01
The introduction of a new LaB6 cathode plasma source in the Large Plasma Device has enabled the study of pressure-gradient-driven turbulence and transport variations at significantly higher plasma β. Density fluctuations are observed to decrease with increasing β while magnetic fluctuations increase. Furthermore, the perpendicular magnetic fluctuations are seen to saturate while parallel (compressional) magnetic fluctuations increase continuously with β. These observations are compared to linear and nonlinear simulations with the GENE code. The results are consistent with the linear excitation of a Gradient-driven Drift Coupling mode (GDC) which relies on grad-B drift due to parallel magnetic fluctuations and can be driven by density or temperature gradients.
Precision Electron Density Measurements in the SSX MHD Wind Tunnel
NASA Astrophysics Data System (ADS)
Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.
2017-10-01
We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.
Cosmological Implications of Electroweak Monopole
NASA Astrophysics Data System (ADS)
Cho, Y. M.
2018-01-01
In this talk we review the basic features of the electroweak monopole, and estimate the remnant electroweak monopole density of the standard model in the present universe. We show that, although the electroweak phase transition is of the first order, the monopole production comes from the thermal fluctuations of the Higgs field after the phase transition, not the vacuum bubble collisions during the phase transition. Moreover, most of the monopoles produced initially are annihilated as soon as created, and this annihilation continues very long time, longer than the muon pair annihilation time. As the result the remnant monopole density at present universe becomes very small, of 10-11 of the critical density, too small to be the dark matter. We discuss the physical implications of our results on the ongoing monopole detection experiments.
Extended MHD modeling of tearing-driven magnetic relaxation
NASA Astrophysics Data System (ADS)
Sauppe, J. P.; Sovinec, C. R.
2017-05-01
Discrete relaxation events in reversed-field pinch relevant configurations are investigated numerically with nonlinear extended magnetohydrodynamic (MHD) modeling, including the Hall term in Ohm's law and first-order ion finite Larmor radius effects. Results show variability among relaxation events, where the Hall dynamo effect may help or impede the MHD dynamo effect in relaxing the parallel current density profile. The competitive behavior arises from multi-helicity conditions where the dominant magnetic fluctuation is relatively small. The resulting changes in parallel current density and parallel flow are aligned in the core, consistent with experimental observations. The analysis of simulation results also confirms that the force density from fluctuation-induced Reynolds stress arises subsequent to the drive from the fluctuation-induced Lorentz force density. Transport of the momentum density is found to be dominated by the fluctuation-induced Maxwell stress over most of the cross section with viscous and gyroviscous contributions being large in the edge region. The findings resolve a discrepancy with respect to the relative orientation of current density and flow relaxation, which had not been realized or investigated in King et al. [Phys. Plasmas 19, 055905 (2012)], where only the magnitude of flow relaxation is actually consistent with experimental results.
Environment of Submillimeter Galaxies
NASA Astrophysics Data System (ADS)
Hou, K.-c.; Chen, L.-w.
2013-10-01
To study the environment of high-redshift star-forming galaxies — submillimeter galaxies (SMGs) — and their role during large-scale structure formation, we have estimated the galaxy number density fluctuations around SMGs, and analyzed their cross correlation functions with Lyman alpha emitters (LAEs), and optical-selected galaxies with photometric redshift in the COSMOS and ECDFS fields. Only a marginal cross-correlation between SMGs and optical-selected galaxies at most redshifts intervals is found in our results, except a relatively strong correlation detected in the cases of AzTEC-detected SMGs with galaxies at z ˜2.6 and 3.6. The density fluctuations around SMGs with redshift estimated show most SMGs located in a high-density region. There is no correlation signal between LAEs and SMGs, and the galaxy density fluctuations indicate a slightly anti-correlation on a scale smaller than 2 Mpc. Furthermore, we also investigate the density fluctuations of passive and starforming galaxies selected by optical and near infrared colors at similar redshift around SMGs. Finally the implication from our results to the interconnection between high-redshift galaxy populations is discussed.
Cosmological N-body Simulation of Galaxy and Large-Scale Structure Formation: The Gravity Frontier
NASA Astrophysics Data System (ADS)
Klypin, Anatoly
2015-04-01
One of the first N-body simulations done almost 50 years ago had only 200 self-gravitating particles. Even this first baby step made substantial impact on understanding how astronomical objects should form. Now powerful supercomputers and new algorithms allow astronomers produce N-body simulations that employ up to a trillion dark matter particles and produce vital theoretical predictions regarding formation, evolution, structure and statistics of objects ranging from dwarf galaxies to clusters and superclusters of galaxies. With only gravity involved in these theoretical models, one would naively expect that by now we should know everything we need about N-body dynamics of cosmological fluctuations. Not the case. It appears that the Universe was not cooperative and gave us divergencies in the initial conditions generated during the Inflation epoch and subsequent expansion of the Universe - the infinite phase-space density and divergent density fluctuations. Ever increasing observational demands on statistics and accuracy of theoretical predictions is another driving force for more realistic and larger N-body simulations. Large current and new planned observational projects such as BOSS, eBOSS, Euclid, LSST will bring information on spatial distribution, motion, and properties of millions of galaxies at different redshifts. Direct simulations of evolution of gas and formation of stars for millions of forming galaxies will not be available for years leaving astronomers with the only option - to develop methods to combine large N-body simulations with models of galaxy formation to produce accurate theoretical predictions. I will discuss the current status of the field and directions of its development.
Yu, Linsheng; Zou, Yunding; Bi, Shoudong; Wu, Houzhang; Cao, Yifeng
2006-08-01
In 2002 to approximately 2004, an investigation was made on the bee population dynamics and its relationships with the ecological environment in four ecological regions of Anhui Province. The results indicated that in the mountainous areas of south and west Anhui, there were 46 and 37 species of nectariferous plants, and the distribution density of Apis cerena cerena population was 2.01 and 1.95 colony x km(-2), respectively. In Jianghuai area and Huaibei plain, there were 17 and 12 species of nectariferous plants, which had concentrated and short flowering period and fitted for Apis mellifera Ligustica oysterring and producing, and the distribution density of Apis cerena cerena population was 0. 06 and 0. 02 colony x km(-2), respectively. Bee population fluctuation and distribution was affected by wasp predation. The breeding proportion of Apis cerena cerena to local apis population was 41.5%, 36.8%, 3.1% and 1.1%, and that of Apis mellifera Ligustica was 58.5%, 63.2%, 96.9% and 98.9% in the mountainous areas of south and west Anhui, Jianghuai area, and Huaibei plain, respectively.
General framework for fluctuating dynamic density functional theory
NASA Astrophysics Data System (ADS)
Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim
2017-12-01
We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz. Our framework thus provides the formal apparatus for ab initio derivations of fluctuating DDFT equations capable of describing the dynamics of soft-matter systems in and out of equilibrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Yoshihiko; Kohri, Kazunori; Hazumi, Masashi, E-mail: oyamayo@icrr.u-tokyo.ac.jp, E-mail: kohri@post.kek.jp, E-mail: masashi.hazumi@kek.jp
2016-02-01
Observations of the 21 cm line radiation coming from the epoch of reionization have a great capacity to study the cosmological growth of the Universe. Besides, CMB polarization produced by gravitational lensing has a large amount of information about the growth of matter fluctuations at late time. In this paper, we investigate their sensitivities to the impact of neutrino property on the growth of density fluctuations, such as the total neutrino mass, the effective number of neutrino species (extra radiation), and the neutrino mass hierarchy. We show that by combining a precise CMB polarization observation such as Simons Array withmore » a 21 cm line observation such as Square kilometer Array (SKA) phase 1 and a baryon acoustic oscillation observation (Dark Energy Spectroscopic Instrument:DESI) we can measure effects of non-zero neutrino mass on the growth of density fluctuation if the total neutrino mass is larger than 0.1 eV. Additionally, the combinations can strongly improve errors of the bounds on the effective number of neutrino species σ (N{sub ν}) ∼ 0.06−0.09 at 95 % C.L.. Finally, by using SKA phase 2, we can determine the neutrino mass hierarchy at 95 % C.L. if the total neutrino mass is similar to or smaller than 0.1 eV.« less
Size and density avalanche scaling near jamming.
Arévalo, Roberto; Ciamarra, Massimo Pica
2014-04-28
The current microscopic picture of plasticity in amorphous materials assumes local failure events to produce displacement fields complying with linear elasticity. Indeed, the flow properties of nonaffine systems, such as foams, emulsions and granular materials close to jamming, that produce a fluctuating displacement field when failing, are still controversial. Here we show, via a thorough numerical investigation of jammed materials, that nonaffinity induces a critical scaling of the flow properties dictated by the distance to the jamming point. We rationalize this critical behavior by introducing a new universal jamming exponent and hyperscaling relationships, and we use these results to describe the volume fraction dependence of the friction coefficient.
Electromotive force in strongly compressible magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance <ρ'2> (<·> denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density <ρ>, if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance <ρ'2> is generated by the large mean density variation ∂<ρ> coupled with the turbulent mass flux <ρ'u'>. This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂<ρ> and the mean magnetic field B may contribute to the EMF as ≈χ B×∂<ρ> with the turbulent transport coefficient χ proportional to the density variance (χ <ρ'2>). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow shock, the magnetic reconnection rate may be enhanced by this effect. Physical origin of this effect is discussed in some possible geophysical applications.
NASA Astrophysics Data System (ADS)
Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel
2016-10-01
The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.
INTERPRETATION OF THE STRUCTURE FUNCTION OF ROTATION MEASURE IN THE INTERSTELLAR MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Siyao; Zhang, Bing, E-mail: syxu@pku.edu.cn, E-mail: zhang@physics.unlv.edu
2016-06-20
The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian and Pogosyan are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when themore » SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.« less
Massive superclusters as a probe of the nature and amplitude of primordial density fluctuations
NASA Technical Reports Server (NTRS)
Kaiser, N.; Davis, M.
1985-01-01
It is pointed out that correlation studies of galaxy positions have been widely used in the search for information about the large-scale matter distribution. The study of rare condensations on large scales provides an approach to extend the existing knowledge of large-scale structure into the weakly clustered regime. Shane (1975) provides a description of several apparent massive condensations within the Shane-Wirtanen catalog, taking into account the Serpens-Virgo cloud and the Corona cloud. In the present study, a description is given of a model for estimating the frequency of condensations which evolve from initially Gaussian fluctuations. This model is applied to the Corona cloud to estimate its 'rareness' and thereby estimate the rms density contrast on this mass scale. An attempt is made to find a conflict between the density fluctuations derived from the Corona cloud and independent constraints. A comparison is conducted of the estimate and the density fluctuations predicted to arise in a universe dominated by cold dark matter.
NASA Astrophysics Data System (ADS)
Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu
2017-07-01
The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C12E8) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.
Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu
2017-07-21
The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C 12 E 8 ) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.
Quasi-Lagrangian measurements of density surface fluctuations and power spectra in the stratosphere
NASA Technical Reports Server (NTRS)
Quinn, Elizabeth P.; Holzworth, Robert H.
1987-01-01
Pressure and temperature data from eight superpressure balloon flights at 26 km in the southern hemisphere stratosphere are analyzed. The balloons, which float on a constant density surface, travel steadily westward during summer and eastward during winter, as expected from local climatology. Two types of fluctuations are observed: neutral buoyancy oscillations (NBO) of around 4 min, and 0.1- to 1-hour oscillations that are characterized as small-amplitude density surface fluctuations. Lapse rates and densities are calculated and found to agree well with the expected values. Examples of wave damping and simultaneous fluctuation at two nearby balloons are presented. Spectral analysis is performed clearly showing the NBO and that the majority of the power is in the mesoscale range. Spectral slopes of power versus frequency are measured to be on the average -2.18 + or - 0.24 for pressure and -1.72 + or - 0.24 for temperature. These slopes are compared to the predictions of turbulence theories and the theory of a universal gravity wave spectrum.
Capillary evaporation of the ionic liquid [EMIM][BF4] in nanoscale solvophobic confinement
NASA Astrophysics Data System (ADS)
Shrivastav, Gourav; Remsing, Richard C.; Kashyap, Hemant K.
2018-05-01
Solvent density fluctuations play a crucial role in liquid-vapor transitions in solvophobic confinement and can also be important for understanding solvation of polar and apolar solutes. In the case of ionic liquids (ILs), density fluctuations can be used to understand important processes in the context of nanoscale aggregation and colloidal self-assemblies. In this article, we explore the nature of density fluctuations associated with capillary evaporation of the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in the confined region of model solvophobic nanoscale sheets by using molecular dynamics simulations combined with non-Boltzmann sampling techniques. We demonstrate that density fluctuations of the confined IL play an important role in capillary evaporation, suggesting analogies to dewetting transitions involving water. Significant changes in the interfacial structure of the IL are also detailed and suggested to underlie a non-classical (non-parabolic) dependence of the free energy barrier to evaporation on the degree of confinement.
Edge resonant fluctuations and particle transport in a reversed-field pinch
NASA Astrophysics Data System (ADS)
Möller, A.
1998-12-01
Electrostatic fluctuations are measured in the Extrap T2 reversed-field pinch [J. R. Drake et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 2, pp. 193-199] using a Langmuir probe array. The electrostatic fluctuation, driven particle transport ΓnΦ is derived and found to constitute a large fraction of the total particle transport. The spectral density of all measured quantities exhibits a peak in the frequency range 100-250 kHz, which originates from fluctuations that are resonant close to the edge [n=-(40-80)]. This peak contains only about 10-20% of the total fluctuation power, but is shown to dominate ΓnΦ. The main reason for this is the high toroidal mode number as compared with internally resonant magnetohydrodynamic fluctuations. The edge resonant fluctuations also features a higher coherence (γ=0.5) and close to 90° phase shift between density and potential fluctuations.
Dynamic Responses in a Plant-Insect System to Fertilization by Cormorant Feces
Kolb, Gundula; Hambäck, Peter A.
2015-01-01
Theoretical arguments suggest that increased plant productivity may not only increase consumer densities but also their fluctuations. While increased consumer densities are commonly observed in fertilization experiments, experiments are seldom performed at a spatial and temporal scale where effects on population fluctuations may be observed. In this study we used a natural gradient in soil fertility caused by cormorant nesting. Cormorants feed on fish but defecate on their nesting islands. On these islands we studied soil nutrient availability, plant nutrient content and the density of Galerucella beetles, main herbivores feeding on Lythrum salicaria. In a common garden experiment, we followed larval development on fertilized plants and estimated larval stoichiometry. Soil nutrient availability varied among islands, and several cormorant islands had very high N and P soil content. Plant nutrient content, however, did not vary among islands, and there was no correlation between soil and plant nutrient contents. Beetle densities increased with plant nutrient content in the field study. However, there was either no effect on temporal fluctuations in beetle density or that temporal fluctuations decreased (at high P). In the common garden experiment, we found limited responses in either larval survival or pupal weights to fertilization. A possible mechanism for the limited effect of fertilization on density fluctuations may be that the distribution of L. salicaria on nesting islands was restricted to sites with a lower N and P content, presumably because high N loads are toxic. PMID:26463193
NASA Technical Reports Server (NTRS)
Harvey, W. P.; Hunter, W. D., Jr.
1975-01-01
An experimental study of the initial development region of a hypersonic turbulent free mixing layer was made. Data were obtained at three stations downstream of a M = 19 nozzle over a Reynolds range of 1.3 million to 3.3 million per meter and at a total temperature of about 1670 K. In general, good agreement was obtained between electron-beam and conventional probe measurements of local mean flow parameters. Measurements of fluctuating density indicated that peak root-mean-square (rms) levels are higher in the turbulent free mixing layer than in boundary layers for Mach numbers less than 9. The intensity of rms density fluctuations in the free stream is similar in magnitude to pressure fluctuations in high Mach number flows. Spectrum analyses of the measured fluctuating density through the shear layer indicate significant fluctuation energy at the lower frequencies (0.2 to 5 kHZ) which correspond to large-scale disturbances in the high-velocity region of the shear layer.
Homogeneous buoyancy-generated turbulence
NASA Technical Reports Server (NTRS)
Batchelor, G. K.; Canuto, V. M.; Chasnov, J. R.
1992-01-01
Using a theoretical analysis of fundamental equations and a numerical simulation of the flow field, the statistically homogeneous motion that is generated by buoyancy forces after the creation of homogeneous random fluctuations in the density of infinite fluid at an initial instant is examined. It is shown that analytical results together with numerical results provide a comprehensive description of the 'birth, life, and death' of buoyancy-generated turbulence. Results of numerical simulations yielded the mean-square density mean-square velocity fluctuations and the associated spectra as functions of time for various initial conditions, and the time required for the mean-square density fluctuation to fall to a specified small value was estimated.
NASA Astrophysics Data System (ADS)
Köhn, A.; Guidi, L.; Holzhauer, E.; Maj, O.; Poli, E.; Snicker, A.; Weber, H.
2018-07-01
Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.
Local fluctuations of the signed traded volumes and the dependencies of demands: a copula analysis
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Guhr, Thomas
2018-03-01
We investigate how the local fluctuations of the signed traded volumes affect the dependence of demands between stocks. We analyze the empirical dependence of demands using copulas and show that they are well described by a bivariate K copula density function. We find that large local fluctuations strongly increase the positive dependence but lower slightly the negative one in the copula density. This interesting feature is due to cross-correlations of volume imbalances between stocks. Also, we explore the asymmetries of tail dependencies of the copula density, which are moderate for the negative dependencies but strong for the positive ones. For the latter, we reveal that large local fluctuations of the signed traded volumes trigger stronger dependencies of demands than of supplies, probably indicating a bull market with persistent raising of prices.
A photoionization instability in the early intergalactic medium
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1992-01-01
It is argued that any fairly uniform source of ionizing photons can be the cause of an instability in the pregalactic medium on scales larger than a photon path length. Underdense regions receive more ionizing energy per atom and reach higher temperature and entropy, driving the density down still further. Fluctuations created by this instability can lead to the formation of structures resembling protogalaxies and intergalactic clouds, obviating the need for gas clouds or density perturbations of earlier cosmological provenance, as is usually assumed in theories of galaxy and structure formation. Characteristic masses for clouds produced by the instability, with log mass in solar units plotted against log radius in kpc, are illustrated.
Seahorse (Hippocampinae) population fluctuations in the Ria Formosa Lagoon, south Portugal.
Correia, M; Caldwell, I R; Koldewey, H J; Andrade, J P; Palma, J
2015-09-01
Comparisons of three sets of surveys in the Ria Formosa Lagoon, Portugal, over a 13 year period (2001-2002, 2008-2009 and 2010-2013) revealed significant population fluctuations in at least one of the two seahorse (Hippocampinae) species living there, and that those fluctuations were potentially associated with habitat changes in the lagoon. After a significant decline between the first two survey periods (2001-2002 v. 2008-2009), long-snouted seahorse Hippocampus guttulatus populations increased significantly between 2008-2009 surveys and new 2010-2013 surveys. There were no significant differences in H. guttulatus populations between the 2001-2002 and 2010-2013 surveys. In contrast, there were no significant differences in short-snouted seahorse Hippocampus hippocampus densities among the 16 sites surveyed throughout the three sampling periods, although the ability to detect any change was hampered by the low densities of this species in all time periods. Fluctuations in H. guttulatus densities were positively correlated with the percentage of holdfast coverage, but with none of the other environmental variables tested. These results highlight the importance of holdfast availability in maintaining stable seahorse populations. While population fluctuations are certainly more promising than a consistent downward decline, such extreme fluctuations observed for seahorses in the Ria Formosa Lagoon could still leave these two species vulnerable to any additional stressors, particularly during low density periods. © 2015 The Fisheries Society of the British Isles.
Density fluctuations from strings and galaxy formation
NASA Technical Reports Server (NTRS)
Vilenkin, A.; Shafi, Q.
1983-01-01
The spectra of density fluctuations caused by strings in a universe dominated either by baryons, neutrinos, or axions are presented. Realistic scenarios for galaxy formation seem possible in all three cases. Examples of grand unified theories which lead to strings with the desired mass scales are given.
Competition between Bose-Einstein Condensation and Spin Dynamics.
Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B
2016-10-28
We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.
New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic.
Henriques, R B; Nedzelskiy, I S; Malaquias, A; Fernandes, H
2012-10-01
The tokamak ISTTOK havy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10(7) V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.
Fluctuation-Noise Model for PEM Fuel Cell
NASA Astrophysics Data System (ADS)
Denisov, E. S.; Salakhova, A. Sh.; Adiutantov, N. A.; Evdokimov, Yu. K.
2017-08-01
The fluctuation-noise model is presented. This model allows to describe the power spectral density of PEM fuel cell electrical fluctuation. The proposed model can be used for diagnostics of PEM fuel cell state of health.
Measurement of Initial Conditions at Nozzle Exit of High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.; Seasholtz, R. G.
2004-01-01
The time averaged and unsteady density fields close to the nozzle exit (0.1 less than or = x/D less than or = 2, x: downstream distance, D: jet diameter) of unheated free jets at Mach numbers of 0.95, 1.4, and 1.8 were measured using a molecular Rayleigh scattering based technique. The initial thickness of shear layer and its linear growth rate were determined from time-averaged density survey and a modeling process, which utilized the Crocco-Busemann equation to relate density profiles to velocity profiles. The model also corrected for the smearing effect caused by a relatively long probe length in the measured density data. The calculated shear layer thickness was further verified from a limited hot-wire measurement. Density fluctuations spectra, measured using a two-Photomultiplier-tube technique, were used to determine evolution of turbulent fluctuations in various Strouhal frequency bands. For this purpose spectra were obtained from a large number of points inside the flow; and at every axial station spectral data from all radial positions were integrated. The radially-integrated fluctuation data show an exponential growth with downstream distance and an eventual saturation in all Strouhal frequency bands. The initial level of density fluctuations was calculated by extrapolation to nozzle exit.
Large-scale structure of randomly jammed spheres
NASA Astrophysics Data System (ADS)
Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio
2017-05-01
We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.
Electromagnetic turbulence and transport in increased β LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Carter, Troy; Pueschel, Mj; Jenko, Frank; Terry, Paul; Told, Daniel
2016-10-01
The new LaB6 plasma source in LAPD has enabled the production of magnetized, increased β plasmas (up to 15%). We report on the modifications of pressure-gradient-driven turbulence and transport with increased plasma β. Density fluctuations decrease with increasing β while magnetic fluctuations increase. B ⊥ fluctuations saturate while parallel (compressional) magnetic fluctuations increase continuously with β. At the highest β values Î δ ||/ δ B ⊥ 2 and δ B/B 1%. The measurements are consistent with the excitation of the Gradient-driven Drift Coupling (GDC). This instability prefers k|| = 0 and grows in finite β plasmas due to density and temperature gradients through the production of parallel magnetic field fluctuations and resulting ⊥ B|| drifts. Comparisons between experimental measurements and theoretical predictions for the GDC will be shown. Direct measurements of electrostatic particle flux have been performed and show a strong reduction with increasing β. No evidence is found (e.g. density profile shape) of enhanced confinement, suggesting that other transport mechanisms are active. Preliminary measurements indicate that electromagnetic transport due to parallel magnetic field fluctuations at first increases with β but is subsequently suppressed at higher β values.
Electron density measurements from the shot noise collected on the STEREO/WAVES antennas
NASA Astrophysics Data System (ADS)
Zouganelis, Ioannis; Bale, Stuart; Bougeret, J.-L.; Maksimovic, Milan
One of the most reliable techniques for in situ measuring the electron density and temperature in space plasmas is the quasi-thermal noise spectroscopy. When a passive electric antenna is immersed in a stable plasma, the thermal motion of the ambient particles produces electrostatic fluctuations, which can be adequately measured with a sensitive wave receiver connected to a wire dipole antenna. Unfortunately, on STEREO, the S/WAVES design does not let us use this high accuracy technique because the antennas have a large surface area and the resulting shot noise spectrum in the solar wind dominates the power at lower frequencies. We can use, instead, the electron shot noise to infer the plasma density. For this, we use well calibrated Wind particle data to deduce the base capacitance of the S/WAVES instrument in a special configuration when the STEREO-B spacecraft was just downstream of Wind. The electron plasma density deduced is then compared to the S/PLASTIC ion density and its accuracy is estimated of up to 10
Low Density ITB Studies Using the Upgraded C-Mod Reflectometry System
NASA Astrophysics Data System (ADS)
Dominguez, A.; Edlund, E.; Fiore, C. L.; Lin, L.; Marmar, E. S.; Snipes, J. A.; Porkolab, M.; Kramer, G. J.; Rowan, W. L.
2007-11-01
The Alcator C-Mod reflectometry system was recently upgraded in two ways: The low frequency channels were changed from amplitude modulation - in which two microwave signals, slightly separated in frequency, are injected into the plasma - to baseband, where a single frequency is used, in order to improve density fluctuation measurements. The second change, a variable frequency channel operating over the range from 122GHz to 140GHz (with corresponding density cutoffs of 1.84-2.43x10^20m-3) has been installed in collaboration with PPPL. Initial results from the upgraded system are presented, including the study of low density Internal Transport Barriers. Using O-mode waves, the reflectometry system is able to radially localize density fluctuations on the low field side along the tokamak midplane. It can, therefore, be used to probe the foot of low density ITBs. The corresponding reflectometry data will be compared to those of other fluctuation diagnostics, including Phase Contrast Imaging and magnetic pick-up coils.
NASA Astrophysics Data System (ADS)
Nagayama, Yoshio; Yamaguchi, Soichiro; Tsuchiya, Hayato; Kuwahara, Daisuke; LHD Experimental Team
2016-10-01
Visualization of local electron density fluctuations will be very useful to study the physics of confinement and instabilities in fusion plasma. In the Large Helical Device (LHD), the O-mode microwave imaging reflectometry (O-MIR) has been intensively developed in order to visualize the electron density fluctuations. The frequency is 26 - 34 GHz. This corresponds to the electron density of 0.8 - 1.5 × 1019 m-3. The plasma is illuminated by the Gaussian beam with four frequencies. The imaging optics make a plasma image onto the newly developed 2D (8 × 8) Horn-antenna Millimeter-wave Imaging Device (HMID). In HMID, the signal wave that is accumulated by the horn antenna is transduced to the micro-strip line by using the finline transducer. The signal wave is mixed by the double balanced mixer with the local wave that is delivered by cables. By using O-MIR, electron density fluctuations are measured at the H-mode edge and the ITB layer in LHD. This work is supported by NIFS/NINS under the project of Formation of International Scientific Base and Network, by the NIFS LHD project, by KAKENHI, and by IMS.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James
2016-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.
Leskinen, Jani; Ihalainen, Mika; Torvela, Tiina; Kortelainen, Miika; Lamberg, Heikki; Tiitta, Petri; Jakobi, Gert; Grigonyte, Julija; Joutsensaari, Jorma; Sippula, Olli; Tissari, Jarkko; Virtanen, Annele; Zimmermann, Ralf; Jokiniemi, Jorma
2014-11-18
The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm(-3) for small particles, decreasing to 0.25 g cm(-3) for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1-2 g cm(-3)), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion.
Extreme fluctuations in stochastic network coordination with time delays
NASA Astrophysics Data System (ADS)
Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.
2015-12-01
We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
Response of the Equatorial Ionosphere to the Geomagnetic DP 2 Current System
NASA Technical Reports Server (NTRS)
Yizengaw, E.; Moldwin, M. B.; Zesta, E.; Magoun, M.; Pradipta, R.; Biouele, C. M.; Rabiu, A. B.; Obrou, O. K.; Bamba, Z.; Paula, E. R. De
2016-01-01
The response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground-based multiinstrument observations. The interaction between the solar wind and fluctuations of the interplanetary magnetic field (IMF) Bz, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high-latitude DP 2 current as well as with the IMF Bz component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF Bz.
Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.
Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir
2017-04-14
We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.
NASA Astrophysics Data System (ADS)
Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.
2017-08-01
Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film.
NASA Astrophysics Data System (ADS)
Gershman, D. J.; Figueroa-Vinas, A.; Dorelli, J.; Goldstein, M. L.; Shuster, J. R.; Avanov, L. A.; Boardsen, S. A.; Stawarz, J. E.; Schwartz, S. J.; Schiff, C.; Lavraud, B.; Saito, Y.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Strangeway, R. J.; Russell, C. T.; Torbert, R. B.; Moore, T. E.; Burch, J. L.
2017-12-01
Measurements from the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission have enabled unprecedented analyses of kinetic-scale plasma physics. FPI regularly provides estimates of current density and pressure gradients of sufficient accuracy to evaluate the relative contribution of terms in plasma equations of motion. In addition, high-resolution three-dimensional velocity distribution functions of both ions and electrons provide new insights into kinetic-scale processes. As an example, for a monochromatic kinetic Alfven wave (KAW) we find non-zero, but out-of-phase parallel current density and electric field fluctuations, providing direct confirmation of the conservative energy exchange between the wave field and particles. In addition, we use fluctuations in current density and magnetic field to calculate the perpendicular and parallel wavelengths of the KAW. Furthermore, examination of the electron velocity distribution inside the KAW reveals a population of electrons non-linearly trapped in the kinetic-scale magnetic mirror formed between successive wave peaks. These electrons not only contribute to the wave's parallel electric field but also account for over half of the density fluctuations within the wave, supplying an unexpected mechanism for maintaining quasi-neutrality in a KAW. Finally, we demonstrate that the employed wave vector determination technique is also applicable to broadband fluctuations found in Earth's turbulent magnetosheath.
Plasma Turbulence Imaging via Beam Emission Spectroscopy in the Core of the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
McKee, George R.; Fonck, Raymond J.; Gupta, Deepak K.; Schlossberg, David J.; Shafer, Morgan W.; Boivin, Réjean L.; Solomon, Wayne
Beam Emission Spectroscopy (BES), a high-sensitivity, good spatial resolution imaging diagnostic system, has been deployed and recently upgraded and expanded at the DIII-D tokamak to better understand density fluctuations arising from plasma turbulence. The currently deployed system images density fluctuations over an approximately 5 × 7 cm region at the plasma mid-plane (radially scannable over 0.2 < r/a ≤ 1) with a 5 × 6 (radial × poloidal) grid of rectangular detection channels, with one microsecond time resolution. BES observes collisionally-induced, Doppler-shifted Dα fluorescence (λ = 652-655 nm) of injected deuterium neutral beam atoms. The diagnostic wavenumber sensitivity is approximately k⊥ < 2.5 cm-1, allowing measurement of longwavelength (k⊥ρI < 1) density fluctuations. The recent upgrade includes expanded fiber optics bundles, customdesigned high-transmission, sharp-edge interference filters, ultra fast collection optics, and enlarged photodiode detectors that together provide nearly an order of magnitude increase in sensitivity relative to an earlier generation BES system. The high sensitivity allows visualization of turbulence at normalized density fluctuation amplitudes of ‾n/n < 1%, typical of fluctuation levels in the core region. The imaging array allows for sampling over 2-3 turbulent eddy scale lengths, which captures the essential dynamics of eddy evolution, interaction and shearing.
NASA Astrophysics Data System (ADS)
Morozov, A. N.
2017-11-01
The article reviews the possibility of describing physical time as a random Poisson process. An equation allowing the intensity of physical time fluctuations to be calculated depending on the entropy production density within irreversible natural processes has been proposed. Based on the standard solar model the work calculates the entropy production density inside the Sun and the dependence of the intensity of physical time fluctuations on the distance to the centre of the Sun. A free model parameter has been established, and the method of its evaluation has been suggested. The calculations of the entropy production density inside the Sun showed that it differs by 2-3 orders of magnitude in different parts of the Sun. The intensity of physical time fluctuations on the Earth's surface depending on the entropy production density during the sunlight-to-Earth's thermal radiation conversion has been theoretically predicted. A method of evaluation of the Kullback's measure of voltage fluctuations in small amounts of electrolyte has been proposed. Using a simple model of the Earth's surface heat transfer to the upper atmosphere, the effective Earth's thermal radiation temperature has been determined. A comparison between the theoretical values of the Kullback's measure derived from the fluctuating physical time model and the experimentally measured values of this measure for two independent electrolytic cells showed a good qualitative and quantitative concurrence of predictions of both theoretical model and experimental data.
LETTER TO THE EDITOR: The quasi-coherent signature of enhanced Dα H-mode in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Snipes, J. A.; La Bombard, B.; Greenwald, M.; Hutchinson, I. H.; Irby, J.; Lin, Y.; Mazurenko, A.; Porkolab, M.
2001-04-01
The steady-state H-mode regime found at moderate to high density in Alcator C-Mod, known as enhanced Dα (EDA) H-mode, appears to be maintained by a continuous quasi-coherent (QC) mode in the steep edge gradient region. Large amplitude density and magnetic fluctuations with typical frequencies of about 100 kHz are driven by the QC mode. These fluctuations are measured in the steep edge gradient region by inserting a fast-scanning probe containing two poloidally separated Langmuir probes and a poloidal field pick-up coil. As the probe approaches the plasma edge, clear magnetic fluctuations were measured within about 2 cm of the last-closed flux surface (LCFS). The mode amplitude falls off rapidly with distance from the plasma centre with an exponential decay length of kr≈1.5 cm-1, measured 10 cm above the outboard midplane. The root-mean-square amplitude of the fluctuation extrapolated to the LCFS was θ≈5 G. The density fluctuations, on the other hand, were visible on the Langmuir probe only when it was within a few millimetres of the LCFS. The potential and density fluctuations were sufficiently in phase to enhance particle transport at the QC mode frequency. These results show that the QC signature of the EDA H-mode is an electromagnetic mode that appears to be responsible for the enhanced particle transport in the plasma edge.
Interaction between the lower hybrid wave and density fluctuations in the scrape-off layer
NASA Astrophysics Data System (ADS)
Peysson, Y.; Madi, M.; Decker, J.; Kabalan, K.
2015-12-01
In the present paper, the perturbation of the launched power spectrum of the Lower Hybrid wave at the separatrix by electron density fluctuations in the scrape-off layer is investigated. Considering a slab geometry with magnetic field lines parallel to the toroidal direction, the full wave equation is solved using Comsol Multiphysics® for a fully active multi-junction like LH antenna made of two modules. When electron density fluctuations are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, it is shown that the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the wave propagates. The diffraction effect leads to the appearance of multiple satellite lobes with randomly varying positions, a feature consistent with the recently developed model that has been applied successfully to high density discharges on the Tokamak Tore Supra corresponding to the large spectral gap regime [Decker J. et al. Phys. Plasma 21 (2014) 092504]. The perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength.
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2017-11-01
An approach to calculating the effects of fluctuations in density that considers the collective motions of molecules in small condensed phases (e.g., droplets, microcrystals, adsorption at microcrystal faces) is proposed. Statistical sums of the vibrational, rotational, and translational motions of molecules are of a collective character expressed in the dependences of these statistical sums on the local configurations of neighboring molecules. This changes their individual contributions to the free energy and modifies fluctuations in density in the inner homogeneous regions of small bodies. Interactions between nearest neighbors are considered in a quasi-chemical approximation that reflects the effects of short-range direct correlations. Expressions for isotherms relating the densities of mixture components to the chemical potentials in a thermostat are obtained, along with equations for pair distribution functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, O. E., E-mail: odd.erik.garcia@uit.no; Kube, R.; Theodorsen, A.
A stochastic model is presented for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas. The fluctuations in the plasma density are modeled by a super-position of uncorrelated pulses with fixed shape and duration, describing radial motion of blob-like structures. In the case of an exponential pulse shape and exponentially distributed pulse amplitudes, predictions are given for the lowest order moments, probability density function, auto-correlation function, level crossings, and average times for periods spent above and below a given threshold level. Also, the mean squared errors on estimators of sample mean and variance for realizations of the process bymore » finite time series are obtained. These results are discussed in the context of single-point measurements of fluctuations in the scrape-off layer, broad density profiles, and implications for plasma–wall interactions due to the transient transport events in fusion grade plasmas. The results may also have wide applications for modelling fluctuations in other magnetized plasmas such as basic laboratory experiments and ionospheric irregularities.« less
Incoherent scatter radar observations of the ionosphere
NASA Technical Reports Server (NTRS)
Hagfors, Tor
1989-01-01
Incoherent scatter radar (ISR) has become the most powerful means of studying the ionosphere from the ground. Many of the ideas and methods underlying the troposphere and stratosphere (ST) radars have been taken over from ISR. Whereas the theory of refractive index fluctuations in the lower atmosphere, depending as it does on turbulence, is poorly understood, the theory of the refractivity fluctuations in the ionosphere, which depend on thermal fluctuations, is known in great detail. The underlying theory is one of the most successful theories in plasma physics, and allows for many detailed investigations of a number of parameters such as electron density, electron temperature, ion temperature, electron mean velocity, and ion mean velocity as well as parameters pertaining to composition, neutral density and others. Here, the author reviews the fundamental processes involved in the scattering from a plasma undergoing thermal or near thermal fluctuations in density. The fundamental scattering properties of the plasma to the physical parameters characterizing them from first principles. He does not discuss the observation process itself, as the observational principles are quite similar whether they are applied to a neutral gas or a fluctuating plasma.
NASA Astrophysics Data System (ADS)
Buldakov, M. A.; Vershkov, V. A.; Isaev, M. Yu; Shelukhin, D. A.
2017-10-01
The antenna system of reflectometry diagnostics at the T-10 tokamak allows to study long-range toroidal correlations of plasma density fluctuations along the magnetic field lines. The antenna systems are installed in two poloidal cross-sections of the vacuum chamber separated by a 90° angle in the toroidal direction. The experiments, which were conducted at the low field side, showed that the high level of toroidal correlations is observed only for quasi-coherent fluctuations. However, broadband and stochastic low frequency fluctuations are not correlated. Numerical modeling of the plasma turbulence structure in the T-10 tokamak was conducted to interpret the experimental results and take into account non-locality of reflectometry measurements. In the model used, it was assumed that the magnitudes of density fluctuations are constant along the magnetic field lines. The 2D full-wave Tamic-RTH code was used to model the reflectometry signals. High level of correlations for quasi-coherent fluctuations was obtained during the modeling, which agrees with the experimental observations. However, the performed modeling also predicts high level of correlations for broadband fluctuations, which contradicts the experimental data. The modeling showed that the effective reflection radius, from which the information on quasi-coherent plasma turbulence is obtained, is shifted outwards from the reflection radius by approximately 7 mm.
Research study on materials processing in space, experiment M512
NASA Technical Reports Server (NTRS)
Rubenstein, M.; Hopkins, R. H.; Kim, H. B.
1973-01-01
Gallium arsenide, a commercially valuable semiconductor, has been prepared from the melt (M.P. 1237C), by vapor growth, and by growth from metallic solutions. It has been established that growth from metallic solution can produce material with high, and perhaps with the highest possible, chemical homogeneity and crystalline perfection. Growth of GaAs from metallic solution can be performed at relatively low temperatures (about 600C) and is relatively insensitive to temperature fluctuations. However, this type of crystal growth is subject to the decided disadvantage that density induced convection currents may produce variations in rates of growth at a growing surface. This problem would be minimized under reduced gravity conditions.
The radio-frequency fluctuation effect on the floating harmonic method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaewon; Kim, Kyung-Hyun; Kim, Dong-Hwan
2016-08-15
The radio-frequency (RF) plasma diagnostics with an electrical probe facing a challenge, because the RF fluctuation oscillates the plasma potential and distorts the current-voltage (I-V) curve. As Langmuir probe is widely used in plasma diagnostics, many researchers have been studying the effect of RF fluctuation on probe and compensation methods. On the other hand, there have not been enough studies on the fluctuation effect on the floating harmonic method. Therefore, we investigated the impact of RF fluctuation on the floating harmonic method theoretically and experimentally. When the electrons are in ideal Maxwellian distribution, the floating potential is negatively shifted bymore » the RF fluctuation, but the fluctuation does not distort I-V curve around the floating potential. However, in practical plasmas, the I-V curve and their harmonic components are distorted. This RF fluctuation effect becomes more significant in a low density plasma with a high impedance sheath. The second harmonic current decreases with the RF fluctuation while the first harmonic current is merely affected. Therefore, the electron temperatures measured with the floating harmonic method under low density plasma with uncompensated probe are overestimated than the results obtained with the compensated probe.« less
NASA Astrophysics Data System (ADS)
Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G. D.; Henderson, M.; Saibene, G.
2018-01-01
We present a numerical investigation of electron cyclotron beams interacting with electron density fluctuations in the ITER 15 MA H-mode scenario. In particular, here we study how the beam from the equatorial launcher, which shall be utilized to influence the sawtooth instability, is affected by the fluctuations. Moreover, we present the theory and first estimates of the power that is scattered from the injected O-mode to a secondary X-mode in the presence of the fluctuations. It is shown that for ITER parameters the scattered power stays within acceptable limits and broadening of the equatorial beams is less than those from the upper launcher.
Observations of fine scale structure in the mesosphere and lower thermosphere
NASA Astrophysics Data System (ADS)
Thrane, E. V.; Grandal, B.
1980-06-01
An electrostatic probe designed to measure ion density with high time resolution and accuracy was flown on a Nike-Apache rocket from Andoeya Rocket Range on March 1 1978. Spectra of the spatial density fluctuations were derived in one kilometer height intervals from 65 to 127 km. Below 95 km the power spectra had a slope of about -5/3, as expected for isotropic turbulence. Above 95 km the fluctuations were stronger and showed a white noise power spectrum. These fluctuations are most likely due to plasma instabilities.
The contribution of transient counterion imbalances to DNA bending fluctuations.
Manning, Gerald S
2006-05-01
A two-sided model for DNA is employed to analyze fluctuations of the spatial distribution of condensed counterions and the effect of these fluctuations on transient bending. We analyze two classes of fluctuations. In the first, the number of condensed counterions on one side of the DNA remains at its average value, while on the other side, counterions are lost to bulk solution or gained from it. The second class of fluctuations is characterized by movement of some counterions from one side of the DNA to the other. The root-mean-square fluctuation for each class is calculated from counterion condensation theory. The amplitude of the root-mean-square fluctuation depends on the ionic strength as well as the length of the segment considered and is of the order 5-10%. Both classes of fluctuation result in transient bends toward the side of greater counterion density. The bending amplitudes are approximately 15% of the total root-mean-square bends associated with the persistence length of DNA. We are thus led to suggest that asymmetric fluctuations of counterion density contribute modestly but significantly toward the aggregate of thermalized solvent fluctuations that cause bending deformations of DNA free in solution. The calculations support the idea that counterions may exert some modulating influence on the fine structure of DNA.
Millimeter-wave reflectometry for electron density profile and fluctuation measurements on NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, S.; Nguyen, X. V.; Peebles, W. A.
2001-01-01
A millimeter-wave reflectometry system for electron density profile and fluctuation measurements is being developed and installed on the National Spherical Torus Experiment. The initial frequency coverage will be in the bands 12--18, 20--32, and 33--50 GHz, provided by frequency-tunable solid-state sources. These frequencies correspond to O-mode cutoff densities ranging from 1.8x10{sup 12} to 3.1x10{sup 13}cm{sup -3}, which will span both the plasma core ({rho}=r/a<0.8) and edge ({rho}>0.8) regions. Operated as a broadband swept-frequency (frequency-modulated continuous-wave) reflectometer, the diagnostic is expected to provide routine (shot-to-shot) time- ({<=}50 {mu}s) and spatially resolved ({approx}1 cm) density profiles. The previous hardware can be easilymore » reconfigured as a fixed-frequency reflectometer for density fluctuation measurements. The combination of measurements would be valuable for studying phenomena such as possible L- to H-mode transitions and edge-localized modes.« less
NASA Technical Reports Server (NTRS)
Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.
1987-01-01
Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.
NASA Astrophysics Data System (ADS)
Nitta, Ayako; Morita, Takeshi; Saita, Shohei; Kohno, Yuki; Ohno, Hiroyuki; Nishikawa, Keiko
2015-05-01
Aqueous solutions of tetrabutylphosphonium trifluoroacetate ([P4444]CF3COO) exhibit a LCST-type phase transition with the critical point near 0.025 in mole fraction of [P4444]CF3COO at T = 302 K. The phase behavior of [P4444]CF3COO-water mixtures was investigated by evaluating their density fluctuations, which provide quantitative descriptions of the mixing states of the solutions. The concentration dependence of the density fluctuations was investigated at 293 and 301 K for the mixtures without distinguishing the components and for the individual components ([P4444]CF3COO and water). A drastic change in the mixing state was observed for the solution when the critical point was approached.
NASA Astrophysics Data System (ADS)
Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2018-04-01
Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.
Laser-induced incandescence measurements of soot in turbulent pool fires.
Frederickson, Kraig; Kearney, Sean P; Grasser, Thomas W
2011-02-01
We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2 m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 10(-5) cm3. Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.
Large Fluctuations for Spatial Diffusion of Cold Atoms
NASA Astrophysics Data System (ADS)
Aghion, Erez; Kessler, David A.; Barkai, Eli
2017-06-01
We use a new approach to study the large fluctuations of a heavy-tailed system, where the standard large-deviations principle does not apply. Large-deviations theory deals with tails of probability distributions and the rare events of random processes, for example, spreading packets of particles. Mathematically, it concerns the exponential falloff of the density of thin-tailed systems. Here we investigate the spatial density Pt(x ) of laser-cooled atoms, where at intermediate length scales the shape is fat tailed. We focus on the rare events beyond this range, which dominate important statistical properties of the system. Through a novel friction mechanism induced by the laser fields, the density is explored with the recently proposed non-normalized infinite-covariant density approach. The small and large fluctuations give rise to a bifractal nature of the spreading packet. We derive general relations which extend our theory to a class of systems with multifractal moments.
High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn.
Ives, Anthony R; Einarsson, Arni; Jansen, Vincent A A; Gardarsson, Arnthor
2008-03-06
Complex dynamics are often shown by simple ecological models and have been clearly demonstrated in laboratory and natural systems. Yet many classes of theoretically possible dynamics are still poorly documented in nature. Here we study long-term time-series data of a midge, Tanytarsus gracilentus (Diptera: Chironomidae), in Lake Myvatn, Iceland. The midge undergoes density fluctuations of almost six orders of magnitude. Rather than regular cycles, however, these fluctuations have irregular periods of 4-7 years, indicating complex dynamics. We fit three consumer-resource models capable of qualitatively distinct dynamics to the data. Of these, the best-fitting model shows alternative dynamical states in the absence of environmental variability; depending on the initial midge densities, the model shows either fluctuations around a fixed point or high-amplitude cycles. This explains the observed complex population dynamics: high-amplitude but irregular fluctuations occur because stochastic variability causes the dynamics to switch between domains of attraction to the alternative states. In the model, the amplitude of fluctuations depends strongly on minute resource subsidies into the midge habitat. These resource subsidies may be sensitive to human-caused changes in the hydrology of the lake, with human impacts such as dredging leading to higher-amplitude fluctuations. Tanytarsus gracilentus is a key component of the Myvatn ecosystem, representing two-thirds of the secondary productivity of the lake and providing vital food resources to fish and to breeding bird populations. Therefore the high-amplitude, irregular fluctuations in midge densities generated by alternative dynamical states dominate much of the ecology of the lake.
Graviton creation by small scale factor oscillations in an expanding universe
NASA Astrophysics Data System (ADS)
Schiappacasse, Enrico D.; Ford, L. H.
2016-10-01
We treat quantum creation of gravitons by small scale factor oscillations around the average of an expanding universe. Such oscillations can arise in standard general relativity due to oscillations of a homogeneous, minimally coupled scalar field. They can also arise in modified gravity theories with a term proportional to the square of the Ricci scalar in the gravitational action. The graviton wave equation is different in the two cases, leading to somewhat different creation rates. Both cases are treated using a perturbative method due to Birrell and Davies, involving an expansion in a conformal coupling parameter to calculate the number density and energy density of the created gravitons. Cosmological constraints on the present graviton energy density and the dimensionless amplitude of the oscillations are discussed. We also discuss decoherence of quantum systems produced by the spacetime geometry fluctuations due to such a graviton bath.
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.
2003-01-01
Noise sources in high-speed jets were identified by directly correlating flow density fluctuation (cause) to far-field sound pressure fluctuation (effect). The experimental study was performed in a nozzle facility at the NASA Glenn Research Center in support of NASA s initiative to reduce the noise emitted by commercial airplanes. Previous efforts to use this correlation method have failed because the tools for measuring jet turbulence were intrusive. In the present experiment, a molecular Rayleigh-scattering technique was used that depended on laser light scattering by gas molecules in air. The technique allowed accurate measurement of air density fluctuations from different points in the plume. The study was conducted in shock-free, unheated jets of Mach numbers 0.95, 1.4, and 1.8. The turbulent motion, as evident from density fluctuation spectra was remarkably similar in all three jets, whereas the noise sources were significantly different. The correlation study was conducted by keeping a microphone at a fixed location (at the peak noise emission angle of 30 to the jet axis and 50 nozzle diameters away) while moving the laser probe volume from point to point in the flow. The following figure shows maps of the nondimensional coherence value measured at different Strouhal frequencies ([frequency diameter]/jet speed) in the supersonic Mach 1.8 and subsonic Mach 0.95 jets. The higher the coherence, the stronger the source was.
Evolution of pressures and correlations in the glasma produced in high energy nuclear collisions
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Liu, J. H.; Oliva, L.; Peng, G. X.; Greco, V.
2018-04-01
We consider the SU(2) glasma with Gaussian fluctuations and study its evolution by means of classical Yang-Mills equations solved numerically on a lattice. Neglecting in this first study the longitudinal expansion, we follow the evolution of the pressures of the system and compute the effect of the fluctuations in the early stage up to t ≈2 fm /c , that is the time range in which the glasma is relevant for high energy collisions. We measure the ratio of the longitudinal over the transverse pressure, PL/PT, and we find that unless the fluctuations carry a substantial amount of the energy density at the initial time, they do not change significantly the evolution of PL/PT in the early stage and that the system remains quite anisotropic. We also measure the longitudinal fields correlators both in the transverse plane and along the longitudinal direction: while at initial time fields appear to be anticorrelated in the transverse plane, this anticorrelation disappears in the very early stage, and the correlation length in the transverse plane increases. On the other hand, we find a dependence of the gauge invariant correlator on the longitudinal coordinate, which we interpret as a partial loss of correlation induced by the dynamics that we dub the gauge invariant string breaking. We finally study the effect of fluctuations on the longitudinal correlations: we find that string breaking is accelerated by the fluctuations and waiting for a sufficiently long time fluctuations lead to the complete breaking of the color strings.
Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krafft, C., E-mail: catherine.krafft@u-psud.fr; Universite´ Paris Sud, 91405 Orsay Cedex; Volokitin, A., E-mail: a.volokitin@mail.ru
2016-03-25
The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts’ conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail
2018-02-01
In this paper, we study the periodic fluctuations of connectivity density time series of a wind speed-monitoring network in Switzerland. By using the correlogram-based robust periodogram annual periodic oscillations were found in the correlation-based network. The intensity of such annual periodic oscillations is larger for lower correlation thresholds and smaller for higher. The annual periodicity in the connectivity density seems reasonably consistent with the seasonal meteo-climatic cycle.
Interplay of Anderson localization and quench dynamics
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Vishveshwara, Smitha
2018-06-01
In the context of an isolated three-dimensional noninteracting fermionic lattice system, we study the effects of a sudden quantum quench between a disorder-free situation and one in which disorder results in a mobility edge and associated Anderson localization. Salient post-quench features hinge upon the overlap between momentum states and post-quench eigenstates and whether these latter states are extended or localized. We find that the post-quench momentum distribution directly reflects these overlaps. For the local density, we show that disorder generically prevents the equilibration of quantum expectation values to a steady state and that the persistent fluctuations have a nonmonotonic dependence on the strength of disorder. We identify two distinct types of fluctuations, namely, temporal fluctuations describing the time-dependent fluctuations of the local density around its time average and sample-to-sample fluctuations characterizing the variations of these time averages from one realization of disorder to another. We demonstrate that both of these fluctuations vanish for extremely extended as well as extremely localized states, peaking at some intermediate value.
NASA Astrophysics Data System (ADS)
Calabia, A.; Matsuo, T.; Jin, S.
2017-12-01
The upper atmospheric expansion refers to an increase in the temperature and density of Earth's thermosphere due to increased geomagnetic and space weather activities, producing anomalous atmospheric drag on LEO spacecraft. Increased drag decelerates satellites, moving their orbit closer to Earth, decreasing the lifespan of satellites, and making satellite orbit determination difficult. In this study, thermospheric neutral density variations due to geomagnetic forcing are investigated from 10 years (2003-2013) of GRACE's accelerometer-based estimates. In order to isolate the variations produced by geomagnetic forcing, 99.8% of the total variability has been modeled and removed through the parameterization of annual, LST, and solar-flux variations included in the primary Empirical Orthogonal Functions. The residual disturbances of neutral density variations have been investigated further in order to unravel their relationship to several geomagnetic indices and space weather activity indicators. Stronger fluctuations have been found in the southern polar cap, following the dipole-tilt angle variations. While the parameterization of the residual disturbances in terms of Dst index results in the best fit to training data, the use of merging electric field as a predictor leads to the best forecasting performance. An important finding is that modeling of neutral density variations in response geomagnetic forcing can be improved by accounting for the latitude-dependent delay. Our data-driven modeling results are further compared to modeling with TIEGCM.
Role of the lower hybrid spectrum in the current drive modeling for DEMO scenarios
NASA Astrophysics Data System (ADS)
Cardinali, A.; Castaldo, C.; Cesario, R.; Santini, F.; Amicucci, L.; Ceccuzzi, S.; Galli, A.; Mirizzi, F.; Napoli, F.; Panaccione, L.; Schettini, G.; Tuccillo, A. A.
2017-07-01
The active control of the radial current density profile is one of the major issues of thermonuclear fusion energy research based on magnetic confinement. The lower hybrid current drive could in principle be used as an efficient tool. However, previous understanding considered the electron temperature envisaged in a reactor at the plasma periphery too large to allow penetration of the coupled radio frequency (RF) power due to strong Landau damping. In this work, we present new numerical results based on quasilinear theory, showing that the injection of power spectra with different {n}// widths of the main lobe produce an RF-driven current density profile spanning most of the outer radial half of the plasma ({n}// is the refractive index in a parallel direction to the confinement magnetic field). Plasma kinetic profiles envisaged for the DEMO reactor are used as references. We demonstrate the robustness of the modeling results concerning the key role of the spectral width in determining the lower hybrid-driven current density profile. Scans of plasma parameters are extensively carried out with the aim of excluding the possibility that any artefact of the utilised numerical modeling would produce any novelty. We neglect here the parasitic effect of spectral broadening produced by linear scattering due to plasma density fluctuations, which mainly occurs for low magnetic field devices. This effect will be analyzed in other work that completes the report on the present breakthrough.
HF produced ionospheric electron density irregularities diagnosed by UHF radio star scintillations
NASA Technical Reports Server (NTRS)
Frey, A.; Gordon, W. E.
1982-01-01
Three observations of radio star intensity fluctuations at UHF are reported for HF ionospheric modification experiments carried out at the Arecibo Observatory. Two observations at 430 MHz and one at 1400 MHz suggest that the the thin phase screen theory is a good approximation to the observed power spectra. It is noted, however, that the theory has to be extended to include antenna filtering. This type of filtering is important for UHF radio star scintillations since the antenna usually has a narrow beamwidth. HF power densities of less than 37 microwatts/sq m incident on the ionosphere give rise to electron density irregularities larger than 13% of the ambient density (at 260 km) having scale sizes of approximately 510 m perpendicular to the geomagnetic field. The irregularities are found to form within 20-25 s after the HF power is turned on. The drift velocities of the irregularities can be estimated from the observed power spectra.
NASA Astrophysics Data System (ADS)
Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe; Carbone, Daniele
2014-05-01
Muon tomography measures the flux of cosmic muons crossing geological bodies to determine their density. Three acquisitions with different sights of view were made at la soufrière de Guadeloupe. All of them show important density fluctuations and reveal the volcano phreatic system. The telescopes used to perform these measurements are exposed to noise fluxes with high intensities relative to the tiny flux of interest. We give experimental evidences ofa so far never described source of noise caused by a flux of upward-going particles. Data acquired on La soufrière of Guadeloupe and Mount Etna reveal that upward-going particles are detected only when the rear side of the telescope is exposed to a wide volume of atmosphere located below the altitude of the telescope and with a rock obstruction less than several tens of meters. Biases produced on density muon radiographies by upward-going fluxes are quantified and correction procedures are applied to radiographies of la soufrière.
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1993-01-01
The turbulent mass flux, or equivalently the fluctuating Favre velocity mean, appears in the first and second moment equations of compressible kappa-epsilon and Reynolds stress closures. Mathematically it is the difference between the unweighted and density-weighted averages of the velocity field and is therefore a measure of the effects of compressibility through variations in density. It appears to be fundamental to an inhomogeneous compressible turbulence, in which it characterizes the effects of the mean density gradients, in the same way the anisotropy tensor characterizes the effects of the mean velocity gradients. An evolution equation for the turbulent mass flux is derived. A truncation of this equation produces an algebraic expression for the mass flux. The mass flux is found to be proportional to the mean density gradients with a tensor eddy-viscosity that depends on both the mean deformation and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with notable results.
Detection limit for rate fluctuations in inhomogeneous Poisson processes
NASA Astrophysics Data System (ADS)
Shintani, Toshiaki; Shinomoto, Shigeru
2012-04-01
Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.
Detection limit for rate fluctuations in inhomogeneous Poisson processes.
Shintani, Toshiaki; Shinomoto, Shigeru
2012-04-01
Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.
Study of ion-gyroscale fluctuations in low-density L-mode plasmas heated by NBI on KSTAR
NASA Astrophysics Data System (ADS)
Lee, W.; Ko, S. H.; Leem, J.; Yun, G. S.; Park, H. K.; Wang, W. X.; Budny, R. V.; Kim, K. W.; Luhmann, N. C., Jr.; The KSTAR Team
2018-04-01
Broadband density fluctuations with peak frequency ranging from 150 to 400 kHz were measured using a multichannel microwave imaging reflectometer in core region of the low-density L-mode plasmas heated by neutral beam injection on KSTAR. These fluctuations have been studied by comparing the dominant mode scales estimated from the measurement with those predicted from linear gyrokinetic simulation. The measured poloidal wavenumbers are qualitatively comparable to those of the ‘fastest growing modes’ from simulations, whereas they are larger than those of the ‘transport-dominant modes’ by about a factor of three. The agreement on wavenumbers between the measurement and linear simulation (for the fastest growing modes) is probably due to sufficiently weak E × B flow shear compared to the maximum linear growth rate. Meanwhile, the transport-dominant modes seem to be related to the fluctuations in lower frequencies (˜80-150 kHz) observed in some of the measurement.
Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas
NASA Astrophysics Data System (ADS)
Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.
2018-01-01
Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.
Modeling turbulent/chemistry interactions using assumed pdf methods
NASA Technical Reports Server (NTRS)
Gaffney, R. L, Jr.; White, J. A.; Girimaji, S. S.; Drummond, J. P.
1992-01-01
Two assumed probability density functions (pdfs) are employed for computing the effect of temperature fluctuations on chemical reaction. The pdfs assumed for this purpose are the Gaussian and the beta densities of the first kind. The pdfs are first used in a parametric study to determine the influence of temperature fluctuations on the mean reaction-rate coefficients. Results indicate that temperature fluctuations significantly affect the magnitude of the mean reaction-rate coefficients of some reactions depending on the mean temperature and the intensity of the fluctuations. The pdfs are then tested on a high-speed turbulent reacting mixing layer. Results clearly show a decrease in the ignition delay time due to increases in the magnitude of most of the mean reaction rate coefficients.
NASA Astrophysics Data System (ADS)
Marinoni, A.; Pinsker, R. I.; Porkolab, M.; Rost, J. C.; Davis, E. M.; Burrell, K. H.; Candy, J.; Staebler, G. M.; Grierson, B. A.; McKee, G. R.; Rhodes, T. L.; The DIII-D Team
2017-12-01
Experiments simulating the ITER baseline scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the phase contrast imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of electron cyclotron heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed βN . Within 20 ms after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. These results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.
Viking S-band Doppler RMS phase fluctuations used to calibrate the mean 1976 equatorial corona
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.
1977-01-01
Viking S-band Doppler RMS phase fluctuations (noise) and comparisons of Viking Doppler noise to Viking differenced S-X range measurements are used to construct a mean equatorial electron density model for 1976. Using Pioneer Doppler noise results (at high heliographic latitudes, also from 1976), an equivalent nonequatorial electron density model is approximated.
Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals
Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.; ...
2017-11-15
Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less
Lebard, David N; Matyushov, Dmitry V
2008-12-01
Molecular dynamics simulations have revealed a dramatic increase, with increasing temperature, of the amplitude of electrostatic fluctuations caused by water at the active site of metalloprotein plastocyanin. The increased breadth of electrostatic fluctuations, expressed in terms of the reorganization energy of changing the redox state of the protein, is related to the formation of the hydrophobic protein-water interface, allowing large-amplitude collective fluctuations of the water density in the protein's first solvation shell. On top of the monotonic increase of the reorganization energy with increasing temperature, we have observed a spike at approximately 220 K also accompanied by a significant slowing of the exponential collective Stokes shift dynamics. In contrast to the local density fluctuations of the hydration-shell waters, these spikes might be related to the global property of the water solvent crossing the Widom line or undergoing a weak first-order transition.
Origin of Stability in Particle Sedimentation
NASA Technical Reports Server (NTRS)
Segre, Philip N.
2003-01-01
Particle Image Velocimetry (PIV) is used to study the slow settling motions of spheres in suspensions ranging from dilute to highly concentrated, 0.0001 less than phi less than 0.50. During sedimentation, particle velocity fluctuations are found to be organized into regions of characteristic size xi approximately 11 a phi (exp -1/3). A simple model, based upon buoyant mass fluctuations DELTAm given by random density fluctuations in a region of size xi, accurately predicts the magnitudes of the velocity fluctuations DELTAV. We also find a new universal relation for particle diffusion during sedimentation. It can be written in a Stokes-Einstein form as Dapproximately(DELTAmxi)/(6pietaxi), where the effective temperature DELTAmgxi is the gravitational potential energy of density fluctuations. In addition related experiments examining inertial effects and transient states, that are aimed at uncovering the origin of the new lengthscale xi, will also be given.
Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.
Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less
Langmuir Probe Distortions and Probe Compensation in an Inductively Coupled Plasma
NASA Technical Reports Server (NTRS)
Ji, J. S.; Cappelli, M. A.; Kim, J. S.; Rao, M. V. V. S.; Sharma, S. P.
1999-01-01
In many RF discharges, Langmuir probe measurements are usually made against a background of sinusoidal (and not so sinusoidal) fluctuations in the plasma parameters such as the plasma potential (Vp), the electron number density (ne), and the electron temperature (Te). The compensation of sinusoidal fluctuations in Vp has been extensively studied and is relatively well understood. Less attention has been paid to the possible distortions introduced by small fluctuations in plasma density and/or plasma temperature, which may arise in the sheath and pre-sheath regions of RF discharges. Here, we present the results of a model simulation of probe characteristics subject to fluctuations in both Vp and ne. The modeling of probe distortion due to possible fluctuations in Te is less straightforward. A comparison is presented of calculations with experimental measurements using a compensated and uncompensated Langmuir probe in an inductively coupled GEC reference cell plasma, operating on Ar and Ar/CF4 mixtures. The plasma parameters determined from the compensated probe characteristics are compared to previous measurements of others made in similar discharges, and to our own measurements of the average electron density derived from electrical impedance measurements.
Enhanced hyperuniformity from random reorganization.
Hexner, Daniel; Chaikin, Paul M; Levine, Dov
2017-04-25
Diffusion relaxes density fluctuations toward a uniform random state whose variance in regions of volume [Formula: see text] scales as [Formula: see text] Systems whose fluctuations decay faster, [Formula: see text] with [Formula: see text], are called hyperuniform. The larger [Formula: see text], the more uniform, with systems like crystals achieving the maximum value: [Formula: see text] Although finite temperature equilibrium dynamics will not yield hyperuniform states, driven, nonequilibrium dynamics may. Such is the case, for example, in a simple model where overlapping particles are each given a small random displacement. Above a critical particle density [Formula: see text], the system evolves forever, never finding a configuration where no particles overlap. Below [Formula: see text], however, it eventually finds such a state, and stops evolving. This "absorbing state" is hyperuniform up to a length scale [Formula: see text], which diverges at [Formula: see text] An important question is whether hyperuniformity survives noise and thermal fluctuations. We find that hyperuniformity of the absorbing state is not only robust against noise, diffusion, or activity, but that such perturbations reduce fluctuations toward their limiting behavior, [Formula: see text], a uniformity similar to random close packing and early universe fluctuations, but with arbitrary controllable density.
Ultraviolet luminosity density of the universe during the epoch of reionization
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-01-01
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys. PMID:26348033
Ultraviolet luminosity density of the universe during the epoch of reionization
NASA Astrophysics Data System (ADS)
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-09-01
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.
Drift of Phase Fluctuations in the ABC Model
NASA Astrophysics Data System (ADS)
Bertini, Lorenzo; Buttà, Paolo
2013-07-01
In a recent work, Bodineau and Derrida analyzed the phase fluctuations in the ABC model. In particular, they computed the asymptotic variance and, on the basis of numerical simulations, they conjectured the presence of a drift, which they guessed to be an antisymmetric function of the three densities. By assuming the validity of the fluctuating hydrodynamic approximation, we prove the presence of such a drift, providing an analytical expression for it. This expression is then shown to be an antisymmetric function of the three densities. The antisymmetry of the drift can also be inferred from a symmetry property of the underlying microscopic dynamics.
High-sensitivity density fluctuation detector
NASA Technical Reports Server (NTRS)
Azzazy, M.; Modarress, D.; Hoeft, T.
1987-01-01
A high-sensitivity differential interferometer has been developed to detect small density fluctuations over an optical path length of the order of the boundary layer thickness near transition. Two experimental configurations have been used to evaluate the performance of the interferometer: an open shear-layer configuration and a wind-tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold-wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations of the order of 0.001 of the laser wavelength.
Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio
We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on themore » bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.« less
Moroi, Takeo; Takahashi, Tomo
2004-03-05
We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.
Effects of population density on corticosterone levels of prairie voles in the field
Blondel, Dimitri V.; Wallace, Gerard N.; Calderone, Stefanie; Gorinshteyn, Marija; St. Mary, Colette M.; Phelps, Steven M.
2015-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than high densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary and mechanistic questions in social behavior. PMID:26342968
Tomographic imaging of bone composition using coherently scattered x rays
NASA Astrophysics Data System (ADS)
Batchelar, Deidre L.; Dabrowski, W.; Cunningham, Ian A.
2000-04-01
Bone tissue consists primarily of calcium hydroxyapatite crystals (bone mineral) and collagen fibrils. Bone mineral density (BMD) is commonly used as an indicator of bone health. Techniques available at present for assessing bone health provide a measure of BMD, but do not provide information about the degree of mineralization of the bone tissue. This may be adequate for assessing diseases in which the collagen-mineral ratio remains constant, as assumed in osteoporosis, but is insufficient when the mineralization state is known to change, as in osteomalacia. No tool exists for the in situ examination of collagen and hydroxyapatite density distributions independently. Coherent-scatter computed tomography (CSCT) is a technique we are developing that produces images of the low- angle scatter properties of tissue. These depend on the molecular structure of the scatterer making it possible to produce material-specific maps of each component in a conglomerate. After corrections to compensate for exposure fluctuations, self-attenuation of scatter and the temporal response of the image intensifier, material-specific images of mineral, collagen, fat and water distributions are obtained. The gray-level in these images provides the volumetric density of each component independently.
A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field
NASA Astrophysics Data System (ADS)
Patel, A. D.; Sharma, M.; Ramasubramanian, N.; Ganesh, R.; Chattopadhyay, P. K.
2018-04-01
A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10-5 -1 × 10-3 mbar, achieving plasma densities ranging from 109 to 1011 cm-3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δIisat/Iisat < 1%). The plasma thus produced will be used to study new and hitherto unexplored physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.
Spontaneous density fluctuations in granular flow and traffic
NASA Astrophysics Data System (ADS)
Herrmann, Hans J.
It is known that spontaneous density waves appear in granular material flowing through pipes or hoppers. A similar phenomenon is known from traffic jams on highways. Using numerical simulations we show that several types of waves exist and find that the density fluctuations follow a power law spectrum. We also investigate one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. Lattice gas and lattice Boltzmann models reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a non-linear dependence on density or shear rate as it is the case in traffic or granular flow.
Ion isotropy and fluctuations in the solar wind
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.; Lin, Naiguo
1997-01-01
The effects of measured fluctuations, with only general considerations as to their source, are considered. Data from interplanetary scintillations and fluctuations in plasma density provided data on electric fields, while fluctuations in magnetic fields are measured directly. Data from the unified radio and plasma experiment (URAP) on Ulysses is used to fill in higher frequency ranges, to assess the variations in the fluctuations with time and space, and to help to identify wave modes. It is shown that electric field fluctuations are of the right order of magnitude to maintain ion isotropy.
NASA Astrophysics Data System (ADS)
Noah, Joyce E.
Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and long time results while RA and S approximations do particularly well at predicting the short time behavior. Lastly, we also develop a series of non-graphically derived approximations and use an optimization procedure to determine the underlying memory function from the simulation data. These approaches provide valuable information about the memory function that will be used in the development of future kinetic theories.
NASA Technical Reports Server (NTRS)
Lahav, N.; White, D.; Chang, S.
1978-01-01
As geologically relevant models of prebiotic environments, systems consisting of clay, water, and amino acids were subjected to cyclic variations in temperature and water content. Fluctuations of both variables produced longer oligopeptides in higher yields than were produced by temperature fluctuations alone. The results suggest that fluctuating environments provided a favorable geological setting in which the rate and extent of chemical evolution would have been determined by the number and frequency of cycles.
Zheng, Ying; Giordano, Mario; Gao, Kunshan
2015-05-15
Increasing atmospheric pCO2 and its dissolution into oceans leads to ocean acidification and warming, which reduces the thickness of upper mixing layer (UML) and upward nutrient supply from deeper layers. These events may alter the nutritional conditions and the light regime to which primary producers are exposed in the UML. In order to better understand the physiology behind the responses to the concomitant climate changes factors, we examined the impact of light fluctuation on the dinoflagellate Prorocentrum micans grown at low (1 μmol L(-1)) or high (800 μmol L(-1)) [NO3(-)] and at high (1000 μatm) or low (390 μatm, ambient) pCO2. The light regimes to which the algal cells were subjected were (1) constant light at a photon flux density (PFD) of either 100 (C100) or 500 (C500) μmol m(-2) s(-1) or (2) fluctuating light between 100 or 500 μmol photons m(-2) s(-1) with a frequency of either 15 (F15) or 60 (F60) min. Under continuous light, the initial portion of the light phase required the concomitant presence of high CO2 and NO3(-) concentrations for maximum growth. After exposure to light for 3h, high CO2 exerted a negative effect on growth and effective quantum yield of photosystem II (F'(v)/F'(m)). Fluctuating light ameliorated growth in the first period of illumination. In the second 3h of treatment, higher frequency (F15) of fluctuations afforded high growth rates, whereas the F60 treatment had detrimental consequences, especially when NO3(-) concentration was lower. F'(v)/F'(m) respondent differently from growth to fluctuating light: the fluorescence yield was always lower than at continuous light at 100 μmol m(-2) s(-1), and always higher at 500 μmol m(-2) s(-1). Our data show that the impact of atmospheric pCO2 increase on primary production of dinoflagellate depends on the availability of nitrate and the irradiance (intensity and the frequency of irradiance fluctuations) to which the cells are exposed. The impact of global change on oceanic primary producers would therefore be different in waters with different chemical and physical (mixing) properties. Copyright © 2015 Elsevier GmbH. All rights reserved.
Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; ...
2018-04-19
Smore » mall 3D perturbations to the magnetic field in DIII-D ( δ B / B ~ 2 × 10 - 4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. Finally, the resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.
Smore » mall 3D perturbations to the magnetic field in DIII-D ( δ B / B ~ 2 × 10 - 4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. Finally, the resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.« less
NASA Astrophysics Data System (ADS)
Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; Sugiyama, L. E.; Ferraro, N. M.; Lyons, B. C.; McKee, G. R.; Paz-Soldan, C.; Wingen, A.; Zeng, L.
2018-05-01
Small 3D perturbations to the magnetic field in DIII-D ( δB /B ˜2 ×10-4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.
Current Fluctuations in Stochastic Lattice Gases
NASA Astrophysics Data System (ADS)
Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.
2005-01-01
We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach for density fluctuations developed in previous articles. More precisely, we establish a large deviation theory for the space-time fluctuations of the empirical current which include the previous results. We then estimate the probability of a fluctuation of the average current over a large time interval. It turns out that recent results by Bodineau and Derrida [Phys. Rev. Lett.922004180601] in certain cases underestimate this probability due to the occurrence of dynamical phase transitions.
Evolution of Structure in the Intergalactic Medium and the Nature of the LY-Alpha Forest
NASA Technical Reports Server (NTRS)
Bi, Hongguang; Davidsen, Arthur F.
1997-01-01
We have performed a detailed statistical study of the evolution of structure in a photoionized intergalactic medium (IGM) using analytical simulations to extend the calculation into the mildly nonlinear density regime found to prevail at z = 3. Our work is based on a simple fundamental conjecture: that the probability distribution function of the density of baryonic diffuse matter in the universe is described by a lognormal (LN) random field. The LN distribution has several attractive features and follows plausibly from the assumption of initial linear Gaussian density and velocity fluctuations at arbitrarily early times. Starting with a suitably normalized power spectrum of primordial fluctuations in a universe dominated by cold dark matter (CDM), we compute the behavior of the baryonic matter, which moves slowly toward minima in the dark matter potential on scales larger than the Jeans length. We have computed two models that succeed in matching observations. One is a nonstandard CDM model with OMEGA = 1, h = 0.5, and GAMMA = 0.3, and the other is a low-density flat model with a cosmological constant (LCDM), with OMEGA = 0.4, OMEGA(sub LAMBDA) = 0.6, and h = 0.65. In both models, the variance of the density distribution function grows with time, reaching unity at about z = 4, where the simulation yields spectra that closely resemble the Ly-alpha forest absorption seen in the spectra of high-z quasars. The calculations also successfully predict the observed properties of the Ly-alpha forest clouds and their evolution from z = 4 down to at least z = 2, assuming a constant intensity for the metagalactic UV background over this redshift range. However, in our model the forest is not due to discrete clouds, but rather to fluctuations in a continuous intergalactic medium. At z = 3; typical clouds with measured neutral hydrogen column densities N(sub H I) = 10(exp 13.3), 10(exp 13.5), and 10(exp 11.5) /sq cm correspond to fluctuations with mean total densities approximately 10, 1, and 0.1 times the universal mean baryon density. Perhaps surprisingly, fluctuations whose amplitudes are less than or equal to the mean density still appear as "clouds" because in our model more than 70% of the volume of the IGM at z = 3 is filled with gas at densities below the mean value.
A simple phenomenological model for grain clustering in turbulence
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-01-01
We propose a simple model for density fluctuations of aerodynamic grains, embedded in a turbulent, gravitating gas disc. The model combines a calculation for the behaviour of a group of grains encountering a single turbulent eddy, with a hierarchical approximation of the eddy statistics. This makes analytic predictions for a range of quantities including: distributions of grain densities, power spectra and correlation functions of fluctuations, and maximum grain densities reached. We predict how these scale as a function of grain drag time ts, spatial scale, grain-to-gas mass ratio tilde{ρ }, strength of turbulence α, and detailed disc properties. We test these against numerical simulations with various turbulence-driving mechanisms. The simulations agree well with the predictions, spanning ts Ω ˜ 10-4-10, tilde{ρ }˜ 0{-}3, α ˜ 10-10-10-2. Results from `turbulent concentration' simulations and laboratory experiments are also predicted as a special case. Vortices on a wide range of scales disperse and concentrate grains hierarchically. For small grains this is most efficient in eddies with turnover time comparable to the stopping time, but fluctuations are also damped by local gas-grain drift. For large grains, shear and gravity lead to a much broader range of eddy scales driving fluctuations, with most power on the largest scales. The grain density distribution has a log-Poisson shape, with fluctuations for large grains up to factors ≳1000. We provide simple analytic expressions for the predictions, and discuss implications for planetesimal formation, grain growth, and the structure of turbulence.
NASA Technical Reports Server (NTRS)
Massey, G. A.; Lemon, C. J.
1984-01-01
A tunable line-narrowed ArF laser can selectively excite several rotation al lines of the Schumann-Runge band system of O2 in air. The resulting ultraviolet fluorescence can be monitored at 90 deg to the laser beam axis, permitting space and time resolved observation of density and temperature fluctuations in turbulence. Experiments and calculations show that + or - 1 K, + or - 1 percent density, 1 cu mm spatial, and 1 microsecond temporal resolution can be achieved simultaneously under some conditions.
NASA Technical Reports Server (NTRS)
Singh, C. M.; Krawczonek, W. M.; Roth, J. R.; Hong, J. Y.; Kim, Y. C.; Powers, E. J.
1978-01-01
The strong radial electric field associated with the Penning discharge and the strong toroidal magnetic field give rise to a diversity of E/B phenomena, such as rotating waves and spokes, which in turn manifest themselves as space-time fluctuations of the plasma density and potential. Work is done to further understand the nature and origin of the fluctuations and their connection with fluctuation-induced transport. The approach is to monitor the density and potential fluctuations; to digitize the data; and to generate, with the aid of a computer, various spectral properties by means of the fast fourier transform. Of particular interest is the computer-generated transport spectrum that indicates in a quantitative way which fluctuation spectral components contribute to transport and which do not. All experimental measurements of the spectral characteristics of the plasma are given in absolute units rather than as relative values. Preliminary measurements of the transport spectrum of the ion population are given, and it is shown that the fluctuation-induced transport is in order-of-magnitude agreement with that inferred from the steady state current flowing to the electrodes that generate the plasma.
Active Brownian particles with velocity-alignment and active fluctuations
NASA Astrophysics Data System (ADS)
Großmann, R.; Schimansky-Geier, L.; Romanczuk, P.
2012-07-01
We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case.
Marinoni, Alessandro; Pinsker, Robert I.; Porkolab, Miklos; ...
2017-08-01
Experiments simulating the ITER Baseline Scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the Phase Contrast Imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of Electron Cyclotron Heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed β N . Within 20 msmore » after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz; in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. Furthermore, these results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.« less
Of lemmings and snowshoe hares: the ecology of northern Canada
Krebs, Charles J.
2011-01-01
Two population oscillations dominate terrestrial community dynamics in northern Canada. In the boreal forest, the snowshoe hare (Lepus americanus) fluctuates in cycles with an 8–10 year periodicity and in tundra regions lemmings typically fluctuate in cycles with a 3–4 year periodicity. I review 60 years of research that has uncovered many of the causes of these population cycles, outline areas of controversy that remain and suggest key questions to address. Lemmings are keystone herbivores in tundra ecosystems because they are a key food resource for many avian and mammalian predators and are a major consumer of plant production. There remains much controversy over the role of predation, food shortage and social interactions in causing lemming cycles. Predation is well documented as a significant mortality factor limiting numbers. Food shortage is less likely to be a major limiting factor on population growth in lemmings. Social interactions might play a critical role in reducing the rate of population growth as lemming density rises. Snowshoe hares across the boreal forest are a key food for many predators and their cycles have been the subject of large-scale field experiments that have pinpointed predation as the key limiting factor causing these fluctuations. Predators kill hares directly and indirectly stress them by unsuccessful pursuits. Stress reduces the reproductive rate of female hares and is transmitted to their offspring who also suffer reduced reproductive rates. The maternal effects produced by predation risk induce a time lag in the response of hare reproductive rate to density, aiding the cyclic dynamics. PMID:20980307
NASA Technical Reports Server (NTRS)
Fletcher, Douglas G.; Mckenzie, R. L.
1992-01-01
Nonintrusive measurements of density, temperature, and their turbulent fluctuation levels were obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment are compared with previous measurements obtained in the same facility using conventional probes and an earlier spectroscopic technique. Densities and temperatures measured with the current technique agree with the previous surveys to within 3 percent and 2 percent, respectively. The fluctuation amplitudes for both variables agree with the measurements obtained using the earlier spectroscopic technique and show evidence of an unsteady, weak shock wave that perturbs the boundary layer.
Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed
2011-07-08
We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.
Cosmological consequences of grand unified theories on density fluctuations
NASA Astrophysics Data System (ADS)
Lindley, D.
1981-05-01
Recent investigations into the cosmological consequences of grand unified theories (GUTs) of elementary particles have shown that the observed matter-antimatter asymmetry of the Universe can be explained without recourse to the hypothesis of specific initial conditions. It is shown here that the origin of inhomogeneities in the matter distribution, which are thought to be responsible for the later formation of galaxies, cannot be explained by a simple addition of density fluctuations to the standard model. The appearance of these fluctuations, after the epoch when baryon number is fixed, is almost purely adiabatic, any departure from adiabaticity falling off in inverse proportion to the mass of the perturbation.
Measurements of surface-pressure fluctuations on the XB-70 airplane at local Mach numbers up to 2.45
NASA Technical Reports Server (NTRS)
Lewis, T. L.; Dods, J. B., Jr.; Hanly, R. D.
1973-01-01
Measurements of surface-pressure fluctuations were made at two locations on the XB-70 airplane for nine flight-test conditions encompassing a local Mach number range from 0.35 to 2.45. These measurements are presented in the form of estimated power spectral densities, coherence functions, and narrow-band-convection velocities. The estimated power spectral densities compared favorably with wind-tunnel data obtained by other experimenters. The coherence function and convection velocity data supported conclusions by other experimenters that low-frequency surface-pressure fluctuations consist of small-scale turbulence components with low convection velocity.
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Golubyatnikov, G.
1993-10-01
Radio frequency (rf) magnetic fluctuations B˜ have been measured with loop antennas in a large pulsed discharge plasma column (ne≲1012 cm-3, kTe≲3 eV, B0≂20 G, Ar, 2×10-4 Torr, 1 m diam×2.5 m length). A 1/f-like noise spectrum is observed in the whistler wave regime (ωce1/2ωci1/2<ω<ωce) both in the Maxwellian afterglow plasma and in the active discharge which contains energetic (45 eV) electrons. Discrete emission lines at the electron cyclotron frequency and its harmonics are found only in the presence of spiraling energetic electrons. These are naturally present in the active discharge but have also been injected as a controlled oblique electron beam into the Maxwellian afterglow plasma. In the latter case up to 15 cyclotron harmonic lines with weak amplitude decay B˜z(ω) are generated in the beam flux tube. From two-point correlation measurements it is shown that the line spectrum is due to ballistic beam modes rather than plasma eigenmodes driven unstable by the beam. The lines evolve from broadband thermal current fluctuations of the beam through a filtering effect. Those fluctuations which rotate synchronously with the ordered cyclotron motion (ω=nωc) constructively interfere (k∥=0) and produce coherent solenoidal rf fields, while others interfere destructively. Axial and azimuthal phase velocity measurements for rf-modulated beams clearly demonstrate the filtering effect. In the present parameter regime (ωp≫ωc) the fluctuations are evanescent and localized near the electron flux tube (rc≳c/ωp). In low density plasmas the fluctuations may couple to propagating electromagnetic waves and be observable externally as in earlier observations by Landauer or Ikegami.
NASA Astrophysics Data System (ADS)
Vavryčuk, Václav
2018-07-01
A cosmological model, in which the cosmic microwave background (CMB) is a thermal radiation of intergalactic dust instead of a relic radiation of the big bang, is revived and revisited. The model suggests that a virtually transparent local Universe becomes considerably opaque at redshifts z > 2-3. Such opacity is hardly to be detected in the Type Ia supernova data, but confirmed using quasar data. The opacity steeply increases with redshift because of a high proper density of intergalactic dust in the previous epochs. The temperature of intergalactic dust increases as (1 + z) and exactly compensates the change of wavelengths due to redshift, so that the dust radiation looks apparently like the radiation of the blackbody with a single temperature. The predicted dust temperature is TD = 2.776 K, which differs from the CMB temperature by 1.9 per cent only, and the predicted ratio between the total CMB and extragalactic background light (EBL) intensities is 13.4 which is close to 12.5 obtained from observations. The CMB temperature fluctuations are caused by EBL fluctuations produced by galaxy clusters and voids in the Universe. The polarization anomalies of the CMB correlated with temperature anisotropies are caused by the polarized thermal emission of needle-shaped conducting dust grains aligned by large-scale magnetic fields around clusters and voids. A strong decline of the luminosity density for z > 4 is interpreted as the result of high opacity of the Universe rather than of a decline of the global stellar mass density at high redshifts.
NASA Astrophysics Data System (ADS)
Vavryčuk, Václav
2018-04-01
A cosmological model, in which the cosmic microwave background (CMB) is a thermal radiation of intergalactic dust instead of a relic radiation of the Big Bang, is revived and revisited. The model suggests that a virtually transparent local Universe becomes considerably opaque at redshifts z > 2 - 3. Such opacity is hardly to be detected in the Type Ia supernova data, but confirmed using quasar data. The opacity steeply increases with redshift because of a high proper density of intergalactic dust in the previous epochs. The temperature of intergalactic dust increases as (1 + z) and exactly compensates the change of wavelengths due to redshift, so that the dust radiation looks apparently like the radiation of the blackbody with a single temperature. The predicted dust temperature is TD = 2.776 K, which differs from the CMB temperature by 1.9% only, and the predicted ratio between the total CMB and EBL intensities is 13.4 which is close to 12.5 obtained from observations. The CMB temperature fluctuations are caused by EBL fluctuations produced by galaxy clusters and voids in the Universe. The polarization anomalies of the CMB correlated with temperature anisotropies are caused by the polarized thermal emission of needle-shaped conducting dust grains aligned by large-scale magnetic fields around clusters and voids. A strong decline of the luminosity density for z > 4 is interpreted as the result of high opacity of the Universe rather than of a decline of the global stellar mass density at high redshifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nizami, Lance
2010-03-01
Norwich's Entropy Theory of Perception (1975-present) is a general theory of perception, based on Shannon's Information Theory. Among many bold claims, the Entropy Theory presents a truly astounding result: that Stevens' Law with an Index of 1, an empirical power relation of direct proportionality between perceived taste intensity and stimulus concentration, arises from theory alone. Norwich's theorizing starts with several extraordinary hypotheses. First, 'multiple, parallel receptor-neuron units' without collaterals 'carry essentially the same message to the brain', i.e. the rate-level curves are identical. Second, sensation is proportional to firing rate. Third, firing rate is proportional to the taste receptor's 'resolvablemore » uncertainty'. Fourth, the 'resolvable uncertainty' is obtained from Shannon's Information Theory. Finally, 'resolvable uncertainty' also depends upon the microscopic thermodynamic density fluctuation of the tasted solute. Norwich proves that density fluctuation is density variance, which is proportional to solute concentration, all based on the theory of fluctuations in fluid composition from Tolman's classic physics text, 'The Principles of Statistical Mechanics'. Altogether, according to Norwich, perceived taste intensity is theoretically proportional to solute concentration. Such a universal rule for taste, one that is independent of solute identity, personal physiological differences, and psychophysical task, is truly remarkable and is well-deserving of scrutiny. Norwich's crucial step was the derivation of density variance. That step was meticulously reconstructed here. It transpires that the appropriate fluctuation is Tolman's mean-square fractional density fluctuation, not density variance as used by Norwich. Tolman's algebra yields a 'Stevens Index' of -1 rather than 1. As 'Stevens Index' empirically always exceeds zero, the Index of -1 suggests that it is risky to infer psychophysical laws of sensory response from information theory and stimulus physics while ignoring empirical biological transformations, such as sensory transduction. Indeed, it raises doubts as to whether the Entropy Theory actually describes psychophysical laws at all.« less
Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Juhyung; Terry, P. W.
2013-10-15
The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a line width related to energy transfer properties provide a measure of the average frequency and spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence, are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high frequency region of the spectrum. In themore » intermediate regime, the nonlinear frequency shift for density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width increase with poloidal wavenumber k{sub y}. In addition, in the adiabatic regime where the nonlinear interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density and potential fluctuations is observed to match a linear relation, but only if the linear response of the linearly stable eigenmode branch is included. Implications of these numerical observations are discussed.« less
NASA Astrophysics Data System (ADS)
Theodorsen, A.; Garcia, O. E.; Kube, R.; LaBombard, B.; Terry, J. L.
2017-11-01
Fluctuations in the boundary region of the Alcator C-Mod tokamak have been analyzed using gas puff imaging data from a set of Ohmically heated plasma density scan experiments. It is found that the relative fluctuation amplitudes are modest and close to normally distributed at the separatrix but become increasingly larger and skewed towards the main chamber wall. The frequency power spectra are nevertheless similar for all radial positions and line-averaged densities. Predictions of a stochastic model, describing the plasma fluctuations as a super-position of uncorrelated pulses, are shown to be in excellent agreement with the measurements. This implies that the pulse duration is the same, while the degree of pulse overlap decreases radially outwards in the scrape-off layer. The universal frequency power spectral density is thus determined by the shape and duration of the large-amplitude bursts associated with blob-like structures. The model also describes the rate of threshold level crossings, for which the exponential tails underline the intermittency of the fluctuations in the far scarpe-off layer.
Gravity waves produced by the total solar eclipse of 1 August 2008
NASA Astrophysics Data System (ADS)
Marty, Julien; Francis, Dalaudier; Damien, Ponceau; Elisabeth, Blanc; Ulziibat, Munkhuu
2010-05-01
Gravity waves are a major component of atmospheric small scale dynamics because of their ability to transport energy and momentum over considerable distances and of their interactions with the mean circulation or other waves. They produce pressure variations which can be detected at the ground by microbarographs. The solar intensity reduction which occurs in the atmosphere during solar eclipses is known to act as a temporary source of large scale gravity waves. Despite decades of research, observational evidence for a characteristic bow-wave response of the atmosphere to eclipse passages remains elusive. A new versatile numerical model (Marty, J. and Dalaudier, F.: Linear spectral numerical model for internal gravity wave propagation. J. Atmos. Sci. (in press)) is presented and applied to the cooling of the atmosphere during a solar eclipse. Calculated solutions appear to be in good agreement with ground pressure fluctuations recorded during the total solar eclipse of 1 August 2008. To the knowledge of the authors, this is the first time that such a result is presented. A three-dimensional linear spectral numerical model is used to propagate internal gravity wave fluctuations in a stably stratified atmosphere. The model is developed to get first-order estimations of gravity wave fluctuations produced by identified sources. It is based on the solutions of the linearized fundamental fluid equations and uses the fully-compressible dispersion relation for inertia-gravity waves. The spectral implementation excludes situations involving spatial variations of buoyancy frequency or background wind. However density stratification variations are taken into account in the calculation of fluctuation amplitudes. In addition to gravity wave packet free propagation, the model handles both impulsive and continuous sources. It can account for spatial and temporal variations of the sources allowing to cover a broad range of physical situations. It is applied to the case of solar eclipses, which are known to produce large-scale bow waves on the Earth's surface. The asymptotic response to a Gaussian thermal forcing travelling at constant velocity as well as the transient response to the 4 December 2002 eclipse are presented. They show good agreement with previous numerical simulations. The model is then applied to the case of the 1 August 2008 solar eclipse. Ground pressure variations produced by the response to the solar intensity reduction in both stratosphere and troposphere are calculated. These synthetic signals are then compared to pressure variations recorded by IMS (International Monitoring System) infrasound stations and a temporary network specifically set up in Western Mongolia for this occasion. The pressure fluctuations produced by the 1 August 2008 solar eclipse are in a frequency band highly disturbed by atmospheric tides. Pressure variations produced by atmospheric tides and synoptic disturbances are thus characterized and removed from the signal. A low frequency wave starting just after the passage of the eclipse is finally brought to light on all stations. Its frequency and amplitude are close to the one calculated with our model, which strongly suggest that this signal was produced by the total solar eclipse.
Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu
2011-10-01
The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.
NASA Astrophysics Data System (ADS)
Schmitz, L.; Ruskov, E.; Deng, B. H.; Binderbauer, M.; Tajima, T.; Gota, H.; Tuszewski, M.
2016-03-01
Control of radial particle and thermal transport is instrumental for achieving and sustaining well-confined high-β plasma in a Field-Reversed Configuration (FRC). Radial profiles of low frequency ion gyro-scale density fluctuations (0.5≤kρs≤40), consistent with drift- or drift-interchange modes, have been measured in the scrape-off layer (SOL) and core of the C-2 Field-Reversed Configuration (FRC), together with the toroidal E×B velocity. It is shown here that axial electrostatic SOL biasing controls and reduces gyro-scale density fluctuations, resulting in very low FRC core fluctuation levels. When the radial E×B flow shearing rate decreases below the turbulence decorrelation rate, fluctuation levels increase substantially, concomitantly with onset of the n=2 instability and rapid loss of diamagnetism. Low turbulence levels, improved energy/particle confinement and substantially increased FRC life times are achieved when E×B shear near the separatrix is maintained via axial SOL biasing using an annular washer gun.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, S.
2000-01-01
In this paper we present a detailed simulation study of the influence of quantum mechanical effects in the inversion layer on random dopant induced threshold voltage fluctuations and lowering in sub 100 nm MOSFETs. The simulations have been performed using a 3-D implementation of the density gradient (DG) formalism incorporated in our established 3-D atomistic simulation approach. This results in a self-consistent 3-D quantum mechanical picture, which implies not only the vertical inversion layer quantisation but also the lateral confinement effects related to current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical dopant fluctuations, is an increase in both threshold voltage fluctuations and lowering. At the same time, the random dopant induced threshold voltage lowering partially compensates for the quantum mechanical threshold voltage shift in aggressively scaled MOSFETs with ultrathin gate oxides.
NASA Astrophysics Data System (ADS)
Heinemann, T.; Papaloizou, J. C. B.
2009-07-01
We present fully three-dimensional local simulations of compressible magneto-rotational instability (MRI) turbulence with the object of studying and elucidating the excitation of the non-axisymmetric spiral density waves that are observed to always be present in such simulations. They are potentially important for affecting protoplanetary migration through the action of associated stochastic gravitational forces and producing residual transport in MHD inactive regions through which they may propagate. The simulations we perform are with zero net flux and produce mean activity levels corresponding to the Shakura & Syunyaev α ~ 5 × 10-3, being at the lower end of the range usually considered in accretion disc modelling. We reveal the nature of the mechanism responsible for the excitation of these waves by determining the time-dependent evolution of the Fourier transforms of the participating state variables. The dominant waves are found to have no vertical structure and to be excited during periodically repeating swings in which they change from leading to trailing. The initial phase of the evolution of such a swing is found to be in excellent agreement with that expected from the WKBJ theory developed in a preceding paper by Heinemann & Papaloizou. However, shortly after the attainment of the expected maximum wave amplitude, the waves begin to be damped on account of the formation of weak shocks. As expected from the theory, the waves are seen to shorten in radial wavelength as they propagate. This feature enables non-linear dissipation to continue in spite of amplitude decrease. As a consequence, the waves are almost always seen to be in the non-linear regime. We demonstrate that the important source terms causing excitation of the waves are related to a quantity that reduces to the potential vorticity for small perturbations from the background state with no vertical dependence. We find that the root mean square density fluctuations associated with the waves are positively correlated with both this quantity and the general level of hydromagnetic turbulence. The mean angular momentum transport associated with spiral density waves generated in our simulations is estimated to be a significant fraction of that associated with the turbulent Reynolds stress.
Shock wave oscillation driven by turbulent boundary layer fluctuations
NASA Technical Reports Server (NTRS)
Plotkin, K. J.
1972-01-01
Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer were investigated. A simple model is proposed in which the shock wave is convected from its mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean square pressure fluctuation and spectral density are in excellent agreement with available experimental data.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Kaya, S.; Davies, J. H.; Saini, S.
2000-01-01
We use the density gradient (DG) simulation approach to study, in 3D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs in a statistical manner. A description of the reconstruction procedure for the random 2D surfaces representing the 'atomistic' Si-SiO2 interface variations is presented. The procedure is based on power spectrum synthesis in the Fourier domain and can include either Gaussian or exponential spectra. The simulations show that threshold voltage variations induced by oxide thickness fluctuation become significant when the gate length of the devices become comparable to the correlation length of the fluctuations. The extent of quantum corrections in the simulations with respect to the classical case and the dependence of threshold variations on the oxide thickness are examined.
NASA Astrophysics Data System (ADS)
Chowdhury, P.; Bhatia, S. N.
1999-06-01
The in-plane ( ρab) and out-of-plane ( ρc) resistivities of BSCCO single crystals have been measured by six terminals technique. The ρab and ρc are well described by the fluctuation theory developed by Dorin et al. The main effect of these fluctuations is to cause a reduction in the quasi-particle density of states (DOS), leading to a negative contribution in the fluctuation conductivity Lawrence-Doniach (LD) and Maki-Thompson (MT) contributions. We have analyzed paraconductivity by adding this DOS contribution to LD and MT contributions. The analysis shows that approaches based on the conventional LD model alone cannot explain the paraconductivity along ab-plane and c-axis, even when the MT contribution is included.
Dynamic density functional theory with hydrodynamic interactions and fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@courant.nyu.edu
2014-06-21
We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, “Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps,” Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absencemore » of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, “A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law,” J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Banasri; Bandyopadhyay, Pratul; Majumdar, Priyadarshi
We have studied quantum phase transition induced by a quench in different one-dimensional spin systems. Our analysis is based on the dynamical mechanism which envisages nonadiabaticity in the vicinity of the critical point. This causes spin fluctuation which leads to the random fluctuation of the Berry phase factor acquired by a spin state when the ground state of the system evolves in a closed path. The two-point correlation of this phase factor is associated with the probability of the formation of defects. In this framework, we have estimated the density of defects produced in several one-dimensional spin chains. At themore » critical region, the entanglement entropy of a block of L spins with the rest of the system is also estimated which is found to increase logarithmically with L. The dependence on the quench time puts a constraint on the block size L. It is also pointed out that the Lipkin-Meshkov-Glick model in point-splitting regularized form appears as a combination of the XXX model and Ising model with magnetic field in the negative z axis. This unveils the underlying conformal symmetry at criticality which is lost in the sharp point limit. Our analysis shows that the density of defects as well as the scaling behavior of the entanglement entropy follows a universal behavior in all these systems.« less
Growth and dissolution of spherical density enhancements in SCDEW cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonometto, Silvio A.; Mainini, Roberto, E-mail: bonometto@oats.inaf.it, E-mail: roberto.mainini@mib.infn.it
2017-06-01
Strongly Coupled Dark Energy plus Warm dark matter (SCDEW) cosmologies are based on the finding of a conformally invariant (CI) attractor solution during the early radiative expansion, requiring then the stationary presence of ∼ 1 % of coupled-DM and DE, since inflationary reheating. In these models, coupled-DM fluctuations, even in the early radiative expansion, grow up to non-linearity, as shown in a previous associated paper. Such early non-linear stages are modelized here through the evolution of a top-hat density enhancement. As expected, its radius R increases up to a maximum and then starts to decrease. Virial balance is reached whenmore » the coupled-DM density contrast is just 25–26 and DM density enhancement is O(10 %) of total density. Moreover, we find that this is not an equilibrium configuration as, afterwards, coupling causes DM particle velocities to increase, so that the fluctuation gradually dissolves. We estimate the duration of the whole process, from horizon crossing to dissolution, and find z {sub horizon}/ z {sub erasing} ∼ 3 × 10{sup 4}. Therefore, only fluctuations entering the horizon at z ∼< 10{sup 9}–10{sup 10} are able to accrete WDM with mass ∼ 100 eV—as soon as it becomes non-relativistic—so avoiding full disruption. Accordingly, SCDEW cosmologies, whose WDM has mass ∼ 100 eV, can preserve primeval fluctuations down to stellar mass scale.« less
Nonequilibrium forces following quenches in active and thermal matter.
Rohwer, Christian M; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias
2018-03-01
Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.
Nonequilibrium forces following quenches in active and thermal matter
NASA Astrophysics Data System (ADS)
Rohwer, Christian M.; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias
2018-03-01
Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.
Dynamic measurements in non-uniform flows
NASA Astrophysics Data System (ADS)
Ershov, A. P.
2017-12-01
The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.
Spatial irregularities in Jupiter's upper ionosphere observed by Voyager radio occultations
NASA Technical Reports Server (NTRS)
Hinson, D. P.; Tyler, G. L.
1982-01-01
Radio scintillations (at 3.6 and 13 cm) produced by scattering from ionospheric irregularities during the Voyager occultations are interpreted using a weak-scattering theory. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yield estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. It is shown that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.
Dynamic measurements in non-uniform flows
NASA Astrophysics Data System (ADS)
Ershov, A. P.
2018-07-01
The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.
The evolution of structure in the universe from axions
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Shafi, Q.
1982-01-01
A scenario where axions provide the dark matter in the universe is considered. Fluctuations in the axion field density produced by domain walls and strings cause the appearance of axion clumps of masses of order 10 to the 6th power solar mass which most likely collapse to black holes by or at the time that the universe becomes axion dominated at T is approximately 10 eV. These objects form the building blocks for a clustering hierarchy theory of galaxy and supercluster formation on scales up to approximately 10 Mpc and approximately 10 to the 15th power solar mass.
High-density QCD phase transitions inside neutron stars: Glitches and gravitational waves
NASA Astrophysics Data System (ADS)
Srivastava, A. M.; Bagchi, P.; Das, A.; Layek, B.
2017-10-01
We discuss physics of exotic high baryon density QCD phases which are believed to exist in the core of a neutron star. This can provide a laboratory for exploring exotic physics such as axion emission, KK graviton production etc. Much of the physics of these high-density phases is model-dependent and not very well understood, especially the densities expected to occur inside neutron stars. We follow a different approach and use primarily universal aspects of the physics of different high-density phases and associated phase transitions. We study effects of density fluctuations during transitions with and without topological defect production and study the effect on pulsar timings due to changing moment of inertia of the star. We also discuss gravitational wave production due to rapidly changing quadrupole moment of the star due to these fluctuations.
Pressure effects on collective density fluctuations in water and protein solutions
Russo, Daniela; Laloni, Alessio; Filabozzi, Alessandra; Heyden, Matthias
2017-01-01
Neutron Brillouin scattering and molecular dynamics simulations have been used to investigate protein hydration water density fluctuations as a function of pressure. Our results show significant differences between the pressure and density dependence of collective dynamics in bulk water and in concentrated protein solutions. Pressure-induced changes in the tetrahedral order of the water HB network have direct consequences for the high-frequency sound velocity and damping coefficients, which we find to be a sensitive probe for changes in the HB network structure as well as the wetting of biomolecular surfaces. PMID:29073065
Amplitude of primeval fluctuations from cosmological mass density reconstructions
NASA Technical Reports Server (NTRS)
Seljak, Uros; Bertschinger, Edmund
1994-01-01
We use the POTENT reconstruction of the mass density field in the nearby universe to estimate the amplitude of the density fluctuation power spectrum for various cosmological models. We find that sigma(sub 8) Omega(sub m sup 0.6) = 1.3(sub -0.3 sup +0.4), almost independently of the power spectrum. This value agrees well with the Cosmic Background Explorer (COBE) normalization for the standard cold dark matter model, while alternative models predict an excessive amplitude compared with COBE. Flat, low Omega(sub m) models and tilted models with spectral index n less than 0.8 are particularly discordant.
Chaotic density fluctuations in L-mode plasmas of the DIII-D tokamak
Maggs, J. E.; Rhodes, Terry L.; Morales, G. J.
2015-03-05
Analysis of the time series obtained with the Doppler backscattering system (DBS) in the DIII-D tokamak shows that intermediate wave number plasma density fluctuations in low confinement (L-mode) tokamak plasmas are chaotic. Here, the supporting evidence is based on the shape of the power spectrum; the location of the signal in the complexity-entropy plane (C-H plane); and the population of the corresponding Bandt-Pompe probability distributions.
Electron-cyclotron wave scattering by edge density fluctuations in ITER
NASA Astrophysics Data System (ADS)
Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas
2009-11-01
The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.
Ultraviolet luminosity density of the universe during the epoch of reionization.
Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph
2015-09-08
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.
Experimental evaluation of fluctuating density and radiated noise from a high temperature jet
NASA Technical Reports Server (NTRS)
Massier, P. F.; Parthasarathy, S. P.; Cuffel, R. F.
1973-01-01
An experimental investigation has been conducted to characterize the fluctuating density within a high-temperature (1100 K) subsonic jet and to characterize by the noise radiated to the surroundings. Cross correlations obtained by introducing time delay to the signals detected from spatially separated crossed laser beams set up as a Schlieren system were used to determine radial and axial distributions of the convection velocity of the moving noise sources (eddies). In addition, the autocorrelation of the fluctuating density was evaluated in the moving frame of reference of the eddies. Also, the autocorrelation of the radiated noise in the moving reference frame was evaluated from cross correlations by introducing time delay to the signals detected by spatially separated pairs of microphones. Radial distributions of the mean velocity were obtained from measurements of the stagnation temperature, and stagnation and static pressures with the use of probes.
Effects of Density Fluctuations on Weakly Nonlinear Alfven Waves: An IST Perspective
NASA Astrophysics Data System (ADS)
Hamilton, R.; Hadley, N.
2012-12-01
The effects of random density fluctuations on oblique, 1D, weakly nonlinear Alfven waves is examined through a numerical study of an analytical model developed by Ruderman [M.S. Ruderman, Phys. Plasmas, 9 (7), pp. 2940-2945, (2002).]. Consistent with Ruderman's application to the one-parameter dark soliton, the effects on both one-parameter bright and dark solitons, the two-parameter soliton as well as pairs of one-parameter solitons were similar to that of Ohmic dissipation found by Hamilton et al. [R. Hamilton, D. Peterson, and S. Libby, J. Geophys. Res 114, A03104,doi:10.1029/2008JA013582 (2009).] It was found in all cases where bright or two-parameter solitons are present initially, that the effects of density fluctuations results in the eventual damping of such compressive wave forms and the formation of a train of dark solitons, or magnetic depressions.
NASA Astrophysics Data System (ADS)
Davis, E. M.; Rost, J. C.; Porkolab, M.; Marinoni, A.; Van Zeeland, M. A.
2016-11-01
Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. This work describes the first-ever implementation of a combined PCI-interferometer. The combined system uses a single 10.6 μm probe beam, two interference schemes, and two detectors to measure electron density fluctuations at large spatiotemporal bandwidth (10 kHz
NASA Astrophysics Data System (ADS)
Sachdev, Subir
2014-03-01
The hole-doped cuprate high temperature superconductors enter the pseudogap regime as their superconducting critical temperature, Tc, falls with decreasing hole density. Experiments have probed this regime for over two decades, but we argue that decisive new information has emerged from recent X-ray scattering experiments. The experiments observe incommensurate charge density wave fluctuations whose strength rises gradually over a wide temperature range above Tc, but then decreases as the temperature is lowered below Tc. We propose a theory in which the superconducting and charge-density wave orders exhibit angular fluctuations in a 6-dimensional space. The theory provides a natural quantitative fit to the X-ray data, and is consistent with other observed characteristics of the pseudogap. Results will also be presented on the microscopic origins of these order parameters. Work in collaboration with Lauren Hayward, Roger Melko, David Hawthorn, and Jay Sau.
Lee, Mi Kyung; Coker, David F
2016-08-18
An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.
Clerkin, L.; Kirk, D.; Manera, M.; ...
2016-08-30
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa_WL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg^2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirmmore » that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10-40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as kappa_WL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappa_WL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fit chi^2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.« less
NASA Astrophysics Data System (ADS)
Clerkin, L.; Kirk, D.; Manera, M.; Lahav, O.; Abdalla, F.; Amara, A.; Bacon, D.; Chang, C.; Gaztañaga, E.; Hawken, A.; Jain, B.; Joachimi, B.; Vikram, V.; Abbott, T.; Allam, S.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Carrasco Kind, M.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Melchior, P.; Miquel, R.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.
2017-04-01
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (κWL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the counts-in-cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey Science Verification data over 139 deg2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modelled by a lognormal PDF convolved with Poisson noise at angular scales from 10 to 40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as κWL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the κWL distribution is well modelled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fitting χ2/dof of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07, respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check, we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.
Plasma fluctuations as Markovian noise.
Li, B; Hazeltine, R D; Gentle, K W
2007-12-01
Noise theory is used to study the correlations of stationary Markovian fluctuations that are homogeneous and isotropic in space. The relaxation of the fluctuations is modeled by the diffusion equation. The spatial correlations of random fluctuations are modeled by the exponential decay. Based on these models, the temporal correlations of random fluctuations, such as the correlation function and the power spectrum, are calculated. We find that the diffusion process can give rise to the decay of the correlation function and a broad frequency spectrum of random fluctuations. We also find that the transport coefficients may be estimated by the correlation length and the correlation time. The theoretical results are compared with the observed plasma density fluctuations from the tokamak and helimak experiments.
Effects of population density on corticosterone levels of prairie voles in the field.
Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M
2016-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Jacobson, Ted; Wang, Yi-Hsieh; Edwards, Mark; Clark, Charles W.
2017-01-01
Analog black/white hole pairs have been achieved in recent experiment by J. Steinhauer, using an elongated Bose-Einstein condensate. He reported observations of self-amplifying Hawking radiation, via a lasing mechanism operating between the black and white hole horizons. Through the simulations using the 1D Gross-Pitaevskii equation, we find that the experimental observations should be attributed not to the black hole laser effect, but rather to a growing zero-frequency bow wave, generated at the white-hole horizon. The relative motion of the black and white hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. This mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. We also find that shot-to-shot atom number variations, of the type normally realized in ultracold-atom experiments, and quantum fluctuations of condensates, as computed in the Bogoliubov-De Gennes approximation, give density-density correlations consistent with those reported in the experiments. In particular, atom number variations can produce a spurious correlation signal.
Large-scale anisotropy of the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1981-01-01
Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.
Properties of Interstellar Turbulence from Gradients of Linear Polarization Maps
NASA Astrophysics Data System (ADS)
Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.
2012-04-01
Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|∇P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |∇P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |∇P|. Particularly, filaments produced by shocks show a characteristic "double jump" profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |∇P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |∇P| reveals a "swiss cheese" topology, while the subsonic cases have characteristics of a "clump" topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized medium.
NASA Astrophysics Data System (ADS)
Heinemann, T.; Papaloizou, J. C. B.
2009-07-01
We study and elucidate the mechanism of spiral density wave excitation in a differentially rotating flow with turbulence which could result from the magneto-rotational instability. We formulate a set of wave equations with sources that are only non-zero in the presence of turbulent fluctuations. We solve these in a shearing box domain, subject to the boundary conditions of periodicity in shearing coordinates, using a WKBJ method. It is found that, for a particular azimuthal wavelength, the wave excitation occurs through a sequence of regularly spaced swings during which the wave changes from leading to trailing form. This is a generic process that is expected to occur in shearing discs with turbulence. Trailing waves of equal amplitude propagating in opposite directions are produced, both of which produce an outward angular momentum flux that we give expressions for as functions of the disc parameters and azimuthal wavelength. By solving the wave amplitude equations numerically, we justify the WKBJ approach for a Keplerian rotation law for all parameter regimes of interest. In order to quantify the wave excitation completely, the important wave source terms need to be specified. Assuming conditions of weak non-linearity, these can be identified and are associated with a quantity related to the potential vorticity, being the only survivors in the linear regime. Under the additional assumption that the source has a flat power spectrum at long azimuthal wavelengths, the optimal azimuthal wavelength produced is found to be determined solely by the WKBJ response and is estimated to be 2πH, with H being the nominal disc scaleheight. In a following paper by Heinemann & Papaloizou, we perform direct three-dimensional simulations and compare results manifesting the wave excitation process and its source with the assumptions made and the theory developed here in detail, finding excellent agreement.
The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description
NASA Astrophysics Data System (ADS)
Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.
2017-09-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar convection by leading-order 2D Elsässer fluctuations, with critical balance being achieved when Alfvén wave sweeping balances passive scalar convection by leading-order 2D Elsässer fluctuations. Besides yielding predictions of 2D and slab spectra for Elsässer fluctuations, NI MHD shows that density fluctuations are advected by the majority or dominant incompressible velocity fluctuations. In the case of β ∼ 1 or ≪ 1, the density spectrum is Kolmogorov in the perpendicular wave number, thus providing a possible explanation for the observed extended Kolmogorov-like power law spectrum for electron density fluctuations in the interstellar medium.
The evolving intergalactic medium - The uncollapsed baryon fraction in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif
1991-01-01
The time-varying density of the intergalactic medium (IGM) is calculated by coupling detailed numerical calculations of the thermal and ionization balance and radiative transfer in a uniform IGM of H and He to the linearized equations for the growth of density fluctuations in both gases and a dark component in a cold dark matter universe. The IGM density is identified with the collapsed baryon fraction. It is found that even if the IGM is never reheated, a significant fraction of the baryons remain uncollapsed at redshifts of four. If instead the collapsed fraction releases enough ionizing radiation or thermal energy to reionize the IGM by z greater than four as required by the Gunn-Peterson (GP) constraint, the uncollapsed fraction at z of four is even higher. The known quasar distribution is insufficient to supply the ionizing radiation necessary to satisfy the GP constraint in this case and, if stars are instead responsible, a substantial metallicity must have been produced by z of four.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Ruiz, J.; White, A. E.; Ren, Y.
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less
Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range
NASA Astrophysics Data System (ADS)
Tajima, Hiroyuki
2018-04-01
We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.
Local time dependence of turbulent magnetic fields in Saturn's magnetodisc
NASA Astrophysics Data System (ADS)
Kaminker, V.; Delamere, P. A.; Ng, C. S.; Dennis, T.; Otto, A.; Ma, X.
2017-04-01
Net plasma transport in magnetodiscs around giant planets is outward. Observations of plasma temperature have shown that the expanding plasma is heating nonadiabatically during this process. Turbulence has been suggested as a source of heating. However, the mechanism and distribution of magnetic fluctuations in giant magnetospheres are poorly understood. In this study we attempt to quantify the radial and local time dependence of fluctuating magnetic field signatures that are suggestive of turbulence, quantifying the fluctuations in terms of a plasma heating rate density. In addition, the inferred heating rate density is correlated with magnetic field configurations that include azimuthal bend forward/back and magnitude of the equatorial normal component of magnetic field relative to the dipole. We find a significant local time dependence in magnetic fluctuations that is consistent with flux transport triggered in the subsolar and dusk sectors due to magnetodisc reconnection.
Continuous description of fluctuating eccentricities
NASA Astrophysics Data System (ADS)
Blaizot, Jean-Paul; Broniowski, Wojciech; Ollitrault, Jean-Yves
2014-11-01
We consider the initial energy density in the transverse plane of a high energy nucleus-nucleus collision as a random field ρ (x), whose probability distribution P [ ρ ], the only ingredient of the present description, encodes all possible sources of fluctuations. We argue that it is a local Gaussian, with a short-range 2-point function, and that the fluctuations relevant for the calculation of the eccentricities that drive the anisotropic flow have small relative amplitudes. In fact, this 2-point function, together with the average density, contains all the information needed to calculate the eccentricities and their variances, and we derive general model independent expressions for these quantities. The short wavelength fluctuations are shown to play no role in these calculations, except for a renormalization of the short range part of the 2-point function. As an illustration, we compare to a commonly used model of independent sources, and recover the known results of this model.
Far-forward collective scattering measurements by FIR polarimeter-interferometer on J-TEXT tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, P.; Chen, J., E-mail: jiech@hust.edu.cn; Gao, L.
The multi-channel three-wave polarimeter-interferometer system on J-TEXT tokamak has been exploited to measure far-forward collective scattering from electron density fluctuations. The diagnostic utilizes far infrared lasers operated at 432 μm with 17-channel vertical chords (3 cm chord spacing), covering the entire cross section of plasma. Scattering laser power is measured using a high-sensitivity Schottky planar diode mixer which can also detect polarimetric and interferometric phase simultaneously. The system provides a line-integrated measurement of density fluctuations with maximum measurable wave number: k{sub ⊥max} ≤ 2 cm{sup −1} and time response up to 350 kHz. Feasibility of the diagnostic has been tested,more » showing higher sensitivity to detect fluctuation than interferometric measurement. Capability of providing spatial-resolved information of fluctuation has also been demonstrated in preliminary experimental applications.« less
Spectral Behavior of Weakly Compressible Aero-Optical Distortions
NASA Astrophysics Data System (ADS)
Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric
2016-11-01
In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.
A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field.
Patel, A D; Sharma, M; Ramasubramanian, N; Ganesh, R; Chattopadhyay, P K
2018-04-01
A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10 -5 -1 × 10 -3 mbar, achieving plasma densities ranging from 10 9 to 10 11 cm -3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δI isat /I isat < 1%). The plasma thus produced will be used to study new and hitherto unexplored physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.
Jumping the gap: the formation conditions and mass function of `pebble-pile' planetesimals
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-03-01
In a turbulent proto-planetary disc, dust grains undergo large-density fluctuations and under the right circumstances, grain overdensities can collapse under self-gravity (forming a `pebble-pile' planetesimal). Using a simple model for fluctuations predicted in simulations, we estimate the rate of formation and mass function of self-gravitating planetesimal-mass bodies formed by this mechanism. This depends sensitively on the grain size, disc surface density, and turbulent Mach numbers. However, when it occurs, the resulting planetesimal mass function is broad and quasi-universal, with a slope dN/dM ∝ M-(1-2), spanning size/mass range ˜10-104 km (˜10-9-5 M⊕). Collapse to planetesimal through super-Earth masses is possible. The key condition is that grain density fluctuations reach large amplitudes on large scales, where gravitational instability proceeds most easily (collapse of small grains is suppressed by turbulence). This leads to a new criterion for `pebble-pile' formation: τs ≳ 0.05 ln (Q1/2/Zd)/ln (1 + 10 α1/4) ˜ 0.3 ψ(Q, Z, α) where τs = ts Ω is the dimensionless particle stopping time. In a minimum-mass solar nebula, this requires grains larger than a = (50, 1, 0.1) cm at r=(1, 30, 100) au}. This may easily occur beyond the ice line, but at small radii would depend on the existence of large boulders. Because density fluctuations depend strongly on τs (inversely proportional to disc surface density), lower density discs are more unstable. Conditions for pebble-pile formation also become more favourable around lower mass, cooler stars.
Pulsational mode fluctuations and their basic conservation laws
NASA Astrophysics Data System (ADS)
Borah, B.; Karmakar, P. K.
2015-01-01
We propose a theoretical hydrodynamic model for investigating the basic features of nonlinear pulsational mode stability in a partially charged dust molecular cloud within the framework of the Jeans homogenization assumption. The inhomogeneous cloud is modeled as a quasi-neutral multifluid consisting of the warm electrons, warm ions, and identical inertial cold dust grains with partial ionization in a neutral gaseous background. The grain-charge is assumed not to vary in the fluctuation evolution time scale. The active inertial roles of the thermal species are included. We apply a standard multiple scaling technique centered on the gravito-electrostatic equilibrium to understand the fluctuations on the astrophysical scales of space and time. This is found that electrostatic and self-gravitational eigenmodes co-exist as diverse solitary spectral patterns governed by a pair of Korteweg-de Vries (KdV) equations. In addition, all the relevant classical conserved quantities associated with the KdV system under translational invariance are methodologically derived and numerically analyzed. A full numerical shape-analysis of the fluctuations, scale lengths and perturbed densities with multi-parameter variation of judicious plasma conditions is carried out. A correlation of the perturbed densities and gravito-electrostatic spectral patterns is also graphically indicated. It is demonstrated that the solitary mass, momentum and energy densities also evolve like solitary spectral patterns which remain conserved throughout the spatiotemporal scales of the fluctuation dynamics. Astrophysical and space environments significant to our results are briefly highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
NASA Astrophysics Data System (ADS)
Schramm, David N.
1992-07-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold'' and ``hot'' non-baryonic candidates is shown to depend on the assumed ``seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
NASA Astrophysics Data System (ADS)
Schramm, D. N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the omega = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between 'cold' and 'hot' non-baryonic candidates is shown to depend on the assumed 'seeds' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages, and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
The effect of density fluctuations on electron cyclotron beam broadening and implications for ITER
NASA Astrophysics Data System (ADS)
Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G.; Henderson, M.; Saibene, G.
2018-01-01
We present state-of-the-art computations of propagation and absorption of electron cyclotron waves, retaining the effects of scattering due to electron density fluctuations. In ITER, injected microwaves are foreseen to suppress neoclassical tearing modes (NTMs) by driving current at the q=2 and q=3/2 resonant surfaces. Scattering of the beam can spoil the good localization of the absorption and thus impair NTM control capabilities. A novel tool, the WKBeam code, has been employed here in order to investigate this issue. The code is a Monte Carlo solver for the wave kinetic equation and retains diffraction, full axisymmetric tokamak geometry, determination of the absorption profile and an integral form of the scattering operator which describes the effects of turbulent density fluctuations within the limits of the Born scattering approximation. The approach has been benchmarked against the paraxial WKB code TORBEAM and the full-wave code IPF-FDMC. In particular, the Born approximation is found to be valid for ITER parameters. In this paper, we show that the radiative transport of EC beams due to wave scattering in ITER is diffusive unlike in present experiments, thus causing up to a factor of 2-4 broadening in the absorption profile. However, the broadening depends strongly on the turbulence model assumed for the density fluctuations, which still has large uncertainties.
The statistics of peaks of Gaussian random fields. [cosmological density fluctuations
NASA Technical Reports Server (NTRS)
Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.
1986-01-01
A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.
Self-similarity criteria in anisotropic flows with viscosity stratification
NASA Astrophysics Data System (ADS)
Danaila, L.; Voivenel, L.; Varea, E.
2017-02-01
Variable-viscosity flows exhibit a faster trend towards a fully developed turbulent state since fluctuations are produced at a larger amount. A legitimate expectation is that self-similarity to be tenable earlier than in classical, single-viscosity flows. The question which begs to be answered is: which are the self-similarity criteria for variable-viscosity, density-matched, flows? The similarity assumption, i.e., all scales evolve in a similar fashion in space/time, is applied to the transport equation for one- and two-point statistics of anisotropic, variable-viscosity flows. It is shown that the similarity assumption is valid for regions of the flow where viscosity (mean values and the fluctuations root-mean-square) is uniform. In regions where viscosity gradients are important, such as the sheared region and jet boundaries, similarity is not tenable. Our claims are applicable to any decaying flow, isotropic or anisotropic. Support is provided by experimental data obtained in the near field region of a jet issuing into a more viscous environment. The viscosity ratio is 3.5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Qifo; Liu, Yong; Zhao, Hailin, E-mail: zhaohailin@ipp.ac.cn
A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R − R{sub 0})/a, R{sub 0} = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation withmore » a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of k{sub θ} < 2.4 cm{sup −1}. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).« less
Effects of trap density on drain current LFN and its model development for E-mode GaN MOS-HEMT
NASA Astrophysics Data System (ADS)
Panda, D. K.; Lenka, T. R.
2017-12-01
In this paper the drain current low-frequency noise (LFN) of E-mode GaN MOS-HEMT is investigated for different gate insulators such as SiO2, Al2O3/Ga2O3/GdO3, HfO2/SiO2, La2O3/SiO2 and HfO2 with different trap densities by IFM based TCAD simulation. In order to analyze this an analytical model of drain current low frequency noise is developed. The model is developed by considering 2DEG carrier fluctuations, mobility fluctuations and the effects of 2DEG charge carrier fluctuations on the mobility. In the study of different gate insulators it is observed that carrier fluctuation is the dominant low frequency noise source and the non-uniform exponential distribution is critical to explain LFN behavior, so the analytical model is developed by considering uniform distribution of trap density. The model is validated with available experimental data from literature. The effect of total number of traps and gate length scaling on this low frequency noise due to different gate dielectrics is also investigated.
Characterizing pixel and point patterns with a hyperuniformity disorder length
NASA Astrophysics Data System (ADS)
Chieco, A. T.; Dreyfus, R.; Durian, D. J.
2017-09-01
We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns—where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h =L /2 . Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h =(L /2 )(f /d ) for small f , and h =L /2 for f →1 . And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L ,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h (L ) versus L . We call this approach "hyperuniformity disorder length spectroscopy".
Characterizing pixel and point patterns with a hyperuniformity disorder length.
Chieco, A T; Dreyfus, R; Durian, D J
2017-09-01
We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns-where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h=L/2. Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h=(L/2)(f/d) for small f, and h=L/2 for f→1. And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h(L) versus L. We call this approach "hyperuniformity disorder length spectroscopy".
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.
Rotskoff, Grant M
2017-03-01
We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.
Nonlinear effects of climate and density in the dynamics of a fluctuating population of reindeer.
Tyler, Nicholas J C; Forchhammer, Mads C; Øritsland, Nils Are
2008-06-01
Nonlinear and irregular population dynamics may arise as a result of phase dependence and coexistence of multiple attractors. Here we explore effects of climate and density in the dynamics of a highly fluctuating population of wild reindeer (Rangifer tarandus platyrhynchus) on Svalbard observed over a period of 29 years. Time series analyses revealed that density dependence and the effects of local climate (measured as the degree of ablation [melting] of snow during winter) on numbers were both highly nonlinear: direct negative density dependence was found when the population was growing (Rt > 0) and during phases of the North Atlantic Oscillation (NAO) characterized by winters with generally high (1979-1995) and low (1996-2007) indices, respectively. A growth-phase-dependent model explained the dynamics of the population best and revealed the influence of density-independent processes on numbers that a linear autoregressive model missed altogether. In particular, the abundance of reindeer was enhanced by ablation during phases of growth (Rt > 0), an observation that contrasts with the view that periods of mild weather in winter are normally deleterious for reindeer owing to icing of the snowpack. Analyses of vital rates corroborated the nonlinearity described in the population time series and showed that both starvation mortality in winter and fecundity were nonlinearly related to fluctuations in density and the level of ablation. The erratic pattern of growth of the population of reindeer in Adventdalen seems, therefore, to result from a combination of the effects of nonlinear density dependence, strong density-dependent mortality, and variable density independence related to ablation in winter.
Idrissi, Abdenacer; Vyalov, Ivan; Georgi, Nikolaj; Kiselev, Michael
2013-10-10
We combined molecular dynamics simulation and DBSCAN algorithm (Density Based Spatial Clustering of Application with Noise) in order to characterize the local density inhomogeneity distribution in supercritical fluids. The DBSCAN is an algorithm that is capable of finding arbitrarily shaped density domains, where domains are defined as dense regions separated by low-density regions. The inhomogeneity of density domain distributions of Ar system in sub- and supercritical conditions along the 50 bar isobar is associated with the occurrence of a maximum in the fluctuation of number of particles of the density domains. This maximum coincides with the temperature, Tα, at which the thermal expansion occurs. Furthermore, using Voronoi polyhedral analysis, we characterized the structure of the density domains. The results show that with increasing temperature below Tα, the increase of the inhomogeneity is mainly associated with the density fluctuation of the border particles of the density domains, while with increasing temperature above Tα, the decrease of the inhomogeneity is associated with the core particles.
From density to interface fluctuations: The origin of wavelength dependence in surface tension
NASA Astrophysics Data System (ADS)
Hiester, Thorsten
2008-12-01
The height-height correlation function for a fluctuating interface between two coexisting bulk phases is derived by means of general equilibrium properties of the corresponding density-density correlation function. A wavelength-dependent surface tension γ(q) can be defined and expressed in terms of the direct correlation function c(r,r') , the equilibrium density profile ρ0(r) , and an operator which relates density to surface configurations. Neither the concept of an effective interface Hamiltonian nor the difference in pressure is needed to determine the general structure of the height-height correlations or γ(q) , respectively. This result generalizes the Mecke-Dietrich surface tension γMD(q) [Phys. Rev. E 59, 6766 (1999)] and modifies recently published criticism concerning γMD(q) [Tarazona, Checa, and Chacón, Phys. Rev. Lett. 99, 196101 (2007)].
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Chappell, C. R.
1973-01-01
We use OGO 5 measurements made within the plasmapause on May 15, 1969, to investigate the possible association between changes in lightning whistler dispersion characteristics and local density fluctuations. It is shown that groups of whistlers with relatively constant dispersions tended to be detected in regions where the local ion concentration was significantly enhanced. It is assumed that these local density fluctuations represent characteristics of large-scale field-aligned variations. The results are then compared with ray refraction estimates appropriate for low-frequency whistler mode propagation (wave components with frequencies comparable to the local lower hybrid frequency) in a nonuniform medium.
On the large scale structure of X-ray background sources
NASA Technical Reports Server (NTRS)
Bi, H. G.; Meszaros, A.; Meszaros, P.
1991-01-01
The large scale clustering of the sources responsible for the X-ray background is discussed, under the assumption of a discrete origin. The formalism necessary for calculating the X-ray spatial fluctuations in the most general case where the source density contrast in structures varies with redshift is developed. A comparison of this with observational limits is useful for obtaining information concerning various galaxy formation scenarios. The calculations presented show that a varying density contrast has a small impact on the expected X-ray fluctuations. This strengthens and extends previous conclusions concerning the size and comoving density of large scale structures at redshifts 0.5 between 4.0.
Nazikian, R; Shinohara, K; Kramer, G J; Valeo, E; Hill, K; Hahm, T S; Rewoldt, G; Ide, S; Koide, Y; Oyama, Y; Shirai, H; Tang, W
2005-04-08
A low power polychromatic beam of microwaves is used to diagnose the behavior of turbulent fluctuations in the core of the JT-60U tokamak during the evolution of the internal transport barrier. A continuous reduction in the size of turbulent structures is observed concomitant with the reduction of the density scale length during the evolution of the internal transport barrier. The density correlation length decreases to the order of the ion gyroradius, in contrast with the much longer scale lengths observed earlier in the discharge, while the density fluctuation level remain similar to the level before transport barrier formation.
Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions
NASA Astrophysics Data System (ADS)
Netz, R. R.; Orland, H.
2000-02-01
We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.
CXB and CIB joint fluctuations in COSMOS, EGS, UDS and HDFN
NASA Astrophysics Data System (ADS)
Cappelluti, Nico; Li, Yanxia; Cooper, Rachel Ann; Guo, Joyce; Urry, C. Megan; Hasinger, Guenther; Arendt, Richard G.; Kashlinsky, Alexander
2017-01-01
I will present new results on the joint CIB and CXB joint fluctuations in the COSMOS, EGS, UDS and HDFN surveys. We used the deepest wide Chandra, XMM and Spitzer data available so far and cross-correlate with known optical galaxies. We demonstrate that the these joint fluctuations are produced by extremely faint sources mAB>28. We tested the hypothesis that early supermassive black holes could produce the observed signal
Internal transport barriers in the National Spherical Torus Experimenta)
NASA Astrophysics Data System (ADS)
Yuh, H. Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Mazzucato, E.; Peterson, J. L.; Smith, D. R.; Candy, J.; Waltz, R. E.; Domier, C. W.; Luhmann, N. C.; Lee, W.; Park, H. K.
2009-05-01
In the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum E ×B shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients.
Global financial crisis making a V-shaped fluctuation in NO2 pollution over the Yangtze River Delta
NASA Astrophysics Data System (ADS)
Du, Yin; Xie, Zhiqing
2017-04-01
The Yangtze River Delta (YRD), China's main cultural and economic center, has become one of the most seriously polluted areas in the world with respect to nitrogen oxides (NOx), owing to its rapid industrialization and urbanization, as well as substantial coal consumption. On the basis of nitrogen dioxide (NO2) density data from ozone monitoring instrument (OMI) and ground-based observations, the effects of industrial fluctuations due to the financial crisis on local NO2 pollution were quantitatively assessed. The results were as follows. (1) A distinct V-shaped fluctuation of major industrial products, thermal generating capacity, electricity consumption, and tropospheric NO2 densities was associated with the global financial crisis from May 2007 to December 2009, with the largest anomalies 1.5 times more than standard deviations at the height of the crisis period from November 2008 to February 2009. (2) Among all industrial sectors, thermal power plants were mainly responsible for fluctuations in local NO2 pollution during the crisis period. Thermal generating capacity had its greatest decrease of 12.10% at the height of the crisis compared with that during November 2007-February 2008, leading to local tropospheric NO2 density decreasing by 16.97%. As the crisis appeased, thermal generating capacity increased by 29.63% from November 2009 to February 2010, and tropospheric NO2 densities correspondingly increased by 30.07%. (3) Among all industrial sectors in the YRD, the thermal power sector has the greatest coal consumption of about 65.96%. A decline in thermal power of about 10% can induce a decrease of about 30% in NOx emissions and NO2 densities, meaning that a relative small fluctuation in industrial production can lead to a large decrease in tropospheric NO2 densities over industrially developed areas like the YRD region. Since electricity is mainly obtained from local coal-burning thermal plants without NOx-processing equipment, installing NOx-removal devices for all thermal power plants is an important and feasible way of controlling local NOx pollution at present.
Non scale-invariant density perturbations from chaotic extended inflation
NASA Technical Reports Server (NTRS)
Mollerach, Silvia; Matarrese, Sabino
1991-01-01
Chaotic inflation is analyzed in the frame of scalar-tensor theories of gravity. Fluctuations in the energy density arise from quantum fluctuations of the Brans-Dicke field and of the inflation field. The spectrum of perturbations is studied for a class of models: it is non scale-invarient and, for certain values of the parameters, it has a peak. If the peak appears at astrophysically interesting scales, it may help to reconcile the Cold Dark Matter scenario for structure formation with large scale observations.
Experimental analysis of drift waves destabilization in a toroidal plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riccardi, C.; Xuantong, D.; Salierno, M.
1997-11-01
This paper concerns the study of the development of turbulence in a toroidal magnetoplasma [C. Riccardi {ital et al.}, Plasma Phys. {bold 36}, 1791 (1994)]. This analysis has been performed by evaluating wave number, frequency spectra, and bicoherence coefficients of density fluctuations associated to drift wave propagation. Plasma parameters have been changed over a wide range, in order to identify and characterize density fluctuations both in absence and in presence of nonlinear phenomena. {copyright} {ital 1997 American Institute of Physics.}
Hanle effect in nonmonochromatic laser light
NASA Astrophysics Data System (ADS)
Ryan, R. E.; Bergeman, T. H.
1991-06-01
We report results of calculations on the Hanle effect in a J=0⇆J=1 atomic transition with three types of model fluctuating light fields: (a) the Brownian-motion phase-diffusion field, as produced in recent experiments by Arnett et al. [Phys. Rev. A 41, 2580 (1990)]; (b) Gaussian amplitude fluctuations; and (c) the chaotic field model, in which real and imaginary parts of the electric-field amplitude fluctuate. For the stochastic density-matrix equations, we use methods developed by Zoller and co-workers [e.g., Dixit, Zoller, and Lambropoulos, Phys. Rev. A 21, 1289 (1980)] employing the Fokker-Planck operator and leading to matrix continued-fraction expansions. The Hanle effect is of interest as a prototype for multisublevel atomic transitions. The width of the Hanle dip at zero magnetic field reflects the tendency of the light field to preserve the coherence between excited-state sublevels. For monochromatic light, the Hanle dip width increases as the square root of light intensity. When the laser bandwidth increases, power broadening of the coherence dip normally decreases. However, with the Brownian-motion phase-diffusion model, if the laser spectral profile is nearly Gaussian, broadening the laser up to several times the natural width of the atomic line does not diminish the Hanle dip width. With amplitude fluctuations, even in the limit of monochromatic light, power broadening of the Hanle dip with intensity is reduced by one-third to one-half depending on the particular model.
New Wrinkles in Retinal Densitometry
Masella, Benjamin D.; Hunter, Jennifer J.; Williams, David R.
2014-01-01
Purpose. Retinal densitometry provides objective information about retinal function. But, a number of factors, including retinal reflectance changes that are not directly related to photopigment depletion, complicate its interpretation. We explore these factors and suggest a method to minimize their impact. Methods. An adaptive optics scanning light ophthalmoscope (AOSLO) was used to measure changes in photoreceptor reflectance in monkeys before and after photopigment bleaching with 514-nm light. Reflectance measurements at 514 nm and 794 nm were recorded simultaneously. Several methods of normalization to extract the apparent optical density of the photopigment were compared. Results. We identified stimulus-related fluctuations in 794-nm reflectance that are not associated with photopigment absorptance and occur in both rods and cones. These changes had a magnitude approaching those associated directly with pigment depletion, precluding the use of infrared reflectance for normalization. We used a spatial normalization method instead, which avoided the fluctuations in the near infrared, as well as a confocal AOSLO designed to minimize light from layers other than the receptors. However, these methods produced a surprisingly low estimate of the apparent rhodopsin density (animal 1: 0.073 ± 0.006, animal 2: 0.032 ± 0.003). Conclusions. These results confirm earlier observations that changes in photopigment absorption are not the only source of retinal reflectance change during dark adaptation. It appears that the stray light that has historically reduced the apparent density of cone photopigment in retinal densitometry arises predominantly from layers near the photoreceptors themselves. Despite these complications, this method provides a valuable, objective measure of retinal function. PMID:25316726
Correlations and fluctuations: Generalized factorial moments
NASA Astrophysics Data System (ADS)
Bialas, A.
2007-02-01
A systematic study of the relations between fluctuations of the extensive multiparticle variables and integrals of the inclusive multiparticle densities is presented. The generalized factorial moments are introduced and their physical meaning discussed. The effects of the additive conservation laws are analyzed.
Atmospheric Science Data Center
2013-04-22
... contrast greatly enhanced. Random fluctuations in the camera video signal produce the "salt and pepper" appearance, and the faint horizontal banding is due to random fluctuations in the video background level. The brightness of all these fluctuations is less than ...
Nature of Kinetic Scale Fluctuations in Solar Wind Turbulence
NASA Astrophysics Data System (ADS)
Salem, C. S.; Chen, C. H.; Sundkvist, D. J.; Chaston, C. C.; Bale, S. D.; Mozer, F.
2012-12-01
We present an investigation of the nature of small-scale turbulent fluctuations in the solar wind. The nature of the dissipation range fluctuations of solar wind turbulence remains a major open question in heliospheric physics. The steepening of the observed (magnetic field) spectra at ion scales was originally attributed to ion cyclotron damping, but it was later suggested that it could well be due to the dispersive nature of fluctuations at these scales. The nature of the dispersive cascade at and below the ion scales is still debated, two leading hypothesis being that these fluctuations have characteristics of Kinetic Alfven Waves (KAW) or whistler waves. Other possible contributions from current sheets and/or kinetic instabilities have been suggested. There is mounting evidence that the fluctuations at these scales are KAW-like. In this study, we analyze several carefully selected unperturbed solar wind intervals, using magnetic field, electric field as well as density measurements from the Cluster spacecraft in order to identify the nature of the wave modes present, how frequent they are and try to determine whether one or more wave modes at different times. We examine the electric to magnetic field fluctuation ratio (δ E/δd B), the magnetic compressibility (δ B∥ /δ B) as well as density fluctuations using newly developed diagnostic techniques by Salem et al (2012) and Chen et al (2012). We look for variations of the nature and properties of these kinetic scale fluctuations with solar wind conditions, such as the plasma beta and the angle between the magnetic field and the flow velocity which controls the measured (spacecraft frame) frequency of the fluctuations. We discuss how these results would impact how the solar wind plasma is heated.
Are ultracompact minihalos really ultracompact?
NASA Astrophysics Data System (ADS)
Delos, M. Sten; Erickcek, Adrienne L.; Bailey, Avery P.; Alvarez, Marcelo A.
2018-02-01
Ultracompact minihalos (UCMHs) have emerged as a valuable probe of the primordial power spectrum of density fluctuations at small scales. UCMHs are expected to form at early times in regions with δ ρ /ρ ≳10-3 , and they are theorized to possess an extremely compact ρ ∝r-9 /4 radial density profile, which enhances their observable signatures. Nonobservation of UCMHs can thus constrain the primordial power spectrum. Using N -body simulations to study the collapse of extreme density peaks at z ≃1000 , we show that UCMHs forming under realistic conditions do not develop the ρ ∝r-9 /4 profile and instead develop either ρ ∝r-3 /2 or ρ ∝r-1 inner density profiles depending on the shape of the power spectrum. We also demonstrate via idealized simulations that self-similarity—the absence of a scale length—is necessary to produce a halo with the ρ ∝r-9 /4 profile, and we argue that this implies such halos cannot form from a Gaussian primordial density field. Prior constraints derived from UCMH nonobservation must be reworked in light of this discovery. Although the shallower density profile reduces UCMH visibility, our findings reduce their signal by as little as O (10-2) while allowing later-forming halos to be considered, which suggests that new constraints could be significantly stronger.
Density enhancement mechanism of upwind schemes for low Mach number flows
NASA Astrophysics Data System (ADS)
Lin, Bo-Xi; Yan, Chao; Chen, Shu-Sheng
2018-06-01
Many all-speed Roe schemes have been proposed to improve performance in terms of low speeds. Among them, the F-Roe and T-D-Roe schemes have been found to get incorrect density fluctuation in low Mach flows, which is expected to be with the square of Mach number. Asymptotic analysis presents the mechanism of how the density fluctuation problem relates to the incorrect order of terms in the energy equation \\tilde{ρ {\\tilde{a}} {\\tilde{U}}Δ U}. It is known that changing the upwind scheme coefficients of the pressure-difference dissipation term D^P and the velocity-difference dissipation term in the momentum equation D^{ρ U} to the order of O(c^{-1}) and O(c0) can improve the level of pressure and velocity accuracy at low speeds. This paper shows that corresponding changes in energy equation can also improve the density accuracy in low speeds. We apply this modification to a recently proposed scheme, TV-MAS, to get a new scheme, TV-MAS2. Unsteady Gresho vortex flow, double shear-layer flow, low Mach number flows over the inviscid cylinder, and NACA0012 airfoil show that energy equation modification in these schemes can obtain the expected square Ma scaling of density fluctuations, which is in good agreement with corresponding asymptotic analysis. Therefore, this density correction is expected to be widely implemented into all-speed compressible flow solvers.
Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities
NASA Astrophysics Data System (ADS)
Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.
A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the oscillating function versus the average fluctuations length if the standard of fluctuations of inhomogeneities length is greater then the wave length. When the standard of fluctuations of medium inhomogeneities extension is smaller then the wave length, the av-erage intensity value weakly depends from the average fluctuations extension. The obtained results may be used for analysis of the electromagnetic wave propagation into the media with the fluctuating parameters caused by such factors as leafs of trees, cumulus, internal gravity waves with a chaotic phase and etc. Acknowledgment: This work was supported by the Russian Foundation for Basic Research (projects 08-02-97026 and 09-05-00450).
NONLINEAR REFLECTION PROCESS OF LINEARLY POLARIZED, BROADBAND ALFVÉN WAVES IN THE FAST SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoda, M.; Yokoyama, T., E-mail: shoda@eps.s.u-tokyo.ac.jp
2016-04-01
Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave–wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wavemore » with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.« less
Effect of wave localization on plasma instabilities
NASA Astrophysics Data System (ADS)
Levedahl, William Kirk
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
NASA Astrophysics Data System (ADS)
Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
Mapping metals at high redshift with far-infrared lines
NASA Astrophysics Data System (ADS)
Pallottini, A.; Gallerani, S.; Ferrara, A.; Yue, B.; Vallini, L.; Maiolino, R.; Feruglio, C.
2015-10-01
Cosmic metal enrichment is one of the key physical processes regulating galaxy formation and the evolution of the intergalactic medium (IGM). However, determining the metal content of the most distant galaxies has proven so far almost impossible; also, absorption line experiments at z ≳ 6 become increasingly difficult because of instrumental limitations and the paucity of background quasars. With the advent of Atacama Large Millimeter/submillimeter Array (ALMA), far-infrared emission lines provide a novel tool to study early metal enrichment. Among these, the [C II] line at 157.74 μm is the most luminous line emitted by the interstellar medium of galaxies. It can also resonant scatter comic microwave background (CMB) photons inducing characteristic intensity fluctuations (ΔI/ICMB) near the peak of the CMB spectrum, thus allowing to probe the low-density IGM. We compute both [C II] galaxy emission and metal-induced CMB fluctuations at z ˜ 6 by using adaptive mesh refinement cosmological hydrodynamical simulations and produce mock observations to be directly compared with ALMA Band 6 data (νobs ˜ 272 GHz). The [C II] line flux is correlated with MUV as log (F_peak/μ Jy)= -27.205 -2.253 M_UV -0.038 M_UV^2. Such relation is in very good agreement with recent ALMA observations of MUV < -20 galaxies by e.g. Maiolino et al. and Capak et al. We predict that a MUV = -19 (MUV = -18) galaxy can be detected at 4σ in ≃40 (2000) h, respectively. CMB resonant scattering can produce ≃ ± 0.1 μJy/beam emission/absorptions features that are very challenging to be detected with current facilities. The best strategy to detect these signals consists in the stacking of deep ALMA observations pointing fields with known MUV ≃ -19 galaxies. This would allow to simultaneously detect both [C II] emission from galactic reionization sources and CMB fluctuations produced by z ˜ 6 metals.
Exploring cavity-mediated long-range interactions in a dilute quantum gas
NASA Astrophysics Data System (ADS)
Landig, Renate; Mottl, Rafael; Brennecke, Ferdinand; Baumann, Kristian; Donner, Tobias; Esslinger, Tilman
2013-05-01
We report on the observation of a characteristic change in the excitation spectrum of a Bose-Einstein condensate and increased density fluctuations due to cavity-mediated atom-atom interactions. Increasing the strength of the interaction leads to a softening of an excitation mode at finite momentum, preceding a superfluid to supersolid phase transition. The observed behavior is reminiscent of a roton minimum, as predicted for quantum gases with long-range interactions. We create long-range interactions in the BEC using a non-resonant transverse pump beam which induces virtual photon exchange via the vacuum field of an optical cavity. The mode softening is spectroscopically studied across the phase transition using a variant of Bragg spectroscopy. At the phase transition a diverging density response is observed which is linked to increased density fluctuations. Using the cavity dissipation channel we monitor these fluctuations in real-time and identify the influence of measurement backaction onto the critical behavior of the system.
Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background
Floerchinger, Stefan; Martinez, Mauricio
2015-12-11
Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity, and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane, and rapidity. Here, we examine how the time evolution of linear perturbations depends on the equation of statemore » as well as on shear viscosity, bulk viscosity, and heat conductivity for modes with different azimuthal, radial, and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.« less
Unsteady density and velocity measurements in the 6 foot x 6 foot wind tunnel
NASA Technical Reports Server (NTRS)
Rose, W. C.; Johnson, D. A.
1980-01-01
The methods used and the results obtained in four aero-optic tests are summarized. It is concluded that the rather large values of density fluctuation appear to be the result of much higher Mach number than freestream and the violent turbulence in the flow as it separates from the turret. A representative comparison of fairing on-fairing off rms density fluctuation indicates essentially no effect at M = 0.62 and a small effect at M = 0.95. These data indicate that some slight improvement in optical quality can be expected with the addition of a fairing, although at M = 0.62 its effect would be nil. Fairings are very useful in controlling pressure loads on turrets, but will not have first order effects on optical quality. Scale sizes increase dramatically with increasing azimuth angle for a reprensentative condition. Since both scale sizes and fluctuation levels increase (total turbulence path length also increases) with azimuth angle, substantial optical degradation might be expected. For shorter wave lengths, large degradations occur.
NASA Technical Reports Server (NTRS)
Mark, W. D.
1977-01-01
Mathematical expressions were derived for the exceedance rates and probability density functions of aircraft response variables using a turbulence model that consists of a low frequency component plus a variance modulated Gaussian turbulence component. The functional form of experimentally observed concave exceedance curves was predicted theoretically, the strength of the concave contribution being governed by the coefficient of variation of the time fluctuating variance of the turbulence. Differences in the functional forms of response exceedance curves and probability densities also were shown to depend primarily on this same coefficient of variation. Criteria were established for the validity of the local stationary assumption that is required in the derivations of the exceedance curves and probability density functions. These criteria are shown to depend on the relative time scale of the fluctuations in the variance, the fluctuations in the turbulence itself, and on the nominal duration of the relevant aircraft impulse response function. Metrics that can be generated from turbulence recordings for testing the validity of the local stationary assumption were developed.
Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2
Ho, Tuan Anh; Ilgen, Anastasia
2017-10-26
Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2more » decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.« less
Influence of container shape on scaling of turbulent fluctuations in convection
NASA Astrophysics Data System (ADS)
Foroozani, N.; Niemela, J. J.; Armenio, V.; Sreenivasan, K. R.
2014-12-01
We perform large-eddy simulations of turbulent convection in a cubic cell for Rayleigh numbers, Ra, between 106 and 1010 and the molecular Prandtl number, Pr=0.7 . The simulations were carried out using a second-order-accurate finite-difference method in which subgrid-scale fluxes of momentum and heat were both parametrized using a Lagrangian and dynamic Smagorinsky model. The scaling of the root-mean-square fluctuations of density (temperature) and velocity measured in the cell center are in excellent agreement with the scaling measured in the laboratory experiments of Daya and Ecke [Phys. Rev. Lett. 87, 184501 (2001), 10.1103/PhysRevLett.87.184501] and differ substantially from that observed in cylindrical cells. We also observe the time-averaged spatial distributions of the local heat flux and density fluctuations, and find that they are strongly inhomogeneous in the horizontal midplane, with the largest density gradients occurring at the corners at the midheight, where hot and cold plumes mix in the form of strong counter-rotating eddies.
Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan Anh; Ilgen, Anastasia
Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2more » decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.« less
NASA Astrophysics Data System (ADS)
Di Cintio, Pierfrancesco; Livi, Roberto; Lepri, Stefano; Ciraolo, Guido
2017-04-01
By means of hybrid multiparticle collsion-particle-in-cell (MPC-PIC) simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled two-dimensional (2D) and quasi-one-dimensional (1D) plasmas. We find that the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for 2D systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.
Influence of container shape on scaling of turbulent fluctuations in convection.
Foroozani, N; Niemela, J J; Armenio, V; Sreenivasan, K R
2014-12-01
We perform large-eddy simulations of turbulent convection in a cubic cell for Rayleigh numbers, Ra, between 10(6) and 10(10) and the molecular Prandtl number, Pr=0.7. The simulations were carried out using a second-order-accurate finite-difference method in which subgrid-scale fluxes of momentum and heat were both parametrized using a Lagrangian and dynamic Smagorinsky model. The scaling of the root-mean-square fluctuations of density (temperature) and velocity measured in the cell center are in excellent agreement with the scaling measured in the laboratory experiments of Daya and Ecke [Phys. Rev. Lett. 87, 184501 (2001)] and differ substantially from that observed in cylindrical cells. We also observe the time-averaged spatial distributions of the local heat flux and density fluctuations, and find that they are strongly inhomogeneous in the horizontal midplane, with the largest density gradients occurring at the corners at the midheight, where hot and cold plumes mix in the form of strong counter-rotating eddies.
Adshead, Peter; Sfakianakis, Evangelos I.
2017-08-29
We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. Here, we work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ< 2, where γ= g 2 2=ψH 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density uctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wavemore » spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at in inflationary energy scales well below the GUT scale.« less
Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca
2015-07-07
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adshead, Peter; Sfakianakis, Evangelos I.
We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. Here, we work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ< 2, where γ= g 2 2=ψH 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density uctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wavemore » spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at in inflationary energy scales well below the GUT scale.« less
Stripped interstellar gas in cluster cooling flows
NASA Technical Reports Server (NTRS)
Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.
1991-01-01
It is suggested that nonlinear perturbations which lead to thermal instabilities in cooling flows might start as blobs of interstellar gas which are stipped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly 100 solar masses/yr, which is similar to the rates of cooling in cluster cooling flows. It is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low-entropy perturbations may help to maintain their identities by suppressing both thermal conduction and Kelvin-Helmholtz instabilities. These density fluctuations may disrupt the propagation of radio jets through the intracluster gas, which may be one mechanism for producing wideangle-tail radio galaxies.
NASA Astrophysics Data System (ADS)
Fiorucci, Donatella; Harms, Jan; Barsuglia, Matteo; Fiori, Irene; Paoletti, Federico
2018-03-01
Density changes in the atmosphere produce a fluctuating gravity field that affects gravity strainmeters or gravity gradiometers used for the detection of gravitational waves and for geophysical applications. This work addresses the impact of the atmospheric local gravity noise on such detectors, extending previous analyses. In particular we present the effect introduced by the building housing the detectors, and we analyze local gravity-noise suppression by constructing the detector underground. We present also new sound spectra and correlation measurements. The results obtained are important for the design of future gravitational-wave detectors and gravity gradiometers used to detect prompt gravity perturbations from earthquakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, T.; Lander, B.; Seifert, U.
2013-11-28
We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for themore » work still hold albeit for a different, apparent, change of free energy.« less
Observational Signatures of Parametric Instability at 1AU
NASA Astrophysics Data System (ADS)
Bowen, T. A.; Bale, S. D.; Badman, S.
2017-12-01
Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.
NASA Astrophysics Data System (ADS)
Rotskoff, Grant
We show that current fluctuations in stochastic pumps can be robustly mapped to fluctuations in a corresponding time-independent non-equilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also the optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps, similar to the ``housekeeping'' heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps satisfy a universal bound determined by the steady state entropy production. National Science Foundation Graduate Research Fellowship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...
2018-04-13
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
Jammed Humans in High-Density Crowd Disasters
NASA Astrophysics Data System (ADS)
Bottinelli, Arianna; Sumpter, David; Silverberg, Jesse
When people gather in large groups like those found at Black Friday sales events, pilgrimages, heavy metal concerts, and parades, crowd density often becomes exceptionally high. As a consequence, these events can produce tragic outcomes such as stampedes and ''crowd crushes''. While human collective motion has been studied with active particle simulations, the underlying mechanisms for emergent behavior are less well understood. Here, we use techniques developed to study jammed granular materials to analyze an active matter model inspired by large groups of people gathering at a point of common interest. In the model, a single behavioral rule combined with body-contact interactions are sufficient for the emergence of a self-confined steady state, where particles fluctuate around a stable position. Applying mode analysis to this system, we find evidence for Goldstone modes, soft spots, and stochastic resonance, which may be the preferential mechanisms for dangerous emergent collective motions in crowds.
Ghosh, Sanjib; Mandal, Sudhansu S
2013-11-15
Motivated by the recent observation of the shell effect in a nanoscale pure superconductor by Bose et al. [Nat. Mater. 9, 550 (2010)], we explore the possible shell-like effect in a strongly disordered superconductor as it is known to produce nanosize superconducting puddles (SPs). We find a remarkable change in the texture of the pairing amplitudes that is responsible for forming the SP, upon monotonic tuning of the average electron density,
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim
2018-04-01
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.
Modelling water use efficiency in a dynamic environment: An example using Arabidopsis thaliana.
Vialet-Chabrand, S; Matthews, J S A; Brendel, O; Blatt, M R; Wang, Y; Hills, A; Griffiths, H; Rogers, S; Lawson, T
2016-10-01
Intrinsic water use efficiency (Wi), the ratio of net CO2 assimilation (A) over stomatal conductance to water vapour (gs), is a complex trait used to assess plant performance. Improving Wi could lead in theory to higher productivity or reduced water usage by the plant, but the physiological traits for improvement and their combined effects on Wi have not been clearly identified. Under fluctuating light intensity, the temporal response of gs is an order of magnitude slower than A, which results in rapid variations in Wi. Compared to traditional approaches, our new model scales stoma behaviour at the leaf level to predict gs and A during a diurnal period, reproducing natural fluctuations of light intensity, in order to dissect Wi into traits of interest. The results confirmed the importance of stomatal density and photosynthetic capacity on Wi but also revealed the importance of incomplete stomatal closure under dark conditions as well as stomatal sensitivity to light intensity. The observed continuous decrease of A and gs over the diurnal period was successfully described by negative feedback of the accumulation of photosynthetic products. Investigation into the impact of leaf anatomy on temporal responses of A, gs and Wi revealed that a high density of stomata produces the most rapid response of gs but may result in lower Wi. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina
2012-06-01
The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.
NASA Technical Reports Server (NTRS)
Matthaeus, William H.; Goldstein, Melvyn L.; Roberts, D. Aaron
1990-01-01
Assuming that the slab and isotropic models of solar wind turbulence need modification (largely due to the observed anisotropy of the interplanetary fluctuations and the results of laboratory plasma experiments), this paper proposes a model of the solar wind. The solar wind is seen as a fluid which contains both classical transverse Alfvenic fluctuations and a population of quasi-transverse fluctuations. In quasi-two-dimensional turbulence, the pitch angle scattering by resonant wave-particle interactions is suppressed, and the direction of minimum variance of interplanetary fluctuations is parallel to the mean magnetic field. The assumed incompressibility is consistent with the fact that the density fluctuations are small and anticorrelated, and that the total pressure at small scales is nearly constant.
Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring
NASA Astrophysics Data System (ADS)
Nakatsugawa, K.; Fujii, T.; Tanda, S.
2017-09-01
We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.
NASA Astrophysics Data System (ADS)
Labombard, Brian
2013-10-01
A ``Mirror Langmuir Probe'' (MLP) diagnostic has been used to interrogate edge plasma profiles and turbulence in Alcator C-Mod with unprecedented detail, yielding fundamental insights on the Quasi-Coherent Mode (QCM) - a mode that regulates plasma density and impurities in EDA H-modes without ELMs. The MLP employs a fast-switching, self-adapting bias scheme, recording density, electron temperature and plasma potential simultaneously at high bandwidth (~1 MHz) on each of four separate electrodes on a scanning probe. Temporal dynamics are followed in detail; wavenumber-frequency spectra and phase relationships are readily deduced. Poloidal field fluctuations are recorded separately with a two-coil, scanning probe. Results from ohmic L-mode and H-mode plasmas are reported, including key observations of the QCM: The QCM lives in a region of positive radial electric field, with a mode width (~3 mm) that spans open and closed field line regions. Remarkably large amplitude (~30%), sinusoidal bursts in density, electron temperature and plasma potential fluctuations are observed that are in phase; potential lags density by at most 10 degrees. Propagation velocity of the mode corresponds to the sum of local E × B and electron diamagnetic drift velocities - quantities that are deduced directly from time-averaged profiles. Poloidal magnetic field fluctuations project to parallel current densities of ~5 amps/cm2 in the mode layer, with significant parallel electromagnetic induction. Electron force balance is examined, unambiguously identifying the mode type. It is found that fluctuations in parallel electron pressure gradient are roughly balanced by the sum of electrostatic and electromotive forces. Thus the primary mode structure of the QCM is that of a drift-Alfven wave. Work supported by US DoE award DE-FC02-99ER54512.
Turbulent fluctuations during pellet injection into a dipole confined plasma torus
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; Kesner, J.; Woskov, P. P.
2017-01-01
We report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the density profile is nearly "stationary" such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wavenumber dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, C. C.; Kramer, G. J.; Johnson, E.
Reflectometry, which uses the microwave radar technique to probe the magnetically confined fusion plasmas, is a very powerful tool to observe the density fluctuations in the fusion plasmas. Typically, two or more microwave beams of different frequencies are used to study the plasma density fluctuations. The frequency separation between these two beams of the PPPL designed reflectometer system upgrade on the DIII-D tokamak can be varied over 18 GHz. Due to the performance of the associated electronics, the local oscillator (LO) power level at the LO port of the I/Q demodulator suffers more than 12 dB of power fluctuations whenmore » the frequency separation is varied. Thus, the I/Q demodulator performance is impaired. In order to correct this problem, a power leveling circuit is introduced in the PPPL upgrade. According to the test results, the LO power fluctuation was regulated to be within 1 dB for greater than 16 dB of input power variation over the full dynamic bandwidth of the receiver.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Rong; Wu, Yongquan, E-mail: yqwu@shu.edu.cn; Xiao, Junjiang
We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clustersmore » and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms.« less
Quantifying Density Fluctuations in Volumes of All Shapes and Sizes Using Indirect Umbrella Sampling
NASA Astrophysics Data System (ADS)
Patel, Amish J.; Varilly, Patrick; Chandler, David; Garde, Shekhar
2011-10-01
Water density fluctuations are an important statistical mechanical observable and are related to many-body correlations, as well as hydrophobic hydration and interactions. Local water density fluctuations at a solid-water surface have also been proposed as a measure of its hydrophobicity. These fluctuations can be quantified by calculating the probability, P v ( N), of observing N waters in a probe volume of interest v. When v is large, calculating P v ( N) using molecular dynamics simulations is challenging, as the probability of observing very few waters is exponentially small, and the standard procedure for overcoming this problem (umbrella sampling in N) leads to undesirable impulsive forces. Patel et al. (J. Phys. Chem. B 114:1632, 2010) have recently developed an indirect umbrella sampling (INDUS) method, that samples a coarse-grained particle number to obtain P v ( N) in cuboidal volumes. Here, we present and demonstrate an extension of that approach to volumes of other basic shapes, like spheres and cylinders, as well as to collections of such volumes. We further describe the implementation of INDUS in the NPT ensemble and calculate P v ( N) distributions over a broad range of pressures. Our method may be of particular interest in characterizing the hydrophobicity of interfaces of proteins, nanotubes and related systems.
Hydrodynamic Flow Fluctuations in √sNN = 5:02 TeV PbPbCollisions
NASA Astrophysics Data System (ADS)
Castle, James R.
The collective, anisotropic expansion of the medium created in ultrarelativistic heavy-ion collisions, known as flow, is characterized through a Fourier expansion of the final-state azimuthal particle density. In the Fourier expansion, flow harmonic coefficients vn correspond to shape components in the final-state particle density, which are a consequence of similar spatial anisotropies in the initial-state transverse energy density of a collision. Flow harmonic fluctuations are studied for PbPb collisions at √sNN = 5.02 TeV using the CMS detector at the CERN LHC. Flow harmonic probability distributions p( vn) are obtained using particles with 0.3 < pT < 3.0 GeV/c and ∥eta∥ < 1.0 by removing finite-multiplicity resolution effects from the observed azimuthal particle density through an unfolding procedure. Cumulant elliptic flow harmonics (n = 2) are determined from the moments of the unfolded p(v2) distributions and used to construct observables in 5% wide centrality bins up to 60% that relate to the initial-state spatial anisotropy. Hydrodynamic models predict that fluctuations in the initial-state transverse energy density will lead to a non-Gaussian component in the elliptic flow probability distributions that manifests as a negative skewness. A statistically significant negative skewness is observed for all centrality bins as evidenced by a splitting between the higher-order cumulant elliptic flow harmonics. The unfolded p (v2) distributions are transformed assuming a linear relationship between the initial-state spatial anisotropy and final-state flow and are fitted with elliptic power law and Bessel Gaussian parametrizations to infer information on the nature of initial-state fluctuations. The elliptic power law parametrization is found to provide a more accurate description of the fluctuations than the Bessel-Gaussian parametrization. In addition, the event-shape engineering technique, where events are further divided into classes based on an observed ellipticity, is used to study fluctuation-driven differences in the initial-state spatial anisotropy for a given collision centrality that would otherwise be destroyed by event-averaging techniques. Correlations between the first and second moments of p( vn) distributions and event ellipticity are measured for harmonic orders n = 2 - 4 by coupling event-shape engineering to the unfolding technique.
Detection of radio frequency perturbations using an ion beam diagnostic (abstract)
NASA Astrophysics Data System (ADS)
Howard, S.; Si, J.; Crowley, T. P.; Connor, K. A.; Schoch, P. M.; Schatz, J. G.
2001-01-01
Presently, experiments are underway at the Plasma Dynamics Laboratory at Rensselaer Polytechnic Institute to demonstrate that the techniques developed for heavy ion beam probe diagnostics (HIBP) can be used to measure radio frequency (rf) fluctuations in plasmas. We hope to measure fluctuations in plasma density and magnetic and electric fields. This will provide a direct measurement of the electric and magnetic fields in the plasma during ICRF heating and thereby improve understanding of heating deposition and wave physics. In addition, the field and the density measurements will be used to determine the plasma reaction to the heating experiments. It is expected that the density measurements will be easiest to interpret, while the electric field measurement will be the most difficult to interpret. The diagnostic issues that will be important in taking data at rf frequencies include faster electronics, signal levels, and path effects. We have used a current to voltage amplifier design to measure 0-500 kHz fluctuations in several previous experiments. By reducing the gain and changing some components, a very similar design is capable of operation at rf frequencies. The modified circuit has been tested up to 15 MHz and worked well. The number of beam ions striking the detector plate in one rf period will be too small to obtain good enough statistics for fluctuation measurements, and therefore, averages over many cycles will be required. We expect to be able to achieve millisecond time resolution in the experiments. The global nature of the modes will tend to make path effects important in the HIBP signals. On the other hand, since the beam will take more than one period to cross the plasma, phase shifts may cancel some of these effects. In addition, a path effect term due to dA/dt will be much more important relative to the electric potential than in lower frequency experiments. The initial experimental plan is to do a series of measurements in which a lithium ion beam passes through an argon helicon plasma. The helicon plasma was chosen because its high density (of order 1019 m-3) will produce a larger HIBP signal than can be obtained from other small plasmas. The helicon plasma is formed within a solenoidal magnetic field of 1 kG on axis. The plasma is excited by an rf antenna that is a modification of the type used in Boswell's experiments.1 The rf power source is presently a 500 W, 13.56 MHz generator. From calculation of final trajectories we have determined that 16-29 keV Li ions can be used to probe a plasma with 1 kG magnetic field on axis. If the signal levels with a lithium beam are too small, a molecular hydrogen source will be used. For testing the basic operation of the ion beam probe we will use a simple plate detector mounted on the output flange. These preliminary experiments will be used to determine the feasibility of measuring density and magnetic field fluctuations. A second set of experiments using a more traditional HIBP energy analyzer as a detector is also planned. This detector will also be able to measure electric field effects on the probing ions. It will also be less sensitive to UV noise from the plasma.
Predicting fluctuations-caused regime shifts in a time delayed dynamics of an invading species
NASA Astrophysics Data System (ADS)
Xie, Qingshuang; Wang, Tonghuan; Zeng, Chunhua; Dong, Xiaohui; Guan, Lin
2018-03-01
In this paper, we investigate early warning signals (EWS) of regime shifts in a density-dependent invading population model with time delay, in which the population density is assumed to be disturbed by intrinsic and extrinsic fluctuations. It is shown that the time delay and noises can cause the regime shifts between low and high population density states. The regime shift time (RST) as a function of noise intensity exhibits a maximum, which identifies the signature of the noise-enhanced stability of the low density state, while the time delay weakens the stability of the low density state. Applying the Kramers time technique, we also discuss the intersection point of the RST between low and high population density states, i.e., a critical point in the RST is found. Therefore, the critical point may give an EWS of regime shifts from one alternative state to another one for the changes in the noise parameters and time delay.
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail
2018-03-01
This paper studies the daily connectivity time series of a wind speed-monitoring network using multifractal detrended fluctuation analysis. It investigates the long-range fluctuation and multifractality in the residuals of the connectivity time series. Our findings reveal that the daily connectivity of the correlation-based network is persistent for any correlation threshold. Further, the multifractality degree is higher for larger absolute values of the correlation threshold.
Exact analytic solution for non-linear density fluctuation in a ΛCDM universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Jaiyul; Gong, Jinn-Ouk, E-mail: jyoo@physik.uzh.ch, E-mail: jinn-ouk.gong@apctp.org
We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a ΛCDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.
Propagation of radio frequency waves through density fluctuations
NASA Astrophysics Data System (ADS)
Valvis, S. I.; Papagiannis, P.; Papadopoulos, A.; Hizanidis, K.; Glytsis, E.; Bairaktaris, F.; Zisis, A.; Tigelis, I.; Ram, A. K.
2017-10-01
On their way to the core of a tokamak plasma, radio frequency (RF) waves, excited in the vacuum region, have to propagate through a variety of density fluctuations in the edge region. These fluctuations include coherent structures, like blobs that can be field aligned or not, as well as turbulent and filamentary structures. We have been studying the effect of fluctuations on RF propagation using both theoretical (analytical) and computational models. The theoretical results are being compared with those obtained by two different numerical codes ``a Finite Difference Frequency Domain code and the commercial COMSOL package. For plasmas with arbitrary distribution of coherent and turbulent fluctuations, we have formulated an effective dielectric permittivity of the edge plasma. This permittivity tensor is then used in numerical simulations to study the effect of multi-scale turbulence on RF waves. We not only consider plane waves but also Gaussian beams in the electron cyclotron and lower hybrid range of frequencies. The analytical theory and results from simulations on the propagation of RF waves will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium and by DoE Grant DE-FG02-91ER-54109.
NASA Astrophysics Data System (ADS)
Issautier, Karine; Ongala-Edoumou, Samuel; Moncuquet, Michel
2016-04-01
The quasi-thermal noise (QTN) method consists in measuring the electrostatic fluctuations produced by the thermal motion of the ambient particles. This noise is detected with a sensitive wave receiver and measured at the terminal of a passive electric antenna, which is immersed in a stable plasma. The analysis of the so-called QTN provides in situ measurements, mainly the total electron density, with a good accuracy, and thermal temperature in a large number of space media. We create a preliminary electron database to analyse the anti-correlation between electron density and temperature deduced from WIND perigees in the Earth's plasmasphere. We analyse the radio power spectra measured by the Thermal Noise Receiver (TNR), using the 100-m long dipole antenna, onboard WIND spacecraft. We develop a systematic routine to determine the electron density, core and halo temperature and the magnitude of the magnetic field based on QTN in Bernstein modes. Indeed, the spectra are weakly banded between gyroharmonics below the upper hybrid frequency, from which we derive the local electron density. From the gyrofrequency determination, we obtain an independent measure of the magnetic field magnitude, which is in close agreement with the onboard magnetometer.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta
2005-01-01
Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr
We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new typemore » of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.« less
Effect of wave localization on plasma instabilities. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Levedahl, William Kirk
1987-01-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
Adiabatic electron thermal pressure fluctuations in tokamak plasmas.
Meier, M A; Bengtson, R D; Hallock, G A; Wootton, A J
2001-08-20
Electron thermal pressure fluctuations measured in the edge plasma of the Texas Experimental Tokamak Upgrade are a fundamental component of plasma turbulence on both sides of the velocity shear layer. The ratio of specific heats, estimated from fluctuations in electron temperature and electron number density measured simultaneously at the same electrode, indicates that observed fluctuations are adiabatic. The observations are made by means of a novel Langmuir probe technique, the time domain triple-probe method, which concurrently measures multiple plasma properties at each of two electrodes with the temporal and the spatial resolution required to estimate thermodynamic properties in a turbulent plasma.
NASA Technical Reports Server (NTRS)
Sunyayev, R. A.
1979-01-01
Secondary heating and ionization of the intergalactic gas at redshifts z approximately 10-30 could lead to the large optical depth of the Universe for Thomson scattering and could smooth the primordial fluctuations formed at z approximately 1500. It is shown that the gas motions connected with the large scale density perturbations at z approximately 10-15 must lead to the generation of secondary fluctuations of microwave background. The contribution of the rich clusters of galaxies and young galaxies to the fluctuations of microwave background is also estimated.
NASA Astrophysics Data System (ADS)
Hoogenboom, M.; Beraud, E.; Ferrier-Pagès, C.
2010-03-01
This study quantified variation in net photosynthetic carbon gain in response to natural fluctuations in symbiont density for the Mediterranean coral Cladocora caespitosa, and evaluated which density maximized photosynthetic carbon acquisition. To do this, carbon acquisition was modeled as an explicit function of symbiont density. The model was parameterized using measurements of rates of photosynthesis and respiration for small colonies with a broad range of zooxanthella concentrations. Results demonstrate that rates of net photosynthesis increase asymptotically with symbiont density, whereas rates of respiration increase linearly. In combination, these functional responses meant that colony energy acquisition decreased at both low and at very high zooxanthella densities. However, there was a wide range of symbiont densities for which net daily photosynthesis was approximately equivalent. Therefore, significant changes in symbiont density do not necessarily cause a change in autotrophic energy acquisition by the colony. Model estimates of the optimal range of cell densities corresponded well with independent observations of symbiont concentrations obtained from field and laboratory studies of healthy colonies. Overall, this study demonstrates that the seasonal fluctuations, in symbiont numbers observed in healthy colonies of the Mediterranean coral investigated, do not have a strong effect on photosynthetic energy acquisition.
Fluctuations of conserved charges in relativistic heavy ion collisions: An introduction
NASA Astrophysics Data System (ADS)
Asakawa, Masayuki; Kitazawa, Masakiyo
2016-09-01
Bulk fluctuations of conserved charges measured by event-by-event analysis in relativistic heavy ion collisions are observables which are believed to carry significant amount of information on the hot medium created by the collisions. Active studies have been done recently experimentally, theoretically, and on the lattice. In particular, non-Gaussianity of the fluctuations has acquired much attention recently. In this review, we give a pedagogical introduction to these issues, and survey recent developments in this field of research. Starting from the definition of cumulants, basic concepts in fluctuation physics, such as thermal fluctuations in statistical mechanics and time evolution of fluctuations in diffusive systems, are described. Phenomena which are expected to occur in finite temperature and/or density QCD matter and their measurement by event-by-event analyses are also elucidated.
Observation of magnetic fluctuations and rapid density decay of magnetospheric plasma in Ring Trap 1
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.
2012-06-01
The Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet, has created high-β (local β ˜ 70%) plasma by using electron cyclotron resonance heating (ECH). When a large population of energetic electrons is generated at low neutral gas pressure operation, high frequency magnetic fluctuations are observed. When the fluctuations are strongly excited, rapid loss of plasma was simultaneously observed especially in a quiet decay phase after the ECH microwave power is turned off. Although the plasma is confined in a strongly inhomogeneous dipole field configuration, the frequency spectra of the fluctuations have sharp frequency peaks, implying spatially localized sources of the fluctuations. The fluctuations are stabilized by decreasing the hot electron component below approximately 40%, realizing stable high-β confinement.
The Great Wall in the CfA survey - Its origin and imprint on the microwave background radiation
NASA Technical Reports Server (NTRS)
Atrio-Barandela, F.; Kashlinsky, A.
1992-01-01
The paper models the evolution of the Great Wall (GW) after recombination and the influence of its time-dependent gravitational potential on the MBR. It is shown that within the framework of the Zel'dovich approximation the (pre)GW region can be treated as an ellipsoid. The GW is approximated as an oblate ellipsoid that started at recombination with an almost spherical shape, but with initial density contrast, delta-i, much smaller than it had to be in the spherical model in order to reach the observed density contrast of beta-f of 5. The resultant delta-i is compatible with the rms value of delta-rho/rho on the GW scale at recombination for models with the n less than 0 power spectrum of the primordial density field. It is shown that the time-dependent potential of the GW will induce a detectable fluctuation in MBR. The possibility of similar structures located at higher redshifts producing measurable and perhaps dominant statistical MBR anisotropies by this effect is also discussed.
Large-scale fluctuations in the number density of galaxies in independent surveys of deep fields
NASA Astrophysics Data System (ADS)
Shirokov, S. I.; Lovyagin, N. Yu.; Baryshev, Yu. V.; Gorokhov, V. L.
2016-06-01
New arguments supporting the reality of large-scale fluctuations in the density of the visible matter in deep galaxy surveys are presented. A statistical analysis of the radial distributions of galaxies in the COSMOS and HDF-N deep fields is presented. Independent spectral and photometric surveys exist for each field, carried out in different wavelength ranges and using different observing methods. Catalogs of photometric redshifts in the optical (COSMOS-Zphot) and infrared (UltraVISTA) were used for the COSMOS field in the redshift interval 0.1 < z < 3.5, as well as the zCOSMOS (10kZ) spectroscopic survey and the XMM-COSMOS and ALHAMBRA-F4 photometric redshift surveys. The HDFN-Zphot and ALHAMBRA-F5 catalogs of photometric redshifts were used for the HDF-N field. The Pearson correlation coefficient for the fluctuations in the numbers of galaxies obtained for independent surveys of the same deep field reaches R = 0.70 ± 0.16. The presence of this positive correlation supports the reality of fluctuations in the density of visible matter with sizes of up to 1000 Mpc and amplitudes of up to 20% at redshifts z ~ 2. The absence of correlations between the fluctuations in different fields (the correlation coefficient between COSMOS and HDF-N is R = -0.20 ± 0.31) testifies to the independence of structures visible in different directions on the celestial sphere. This also indicates an absence of any influence from universal systematic errors (such as "spectral voids"), which could imitate the detection of correlated structures.
Molecular Dynamics of a Water-Lipid Bilayer Interface
NASA Technical Reports Server (NTRS)
Wilson, Michael A.; Pohorille, Andrew
1994-01-01
We present results of molecular dynamics simulations of a glycerol 1-monooleate bilayer in water. The total length of analyzed trajectories is 5ns. The calculated width of the bilayer agrees well with the experimentally measured value. The interior of the membrane is in a highly disordered fluid state. Atomic density profile, orientational and conformational distribution functions, and order parameters indicate that disorder increases toward the center of the bilayer. Analysis of out-of-plane thermal fluctuations of the bilayer surfaces occurring at the time scale of the present calculations reveals that the distribution of modes agrees with predictions of the capillary wave model. Fluctuations of both bilayer surfaces are uncorrelated, yielding Gaussian distribution of instantaneous widths of the membrane. Fluctuations of the width produce transient thinning defects in the bilayer which occasionally span almost half of the membrane. The leading mechanism of these fluctuations is the orientational and conformational motion of head groups rather than vertical motion of the whole molecules. Water considerably penetrates the head group region of the bilayer but not its hydrocarbon core. The total net excess dipole moment of the interfacial water points toward the aqueous phase, but the water polarization profile is non-monotonic. Both water and head groups significantly contribute to the surface potential across the interface. The calculated sign of the surface potential is in agreement with that from experimental measurements, but the value is markedly overestimated. The structural and electrical properties of the water-bilayer system are discussed in relation to membrane functions, in particular transport of ions and nonelectrolytes across membranes.
Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma devicea)
NASA Astrophysics Data System (ADS)
Zhou, Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Tripathi, S. K. P.; Van Compernolle, B.
2012-05-01
The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn /n˜δφ/kTe ˜ 0.5, f ˜ 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E × B drift through biasing the obstacle and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz and is enhanced with large bias and small Bz. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (ρfast/ρs ˜ 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (Er) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static Er are evaluated both analytically and numerically. Simulation results indicate that the Er induced transport is predominately convective.
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.; Smith, S. A.; Tsuda, T.; Sato, T.; Fritts, D. C.
1990-01-01
Results are presented from a six-day campaign to observe velocity fluctuations in the lower atmosphere using the MU radar (Fukao et al., 1985) in Shigaraki, Japan in March, 1986. Consideration is given to the azimuthal anisotropy, the frequency spectra, the vertical profiles of energy density, and the momentum flux of the motion field. It is found that all of the observed azimuthal variations are probably caused by a gravity wave field whose parameters vary with time. The results show significant differences between the mean zonal and meridional frequency spectra and different profiles of mean energy density with height for different frequency bands and for zonal and meridional components.
Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; ...
2015-06-22
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplifiedmore » by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.« less
Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony; Bingham, Robert; Clarke, Robert; Churazov, Eugene; Crowston, Robert; Doyle, Hugo; Drake, R. Paul; Heathcote, Robert; Koenig, Michel; Kuramitsu, Yasuhiro; Kuranz, Carolyn; Lee, Dongwook; MacDonald, Michael; Murphy, Christopher; Notley, Margaret; Park, Hye-Sook; Pelka, Alexander; Ravasio, Alessandra; Reville, Brian; Sakawa, Youichi; Wan, Willow; Woolsey, Nigel; Yurchak, Roman; Miniati, Francesco; Schekochihin, Alexander; Lamb, Don; Gregori, Gianluca
2015-01-01
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe. PMID:26100873
Size and density distribution of very small dust grains in the Barnard 5 cloud
NASA Technical Reports Server (NTRS)
Lis, Dariusz C.; Leung, Chun Ming
1991-01-01
The effects of the temperature fluctuations in small graphite grains on the energy spectrum and the IR surface brightness of an isolated dust cloud heated externally by the interstellar radiation field were investigated using a series of models based on a radiation transport computer code. This code treats self-consistently the thermal coupling between the transient heating of very small dust grains and the equilibrium heating of conventional large grains. The model results were compared with the IRAS observations of the Barnard 5 (B5) cloud, showing that the 25-micron emission of the cloud must be produced by small grains with a 6-10 A radius, which also contribute about 50 percent to the observed 12-micron emission. The remaining 12 micron flux may be produced by the polycyclic aromatic hydrocarbons. The 60-and 100-micron radiation is dominated by emission from large grains heated under equilibrium conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuramitsu, Y.; Moritaka, T.; Mizuta, A.
2016-09-10
We report experimental results on Kelvin–Helmholtz (KH) instability and resultant vortices in laser-produced plasmas. By irradiating a double plane target with a laser beam, asymmetric counterstreaming plasmas are created. The interaction of the plasmas with different velocities and densities results in the formation of asymmetric shocks, where the shear flow exists along the contact surface and the KH instability is excited. We observe the spatial and temporal evolution of plasmas and shocks with time-resolved diagnostics over several shots. Our results clearly show the evolution of transverse fluctuations, wavelike structures, and circular features, which are interpreted as the KH instability andmore » resultant vortices. The relevant numerical simulations demonstrate the time evolution of KH vortices and show qualitative agreement with experimental results. Shocks, and thus the contact surfaces, are ubiquitous in the universe; our experimental results show general consequences where two plasmas interact.« less
Simulation of turbulence in the divertor region of tokamak edge plasma
NASA Astrophysics Data System (ADS)
Umansky, M. V.; Rognlien, T. D.; Xu, X. Q.
2005-03-01
Results are presented for turbulence simulations with the fluid edge turbulence code BOUT [X.Q. Xu, R.H. Cohen, Contr. Plas. Phys. 36 (1998) 158]. The present study is focussed on turbulence in the divertor leg region and on the role of the X-point in the structure of turbulence. Results of the present calculations indicate that the ballooning effects are important for the divertor fluctuations. The X-point shear leads to weak correlation of turbulence across the X-point regions, in particular for large toroidal wavenumber. For the saturated amplitudes of the divertor region turbulence it is found that amplitudes of density fluctuations are roughly proportional to the local density of the background plasma. The amplitudes of electron temperature and electric potential fluctuations are roughly proportional to the local electron temperature of the background plasma.
NASA Astrophysics Data System (ADS)
Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh; Taflove, Allen; Roy, Hemant; Dravid, Vinayak; Backman, Vadim
2010-03-01
We report a study of the nanoscale mass density fluctuations of biological cells and tissues by quantifying their nanoscale light-localization properties. Transmission electron microscope (TEM) images of human cells and tissues are used to construct corresponding effective disordered optical lattices. Light-localization properties are studied by statistical analysis of the inverse participation ratio (IPR) of the eigenfunctions of these optical lattices at the nanoscales. Our results indicate elevation of the nanoscale disorder strength (e.g., refractive index fluctuations) in early carcinogenesis. Importantly, our results demonstrate that the increase in the nanoscale disorder represents the earliest structural alteration in cells undergoing carcinogenesis known to-date. Potential applications of the technique for early stage cancer detection will be discussed.
NASA Astrophysics Data System (ADS)
Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.
2017-12-01
Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical situations. Finally we present initial comparison of our modeling results with GNSS scintillation observed via an array of receivers at Poker Flat.
Evidence of toroidally localized turbulence with applied 3D fields in the DIII-D tokamak
Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; ...
2016-09-21
New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agreesmore » qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. In conclusion, these processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.« less
Reflectometry measurements of turbulence in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Basse, N. P.; Lin, Y.; Irby, J.; Kramer, G. J.; Nazikian, R.
2003-10-01
An amplitude modulated (AM) reflectometer system operating in O-mode has been used for density profile and fluctuation measurements on Alcator C-Mod. This system consists of five channels, whose frequencies correspond to densities from 0.31 × 10^20 m-3 to 1.5 × 10^20 m-3. The 88 GHz channel has separate upper and lower sideband measurements of the AM waves, resulting in an increased sensitivity to fluctuations. Recently, two additional dedicated fluctuation channels have been brought into operation at 132 and 140 GHz, corresponding to densities of 2.2 × 10^20 m-3 and 2.4 × 10^20 m-3. The new channels allow observations to be made further into the pedestal region and in some cases reach the foot of the internal transport barrier. We will present spectral analysis results from selected channels during confinement transitions in Alcator C-Mod plasmas, e.g. at the L- to H-mode bifurcation. Further, correlation studies will be undertaken between the various channels to elucidate the possible existence of moving and/or overlapping turbulent structures.
Angular-split/temporal-delay approach to ultrafast protein dynamics at XFELs.
Ren, Zhong; Yang, Xiaojing
2016-07-01
X-ray crystallography promises direct insights into electron-density changes that lead to and arise from structural changes such as electron and proton transfer and the formation, rupture and isomerization of chemical bonds. The ultrashort pulses of hard X-rays produced by free-electron lasers present an exciting opportunity for capturing ultrafast structural events in biological macromolecules within femtoseconds after photoexcitation. However, shot-to-shot fluctuations, which are inherent to the very process of self-amplified spontaneous emission (SASE) that generates the ultrashort X-ray pulses, are a major source of noise that may conceal signals from structural changes. Here, a new approach is proposed to angularly split a single SASE pulse and to produce a temporal delay of picoseconds between the split pulses. These split pulses will allow the probing of two distinct states before and after photoexcitation triggered by a laser pulse between the split X-ray pulses. The split pulses originate from a single SASE pulse and share many common properties; thus, noise arising from shot-to-shot fluctuations is self-canceling. The unambiguous interpretation of ultrafast structural changes would require diffraction data at atomic resolution, as these changes may or may not involve any atomic displacement. This approach, in combination with the strategy of serial crystallography, offers a solution to study ultrafast dynamics of light-initiated biochemical reactions or biological processes at atomic resolution.
A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Den Hartog, D. J.; Jiang, N.; Lempert, W. R.
2008-10-15
A ''pulse-burst'' laser system is being constructed for addition to the Thomson scattering diagnostic on the Madison Symmetric Torus (MST) reversed-field pinch. This laser is designed to produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. This laser system will operate at 1064 nm and is a master oscillator, power amplifier. The master oscillator is a compact diode-pumped Nd:YVO{sub 4} laser, intermediate amplifier stages are flashlamp-pumped Nd:YAG, and final stages will be flashlamp-pumped Nd:glass (silicate). Variable pulse width drive (0.3-20 ms) of the flashlamps is accomplished by insulated-gate bipolar transistor switching ofmore » large electrolytic capacitor banks. The burst train of laser pulses will enable the study of electron temperature (T{sub e}) and electron density (n{sub e}) dynamics in a single MST shot, and with ensembling, will enable correlation of T{sub e} and n{sub e} fluctuations with other fluctuating quantities.« less
A CASE AGAINST SPINNING PAHS AS THE SOURCE OF THE ANOMALOUS MICROWAVE EMISSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Brandon S.; Draine, B. T.; Meisner, Aaron M., E-mail: brandon.s.hensley@jpl.nasa.gov
2016-08-10
We employ an all-sky map of the anomalous microwave emission (AME) produced by component separation of the microwave sky to study correlations between the AME and Galactic dust properties. We find that while the AME is highly correlated with all tracers of dust emission, the best predictor of the AME strength is the dust radiance. Fluctuations in the AME intensity per dust radiance are uncorrelated with fluctuations in the emission from polycyclic aromatic hydrocarbons (PAHs), casting doubt on the association between AME and PAHs. The PAH abundance is strongly correlated with the dust optical depth and dust radiance, consistent withmore » PAH destruction in low density regions. We find that the AME intensity increases with increasing radiation field strength, at variance with predictions from the spinning dust hypothesis. Finally, the temperature dependence of the AME per dust radiance disfavors the interpretation of the AME as thermal emission. A reconsideration of other AME carriers, such as ultrasmall silicates, and other emission mechanisms, such as magnetic dipole emission, is warranted.« less
Turbulence, intermittency, and transport in the limiter shadow in LAPD and ET
NASA Astrophysics Data System (ADS)
Carter, Troy
2002-11-01
Turbulence in the scrape-off-layer (SOL) of tokamaks is often found to be intermittent, a tendency which has been attributed to the presence and transport of coherent structures (``blobs''). A recent theory [S.I. Krasheninnikov, shape Phys. Lett. A series 283, 368 (2001)] suggests that transport of these structures is controlled by nabla B and curvature drift driven polarization. I will present a study of turbulence and intermittency in limited discharges in the Large Plasma Device (LAPD) (where rotation may substitute for nabla B drift) and in the Electric Tokamak (ET) at UCLA. In LAPD, strongly intermittent turbulence in the 1-50 kHz range is observed localized to limiter produced gradients. A detailed study of these fluctuations will be presented, focusing on transport, dependencies on magnetic field, plasma density, and the presence of flows or rotation. A comparison with initial probe and imaging measurements of fluctuation characteristics in the SOL of the Electric Tokamak, in discharges with either an axisymmetric belt limiter or a toroidally localized limiter, will also be presented.
Lattice QCD results on soft and hard probes of strongly interacting matter
NASA Astrophysics Data System (ADS)
Kaczmarek, Olaf
2017-11-01
We present recent results from lattice QCD relevant for the study of strongly interacting matter as it is produced in heavy ion collision experiments. The equation of state at non-vanishing density from a Taylor expansion up to 6th order will be discussed for a strangeness neutral system and using the expansion coefficients of the series limits on the critical point are estimated. Chemical freeze-out temperatures from the STAR and ALICE Collaborations will be compared to lines of constant physics calculated from the Taylor expansion of QCD bulk thermodynamic quantities. We show that qualitative features of the √{sNN} dependence of skewness and kurtosis ratios of net proton-number fluctuations measured by the STAR Collaboration can be understood from QCD results for cumulants of conserved baryon-number fluctuations. As an example for recent progress towards the determination of spectral and transport properties of the QGP from lattice QCD, we will present constraints on the thermal photon rate determined from a spectral reconstruction of continuum extrapolated lattice correlation functions in combination with input from most recent perturbative calculations.
Generation of filamentary structures by beam-plasma interaction
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Lin, Y.
2006-05-01
The previous simulations by Wang and Lin [Phys. Plasmas. 10, 3528, (2003)] showed that filaments, frequently observed in space plasmas, can form via the interaction between an ion beam and a background plasma. In this study, the physical mechanism for the generation of the filaments is investigated by a two-dimensional hybrid simulation, in which a field-aligned ion beam with relative beam density nb=0.1 and beam velocity Vb=10VA is initiated in a uniform plasma. Right-hand nonresonant ion beam modes, consistent with the linear theory, are found to be dominant in the linear stage of the beam-plasma interaction. In the later nonlinear stage, the nonresonant modes decay and the resonant modes grow through a nonlinear wave coupling. The interaction among the resonant modes leads to the formation of filamentary structures, which are the field-aligned structures (k⊥B) of magnetic field B, density, and temperature in the final stage. The filaments are nonlinearly generated in a prey-predator fashion by the parallel and oblique resonant ion beam modes, which meanwhile evolve into two types of shear Alfvén modes, with one mainly propagating along the background field B0 and the other obliquely propagating. The filamentary structures are found to be phase standing in the plasma frame, but their amplitude oscillates with time. In the dominant filament mode, fluctuations in the background ion density, background ion temperature, and beam density are in phase with the fluctuations in B, whereas the significantly enhanced beam temperature is antiphase with B. It is found that the filaments are produced by the interaction of at least two ion beam modes with comparable amplitudes, not by only one single mode, thus their generation mechanism is different from other mechanisms such as the stimulated excitation by the decay of an Alfvén wave.
NASA Astrophysics Data System (ADS)
Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2008-11-01
Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.
Space processing of chalcogenide glasses
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Ali, M. A.
1975-01-01
Chalcogenide glasses are discussed as good infrared transmitters, possessing the strength, corrosion resistance, and scale-up potential necessary for large 10.6-micron windows. The disadvantage of earth-produced chalcogenide glasses is shown to be an infrared absorption coefficient which is unacceptably high relative to alkali halides. This coefficient is traced to optical nonhomogeneities resulting from environmental and container contamination. Space processing is considered as a means of improving the infrared transmission quality of chalcogenides and of eliminating the following problems: optical inhomogeneities caused by thermal currents and density fluctuation in the l-g earth environment; contamination from the earth-melting crucible by oxygen and other elements deleterious to infrared transmission; and, heterogeneous nucleation at the earth-melting crucible-glass interface.
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.
2004-03-01
We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.
NASA Technical Reports Server (NTRS)
Berman, A. L.
1977-01-01
Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.
NASA Technical Reports Server (NTRS)
Chinitz, W.; Foy, E.; Rowan, G.; Goldstein, D.
1982-01-01
The use of probability theory to determine the effects of turbulent fluctuations on reaction rates in turbulent combustion systems is briefly reviewed. Results are presented for the effect of species fluctuations in particular. It is found that turbulent fluctuations of species act to reduce the reaction rates, in contrast with the temperature fluctuations previously determined to increase Arrhenius reaction rate constants. For the temperature fluctuations, a criterion is set forth for determining if, in a given region of a turbulent flow field, the temperature can be expected to exhibit ramp like fluctuations. Using the above results, along with results previously obtained, a model is described for testing the effects of turbulent fluctuations of temperature and species on reaction rates in computer programs dealing with turbulent reacting flows. An alternative model which employs three variable probability density functions (temperature and two species) and is currently being formulated is discussed as well.
New Model for Ionospheric Irregularities at Mars
NASA Astrophysics Data System (ADS)
Keskinen, M. J.
2018-03-01
A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durrer, Ruth; Tansella, Vittorio, E-mail: ruth.durrer@unige.ch, E-mail: vittorio.tansella@unige.ch
We derive the contribution to relativistic galaxy number count fluctuations from vector and tensor perturbations within linear perturbation theory. Our result is consistent with the the relativistic corrections to number counts due to scalar perturbation, where the Bardeen potentials are replaced with line-of-sight projection of vector and tensor quantities. Since vector and tensor perturbations do not lead to density fluctuations the standard density term in the number counts is absent. We apply our results to vector perturbations which are induced from scalar perturbations at second order and give numerical estimates of their contributions to the power spectrum of relativistic galaxymore » number counts.« less
NASA Technical Reports Server (NTRS)
Panda, J.; Seasholtz, R. G.
2005-01-01
Recent advancement in the molecular Rayleigh scattering based technique allowed for simultaneous measurement of velocity and density fluctuations with high sampling rates. The technique was used to investigate unheated high subsonic and supersonic fully expanded free jets in the Mach number range of 0.8 to 1.8. The difference between the Favre averaged and Reynolds averaged axial velocity and axial component of the turbulent kinetic energy is found to be small. Estimates based on the Morkovin's "Strong Reynolds Analogy" were found to provide lower values of turbulent density fluctuations than the measured data.
NASA Astrophysics Data System (ADS)
Yoshizawa, Akira
1991-12-01
A mass-weighted mean compressible turbulence model is presented with the aid of the results from a two-scale DIA. This model aims at dealing with two typical aspects in compressible flows: the interaction of a shock wave with turbulence in high-speed flows and strong buoyancy effects in thermally-driven flows as in stellar convection and conflagration. The former is taken into account through the effect of turbulent dilatation that is related to the density fluctuation and leads to the enhanced kinetic-energy dissipation. The latter is incorporated through the interaction between the gravitational and density-fluctuation effects.
Exact joint density-current probability function for the asymmetric exclusion process.
Depken, Martin; Stinchcombe, Robin
2004-07-23
We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society
Secondary ionization in a flat universe
NASA Technical Reports Server (NTRS)
Atrio-Barandela, F.; Doroshkevich, A. G.
1994-01-01
We analyze the effect of a secondary ionization on the evolution of temperature fluctuations in cosmic background radiation. The main results presented in this paper are appropriate analytic expressions of the transfer function relating temperature fluctuations to matter density perturbations at recombination for all possible recombination histories. Furthermore, we particularize our calculation to the standard cold dark matter model, where we study the erasure of primordial temperature fluctuations and calculate the magnitude and angular scale of the damping induced by a late recombination.
Walmsley, I A
1992-03-15
The probability density of the single-shot mean Stokes frequency from a linear Raman generator is calculated. It is shown that the fluctuations in the Stokes pulse energy spectrum that arise from the quantum initiation of the Stokes light are reduced in the transient regime of amplification. Also, it appears that saturation of the Raman gain does not reduce the phase fluctuations of the Stokes light below those present in the unsaturated gain (linear) regime.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Kaya, S.
2000-01-01
In this paper we use the Density Gradient (DG) simulation approach to study, in 3-D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs on a statistical scale. The random 2-D surfaces used to represent the interface are constructed using the standard assumptions for the auto-correlation function of the interface. The importance of the Quantum Mechanical effects when studying oxide thickness fluctuations are illustrated in several simulation examples.
Dissipative neutrino oscillations in randomly fluctuating matter
NASA Astrophysics Data System (ADS)
Benatti, F.; Floreanini, R.
2005-01-01
The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis.
Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation.
Ehrhardt, Loïc; Cheinet, Sylvain; Juvé, Daniel; Blanc-Benon, Philippe
2013-04-01
Sound propagation outdoors is strongly affected by atmospheric turbulence. Under strongly perturbed conditions or long propagation paths, the sound fluctuations reach their asymptotic behavior, e.g., the intensity variance progressively saturates. The present study evaluates the ability of a numerical propagation model based on the finite-difference time-domain solving of the linearized Euler equations in quantitatively reproducing the wave statistics under strong and saturated intensity fluctuations. It is the continuation of a previous study where weak intensity fluctuations were considered. The numerical propagation model is presented and tested with two-dimensional harmonic sound propagation over long paths and strong atmospheric perturbations. The results are compared to quantitative theoretical or numerical predictions available on the wave statistics, including the log-amplitude variance and the probability density functions of the complex acoustic pressure. The match is excellent for the evaluated source frequencies and all sound fluctuations strengths. Hence, this model captures these many aspects of strong atmospheric turbulence effects on sound propagation. Finally, the model results for the intensity probability density function are compared with a standard fit by a generalized gamma function.
''1/f noise'' in music: Music from 1/f noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, R.F.; Clarke, J.
1978-01-01
The spectral density of fluctuations in the audio power of many musical selections and of English speech varies approximately as 1/f (f is the frequency) down to a frequency of 5 x 10/sup -4/ Hz. This result implies that the audio-power fluctuations are correlated over all times in the same manner as ''1/f noise'' in electronic components. The frequency fluctuations of music also have a 1/f spectral density at frequencies down to the inverse of the length of the piece of music. The frequency fluctuations of English speech have a quite different behavior, with a single characteristic time of aboutmore » 0.1 s, the average length of a syllable. The observations on music suggest that 1/f noise is a good choice for stochastic composition. Compositions in which the frequency and duration of each note were determined by 1/f noise sources sounded pleasing. Those generated by white-noise sources sounded too random, while those generated by 1/f/sup 2/ noise sounded too correlated.« less
Simulation study of 2D spectrum of molecular aggregates coupled to correlated vibrations
NASA Astrophysics Data System (ADS)
Abramavicius, Darius; Butkus, Vytautas; Valkunas, Leonas; Mukamel, Shaul
2011-03-01
Oscillatory dynamics of two-dimensional (2D) spectra of photosynthetic pigment-protein complexes raise the questions of how to disentangle various origins of these oscillations, which may include quantum beats, quantum transport, or molecular vibrations. We study the effects of correlated overdamped fluctuations and under-damped vibrations on the 2D spectra of Fenna-Matthews-Olson (FMO) aggregate, which has well-resolved exciton resonances, and a circular porphyrin aggregate (P6), whose absorption shows vibrational progression. We use a generic exciton Hamiltonian coupled to a bath, characterized by a spectral density. Fluctuations have smooth, while vibtations have δ -type spectral densities. We show how various scenarios of correlated molecular fluctuations lead to some highly oscillatory crosspeaks. Molecular vibrations cause progression of diagonal peaks in the 2D spectrum and make their corresponding cross-peaks highly oscillatory. We, thus, demonstrate that bath fluctuations and molecular vibrations of realistic molecular aggregates are highly entangled in 2D spectroscopy. DA acknowledges grant VP1-3.1-SMM-07-V, SM - the grants CHE0745892 (NSF), DRPA BAA-10-40 QUBE.
NASA Astrophysics Data System (ADS)
Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.
2017-03-01
A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zheng; Gohil, Punit; McKee, George R.
Measurements of long wavelength (kmore » $$\\perp$$p i < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 10 19 m -3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 10 19 m -3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 10 19 m -3, where P LH is similar for both D and H plasmas. Lastly, the increased edge fluctuations, increased flow shear, and the dualband nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of PLH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.« less
Yan, Zheng; Gohil, Punit; McKee, George R.; ...
2017-09-18
Measurements of long wavelength (kmore » $$\\perp$$p i < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 10 19 m -3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 10 19 m -3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 10 19 m -3, where P LH is similar for both D and H plasmas. Lastly, the increased edge fluctuations, increased flow shear, and the dualband nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of PLH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.« less
Sheared-flow induced confinement transition in a linear magnetized plasma
NASA Astrophysics Data System (ADS)
Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.
2012-01-01
A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.
High-Energy Emissions Induced by Air Density Fluctuations of Discharges
NASA Astrophysics Data System (ADS)
Köhn, C.; Chanrion, O.; Neubert, T.
2018-05-01
Bursts of X-rays and γ-rays are observed from lightning and laboratory sparks. They are bremsstrahlung from energetic electrons interacting with neutral air molecules, but it is still unclear how the electrons achieve the required energies. It has been proposed that the enhanced electric field of streamers, found in the corona of leader tips, may account for the acceleration; however, their efficiency is questioned because of the relatively low production rate found in simulations. Here we emphasize that streamers usually are simulated with the assumption of homogeneous gas, which may not be the case on the small temporal and spatial scales of discharges. Since the streamer properties strongly depend on the reduced electric field E/n, where n is the neutral number density, fluctuations may potentially have a significant effect. To explore what might be expected if the assumption of homogeneity is relaxed, we conducted simple numerical experiments based on simulations of streamers in a neutral gas with a radial gradient in the neutral density, assumed to be created, for instance, by a previous spark. We also studied the effects of background electron density from previous discharges. We find that X-radiation and γ-radiation are enhanced when the on-axis air density is reduced by more than ˜25%. Pre-ionization tends to reduce the streamer field and thereby the production rate of high-energy electrons; however, the reduction is modest. The simulations suggest that fluctuations in the neutral densities, on the temporal and spacial scales of streamers, may be important for electron acceleration and bremsstrahlung radiation.
NASA Astrophysics Data System (ADS)
Garcia, O. E.; Kube, R.; Theodorsen, A.; LaBombard, B.; Terry, J. L.
2018-05-01
Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged waveforms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are similar for all these confinement modes. These results provide strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Weinberg, David H.; Melott, Adrian L.
1987-01-01
A quantitative measure of the topology of large-scale structure: the genus of density contours in a smoothed density distribution, is described and applied. For random phase (Gaussian) density fields, the mean genus per unit volume exhibits a universal dependence on threshold density, with a normalizing factor that can be calculated from the power spectrum. If large-scale structure formed from the gravitational instability of small-amplitude density fluctuations, the topology observed today on suitable scales should follow the topology in the initial conditions. The technique is illustrated by applying it to simulations of galaxy clustering in a flat universe dominated by cold dark matter. The technique is also applied to a volume-limited sample of the CfA redshift survey and to a model in which galaxies reside on the surfaces of polyhedral 'bubbles'. The topology of the evolved mass distribution and 'biased' galaxy distribution in the cold dark matter models closely matches the topology of the density fluctuations in the initial conditions. The topology of the observational sample is consistent with the random phase, cold dark matter model.
Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil
Eugene S. Takle; William J. Massman; James R. Brandle; R. A. Schmidt; Xinhua Zhou; Irina V. Litvina; Rick Garcia; Geoffrey Doyle; Charles W. Rice
2004-01-01
We report measurements at 2Hz of pressure fluctuations at and beneath the soil in an agricultural field with dry soil and no vegetation. The objective of our study was to examine the possible role of pressure fluctuations produced by fluctuations in ambient wind on the efflux of CO2 at the soil surface.We observed that pressure fluctuations penetrate to 50 cm in the...
Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing
NASA Astrophysics Data System (ADS)
Singh, Aman K.; Yadava, R. D. S.
2018-05-01
The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.
Non-Gaussian PDF Modeling of Turbulent Boundary Layer Fluctuating Pressure Excitation
NASA Technical Reports Server (NTRS)
Steinwolf, Alexander; Rizzi, Stephen A.
2003-01-01
The purpose of the study is to investigate properties of the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the exterior of a supersonic transport aircraft. It is shown that fluctuating pressure PDFs differ from the Gaussian distribution even for surface conditions having no significant discontinuities. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations upstream of forward-facing step discontinuities and downstream of aft-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. Various analytical PDF distributions are used and further developed to model this behavior.
Rhodes, Terry L.; Peebles, William A.; Crocker, Neal A.; ...
2014-08-05
The design and performance of a new cross-polarization scattering (CPS) system for the localized measurement of internal magnetic fluctuations is presented. CPS is a process whereby magnetic fluctuations scatter incident electromagnetic radiation into a perpendicular polarization which is subsequently detected. A new CPS design that incorporates a unique scattering geometry was laboratory tested, optimized, and installed on the DIII-D tokamak. Plasma tests of signal-to-noise, polarization purity, and frequency response indicate proper functioning of the system. Lastly, CPS data show interesting features related to internal MHD perturbations known as sawteeth that are not observed on density fluctuations.
Determination of the Thermal Noise Limit of Graphene Biotransistors.
Crosser, Michael S; Brown, Morgan A; McEuen, Paul L; Minot, Ethan D
2015-08-12
To determine the thermal noise limit of graphene biotransistors, we have measured the complex impedance between the basal plane of single-layer graphene and an aqueous electrolyte. The impedance is dominated by an imaginary component but has a finite real component. Invoking the fluctuation-dissipation theorem, we determine the power spectral density of thermally driven voltage fluctuations at the graphene/electrolyte interface. The fluctuations have 1/f(p) dependence, with p = 0.75-0.85, and the magnitude of fluctuations scales inversely with area. Our results explain noise spectra previously measured in liquid-gated suspended graphene devices and provide realistic targets for future device performance.
Faraday polarization fluctuations of satellite beacon signals
NASA Technical Reports Server (NTRS)
Lee, M. C.; Klobuchar, J. A.
1988-01-01
The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.
Distinguishing Error from Chaos in Ecological Time Series
NASA Astrophysics Data System (ADS)
Sugihara, George; Grenfell, Bryan; May, Robert M.
1990-11-01
Over the years, there has been much discussion about the relative importance of environmental and biological factors in regulating natural populations. Often it is thought that environmental factors are associated with stochastic fluctuations in population density, and biological ones with deterministic regulation. We revisit these ideas in the light of recent work on chaos and nonlinear systems. We show that completely deterministic regulatory factors can lead to apparently random fluctuations in population density, and we then develop a new method (that can be applied to limited data sets) to make practical distinctions between apparently noisy dynamics produced by low-dimensional chaos and population variation that in fact derives from random (high-dimensional)noise, such as environmental stochasticity or sampling error. To show its practical use, the method is first applied to models where the dynamics are known. We then apply the method to several sets of real data, including newly analysed data on the incidence of measles in the United Kingdom. Here the additional problems of secular trends and spatial effects are explored. In particular, we find that on a city-by-city scale measles exhibits low-dimensional chaos (as has previously been found for measles in New York City), whereas on a larger, country-wide scale the dynamics appear as a noisy two-year cycle. In addition to shedding light on the basic dynamics of some nonlinear biological systems, this work dramatizes how the scale on which data is collected and analysed can affect the conclusions drawn.
Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases
NASA Astrophysics Data System (ADS)
Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.
2018-03-01
The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.
Ding, W X; Lin, L; Duff, J R; Brower, D L
2014-11-01
Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1-2 cm(-1) for beam width w = 1.5 cm and 15 cm(-1) for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.
NASA Technical Reports Server (NTRS)
Clukey, Steven J.
1991-01-01
The real time Dynamic Data Acquisition and Processing System (DDAPS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAPS replaces both a recording mechanism and a separate data processing system. DDAPS receives input from hot wire anemometers. Amplifiers and filters condition the signals with computer controlled modules. The analog signals are simultaneously digitized and digitally recorded on disk. Automatic acquisition collects necessary calibration and environment data. Hot wire sensitivities are generated and applied to the hot wire data to compute fluctuations. The presentation of the raw and processed data is accomplished on demand. The interface to DDAPS is described along with the internal mechanisms of DDAPS. A summary of operations relevant to the use of the DDAPS is also provided.
Multi-scale analysis of compressible fluctuations in the solar wind
NASA Astrophysics Data System (ADS)
Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe
2018-01-01
Compressible plasma turbulence is investigated in the fast solar wind at proton kinetic scales by the combined use of electron density and magnetic field measurements. Both the scale-dependent cross-correlation (CC) and the reduced magnetic helicity (σm) are used in tandem to determine the properties of the compressible fluctuations at proton kinetic scales. At inertial scales the turbulence is hypothesised to contain a mixture of Alfvénic and slow waves, characterised by weak magnetic helicity and anti-correlation between magnetic field strength B and electron density ne. At proton kinetic scales the observations suggest that the fluctuations have stronger positive magnetic helicities as well as strong anti-correlations within the frequency range studied. These results are interpreted as being characteristic of either counter-propagating kinetic Alfvén wave packets or a mixture of anti-sunward kinetic Alfvén waves along with a component of kinetic slow waves.
Inward transport of a toroidally confined plasma subject to strong radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.
1977-01-01
The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.
Nonequilibrium Fluctuations and Enhanced Diffusion of a Driven Particle in a Dense Environment
NASA Astrophysics Data System (ADS)
Illien, Pierre; Bénichou, Olivier; Oshanin, Gleb; Sarracino, Alessandro; Voituriez, Raphaël
2018-05-01
We study the diffusion of a tracer particle driven out of equilibrium by an external force and traveling in a dense environment of arbitrary density. The system evolves on a discrete lattice and its stochastic dynamics is described by a master equation. Relying on a decoupling approximation that goes beyond the naive mean-field treatment of the problem, we calculate the fluctuations of the position of the tracer around its mean value on a lattice of arbitrary dimension, and with different boundary conditions. We reveal intrinsically nonequilibrium effects, such as enhanced diffusivity of the tracer induced by both the crowding interactions and the external driving. We finally consider the high-density and low-density limits of the model and show that our approximation scheme becomes exact in these limits.
Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A
2008-10-01
A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.
Turbulent fluctuations during pellet injection into a dipole confined plasma torus
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; ...
2017-01-01
Here, we report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the densitymore » profile is nearly “stationary” such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wave number dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.« less
Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.
2016-11-15
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven bymore » fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.« less
Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)
NASA Astrophysics Data System (ADS)
Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.
2016-11-01
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.
Nonequilibrium thermodynamic potentials for continuous-time Markov chains.
Verley, Gatien
2016-01-01
We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.
A topological analysis of large-scale structure, studied using the CMASS sample of SDSS-III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parihar, Prachi; Gott, J. Richard III; Vogeley, Michael S.
2014-12-01
We study the three-dimensional genus topology of large-scale structure using the northern region of the CMASS Data Release 10 (DR10) sample of the SDSS-III Baryon Oscillation Spectroscopic Survey. We select galaxies with redshift 0.452 < z < 0.625 and with a stellar mass M {sub stellar} > 10{sup 11.56} M {sub ☉}. We study the topology at two smoothing lengths: R {sub G} = 21 h {sup –1} Mpc and R {sub G} = 34 h {sup –1} Mpc. The genus topology studied at the R {sub G} = 21 h {sup –1} Mpc scale results in the highest genusmore » amplitude observed to date. The CMASS sample yields a genus curve that is characteristic of one produced by Gaussian random phase initial conditions. The data thus support the standard model of inflation where random quantum fluctuations in the early universe produced Gaussian random phase initial conditions. Modest deviations in the observed genus from random phase are as expected from shot noise effects and the nonlinear evolution of structure. We suggest the use of a fitting formula motivated by perturbation theory to characterize the shift and asymmetries in the observed genus curve with a single parameter. We construct 54 mock SDSS CMASS surveys along the past light cone from the Horizon Run 3 (HR3) N-body simulations, where gravitationally bound dark matter subhalos are identified as the sites of galaxy formation. We study the genus topology of the HR3 mock surveys with the same geometry and sampling density as the observational sample and find the observed genus topology to be consistent with ΛCDM as simulated by the HR3 mock samples. We conclude that the topology of the large-scale structure in the SDSS CMASS sample is consistent with cosmological models having primordial Gaussian density fluctuations growing in accordance with general relativity to form galaxies in massive dark matter halos.« less
Rodríguez-Pastor, Ruth; Escudero, Raquel; Vidal, Dolors; Mougeot, François; Arroyo, Beatriz; Lambin, Xavier; Vila-Coro, Ave Maria; Rodríguez-Moreno, Isabel; Anda, Pedro
2017-01-01
Tularemia in humans in northwestern Spain is associated with increases in vole populations. Prevalence of infection with Francisella tularensis in common voles increased to 33% during a vole population fluctuation. This finding confirms that voles are spillover agents for zoonotic outbreaks. Ecologic interactions associated with tularemia prevention should be considered. PMID:28726608
The ecology of snowshoe hares in northern boreal forests [Chapter 6
Karen E. Hodges
2000-01-01
Snowshoe hares exhibit eight to 11 year population fluctuations across boreal North America, typically with an amplitude of 10 to 25 fold. These fluctuations are synchronous across the continent, with the most recent peak densities occurring in 1990 and 1991. The numeric cycle is driven by changes in survival and reproduction, with annual survival of adults...
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash
1999-01-01
A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.
Implications of seed banking for recruitment of Southern Appalachian woody species
Janneke Hille Ris Lambers; James S. Clark; Michael Lavine
2002-01-01
Seed dormancy is assumed to be unimportant for population dynamics of temperate woody species, because seeds occur at low densities and are short lived in forest soils. However, low soil seed densities may result from low seed production, and even modest seed longevity can buffer against fluctuating seed production, potentially limiting density-dependent mortality and...
Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance
NASA Astrophysics Data System (ADS)
Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.
2014-12-01
It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. Thismore » result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.« less
Impulsive phase soft X-ray blueshifts at a loop footpoint
NASA Astrophysics Data System (ADS)
Zarro, Dominic M.; Slater, Gregory L.; Freeland, Samuel L.
1988-10-01
Solar Maximum Mission (SMM) observations of a solar flare that occurred on May 24, 1987 are described. The event was noteworthy in that it was observed during the impulsive phase with the SMM X-ray Poly-chromator (XRP) pointed at a location associated with the chromospheric footpoints of a system of coronal loops. Density-sensitive line ratios at the flare site imply an initially large electron density of 5 x 10 to the 12th/cu cm, which decreased an order of magnitude during the flare. Spectral scans of the soft X-ray Mg XI line at the site reveal asymmetric blueshifted (200 km/s) profiles concurrent with impulsive hard X-ray emission. The blueshift amplitude was correlated with the intensity of hard X-rays (with a phase delay of about 30 s) and showed fluctuations on a time scale comparable with the variation of hard X-ray emission. These observations are interpreted as evidence for chromospheric evaporation produced by heating and expansion of footpoint plasma.
Impulsive phase soft X-ray blueshifts at a loop footpoint
NASA Technical Reports Server (NTRS)
Zarro, Dominic M.; Slater, Gregory L.; Freeland, Samuel L.
1988-01-01
Solar Maximum Mission (SMM) observations of a solar flare that occurred on May 24, 1987 are described. The event was noteworthy in that it was observed during the impulsive phase with the SMM X-ray Poly-chromator (XRP) pointed at a location associated with the chromospheric footpoints of a system of coronal loops. Density-sensitive line ratios at the flare site imply an initially large electron density of 5 x 10 to the 12th/cu cm, which decreased an order of magnitude during the flare. Spectral scans of the soft X-ray Mg XI line at the site reveal asymmetric blueshifted (200 km/s) profiles concurrent with impulsive hard X-ray emission. The blueshift amplitude was correlated with the intensity of hard X-rays (with a phase delay of about 30 s) and showed fluctuations on a time scale comparable with the variation of hard X-ray emission. These observations are interpreted as evidence for chromospheric evaporation produced by heating and expansion of footpoint plasma.
Impulsive phase soft X-ray blueshifts at a loop footpoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarro, D.M.; Slater, G.L.; Freeland, S.L.
Solar Maximum Mission (SMM) observations of a solar flare that occurred on May 24, 1987 are described. The event was noteworthy in that it was observed during the impulsive phase with the SMM X-ray Poly-chromator (XRP) pointed at a location associated with the chromospheric footpoints of a system of coronal loops. Density-sensitive line ratios at the flare site imply an initially large electron density of 5 x 10 to the 12th/cu cm, which decreased an order of magnitude during the flare. Spectral scans of the soft X-ray Mg XI line at the site reveal asymmetric blueshifted (200 km/s) profiles concurrentmore » with impulsive hard X-ray emission. The blueshift amplitude was correlated with the intensity of hard X-rays (with a phase delay of about 30 s) and showed fluctuations on a time scale comparable with the variation of hard X-ray emission. These observations are interpreted as evidence for chromospheric evaporation produced by heating and expansion of footpoint plasma. 13 references.« less
Topological signatures of interstellar magnetic fields - I. Betti numbers and persistence diagrams
NASA Astrophysics Data System (ADS)
Makarenko, Irina; Shukurov, Anvar; Henderson, Robin; Rodrigues, Luiz F. S.; Bushby, Paul; Fletcher, Andrew
2018-04-01
The interstellar medium (ISM) is a magnetized system in which transonic or supersonic turbulence is driven by supernova explosions. This leads to the production of intermittent, filamentary structures in the ISM gas density, whilst the associated dynamo action also produces intermittent magnetic fields. The traditional theory of random functions, restricted to second-order statistical moments (or power spectra), does not adequately describe such systems. We apply topological data analysis (TDA), sensitive to all statistical moments and independent of the assumption of Gaussian statistics, to the gas density fluctuations in a magnetohydrodynamic simulation of the multiphase ISM. This simulation admits dynamo action, so produces physically realistic magnetic fields. The topology of the gas distribution, with and without magnetic fields, is quantified in terms of Betti numbers and persistence diagrams. Like the more standard correlation analysis, TDA shows that the ISM gas density is sensitive to the presence of magnetic fields. However, TDA gives us important additional information that cannot be obtained from correlation functions. In particular, the Betti numbers per correlation cell are shown to be physically informative. Magnetic fields make the ISM more homogeneous, reducing the abundance of both isolated gas clouds and cavities, with a stronger effect on the cavities. Remarkably, the modification of the gas distribution by magnetic fields is captured by the Betti numbers even in regions more than 300 pc from the mid-plane, where the magnetic field is weaker and correlation analysis fails to detect any signatures of magnetic effects.
NASA Astrophysics Data System (ADS)
Chen, Zhijun; Kametani, Fumitake; Gurevich, Alex; Larbalestier, David
2009-12-01
YBa 2Cu 3O 7-x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature ( T) and magnetic field ( H) ranges and by transmission electron microscopy (TEM). The critical current density J c was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of J c on c-axis pin spacing d c. At low T and H, J c increased with decreasing d c, reaching the very high J c ∼ 48 MA/cm 2 ∼20% of the depairing current density J d at 10 K, self-field and d c ∼ 10 nm, but at higher T and H when TAD effects become significant, J c was optimized at larger d c because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields H irr(77 K) greater than 7 T and maximum bulk pinning forces F p,max(77 K) greater than 7-8 GN/m 3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes J c at all T and H.
Ploetz, Elizabeth A; Karunaweera, Sadish; Smith, Paul E
2015-01-28
Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.
NASA Astrophysics Data System (ADS)
Ploetz, Elizabeth A.; Karunaweera, Sadish; Smith, Paul E.
2015-01-01
Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.
Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.
2011-01-01
Hourly fluctuations in flow from Glen Canyon Dam were increased in an attempt to limit the population of nonnative rainbow trout Oncorhynchus mykiss in the Colorado River, Arizona, due to concerns about negative effects of nonnative trout on endangered native fishes. Controlled floods have also been conducted to enhance native fish habitat. We estimated that rainbow trout incubation mortality rates resulting from greater fluctuations in flow were 23-49% (2003 and 2004) compared with 5-11% under normal flow fluctuations (2006-2010). Effects of this mortality were apparent in redd excavations but were not seen in hatch date distributions or in the abundance of the age-0 population. Multiple lines of evidence indicated that a controlled flood in March 2008, which was intended to enhance native fish habitat, resulted in a large increase in early survival rates of age-0 rainbow trout. Age-0 abundance in July 2008 was over fourfold higher than expected given the number of viable eggs that produced these fish. A hatch date analysis indicated that early survival rates were much higher for cohorts that hatched about 1 month after the controlled flood (~April 15) relative to those that hatched before this date. The cohorts that were fertilized after the flood were not exposed to high flows and emerged into better-quality habitat with elevated food availability. Interannual differences in age-0 rainbow trout growth based on otolith microstructure supported this hypothesis. It is likely that strong compensation in survival rates shortly after emergence mitigated the impact of incubation losses caused by increases in flow fluctuations. Control of nonnative fish populations will be most effective when additional mortality is applied to older life stages after the majority of density-dependent mortality has occurred. Our study highlights the need to rigorously assess instream flow decisions through the evaluation of population-level responses.
Intermittency of solar wind on scale 0.01-16 Hz.
NASA Astrophysics Data System (ADS)
Riazantseva, Maria; Zastenker, Georgy; Chernyshov, Alexander; Petrosyan, Arakel
Magnetosphere of the Earth is formed in the process of solar wind flow around earth's magnetic field. Solar wind is a flow of turbulent plasma that displays a multifractal structure and an intermittent character. That is why the study of the characteristics of solar wind turbulence is very important part of the solution of the problem of the energy transport from the solar wind to magnetosphere. A large degree of intermittency is observed in the solar wind ion flux and magnetic field time rows. We investigated the intermittency of solar wind fluctuations under large statistics of high time resolution measurements onboard Interball-1 spacecraft on scale from 0.01 to 16 Hz. Especially it is important that these investigation is carry out for the first time for the earlier unexplored (by plasma data) region of comparatively fast variations (frequency up to 16 Hz), so we significantly extend the range of intermittency observations for solar wind plasma. The intermittency practically absent on scale more then 1000 s and it grows to the small scales right up till t 30-60 s. The behavior of the intermittency for the scale less then 30-60 s is rather changeable. The boundary between these two rates of intermittency is quantitatively near to the well-known boundary between the dissipation and inertial scales of fluctuations, what may point to their possible relation. Special attention is given to a comparison of intermittency for solar wind observation intervals containing SCIF (Sudden Changes of Ion Flux) to ones for intervals without SCIF. Such a comparison allows one to reveal the fundamental turbulent properties of the solar wind regions in which SCIF is observed more frequently. We use nearly incompressible model of the solar wind turbulence for obtained data interpretation. The regime when density fluctuations are passive scalar in a hydrodynamic field of velocity is realized in turbulent solar wind flows according to this model. This hypothesis can be verified straightforwardly by investigating the density spectrum which should be slaved to the incompressible velocity spectrum. Density discontinuities on times up to t 30-60 s are defined by intermittency of velocity turbulent field. Solar wind intermittency and many or most of its discontinuities are produced by MHD turbulence in this time interval. It is possible that many or even most of the current structures in the solar wind, particularly inertial range structures that contribute to the tails of the PDFs. Complex non-gaussian behaviour on smaller times is described by dissipation rate nonhomogeneity of statistical moments for density field in a random flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharchev, Nikolay; Batanov, German; Petrov, Alexandr
2008-10-15
A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.
Prediction of heat release effects on a mixing layer
NASA Technical Reports Server (NTRS)
Farshchi, M.
1986-01-01
A fully second-order closure model for turbulent reacting flows is suggested based on Favre statistics. For diffusion flames the local thermodynamic state is related to single conserved scalar. The properties of pressure fluctuations are analyzed for turbulent flows with fluctuating density. Closure models for pressure correlations are discussed and modeled transport equations for Reynolds stresses, turbulent kinetic energy dissipation, density-velocity correlations, scalar moments and dissipation are presented and solved, together with the mean equations for momentum and mixture fraction. Solutions of these equations are compared with the experimental data for high heat release free mixing layers of fluorine and hydrogen in a nitrogen diluent.
CRIT II electric, magnetic, and density measurements within an ionizing neutral stream
NASA Technical Reports Server (NTRS)
Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.
1990-01-01
Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.
The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.
1981-01-01
Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.
Correlation techniques and measurements of wave-height statistics
NASA Technical Reports Server (NTRS)
Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.
1972-01-01
Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.
Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...
2015-05-15
Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thomson scattering measurements, we found that the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution includingmore » its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. Moreover, the saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Finally, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.« less
Study of ELM Density Turbulence using the Upgraded Phase Contrast Imaging on DIII-D
NASA Astrophysics Data System (ADS)
Rost, J. C.; Davis, E. M.; Marinoni, A.; Porkolab, M.; Burrell, K. H.
2016-10-01
Recent studies of the turbulent density fluctuations accompanying ELMs in mixed ELM-type discharges have exploited the expanded wavenumber range of the upgraded Phase Contrast Imaging (PCI) diagnostic. The PCI data demonstrate the difference between the fluctuations generated by Type I ELMs, which are broadband in frequency and wavelength, and those generated by Type III ELMs, which are similar in amplitude but restricted to long wavelengths, suggesting that turbulence may play a significant role in Type I ELM transport. The high frequency response of PCI makes it ideal for studying the ELM-associated density fluctuations, which are observed at frequencies up to several MHz, evolve on time scales of 10s of μs, and persist after the magnetic component of the ELM has decayed away. The upgraded PCI, with independent systems for long and short wavelength detection (k < 5 cm-1 and 1 < k < 30 cm-1 respectively), demonstrated coverage of the full wavenumber range of interest. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and DE-FC02-99ER54512.
NASA Astrophysics Data System (ADS)
Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.
2018-02-01
We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.
Measurements of dynamo electric field and momentum transport induced by fluctuations on HIST
NASA Astrophysics Data System (ADS)
Hirono, H.; Hanao, T.; Hyobu, T.; Ito, K.; Matsumoto, K.; Nakayama, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2012-10-01
Coaxial Helicity injection (CHI) is an efficient current-drive method used in spheromak and spherical torus (ST) experiments. It is an important issue to investigate dynamo effect to explore CHI current drive mechanisms. To establish the dynamo model with two-fluid Hall effects, we verify the parallel mean-field Ohm's law balance. The spatial profiles of the MHD/Hall dynamo electric fields are measured by using Mach probe and Hall probe involving 3-axis magnetic pick-up coils. The MHD/Hall fluctuation-induced electromotive forces are large enough to sustain the mean toroidal current against the resistive decay. We have measured the electron temperature and the density with great accuracy by using a new electrostatic probe with voltage sweeping. The result shows that the electron temperature is high in the core region and low in the central open flux column (OFC), and the electron density is highest in the OFC region. The Hall dynamo becomes more dominant in a lower density region compared to the MHD dynamo. In addition, the fluctuation-induced Maxwell and Reynolds stresses are calculated to examine the fast radial transport of momentum from the OFC to the core region during the dynamo drive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Wei; Zhang Bing; Li Hui
The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jetmore » with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Wei; Zhang, Bing; Li, Hui
We report that the early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ, of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the "Athena++" relativistic MHD code to simulate amore » relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Finally, such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less
Deng, Wei; Zhang, Bing; Li, Hui; ...
2017-08-03
We report that the early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ, of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the "Athena++" relativistic MHD code to simulate amore » relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Finally, such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.« less
Theory of Aging, Rejuvenation, and the Nonequilibrium Steady State in Deformed Polymer Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kang
The nonlinear Langevin equation theory of segmental relaxation, elasticity, and mechanical response of polymer glasses is extended to describe the coupled effects of physical aging, mechanical rejuvenation, and thermal history. The key structural variable is the amplitude of density fluctuations, and segmental dynamics proceeds via stress-modified activated barrier hopping on a dynamic free-energy profile. Mechanically generated disorder rejuvenation is quantified by a dissipative work argument and increases the amplitude of density fluctuations, thereby speeding up relaxation beyond that induced by the landscape tilting mechanism. The theory makes testable predictions for the time evolution and nonequilibrium steady state of the alphamore » relaxation time, density fluctuation amplitude, elastic modulus, and other properties. Model calculations reveal a rich dependence of these quantities on preaging time, applied stress, and temperature that reflects the highly nonlinear competition between physical aging and mechanical disordering. Thermal history is erased in the long-time limit, although the nonequilibrium steady state is not the literal fully rejuvenated freshly quenched glass. The present work provides the conceptual foundation for a quantitative treatment of the nonlinear mechanical response of polymer glasses under a variety of deformation protocols.« less
Observations Of Planetary Nebula NGC 3242 Using STIS From HST19 GO 12600
NASA Astrophysics Data System (ADS)
Miller, Timothy R.; Dufour, Reginald J.; Henry, Richard B. C.; Kwitter, Karen B.; Shaw, Richard A.; Balick, Bruce; Corradi, Romano
2014-06-01
During HST Cycle 19, we obtained long-slit spectra using STIS of the planetary nebula NGC 3242 with higher spatial resolution than previously published. The full wavelength range is around 1100-10200Å, covering many nebular lines for determining numerous ionic abundances and electron densities and temperatures. In this work, we first analyze the low- and moderate-resolution UV emission lines of carbon, nitrogen and oxygen. In particular, the resolved lines of C_III] 1907 and C_III] 1909 have yielded a direct measurement of one of the dominant ionic species for carbon and a determination of the density occupied by doubly-ionized carbon and other similar ions. Next, the spatial emission profile of these lines reveals variations in the inferred density along the line of sight from about 2800-11500 cm-3, compared with a value ~3800 cm-3, when averaged over the entire slit. Similarly, the electron temperature is around 12000K for the entire slit and ranges from about 11400-14000K when the slit is divided into smaller sub-regions. Lastly, these sub-regions of the nebula have been modeled in detail with the photoionization code CLOUDY. This modeling will assess the density profile that produces the observed density variation, reproduce the temperature fluctuations, and constrain the central star temperature. We acknowledge the gracious support from HST and the University of Oklahoma.
Pathways to dewetting in hydrophobic confinement
Remsing, Richard C.; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G.; Garde, Shekhar; Patel, Amish J.
2015-01-01
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces—tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces—namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics—facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie–Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly. PMID:26100866
Pathways to dewetting in hydrophobic confinement.
Remsing, Richard C; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G; Garde, Shekhar; Patel, Amish J
2015-07-07
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces--tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces--namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics--facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly.
Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming
Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less
Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions
Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; ...
2017-09-22
Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less
Critical fluid light scattering
NASA Technical Reports Server (NTRS)
Gammon, Robert W.
1988-01-01
The objective is to measure the decay rates of critical density fluctuations in a simple fluid (xenon) very near its liquid-vapor critical point using laser light scattering and photon correlation spectroscopy. Such experiments were severely limited on Earth by the presence of gravity which causes large density gradients in the sample when the compressibility diverges approaching the critical point. The goal is to measure fluctuation decay rates at least two decades closer to the critical point than is possible on earth, with a resolution of 3 microK. This will require loading the sample to 0.1 percent of the critical density and taking data as close as 100 microK to the critical temperature. The minimum mission time of 100 hours will allow a complete range of temperature points to be covered, limited by the thermal response of the sample. Other technical problems have to be addressed such as multiple scattering and the effect of wetting layers. The experiment entails measurement of the scattering intensity fluctuation decay rate at two angles for each temperature and simultaneously recording the scattering intensities and sample turbidity (from the transmission). The analyzed intensity and turbidity data gives the correlation length at each temperature and locates the critical temperature. The fluctuation decay rate data from these measurements will provide a severe test of the generalized hydrodynamic theories of transport coefficients in the critical regions. When compared to equivalent data from binary liquid critical mixtures they will test the universality of critical dynamics.
Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun
2013-04-12
The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Sumit, E-mail: sumit.basu@cern.ch; Chatterjee, Rupa; Nayak, Tapan K.
Heavy-ion collisions at ultra-relativistic energies are often referred to as little bangs. We propose for the first time to map the heavy-ion collisions at ultra-relativistic energies, similar to the maps of the cosmic microwave background radiation, using fluctuations of energy density and temperature in small phase space bins. We study the evolution of fluctuations at each stage of the collision using an event-by-event hydrodynamic framework. We demonstrate the feasibility of making fluctuation maps from experimental data and its usefulness in extracting considerable information regarding the early stages of the collision and its evolution.
Theory of waves incoherently scattered
NASA Technical Reports Server (NTRS)
Bauer, P.
1974-01-01
Electromagnetic waves impinging upon a plasma at frequencies larger than the plasma frequency, suffer weak scattering. The scattering arises from the existence of electron density fluctuations. The received signal corresponds to a particular spatial Fourier component of the fluctuations, the wave vector of which is a function of the wavelength of the radiowave. Wavelengths short with respect to the Debye length of the medium relate to fluctuations due to non-interacting Maxwellian electrons, while larger wavelengths relate to fluctuations due to collective Coulomb interactions. In the latter case, the scattered signal exhibits a spectral distribution which is characteristic of the main properties of the electron and ion gases and, therefore, provides a powerful diagnosis of the state of the ionosphere.
Quantum Corrections to the 'Atomistic' MOSFET Simulations
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Kaya, S.; Balasubramaniam, R.
2000-01-01
We have introduced in a simple and efficient manner quantum mechanical corrections in our 3D 'atomistic' MOSFET simulator using the density gradient formalism. We have studied in comparison with classical simulations the effect of the quantum mechanical corrections on the simulation of random dopant induced threshold voltage fluctuations, the effect of the single charge trapping on interface states and the effect of the oxide thickness fluctuations in decanano MOSFETs with ultrathin gate oxides. The introduction of quantum corrections enhances the threshold voltage fluctuations but does not affect significantly the amplitude of the random telegraph noise associated with single carrier trapping. The importance of the quantum corrections for proper simulation of oxide thickness fluctuation effects has also been demonstrated.
NASA Astrophysics Data System (ADS)
Verscharen, D.; Chandran, B. D. G.; Klein, K. G.; Quataert, E.
2016-12-01
Compressive fluctuations are a minor yet significant component of astrophysical plasma turbulence. In the solar wind, long-wavelength compressive slow-mode fluctuations lead to changes in β∥p ≡ 8πnpkBT∥p/B2 and in Rp ≡ T⊥p/T∥p, where T⊥p and T∥p are the perpendicular and parallel temperatures of the protons, B is the magnetic field strength, and np is the proton density. If the amplitude of the compressive fluctuations is large enough, Rp crosses one or more instability thresholds for anisotropy-driven micro-instabilities. The enhanced field fluctuations from these micro-instabilities scatter the protons so as to reduce the anisotropy of the pressure tensor, driving the average value of Rp away from the marginal stability boundary until the fluctuating value of Rp stops crossing the boundary. We model this "fluctuating-anisotropy effect" using linear Vlasov-Maxwell theory to describe the large-scale compressive fluctuations. We show that this effect can explain why, in the nearly collisionless solar wind, the average value of Rp is close to unity.
Pulsed Neurton Elemental On-Line Material Analyzer
Vourvopoulos, George
2002-08-20
An on-line material analyzer which utilizes pulsed neutron generation in order to determine the composition of material flowing through the apparatus. The on-line elemental material analyzer is based on a pulsed neutron generator. The elements in the material interact with the fast and thermal neutrons produced from the pulsed generator. Spectra of gamma-rays produced from fast neutrons interacting with elements of the material are analyzed and stored separately from spectra produced from thermal neutron reactions. Measurements of neutron activation takes place separately from the above reactions and at a distance from the neutron generator. A primary passageway allows the material to flow through at a constant rate of speed and operators to provide data corresponding to fast and thermal neutron reactions. A secondary passageway meters the material to allow for neutron activation analysis. The apparatus also has the capability to determine the density of the flowed material. Finally, the apparatus continually utilizes a neutron detector in order to normalize the yield of the gamma ray detectors and thereby automatically calibrates and adjusts the spectra data for fluctuations in neutron generation.
Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.
Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A
2013-11-01
This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced by the action of fluxes flattening gradients, Ohmic heating and the equilibration of interspecies temperature differences. This equilibration is found to include both turbulent and collisional contributions. Finally, this framework is condensed, in the low-Mach-number limit, to a more concise set of equations suitable for numerical implementation.
The Nature of the Unresolved Extragalactic Cosmic Soft X-Ray Background
NASA Technical Reports Server (NTRS)
Cappelluti, N.; Ranalli, P.; Roncarelli, M.; Arevalo, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Rovilos, E.; Vignali, C.; Allevato, V.;
2013-01-01
In this paper we investigate the power spectrum of the unresolved 0.5-2 keV cosmic X-ray background (CXB) with deep Chandra 4-Msec (Ms) observations in the Chandra Deep Field South (CDFS). We measured a signal that, on scales >30 arcsec, is significantly higher than the shot noise and is increasing with angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like active galactic nuclei (AGN), galaxies and the intergalactic medium (IGM). The power of unresolved cosmic source fluctuations accounts for approximately 12 per cent of the 0.5-2 keV extragalactic CXB. Overall, our modelling predicts that approximately 20 per cent of the unresolved CXB flux is produced by low-luminosity AGN, approximately 25 per cent by galaxies and approximately 55 per cent by the IGM. We do not find any direct evidence of the so-called 'warm hot intergalactic medium' (i.e. matter with 10(exp 5) less than T less than 10(exp 7) K and density contrast delta less than 1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit on the space density of postulated X-ray-emitting early black holes at z greater than 7.5 and compared it with supermassive black hole evolution models.
NASA Astrophysics Data System (ADS)
Bowling, T. J.; Calais, E.; Dautermann, T.
2010-12-01
Rocket launches are known to produce infrasonic pressure waves that propagate into the ionosphere where coupling between electrons and neutral particles induces fluctuations in ionospheric electron density observable in GPS measurements. We have detected ionospheric perturbations following the launch of space shuttle Atlantis on 11 May 2009 using an array of continually operating GPS stations across the Southeastern coast of the United States and in the Caribbean. Detections are prominent to the south of the westward shuttle trajectory in the area of maximum coupling between the acoustic wave and Earth’s magnetic field, move at speeds consistent with the speed of sound, and show coherency between stations covering a large geographic range. We model the perturbation as an explosive source located at the point of closest approach between the shuttle path and each sub-ionospheric point. The neutral pressure wave is propagated using ray tracing, resultant changes in electron density are calculated at points of intersection between rays and satellite-to-reciever line-of-sight, and synthetic integrated electron content values are derived. Arrival times of the observed and synthesized waveforms match closely, with discrepancies related to errors in the apriori sound speed model used for ray tracing. Current work includes the estimation of source location and energy.
Tomioka, Noriko; Jutagate, Tuantong; Hiroki, Mikiya; Murata, Tomoyoshi; Preecha, Chatchai; Avakul, Piyathap; Phomikong, Pisit; Imai, Akio
2017-01-01
In the face of plans for increased construction of dams and reservoirs in the Mekong River Basin, it is critically important to better understand the primary-producer community of phytoplankton, especially the warm-water cyanobacteria. This is because these algae can serve as the primary source of carbon for higher trophic levels, including fishes, but can also form harmful blooms, threatening local fisheries and environmental and human health. We monitored the dynamics of three cyanobacteria—Synechococcus spp., Microcystis aeruginosa, and Dolichospermum spp.—for two years in nine large lakes and reservoirs in the Mekong River Basin. The densities of these algae were largely system-specific such that their abundance was uniquely determined within individual water bodies. However, after accounting for the system-specific effect, we found that cell densities of Synechococcus spp., M. aeruginosa, and Dolichospermum spp. varied in response to changes in photosynthetically active radiation (PAR), total nitrogen, and water level, respectively. Because both PAR and water level tend to fluctuate concordantly over a wide geographic area, Synechococcus spp., and to a lesser extent Dolichospermum spp., varied synchronously among the water bodies. Sustaining the production of pico-sized primary producers while preventing harmful algal blooms will be a key management goal for the proposed reservoirs in the Mekong Basin. PMID:29272288
An experimental study of fluctuating pressure loads beneath swept shock/boundary-layer interactions
NASA Technical Reports Server (NTRS)
Settles, Gary S.
1991-01-01
A database is established on the fluctuating pressure loads produced on aerodynamic surfaces beneath 3-D shock wave/boundary layer interactions. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 5 to 25 deg at freestream Mach numbers between 2.5 and 4 produce a variety of interaction strengths from weak to very strong. Miniature Kulite pressure transducers mounted in the flat plate were used to measure interaction-induced wall pressure fluctuations. These data will be correlated with proposed new optical data on the fluctuations of the interaction structure, especially that of the lambda-shock system and its associated high-speed jet impingement.
Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
NASA Astrophysics Data System (ADS)
Wölfle, Peter; Abrahams, Elihu
2016-02-01
We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.