Surbhi; Rastogi, Ashutosh; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod
2016-05-01
Present study examined the expression of brain peptides associated with the reproduction and energy homeostasis (GnRH/GnIH, NPY/VIP), and assessed their possible functional association in the photosensitive (non-breeding, pre-breeding), photostimulated (breeding) and photorefractory (post-breeding) migratory redheaded buntings (Emberiza bruniceps), using double-labeled immunohistochemistry. Particularly, we measured immunoreactive (-ir) cell numbers, per cent cell area and cell optical density (OD) in the preoptic area (GnRH-I), midbrain (GnRH-II), paraventricular nucleus (GnIH), dorsomedial hypothalamus, DMH and infundibular complex, INc (NPY and VIP), and lateral septal organ (VIP) of buntings kept under natural photoperiods at the wintering latitude (26°55'N). There was a significant seasonal difference in GnRH-I, not GnRH-II, with reduced -ir cells in the photosensitive and photorefractory buntings, and notably with increased cell OD between the refractory and non-breeding states with no increase in testis size. Also, increased cell OD of GnIH neurons in non-breeding state indicated its role in the maintenance of small testes during the post-refractory period. Overall, seasonal changes in GnRH-I and GnIH were found consistent with their suggested roles in reproductive regulation of absolute photorefractory birds. Further, there was a significant seasonal change in cell OD of NPY neurons in DMH, not the INc. In contrast, VIP immunoreactivity was seasonally altered, with a significantly higher VIP-ir cells in breeding than the pre-breeding state. Finally, close proximity between perikarya with fibres suggested functional interactions between the GnRH and GnIH, and NPY and VIP. Thus, seasonal plasticity of brain peptides is perhaps the part of neural regulation of seasonal reproduction and associated energy homeostasis in migratory songbirds. Copyright © 2016 Elsevier Inc. All rights reserved.
RNA Interference of Gonadotropin-Inhibitory Hormone Gene Induces Arousal in Songbirds
Ubuka, Takayoshi; Mukai, Motoko; Wolfe, Jordan; Beverly, Ryan; Clegg, Sarah; Wang, Ariel; Hsia, Serena; Li, Molly; Krause, Jesse S.; Mizuno, Takanobu; Fukuda, Yujiro; Tsutsui, Kazuyoshi; Bentley, George E.; Wingfield, John C.
2012-01-01
Gonadotropin-inhibitory hormone (GnIH) was originally identified in quail as a hypothalamic neuropeptide inhibitor of pituitary gonadotropin synthesis and release. However, GnIH neuronal fibers do not only terminate in the median eminence to control anterior pituitary function but also extend widely in the brain, suggesting it has multiple roles in the regulation of behavior. To identify the role of GnIH neurons in the regulation of behavior, we investigated the effect of RNA interference (RNAi) of the GnIH gene on the behavior of white-crowned sparrows, a highly social songbird species. Administration of small interfering RNA against GnIH precursor mRNA into the third ventricle of male and female birds reduced resting time, spontaneous production of complex vocalizations, and stimulated brief agonistic vocalizations. GnIH RNAi further enhanced song production of short duration in male birds when they were challenged by playbacks of novel male songs. These behaviors resembled those of breeding birds during territorial defense. The overall results suggest that GnIH gene silencing induces arousal. In addition, the activities of male and female birds were negatively correlated with GnIH mRNA expression in the paraventricular nucleus. Density of GnIH neuronal fibers in the ventral tegmental area was decreased by GnIH RNAi treatment in female birds, and the number of gonadotropin-releasing hormone neurons that received close appositions of GnIH neuronal fiber terminals was negatively correlated with the activity of male birds. In summary, GnIH may decrease arousal level resulting in the inhibition of specific motivated behavior such as in reproductive contexts. PMID:22279571
Ubuka, Takayoshi; Inoue, Kazuhiko; Fukuda, Yujiro; Mizuno, Takanobu; Ukena, Kazuyoshi; Kriegsfeld, Lance J.
2012-01-01
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion in birds and mammals. To further understand its physiological roles in mammalian reproduction, we identified its precursor cDNA and endogenous mature peptides in the Siberian hamster brain. The Siberian hamster GnIH precursor cDNA encoded two RFamide-related peptide (RFRP) sequences. SPAPANKVPHSAANLPLRF-NH2 (Siberian hamster RFRP-1) and TLSRVPSLPQRF-NH2 (Siberian hamster RFRP-3) were confirmed as mature endogenous peptides by mass spectrometry from brain samples purified by immunoaffinity chromatography. GnIH mRNA expression was higher in long days (LD) compared with short days (SD). GnIH mRNA was also highly expressed in SD plus pinealectomized animals, whereas expression was suppressed by melatonin, a nocturnal pineal hormone, administration. GnIH-immunoreactive (-ir) neurons were localized to the dorsomedial region of the hypothalamus, and GnIH-ir fibers projected to hypothalamic and limbic structures. The density of GnIH-ir perikarya and fibers were higher in LD and SD plus pinealectomized hamsters than in LD plus melatonin or SD animals. The percentage of GnRH neurons receiving close appositions from GnIH-ir fiber terminals was also higher in LD than SD, and GnIH receptor was expressed in GnRH-ir neurons. Finally, central administration of hamster RFRP-1 or RFRP-3 inhibited LH release 5 and 30 min after administration in LD. In sharp contrast, both peptides stimulated LH release 30 min after administration in SD. These results suggest that GnIH peptides fine tune LH levels via its receptor expressed in GnRH-ir neurons in an opposing fashion across the seasons in Siberian hamsters. PMID:22045661
Ontogeny of Gonadotropin-Inhibitory Hormone (GnIH) in the cichlid fish Cichlasoma dimerus.
Di Yorio, María P; Sallemi, Julieta E; Toledo Solís, Francisco J; Pérez Sirkin, Daniela I; Delgadin, Tomás H; Tsutsui, Kazuyoshi; Vissio, Paula G
2018-05-13
RFamide peptides are expressed in the early stages of development in most vertebrates. Gonadotropin-inhibitory hormone (GnIH) belongs to the RFamide family, and its role in reproduction has been widely studied in adult vertebrates, ranging from fish to mammals. As only three reports evaluated GnIH during development, the aim of this study was to characterise the ontogeny of GnIH in a fish model, Cichlasoma dimerus. We detected the presence of two GnIH-immunoreactive (GnIH-ir) cell clusters with spatial and temporal differences. One cluster was observed by 3 days post-hatching (dph) in the nucleus olfacto-retinalis (NOR) and the other in the nucleus posterioris periventricularis by 14 dph. The number of GnIH-ir neurons increased in both nuclei, whereas their size increased only in the NOR from hatchling to juvenile stages. These changes occurred from the moment larvae started feeding exogenously and during development and differentiation of gonadal primordia. We showed by double-label immunofluorescence that only GnIH-ir neurons in the NOR co-expressed GnRH3 associated peptide. In addition, GnIH-ir fibre density increased in all brain regions from 5 dph. GnIH-ir fibres were also detected in the retina, optic tract and optic tectum, suggesting that GnIH acts as a neuromodulator of photoreception and the integration of different sensory modalities. Also, there were GnIH-ir fibres in the pituitary from 14 dph, which were in close association with somatotropes. Moreover, GnIH-ir fibres were observed in the saccus vasculosus from 30 dph, suggesting a potential role of GnIH in the modulation of its function. Finally, we found that gnih was expressed from 1 dph, and that the pattern of variation of its transcript levels was in accordance with that of cell number. Present results are the starting point for the study of new GnIH roles during development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Servili, Arianna; Lethimonier, Christèle; Lareyre, Jean-Jacques; López-Olmeda, José Fernando; Sánchez-Vázquez, Francisco Javier; Kah, Olivier; Muñoz-Cueto, José Antonio
2010-05-01
With the exception of modern mammals, most vertebrate species possess two GnRH genes, GnRH-1 and GnRH-2. In addition, in many teleost fish, there is a third gene called GnRH-3. If the main function of GnRH-1 is unambiguously to stimulate gonadotropin release, the other two GnRH forms still lack clear functions. This is particularly true for the highly conserved GnRH-2 that encodes chicken GnRH-II. This GnRH variant is consistently expressed in neurons of the dorsal synencephalon in most vertebrate groups but still has no clear functions supported by anatomical, pharmacological, and physiological data. In this study performed on a perciform fish, the European sea bass, we show for the first time that the pineal organ receives GnRH-2-immunoreactive fibers originating from the synencephalic GnRH-2 neurons. This was shown through a combination of retrograde tracing and immunohistochemistry, using highly specific antibodies. Supporting the presence of GnRH-2 functional targets, RT-PCR data together with the in situ hybridization studies showed that the sea bass pineal gland strongly expressed a GnRH receptor (dlGnRHR-II-2b) with clear selectivity for GnRH-2 and, to a lesser extent, the dlGnRHR-II-1a subtype. Finally, in vitro and in vivo experiments demonstrate stimulatory effects of GnRH-2 on nocturnal melatonin secretion by the sea bass pineal organ. Altogether, these data provide, for the first time in a vertebrate species, converging evidence supporting a role of GnRH-2 in the modulation of fish pineal functions.
Leaños-Miranda, Alfredo; Ulloa-Aguirre, Alfredo; Ji, Tae H; Janovick, Jo Ann; Conn, P Michael
2003-07-01
Loss of function by 11 of 13 naturally occurring mutations in the human GnRH receptor (hGnRHR) was thought to result from impaired ligand binding or effector coupling, but actually results from receptor misrouting. Homo- or heterodimerization of mutant receptors with wild-type (WT) receptors occurs for other G protein-coupled receptors and may result in dominant-negative or -positive effects on the WT receptor. We tested the hypothesis that WT hGnRHR function was affected by misfolded hGnRHR mutants. hGnRHR mutants were found to inhibit the function of WT GnRHR (measured by activation of effector and ligand binding). Inhibition varied depending on the particular hGnRHR mutant coexpressed and the ratio of hGnRHR mutant to WT hGnRHR cDNA cotransfected. The hGnRHR mutants did not interfere with the function of genetically modified hGnRHRs bearing either a deletion of primate-specific Lys(191) or the carboxyl-terminal tail of the catfish GnRHR; these show intrinsically enhanced expression. Moreover, a peptidomimetic antagonist of GnRH enhanced the expression of WT hGnRHR, but not of genetically modified hGnRHR species. The dominant-negative effect of the naturally occurring receptor mutants occurred only for the WT hGnRHR, which has intrinsic low maturation efficiency. The data suggest that this dominant negative effect accompanies the diminished plasma membrane expression as a recent evolutionary event.
Yang, Jun; Xie, Ying; Wang, Ruihong; Jiang, Baojiang; Tian, Chungui; Mu, Guang; Yin, Jie; Wang, Bo; Fu, Honggang
2013-07-24
The synergistic effect of WC and Pd has large benefit for ethanol electrooxidation. The small-sized Pd nanoparticles (NPs) decorated tungsten carbide on graphene (Pd-WC/GN) will be a promising anode catalyst for the direct ethanol fuel cells. The density functional theory (DFT) calculations reveal that the strong interaction exists at the interface between Pd and WC, which induces the electron transfer from WC to Pd. Fortunately, the nanoscale architecture of Pd-WC/GN has been successfully fabricated in our experiments. X-ray photoelectron spectrum further confirms the existence of electron transfer from WC to Pd in a Pd-WC/GN nanohybrid. Notably, electrochemical tests show that the Pd-WC/GN catalyst exhibits low onset potential, a large electrochemical surface area, high activity, and stability for ethanol electrooxidation in alkaline solution compared with Pd/graphene and Pd/commercial Vulcan 72R carbon catalysts. The enhancement can be attributed to the synergistic effect of Pd and WC on graphene. At the interface between Pd and WC, the electron transfer from WC to Pd leads to the increased electron densities of surface Pd, which is available for weakening adsorption of intermediate oxygen-containing species such as CO and activating catalyst. Meanwhile, the increased tungsten oxide induced by electron transfer can facilitate the effective removal of intermediate species adsorbed on the Pd surface through a bifunctional mechanism or hydrogen spillover effect.
Kanda, Atsuhiro; Takahashi, Toshio; Satake, Honoo; Minakata, Hiroyuki
2005-01-01
GnRH (gonadotropin-releasing hormone) plays a pivotal role in the regulation of reproduction in vertebrates through interaction with a specific receptor. Previously, we isolated a GnRH homo-logue, oct-GnRH, from the common octopus (Octopus vulgaris). In the present study, we have identified a GnRH receptor (oct-GnRHR) specific for oct-GnRH from Octopus brain. Oct-GnRHR includes domains and motifs typical of vertebrate GnRH receptors. The intron-inserted positions are conserved between oct-GnRHR and the chordate GnRHR genes. The oct-GnRHR expressed in Xenopus (South African clawed frog) oocytes was responsive to oct-GnRH, but not to any other HPLC fractions of the Octopus brain extract. These results show that oct-GnRHR is an authentic receptor for oct-GnRH. Southern blotting of reverse-transcription PCR products revealed that the oct-GnRHR mRNA was widely distributed in the central and peripheral nervous systems and in several peripheral tissues. In situ hybridiz-ation showed that oct-GnRHR mRNA was expressed in some regions involved in autonomic functions, feeding, memory and movement. Oct-GnRH was shown to induce steroidogenesis of testosterone, progesterone and 17β-oestradiol in Octopus ovary and testis, where oct-GnRHR was abundantly expressed. These results suggest that oct-GnRH, like its vertebrate counterparts, acts as a multifunctional neurotransmitter, neuromodulator and hormone-like factor, both in Octopus central nervous system and peripheral tissues, and that both structure and functions of the GnRH family are, at least partially, evolutionarily conserved between octopuses and chordates. PMID:16367741
Kanda, Atsuhiro; Takahashi, Toshio; Satake, Honoo; Minakata, Hiroyuki
2006-04-01
GnRH (gonadotropin-releasing hormone) plays a pivotal role in the regulation of reproduction in vertebrates through interaction with a specific receptor. Previously, we isolated a GnRH homologue, oct-GnRH, from the common octopus (Octopus vulgaris). In the present study, we have identified a GnRH receptor (oct-GnRHR) specific for oct-GnRH from Octopus brain. Oct-GnRHR includes domains and motifs typical of vertebrate GnRH receptors. The intron-inserted positions are conserved between oct-GnRHR and the chordate GnRHR genes. The oct-GnRHR expressed in Xenopus (South African clawed frog) oocytes was responsive to oct-GnRH, but not to any other HPLC fractions of the Octopus brain extract. These results show that oct-GnRHR is an authentic receptor for oct-GnRH. Southern blotting of reverse-transcription PCR products revealed that the oct-GnRHR mRNA was widely distributed in the central and peripheral nervous systems and in several peripheral tissues. In situ hybridization showed that oct-GnRHR mRNA was expressed in some regions involved in autonomic functions, feeding, memory and movement. Oct-GnRH was shown to induce steroidogenesis of testosterone, progesterone and 17beta-oestradiol in Octopus ovary and testis, where oct-GnRHR was abundantly expressed. These results suggest that oct-GnRH, like its vertebrate counterparts, acts as a multifunctional neurotransmitter, neuromodulator and hormone-like factor, both in Octopus central nervous system and peripheral tissues, and that both structure and functions of the GnRH family are, at least partially, evolutionarily conserved between octopuses and chordates.
USDA-ARS?s Scientific Manuscript database
The second mammalian isoform of gonadotropin-releasing hormone (GnRH-II) functions quite differently from the classical form (GnRH-I) as it is a poor stimulator of gonadotropin release. Unlike most species, a functional GnRHR-II has been identified in swine. Our laboratory detected GnRHR-IIs on Leyd...
Invertebrate Gonadotropin-Releasing Hormone-Related Peptides and Their Receptors: An Update
Sakai, Tsubasa; Shiraishi, Akira; Kawada, Tsuyoshi; Matsubara, Shin; Aoyama, Masato; Satake, Honoo
2017-01-01
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproductive functions via the hypothalamus, pituitary, and gonad axis, namely, HPG axis in vertebrates. GnRHs and their receptors (GnRHRs) are likely to be conserved in invertebrate deuterostomes and lophotrochozoans. All vertebrate and urochordate GnRHs are composed of 10 amino acids, whereas protostome, echinoderm, and amphioxus GnRH-like peptides are 11- or 12-residue peptide containing two amino acids after an N-terminal pyro-Glu. In urochordates, Halocynthia roretzi GnRH gene encodes two GnRH peptide sequences, whereas two GnRH genes encode three different GnRH peptides in Ciona intestinalis. These findings indicate the species-specific diversification of GnRHs. Intriguingly, the major signaling pathway for GnRHRs is intracellular Ca2+ mobilization in chordates, echinoderms, and protostomes, whereas Ciona GnRHRs (Ci-GnRHRs) are endowed with multiple GnRHergic cAMP production pathways in a ligand-selective manner. Moreover, the ligand-specific modulation of signal transduction via heterodimerization among Ci-GnRHR paralogs suggests the species-specific development of fine-tuning of gonadal functions in ascidians. Echinoderm GnRH-like peptides show high sequence differences compared to those of protostome counterparts, leading to the difficulty in classification of peptides and receptors. These findings also show both the diversity and conservation of GnRH signaling systems in invertebrates. The lack of the HPG axis in invertebrates indicates that biological functions of GnRHs are not release of gonadotropins in current invertebrates and common ancestors of vertebrates and invertebrates. To date, authentic or putative GnRHRs have been characterized from various echinoderms and protostomes as well as chordates and the mRNAs have been found to be distributed not only reproductive organs but also other tissues. Collectively, these findings further support the notion that invertebrate GnRHs have biological roles other than the regulation of reproductive functions. Moreover, recent molecular phylogenetic analysis suggests that adipokinetic hormone (AKH), corazonin (CRZ), and AKH/CRZ-related peptide (ACP) belong to the GnRH superfamily but has led to the different classifications of these peptides and receptors using different datasets including the number of sequences and structural domains. In this review, we provide current knowledge of, and perspectives in, molecular basis and evolutionary aspects of the GnRH, AKH, CRZ, and ACP. PMID:28932208
Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals
Desaulniers, Amy T.; Cederberg, Rebecca A.; Lents, Clay A.; White, Brett R.
2017-01-01
Gonadotropin-releasing hormone 1 (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, signifying high selection pressure and a critical biological role. However, the GnRH2 gene is absent (e.g., rat) or inactivated (e.g., cow and sheep) in some species but retained in others (e.g., human, horse, and pig). Likewise, many species (e.g., human, chimpanzee, cow, and sheep) retain the GnRHR2 gene but lack the appropriate coding sequence to produce a full-length protein due to gene coding errors; although production of GnRHR2 in humans remains controversial. Certain mammals lack the GnRHR2 gene (e.g., mouse) or most exons entirely (e.g., rat). In contrast, old world monkeys, musk shrews, and pigs maintain the coding sequence required to produce a functional GnRHR2. Like GnRHR1, GnRHR2 is a 7-transmembrane, G protein-coupled receptor that interacts with Gαq/11 to mediate cell signaling. However, GnRHR2 retains a cytoplasmic tail and is only 40% homologous to GnRHR1. A role for GnRH2 and its receptor in mammals has been elusive, likely because common laboratory models lack both the ligand and receptor. Uniquely, both GnRH2 and GnRHR2 are ubiquitously expressed; transcript levels are abundant in peripheral tissues and scarcely found in regions of the brain associated with gonadotropin secretion, suggesting a divergent role from GnRH1/GnRHR1. Indeed, GnRH2 and its receptor are not physiological modulators of gonadotropin secretion in mammals. Instead, GnRH2 and GnRHR2 coordinate the interaction between nutritional status and sexual behavior in the female brain. Within peripheral tissues, GnRH2 and its receptor are novel regulators of reproductive organs. GnRH2 and GnRHR2 directly stimulate steroidogenesis within the porcine testis. In the female, GnRH2 and its receptor may help mediate placental function, implantation, and ovarian steroidogenesis. Furthermore, both the GnRH2 and GnRHR2 genes are expressed in human reproductive tumors and represent emerging targets for cancer treatment. Thus, GnRH2 and GnRHR2 have diverse functions in mammals which remain largely unexplored. PMID:29312140
GnRH in the Human Female Reproductive Axis.
Limonta, Patrizia; Marelli, Marina Montagnani; Moretti, Roberta; Marzagalli, Monica; Fontana, Fabrizio; Maggi, Roberto
2018-01-01
Gonadotropin-releasing hormone (GnRH) is recognized as the central regulator of the functions of the pituitary-gonadal axis. The increasing knowledge on the mechanisms controlling the development and the function of GnRH-producing neurons is leading to a better diagnostic and therapeutic approach for hypogonadotropic hypogonadisms and for alterations of the puberty onset. During female life span, the function of the GnRH pulse generator may be affected by a number of inputs from other neuronal systems, offering alternative strategies for diagnostic and therapeutic interventions. Moreover, the identification of a GnRH/GnRH receptor system in both human ovary and endometrium has widened the spectrum of action of the peptide outside its hypothalamic functions. The pharmacological use of GnRH itself or its synthetic analogs (agonists and antagonists) provides a valid tool to either stimulate or block gonadotropin secretion and to modulate the female fertility in several reproductive disorders and in assisted reproduction technology. The use of GnRH agonists in young female patients undergoing chemotherapy is also considered a promising therapeutic approach to counteract iatrogenic ovarian failure. © 2018 Elsevier Inc. All rights reserved.
Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong
2016-01-01
This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR. PMID:28787891
Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong
2016-02-02
This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR.
Li, Busu; Meng, Jie; Li, Li; Liu, Sheng; Wang, Ting; Zhang, Guofan
2017-09-06
High glycogen levels in the Pacific oyster (Crassostrea gigas) contribute to its flavor, quality, and hardiness. Glycogenin (CgGN) is the priming glucosyltransferase that initiates glycogen biosynthesis. We characterized the full sequence and function of C. gigas CgGN. Three CgGN isoforms (CgGN-α, β, and γ) containing alternative exon regions were isolated. CgGN expression varied seasonally in the adductor muscle and gonadal area and was the highest in the adductor muscle. Autoglycosylation of CgGN can interact with glycogen synthase (CgGS) to complete glycogen synthesis. Subcellular localization analysis showed that CgGN isoforms and CgGS were located in the cytoplasm. Additionally, a site-directed mutagenesis experiment revealed that the Tyr200Phe and Tyr202Phe mutations could affect CgGN autoglycosylation. This is the first study of glycogenin function in marine bivalves. These findings will improve our understanding of glycogen synthesis and accumulation mechanisms in mollusks. The data are potentially useful for breeding high-glycogen oysters.
USDA-ARS?s Scientific Manuscript database
The second mammalian isoform of gonadotropin-releasing hormone (GnRH-II) functions quite differently from the classical form (GnRH-I), being an ineffective modulator of gonadotropin release. Not all species that produce GnRH-II maintain a full length GnRH-II receptor (GnRHR-II). Instead, GnRH-II can...
Use of genetically engineered swine to elucidate testis function in the boar
USDA-ARS?s Scientific Manuscript database
The second mammalian GnRH isoform (GnRH-II) and its specific receptor (GnRHR-II) are abundant within the testis, suggesting a critical role. Gene coding errors prevent their production in many species, but both genes are functional in swine. We have demonstrated that GnRHR-II localizes to porcine Le...
Larder, Rachel; Karali, Dimitra; Nelson, Nancy; Brown, Pamela
2006-12-01
GnRH binds its cognate G protein-coupled GnRH receptor (GnRHR) located on pituitary gonadotropes and drives expression of gonadotropin hormones. There are two gonadotropin hormones, comprised of a common alpha- and hormone-specific beta-subunit, which are required for gonadal function. Recently we identified that Fanconi anemia a (Fanca), a DNA damage repair gene, is differentially expressed within the LbetaT2 gonadotrope cell line in response to stimulation with GnRH. FANCA is mutated in more than 60% of cases of Fanconi anemia (FA), a rare genetically heterogeneous autosomal recessive disorder characterized by bone marrow failure, endocrine tissue cancer susceptibility, and infertility. Here we show that induction of FANCA protein is mediated by the GnRHR and that the protein constitutively adopts a nucleocytoplasmic intracellular distribution pattern. Using inhibitors to block nuclear import and export and a GnRHR antagonist, we demonstrated that GnRH induces nuclear accumulation of FANCA and green fluorescent protein (GFP)-FANCA before exporting back to the cytoplasm using the nuclear export receptor CRM1. Using FANCA point mutations that locate GFP-FANCA to the cytoplasm (H1110P) or functionally uncouple GFP-FANCA (Q1128E) from the wild-type nucleocytoplasmic distribution pattern, we demonstrated that wild-type FANCA was required for GnRH-induced activation of gonadotrope cell markers. Cotransfection of H1110P and Q1128E blocked GnRH activation of the alphaGsu and GnRHR but not the beta-subunit gene promoters. We conclude that nucleocytoplasmic shuttling of FANCA is required for GnRH transduction of the alphaGSU and GnRHR gene promoters and propose that FANCA functions as a GnRH-induced signal transducer.
Larder, Rachel; Karali, Dimitra; Nelson, Nancy; Brown, Pamela
2007-01-01
GnRH binds its cognate G protein-coupled GnRH receptor (GnRHR) located on pituitary gonadotropes and drives expression of gonadotropin hormones. There are two gonadotropin hormones, comprised of a common α- and hormone-specific β-subunit, which are required for gonadal function. Recently we identified that Fanconi anemia a (Fanca), a DNA damage repair gene, is differentially expressed within the LβT2 gonadotrope cell line in response to stimulation with GnRH. FANCA is mutated in more than 60% of cases of Fanconi anemia (FA), a rare genetically heterogeneous autosomal recessive disorder characterized by bone marrow failure, endocrine tissue cancer susceptibility, and infertility. Here we show that induction of FANCA protein is mediated by the GnRHR and that the protein constitutively adopts a nucleocytoplasmic intracellular distribution pattern. Using inhibitors to block nuclear import and export and a GnRHR antagonist, we demonstrated that GnRH induces nuclear accumulation of FANCA and green fluorescent protein (GFP)-FANCA before exporting back to the cytoplasm using the nuclear export receptor CRM1. Using FANCA point mutations that locate GFP-FANCA to the cytoplasm (H1110P) or functionally uncouple GFP-FANCA (Q1128E) from the wild-type nucleocytoplasmic distribution pattern, we demonstrated that wild-type FANCA was required for GnRH-induced activation of gonadotrope cell markers. Cotransfection of H1110P and Q1128E blocked GnRH activation of the αGsu and GnRHR but not the β-subunit gene promoters. We conclude that nucleocytoplasmic shuttling of FANCA is required for GnRH transduction of the αGSU and GnRHR gene promoters and propose that FANCA functions as a GnRH-induced signal transducer. PMID:16946016
Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Shiyong; Ma, Li; Gan, Mengyu; Fu, Shenna; Dai, Wenqin; Zhou, Tao; Sun, Xiaowu; Wang, Huihui; Wang, Huining
2015-12-01
The research paper describes polyaniline (PANI) nanowires array on flexible polystyrene microsphere/reduced graphene (PS/rGN) film is synthesized by dilute polymerization, and then the PS microspheres are removed to form free-standing three-dimensional (3D) rGN/PANI composite film. The chemical and structural properties of the 3D rGN/PANI film are characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and the results confirm the 3D rGN/PANI film is synthesized successfully. When the film is used as a supercapacitor electrode, the maximum specific capacitance is as high as 740 F g-1 (or 581 F cm-3 for volumetric capacitance) at a current density of 0.5 A g-1 and the specific capacitance retains 87% of the initial after constant charge-discharge 1000 cycles at current density of 10 A g-1. It is believed that the free-standing 3D rGN/PANI film will have a great potential for application in supercapacitors.
Wierman, Margaret E; Xu, Mei; Pierce, A; Bliesner, B; Bliss, S P; Roberson, M S
2012-01-01
Selective deletion of extracellular signal-regulated kinase (ERK) 1 and ERK2 in the pituitary gonadotrope and ovarian granulosa cells disrupts female reproductive axis function. Thus, we asked if ERK1 and ERK2 are critical for GnRH neuron ontogeny or the central control of female reproductive function. GnRH-Cre-recombinase (Cre+) expressing mice were crossed with mice with a global deletion of ERK1 and a floxed ERK2 allele (Erk1-/Erk2fl/fl) to selectively delete ERK2 in GnRH neurons. Cre-recombinase mRNA was selectively expressed in the brain of Cre+ mice. GnRH neuron number and location were determined during embryogenesis and in the adult. GnRH neuron counts at E15 did not differ between experimental and control groups (1,198 ± 65 and 1,160 ± 80 respectively, p = NS). In adults, numbers of GnRH neurons in the GnRHCre+Erk1-/Erk2- mice (741 ± 157) were similar to those in controls (756 ± 7), without alteration in their distribution across the forebrain. ERK1 and 2 deficiency did not alter the timing of vaginal opening, age at first estrus, or estrous cyclicity. Although ERK1 and 2 are components of a dominant signaling pathway in GnRH neuronal cells that modulates survival and control of GnRH gene expression, other signaling pathways compensate for their deletion in vivo to allow GnRH neuron survival and targeting and normal onset of female sexual maturation and reproductive function. In contrast to effects at the pituitary and the ovary, ERK1 and ERK2 are dispensable at the level of the GnRH neuron. Copyright © 2011 S. Karger AG, Basel.
Moeller, John F.; Meredith, Michael
2010-01-01
The nervus terminalis (NT) is a vertebrate cranial nerve whose function in adults is unknown. In bonnethead sharks the nerve is anatomically independent of the olfactory system, with two major cell populations within one or more ganglia along its exposed length. Most cells are immunoreactive for either gonadotropin-releasing hormone (GnRH) or RFamide-like peptides. To define further the cell populations and connectivity, we used double-label immuno-cytochemistry with antisera to different isoforms of GnRH and to choline acetyltransferase (ChAT). The labeling patterns of two GnRH antisera revealed different populations of GnRH immunoreactive (ir) cell-profiles in the NT ganglion. One antiserum labeled a large group of cells and fibers, which likely contain mammalian GnRH (GnRH-I) as described in previous studies, and which were ChAT immunoreactive. The other antiserum labeled large club-like structures, which were anuclear, and a sparse number of fibers, but with no clear labeling of cell bodies in the ganglion. These club structures were choline acetyltrasferase (ChAT) negative, and preabsorption control tests suggest they may contain chicken-GnRH-II (GnRH-II) or dogfish GnRH. The second major NT ganglion cell-type was immunoreactive for RF-amides, which regulate GnRH release in other vertebrates, and may provide an intraganglionic influence on GnRH release. The immunocytochemical and anatomical differences between the two GnRH immunoreactive profile types indicate possible functional differences for these isoforms in the NT. The club-like structures may be sites of GnRH release into the general circulation since these structures were observed near blood vessels and resembled structures seen in the median eminence of rats. PMID:20950589
Moeller, John F; Meredith, Michael
2010-12-17
The nervus terminalis (NT) is a vertebrate cranial nerve whose function in adults is unknown. In bonnethead sharks, the nerve is anatomically independent of the olfactory system, with two major cell populations within one or more ganglia along its exposed length. Most cells are immunoreactive for either gonadotropin-releasing hormone (GnRH) or RF-amide-like peptides. To define further the cell populations and connectivity, we used double-label immunocytochemistry with antisera to different isoforms of GnRH and to choline acetyltransferase (ChAT). The labeling patterns of two GnRH antisera revealed different populations of GnRH-immunoreactive (ir) cell profiles in the NT ganglion. One antiserum labeled a large group of cells and fibers, which likely contain mammalian GnRH (GnRH-I) as described in previous studies and which were ChAT immunoreactive. The other antiserum labeled large club-like structures, which were anuclear, and a sparse number of fibers, but with no clear labeling of cell bodies in the ganglion. These club structures were choline acetyltrasferase (ChAT)-negative, and preabsorption control tests suggest they may contain chicken-GnRH-II (GnRH-II) or dogfish GnRH. The second major NT ganglion cell-type was immunoreactive for RF-amides, which regulate GnRH release in other vertebrates, and may provide an intraganglionic influence on GnRH release. The immunocytochemical and anatomical differences between the two GnRH-immunoreactive profile types indicate possible functional differences for these isoforms in the NT. The club-like structures may be sites of GnRH release into the general circulation since these structures were observed near blood vessels and resembled structures seen in the median eminence of rats. Copyright © 2010 Elsevier B.V. All rights reserved.
GnRH and GnRH receptors in the pathophysiology of the human female reproductive system.
Maggi, Roberto; Cariboni, Anna Maria; Marelli, Marina Montagnani; Moretti, Roberta Manuela; Andrè, Valentina; Marzagalli, Monica; Limonta, Patrizia
2016-04-01
Human reproduction depends on an intact hypothalamic-pituitary-gonadal (HPG) axis. Hypothalamic gonadotrophin-releasing hormone (GnRH) has been recognized, since its identification in 1971, as the central regulator of the production and release of the pituitary gonadotrophins that, in turn, regulate the gonadal functions and the production of sex steroids. The characteristic peculiar development, distribution and episodic activity of GnRH-producing neurons have solicited an interdisciplinary interest on the etiopathogenesis of several reproductive diseases. The more recent identification of a GnRH/GnRH receptor (GnRHR) system in both the human endometrium and ovary has widened the spectrum of action of the peptide and of its analogues beyond its hypothalamic function. An analysis of research and review articles published in international journals until June 2015 has been carried out to comprehensively summarize both the well established and the most recent knowledge on the physiopathology of the GnRH system in the central and peripheral control of female reproductive functions and diseases. This review focuses on the role of GnRH neurons in the control of the reproductive axis. New knowledge is accumulating on the genetic programme that drives GnRH neuron development to ameliorate the diagnosis and treatment of GnRH deficiency and consequent delayed or absent puberty. Moreover, a better understanding of the mechanisms controlling the episodic release of GnRH during the onset of puberty and the ovulatory cycle has enabled the pharmacological use of GnRH itself or its synthetic analogues (agonists and antagonists) to either stimulate or to block the gonadotrophin secretion and modulate the functions of the reproductive axis in several reproductive diseases and in assisted reproduction technology. Several inputs from other neuronal populations, as well as metabolic, somatic and age-related signals, may greatly affect the functions of the GnRH pulse generator during the female lifespan; their modulation may offer new possible strategies for diagnostic and therapeutic interventions. A GnRH/GnRHR system is also expressed in female reproductive tissues (e.g. endometrium and ovary), both in normal and pathological conditions. The expression of this system in the human endometrium and ovary supports its physiological regulatory role in the processes of trophoblast invasion of the maternal endometrium and embryo implantation as well as of follicular development and corpus luteum functions. The GnRH/GnRHR system that is expressed in diseased tissues of the female reproductive tract (both benign and malignant) is at present considered an effective molecular target for the development of novel therapeutic approaches for these pathologies. GnRH agonists are also considered as a promising therapeutic approach to counteract ovarian failure in young female patients undergoing chemotherapy. Increasing knowledge about the regulation of GnRH pulsatile release, as well as the therapeutic use of its analogues, offers interesting new perspectives in the diagnosis, treatment and outcome of female reproductive disorders, including tumoral and iatrogenic diseases. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Neuroendocrine control of reproductive aging: roles of GnRH neurons.
Yin, Weiling; Gore, Andrea C
2006-03-01
The process of reproductive senescence in many female mammals, including humans, is characterized by a gradual transition from regular reproductive cycles to irregular cycles to eventual acyclicity, and ultimately a loss of fertility. In the present review, the role of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons is considered in this context. GnRH neurons provide the primary driving force upon the other levels of the reproductive axis. With respect to aging, GnRH cells undergo changes in biosynthesis, processing and release of the GnRH decapeptide. GnRH neurons also exhibit morphologic and ultrastructural alterations that appear to underlie these biosynthetic properties. Thus, functional and morphologic changes in the GnRH neurosecretory system may play causal roles in the transition to acyclicity. In addition, GnRH neurons are regulated by numerous inputs from neurotransmitters, neuromodulators and glia. The relationship among GnRH cells and their inputs at the cell body (thereby affecting GnRH biosynthesis) and the neuroterminal (thereby affecting GnRH neurosecretion) is crucial to the function of the GnRH system, with age-related changes in these relationships contributing to the reproductive senescent process. Therefore, the aging hypothalamus is characterized by changes intrinsic to the GnRH cell, as well as its regulatory inputs, which summate to contribute to a loss of reproductive competence in aging females.
Using kisspeptin to assess GnRH function in an unusual case of primary amenorrhoea.
Vimalesvaran, S; Narayanaswamy, S; Yang, L; Prague, J K; Buckley, A; Miras, A D; Franks, S; Meeran, K; Dhillo, W S
2017-01-01
Primary amenorrhoea is defined as the failure to commence menstruation by the age of 15 years, in the presence of normal secondary sexual development. The potential causes of primary amenorrhoea extend from structural to chromosomal abnormalities. Polycystic ovarian syndrome (PCOS) is a common cause of secondary amenorrhoea but an uncommon cause of primary amenorrhoea. An early and prompt diagnosis of PCOS is important, as up to 30% of these women are predisposed to glucose intolerance and obesity, with the subgroup of women presenting with primary amenorrhoea and PCOS displaying a higher incidence of metabolic dysfunction. We describe a case of an 18-year-old female presenting with primary amenorrhoea of unknown aetiology. Although initial investigations did not demonstrate clinical or biochemical hyperandrogenism or any radiological evidence of polycystic ovaries, a raised luteinising hormone (LH) suggested a diagnosis of PCOS. If PCOS was the correct diagnosis, then one would expect intact hypothalamic GnRH and pituitary gonadotropin release. We used the novel hormone kisspeptin to confirm intact hypothalamic GnRH release and a GnRH stimulation test to confirm intact pituitary gonadotroph function. This case highlights that kisspeptin is a potential unique tool to test GnRH function in patients presenting with reproductive disorders. Polycystic ovarian syndrome (PCOS) can present with primary amenorrhoea, and therefore, should be considered in the differential diagnosis.PCOS is a heterogeneous condition that may present in lean women with few or absent signs of hyperandrogenism.GnRH stimulation tests are useful in evaluating pituitary function; however, to date, we do not have a viable test of GnRH function. Kisspeptin has the potential to form a novel diagnostic tool for assessing hypothalamic GnRH function by monitoring gonadotropin response as a surrogate marker of GnRH release.Confirmation of intact GnRH function helps consolidate a diagnosis in primary amenorrhoea and gives an indication of future fertility.
USDA-ARS?s Scientific Manuscript database
The second mammalian GnRH isoform (GnRH-II) and its specific receptor (GnRHR-II) are highly expressed in the testis, suggesting an important role in testis biology. Gene coding errors prevent the production of GnRH-II and GnRHR-II in many species, but both genes are functional in swine. We have demo...
NASA Astrophysics Data System (ADS)
van Setten, M. J.; Giantomassi, M.; Gonze, X.; Rignanese, G.-M.; Hautier, G.
2017-10-01
The search for new materials based on computational screening relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically important material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the G W method is currently the state-of-the-art ab initio approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is, however, computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this paper, we develop such a method and, as a first application, use it to validate the accuracy of G0W0 using the PBE starting point and the Godby-Needs plasmon-pole model (G0W0GN @PBE) on a set of about 80 solids. The results of the automatic convergence study utilized provide valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of G W calculations. Moreover, we find that G0W0GN @PBE shows a correlation between the PBE and the G0W0GN @PBE gaps that is much stronger than that between G W and experimental gaps. However, the G0W0GN @PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps. With this paper, we hence show that G W can be made automatic and is more accurate than using an empirical correction of the PBE gap, but that, for accurate predictive results for a broad class of materials, an improved starting point or some type of self-consistency is necessary.
A putative role for GnRH-II and its receptor in spermatogenic function of boars
USDA-ARS?s Scientific Manuscript database
Unlike the classical gonadotropin-releasing hormone (GnRH-I), the second mammalian isoform of GnRH (GnRH-II) is ubiquitously expressed with the most abundant transcript levels found in tissues outside of the hypothalamus. Moreover, GnRH-II is only an inefficient stimulator of gonadotropin release. I...
Function of gonadotropin-releasing hormone in olfaction.
Wirsig-Wiechmann, C R
2001-06-01
Gonadotropin-releasing hormone (GnRH) is present within neurons of the nervus terminalis, the zeroeth cranial nerve. In all vertebrate species, except in sharks where it is a separate nerve, the nervus terminalis consists of a chain of neurons embedded within olfactory or vomeronasal nerves in the nasal cavity. The function of the GnRH component of the nervus terminalis is thought to be neuromodulatory. Our research on GnRH effects on olfaction confirms this hypothesis. The processes of GnRH neural cell bodies located within chemosensory nerves project centrally into the ventral forebrain and peripherally into the lamina propria of the nasal chemosensory mucosa. GnRH receptors are expressed by chemosensory neurons as shown by RT-PCR/Southern blotting and GnRH agonist binding studies. Patch-clamp studies have shown that GnRH alters the responses of isolated chemosensory neurons to natural or electrophysiological stimulation through the modulation of voltage-gated and receptor-gated channels. Behavioral experiments demonstrate that interfering with the nasal GnRH system leads to deficits in mating behavior. These studies suggest that the function of the intranasal GnRH system is to modify olfactory information, perhaps at reproductively auspicious times. We speculate that the purpose of this altered olfactory sense is to make pheromones more detectable and salient.
Green light inhibits GnRH-I expression by stimulating the melatonin-GnIH pathway in the chick brain.
Zhang, L; Chen, F; Cao, J; Dong, Y; Wang, Z; Hu, M; Chen, Y
2017-05-01
To study the mechanism by which monochromatic light affects gonadotrophin-releasing hormone (GnRH) expression in chicken hypothalamus, a total of 192 newly-hatched chicks were divided into intact, sham-operated and pinealectomy groups and exposed to white (WL), red (RL), green (GL) and blue (BL) lights using a light-emitting diode system for 2 weeks. In the GL intact group, the mRNA and protein levels of GnRH-I in the hypothalamus, the mean cell area and mean cell optical density (OD) of GnRH-I-immunoreactive (-ir) cells of the nucleus commissurae pallii were decreased by 13.2%-34.5%, 5.7%-39.1% and 9.9%-17.3% compared to those in the chicks exposed to the WL, RL and BL, respectively. GL decreased these factors related to GnRH-I expression and the effect of GL was not observed in pinealectomised birds. However, the mRNA and protein levels of hypothalamic gonadotrophin-inhibitory hormone (GnIH) and GnIH receptor (GnIHR), the mean cell area and mean cell OD of the GnIH-ir cells of the paraventricularis magnocellularis, and the plasma melatonin concentration in the chicks exposed to GL were increased by 18.6%-49.2%, 21.1%-60.0% and 8.6%-30.6% compared to the WL, RL and BL intact groups, respectively. The plasma melatonin concentration showed a negative correlation with GnRH-I protein and a positive correlation with GnIH and GnIHR proteins. Protein expression of both GnRH-I and GnIHR showed a negative correlation in the hypothalamus. After pinealectomy, GnRH-I expression increased, whereas plasma melatonin concentration, GnIH and GnIHR expression decreased, and there were no significant differences among the WL, RL, GL and BL groups. Double-labelled immunofluorescence showed that GnIH axon terminals were near GnRH-I neurones, some GnRH-I neurones coexpressed with GnIHR and GnIH neurones coexpressed with melatonin receptor subtype quinone reductase 2. These results demonstrate that green light inhibits GnRH-I expression by increasing melatonin secretion and stimulating melatonin receptor-GnIH-GnIH receptor pathway in the chick brain. © 2017 British Society for Neuroendocrinology.
Pinet-Charvet, Caroline; Geller, Sarah; Desroziers, Elodie; Ottogalli, Monique; Lomet, Didier; Georgelin, Christine; Tillet, Yves; Franceschini, Isabelle; Vaudin, Pascal; Duittoz, Anne
2016-01-01
Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 μM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout.
Ju, Myung Jong; Jeon, In-Yup; Kim, Hong Mo; Choi, Ji Il; Jung, Sun-Min; Seo, Jeong-Min; Choi, In Taek; Kang, Sung Ho; Kim, Han Seul; Noh, Min Jong; Lee, Jae-Joon; Jeong, Hu Young; Kim, Hwan Kyu; Kim, Yong-Hoon; Baek, Jong-Beom
2016-01-01
Metal-free carbon-based electrocatalysts for dye-sensitized solar cells (DSSCs) are sufficiently active in Co(II)/Co(III) electrolytes but are not satisfactory in the most commonly used iodide/triiodide (I−/I3−) electrolytes. Thus, developing active and stable metal-free electrocatalysts in both electrolytes is one of the most important issues in DSSC research. We report the synthesis of edge-selenated graphene nanoplatelets (SeGnPs) prepared by a simple mechanochemical reaction between graphite and selenium (Se) powders, and their application to the counter electrode (CE) for DSSCs in both I−/I3− and Co(II)/Co(III) electrolytes. The edge-selective doping and the preservation of the pristine graphene basal plane in the SeGnPs were confirmed by various analytical techniques, including atomic-resolution transmission electron microscopy. Tested as the DSSC CE in both Co(bpy)32+/3+ (bpy = 2,2′-bipyridine) and I−/I3− electrolytes, the SeGnP-CEs exhibited outstanding electrocatalytic performance with ultimately high stability. The SeGnP-CE–based DSSCs displayed a higher photovoltaic performance than did the Pt-CE–based DSSCs in both SM315 sensitizer with Co(bpy)32+/3+ and N719 sensitizer with I−/I3− electrolytes. Furthermore, the I3− reduction mechanism, which has not been fully understood in carbon-based CE materials to date, was clarified by an electrochemical kinetics study combined with density functional theory and nonequilibrium Green’s function calculations. PMID:27386557
Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd
2016-07-15
Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. Copyright © 2016 Elsevier B.V. All rights reserved.
2011-01-01
Background Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. Methods GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125I-ligand binding and stimulation of 3H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. Results GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Conclusions Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of expression found in triple-negative and grade 3 cancers. However, functional cell surface receptors are rare in cultured cells. Intense GnRH-R signaling in transfected breast cancer cells did not markedly inhibit growth, in contrast to transfected HEK 293 cells indicating the importance of intracellular context. GnRH-R signaling could not counteract IGF-I receptor-tyrosine kinase addiction in MCF-7 cells. These results suggest that combinatorial strategies with growth factor inhibitors will be needed to enhance GnRH anti-proliferative effects in breast cancer PMID:22051164
Diversity of actions of GnRHs mediated by ligand-induced selective signaling
Millar, Robert P.; Pawson, Adam J.; Morgan, Kevin; Rissman, Emilie F.; Lu, Zhi-Liang
2009-01-01
Geoffrey Wingfield Harris’ demonstration of hypothalamic hormones regulating pituitary function led to their structural identification and therapeutic utilization in a wide spectrum of diseases. Amongst these, Gonadotropin Releasing Hormone (GnRH) and its analogs are widely employed in modulating gonadotropin and sex steroid secretion to treat infertility, precocious puberty and many hormone-dependent diseases including endometriosis, uterine fibroids and prostatic cancer. While these effects are all mediated via modulation of the pituitary gonadotrope GnRH receptor and the Gq signaling pathway, it has become increasingly apparent that GnRH regulates many extrapituitary cells in the nervous system and periphery. This review focuses on two such examples, namely GnRH analog effects on reproductive behaviors and GnRH analog effects on the inhibition of cancer cell growth. For both effects the relative activities of a range of GnRH analogs is distinctly different from their effects on the pituitary gonadotrope and different signaling pathways are utilized. As there is only a single functional GnRH receptor type in man we have proposed that the GnRH receptor can assume different conformations which have different selectivity for GnRH analogs and intracellular signaling proteins complexes. This ligand-induced selective-signaling recruits certain pathways while by-passing others and has implications in developing more selective GnRH analogs for highly specific therapeutic intervention. PMID:17976709
Glycosyltransferase Function in Core 2-Type Protein O Glycosylation▿
Stone, Erica L.; Ismail, Mohd Nazri; Lee, Seung Ho; Luu, Ying; Ramirez, Kevin; Haslam, Stuart M.; Ho, Samuel B.; Dell, Anne; Fukuda, Minoru; Marth, Jamey D.
2009-01-01
Three glycosyltransferases have been identified in mammals that can initiate core 2 protein O glycosylation. Core 2 O-glycans are abundant among glycoproteins but, to date, few functions for these structures have been identified. To investigate the biological roles of core 2 O-glycans, we produced and characterized mice deficient in one or more of the three known glycosyltransferases that generate core 2 O-glycans (C2GnT1, C2GnT2, and C2GnT3). A role for C2GnT1 in selectin ligand formation has been described. We now report that C2GnT2 deficiency impaired the mucosal barrier and increased susceptibility to colitis. C2GnT2 deficiency also reduced immunoglobulin abundance and resulted in the loss of all core 4 O-glycan biosynthetic activity. In contrast, the absence of C2GnT3 altered behavior linked to reduced thyroxine levels in circulation. Remarkably, elimination of all three C2GnTs was permissive of viability and fertility. Core 2 O-glycan structures were reduced among tissues from individual C2GnT deficiencies and completely absent from triply deficient mice. C2GnT deficiency also induced alterations in I-branching, core 1 O-glycan formation, and O mannosylation. Although the absence of C2GnT and C4GnT activities is tolerable in vivo, core 2 O glycosylation exerts a significant influence on O-glycan biosynthesis and is important in multiple physiological processes. PMID:19349303
Chung, Wilson C J; Linscott, Megan L; Rodriguez, Karla M; Stewart, Courtney E
2016-01-01
Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus-pituitary-gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.
Jak2 is Necessary for Neuroendocrine Control of Female Reproduction
Wu, Sheng; Divall, Sara; Hoffman, Gloria E.; Le, Wei Wei; Wagner, Kay-Uwe; Wolfe, Andrew
2011-01-01
GnRH neurons represent the final common output of signals from the brain that regulates reproductive function. A wide range of environmental factors impact GnRH neuron activity including disease, stress, nutrition, and seasonal cues, as well as gonadal steroid hormones. The CNS response is thought to be mediated, at least in part, through intermediate signaling molecules that affect GnRH neuronal activity. In vitro, GnRH neuronal cell lines respond to a variety of ligands which activate the Jak/STAT intracellular signaling pathway. In order to determine its biological function in reproduction, we used Cre/LoxP technology to generate GnRH neuron specific Jak2 conditional knockout (Jak2 G−/−) mice. GnRH mRNA levels were reduced in Jak2 G−/− mice when compared to controls, while the number of GnRH neurons was equivalent, indicating a reduction in GnRH gene expression. Secretion of GnRH is also reduced as basal serum LH levels were significantly lower in female Jak2 G−/− mice while the pituitary responded normally to exogenous GnRH. Preovulatory LH surge levels were blunted in Jak2 G−/− mice, which was correlated with reduced GnRH neuronal activation as assessed by c-Fos. However the activation of GnRH neurons following release from estrogen negative feedback is retained. Female Jak2 G−/− mice exhibited significantly delayed puberty and first estrus, abnormal estrous cyclicity and impaired fertility. These results demonstrate an essential role for Jak2 signaling in GnRH neurons for normal reproductive development and fertility in female mice. PMID:21209203
Choi, Young Jae; Habibi, Hamid R; Kil, Gyung-Suk; Jung, Min-Min; Choi, Cheol Young
2017-04-01
Hypothalamic peptides, gonadotropin-releasing hormone (GnRH) and gonadotropin inhibitory hormone (GnIH), play pivotal roles in the control of reproduction and gonadal maturation in fish. In the present study we tested the possibility that stress-mediated reproductive dysfunction in teleost may involve changes in GnRH and GnIH activity. We studied expression of brain GnIH, GnIH-R, seabream GnRH (sbGnRH), as well as circulating levels of follicle stimulating hormone (FSH), and luteinizing hormone (LH) in the cinnamon clownfish, Amphiprion melanopus. Treatment with cortisol increased GnIH mRNA level, but reduced sbGnRH mRNA and circulating levels of LH and FSH in cinnamon clownfish. Using double immunofluorescence staining, we found expression of both GnIH and GnRH in the diencephalon region of cinnamon clownfish brain. These findings support the hypothesis that cortisol, an indicator of stress, affects reproduction, in part, by increasing GnIH in cinnamon clownfish which contributes to hypothalamic suppression of reproductive function in A. melanopus, a protandrous hermaphroditic fish. Copyright © 2017 Elsevier Inc. All rights reserved.
Hoffmann, Hanne M; Mellon, Pamela L
2016-01-01
Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 ( Vax1 ) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1 flox mice and crossed them with Gnrh cre mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1 flox/flox :GnRH cre mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1 flox/flox :GnRH cre :RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and GT1-7, we show that VAX1 is a direct regulator of Gnrh1 transcription by binding key ATTA sites within the Gnrh1 promoter. This study identifies VAX1 as a key transcription factor regulating GnRH expression and establishes VAX1 as a novel candidate gene implicated in heritable infertility.
Huang, Wei; Zhang, Jianshe; Liao, Zhi; Lv, Zhenming; Wu, Huifei; Zhu, Aiyi; Wu, Changwen
2016-01-15
Gonadotropin-releasing hormone III (GnRH3) is considered to be a key neurohormone in fish reproduction control. In the present study, the cDNA and genomic sequences of GnRH3 were cloned and characterized from large yellow croaker Larimichthys crocea. The cDNA encoded a protein of 99 amino acids with four functional motifs. The full-length genome sequence was composed of 3797 nucleotides, including four exons and three introns. Higher identities of amino acid sequences and conserved exon-intron organizations were found between LcGnRH3 and other GnRH3 genes. In addition, some special features of the sequences were detected in partial species. For example, two specific residues (V and A) were found in the family Sciaenidae, and the unique 75-72 bp type of the open reading frame 2 and 3 existed in the family Cyprinidae. Analysis of the 2576 bp promoter fragment of LcGnRH3 showed a number of transcription factor binding sites, such as AP1, CREB, GATA-1, HSF, FOXA2, and FOXL1. Promoter functional analysis using an EGFP reporter fusion in zebrafish larvae presented positive signals in the brain, including the olfactory region, the terminal nerve ganglion, the telencephalon, and the hypothalamus. The expression pattern was generally consistent with the endogenous GnRH3 GFP-expressing transgenic zebrafish lines, but the details were different. These results indicate that the structure and function of LcGnRH3 are generally similar to the other teleost GnRH3 genes, but there exist some distinctions among them. Copyright © 2015 Elsevier B.V. All rights reserved.
Janovick, Jo Ann; Goulet, Mark; Bush, Eugene; Greer, Jonathan; Wettlaufer, David G; Conn, P Michael
2003-05-01
We expressed a test system of wild-type (WT) rat (r) and human (h) gonadotropin-releasing hormone (GnRH) receptors (GnRHRs), including naturally occurring (13) and manufactured (five) "loss-of-function" mutants of the GnRHR. These were used to assess the ability of different GnRH peptidomimetics to rescue defective GnRHR mutants and determine their effect on the level of membrane expression of the WT receptors. Among the manufactured mutants were the shortest rGnRHR C-terminal truncation mutant that resulted in receptor loss-of-function (des(325-327)-rGnRHR), two nonfunctional deletion mutants (des(237-241)-rGnRHR and des(260-265)-rGnRHR), two nonfunctional Cys mutants (C(229)A-rGnRHR and C(278)A-rGnRHR); the naturally occurring mutants included all 13 full-length GnRHR point mutations reported to date that result in full or partial human hypogonadotropic hypogonadism. The 10 peptidomimetics assessed as potential rescue molecules ("pharmacoperones") are from three differing chemical pedigrees (indoles, quinolones, and erythromycin-derived macrolides) and were originally developed as GnRH peptidomimetic antagonists. These structures were selected for this study because of their predicted ability to permeate the cell membrane and interact with a defined affinity with the GnRH receptor. All peptidomimetics studied with an IC(50) value (for hGnRHR)
USDA-ARS?s Scientific Manuscript database
Boar subfertility represents a major limitation to swine production, reducing conception rate and litter size. Critical to reproductive function, the classical form of GnRH (GnRH1) promotes secretion of the gonadotropins; however, the second mammalian isoform (GnRH2) is a poor stimulator of gonadotr...
Masheb, Robin M.; Grilo, Carlos M.; Rolls, Barbara J.
2011-01-01
The present study examined a dietary approach – lowering energy density – for producing weight loss in obese patients with binge eating disorder (BED) who also received cognitive-behavioral therapy (CBT) to address binge eating. Fifty consecutive participants were randomly assigned to either a six-month individual treatment of CBT plus a low-Energy-Density diet (CBT+ED) or CBT plus General Nutrition counseling not related to weight loss (CBT+GN). Assessments occurred at six- and twelve-months. Eighty-six percent of participants completed treatment, and of these, 30% achieved at least a 5% weight loss with rates of binge remission ranging from 55–75%. The two treatments did not differ significantly in weight loss or binge remission outcomes. Significant improvements were found for key dietary and metabolic outcomes, with CBT+ED producing significantly better dietary outcomes on energy density, and fruit and vegetable consumption, than CBT+GN. Reductions in energy density and weight loss were significantly associated providing evidence for the specificity of the treatment effect. These favorable outcomes, and that CBT+ED was significantly better at reducing energy density and increasing fruit and vegetable consumption compared to CBT+GN, suggest that low-energy-density dietary counseling has promise as an effective method for enhancing CBT for obese individuals with BED. PMID:22005587
Choe, Han Kyoung; Kim, Hee-Dae; Park, Sung Ho; Lee, Han-Woong; Park, Jae-Yong; Seong, Jae Young; Lightman, Stafford L.; Son, Gi Hoon; Kim, Kyungjin
2013-01-01
Pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH) is essential for pituitary gonadotrope function. Although the importance of pulsatile GnRH secretion has been recognized for several decades, the mechanisms underlying GnRH pulse generation in hypothalamic neural networks remain elusive. Here, we demonstrate the ultradian rhythm of GnRH gene transcription in single GnRH neurons using cultured hypothalamic slices prepared from transgenic mice expressing a GnRH promoter-driven destabilized luciferase reporter. Although GnRH promoter activity in each GnRH neuron exhibited an ultradian pattern of oscillations with a period of ∼10 h, GnRH neuronal cultures exhibited partially synchronized bursts of GnRH transcriptional activity at ∼2-h intervals. Surprisingly, pulsatile administration of kisspeptin, a potent GnRH secretagogue, evoked dramatic synchronous activation of GnRH gene transcription with robust stimulation of pulsatile GnRH secretion. We also addressed the issue of hierarchical interaction between the circadian and ultradian rhythms by using Bmal1-deficient mice with defective circadian clocks. The circadian molecular oscillator barely affected basal ultradian oscillation of GnRH transcription but was heavily involved in kisspeptin-evoked responses of GnRH neurons. In conclusion, we have clearly shown synchronous bursts of GnRH gene transcription in the hypothalamic GnRH neuronal population in association with episodic neurohormone secretion, thereby providing insight into GnRH pulse generation. PMID:23509283
Functional significance of GnRH and kisspeptin, and their cognate receptors in teleost reproduction.
Gopurappilly, Renjitha; Ogawa, Satoshi; Parhar, Ishwar S
2013-01-01
Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction.
Di Yorio, María P; Pérez Sirkin, Daniela I; Muñoz-Cueto, José A; Delgadin, Tomás H; Tsutsui, Kazuyoshi; Somoza, Gustavo M; Vissio, Paula G
2018-06-15
Reproduction is regulated by the hypothalamic-pituitary-gonadal axis. The first neuropeptide identified that regulates this function was the decapeptide gonadotropin-releasing hormone (GnRH). Nowadays, in gnatostomates, a number of GnRH variants have been identified and classified into three different types: GnRH1, GnRH2, and GnRH3. Almost 30 years later, a new peptide that inhibits gonadotropin synthesis and secretion was discovered and thus named as gonadotropin-inhibitory hormone (GnIH). In avians and mammals, the interaction and regulation between GnRH and GnIH neurons has been widely studied; however, in other vertebrate groups there is little information about the relationship between these neurons. In previous works, three GnRH variants and a GnIH propeptide were characterized in Cichlasoma dimerus, and it was demonstrated that GnIH inhibited gonadotropins release in this species. Because no innervation was detected at the pituitary level, we speculate that GnIH would inhibit gonadotropins via GnRH. Thus, the aim of the present study was to evaluate the anatomical relationship between neurons expressing GnIH and the three GnRH variants by double labelling confocal immunofluorescence in adults of C. dimerus. Our results showed no apparent contacts between GnIH and GnRH1, fiber to fiber interactions between GnIH and GnRH2, and co-localization of GnIH and GnRH3 variant in neurons of the nucleus olfacto-retinalis. In conclusion, whether GnIH regulates the expression or secretion of GnRH1 in this species, an indirect modulation seems more plausible. Moreover, the present results suggest an interaction between GnIH and GnRH2 systems. Finally, new clues were provided to investigate the role of nucleus olfacto-retinalis cells and putative GnIH and GnRH3interactions in the modulation of the reproductive network in teleost fish. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Lu, Xiangjun; Dou, Hui; Yuan, Changzhou; Yang, Sudong; Hao, Liang; Zhang, Fang; Shen, Laifa; Zhang, Luojiang; Zhang, Xiaogang
2012-01-01
The flexible electrodes have important potential applications in energy storage of portable electronic devices for their powerful structural properties. In this work, unique flexible films with polypyrrole/carbon nanotube (PPy/CNT) composite homogeneously distributed between graphene (GN) sheets are successfully prepared by flow-assembly of the mixture dispersion of GN and PPy/CNT. In such layered structure, the coaxial PPy/CNT nanocables can not only enlarge the space between GN sheets but also provide pseudo-capacitance to enhance the total capacitance of electrodes. According to the galvanostatic charge/discharge analysis, the mass and volume specific capacitances of GN-PPy/CNT (52 wt% PPy/CNT) are 211 F g-1 and 122 F cm-3 at a current density of 0.2 A g-1, higher than those of the GN film (73 F g-1 and 79 F cm-3) and PPy/CNT (164 F g-1 and 67 F cm-3). Significantly, the GN-PPy/CNT electrode shows excellent cycling stability (5% capacity loss after 5000 cycles) due to the flexible GN layer and the rigid CNT core synergistical releasing the intrinsic differential strain of PPy chains during long-term charge/discharge cycles.
Surbhi; Rastogi, A; Rani, S; Kumar, V
2015-05-01
Two experiments examined the expression of gonadotrophin-releasing and inhibiting hormones (GnRH-I, GnRH-II and GnIH), neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) in subtropical Indian weaver birds, which demonstrate relative photorefractoriness. Experiment 1 measured peptide expression levels in the form of immunoreactive (-IR) cells, percentage cell area and cell optical density in the preoptic area (GnRH-I), midbrain (GnRH-II), paraventricular nucleus (GnIH), mediobasal hypothalamus [dorsomedial hypothalamus (DMH), infundibular complex (INc), NPY and VIP] and lateral septal organ (VIP) during the progressive, breeding, regressive and nonbreeding phases of the annual reproductive cycle. GnRH-I was decreased in the nonbreeding and VIP was increased in INc in the breeding and regressive states. GnRH-II and NPY levels did not differ between the testicular phases. Double-labelled immunohistochemistry (IHC) revealed a close association between the GnRH/GnIH, GnRH/NPY, GnRH/VIP and GnIH/NPY peptide systems, implicating them interacting and playing roles in the reproductive regulation in weaver birds. Experiment 2 further measured these peptide levels in the middle of day and night in weaver birds that were maintained under short days (8 : 16 h light /dark cycle; photosensitive), exposed to ten long days (16 : 8 h light /dark cycle; photostimulated) or maintained for approximately 2 years on a 16 : 8 h light /dark cycle (photorefractory). Reproductively immature testes in these groups precluded the possible effect of an enhanced gonadal feedback on the hypothalamic peptide expression. There were group differences in the GnRH-I (not GnRH-II), GnIH, NPY and VIP immunoreactivity, albeit with variations in immunoreactivity measures in the present study. These results, which are consistent with those reported in birds with relative photorefractoriness, show the distribution and possibly a complex interaction of key neuropeptides in the regulation of the annual reproductive cycle in Indian weaver birds. © 2015 British Society for Neuroendocrinology.
NASA Astrophysics Data System (ADS)
Yuan, Mengwei; Yang, Yan; Nan, Caiyun; Sun, Genban; Li, Huifeng; Ma, Shulan
2018-06-01
The large over-potential during the battery operation is a great obstacle for the application of Li-O2 batteries. The porous structure and electrical conductivity of the electrocatalysts are significant for the electrocatalytic performance of Li-O2 batteries. In this work, a porous Co3O4/GN nanocomposite (Co3O4 nanorods anchored on graphene nanosheets) is prepared via a facile hydrothermal method assisted with heat treatment. The unique structure of Co3O4/GN endows efficient electrocatalystic activity for Li-O2 batteries. In comparison to the Co3O4, the Co3O4/GN demonstrates a better cycle performance showing more than 40 cycles with a 1500 mAh g-1 capacity limit strategy at a current density of 300 mA g-1, and a reduced over-potential of 110 mV at high current density (1200 mA g-1). The Co3O4/GN also displays a high initial specific capacity (7600 mAh g-1) and a good reversibility in full cycle with a coulombic efficiency of 99.8% in the first cycle. The impressed cyclability, specific capacity, rate performance, and low over-potentials indicate that the as-prepared Co3O4/GN nanocomposite is a promising catalyst candidate for reversible Li-O2 batteries.
Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S
2015-01-01
Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.
Orion Integrated Guidance, Navigation, and Control [GN and C
NASA Technical Reports Server (NTRS)
Chevray, Kay
2009-01-01
This slide presentation reviews the integrated Guidance, Navigation and Control (iGN&C) system in the design for the Orion spacecraft. Included in the review are the plans for the design and development of the external interfaces, the functional architecture, the iGN&C software, the development and validation process, and the key challenges that are involved in the development of the iGN&C system
Amphioxus: beginning of vertebrate and end of invertebrate type GnRH receptor lineage.
Tello, Javier A; Sherwood, Nancy M
2009-06-01
In vertebrates, activation of the GnRH receptor is necessary to initiate the reproductive cascade. However, little is known about the characteristics of GnRH receptors before the vertebrates evolved. Recently genome sequencing was completed for amphioxus, Branchiostoma floridae. To understand the GnRH receptors (GnRHR) from this most basal chordate, which is also classified as an invertebrate, we cloned and characterized four GnRHR cDNAs encoded in the amphioxus genome. We found that incubation of GnRH1 (mammalian GnRH) and GnRH2 (chicken GnRH II) with COS7 cells heterologously expressing the amphioxus GnRHRs caused potent intracellular inositol phosphate turnover in two of the receptors. One of the two receptors displayed a clear preference for GnRH1 over GnRH2, a characteristic not previously seen outside the type I mammalian GnRHRs. Phylogenetic analysis grouped the four receptors into two paralogous pairs, with one pair grouping basally with the vertebrate GnRH receptors and the other grouping with the octopus GnRHR-like sequence and the related receptor for insect adipokinetic hormone. Pharmacological studies showed that octopus GnRH-like peptide and adipokinetic hormone induced potent inositol phosphate turnover in one of these other two amphioxus receptors. These data demonstrate the functional conservation of two distinct types of GnRH receptors at the base of chordates. We propose that one receptor type led to vertebrate GnRHRs, whereas the other type, related to the mollusk GnRHR-like receptor, was lost in the vertebrate lineage. This is the first report to suggest that distinct invertebrate and vertebrate GnRHRs are present simultaneously in a basal chordate, amphioxus.
Functional Significance of GnRH and Kisspeptin, and Their Cognate Receptors in Teleost Reproduction
Gopurappilly, Renjitha; Ogawa, Satoshi; Parhar, Ishwar S.
2012-01-01
Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction. PMID:23482509
Wang, Miaomiao; Wang, Zubin; Chen, Qirong; Meng, Xiangfu; Heng, Liping
2018-06-01
The wear resistance and stable mechanical properties affect the service life of the underwater functional materials to a certain extent. Unfortunately, the current study of underwater functional materials is rarely related to these aspects. Herein, we successfully designed and prepared polyurethane/graphite nanosheet (PU/GN) composite materials, which exhibited excellent wear resistance and stable mechanical properties underwater. The PU/GN composite films were prepared by evaporating a mixed solution of PU and GN on concave hexagonal honeycomb silicon templates. The mechanical properties of the composite films were determined by tensile test, and the wear resistance was evaluated by comparing the surface morphology before and after grind. By adjusting the content of graphite in the composite films, we found that the composite films containing 23 wt% GN had higher tensile strength and superior wear resistance. Moreover, this composite film showed an outstanding stability when expose to water. The impressive results along with simple preparation process made PU/GN composite films had potential applications in robust underwater functional materials.
Gonadotropin-Releasing hormones in the brain and pituitary of the white sucker
Robinson, T. Craig; Tobet, Stuart A.; Chase, Cindy; Waldron, Travis; Sower, Stacia A.
2000-01-01
The present study investigated GnRH forms within the brain of a representative of the order Cypriniformes, the white sucker, Catostomus commersoni, using HPLC, RIA, andimmunocytochemistry. Several immunoreactive (ir) GnRH forms were identified in the brain of the white sucker by chromatography and radioimmunoassay, including ir-salmon GnRH, ir-lamprey GnRH-I and -III, and ir-chicken GnRH-II. Results from immunocytochemical studies were consistent with multiple GnRH forms distributed in different patterns, particularly for fibers. Neuronal perikarya containing ir-salmon GnRH and ir-lamprey-like GnRH were found laterally within the preoptic area and rostralhypothalamus. Cells containing exclusively ir-salmon GnRH appeared slightly more rostrally, but in the same region. Fibers containing ir-salmon GnRH and ir-lamprey-like GnRH were seen throughout the caudal telencephalon and extended into thediencephalon, toward the pituitary. Fibers containing ir-chicken-II-like GnRH were also seen in the caudal telencephalon, but were concentrated more dorsally in the diencephalon. Within the pituitary, fibers containing ir-salmon GnRH and ir-lamprey-like GnRH entered the neurohypophysis, but differed in their destinations. Fibers containing ir-salmon GnRH remained within the neurohypophysis, while fibers containing ir-lamprey-like GnRH targeted adenohypophyseal tissue. These findings are consistent with the hypothesis that multiple GnRH forms with multiple functions exist within the brain and pituitary of teleosts and provide further evidence of a lamprey-like GnRH within an early evolved teleost species.
Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S.
2015-01-01
Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP–GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure. PMID:26617573
Ciechanowska, Magdalena; Lapot, Magdalena; Malewski, Tadeusz; Mateusiak, Krystyna; Misztal, Tomasz; Przekop, Franciszek
2008-11-01
Data exists showing that seasonal changes in the innervations of GnRH cells in the hypothalamus and functions of some neural systems affecting GnRH neurons are associated with GnRH release in ewes. Consequently, we put the question as to how the expression of GnRH gene and GnRH-R gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland is reflected with LH secretion in anestrous and luteal phase ewes. Analysis of GnRH gene expression by RT-PCR in anestrous ewes indicated comparable levels of GnRH mRNA in the preoptic area, anterior and ventromedial hypothalamus. GnRH-R mRNA at different concentrations was found throughout the preoptic area, anterior and ventromedial hypothalamus, stalk/median eminence and in the anterior pituitary gland. The highest GnRH-R mRNA levels were detected in the stalk/median eminence and in the anterior pituitary gland. During the luteal phase of the estrous cycle in ewes, the levels of GnRH mRNA and GnRH-R mRNA in all structures were significantly higher than in anestrous ewes. Also LH concentrations in blood plasma of luteal phase ewes were significantly higher than those of anestrous ewes. In conclusion, results from this study suggest that low expression of the GnRH and GnRH-R genes in the hypothalamus and of the GnRH-R gene in the anterior pituitary gland, amongst others, may be responsible for a decrease in LH secretion and the anovulatory state in ewes during the long photoperiod.
Role of GnRH-II and its receptor in testicular function
USDA-ARS?s Scientific Manuscript database
The highly conserved, second mammalian isoform of gonadotropin-releasing hormone (GnRH-II) regulates the interaction between energy balance and reproductive behavior in females, as well as exhibits anti-proliferative effects on cancer cells. Furthermore, GnRH-II is an inefficient modulator of gonado...
Clarke, I J; Arbabi, L
2016-07-01
Gonadotropin releasing hormone is the primary driver of reproductive function and pulsatile GnRH secretion from the brain causes the synthesis and secretion of LH and FSH from the pituitary gland. Recent work has revealed that the secretion of GnRH is controlled at the level of the GnRH secretory terminals in the median eminence. At this level, projections of kisspeptin cells from the arcuate nucleus of the hypothalamus are seen to be closely associated with fibers and terminals of GnRH cells. Direct application of kisspeptin into the median eminence causes release of GnRH. The kisspeptin cells are activated at the time of a natural "pulse" secretion of GnRH, as reflected in the secretion of LH. This appears to be due to input to the kisspeptin cells from glutamatergic cells in the basal hypothalamus, indicating that more than 1 neural element is involved in the secretion of GnRH. Because the GnRH secretory terminals are outside the blood-brain barrier, factors such as kisspeptin may be administered systemically to cause GnRH secretion; this offers opportunities for manipulation of the reproductive axis using factors that do not cross the blood-brain barrier. In particular, kisspeptin or analogs of the same may be used to activate reproduction in the nonbreeding season of domestic animals. Another brain peptide that influences reproductive function is gonadotropin inhibitory hormone (GnIH). Work in sheep shows that this peptide acts on GnRH neuronal perikarya, but projections to the median eminence also allow secretion into the hypophysial portal blood and action of GnIH on pituitary gonadotropes. GnIH cells are upregulated in anestrus, and infusion of GnIH can block the ovulatory surge in GnRH and/or LH secretion. Metabolic status may also affect the secretion of reproduction, and this could involve action of gut peptides and leptin. Neuropeptide Y and Y-receptor ligands have a negative impact on reproduction, and Neuropeptide Y production is markedly increased in negative energy balance; this may be the cause of lowered GnRH and gonadotropin secretion in this state. There is a complex interaction between appetite-regulating peptide neurons and kisspeptin neurons that enables the former to regulate the latter both positively and negatively. In terms of how GnRH secretion is reduced during stress, recent data indicate that GnIH cells are integrally involved, with increased input to the GnRH cells. The secretion of GnIH into the portal blood is not increased during stress, so the negative effect is most likely effected at the level of GnRH neuronal cell bodies. Copyright © 2016 Elsevier Inc. All rights reserved.
Palevitch, Ori; Abraham, Eytan; Borodovsky, Natalya; Levkowitz, Gil; Zohar, Yonathan; Gothilf, Yoav
2009-01-01
The initiation of puberty and the functioning of the reproductive system depend on proper development of the hypophysiotropic gonadotropin-releasing hormone (GnRH) system. One critical step in this process is the embryonic migration of GnRH neurons from the olfactory area to the hypothalamus. Using a transgenic zebrafish model, Tg(gnrh3:EGFP), in which GnRH3 neurons and axons are fluorescently labeled, we investigated whether zebrafish NELF is essential for the development of GnRH3 neurons. The zebrafish nelf cDNA was cloned and characterized. During embryonic development, nelf is expressed in GnRH3 neurons and in target sites of GnRH3 projections and perikarya, before the initiation of their migration. Nelf knockdown resulted in a disruption of the GnRH3 system which included absence or misguiding of GnRH3 axonal outgrowth and incorrect or arrested migration of GnRH3 perikarya. These results suggest that Nelf is an important factor in the developmental migration and projection of GnRH3 neurons in zebrafish. Copyright (c) 2008 Wiley-Liss, Inc.
Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.
Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi
2017-03-01
GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca 2+ influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.
Penatti, Carlos A.A.; Oberlander, Joseph G.; Davis, Matthew C.; Porter, Donna M.; Henderson, Leslie P.
2011-01-01
Summary Disruption of reproductive function is a hallmark of abuse of anabolic androgenic steroids (AAS) in female subjects. To understand the central actions of AAS, patch clamp recordings were made in estrous, diestrous and AAS-treated mice from gonadotropin releasing hormone (GnRH) neurons, neurons in the medial preoptic area (mPOA) and neurons in the anteroventroperiventricular nucleus (AVPV); regions known to provide GABAergic and kisspeptin inputs to the GnRH cells. Action potential (AP) frequency was significantly higher in GnRH neurons of estrous mice than in AAS-treated or diestrous animals. No significant differences in AAS-treated, estrous or diestrous mice were evident in the amplitude or kinetics of spontaneous postsynaptic currents (sPCSs), miniature PSCs or tonic currents mediated by GABAA receptors or in GABAA receptor subunit expression in GnRH neurons. In contrast, the frequency of GABAA receptor-mediated sPSCs in GnRH neurons showed an inverse correlation with AP frequency across the three hormonal states. Surprisingly, AP activity in the medial preoptic area (mPOA), a likely source of GABAergic afferents to GnRH cells, did not vary in concert with the sPSCs in the GnRH neurons. Furthermore, pharmacological blockade of GABAA receptors did not alter the pattern in which there was lower AP frequency in GnRH neurons of AAS-treated and diestrous versus estrous mice. These data suggest that AAS do not impose their effects either directly on GnRH neurons or on putative GABAergic afferents in the mPOA. AP activity recorded from neurons in kisspeptin-rich regions of the anteroventroperiventricular nucleus (AVPV) and the expression of kisspeptin mRNA and peptide did vary coordinately with AP activity in GnRH neurons. Our data demonstrate that AAS treatment imposes a “diestrous-like” pattern of activity in GnRH neurons and suggest that this effect may arise from suppression of presynaptic kisspeptin-mediated excitatory drive arising from the AVPV. The actions of AAS on neuroendocrine regulatory circuits may contribute the disruption of reproductive function observed in steroid abuse. PMID:21645530
Deletion of Otx2 in GnRH neurons results in a mouse model of hypogonadotropic hypogonadism.
Diaczok, Daniel; DiVall, Sara; Matsuo, Isao; Wondisford, Fredric E; Wolfe, Andrew M; Radovick, Sally
2011-05-01
GnRH is the central regulator of reproductive function responding to central nervous system cues to control gonadotropin synthesis and secretion. GnRH neurons originate in the olfactory placode and migrate to the forebrain, in which they are found in a scattered distribution. Congenital idiopathic hypogonadotropic hypogonadism (CIHH) has been associated with mutations or deletions in a number of genes that participate in the development of GnRH neurons and expression of GnRH. Despite the critical role of GnRH in mammalian reproduction, a comprehensive understanding of the developmental factors that are responsible for regulating the establishment of mature GnRH neurons and the expression of GnRH is lacking. orthodenticle homeobox 2 (OTX2), a homeodomain protein required for the formation of the forebrain, has been shown to be expressed in GnRH neurons, up-regulated during GnRH neuronal development, and responsible for increased GnRH promoter activity in GnRH neuronal cell lines. Interestingly, mutations in Otx2 have been associated with human hypogonadotropic hypogonadism, but the mechanism by which Otx2 mutations cause CIHH is unknown. Here we show that deletion of Otx2 in GnRH neurons results in a significant decrease in GnRH neurons in the hypothalamus, a delay in pubertal onset, abnormal estrous cyclicity, and infertility. Taken together, these data provide in vivo evidence that Otx2 is critical for GnRH expression and reproductive competence.
Fegade, Harshal A; Umathe, Sudhir N
2016-04-01
Blockade of dopamine D2 receptor by haloperidol is attributed for neuroleptic and cataleptic effects; and also for the release of gonadotropin releasing hormone (GnRH) from the hypothalamus. GnRH agonist is reported to exhibit similar behavioural effects as that of haloperidol, and pre-treatment with GnRH antagonist is shown to attenuate the effects of haloperidol, suggesting a possibility that GnRH might mediate the effects of haloperidol. To substantiate such possibility, the influence of haloperidol on GnRH immunoreactivity (GnRH-ir) in the brain was studied in vehicle/antide pre-treated mice by peroxidase-antiperoxidase method. Initially, an earlier reported antide-haloperidol interaction in rat was confirmed in mice, wherein haloperidol (250μg/kg, i.p.) exhibited suppression of conditioned avoidance response (CAR) on two-way shuttle box, and induced catalepsy in bar test; and pre-treatment with antide (50μg/kg, s.c., GnRH antagonist) attenuated both effects of haloperidol. Immunohistochemical study was carried out to identify GnRH-ir in the brain, isolated 1h after haloperidol treatment to mice pre-treated with vehicle/antide. The morphometric analysis of microphotographs of brain sections revealed that haloperidol treatment increased integrated density units of GnRH-ir in various regions of the limbic system. Considering basal GnRH-ir in vehicle treated group as 100%, the increase in GnRH-ir after haloperidol treatment was by 100.98% in the medial septum; 54.26% in the bed nucleus of the stria terminalis; 1152.85% in the anteroventral periventricular nucleus; 120.79% in the preoptic area-organum vasculosum of the lamina terminalis and 138.82% in the arcuate nucleus. Antide did not influence basal and haloperidol induced increase in GnRH-ir in any of the regions. As significant increase in GnRH-ir after haloperidol treatment was observed in such regions of the brain which are reported to directly or indirectly communicate with the hippocampus and basal ganglia, the regions respectively responsible for neuroleptic and cataleptic effects; and as GnRH antagonist eliminated the effects of haloperidol without affecting GnRH-ir, it appears that GnRH released by haloperidol mediates its neuroleptic and cataleptic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Orion GN and C Overview and Architecture
NASA Technical Reports Server (NTRS)
Hu, Howard; Straube, Tim
2007-01-01
The Crew Exploration Vehicle, named Orion, is a critical element in the Constellation Program to develop the transportation system needed to send humans back to the moon and then beyond. Lockheed Martin is the prime contractor for the Orion spacecraft, which is managed by the Johnson Space Center. The Orion GN&C sub-system is being jointly developed by NASA and Lockheed Martin through a mode team approach. The GN&C is a critical element of the Orion mission to carry astronauts to low earth orbit to service the International Space Station and then on later flights to transfer and return a crew of four to the moon. The Orion GN&C system must perform monitoring and abort functions during ascent, rendezvous and docking in both low earth and lunar orbits, perform uncrewed lunar loiter operations, perform trans earth injection and atmospheric entry and landing. The Orion also must be integrated with the Ares I Crew Launch Vehicle, the Earth Departure Stage of the Ares V and the Lunar Surface Access Module. This paper provides an overview of the Orion GN&C system. The functional capabilities of the Orion GN&C will be provided in the context of Constellation architecture, the key GN&C requirements will be summarized, the GN&C architecture will be presented, the development schedule and plans will summarized and finally conclusions will be presented.
Zheng, Junjie; Mao, Jiangfeng; Xu, Hongli; Wang, Xi; Huang, Bingkun; Liu, Zhaoxiang; Cui, Mingxuan; Xiong, Shuyu; Ma, Wanlu; Min, Le; Kaiser, Ursula B; Nie, Min; Wu, Xueyan
2017-07-01
The effectiveness of pulsatile gonadotropin-releasing hormone (GnRH) therapy in patients with congenital combined pituitary hormone deficiency (CCPHD) has not been investigated because of the limited number of patients, as well as these patients' presumed pituitary hypoplasia, poor gonadotrophic cell reserve, and impaired gonadotrophic response to GnRH. To assess the pituitary response to pulsatile GnRH therapy in men with CCPHD. Prospective, self-controlled, 3-month clinical trial. University endocrine clinic. Men with hypogonadotropic hypogonadism caused by CCPHD. Pulsatile GnRH was administered subcutaneously for 3 months. Primary endpoints were total serum testosterone, testicular volume, and luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels. Secondary endpoints included occurrence of spermatogenesis. A total of 40 men with CCPHD completed the study. Of these, 60% (24 of 40) showed a good response to pulsatile GnRH treatment (response group). At 3 months, their LH and FSH levels increased to within the normal range and their testosterone levels increased to 8.67 ± 4.83 nmol/L. Of the patients in the response group, 33.3% (8 of 24) of them achieved spermatogenesis. The remaining 40% (16 of 40) of patients had a poor response to pulsatile GnRH treatment. Magnetic resonance imaging (MRI) did not reveal any correlation between pituitary response and pituitary height and/or integrity of the pituitary stalk. This study suggests that gonadotrophs in patients with CCPHD can exist and be functional-even with MRI evidence of pituitary hypoplasia or dysplasia. Pulsatile GnRH therapy restored pituitary-testis axis function in 60% of patients with CCPHD. These results may directly guide the clinical therapeutic choice. Copyright © 2017 Endocrine Society
NASA Astrophysics Data System (ADS)
Engstrom, R.; Soundararajan, V.; Newhouse, D.
2017-12-01
In this study we examine how well multiple population density and built up estimates that utilize satellite data compare in Sri Lanka. The population relationship is examined at the Gram Niladhari (GN) level, the lowest administrative unit in Sri Lanka from the 2011 census. For this study we have two spatial domains, the whole country and a 3,500km2 sub-sample, for which we have complete high spatial resolution imagery coverage. For both the entire country and the sub-sample we examine how consistent are the existing publicly available measures of population constructed from satellite imagery at predicting population density? For just the sub-sample we examine how well do a suite of values derived from high spatial resolution satellite imagery predict population density and how does our built up area estimate compare to other publicly available estimates. Population measures were obtained from the Sri Lankan census, and were downloaded from Facebook, WorldPoP, GPW, and Landscan. Percentage built-up area at the GN level was calculated from three sources: Facebook, Global Urban Footprint (GUF), and the Global Human Settlement Layer (GHSL). For the sub-sample we have derived a variety of indicators from the high spatial resolution imagery. Using deep learning convolutional neural networks, an object oriented, and a non-overlapping block, spatial feature approach. Variables calculated include: cars, shadows (a proxy for building height), built up area, and buildings, roof types, roads, type of agriculture, NDVI, Pantex, and Histogram of Oriented Gradients (HOG) and others. Results indicate that population estimates are accurate at the higher, DS Division level but not necessarily at the GN level. Estimates from Facebook correlated well with census population (GN correlation of 0.91) but measures from GPW and WorldPop are more weakly correlated (0.64 and 0.34). Estimates of built-up area appear to be reliable. In the 32 DSD-subsample, Facebook's built- up area measure is highly correlated with our built-up measure (correlation of 0.9). Preliminary regression results based on variables selected from Lasso-regressions indicate that satellite indicators have exceptionally strong predictive power in predicting GN level population level and density with an out of sample r-squared of 0.75 and 0.72 respectively.
Immunoreactive GnRH Type I Receptors in the Mouse and Sheep Brain
Albertson, Asher J.; Navratil, Amy; Mignot, Mallory; Dufourny, Laurence; Cherrington, Brian; Skinner, Donal C.
2008-01-01
GnRH has been implicated in an array of functions outside the neuroendocrine reproductive axis. Previous investigations have reported extensive GnRH binding in numerous sites and this has been supported by in situ hybridization studies reporting GnRH receptor mRNA distribution. The present study on mice and sheep supports and extends these earlier investigations by revealing the distribution of cells immunoreactive for the GnRH receptor. In addition to sites previously shown to express GnRH receptors such as the hippocampus, amygdala and the arcuate nucleus, the improved resolution afforded by immunocytochemistry detected cells in the mitral cell lay of the olfactory bulb as well as the central grey of the mesencephalon. In addition, GnRH receptor immunoreactive neurons in the hippocampus and mesencephalon of the sheep were shown to colocalize with estrogen receptor β. Although GnRH may act at some of these sites to regulate reproductive processes, evidence is accumulating to support an extra-reproductive role for this hypothalamic decapeptide. PMID:18439800
Nakamura, Yasuhiro; Hattangady, Namita G; Ye, Ping; Satoh, Fumitoshi; Morimoto, Ryo; Ito-Saito, Takako; Sugawara, Akira; Ohba, Koji; Takahashi, Kazuhiro; Rainey, William E; Sasano, Hironobu
2014-03-25
Aberrant expression of gonadotropin-releasing hormone receptor (GnRHR) has been reported in human adrenal tissues including aldosterone-producing adenoma (APA). However, the details of its expression and functional role in adrenals are still not clear. In this study, quantitative RT-PCR analysis revealed the mean level of GnRHR mRNA was significantly higher in APAs than in human normal adrenal (NA) (P=0.004). GnRHR protein expression was detected in human NA and neoplastic adrenal tissues. In H295R cells transfected with GnRHR, treatment with GnRH resulted in a concentration-dependent increase in CYP11B2 reporter activity. Chronic activation of GnRHR with GnRH (100nM), in a cell line with doxycycline-inducible GnRHR (H295R-TR/GnRHR), increased CYP11B2 expression and aldosterone production. These agonistic effects were inhibited by blockers for the calcium signaling pathway, KN93 and calmidazolium. These results suggest GnRH, through heterotopic expression of its receptor, may be a potential regulator of CYP11B2 expression levels in some cases of APA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Iwakoshi-Ukena, Eiko; Ukena, Kazuyoshi; Takuwa-Kuroda, Kyoko; Kanda, Atshuhiro; Tsutsui, Kazuyoshi; Minakata, Hiroyuki
2004-09-20
We recently purified a peptide with structural features similar to vertebrate gonadotropin-releasing hormone (GnRH) from the brain of Octopus vulgaris, cloned a cDNA encoding the precursor protein, and named it oct-GnRH. In the current study, we investigated the expression and distribution of oct-GnRH throughout the central nervous system (CNS) and peripheral organs of Octopus by in situ hybridization on the basis of the cDNA sequence and by immunohistochemistry using a specific antiserum against oct-GnRH. Oct-GnRH mRNA-expressing cell bodies were located in 10 of 19 lobes in the supraesophageal and subesophageal parts of the CNS. Several oct-GnRH-like immunoreactive fibers were seen in all the neuropils of the CNS lobes. The sites of oct-GnRH mRNA expression and the mature peptide distribution were consistent with each other as judged by in situ hybridization and immunohistochemistry. In addition, many immunoreactive fibers were distributed in peripheral organs such as the heart, the oviduct, and the oviducal gland. Modulatory effects of oct-GnRH on the contractions of the heart and the oviduct were demonstrated. The results suggested that, in the context of reproduction, oct-GnRH is a key peptide in the subpedunculate lobe and/or posterior olfactory lobe-optic gland-gonadal axis, an octopus analogue of the hypothalamo-hypophysial-gonadal axis. It may also act as a modulatory factor in controlling higher brain functions such as feeding, memory, movement, maturation, and autonomic functions
Wahab, F; Shahab, M; Behr, R
2015-05-01
Recently, kisspeptin (KP) and gonadotropin inhibitory hormone (GnIH), two counteracting neuropeptides, have been acknowledged as significant regulators of reproductive function. KP stimulates reproduction while GnIH inhibits it. These two neuropeptides seem to be pivotal for the modulation of reproductive activity in response to internal and external cues. It is well-documented that the current metabolic status of the body is closely linked to its reproductive output. However, how reproductive function is regulated by the body's energy status is less clear. Recent studies have suggested an active participation of hypothalamic KP and GnIH in the modulation of reproductive function according to available metabolic cues. Expression of KISS1, the KP encoding gene, is decreased while expression of RFRP (NPVF), the gene encoding GnIH, is increased in metabolic deficiency conditions. The lower levels of KP, as suggested by a decrease in KISS1 gene mRNA expression, during metabolic deficiency can be corrected by administration of exogenous KP, which leads to an increase in reproductive hormone levels. Likewise, administration of RF9, a GnIH receptor antagonist, can reverse the inhibitory effect of fasting on testosterone in monkeys. Together, it is likely that the integrated function of both these hypothalamic neuropeptides works as a reproductive output regulator in response to a change in metabolic status. In this review, we have summarized literature from nonprimate and primate studies that demonstrate the involvement of KP and GnIH in the metabolic regulation of reproduction. © 2015 The authors.
USDA-ARS?s Scientific Manuscript database
These studies were conducted to evaluate causes for differences in circulating concentrations of estradiol prior to a GnRH-induced ovulation and to determine if exogenous GnRH administration could alter LH secretion and subsequent follicular estradiol production. Beef cows (Experiment 1; n = 32, Ex...
Demir, E; Yeğit, O; Erol, A; Akgül, S U; Çalışkan, B; Bayraktar, A; Çalışkan, Y; Türkmen, A; Savran, F O; Sever, M S
2017-04-01
The crossmatch test is essential prior to kidney transplantation (tx) to confirm compatibility between the donor and the recipient. However, its results can be misleading due to "undetectable antibodies" in the recipient's serum. To establish if undetectable autoantibodies are responsible for a positive result, an auto-crossmatch test can be performed. In this study, we aim to determine the long-term prognostic value of auto-flow cytometric auto-crossmatch (FCXM) test on kidney survival in kidney tx recipients. The primary outcome variable was reduced renal function. Secondary endpoints were incidence of biopsy-confirmed chronic antibody-mediated rejection (CAMR) and recurrent glomerulonephritis (GN). There were no differences regarding initial serum creatinine levels between the study and control groups (P = .441). Patients who had positive auto-B FCXM had a significantly reduced renal function compared with the control group (P = .016). Four patients developed biopsy-confirmed CAMR in the study group and 1 patient in the control group (P = .047). Five patients had biopsy-confirmed recurrent GN in the GN study group, and only 1 patient had recurrent GN in the GN control group (P = .026). Kidney transplant recipients with positive auto-FCXM test had significantly reduced renal function and a higher incidence of recurrent GN and CAMR compared with the control group. The findings of this study suggest a potential role of auto-antibody causing positive auto-FCXM test result, meanwhile increasing the risk of CAMR, recurrent GN, and new-onset diabetes after tx. Copyright © 2017 Elsevier Inc. All rights reserved.
Saetan, Jirawat; Senarai, Thanyaporn; Tamtin, Montakan; Weerachatyanukul, Wattana; Chavadej, Jittipan; Hanna, Peter J; Parhar, Ishwar; Sobhon, Prasert; Sretarugsa, Prapee
2013-09-01
We present a detailed histological description of the central nervous system (CNS: brain, subesophageal ganglion, thoracic ganglia, abdominal ganglia) of the blue crab, Portunus pelagicus. Because the presence of gonadotropin-releasing hormone (GnRH) in crustaceans has been disputed, we examine the presence and localization of a GnRH-like peptide in the CNS of the blue crab by using antibodies against lamprey GnRH (lGnRH)-III, octopus GnRH (octGnRH) and tunicate GnRH (tGnRH)-I. These antibodies showed no cross-reactivity with red-pigment-concentrating hormone, adipokinetic hormone, or corazonin. In the brain, strong lGnRH-III immunoreactivity (-ir) was detected in small (7-17 μm diameter) neurons of clusters 8, 9 and 10, in medium-sized (21-36 μm diameter) neurons of clusters 6, 7 and 11 and in the anterior and posterior median protocerebral neuropils, olfactory neuropil, median and lateral antenna I neuropils, tegumentary neuropil and antenna II neuropil. In the subesophageal ganglion, lGnRH-III-ir was detected in medium-sized neurons and in the subesophageal neuropil. In the thoracic and abdominal ganglia, lGnRH-III-ir was detected in medium-sized and small neurons and in the neuropils. OctGnRH-ir was observed in neurons of the same clusters with moderate staining, particularly in the deutocerebrum, whereas tGnRH-I-ir was only detected in medium-sized neurons of cluster 11 in the brain. Thus, anti-lGnRH-III shows greater immunoreactivity in the crab CNS than anti-octGnRH and anti-tGnRH-I. Moreover, our functional bioassay demonstrates that only lGnRH-III has significant stimulatory effects on ovarian growth and maturation. We therefore conclude that, although the true identity of the crab GnRH eludes us, crabs possess a putative GnRH hormone similar to lGnRH-III. The identification and characterization of this molecule is part of our ongoing research.
Penlington, M C; Williams, M A; Sumpter, J P; Rand-Weaver, M; Hoole, D; Arme, C
1997-12-01
The complementary DNAs (cDNA) encoding the [Trp7,Leu8]-gonadotrophin-releasing hormone (salmon-type GnRH; sGnRH:GeneBank accession no. u60667) and the [His5,Trp7,Tyr8]-GnRH (chicken-II-type GnRH; cGnRH-II: GeneBank accession no. u60668) precursor in the roach (Rutilus rutilus) were isolated and sequenced following reverse transcription and rapid amplification of cDNA ends (RACE). The sGnRH and cGnRH-II precursor cDNAs consisted of 439 and 628 bp, and included open reading frames of 282 and 255 bp respectively. The structures of the encoded peptides were the same as GnRHs previously identified in other vertebrates. The sGnRH and cGnRH-II precursor cDNAs, including the non-coding regions, had 88.6 and 79.9% identity respectively, to those identified in goldfish (Carassius auratus). However, significant similarity was not observed between the non-coding regions of the GnRH cDNAs of Cyprinidae and other fish. The presumed third exon, encoding partial sGnRH associated peptide (GAP) of roach, demonstrated significant nucleotide and amino acid similarity with the appropriate regions in the goldfish, but not with other species, and this may indicate functional differences of GAP between different families of fish. cGnRH-II precursor cDNAs from roach had relatively high nucleotide similarity across this GnRH variant. Cladistic analysis classified the sGnRH and cGnRH-II precursor cDNAs into three and two groups respectively. However, the divergence between nucleotide sequences within the sGnRH variant was greater than those encoding the cGnRH-II precursors. Consistent with the consensus developed from previous studies, Northern blot analysis demonstrated that expression of sGnRH and cGnRH-II was restricted to the olfactory bulbs and midbrain of roach respectively. This work forms the basis for further study on the mechanisms by which the tapeworm, Ligula intestinalis, interacts with the pituitary-gonadal axis of its fish host.
Hrabovszky, Erik; Molnár, Csilla S.; Sipos, Máté T.; Vida, Barbara; Ciofi, Philippe; Borsay, Beáta A.; Sarkadi, László; Herczeg, László; Bloom, Stephen R.; Ghatei, Mohammad A.; Dhillo, Waljit S.; Kalló, Imre; Liposits, Zsolt
2011-01-01
The secretory output of gonadotropin-releasing hormone (GnRH) neurons is critically influenced by peptidergic neurons synthesizing kisspeptins (KP) and neurokinin B (NKB) in the hypothalamic infundibular nucleus (Inf). These cells mediate negative feedback effects of sex steroids on the reproductive axis. While negative feedback is lost in postmenopausal women, it is partly preserved by the sustained testosterone secretion in aged men. We hypothesized that the different reproductive physiology of aged men and women is reflected in morphological differences of KP and NKB neurons. This sexual dimorphism was studied with immunohistochemistry in hypothalamic sections of aged human male (≥50 years) and female (>55 years) subjects. KP and NKB cell bodies of the Inf were larger in females. The number of KP cell bodies, the density of KP fibers, and the incidence of their contacts on GnRH neurons were much higher in aged women compared with men. The number of NKB cell bodies was only slightly higher in women and there was no sexual dimorphism in the regional density of NKB fibers and the incidence of their appositions onto GnRH cells. The incidences of NKB cell bodies, fibers, and appositions onto GnRH neurons exceeded several-fold those of KP-IR elements in men. More NKB than KP inputs to GnRH cells were also present in women. Immunofluorescent studies identified only partial overlap between KP and NKB axons. KP and NKB were colocalized in higher percentages of afferents to GnRH neurons in women compared with men. Most of these sex differences might be explained with the lack of estrogen negative feedback in aged women, whereas testosterone can continue to suppress KP, and to a lesser extent, NKB synthesis in men. Overall, sex differences in reproductive physiology of aged humans were reflected in the dramatic sexual dimorphism of the KP system, with significantly higher incidences of KP-IR neurons, fibers and inputs to GnRH neurons in aged females vs. males. PMID:22654828
Minakata, H; Shigeno, S; Kano, N; Haraguchi, S; Osugi, T; Tsutsui, K
2009-03-01
The optic gland, which is analogous to the anterior pituitary in the context of gonadal maturation, is found on the upper posterior edge of the optic tract of the octopus Octopus vulgaris. In mature octopus, the optic glands enlarge and secrete a gonadotrophic hormone. A peptide with structural features similar to that of vertebrate gonadotrophin-releasing hormone (GnRH) was isolated from the brain of octopus and was named oct-GnRH. Oct-GnRH showed luteinising hormone-releasing activity in the anterior pituitary cells of the Japanese quail Coturnix coturnix. Oct-GnRH immunoreactive signals were observed in the glandular cells of the mature optic gland. Oct-GnRH stimulated the synthesis and release of sex steroids from the ovary and testis, and elicited contractions of the oviduct. Oct-GnRH receptor was expressed in the gonads and accessory organs, such as the oviduct and oviducal gland. These results suggest that oct-GnRH induces the gonadal maturation and oviposition by regulating sex steroidogenesis and a series of egg-laying behaviours via the oct-GnRH receptor. The distribution and expression of oct-GnRH in the central and peripheral nervous systems suggest that oct-GnRH acts as a multifunctional modulatory factor in feeding, memory processing, sensory, movement and autonomic functions.
An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus)
Chung-Davidson, Yu-Wen; Wang, Huiyong; Bryan, Mara B.; Wu, Hong; Johnson, Nicholas S.; Li, Weiming
2013-01-01
Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1 h exposure. After 2 h exposure, 3kACA increased lGnRHI and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24 h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.
Evolution of International Space Station GN&C System Across ISS Assembly Stages
NASA Technical Reports Server (NTRS)
Lee, Roscoe; Frank, K. D. (Technical Monitor)
1999-01-01
The Guidance Navigation and Control (GN&C) system for the International Space Station is initially implemented by the Functional Cargo Block (FGB) which was built by the Khrunichev Space Center under direct contract to Boeing. This element (Stage 1A/R) was launched on 20 November 1998 and is currently operating on-orbit. The components and capabilities of the FGB Motion Control System (MCS) are described. The next ISS element, which has GN&C functionality will be the Service Module (SM) built by Rocket Space Corporation-Energia. This module is scheduled for launch (Stage 1R) in early 2000. Following activation of the SM GN&C system, the FGB MCS is deactivated and no longer used. The components and capabilities of the SM GN&C system are described. When a Progress vehicle is attached to the ISS it can be used for reboost operations, based on commands provided by the Mission Control Center-Moscow. When a data connection is implemented between the SM and the Progress, the SM can command the Progress thrusters for attitude control and reboosts. On Stage 5A, the U.S. GN&C system will become activated when the U.S. Laboratory is de loyed and installed (launch schedule is currently TBD). The U.S. GN&C system provides non-propulsive control capabilities to support micro-gravity operations and minimize the use of propellant for attitude control, and an independent capability for determining the ISS state vector, attitude, attitude rate. and time.. The components and capabilities of the U.S. GN&C system are described and the interactions between the U.S. and Russian Segment GN&C systems are also described.
Khan, Mohammad; De Sevilla, Liesl; Mahesh, Virendra B; Brann, Darrell W
2010-04-14
Previous work by our lab and others has implicated glutamate as a major excitatory signal to gonadotropin hormone releasing hormone (GnRH) neurons, with gamma amino butyric acid (GABA) serving as a potential major inhibitory signal. However, it is unknown whether GABAergic and/or glutamatergic synaptic appositions to GnRH neurons changes on the day of the proestrous LH surge or is affected by aging. To examine this question, synaptic terminal appositions on GnRH neurons for VGAT (vesicular GABA transporter) and VGLUT2 (vesicular glutamate transporter-2), markers of GABAergic and glutamatergic synaptic terminals, respectively, was examined by immunohistochemistry and confocal microscopic analysis in young and middle-aged diestrous and proestrous rats. The results show that in young proestrous rats at the time of LH surge, we observed reciprocal changes in the VGAT and VGLUT2 positive terminals apposing GnRH neurons, where VGAT terminal appositions were decreased and VGLUT2 terminal appositions were significantly increased, as compared to young diestrus control animals. Interestingly, in middle-aged cycling animals this divergent modulation of VGAT and VGLUT2 terminal apposition was greatly impaired, as no significant differences were observed between VGAT and VGLUT2 terminals apposing GnRH neurons at proestrous. However, the density of VGAT and VGLUT2 terminals apposing GnRH neurons were both significantly increased in the middle-aged animals. In conclusion, there is an increase in glutamatergic and decrease in GABAergic synaptic terminal appositions on GnRH neurons on proestrus in young animals, which may serve to facilitate activation of GnRH neurons. In contrast, middle-aged diestrous and proestrous animals show a significant increase in both VGAT and VGLUT synaptic terminal appositions on GnRH neurons as compared to young animals, and the cycle-related change in these appositions between diestrus and proestrus that is observed in young animals is lost.
A Journey through the Gonadotropin-Inhibitory Hormone System of Fish
Muñoz-Cueto, José A.; Paullada-Salmerón, José A.; Aliaga-Guerrero, María; Cowan, Mairi E.; Parhar, Ishwar S.; Ubuka, Takayoshi
2017-01-01
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that belongs to the RFamide peptide family and was first identified in the quail brain. From the discovery of avian GnIH, orthologous GnIH peptides have been reported in a variety of vertebrates, including mammals, amphibians, teleosts and agnathans, but also in protochordates. It has been clearly established that GnIH suppresses reproduction in avian and mammalian species through its inhibitory actions on brain GnRH and pituitary gonadotropins. In addition, GnIH also appears to be involved in the regulation of feeding, growth, stress response, heart function and social behavior. These actions are mediated via G protein-coupled GnIH receptors (GnIH-Rs), of which two different subtypes, GPR147 and GPR74, have been described to date. With around 30,000 species, fish represent more than one-half of the total number of recognized living vertebrate species. In addition to this impressive biological diversity, fish are relevant because they include model species with scientific and clinical interest as well as many exploited species with economic importance. In spite of this, the study of GnIH and its physiological effects on reproduction and other physiological processes has only been approached in a few fish species, and results obtained are in some cases conflicting. In this review, we summarize the information available in the literature on GnIH sequences identified in fish, the distribution of GnIH and GnIH-Rs in central and peripheral tissues, the physiological actions of GnIH on the reproductive brain-pituitary-gonadal axis, as well as other reported effects of this neuropeptide, and existing knowledge on the regulatory mechanisms of GnIH in fish. PMID:29163357
Biju, K C; Singru, Praful S; Schreibman, Martin P; Subhedar, Nishikant
2003-10-01
The reproductive biology of the Indian major carp Cirrhinus mrigala is tightly synchronized with the seasonal changes in the environment. While the ovaries show growth from February through June, the fish spawn in July-August to coincide with the monsoon; thereafter the fish pass into the postspawning and resting phases. We investigated the pattern of GnRH immunoreactivity in the olfactory system at regular intervals extending over a period of 35 months. Although no signal was detected in the olfactory organ of fish collected from April through February following year, distinct GnRH-like immunoreactivity appeared in the fish collected in March. Intense immunoreactivity was noticed in several olfactory receptor neurons (ORNs) and their axonal fibers as they extend over the olfactory nerve, spread in the periphery of the olfactory bulb (OB), and terminate in the glomerular layer. Strong immunoreactivity was seen in some fascicles of the medial olfactory tracts extending from the OB to the telencephalon. Some neurons of the ganglion cells of nervus terminalis showed GnRH immunostaining during March; no immunoreactivity was detected at other times of the year. Plexus of GnRH immunoreactive fibers extending throughout the bulb represented a different component of the olfactory system; the fiber density showed a seasonal pattern that could be related to the status of gonadal maturity. While it was highest in the prespawning phase, significant reduction in the fiber density was noticed in the fish of spawning and the following regressive phases. Taken together the data suggest that the GnRH in the olfactory system of C. mrigala may play a major role in translation of the environmental cues and influence the downstream signals leading to the stimulation of the brain-pituitary-ovary axis.
Bogus-Nowakowska, Krystyna; Równiak, Maciej; Hermanowicz-Sobieraj, Beata; Wasilewska, Barbara; Najdzion, Janusz; Robak, Anna
2016-12-01
The present study examines the distribution of tyrosine hydroxylase (TH) immunoreactivity and its morphological relationships with neuropeptide Y (NPY)- and gonadoliberin (GnRH)-immunoreactive (IR) structures in the preoptic area (POA) of the male guinea pig. Tyrosine hydroxylase was expressed in relatively small population of perikarya and they were mostly observed in the periventricular preoptic nucleus and medial preoptic area. The tyrosine hydroxylase-immunoreactive (TH-IR) fibers were dispersed troughout the whole POA. The highest density of these fibers was observed in the median preoptic nucleus, however, in the periventricular preoptic nucleus and medial preoptic area they were only slightly less numerous. In the lateral preoptic area, the density of TH-IR fibers was moderate. Two morphological types of TH-IR fibers were distinguished: smooth and varicose. Double immunofluorescence staining showed that TH and GnRH overlapped in the guinea pig POA but they never coexisted in the same structures. TH-IR fibers often intersected with GnRH-IR structures and many of them touched the GnRH-IR perikarya or dendrites. NPY wchich was abundantly present in the POA only in fibers showed topographical proximity with TH-IR structures. Althoug TH-IR perikarya and fibers were often touched by NPY-IR fibers, colocalization of TH and NPY in the same structures was very rare. There was only a small population of fibers which contained both NPY and TH. In conclusion, the morphological evidence of contacts between TH- and GnRH-IR nerve structures may be the basis of catecholaminergic control of GnRH release in the preoptic area of the male guinea pig. Moreover, TH-IR neurons were conatcted by NPY-IR fibers and TH and NPY colocalized in some fibers, thus NPY may regulate catecholaminergic neurons in the POA. Copyright © 2016 Elsevier B.V. All rights reserved.
Thorson, J F; Prezotto, L D; Cardoso, R C; Allen, C C; Alves, B R C; Amstalden, M; Williams, G L
2014-03-01
Onset of the winter anovulatory period in mares is associated with a marked diminution in adenohypophyseal synthesis and release of LH. Native GnRH, unlike its synthetic agonists, stimulates the synthesis and secretion of LH in mares without pituitary refractoriness. Herein we tested the hypotheses that (1) the average Julian day of pregnancy can be accelerated by up to 2 months in winter anovulatory mares treated continuously with native GnRH beginning on February 1 and (2) mares will sustain luteal function and pregnancy after treatment withdrawal. Forty-two winter anovulatory mares were stratified by age, body condition score, and size of the largest follicle across two locations in a randomized design and assigned to one of three groups (n = 14 per group): (1) CONTROL: untreated, (2) GnRH-14: GnRH delivered subcutaneously in saline at a rate of 100 μg/h for 8 weeks (February 1-March 29) using four consecutive 14-day pumps (Alzet 2ML2), or (3) GnRH-28: GnRH delivered as in (2), but using two 28-day pumps (Alzet 2ML4). On development of a 35-mm follicle and expression of estrus, mares were bred the following day and treated with hCG. Pregnancies were confirmed using transrectal ultrasonography on Days 14, 24, 33, and 45, with blood samples collected to assess luteal function. Mares treated with GnRH (GnRH-14 and GnRH-28) did not differ reproductively in their responses and data were pooled for statistical comparisons. Mares treated with GnRH exhibited marked increases (P ≤ 0.04) in the frequency of development of a 35-mm follicle, submission rate for live cover and/or artificial insemination, ovulation, and pregnancy compared with control mares on treatment Day 56 (March 29). Interval to the first 35-mm follicle was 51.8 ± 4.9 and 19.3 ± 3.5 days (least square mean ± standard error of the mean) for control and GnRH-treated mares, respectively. Interval to pregnancy was 65.3 ± 6.7 and 28.6 ± 4.8 days (least square mean ± standard error of the mean) for control and GnRH-treated mares, respectively, excluding one GnRH-14 mare that failed to become pregnant over four cycles. By the end of the treatment period (March 29), only 21% of control mares were pregnant compared with 79% of GnRH-treated mares. Furthermore, mean serum concentrations of progesterone were similar to (GnRH-28; P = 0.26) or greater than (GnRH-14; P = 0.01) that of control mares from Day 0 to 46 postbreeding. Data illustrate that continuous administration of native GnRH is a highly efficient option for managing seasonal anovulation in mares and could be effectively used in the breeding industry if a user-friendly delivery option were available. Copyright © 2014 Elsevier Inc. All rights reserved.
Nakata, Daisuke; Masaki, Tsuneo; Tanaka, Akira; Yoshimatsu, Mie; Akinaga, Yumiko; Asada, Mari; Sasada, Reiko; Takeyama, Michiyasu; Miwa, Kazuhiro; Watanabe, Tatsuya; Kusaka, Masami
2014-01-15
TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer. Copyright © 2013 Elsevier B.V. All rights reserved.
Fernández, Marina; Bianchi, Maria; Lux-Lantos, Victoria; Libertun, Carlos
2009-01-01
Background Bisphenol A (BPA) is a component of polycarbonate plastics, epoxy resins, and polystyrene and is found in many products. Several reports have revealed potent in vivo effects, because BPA acts as an estrogen agonist and/or antagonist and as an androgen and thyroid hormone antagonist. Objectives We analyzed the effects of neonatal exposure to BPA on the reproductive axis of female Sprague-Dawley rats. Methods Female rats were injected subcutaneusly, daily, from postnatal day 1 (PND1) to PND10 with BPA [500 μg/50 μL (high) or 50 μg/50 μL (low)] in castor oil or with castor oil vehicle alone. We studied body weight and age at vaginal opening, estrous cycles, and pituitary hormone release in vivo and in vitro, as well as gonadotropin-releasing hormone (GnRH) pulsatility at PND13 and in adults. We also analyzed two GnRH-activated signaling pathways in the adults: inositol-triphosphate (IP3), and extracellular signal-regulated kinase1/2 (ERK1/2). Results Exposure to BPA altered pituitary function in infantile rats, lowering basal and GnRH-induced luteinizing hormone (LH) and increasing GnRH pulsatility. BPA dose-dependently accelerated puberty onset and altered estrous cyclicity, with the high dose causing permanent estrus. In adults treated neonatally with BPA, GnRH-induced LH secretion in vivo was decreased and GnRH pulsatility remained disrupted. In vitro, pituitary cells from animals treated with BPA showed lower basal LH and dose-dependently affected GnRH-induced IP3 formation; the high dose also impaired GnRH-induced LH secretion. Both doses altered ERK1/2 activation. Conclusions Neonatal exposure to BPA altered reproductive parameters and hypothalamic–pituitary function in female rats. To our knowledge, these results demonstrate for the first time that neonatal in vivo BPA permanently affects GnRH pulsatility and pituitary GnRH signaling. PMID:19479018
Generation of kisspeptin-responsive GnRH neurons from human pluripotent stem cells.
Poliandri, Ariel; Miller, Duncan; Howard, Sasha; Nobles, Muriel; Ruiz-Babot, Gerard; Harmer, Stephen; Tinker, Andrew; McKay, Tristan; Guasti, Leonardo; Dunkel, Leo
2017-05-15
GnRH neurons are fundamental for reproduction in all vertebrates, integrating all reproductive inputs. The inaccessibility of human GnRH-neurons has been a major impediment to studying the central control of reproduction and its disorders. Here, we report the efficient generation of kisspeptin responsive GnRH-secreting neurons by directed differentiation of human Embryonic Stem Cells and induced-Pluripotent Stem Cells derived from a Kallman Syndrome patient and a healthy family member. The protocol involves the generation of intermediate Neural Progenitor Cells (NPCs) through long-term Bone morphogenetic protein 4 inhibition, followed by terminal specification of these NPCs in media containing Fibroblast Growth Factor 8 and a NOTCH inhibitor. The resulting GnRH-expressing and -secreting neurons display a neuroendocrine gene expression pattern and present spontaneous calcium transients that can be stimulated by kisspeptin. These in vitro generated GnRH expressing cells provide a new resource for studying the molecular mechanisms underlying the development and function of GnRH neurons. Copyright © 2017 Elsevier B.V. All rights reserved.
High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge
NASA Astrophysics Data System (ADS)
Moussa, Mahmoud; El-Kady, Maher F.; Wang, Hao; Michimore, Andrew; Zhou, Qinqin; Xu, Jian; Majeswki, Peter; Ma, Jun
2015-02-01
We in this study used a commercial grade kitchen sponge as the scaffold where both graphene platelets (GnPs) and polyaniline (PANi) nanorods were deposited. The high electrical conductivity of GnPs (1460 S cm-1) enhances the pseudo-capacitive performance of PANi grown vertically on the GnPs basal planes; the interconnected pores of the sponge provide sufficient inner surface between the GnPs/PANi composite and the electrolyte, which thus facilitates ion diffusion during charge and discharge processes. When the composite electrode was used to build a supercapacitor with two-electrode configuration, it exhibited a specific capacitance of 965.3 F g-1 at a scan rate of 10 mV s-1 in 1.0 M H2SO4 solution. In addition, the composite Nyquist plot showed no semicircle at high frequency corresponding to a low equivalent series resistance of 0.35 Ω. At 100 mV s-1, the supercapacitor demonstrated an energy density of 34.5 Wh kg-1 and a power density of 12.4 kW kg-1 based on the total mass of the active materials on both electrodes. To demonstrate the performance, we built an array consisting of three cells connected in series, which lit up a red light emitting diode for five minutes. This simple method holds promise for high-performance yet low-cost electrodes for supercapacitors.
Faden, Ashley A.; Knott, Thomas K.
2011-01-01
In the olfactory epithelium (OE), odorant receptor stimulation generates cAMP signals that function in both odor detection and the regulation of axon guidance molecule expression. The enzyme that synthesizes cAMP, adenylyl cyclase 3 (AC3), is coexpressed in olfactory sensory neurons (OSNs) with poly-N-acetyllactosamine (PLN) oligosaccharides determined by the glycosyltransferase β3GnT2. The loss of either enzyme results in similar defects in olfactory bulb (OB) innervation and OSN survival, suggesting that glycosylation may be important for AC3 function. We show here that AC3 is extensively modified with N-linked PLN, which is essential for AC3 activity and localization. On Western blots, AC3 from the wild-type OE migrates diffusely as a heavily glycosylated 200 kDa band that interacts with the PLN-binding lectin LEA. AC3 from the β3GnT2−/− OE loses these PLN modifications, migrating instead as a 140 kDa glycoprotein. Furthermore, basal and forskolin-stimulated cAMP production is reduced 80–90% in the β3GnT2−/− OE. Although AC3 traffics normally to null OSN cilia, it is absent from axon projections that aberrantly target the OB. The cAMP-dependent guidance receptor neuropilin-1 is also lost from β3GnT2−/− OSNs and axons, while semaphorin-3A ligand expression is upregulated. In addition, kirrel2, a mosaically expressed adhesion molecule that functions in axon sorting, is absent from β3GnT2−/− OB projections. These results demonstrate that PLN glycans are essential in OSNs for proper AC3 localization and function. We propose that the loss of cAMP-dependent guidance cues is also a critical factor in the severe axon guidance defects observed in β3GnT2−/− mice. PMID:21525298
Burger, Laura L; Vanacker, Charlotte; Phumsatitpong, Chayarndorn; Wagenmaker, Elizabeth R; Wang, Luhong; Olson, David P; Moenter, Suzanne M
2018-04-01
Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.
NASA Technical Reports Server (NTRS)
1972-01-01
The shuttle GN&C software functions for horizontal flight operations are defined. Software functional requirements are grouped into two categories: first horizontal flight requirements and full mission horizontal flight requirements. The document privides the intial step in the shuttle GN&C software design process. It also serves as a management tool to identify analyses which are required to define requirements.
Guidance, navigation, and control subsystem for the EOS-AM spacecraft
NASA Technical Reports Server (NTRS)
Linder, David M.; Tolek, Joseph T.; Lombardo, John
1992-01-01
This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.
Characterization of GnRH-related peptides from the Pacific oyster Crassostrea gigas.
Bigot, Laetitia; Zatylny-Gaudin, Céline; Rodet, Franck; Bernay, Benoit; Boudry, Pierre; Favrel, Pascal
2012-04-01
Gonadotropin-releasing hormone (GnRH), a key neuropeptide regulating reproduction in vertebrates has now been characterized in a number of non-vertebrate species. Despite the demonstration of its ancestral origin, the structure and the function of this family of peptides remain poorly known in species as distant as lophotrochozoans. In this study, two GnRH-related peptides (Cg-GnRH-a and CgGnRH-G) were characterized by mass spectrometry from extracts of the visceral ganglia of the Pacific oyster Crassostrea gigas. These peptides showed a high degree of sequence identity with GnRHs of other mollusks and annelids and to a lesser extent with those of vertebrates or with AKH and corazonins of insects. Both the mature peptides and the transcript encoding the precursor protein were exclusively expressed in the visceral ganglia. Significant differences in transcriptional activity of Cg-GnRH encoding gene were recorded in the ganglia along the reproductive cycle and according to trophic conditions with a higher level in fed animals compared to starved animals. This suggests the involvement of Cg-GnRHs as synchronizers of nutritional status with energy requirements during reproduction in oyster. Evidence for a role of Cg-GnRHs as neuroregulators and as neuroendocrine factors in bivalve is discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
Divergent roles of growth factors in the GnRH regulation of puberty in mice
DiVall, Sara A.; Williams, Tameeka R.; Carver, Sarah E.; Koch, Linda; Brüning, Jens C.; Kahn, C. Ronald; Wondisford, Fredric; Radovick, Sally; Wolfe, Andrew
2010-01-01
Pubertal onset, initiated by pulsatile gonadotropin-releasing hormone (GnRH), only occurs in a favorable, anabolic hormonal milieu. Anabolic factors that may signal nutritional status to the hypothalamus include the growth factors insulin and IGF-1. It is unclear which hypothalamic neuronal subpopulation these factors affect to ultimately regulate GnRH neuron function in puberty and reproduction. We examined the direct role of the GnRH neuron in growth factor regulation of reproduction using the Cre/lox system. Mice with the IR or IGF-1R deleted specifically in GnRH neurons were generated. Male and female mice with the IR deleted in GnRH neurons displayed normal pubertal timing and fertility, but male and female mice with the IGF-1R deleted in GnRH neurons experienced delayed pubertal development with normal fertility. With IGF-1 administration, puberty was advanced in control females, but not in females with the IGF-1R deleted in GnRH neurons, in control males, or in knockout males. These mice exhibited developmental differences in GnRH neuronal morphology but normal number and distribution of neurons. These studies define the role of IGF-1R signaling in the coordination of somatic development with reproductive maturation and provide insight into the mechanisms regulating pubertal timing in anabolic states. PMID:20628204
Givens, Marjory L; Rave-Harel, Naama; Goonewardena, Vinodha D; Kurotani, Reiko; Berdy, Sara E; Swan, Christo H; Rubenstein, John L R; Robert, Benoit; Mellon, Pamela L
2005-05-13
Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH regulatory region contains four conserved homeodomain binding sites (ATTA) that are essential for basal promoter activity and cell-specific expression of the GnRH gene. MSX and DLX are members of the Antennapedia class of non-Hox homeodomain transcription factors that regulate gene expression and influence development of the craniofacial structures and anterior forebrain. Here, we report that expression patterns of the Msx and Dlx families of homeodomain transcription factors largely coincide with the migratory route of GnRH neurons and co-express with GnRH in neurons during embryonic development. In addition, MSX and DLX family members bind directly to the ATTA consensus sequences and regulate transcriptional activity of the GnRH promoter. Finally, mice lacking MSX1 or DLX1 and 2 show altered numbers of GnRH-expressing cells in regions where these factors likely function. These findings strongly support a role for MSX and DLX in contributing to spatiotemporal regulation of GnRH transcription during development.
Riggs, M M; Bennetts, M; van der Graaf, P H; Martin, S W
2012-01-01
Endometriosis is a gynecological condition resulting from proliferation of endometrial-like tissue outside the endometrial cavity. Estrogen suppression therapies, mediated through gonadotropin-releasing hormone (GnRH) modulation, decrease endometriotic implants and diminish associated pain albeit at the expense of bone mineral density (BMD) loss. Our goal was to provide model-based guidance for GnRH-modulating clinical programs intended for endometriosis management. This included developing an estrogen suppression target expected to provide symptomatic relief with minimal BMD loss and to evaluate end points and study durations supportive of efficient development decisions. An existing multiscale model of calcium and bone was adapted to include systematic estrogen pharmacologic effects to describe estrogen concentration-related effects on BMD. A logistic regression fit to patient-level data from three clinical GnRH agonist (nafarelin) studies described the relationship of estrogen with endometrial-related pain. Targeting estradiol between 20 and 40 pg/ml was predicted to provide efficacious endometrial pain response while minimizing BMD effects. PMID:23887363
Maffucci, Jacqueline A.; Gore, Andrea C.
2009-01-01
The hypothalamic-pituitary-gonadal (HPG) axis undergoes a number of changes throughout the reproductive life cycle that are responsible for the development, puberty, adulthood, and senescence of reproductive systems. This natural progression is dictated by the neural network controlling the hypothalamus including the cells that synthesize and release gonadotropin-releasing hormone (GnRH) and their regulatory neurotransmitters. Glutamate and GABA are the primary excitatory and inhibitory neurotransmitters in the central nervous system, and as such contribute a great deal to modulating this axis throughout the lifetime via their actions on receptors in the hypothalamus, both directly on GnRH neurons as well as indirectly though other hypothalamic neural networks. Interactions among GnRH neurons, glutamate, and GABA, including the regulation of GnRH gene and protein expression, hormone release, and modulation by estrogen, are critical to age-appropriate changes in reproductive function. Here, we present evidence for the modulation of GnRH neurosecretory cells by the balance of glutamate and GABA in the hypothalamus, and the functional consequences of these interactions on reproductive physiology across the life cycle. PMID:19349036
Messi, Elio; Pimpinelli, Federica; Andrè, Valentina; Rigobello, Chiara; Gotti, Cecilia; Maggi, Roberto
2018-01-15
The activation of nicotinic cholinergic receptors (nAChR) inhibits the reproductive axis; however, it is not clear whether nicotine may directly modulate the release of hypothalamic gonadotropin-releasing hormone (GnRH). Experiments carried out in GT1-1 immortalized GnRH neurons reveal the presence of a single class of high affinity α4β2 and α7 nAchR subtypes. The exposure of GT1-1 cells to nicotine does not modify the basal accumulation of GnRH. However, nicotine was found to modify GnRH pulsatility in perifusion experiments and inhibits, the release of GnRH induced by prostaglandin E 1 or by K + -induced cell depolarization; these effects were reversed by D-tubocurarine and α-bungarotoxin. In conclusion, the results reported here indicate that: functional nAChRs are present on GT1-1 cells, the activation of the α-bungarotoxin-sensitive subclass (α7) produces an inhibitory effect on the release of GnRH and that the direct action of nicotine on GnRH neurons may be involved in reducing fertility of smokers. Copyright © 2017 Elsevier B.V. All rights reserved.
Dumont, Agathe; Dewailly, Didier; Plouvier, Pauline; Catteau-Jonard, Sophie; Robin, Geoffroy
2016-04-29
Pulsatile GnRH therapy is the gold standard treatment for ovulation induction in women having functional hypothalamic amenorrhea (FHA). The use of pulsatile GnRH therapy in FHA patients with polycystic ovarian morphology (PCOM), called "FHA-PCOM", has been little studied in the literature and results remain contradictory. The aim of this study was to compare the outcomes of pulsatile GnRH therapy for ovulation induction between FHA and "FHA-PCOM" patients in order to search for an eventual impact of PCOM. Retrospective study from August 2002 to June 2015, including 27 patients with FHA and 40 "FHA-PCOM" patients (85 and 104 initiated cycles, respectively) treated by pulsatile GnRH therapy for induction ovulation. The two groups were similar except for markers of PCOM (follicle number per ovary, serum Anti-Müllerian Hormone level and ovarian area), which were significantly higher in patients with "FHA-PCOM". There was no significant difference between the groups concerning the ovarian response: with equivalent doses of GnRH, both groups had similar ovulation (80.8 vs 77.7 %, NS) and excessive response rates (12.5 vs 10.6 %, NS). There was no significant difference in on-going pregnancy rates (26.9 vs 20 % per initiated cycle, NS), as well as in miscarriage, multiple pregnancy or biochemical pregnancy rates. Pulsatile GnRH seems to be a successful and safe method for ovulation induction in "FHA-PCOM" patients. If results were confirmed by prospective studies, GnRH therapy could therefore become a first-line treatment for this specific population, just as it is for women with FHA without PCOM.
Penatti, Carlos A A; Davis, Matthew C; Porter, Donna M; Henderson, Leslie P
2010-01-01
Gonadotropin–releasing hormone (GnRH) neurons are the central regulators of reproduction. GABAergic transmission plays a critical role in pubertal activation of pulsatile GnRH secretion. Self-administration of excessive doses of anabolic androgenic steroids (AAS) disrupts reproductive function and may have critical repercussions for pubertal onset in adolescent users. Here, we demonstrate that chronic treatment of adolescent male mice with the AAS, 17α-methyltestosterone (17αMT), significantly decreased action potential frequency in GnRH neurons, reduced the serum gonadotropin levels, and decreased testes mass. AAS treatment did not induce significant changes in GABAA receptor subunit mRNA levels or alter the amplitude or decay kinetics of GABAA receptor-mediated spontaneous postsynaptic currents (sPSC) or tonic currents in GnRH neurons. However, AAS treatment significantly increased action potential frequency in neighboring medial preoptic area (mPOA) neurons and GABAA receptor-mediated sPSC frequency in GnRH neurons. In addition, physical isolation of the more lateral aspects of the mPOA from the medially-localized GnRH neurons abrogated the AAS-induced increase in GABAA receptor-mediated sPSC frequency and the decrease in action potential firing in the GnRH cells. Our results indicate that AAS act predominantly on steroid-sensitive presynaptic neurons within the mPOA to impart significant increases in GABAA receptor-mediated inhibitory tone onto downstream GnRH neurons resulting in diminished activity of these pivotal mediators of reproductive function. These AAS-induced changes in central GABAergic circuits of the forebrain may significantly contribute to the disruptive actions of these drugs on pubertal maturation and the development of reproductive competence in male steroid abusers. PMID:20463213
Cardoso, Rodolfo C.; Burns, Ashleigh; Moeller, Jacob; Skinner, Donal C.
2016-01-01
Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype. PMID:27792406
Cardoso, Rodolfo C; Burns, Ashleigh; Moeller, Jacob; Skinner, Donal C; Padmanabhan, Vasantha
2016-12-01
Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype.
Neuroregulatory and neuroendocrine GnRH pathways in the hypothalamus and forebrain of the baboon.
Marshall, P E; Goldsmith, P C
1980-07-14
The distribution of neurons containing gonadotropin-releasing hormone (GnRH) in the baboon hypothalamus and forebrain was studied immunocytochemically by light and electron microscopy. GnRH was present in the perikarya, axonal and dendritic processes of immunoreactive neurons. Three populations of GnRH neurons could be distinguished. Most of the GnRH neurons which are assumed to directly influence the anterior pituitary were in the medial basal hypothalamus. Other cells that projected to the median eminence were found scattered throughout the hypothalamus. A second, larger population of neurons apparently was not involved with control of the anterior pituitary. These neurons were generally found within afferent and efferent pathways of the hypothalamus and forebrain, and may receive external information affecting reproduction. A few neurons projecting to the median eminence were also observed sending collaterals to other brain areas. Thus, in addition to their neuroendocrine role, these cells possibly have neuroregulatory functions. The inference is made that these bifunctional neurons, together with the widely observed GnRH-GnRH cellular interactions may help to synchronize ovulation and sexual behavior.
Electrically conductive nano graphite-filled bacterial cellulose composites.
Erbas Kiziltas, Esra; Kiziltas, Alper; Rhodes, Kevin; Emanetoglu, Nuri W; Blumentritt, Melanie; Gardner, Douglas J
2016-01-20
A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gomez, Elena del V.; Garland, Jay L.; Roberts, Michael S.
2004-01-01
The present work tested whether the relationship between functional traits and inoculum density reflected structural diversity in bacterial communities from a land-use intensification gradient applying a mathematical model. Terminal restriction fragment length polymorphism (T-RFLP) analysis was also performed to provide an independent assessment of species richness. Successive 10-fold dilutions of a soil suspension were inoculated onto Biolog GN(R) microplates. Soil bacterial density was determined by total cell and plate counts. The relationship between phenotypic traits and inoculum density fit the model, allowing the estimation of maximal phenotypic potential (Rmax) and inoculum density (KI) at which Rmax will be half-reduced. Though Rmax decreased with time elapsed since clearing of native vegetation, KI remained high in two of the disturbed sites. The genetic pool of bacterial community did not experience a significant reduction, but the active fraction responding in the Biolog assay was adversely affected, suggesting a reduction in the functional potential. c2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Skrapits, Katalin; Kanti, Vivien; Savanyú, Zsófia; Maurnyi, Csilla; Szenci, Ottó; Horváth, András; Borsay, Beáta Á.; Herczeg, László; Liposits, Zsolt; Hrabovszky, Erik
2015-01-01
Hypophysiotropic projections of gonadotropin-releasing hormone (GnRH)-synthesizing neurons form the final common output way of the hypothalamus in the neuroendocrine control of reproduction. Several peptidergic neuronal systems of the medial hypothalamus innervate human GnRH cells and mediate crucially important hormonal and metabolic signals to the reproductive axis, whereas much less is known about the contribution of the lateral hypothalamic area to the afferent control of human GnRH neurons. Orexin (ORX)- and melanin-concentrating hormone (MCH)-synthesizing neurons of this region have been implicated in diverse behavioral and autonomic processes, including sleep and wakefulness, feeding and other functions. In the present immunohistochemical study, we addressed the anatomical connectivity of these neurons to human GnRH cells in post-mortem hypothalamic samples obtained from autopsies. We found that 38.9 ± 10.3% and 17.7 ± 3.3% of GnRH-immunoreactive (IR) perikarya in the infundibular nucleus of human male subjects received ORX-IR and MCH-IR contacts, respectively. On average, each 1 mm segment of GnRH dendrites received 7.3 ± 1.1 ORX-IR and 3.7 ± 0.5 MCH-IR axo-dendritic appositions. Overall, the axo-dendritic contacts dominated over the axo-somatic contacts and represented 80.5 ± 6.4% of ORX-IR and 76.7 ± 4.6% of MCH-IR inputs to GnRH cells. Based on functional evidence from studies of laboratory animals, the direct axo-somatic and axo-dendritic input from ORX and MCH neurons to the human GnRH neuronal system may convey critical metabolic and other homeostatic signals to the reproducive axis. In this study, we also report the generation and characterization of new antibodies for immunohistochemical detection of GnRH neurons in histological sections. PMID:26388735
Puberty suppression and executive functioning: An fMRI-study in adolescents with gender dysphoria.
Staphorsius, Annemieke S; Kreukels, Baudewijntje P C; Cohen-Kettenis, Peggy T; Veltman, Dick J; Burke, Sarah M; Schagen, Sebastian E E; Wouters, Femke M; Delemarre-van de Waal, Henriëtte A; Bakker, Julie
2015-06-01
Adolescents with gender dysphoria (GD) may be treated with gonadotropin releasing hormone analogs (GnRHa) to suppress puberty and, thus, the development of (unwanted) secondary sex characteristics. Since adolescence marks an important period for the development of executive functioning (EF), we determined whether the performance on the Tower of London task (ToL), a commonly used EF task, was altered in adolescents with GD when treated with GnRHa. Furthermore, since GD has been proposed to result from an atypical sexual differentiation of the brain, we determined whether untreated adolescents with GD showed sex-atypical brain activations during ToL performance. We found no significant effect of GnRHa on ToL performance scores (reaction times and accuracy) when comparing GnRHa treated male-to-females (suppressed MFs, n=8) with untreated MFs (n=10) or when comparing GnRHa treated female-to-males (suppressed FMs, n=12) with untreated FMs (n=10). However, the suppressed MFs had significantly lower accuracy scores than the control groups and the untreated FMs. Region-of-interest (ROI) analyses showed significantly greater activation in control boys (n=21) than control girls (n=24) during high task load ToL items in the bilateral precuneus and a trend (p<0.1) for greater activation in the right DLPFC. In contrast, untreated adolescents with GD did not show significant sex differences in task load-related activation and had intermediate activation levels compared to the two control groups. GnRHa treated adolescents with GD showed sex differences in neural activation similar to their natal sex control groups. Furthermore, activation in the other ROIs (left DLPFC and bilateral RLPFC) was also significantly greater in GnRHa treated MFs compared to GnRHa treated FMs. These findings suggest that (1) GnRHa treatment had no effect on ToL performance in adolescents with GD, and (2) pubertal hormones may induce sex-atypical brain activations during EF in adolescents with GD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sun, Jianran; Hui, Cancan; Xia, Tongjia; Xu, Min; Deng, Datong; Pan, Faming; Wang, Youmin
2018-05-24
This study aimed to detect changes in hormone levels in the hypothalamic-pituitary-ovarian axis in Sprague-Dawley (SD) rats with hypothyroidism, and identify differences in the pregnancy and abortion rates of female adult rats. The potential role of gonadotropin releasing hormone (GnRH) as the link between the hypothalamic-pituitary-ovarian axis and reproductive function regulated by thyroid hormones was also investigated. Female SD rats (n = 136) were causally classified into two groups: the normal-drinking-water group (n = 60) and the 0.05% propylthiouracil-drinking-water group (PTU 2 mg/kg/day, n = 76) to establish an adult rat model of hypothyroidism (6 weeks). Female and male rats at a ratio of 1:2 were used to establish a hypothyroidism pregnancy model. GnRH mRNA and GnRH receptor (GnRHR) expression in rats was detected using real time quantitative PCR(qRT-PCR) and immunohistochemistry, respectively. The abortion rate differed significantly between the hypothyroidism pregnancy group and the normal pregnancy group (P < 0.05). No significant differences were found in the distribution of the GnRHR among the five nuclei (hypothalamic arcuate nucleus, hypothalamic ventromedial nucleus, hypothalamic anterior nucleus, paraventricular nucleus of the hypothalamus, and ventral premammillary nucleus) of the hypothalamus and ovary (P > 0.05). Hypothyroidism had no significant effect on GnRH mRNA expression in the hypothalamic-pituitary-ovarian axis in the four groups (normal control group, normal pregnancy group, hypothyroidism pregnancy group, and hypothyroidism group) (P > 0.05). Hypothyroidism had an adverse impact on pregnancy in rats and may affect the distribution of pituitary GnRHR, whereas it did not obviously affect the distribution of GnRHR in the nuclei of the hypothalamus and ovary. Hypothyroidism had no effect on GnRH mRNA expression.
Cariboni, Anna; André, Valentina; Chauvet, Sophie; Cassatella, Daniele; Davidson, Kathryn; Caramello, Alessia; Fantin, Alessandro; Bouloux, Pierre; Mann, Fanny; Ruhrberg, Christiana
2015-06-01
Individuals with an inherited deficiency in gonadotropin-releasing hormone (GnRH) have impaired sexual reproduction. Previous genetic linkage studies and sequencing of plausible gene candidates have identified mutations associated with inherited GnRH deficiency, but the small number of affected families and limited success in validating candidates have impeded genetic diagnoses for most patients. Using a combination of exome sequencing and computational modeling, we have identified a shared point mutation in semaphorin 3E (SEMA3E) in 2 brothers with Kallmann syndrome (KS), which causes inherited GnRH deficiency. Recombinant wild-type SEMA3E protected maturing GnRH neurons from cell death by triggering a plexin D1-dependent (PLXND1-dependent) activation of PI3K-mediated survival signaling. In contrast, recombinant SEMA3E carrying the KS-associated mutation did not protect GnRH neurons from death. In murine models, lack of either SEMA3E or PLXND1 increased apoptosis of GnRH neurons in the developing brain, reducing innervation of the adult median eminence by GnRH-positive neurites. GnRH neuron deficiency in male mice was accompanied by impaired testes growth, a characteristic feature of KS. Together, these results identify SEMA3E as an essential gene for GnRH neuron development, uncover a neurotrophic function for SEMA3E in the developing brain, and elucidate SEMA3E/PLXND1/PI3K signaling as a mechanism that prevents GnRH neuron deficiency.
Bildik, Gamze; Akin, Nazlı; Senbabaoglu, Filiz; Sahin, Gizem Nur; Karahuseyinoglu, Sercin; Ince, Umit; Taskiran, Cagatay; Selek, Ugur; Yakin, Kayhan; Guzel, Yilmaz; Ayhan, Cem; Alper, Ebru; Cetiner, Mustafa; Balaban, Basak; Mandel, Nil Molinas; Esen, Tarık; Iwase, Akira; Urman, Bulent; Oktem, Ozgur
2015-12-01
Is there any in vitro evidence for or against ovarian protection by co-administration of a GnRH agonist with chemotherapy in human? The co-administration of GnRH agonist leuprolide acetate with cytotoxic chemotherapy agents does not preserve ovarian reserve in vitro. Randomized controlled trials of the co-administration of gonadotrophin-releasing hormone (GnRH) agonists with adjuvant chemotherapy to preserve ovarian function have shown contradictory results. This fact, together with the lack of a proven molecular mechanism of action for ovarian protection with GnRH agonist (GnRHa) places this approach as a fertility preservation strategy under scrutiny. We therefore aimed in this study to provide in vitro evidence for or against the role of GnRHa in the prevention of chemotherapy-induced damage in human ovary. This translational research study of ex vivo and in vitro models of human ovary and granulosa cells was conducted in a university hospital between 2013 and 2015. Ovarian cortical pieces (n = 15, age 14-37) and mitotic non-luteinized (COV434 and HGrC1) and non-mitotic luteinized human granulosa cells (HLGC) expressing GnRH receptor were used for the experiments. The samples were treated with cyclophosphamide, cisplatin, paclitaxel, 5-FU, or TAC combination regimen (docetaxel, adriamycin and cyclophosphamide) with and without GnRHa leuprolide acetate for 24 h. DNA damage, apoptosis, follicle reserve, hormone markers of ovarian function and reserve (estradiol (E2), progesterone (P) and anti-mullerian hormone (AMH)) and the expression of anti-apoptotic genes (bcl-2, bcl-xL, bcl-2L2, Mcl-1, BIRC-2 and XIAP) were compared among control, chemotherapy and chemotherapy + GnRHa groups. The greatest magnitude of cytotoxicity was observed in the samples treated with cyclophosphamide, cisplatin and TAC regimen. Exposure to these drugs resulted in DNA damage, apoptosis and massive follicle loss along with a concurrent decline in the steroidogenic activity of the samples. GnRHa co-administered with chemotherapy agents stimulated its receptors and raised intracellular cAMP levels. But it neither activated anti-apoptotic pathways nor prevented follicle loss, DNA damage and apoptosis induced by these drugs. Our findings do not conclusively rule out the possibility that GnRHa may offer protection, if any, through some other mechanisms in vivo. GnRH agonist treatment with chemotherapy does not prevent or ameliorate ovarian damage and follicle loss in vitro. These data can be useful when consulting a young patient who may wish to receive GnRH treatment with chemotherapy to protect her ovaries from chemotherapy-induced damage. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Givens, Marjory L.; Rave-Harel, Naama; Goonewardena, Vinodha D.; Kurotani, Reiko; Berdy, Sara E.; Swan, Christo H.; Rubenstein, John L. R.; Robert, Benoit; Mellon, Pamela L.
2010-01-01
Gonadotropin-releasing hormone (GnRH) is the central regulator of the hypothalamic-pituitary-gonadal axis, controlling sexual maturation and fertility in diverse species from fish to humans. GnRH gene expression is limited to a discrete population of neurons that migrate through the nasal region into the hypothalamus during embryonic development. The GnRH regulatory region contains four conserved homeodomain binding sites (ATTA) that are essential for basal promoter activity and cell-specific expression of the GnRH gene. MSX and DLX are members of the Antennapedia class of non-Hox homeodomain transcription factors that regulate gene expression and influence development of the craniofacial structures and anterior forebrain. Here, we report that expression patterns of the Msx and Dlx families of homeodomain transcription factors largely coincide with the migratory route of GnRH neurons and co-express with GnRH in neurons during embryonic development. In addition, MSX and DLX family members bind directly to the ATTA consensus sequences and regulate transcriptional activity of the GnRH promoter. Finally, mice lacking MSX1 or DLX1 and 2 show altered numbers of GnRH-expressing cells in regions where these factors likely function. These findings strongly support a role for MSX and DLX in contributing to spatiotemporal regulation of GnRH transcription during development. PMID:15743757
Tian, Shi; Egertová, Michaela; Elphick, Maurice R.
2017-01-01
Homologs of the vertebrate neuropeptide gonadotropin-releasing hormone (GnRH) have been identified in invertebrates, including the insect neuropeptide corazonin (CRZ). Recently, we reported the discovery of GnRH-type and CRZ-type signaling systems in an echinoderm, the starfish Asterias rubens, demonstrating that the evolutionary origin of paralogous GnRH-type and CRZ-type neuropeptides can be traced back to the common ancestor of protostomes and deuterostomes. Here, we have investigated the physiological roles of the GnRH-type (ArGnRH) and the CRZ-type (ArCRZ) neuropeptides in A. rubens, using mRNA in situ hybridization, immunohistochemistry and in vitro pharmacology. ArGnRH precursor (ArGnRHP)-expressing cells and ArGnRH-immunoreactive cells and/or processes are present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach and pyloric stomach), body wall-associated muscle (apical muscle), and appendages (tube feet, terminal tentacle). The general distribution of ArCRZ precursor (ArCRZP)-expressing cells is similar to that of ArGnRHP, but with specific local differences. For example, cells expressing ArGnRHP are present in both the ectoneural and hyponeural regions of the radial nerve cords and circumoral nerve ring, whereas cells expressing ArCRZP were only observed in the ectoneural region. In vitro pharmacological experiments revealed that both ArGnRH and ArCRZ cause contraction of cardiac stomach, apical muscle, and tube foot preparations. However, ArGnRH was more potent/effective than ArCRZ as a contractant of the cardiac stomach, whereas ArCRZ was more potent/effective than ArGnRH as a contractant of the apical muscle. These findings demonstrate that both ArGnRH and ArCRZ are myoexcitatory neuropeptides in starfish, but differences in their expression patterns and pharmacological activities are indicative of distinct physiological roles. This is the first study to investigate the physiological roles of both GnRH-type and CRZ-type neuropeptides in a deuterostome, providing new insights into the evolution and comparative physiology of these paralogous neuropeptide signaling systems in the Bilateria. PMID:29033898
Effects of mGnRH on testicular steroidogenesis in the toad Bufo arenarum.
Canosa, Luis F; Pozzi, Andrea G; Somoza, Gustavo M; Ceballos, Nora R
2002-06-15
GnRH controls vertebrate reproduction in several ways. This hormone not only affects the secretion of gonadotropins from the pituitary gland but also has a direct influence on several gonadal functions such as steroidogenesis, spermatogenesis, and spermiation. In the present paper we have studied the in vitro effects of GnRH on the testicular steroidogenesis of Bufo arenarum to ascertain the role of this peptide in the control of the steroidogenic pathway previously described in this species. It was found that GnRH is able to reduce basal as well as hCG-stimulated testosterone release, having an inhibitory effect on P450(c17) activity. Thus, GnRH could be involved in the mechanism that regulates the metabolic change in the testicular steroidogenesis. Additionally, testicular GnRH binding site has been characterised, showing a K(d) of 34 nM and a maximum binding of 4.7 pmol/mg protein. Copyright 2002 Elsevier Science (USA)
Lee, Gregory; Ge, Bixia
2010-07-01
As the continuation of a previous study, synthetic peptides corresponding to the extracellular domains of human gonadotropin-releasing hormone (GnRH) receptor were used to generate additional monoclonal antibodies which were further characterized biochemically and immunologically. Among those identified to recognize GnRH receptor, monoclonal antibodies designated as GHR-103, GHR-106 and GHR-114 were found to exhibit high affinity (Kd < or = 1 x 10(-8) M) and specificity to GnRH receptor as judged by the whole cell binding immunoassay and Western blot assay. Both anti-GnRH receptor monoclonal antibodies and GnRH were shown to compete for the same binding site of GnRH receptor on the surface of cultured cancer cells. Growth inhibitions of cancer cells cultured in vitro were demonstrated by cellular apoptosis experiments (TUNEL and MTT assays) under different conditions of treatment with GHR-106 monoclonal antibody or GnRH analogs. It was generally observed that both GnRH I and GHR-106 effectively induce the apoptosis of cultured cancer cells as determined by TUNEL and MTT assays. Consistently, suppressions of gene expressions at mRNA levels were demonstrated with several ribosomal proteins (P0, P1, P2 and L37), when cancer cells were incubated with GnRH or GHR-106. The widespread expressions of GnRH receptor in almost all of the studied human cancer cell lines were also demonstrated by RT-PCR and Western blot assay, as well as indirect immunofluorescence assay with either of these monoclonal antibodies as the primary antibody. In view of the longer half life of antibodies as compared to that of GnRH or its analogs, anti-GnRH receptor monoclonal antibodies in humanized forms could function as GnRH analogs and serve as an ideal candidate of anti-cancer drugs for therapeutic treatments of various cancers in humans as well as for fertility regulations.
Architecture of GnRH-Gonadotrope-Vasculature Reveals a Dual Mode of Gonadotropin Regulation in Fish.
Golan, Matan; Zelinger, Einat; Zohar, Yonathan; Levavi-Sivan, Berta
2015-11-01
The function and components of the hypothalamic-pituitary axis are conserved among vertebrates; however, in fish, a neuroglandular mode of delivery (direct contact between axons and endocrine cells) was considered dominant, whereas in tetrapods hypothalamic signals are relayed to their targets via the hypophysial portal blood system (neurovascular delivery mode). By using a transgenic zebrafish model we studied the functional and anatomical aspects of gonadotrope regulation thus revisiting the existing model. FSH cells were found to be situated close to the vasculature whereas the compact organization of LH cells prevented direct contact of all cells with the circulation. GnRH3 fibers formed multiple boutons upon reaching the pituitary, but most of these structures were located in the neurohypophysis rather than adjacent to gonadotropes. A close association was observed between FSH cells and GnRH3 boutons, but only a fifth of the LH cells were in direct contact with GnRH3 axons, suggesting that FSH cells are more directly regulated than LH cells. GnRH3 fibers closely followed the vasculature in the neurohypophysis and formed numerous boutons along these tracts. These vessels were found to be permeable to relatively large molecules, suggesting the uptake of GnRH3 peptides. Our findings have important implications regarding the differential regulation of LH and FSH and contradict the accepted notion that fish pituitary cells are mostly regulated directly by hypothalamic fibers. Instead, we provide evidence that zebrafish apply a dual mode of gonadotrope regulation by GnRH3 that combines both neuroglandular and neurovascular components.
Dickerson, Sarah M.; Walker, Deena M.; Reveron, Maria E.; Duvauchelle, Christine L.; Gore, Andrea C.
2009-01-01
Reproductive function involves an interaction of three regulatory levels: hypothalamus, pituitary, and gonad. The primary drive upon this system comes from hypothalamic gonadotropin-releasing hormone (GnRH) neurosecretory cells, which receive afferent inputs from other neurotransmitter systems in the central nervous system to result in the proper coordination of reproduction and the environment. Here, we hypothesized that the recreational drug ±-3,4-Methylenedioxymethamphetamine (MDMA; “ecstasy”), which acts through several of the neurotransmitter systems that affect GnRH neurons, suppresses the hypothalamic-pituitary-gonadal (HPG) reproductive axis of male rats. Adult male Sprague-Dawley rats self-administered saline or MDMA or saline either once (acute) or for 20 days (chronic), and were euthanized 7 days following last administration. We quantified hypothalamic GnRH mRNA, serum luteinizing hormone (LH) concentrations, and serum testosterone levels, as indices of hypothalamic, pituitary, and gonadal functions, respectively. The results indicate that the hypothalamic and gonadal levels of the HPG axis are significantly altered by MDMA, with GnRH mRNA and serum testosterone levels suppressed in rats administered MDMA compared to saline. Furthermore, our finding that hypothalamic GnRH mRNA levels are suppressed in the context of low testosterone concentrations suggests that the central GnRH neurosecretory system may be a primary target of inhibitory regulation by MDMA usage. PMID:18309234
Zhang, Hao; Bailey, Janice S.; Coss, Djurdjica; Lin, Bo; Tsutsumi, Rie; Lawson, Mark A.; Mellon, Pamela L.; Webster, Nicholas J. G.
2009-01-01
Both GnRH and activin are crucial for the correct function of pituitary gonadotrope cells. GnRH regulates LH and FSH synthesis and secretion and gonadotrope proliferation, whereas activin is essential for expression of FSH. Little is known, however, about the interplay of signaling downstream of these two hormones. In this study, we undertook expression profiling to determine how activin pre-treatment alters the transcriptional response of LβT2 gonadotrope cells to GnRH stimulation. Activin treatment alone altered the transcriptional profile of 303 genes including inducing that of the 17β-hydroxysteroid dehydrogenase B1 gene that converts estrone to 17β-estradiol, altering the sensitivity of the cells to estrone. Furthermore, activin had a dramatic effect on the response of LβT2 cells to GnRH. Hierarchical clustering of 2453 GnRH-responsive genes identified groups of genes the response of which to GnRH was either enhanced or blunted after activin treatment. Mapping of these genes to gene ontology classifications or signaling pathways highlighted significant differences in the classes of altered genes. In the presence of activin, GnRH regulates genes in pathways controlling cell energetics, cytoskeletal rearrangements, organelle organization, and mitosis in the absence of activin, but genes controlling protein processing, cell differentiation, and secretion. Therefore, we demonstrated that activin enhanced GnRH induction of p38MAPK activity, caused GnRH-dependent phosphorylation of p53, and reduced the ability of GnRH to cause G1 arrest. Thus, although activin alone changes a modest number of transcripts, activin pretreatment dramatically alters the response to GnRH from an antiproliferative response to a more differentiated, synthetic response appropriate for a secretory cell. PMID:16772531
Chappell, Patrick E; White, Rachel S; Mellon, Pamela L
2003-12-03
Although it has long been established that episodic secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus is required for normal gonadotropin release, the molecular and cellular mechanisms underlying the synchronous release of GnRH are primarily unknown. We used the GT1-7 mouse hypothalamic cell line as a model for GnRH secretion, because these cells release GnRH in a pulsatile pattern similar to that observed in vivo. To explore possible molecular mechanisms governing secretory timing, we investigated the role of the molecular circadian clock in regulation of GnRH secretion. GT1-7 cells express many known core circadian clock genes, and we demonstrate that oscillations of these components can be induced by stimuli such as serum and the adenylyl cyclase activator forskolin, similar to effects observed in fibroblasts. Strikingly, perturbation of circadian clock function in GT1-7 cells by transient expression of the dominant-negative Clock-Delta19 gene disrupts normal ultradian patterns of GnRH secretion, significantly decreasing mean pulse frequency. Additionally, overexpression of the negative limb clock gene mCry1 in GT1-7 cells substantially increases GnRH pulse amplitude without a commensurate change in pulse frequency, demonstrating that an endogenous biological clock is coupled to the mechanism of neurosecretion in these cells and can regulate multiple secretory parameters. Finally, mice harboring a somatic mutation in the Clock gene are subfertile and exhibit a substantial increase in estrous cycle duration as revealed by examination of vaginal cytology. This effect persists in normal light/dark (LD) cycles, suggesting that a suprachiasmatic nucleus-independent endogenous clock in GnRH neurons is required for eliciting normal pulsatile patterns of GnRH secretion.
Hsieh, Hsiu-Shin; Chang, Chao-Fu; Yang, An-Han; Kuo, Hsiao-Ling; Yang, Wu-Chang; Lin, Chih-Ching
2003-10-01
Clinically relevant renal lesions in rheumatoid arthritis (RA) are not common. More often renal involvement is related to complications of therapy than the disease itself. The most common forms of primary renal disease in RA are membranous glomerulonephropathy and a pure mesangial proliferative glomerulonephritis. Some studies have described the association between crescentic glomerulonephritis (crescentic GN) and RA, but they were all found to be perinuclear antineutrophil cytoplasmic antibody (p-ANCA) positive. However, RA associated with ANCA negative pauci-immue crescentic GN has not been reported. This is a case report of a 37-year-old female with RA who initially presented with general oedema and acute deterioration of renal function. The renal biopsy revealed ANCA negative pauci-immune crescentic GN. The patient was treated with steroid pulse and plasmapheresis, but not cyclophosphamide because of severe urosepsis. Despite the use of aggressive therapy, her renal function was not improved and she underwent maintenance haemodialysis thereafter. Because ANCA negative crescentic GN may occur in RA patients without frank systemic vasculitis, but with severe clinical manifestation, a heightened suspicion for a relatively 'silent' crescentic GN would have led to the correct diagnosis and appropriate treatment.
Molecular mechanism of action of pharmacoperone rescue of misrouted GPCR mutants: the GnRH receptor.
Janovick, Jo Ann; Patny, Akshay; Mosley, Ralph; Goulet, Mark T; Altman, Michael D; Rush, Thomas S; Cornea, Anda; Conn, P Michael
2009-02-01
The human GnRH receptor (hGnRHR), a G protein-coupled receptor, is a useful model for studying pharmacological chaperones (pharmacoperones), drugs that rescue misfolded and misrouted protein mutants and restore them to function. This technique forms the basis of a therapeutic approach of rescuing mutants associated with human disease and restoring them to function. The present study relies on computational modeling, followed by site-directed mutagenesis, assessment of ligand binding, effector activation, and confocal microscopy. Our results show that two different chemical classes of pharmacoperones act to stabilize hGnRHR mutants by bridging residues D(98) and K(121). This ligand-mediated bridge serves as a surrogate for a naturally occurring and highly conserved salt bridge (E(90)-K(121)) that stabilizes the relation between transmembranes 2 and 3, which is required for passage of the receptor through the cellular quality control system and to the plasma membrane. Our model was used to reveal important pharmacophoric features, and then identify a novel chemical ligand, which was able to rescue a D(98) mutant of the hGnRHR that could not be rescued as effectively by previously known pharmacoperones.
Functionalization of Graphene Nanoplatelets Using Sugar Azide for Graphene/Epoxy Nanocomposites
2014-06-20
temperature to 200°C in the single cantilever mode at a heating rate and frequency of 3°C/min and 1 Hz, respectively. Thermogravimetric analysis (TGA) of...14. ABSTRACT We report a covalent functionalization of graphene nanoparticles (GnPs) employing 2,3,4-Tri-O-acetyl-β-D-xylopyranosyl azide...and glass transition temperature (~10C) compared to an un-functionalized GnP based epoxy composite. 15. SUBJECT TERMS Graphene nanoparticles
Dynamic evolution of the GnRH receptor gene family in vertebrates.
Williams, Barry L; Akazome, Yasuhisa; Oka, Yoshitaka; Eisthen, Heather L
2014-10-25
Elucidating the mechanisms underlying coevolution of ligands and receptors is an important challenge in molecular evolutionary biology. Peptide hormones and their receptors are excellent models for such efforts, given the relative ease of examining evolutionary changes in genes encoding for both molecules. Most vertebrates possess multiple genes for both the decapeptide gonadotropin releasing hormone (GnRH) and for the GnRH receptor. The evolutionary history of the receptor family, including ancestral copy number and timing of duplications and deletions, has been the subject of controversy. We report here for the first time sequences of three distinct GnRH receptor genes in salamanders (axolotls, Ambystoma mexicanum), which are orthologous to three GnRH receptors from ranid frogs. To understand the origin of these genes within the larger evolutionary context of the gene family, we performed phylogenetic analyses and probabilistic protein homology searches of GnRH receptor genes in vertebrates and their near relatives. Our analyses revealed four points that alter previous views about the evolution of the GnRH receptor gene family. First, the "mammalian" pituitary type GnRH receptor, which is the sole GnRH receptor in humans and previously presumed to be highly derived because it lacks the cytoplasmic C-terminal domain typical of most G-protein coupled receptors, is actually an ancient gene that originated in the common ancestor of jawed vertebrates (Gnathostomata). Second, unlike previous studies, we classify vertebrate GnRH receptors into five subfamilies. Third, the order of subfamily origins is the inverse of previous proposed models. Fourth, the number of GnRH receptor genes has been dynamic in vertebrates and their ancestors, with multiple duplications and losses. Our results provide a novel evolutionary framework for generating hypotheses concerning the functional importance of structural characteristics of vertebrate GnRH receptors. We show that five subfamilies of vertebrate GnRH receptors evolved early in the vertebrate phylogeny, followed by several independent instances of gene loss. Chief among cases of gene loss are humans, best described as degenerate with respect to GnRH receptors because we retain only a single, ancient gene.
Dawson, A
2005-02-01
In birds, unlike mammals, seasonal changes in reproductive function are associated with marked changes in the amount of gonadotrophin-releasing hormone (GnRH) stored in the hypothalamus. Prolonged exposure to long photoperiods leads to photorefractoriness after the breeding season. Photorefractory birds have low hypothalamic concentrations of chicken GnRH-I (cGnRH-I). Exposure to short photoperiods results in renewed cGnRH-I synthesis and increased hypothalamic stores. Birds are then photosensitive and subsequent exposure to an increase in photoperiod results in increased cGnRH-I secretion and gonadal maturation. However, it is unclear whether the reverse is true at the time of gonadal regression during long photoperiods (i.e. that a decrease in GnRH-I synthesis precedes regression). Hypothalamic stores of cGnRH-I, and possibly therefore of releasable GnRH-I, decrease after regression. Single injections of the glutamate agonist N-methyl-DL-aspartate (NMA) were used as a probe to assess releasable stores of cGnRH-I in male starlings at four physiologically different reproductive stages. Treatment induced the greatest increase in luteinising hormone (LH) in photosensitive birds in January, and a slight increase in sexually mature birds in April. There was a slight but significant increase in June, immediately after testicular regression, but no increase in fully photorefractory birds in September. These data confirm that photorefractoriness is associated with a lack of releasable cGnRH-I, but that decreased synthesis of cGnRH-I is not the proximate cause of regression. There was an increase in prolactin in response to NMA at all times. The magnitude of the response was proportional to pre-treatment concentrations, with the greatest response in June. It is suggested that high circulating prolactin may fine-tune the timing of gonadal regression in advance of the inhibition of cGnRH-I synthesis.
Hydroxyl Radical (OH•) Reaction with Guanine in an Aqueous Environment: A DFT Study
Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D.
2011-01-01
The reaction of hydroxyl radical (OH•) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH• with DNA proceeds mainly through the addition of OH• to the C=C bond of the DNA bases. However, recently it has been reported that the principal reaction of OH• with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH• to the C=C bond. In the present work, these two reaction pathways of OH• attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH• at C4=C5 double bond of guanine is barrier free and the adduct radical (G-OH•) has only a small activation barrier of ca. 1 – 6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G•+---OH−). The formation of ion-pair is a result of the highly oxidizing nature of the OH• in aqueous media. The resulting ion-pair (G•+---OH−) deprotonates to form H2O and neutral G radicals favoring G(N1-H)• with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C4)-OH• (adduct) to G(N1-H)• and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH•), (G•+---OH−), and G(N1-H)• were further characterized by the CAM-B3LYP calculations of their UV-visible spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N1 and N2 sites of guanine by the OH• show that this is also a competitive route to produce G(N2-H)•, G(N1-H)• and H2O. PMID:22050033
Bellingham, M; Fowler, P A; Amezaga, M R; Whitelaw, C M; Rhind, S M; Cotinot, C; Mandon-Pepin, B; Sharpe, R M; Evans, N P
2010-06-01
Animals and humans are chronically exposed to endocrine disrupting chemicals (EDCs) that are ubiquitous in the environment. There are strong circumstantial links between environmental EDC exposure and both declining human/wildlife reproductive health and the increasing incidence of reproductive system abnormalities. The verification of such links, however, is difficult and requires animal models exposed to 'real life', environmentally relevant concentrations/mixtures of environmental contaminants (ECs), particularly in utero, when sensitivity to EC exposure is high. The present study aimed to determine whether the foetal sheep reproductive neuroendocrine axis, particularly gondotrophin-releasing hormone (GnRH) and galaninergic systems, were affected by maternal exposure to a complex mixture of chemicals, applied to pasture, in the form of sewage sludge. Sewage sludge contains high concentrations of a spectrum of EDCs and other pollutants, relative to environmental concentrations, but is frequently recycled to land as a fertiliser. We found that foetuses exposed to the EDC mixture in utero through their mothers had lower GnRH mRNA expression in the hypothalamus and lower GnRH receptor (GnRHR) and galanin receptor (GALR) mRNA expression in the hypothalamus and pituitary gland. Strikingly, this, treatment had no significant effect on maternal GnRH or GnRHR mRNA expression, although GALR mRNA expression within the maternal hypothalamus and pituitary gland was reduced. The present study clearly demonstrates that the developing foetal neuroendocrine axis is sensitive to real-world mixtures of environmental chemicals. Given the important role of GnRH and GnRHR in the regulation of reproductive function, its known role programming role in utero, and the role of galanin in the regulation of many physiological/neuroendocrine systems, in utero changes in the activity of these systems are likely to have long-term consequences in adulthood and represent a novel pathway through which EC mixtures could perturb normal reproductive function.
Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding
Flanagan, Colleen A.; Manilall, Ashmeetha
2017-01-01
Gonadotropin-releasing hormone (GnRH) regulates reproduction. The human GnRH receptor lacks a cytoplasmic carboxy-terminal tail but has amino acid sequence motifs characteristic of rhodopsin-like, class A, G protein-coupled receptors (GPCRs). This review will consider how recent descriptions of X-ray crystallographic structures of GPCRs in inactive and active conformations may contribute to understanding GnRH receptor structure, mechanism of activation and ligand binding. The structures confirmed that ligands bind to variable extracellular surfaces, whereas the seven membrane-spanning α-helices convey the activation signal to the cytoplasmic receptor surface, which binds and activates heterotrimeric G proteins. Forty non-covalent interactions that bridge topologically equivalent residues in different transmembrane (TM) helices are conserved in class A GPCR structures, regardless of activation state. Conformation-independent interhelical contacts account for a conserved receptor protein structure and their importance in the GnRH receptor structure is supported by decreased expression of receptors with mutations of residues in the network. Many of the GnRH receptor mutations associated with congenital hypogonadotropic hypogonadism, including the Glu2.53(90) Lys mutation, involve amino acids that constitute the conserved network. Half of the ~250 intramolecular interactions in GPCRs differ between inactive and active structures. Conformation-specific interhelical contacts depend on amino acids changing partners during activation. Conserved inactive conformation-specific contacts prevent receptor activation by stabilizing proximity of TM helices 3 and 6 and a closed G protein-binding site. Mutations of GnRH receptor residues involved in these interactions, such as Arg3.50(139) of the DRY/S motif or Tyr7.53(323) of the N/DPxxY motif, increase or decrease receptor expression and efficiency of receptor coupling to G protein signaling, consistent with the native residues stabilizing the inactive GnRH receptor structure. Active conformation-specific interhelical contacts stabilize an open G protein-binding site. Progress in defining the GnRH-binding site has recently slowed, with evidence that Tyr6.58(290) contacts Tyr5 of GnRH, whereas other residues affect recognition of Trp3 and Gly10NH2. The surprisingly consistent observations that GnRH receptor mutations that disrupt GnRH binding have less effect on “conformationally constrained” GnRH peptides may now be explained by crystal structures of agonist-bound peptide receptors. Analysis of GPCR structures provides insight into GnRH receptor function. PMID:29123501
The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons.
Moore, Aleisha M; Campbell, Rebecca E
2016-06-01
Polycystic ovary syndrome (PCOS) is a prevalent and distressing endocrine disorder lacking a clearly identified aetiology. Despite its name, PCOS may result from impaired neuronal circuits in the brain that regulate steroid hormone feedback to the hypothalamo-pituitary-gonadal axis. Ovarian function in all mammals is controlled by the gonadotropin-releasing hormone (GnRH) neurons, a small group of neurons that reside in the pre-optic area of the hypothalamus. GnRH neurons drive the secretion of the gonadotropins from the pituitary gland that subsequently control ovarian function, including the production of gonadal steroid hormones. These hormones, in turn, provide important feedback signals to GnRH neurons via a hormone sensitive neuronal network in the brain. In many women with PCOS this feedback pathway is impaired, resulting in the downstream consequences of the syndrome. This review will explore what is currently known from clinical and animal studies about the identity, relative contribution and significance of the individual neuronal components within the GnRH neuronal network that contribute to the pathophysiology of PCOS. We review evidence for the specific neuronal pathways hypothesised to mediate progesterone negative feedback to GnRH neurons, and discuss the potential mechanisms by which androgens may evoke disruptions in these circuits at different developmental time points. Finally, this review discusses data providing compelling support for disordered progesterone-sensitive GABAergic input to GnRH neurons, originating specifically within the arcuate nucleus in prenatal androgen induced forms of PCOS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Garcia, James P; Guerriero, Kathryn A; Keen, Kim L; Kenealy, Brian P; Seminara, Stephanie B; Terasawa, Ei
2017-10-01
Loss-of-function or inactivating mutations in the genes coding for kisspeptin and its receptor (KISS1R) or neurokinin B (NKB) and the NKB receptor (NK3R) in humans result in a delay in or the absence of puberty. However, precise mechanisms of kisspeptin and NKB signaling in the regulation of the pubertal increase in gonadotropin-releasing hormone (GnRH) release in primates are unknown. In this study, we conducted a series of experiments infusing agonists and antagonists of kisspeptin and NKB into the stalk-median eminence, where GnRH, kisspeptin, and NKB neuroterminal fibers are concentrated, and measuring GnRH release in prepubertal and pubertal female rhesus monkeys. Results indicate that (1) similar to those previously reported for GnRH stimulation by the KISS1R agonist (i.e., human kisspeptin-10), the NK3R agonist senktide stimulated GnRH release in a dose-responsive manner in both prepubertal and pubertal monkeys; (2) the senktide-induced GnRH release was blocked in the presence of the KISS1R antagonist peptide 234 in pubertal but not prepubertal monkeys; and (3) the kisspeptin-induced GnRH release was blocked in the presence of the NK3R antagonist SB222200 in the pubertal but not prepubertal monkeys. These results are interpreted to mean that although, in prepubertal female monkeys, kisspeptin and NKB signaling to GnRH release is independent, in pubertal female monkeys, a reciprocal signaling mechanism between kisspeptin and NKB neurons is established. We speculate that this cooperative mechanism by the kisspeptin and NKB network underlies the pubertal increase in GnRH release in female monkeys. Copyright © 2017 Endocrine Society.
Naugle, Michelle M.; Gore, Andrea C.
2014-01-01
Menopause is caused by changes in the function of the hypothalamic-pituitary-gonadal (HPG) axis that controls reproduction. Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus orchestrate the activity of this axis and are regulated by hormonal feedback loops. The mechanisms by which GnRH responses to the primary regulatory sex-steroid hormone, estradiol (E2) are still poorly understood in the context of menopause. Our goal was to determine whether the G protein-coupled estrogen receptor (GPER) is co-expressed in adult primate GnRH neurons, and whether this changes with aging and/or E2 treatment. We used immunofluorescence double labeling to characterize the co-expression of GPER in GnRH perikarya and terminals in the hypothalamus. Young and aged rhesus macaques were ovariectomized and given long-term (~2 year) hormone treatments (E2, E2 + progesterone, or vehicle) selected to mimic currently prescribed hormone replacement therapies used for the alleviation of menopausal symptoms in women. We found that about half of GnRH perikarya co-expressed GPER, while only about 12% of GnRH processes and terminals in the median eminence (ME) were double labeled. Additionally, many GPER labeled processes were in direct contact with GnRH neurons, often wrapped around the perikarya and processes and in close proximity in the ME. These results extend prior work by showing robust colocalization of GPER in GnRH in a clinically relevant model, and support the possibility that GPER-mediated E2 regulation of GnRH occurs both in the soma and terminals in nonhuman primates. PMID:25428637
Khan, T H; Beck, N F G; Khalid, M
2007-12-01
The objectives of this study were to determine the effect of GnRH analogue (buserelin) or human chorionic gonadotrophin (hCG, Chorulon) treatment on Day 12 of pregnancy on ovarian function, plasma hormone concentrations, conceptus growth and placentation in ewes and ewe lambs. After oestrus synchronization with progestagen sponges and eCG, all the animals were mated with fertile rams. Both ewes and ewe lambs (20 per treatment group) were given either normal saline or 4 microg GnRH or 200 IU hCG on Day 12 post-mating. Pre- and post-treatment plasma hormone concentrations were determined in seven pregnant animals per treatment group in samples collected 1h before and 0, 2, 4, 6, 8, 24, 48 and 72 h after treatment. Overall mean progesterone concentrations were higher (P<0.001) in ewes as compared with ewe lambs in saline-treated controls. GnRH or hCG treatment increased (P<0.001) mean plasma progesterone concentrations in both age groups, however, post-treatment concentrations were significantly (P<0.05) higher in ewes than in ewe lambs. Oestradiol concentrations were similar in the two control groups. In ewes, but not in ewe lambs, both GnRH and hCG treatments significantly (P<0.05) increased the mean oestradiol concentrations above pre-treatment levels. Moreover, post-treatment oestradiol concentrations in GnRH- and hCG-treated animals were significantly (P<0.05) higher than those in the saline-treated controls. LH release in response to GnRH treatment was greater (P<0.05) in ewes than in ewe lambs, whereas FSH release in ewes was less (P<0.05) than that of ewe lambs. The effects of GnRH or hCG on conceptus growth and placentation was determined at slaughter on Day 25. In ewes, GnRH treatment increased (P<0.05) luteal weight, amniotic sac width and length, and crown-rump length compared with controls, but had no effect on these parameters in ewe lambs. In ewes, hCG treatment also enhanced (P<0.05) luteal weight, amniotic sac width and length, crown-rump length, embryo weight and number of placentomes as compared with controls. In ewe lambs, there was no difference (P<0.05) between hCG and control groups in luteal weight, embryo weight and amniotic sac width but crown-rump length, amniotic sac length and the number of placentomes forming the placenta were greater (P<0.05). In conclusion, GnRH or hCG treatment on Day 12 of pregnancy can increase ovarian function, conceptus growth and placental attachment in ewes. However, these treatments were less effective in ewe lambs.
Effects of gonadoliberin analogue triptorelin on the pituitary-testicular complex in neonatal rats.
Dygalo, N N; Shemenkova, T V; Kalinina, T S; Shishkina, G T
2014-02-01
Triptorelin, a synthetic analogue of neurohormone gonadoliberin (gonadotropin-releasing hormone, GnRH) administered daily to rats on postnatal days 5-7 suppressed the expression of GnRH receptor in the pituitary gland, but did not change functioning of the pituitary-testicular complex. Administration of triptorelin on postnatal days 12-14 (i.e. during the formation of pulsatile pattern of GnRH secretion and increasing levels of its mRNA receptor in the pituitary gland) had no effect on receptor expression, but increased the levels of luteinizing hormone mRNA in the pituitary gland and the weight of testes. At that time, blood levels of testosterone were lowered, which indicated disturbed pulsatile pattern of GnRH secretion.
Farkas, Imre; Vastagh, Csaba; Sárvári, Miklós; Liposits, Zsolt
2013-01-01
The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R) in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca(2+)-imaging revealed a ghrelin-triggered increase of the Ca(2+)-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10 µM) suggesting direct action of ghrelin. Estradiol (1nM) eliminated the ghrelin-evoked rise of Ca(2+)-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40 nM-4 μM) administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1) antagonist AM251 (1µM) and the intracellularly applied DAG-lipase inhibitor THL (10 µM), indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.
Msx1 Homeodomain Protein Represses the αGSU and GnRH Receptor Genes During Gonadotrope Development
Xie, Huimin; Cherrington, Brian D.; Meadows, Jason D.; Witham, Emily A.
2013-01-01
Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at −114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program. PMID:23371388
Msx1 homeodomain protein represses the αGSU and GnRH receptor genes during gonadotrope development.
Xie, Huimin; Cherrington, Brian D; Meadows, Jason D; Witham, Emily A; Mellon, Pamela L
2013-03-01
Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at -114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program.
Maguire, Caroline A; Song, Yong Bhum; Wu, Min; León, Silvia; Carroll, Rona S; Alreja, Meenakshi; Kaiser, Ursula B; Navarro, Víctor M
2017-07-01
The tachykinins substance P (SP) and neurokinin A (Tac1) have emerged as novel regulators of kisspeptin/GnRH release. Recently, we documented that SP modulates reproductive function in the female mouse. Here, we extended this characterization to the male mouse. Tac1-/- male mice showed delayed puberty onset. They also presented significantly decreased expression levels of Pdyn (dynorphin) and Nos1 (nitric oxide synthase) in the mediobasal hypothalamus and elevated Gnrh1 levels. Unexpectedly, the response of Tac1-/- mice to central kisspeptin or senktide (neurokinin B receptor-agonist) administration was significantly decreased compared with controls, despite the preserved ability of GnRH neurons to stimulate luteinizing hormone release as demonstrated by central N-methyl-D-aspartate receptor administration, suggesting a deficit at the GnRH neuron level. Importantly, we demonstrated that kisspeptin receptor and SP receptor (NK1R) heterodimerize, indicating that changes in the SP tone could alter the responsiveness of GnRH neurons to kisspeptin. Finally, electrophysiological recordings from arcuate Kiss1 neurons showed that, although virtually all Kiss1 neurons responded to NKB and senktide, only half responded to an NK1R agonist and none to the neurokinin A receptor agonist at a 1-μM dose. In summary, we provide compelling evidence for a role of Tac1 in the control of reproductive function in the male mouse, suggesting a predominant central action that may involve a change in the balance of neural factors that control GnRH expression. Copyright © 2017 Endocrine Society.
Brown, J L; Bush, M; Packer, C; Pusey, A E; Monfort, S L; O'Brien, S J; Janssen, D L; Wildt, D E
1993-01-01
Pituitary responses to gonadotrophin-releasing hormone (GnRH) and prolactin and steroid secretory profiles were examined in two populations of adult, female lions in the Serengeti (one outbred in the Serengeti Plains and one inbred in the Ngorongoro Crater) to determine whether reductions in genetic variability adversely affected endocrine function. GnRH-induced gonadotrophin secretion was also examined after adrenocorticotrophic hormone (ACTH) treatment to determine whether acute increases in serum cortisol altered pituitary function. Anaesthetized lions were administered (i) saline i.v. after 10 and 100 min of blood sampling, (ii) saline at 10 min and GnRH (1 micrograms kg-1 body weight) after 100 min; or (iii) ACTH (3 micrograms kg-1) at 10 min and GnRH after 100 min of sampling. Basal serum cortisol and basal and GnRH-induced gonadotrophin secretion were similar (P > 0.05) between females of the Ngorongoro Crater and Serengeti Plains. After ACTH, serum cortisol increased two- to threefold over baseline values and the response was unaffected (P > 0.05) by location. ACTH-induced increases in serum cortisol had no effect on subsequent basal or GnRH-stimulated luteinizing hormone (LH) or follicle-stimulating hormone (FSH) secretion. Overall mean serum progesterone concentrations ranged from 0.2 to 5.4 ng ml-1 with the exception of four females (two in the Serengeti and two in the Crater; progesterone range, 18.4-46.5 ng ml-1) that were presumed pregnant (three of these females were observed nursing cubs several weeks later).(ABSTRACT TRUNCATED AT 250 WORDS)
The gonadotropin-releasing hormone system: Perspectives from reproduction to cancer (Review).
Aguilar-Rojas, Arturo; Pérez-Solis, Marco Allan; Maya-Núñez, Guadalupe
2016-03-01
Recently, an increasing amount of evidence indicates that human gonadotropin-releasing hormone (hGnRH) and its receptor (hGnRHR) are important regulatory components not only to the reproduction process but also in the regulation of some cancer cell functions such as cell proliferation, in both hormone-dependent and -independent types of tumors. The hGnRHR is a naturally misfolded protein that is retained mostly in the endoplasmic reticulum; however, this mechanism can be overcome by treatment with several pharmacoperones, therefore, increasing the amount of receptors in the cell membrane. In addition, several reports indicate that the expression level of hGnRHR in tumor cells is even lower than in pituitary or gonadotrope cells. The signal transduction pathways activated by hGnRH in both gonadotrope and different cancer cell types are described in the present review. We also discuss how the rescue of misfolded receptors in tumor cells could be a promising strategy for cancer therapy.
Gronier, H; Peigné, M; Catteau-Jonard, S; Dewailly, D; Robin, G
2014-10-01
The hypogonadotropic hypogonadism is an easily treatable form of female infertility. The most common cause of hypogonadotropic hypogonadism is functional hypothalamic amenorrhea. The GnRH pump is a simple and effective treatment to restore fertility of patients with hypothalamic amenorrhea: cumulative pregnancy rate is estimated between 70 and 100% after 6 cycles, compared to a low rate of complications and multiple pregnancies. While only 2.8 cycles are on average required to achieve a pregnancy with a pump, this induction of ovulation stays underused in France. The objective of this paper is to propose a practical manual of pulsatile GnRH, in order to improve the accessibility of pulsatile GnRH for patients with hypogonadotropic hypogonadism. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Previous reports suggest increased circulating concentrations of estradiol prior to GnRH induced ovulation improved conception rates and pregnancy maintenance in beef cattle, and cultured granulosa cells from animals with high antral follicle numbers produced more estradiol and had increased express...
NASA Astrophysics Data System (ADS)
Tarnopolski, Mariusz
2016-11-01
The long range dependence of the fractional Brownian motion (fBm), fractional Gaussian noise (fGn), and differentiated fGn (DfGn) is described by the Hurst exponent H. Considering the realizations of these three processes as time series, they might be described by their statistical features, such as half of the ratio of the mean square successive difference to the variance, A, and the number of turning points, T. This paper investigates the relationships between A and H, and between T and H. It is found numerically that the formulae A(H) = aebH in case of fBm, and A(H) = a + bHc for fGn and DfGn, describe well the A(H) relationship. When T(H) is considered, no simple formula is found, and it is empirically found that among polynomials, the fourth and second order description applies best. The most relevant finding is that when plotted in the space of (A , T) , the three process types form separate branches. Hence, it is examined whether A and T may serve as Hurst exponent indicators. Some real world data (stock market indices, sunspot numbers, chaotic time series) are analyzed for this purpose, and it is found that the H's estimated using the H(A) relations (expressed as inverted A(H) functions) are consistent with the H's extracted with the well known wavelet approach. This allows to efficiently estimate the Hurst exponent based on fast and easy to compute A and T, given that the process type: fBm, fGn or DfGn, is correctly classified beforehand. Finally, it is suggested that the A(H) relation for fGn and DfGn might be an exact (shifted) 3 / 2 power-law.
Choi, Soon Gang; Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Salton, Stephen R J; Sealfon, Stuart C
2016-09-30
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gα s knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gα s knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gα s In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Sealfon, Stuart C.
2016-01-01
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gαs knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gαs knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gαs. In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. PMID:27466366
Melt compounding with graphene to develop functional, high-performance elastomers
NASA Astrophysics Data System (ADS)
Araby, Sherif; Zaman, Izzuddin; Meng, Qingshi; Kawashima, Nobuyuki; Michelmore, Andrew; Kuan, Hsu-Chiang; Majewski, Peter; Ma, Jun; Zhang, Liqun
2013-04-01
Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer—ethylene-propylene-diene monomer rubber (EPDM)—using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment.
Emergence of a Novel Chimeric Gene Underlying Grain Number in Rice
Chen, Hao; Tang, Yanyan; Liu, Jianfeng; Tan, Lubin; Jiang, Jiahuan; Wang, Mumu; Zhu, Zuofeng; Sun, Xianyou; Sun, Chuanqing
2017-01-01
Grain number is an important factor in determining grain production of rice (Oryza sativa L.). The molecular genetic basis for grain number is complex. Discovering new genes involved in regulating rice grain number increases our knowledge regarding its molecular mechanisms and aids breeding programs. Here, we identified GRAINS NUMBER 2 (GN2), a novel gene that is responsible for rice grain number, from “Yuanjiang” common wild rice (O. rufipogon Griff.). Transgenic plants overexpressing GN2 showed less grain number, reduced plant height, and later heading date than control plants. Interestingly, GN2 arose through the insertion of a 1094-bp sequence from LOC_Os02g45150 into the third exon of LOC_Os02g56630, and the inserted sequence recruited its nearby sequence to generate the chimeric GN2. The gene structure and expression pattern of GN2 were distinct from those of LOC_Os02g45150 and LOC_Os02g56630. Sequence analysis showed that GN2 may be generated in the natural population of Yuanjiang common wild rice. In this study, we identified a novel functional chimeric gene and also provided information regarding the molecular mechanisms regulating rice grain number. PMID:27986805
The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction.
Popa, Simina M; Clifton, Donald K; Steiner, Robert A
2008-01-01
Neurons that produce gonadotropin-releasing hormone (GnRH) reside in the basal forebrain and drive reproductive function in mammals. Understanding the circuitry that regulates GnRH neurons is fundamental to comprehending the neuroendocrine control of puberty and reproduction in the adult. This review focuses on a family of neuropeptides encoded by the Kiss1 gene, the kisspeptins, and their cognate receptor, GPR54, which have been implicated in the regulation of GnRH secretion. Kisspeptins are potent secretagogues for GnRH, and the Kiss1 gene is a target for regulation by gonadal steroids (e.g., estradiol and testosterone), metabolic factors (e.g., leptin), photoperiod, and season. Kiss1 neurons in the arcuate nucleus may regulate the negative feedback effect of gonadal steroids on GnRH and gonadotropin secretion in both sexes. The expression of Kiss1 in the anteroventral periventricular nucleus (AVPV) is sexually dimorphic, and Kiss1 neurons in the AVPV may participate in the generation of the preovulatory GnRH/luteinizing hormone (LH) surge in the female rodent. Kiss1 neurons have emerged as primary transducers of internal and environmental cues to regulate the neuroendocrine reproductive axis.
Shen, Z Q; Xu, J J; Lin, J F
2013-11-01
Functional hypothalamic amenorrhea (FHA) refers to a functional menstrual disorder with various causes and presentations. Recovery of menstrual cyclicity is common in long-term follow-up but the affecting factors remain unknown. To explore factors affecting the menstrual resumption and to evaluate the pituitary response to gonadotropin-releasing hormone (GnRH) in FHA. Thirty cases with FHA were recruited. All subjects were put on continuous 1 mg/day estradiol valerate orally and followed up monthly. Recovery was defined as the occurrence of at least three consecutive regular cycles. Responder referred to those who recovered within two years of therapy. Gonadotropin response to the 50 μg GnRH challenge was tested every three months. Nineteen (63.3%) subjects recovered with a mean time to recovery of 26.8 months. Time to recovery was negatively correlated with body mass index (BMI) before and by amenorrhea. Twentyone cases had undertaken therapy for more than two years and 10 of them recovered. BMI before and by amenorrhea were negatively correlated with the recovery. Significant increase of serum luteinizing hormone (LH) and LH response to GnRH were noted after recovery. Menstrual resumption was common in FHA undertaking estrogen replacement therapy (ERT). The likelihood of recovery was affected by their BMI before and by amenorrhea but not by the weight gain during therapy. Low serum LH and attenuated LH response to GnRH were the main features of pituitary deficiency in FHA. The menstrual resumption in FHA was accompanied by the recovery of serum LH and the LH response to GnRH.
LH pulses and the corpus luteum: the luteal phase deficiency LPD).
Wuttke, W; Pitzel, L; Seidlová-Wuttke, D; Hinney, B
2001-01-01
The proper function of the GnRH pulse generator in the hypothalamus is essential for normal ovarian function, hence also for proper function of the corpus luteum. During the luteal phase LH pulses stimulate progesterone release, which is essential for normal endometrial transformation. Approximately one-half of all luteal phase deficiencies (LPD) are due to improper function of the GnRH pulse generator. Obviously, following ovulation the increased serum progesterone levels oversuppress the GnRH pulse generator, resulting in too few LH pulses and therefore improper luteal function. Also, latent hyperprolactinemia may lead to an LPD which can be effectively treated with plant extracts containing dopaminergic (prolactin-suppressing) compounds. Our increasing knowledge of auto- and paracrine mechanisms between nonsteroidogenic and steroidogenic cells now allow subclassification of LPDs of ovarian origin. The so-called small luteal cells are LH-responsive. If they develop improperly the regularly occurring LH pulses are unable to stimulate progesterone secretion from the small luteal cells, which results in what we call the small luteal cell defect. In addition, there is also evidence that the large luteal cells may function improperly. Hence, basal progesterone release is too low while LH-stimulated progesterone release from the small luteal cells appears to be intact. This subclassification of luteal phase deficiency results in the suggestion of different treatments. In cases where the corpus luteum is LH-responsive, such as the hypothalamic corpus luteum insufficiency and the large luteal cell defect, HCG treatment or pulsatile treatment with GnRH is advisable. In the case of LH/hCG-unresponsive small luteal cell defect a progesterone substitution is suggested.
Dumont, Agathe; Dewailly, Didier; Plouvier, Pauline; Catteau-Jonard, Sophie; Robin, Geoffroy
2016-12-01
Ovulation induction in patients having both functional hypothalamic amenorrhea (FHA) and polycystic ovarian morphology (PCOM) has been less studied in the literature. As results remain contradictory, no recommendations have yet been established. To compare pulsatile GnRH therapy versus gonadotropins for ovulation induction in "FHA-PCOM" patients and to determine if one treatment strikes as superior to the other. A 12-year retrospective study, comparing 55 "FHA-PCOM" patients, treated either with GnRH therapy (38 patients, 93 cycles) or with gonadotropins (17 patients, 53 cycles). Both groups were similar, defined by low serum LH and E2 levels, low BMI, excessive follicle number per ovary and/or high serum AMH level. Ovulation rates were significantly lower with gonadotropins (56.6% versus 78.6%, p = 0.005), with more cancellation and ovarian hyper-responses (14% versus 34% per initiated cycle, p < 0.005). Pregnancy rates were significantly higher with GnRH therapy, whether per initiated cycle (26.9% versus 7.6%, p = 0.005) or per patient (65.8% versus 23.5%, p = 0.007). In our study, GnRH therapy was more successful and safer than gonadotropins, for ovulation induction in "FHA-PCOM" patients. If results were confirmed by prospective studies, it could become a first-line treatment for this population, just as it is for FHA women without PCOM.
Martyniuk, Christopher J; Sanchez, Brian C; Szabo, Nancy J; Denslow, Nancy D; Sepúlveda, Maria S
2009-10-19
Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens (microg/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl(2)) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 microg/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 microg/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 microg/g) but increased cGnRH-II mRNA at the lowest dose (5 microg/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants.
Single Molecular Level Probing of Structure and Dynamics of Papain Under Denaturation.
Sengupta, Bhaswati; Chaudhury, Apala; Das, Nilimesh; Sen, Pratik
2017-01-01
Papain is a cysteine protease enzyme present in papaya and known to help in digesting peptide. Thus the structure and function of the active site of papain is of interest. The objective of present study is to unveil the overall structural transformation and the local structural change around the active site of papain as a function of chemical denaturant. Papain has been tagged at Cys-25 with a thiol specific fluorescence probe N-(7- dimethylamino-4-methylcoumarin-3-yl) iodoacetamide (DACIA). Guanidine hydrochloride (GnHCl) has been used as the chemical denaturant. Steady state, time-resolved, and single molecular level fluorescence techniques was applied to map the change in the local environment. It is found that papain undergoes a two-step denaturation in the presence of GnHCl. Fluorescence correlation spectroscopic (FCS) data indicate that the size (hydrodynamic diameter) of native papain is ~36.8 Å, which steadily increases to ~53 Å in the presence of 6M GnHCl. FCS study also reveals that the conformational fluctuation time of papain is 6.3 µs in its native state, which decreased to 2.7 µs in the presence of 0.75 M GnHCl. Upon further increase in GnHCl concentration the conformational fluctuation time increase monotonically till 6 M GnHCl, where the time constant is measured as 14 µs. On the other hand, the measurement of ellipticity, hence the helical structure, by circular dichroism spectroscopy is found to be incapable to capture such structural transformation. It is concluded that in the presence of small amount of GnHCl the active site of papain takes up a more compact structure (although the overall size increases) than in the native state, which has been designated as the intermediate state. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Losa-Ward, Sandra M.; Todd, Karina L.; McCaffrey, Katherine A.; Tsutsui, Kazuyoshi; Patisaul, Heather B.
2012-01-01
ABSTRACT Hypothalamic neurons, which produce the kisspeptin family of peptide hormones (Kp), are critical for initiating puberty and maintaining estrous cyclicity by stimulating gonadotropin-releasing hormone (GnRH) release. Conversely, RFamide-related peptide-3 (RFRP3) neurons inhibit GnRH activity. It has previously been shown that neonatal exposure to bisphenol A (BPA) can alter the timing of female pubertal onset and induce irregular estrous cycles or premature anestrus. Here we tested the hypothesis that disrupted ontogeny of RFamide signaling pathways may be a mechanism underlying advanced puberty. To test this, we used a transgenic strain of Wistar rats whose GnRH neurons express enhanced green fluorescent protein. Pups were exposed by daily subcutaneous injection to vehicle, 17beta-estradiol (E2), 50 μg/kg BPA, or 50 mg/kg BPA, from Postnatal Day (PND) 0 through PND 3, and then cohorts were euthanized on PNDs 17, 21, 24, 28, and 33 (5–8 animals per age per exposure; males were collected on PNDs 21 and 33). Vaginal opening was advanced by E2 and 50 μg/kg BPA. On PND 28, females exposed to E2 and 50 μg/kg BPA had decreased RFRP-3 fiber density and contacts on GnRH neurons. RFRP3 perikarya were also decreased in females exposed to 50 μg/kg BPA. Data suggest that BPA-induced premature puberty results from decreased inhibition of GnRH neurons. PMID:22572997
Rong, Yan; Wang, Yi; Guan, Yina; Ma, Jiangtao; Cai, Zhiqiang; Yang, Guanghua; Zhao, Xiyue
2017-10-25
Graphene (GN) and graphene oxides (GOs) are novel carbon nanomaterial; they have been attracting much attention because of their excellent properties and are widely applied in many areas, including energy, electronics, biomedicine, environmental science, etc. With industrial production and consumption of GN/GO, they will inevitably enter the soil and water environments. GN/GO may directly cause certain harm to microorganisms and lead to ecological and environmental risks. GOs are GN derivatives with abundant oxygen-containing functional groups in their graphitic backbone. The structure and chemistry of GN show obvious differences compared to those of GO, which lead to the different environmental behaviors. In this study, four different types of soil (S1-S4) were employed to investigate the effect of GN and GO on soil enzymatic activity, microbial population, and bacterial community through pyrosequencing of 16S rRNA gene amplicons. The results showed that soil enzyme activity (invertase, protease, catalase, and urease) and microbial population (bacteria, actinomycetes, and fungi) changed after GN/GO release into soils. Soil microbial community species are more rich, and the diversity also increases after GO/GN application. The phylum of Proteobacteria increased at 90 days after treatment (DAT) after GN/GO application. The phylum of Chloroflexi occurred after GN application at 90 DAT in S1 soil and reached 4.6%. Proteobacteria was the most abundant phylum in S2, S3, and S4 soils; it ranged from 43.6 to 71.4% in S2 soil, from 45.6 to 73.7% in S3 soil, and from 38.1 to 56.7% in S4 soil. The most abundant genera were Bacillus (37.5-47.0%) and Lactococcus (28.0-39.0%) in S1 soil, Lysobacter and Flavobacterium in S2 soil, Pedobacter in S3 soil, and Massilia in S4 soil. The effect of GN and GO on the soil microbial community is time-dependent, and there are no significant differences between the samples at 10 and 90 DAT.
Ismail, Mohd Nazri; Stone, Erica L; Panico, Maria; Lee, Seung Ho; Luu, Ying; Ramirez, Kevin; Ho, Samuel B; Fukuda, Minoru; Marth, Jamey D; Haslam, Stuart M; Dell, Anne
2011-01-01
Core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT), which exists in three isoforms, C2GnT1, C2GnT2 and C2GnT3, is one of the key enzymes in the O-glycan biosynthetic pathway. These isoenzymes produce core 2 O-glycans and have been correlated with the biosynthesis of core 4 O-glycans and I-branches. Previously, we have reported mice with single and multiple deficiencies of C2GnT isoenzyme(s) and have evaluated the biological and structural consequences of the loss of core 2 function. We now present more comprehensive O-glycomic analyses of neutral and sialylated glycans expressed in the colon, small intestine, stomach, kidney, thyroid/trachea and thymus of wild-type, C2GnT2 and C2GnT3 single knockouts and the C2GnT1–3 triple knockout mice. Very high-quality data have emerged from our mass spectrometry techniques with the capability of detecting O-glycans up to at least 3500 Da. We were able to unambiguously elucidate the types of O-glycan core, branching location and residue linkages, which allowed us to exhaustively characterize structural changes in the knockout tissues. The C2GnT2 knockout mice suffered a major loss of core 2 O-glycans as well as glycans with I-branches on core 1 antennae especially in the stomach and the colon. In contrast, core 2 O-glycans still dominated the O-glycomic profile of most tissues in the C2GnT3 knockout mice. Analysis of the C2GnT triple knockout mice revealed a complete loss of both core 2 O-glycans and branched core 1 antennae, confirming that the three known isoenzymes are entirely responsible for producing these structures. Unexpectedly, O-linked mannosyl glycans are upregulated in the triple deficient stomach. In addition, our studies have revealed an interesting terminal structure detected on O-glycans of the colon tissues that is similar to the RM2 antigen from glycolipids. PMID:20855471
Huser, M; Smardova, L; Janku, P; Crha, I; Zakova, J; Stourac, P; Jarkovsky, J; Mayer, J; Ventruba, P
2015-08-01
Aim of this prospective observational study was to analyze fertility status of Hodgkin lymphoma (HL) patients treated with different types of chemotherapy while receiving GnRH analogues to preserve ovarian function. Fertility status was assessed among 108 females in reproductive age treated by curative chemotherapy for freshly diagnosed HL between 2005 and 2010 in university-based tertiary fertility and oncology center. All patients received GnRH analogues during chemotherapy to preserve their ovarian function. Their reproductive functions were assessed by follicle-stimulating hormone (FSH) measurement and pregnancy achievement. Ovarian function was determined separately in three groups with increasing gonadotoxicity of chemotherapy. One year following the treatment, normal ovarian function was found in 89 (82.4%) of patients. Two years after chemotherapy, 98 (90.7%) of patients retained their ovarian function, and 23 (21.3%) achieved clinical pregnancy during the follow-up period. Average FSH after chemotherapy was 11.6 ± 17.9 IU/l 1 year after the treatment resp. 9.0 ± 13.8 at the 2 years interval. There were significantly more patients with chemotherapy induced diminished ovarian reserve (chDOR) among the group receiving escalated BEACOPP chemotherapy in comparison with the other types of treatment (58.1% vs. 87.9% resp. 95.5%). The rate of chDOR is significantly higher after EB poly-chemotherapy and there is no tendency for improvement in time. The 2 + 2 chemotherapy with GnRH-a required for more advanced HL retained ovarian function significantly better after 2 years. Another important advantage of GnRH-a co-treatment is the excellent control of patient's menstrual cycle.
Berardelli, Rita; Gianotti, Laura; Karamouzis, Ioannis; Picu, Andreea; Giordano, Roberta; D'Angelo, Valentina; Zinnà, Domenico; Lanfranco, Fabio; Ghigo, Ezio; Arvat, Emanuela
2011-10-01
Gonadotropin Releasing Hormone (GnRH) antagonists (GnRHa) suppress gonadotropin and sex-steroid secretion. In normal women, acute GnRHa administration induces inhibitory effect on pituitary-gonadal axis, followed by Luteinizing Hormone (LH) rebound. Functional hypothalamic amenorrhea (HA) is characterised by impaired gonadotropin secretion and hypogonadism secondary to blunted GnRH pulsatility. We studied the effects of a GnRHa, cetrorelix (CTX 3.0 mg), in six women with HA (age 30.7 ± 3.2 years; BMI 21.5 ± 1.7 kg/m(2)) and six control subjects (CS, 28.2 ± 0.6 years; 22.6 ± 0.9 kg/m(2)) on LH, Follicle-Stimulating Hormone (FSH) and oestradiol levels over 4 h (08.00-12.00 am) before, +24 h and +96 h after CTX; LH, FSH, and oestradiol were also evaluated at +6, +8, +12, +48, +72 h after CTX. CS: CTX reduced (p < 0.05) LH, FSH, and oestradiol (nadir at +12 h, +24 h, and +24 h); LH rebounded at +96 h, FSH and oestradiol recovered at +48 h and +72 h. The 4-h evaluation showed LH and FSH reduction (p < 0.05) at +24 h, with LH rebound at +96 h. HA: CTX reduced (p < 0.05) LH, FSH, and oestradiol, (nadir at +24 h, +48 h, and +48 h, recovery at +48 h, +72 h, and +96 h). The 4-h evaluation showed gonadotropin reduction (p < 0.05) 24 h after CTX, without any rebound effect. One single CTX dose still modulates gonadotropin secretion in HA. Its 'paradoxical' stimulatory effect on gonadotropins needs to be verified after prolonged administration.
Khare, Vineeta; Lang, Michaela; Dammann, Kyle; Campregher, Christoph; Lyakhovich, Alex; Gasche, Christoph
2014-01-01
Genome wide association studies have implicated intestinal barrier function genes in the pathogenesis of ulcerative colitis. One of such loci CDH1, encoding E-cadherin, a transmembrane glycoprotein with known tumor suppressor functions, is also linked to the susceptibility to colorectal cancer. Loss of membranous E-cadherin expression is common in both colitis and cancer. We have recently demonstrated that mesalamine (5-ASA); the anti-inflammatory drug used to treat ulcerative colitis, induces membranous expression of E-cadherin and increases intercellular adhesion. Using colorectal cancer epithelial cells with aberrant E-cadherin expression, we investigated the mechanism underlying such an effect of 5-ASA. Post-translational modification of E-cadherin glycosylation was analyzed by biotin/streptavidin detection of sialylated glycoproteins. GnT-III (N-acetylglucosaminyltransferase III) expression was assessed by qRT-PCR, Western blot and immunofluorescence. GnT-III activity was analyzed by reactivity with E-4/L-4-PHA. Expression, localization and interaction of E-cadherin and β-catenin were analyzed by Western blot, immunocytochemistry and RNA interference. 5-ASA activity modulated E-cadherin glycosylation and increased both mRNA and protein levels of GnT-III and its activity as detected by increased E4-lectin reactivity. Intestinal APCMin polyps in mice showed low expression of GnT-III and 5-ASA was effective in increasing its expression. The data demonstrated that remodeling of glycans by GnT-III mediated bisect glycosylation, contributes to the membranous retention of E-cadherin by 5-ASA; facilitating intercellular adhesion. Induction of membranous expression of E-cadherin by 5-ASA is a novel mechanism for mucosal healing in colitis that might impede tumor progression by modulation of GnT-III expression. PMID:24184502
Rosenfield, Robert L; Wroblewski, Kristen; Padmanabhan, Vasantha; Littlejohn, Elizabeth; Mortensen, Monica; Ehrmann, David A
2012-07-01
To determine the relationship of antimüllerian hormone (AMH) levels to polycystic ovaries and ovarian androgenic function. Prospective case-control study. General clinical research center. Eumenorrheic asymptomatic volunteers without (V-NO; n = 19; reference population) or with (V-PCO; n = 28) a polycystic ovary and hyperandrogenemic anovulatory subjects grouped according to ovarian function into typical PCOS (PCOS-T; n = 37) and atypical PCOS (PCOS-A; n = 18). Pelvic ultrasonography, short dexamethasone androgen-suppression test (SDAST), and GnRH agonist (GnRHag) test. Baseline AMH levels were related to polycystic ovary status, testosterone response to SDAST, and 17-hydroxyprogesterone response to GnRHag test. AMH levels correlated with SDAST and GnRHag test outcomes. AMH was elevated (>6.2 ng/mL) in 32% of V-PCO versus 5% V-NO. The 21% of V-PCO who met Rotterdam PCOS criteria all had functional ovarian hyperandrogenism, but AMH levels were similar to nonhyperandrogenic V-PCO. AMH >10.7 ng/mL discriminated V-PCO from PCOS with 96% specificity and 41% sensitivity for PCOS-T, and insignificantly for PCOS-A. AMH levels are independently related to ovarian androgenic function and polycystic ovaries. Very high AMH levels are specific but insensitive for PCOS. In the absence of hyperandrogenism, moderate AMH elevation in women with normal-variant polycystic ovaries seems to indicate an enlarged oocyte pool. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Rosenfield, Robert L.; Wroblewski, Kristen; Padmanabhan, Vasantha; Littlejohn, Elizabeth; Mortensen, Monica; Ehrmann, David A.
2013-01-01
Objective To determine the relationship of antimüllerian hormone (AMH) levels to polycystic ovaries and ovarian androgenic function. Design Prospective case-control study. Setting General clinical research center. Participant(s) Eumenorrheic asymptomatic volunteers without (V-NO; n = 19; reference population) or with (V-PCO; n = 28) a polycystic ovary and hyperandrogenemic anovulatory subjects grouped according to ovarian function into typical PCOS (PCOS-T; n = 37) and atypical PCOS (PCOS-A; n = 18). Intervention(s) Pelvic ultrasonography, short dexamethasone androgen-suppression test (SDAST), and GnRH agonist (GnRHag) test. Main Outcome Measure(s) Baseline AMH levels were related to polycystic ovary status, testosterone response to SDAST, and 17-hydroxyprogesterone response to GnRHag test. Result(s) AMH levels correlated with SDAST and GnRHag test outcomes. AMH was elevated (>6.2 ng/mL) in 32% of V-PCO versus 5% V-NO. The 21% of V-PCO who met Rotterdam PCOS criteria all had functional ovarian hyperandrogenism, but AMH levels were similar to nonhyperandrogenic V-PCO. AMH >10.7 ng/mL discriminated V-PCO from PCOS with 96% specificity and 41% sensitivity for PCOS-T, and insignificantly for PCOS-A. Conclusion(s) AMH levels are independently related to ovarian androgenic function and polycystic ovaries. Very high AMH levels are specific but insensitive for PCOS. In the absence of hyperandrogenism, moderate AMH elevation in women with normal-variant polycystic ovaries seems to indicate an enlarged oocyte pool. PMID:22541936
Melt compounding with graphene to develop functional, high-performance elastomers.
Araby, Sherif; Zaman, Izzuddin; Meng, Qingshi; Kawashima, Nobuyuki; Michelmore, Andrew; Kuan, Hsu-Chiang; Majewski, Peter; Ma, Jun; Zhang, Liqun
2013-04-26
Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer-ethylene-propylene-diene monomer rubber (EPDM)-using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment.
León, Silvia; Barroso, Alexia; Vázquez, María J.; García-Galiano, David; Manfredi-Lozano, María; Ruiz-Pino, Francisco; Heras, Violeta; Romero-Ruiz, Antonio; Roa, Juan; Schutz, Günther; Kirilov, Milen; Gaytan, Francisco; Pinilla, Leonor; Tena-Sempere, Manuel
2016-01-01
Kisspeptins, ligands of the receptor, Gpr54, are potent stimulators of puberty and fertility. Yet, whether direct kisspeptin actions on GnRH neurons are sufficient for the whole repertoire of their reproductive effects remains debatable. To dissect out direct vs. indirect effects of kisspeptins on GnRH neurons in vivo, we report herein the detailed reproductive/gonadotropic characterization of a Gpr54 null mouse line with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54−/−Tg; rescued). Despite preserved fertility, adult rescued mice displayed abnormalities in gonadal microstructure, with signs of precocious ageing in females and elevated LH levels with normal-to-low testosterone secretion in males. Gpr54−/−Tg rescued mice showed also altered gonadotropin responses to negative feedback withdrawal, while luteinizing hormone responses to various gonadotropic regulators were variably affected, with partially blunted relative (but not absolute) responses to kisspeptin-10, NMDA and the agonist of tachykinin receptors, NK2R. Our data confirm that direct effects of kisspeptins on GnRH cells are sufficient to attain fertility. Yet, such direct actions appear to be insufficient to completely preserve proper functionality of gonadotropic axis, suggesting a role of kisspeptin signaling outside GnRH cells. PMID:26755241
Seminara, Stephanie B
2006-06-01
Although the hypothalamic secretion of gonadotropin-releasing hormone (GnRH) is the defining hormonal event of puberty, the physiologic mechanisms that drive secretion of GnRH at the time of sexual maturation have been difficult to identify. After puberty is initiated, the factors that modulate the frequency and amplitude of GnRH secretion in rapidly changing sex-steroid environments (i.e. the female menstrual cycle) also remain unknown. The discovery that, in both humans and mouse models, loss-of-function mutations in the gene that encodes G-protein-coupled receptor 54 result in phenotypes of hypogonadotropic hypogonadism with an absence of pubertal development has unearthed a novel pathway regulating GnRH secretion. Ligands for G-protein-coupled receptor 54 (KiSS-1R), including metastin (derived from the parent compound, kisspeptin-1) and metastin's C-terminal peptide fragments, have been shown to be powerful stimulants for GnRH release in vivo via their stimulation of G-protein-coupled receptor 54. This article reviews the discovery of the GPR54 gene, places it into the appropriate biological context, and explores the data from in vitro and in vivo studies that point to this ligand-receptor system as a major driver of GnRH secretion.
Disrupted kisspeptin signaling in GnRH neurons leads to hypogonadotrophic hypogonadism.
Novaira, Horacio J; Sonko, Momodou L; Hoffman, Gloria; Koo, Yongbum; Ko, Chemyong; Wolfe, Andrew; Radovick, Sally
2014-02-01
Landmark studies have shown that mutations in kisspeptin and the kisspeptin receptor (Kiss1r) result in reproductive dysfunction in humans and genetically altered mouse models. However, because kisspeptin and its receptor are present in target cells of the central and peripheral reproductive axis, the precise location(s) for the pathogenic signal is unknown. The study described herein shows that the kisspeptin-Kiss1r signaling pathway in the GnRH neuron is singularly critical for both the onset of puberty as well as the attainment of normal reproductive function. In this study, we directly test the hypothesis that kisspeptin neurons regulate GnRH secretion through the activation of Kiss1r on the plasma membrane of GnRH neurons. A GnRH neuron-specific Kiss1r knockout mouse model (GKirKO) was generated, and reproductive development and phenotype were assessed. Both female and male GKirKO mice were infertile, having low serum LH and FSH levels. External abnormalities such as microphallus and decreased anogenital distance associated with failure of preputial gland separation were present in GKirKO males. A delay in pubertal onset and abnormal estrous cyclicity were observed in female GKirKO mice. Taken together, these data provide in vivo evidence that Kiss1r in GnRH neurons is critical for reproductive development and fertility.
Tranoulis, Anastasios; Laios, Alexandros; Pampanos, Andreas; Yannoukakos, Drakoulis; Loutradis, Dimitrios; Michala, Lina
2018-04-01
To systematically review and appraise the existing evidence in relation to the efficacy and safety of pulsatile gonadotropin-releasing hormone (pGnRH) for the treatment of women with hypothalamic amenorrhea (HA). Systematic review and meta-analysis. Not applicable. A total of 35 studies (three randomized and 32 observational) encompassing 1,002 women with HA. None. Primary outcomes: ovulation rate (OvR), pregnancy per ovulatory cycle rate (POR), and live birth per ovulatory cycle rate (LBOR). multiple gestation (MG), ovarian hyperstimulation syndrome (OHSS), and superficial thrombophlebitis (ST) rates. The summary measures were expressed as proportions and 95% confidence intervals (CI). Pulsatile GnRH treatment appears to achieve high OvRs. A trend toward high PORs and LBORs among women with HA is demonstrated. SC pGnRH achieves comparable OvR compared with IV pGnRH. The incidence of OHSS is low and of mild severity. Treatment with pGnRH is associated with low but slightly higher MG rates compared with the general population. IV administered pGnRH is rarely associated with ST. The high OvRs leading to a high rate of singleton pregnancies and the low likelihood of OHSS render the pGnRH treatment modality both effective and safe for the treatment of women with HA of either primary or secondary origin. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
[Management of painful endometriosis in adolescents: CNGOF-HAS Endometriosis Guidelines].
Sauvan, M; Chabbert-Buffet, N; Geoffron, S; Legendre, G; Wattier, J-M; Fernandez, H
2018-03-01
To analyse the literature on the treatment of adolescent painful endometriosis. This work is based on a Review of the literature between January 2006 and December 2017. The Medline (Pubmed) and Cochrane database were searched for meta-analyzes, randomized trials, literature reviews, controlled, not controlled and retrospective studies published on the subject. Studies concerning adolescent's dysmenorrhea without endometriosis were excluded. Study quality is heterogeneous. Dienogest and GnRH agonists (GnRHa) are the only treatments specifically evaluated for the treatment of adolescent endometriosis. They reduce the pain associated with endometriosis. Combined oral contraceptives have not been studied in the context of endometriosis but they are effective on dysmenorrhea. Add back therapy, containing estrogens improves bone mineral density and quality of life for young women treated with GnRHa. Medical treatment of endometriosis in adolescent is associated with risks related to the young age. The therapeutic strategy should take into account the adverse effects of each treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Vastagh, Csaba; Rodolosse, Annie; Solymosi, Norbert; Farkas, Imre; Auer, Herbert; Sárvári, Miklós; Liposits, Zsolt
2015-01-01
Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the regulation of the hypothalamic-pituitary gonadal axis in a sex-specific manner. We hypothesized that the differences seen in reproductive functions of males and females are associated with a sexually dimorphic gene expression profile of GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact metestrous female and male GnRH-green fluorescent protein transgenic mice. About 1,500 individual GnRH neurons from each sex were sampled with laser capture microdissection followed by whole-transcriptome amplification for gene expression profiling. Under stringent selection criteria (fold change >1.6, adjusted p value 0.01), Affymetrix Mouse Genome 430 PM array analysis identified 543 differentially expressed genes. Sexual dimorphism was most apparent in gene clusters associated with synaptic communication, signal transduction, cell adhesion, vesicular transport and cell metabolism. To validate microarray results, 57 genes were selected, and 91% of their differential expression was confirmed by real-time PCR. Similarly, 88% of microarray results were confirmed with PCR from independent samples obtained by patch pipette harvesting and pooling of 30 GnRH neurons from each sex. We found significant differences in the expression of genes involved in vesicle priming and docking (Syt1, Cplx1), GABAergic (Gabra3, Gabrb3, Gabrg2) and glutamatergic (Gria1, Grin1, Slc17a6) neurotransmission, peptide signaling (Sstr3, Npr2, Cxcr4) and the regulation of intracellular ion homeostasis (Cacna1, Cacnb1, Cacng5, Kcnq2, Kcnc1). The striking sexual dimorphism of the GnRH neuron transcriptome we report here contributes to a better understanding of the differences in cellular mechanisms of GnRH neurons in the two sexes. © 2015 S. Karger AG, Basel.
Kalamatianos, T; du Toit, L; Hrabovszky, E; Kalló, I; Marsh, P J; Bennett, N C; Coen, C W
2005-05-01
Regulation of pituitary gonadotrophins by the decapeptide gonadotrophin-releasing hormone 1 (GnRH1) is crucial for the development and maintenance of reproductive functions. A common amino acid sequence for this decapeptide, designated as 'mammalian' GnRH, has been identified in all mammals thus far investigated with the exception of the guinea pig, in which there are two amino acid substitutions. Among hystricognath rodents, the members of the family Bathyergidae regulate reproduction in response to diverse cues. Thus, highveld mole-rats (Cryptomys hottentotus pretoriae) are social bathyergids in which breeding is restricted to a particular season in the dominant female, but continuously suppressed in subordinate colony members. Elucidation of reproductive control in these animals will be facilitated by characterization of their GnRH1 gene. A partial sequence of GnRH1 precursor cDNA was isolated and characterized. Comparative analysis revealed the highest degree of identity (86%) to guinea pig GnRH1 precursor mRNA. Nevertheless, the deduced amino acid sequence of the mole-rat decapeptide is identical to the 'mammalian' sequence rather than that of guinea pigs. Successful detection of GnRH1-synthesizing neurones using either a guinea pig GnRH1 riboprobe or an antibody against the 'mammalian' decapeptide is consistent with the guinea pig-like sequence for the precursor and the classic 'mammalian' form for the decapeptide. The high degree of identity in the GnRH1 precursor sequence between this Old World mole-rat and the New World guinea pig is consistent with the theory that caviomorphs and phiomorphs originated from a common ancestral line in the Palaeocene to mid Eocene, some 63-45 million years ago.
Yip, Siew Hoong; Boehm, Ulrich; Herbison, Allan E; Campbell, Rebecca E
2015-07-01
Kisspeptin neurons play an essential role in the regulation of fertility through direct regulation of the GnRH neurons. However, the relative contributions of the two functionally distinct kisspeptin neuron subpopulations to this critical regulation are not fully understood. Here we analyzed the specific projection patterns of kisspeptin neurons originating from either the rostral periventricular nucleus of the third ventricle (RP3V) or the arcuate nucleus (ARN) using a cell-specific, viral-mediated tract-tracing approach. We stereotaxically injected a Cre-dependent recombinant adenovirus encoding farnesylated enhanced green fluorescent protein into the ARN or RP3V of adult male and female mice expressing Cre recombinase in kisspeptin neurons. Fibers from ARN kisspeptin neurons projected widely; however, we did not find any evidence for direct contact with GnRH neuron somata or proximal dendrites in either sex. In contrast, we identified RP3V kisspeptin fibers in close contact with GnRH neuron somata and dendrites in both sexes. Fibers originating from both the RP3V and ARN were observed in close contact with distal GnRH neuron processes in the ARN and in the lateral and internal aspects of the median eminence. Furthermore, GnRH nerve terminals were found in close contact with the proximal dendrites of ARN kisspeptin neurons in the ARN, and ARN kisspeptin fibers were found contacting RP3V kisspeptin neurons in both sexes. Together these data delineate selective zones of kisspeptin neuron inputs to GnRH neurons and demonstrate complex interconnections between the distinct kisspeptin populations and GnRH neurons.
Babwah, Andy V; Navarro, Víctor M; Ahow, Maryse; Pampillo, Macarena; Nash, Connor; Fayazi, Mehri; Calder, Michele; Elbert, Adrienne; Urbanski, Henryk F; Wettschureck, Nina; Offermanns, Stefan; Carroll, Rona S; Bhattacharya, Moshmi; Tobet, Stuart A; Kaiser, Ursula B
2015-09-16
The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility and kisspeptin (KP) is a potent trigger of GnRH secretion from GnRH neurons. KP signals via KISS1R, a Gαq/11-coupled receptor, and mice bearing a global deletion of Kiss1r (Kiss1r(-/-)) or a GnRH neuron-specific deletion of Kiss1r (Kiss1r(d/d)) display hypogonadotropic hypogonadism and infertility. KISS1R also signals via β-arrestin, and in mice lacking β-arrestin-1 or -2, KP-triggered GnRH secretion is significantly diminished. Based on these findings, we hypothesized that ablation of Gαq/11 in GnRH neurons would diminish but not completely block KP-triggered GnRH secretion and that Gαq/11-independent GnRH secretion would be sufficient to maintain fertility. To test this, Gnaq (encodes Gαq) was selectively inactivated in the GnRH neurons of global Gna11 (encodes Gα11)-null mice by crossing Gnrh-Cre and Gnaq(fl/fl);Gna11(-/-) mice. Experimental Gnaq(fl/fl);Gna11(-/-);Gnrh-Cre (Gnaq(d/d)) and control Gnaq(fl/fl);Gna11(-/-) (Gnaq(fl/fl)) littermate mice were generated and subjected to reproductive profiling. This process revealed that testicular development and spermatogenesis, preputial separation, and anogenital distance in males and day of vaginal opening and of first estrus in females were significantly less affected in Gnaq(d/d) mice than in previously characterized Kiss1r(-/-) or Kiss1r(d/d) mice. Additionally, Gnaq(d/d) males were subfertile, and although Gnaq(d/d) females did not ovulate spontaneously, they responded efficiently to a single dose of gonadotropins. Finally, KP stimulation triggered a significant increase in gonadotropins and testosterone levels in Gnaq(d/d) mice. We therefore conclude that the milder reproductive phenotypes and maintained responsiveness to KP and gonadotropins reflect Gαq/11-independent GnRH secretion and activation of the neuroendocrine-reproductive axis in Gnaq(d/d) mice. The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility. Over the last decade, several studies have established that the KISS1 receptor, KISS1R, is a potent trigger of GnRH secretion and inactivation of KISS1R on the GnRH neuron results in infertility. While KISS1R is best understood as a Gαq/11-coupled receptor, we previously demonstrated that it could couple to and signal via non-Gαq/11-coupled pathways. The present study confirms these findings and, more importantly, while it establishes Gαq/11-coupled signaling as a major conduit of GnRH secretion, it also uncovers a significant role for non-Gαq/11-coupled signaling in potentiating reproductive development and function. This study further suggests that by augmenting signaling via these pathways, GnRH secretion can be enhanced to treat some forms of infertility. Copyright © 2015 the authors 0270-6474/15/3512904-14$15.00/0.
Efficacy of elagolix in the treatment of endometriosis.
Perricos, Alexandra; Wenzl, René
2017-09-01
Much research has gone into developing medications that can be used to alleviate endometriosis-associated symptoms. In addition to already established medications, a new GnRH antagonist, elagolix, is in development. The novelty of this drug compared to other GnRH antagonists, is its nonpeptide structure, allowing it to be administered orally. Areas covered: We analyzed several Phase I, II and III clinical trials that have evaluated the safety and efficacy of this new medication. Expert opinion: Since many medications have been put on the market and have gained popularity for the treatment of endometriosis-associated symptoms, the demonstration of equality or superiority of effect, tolerability, as well as patient compliance should be assessed when introducing a new drug. While elagolix may have an advantage over established GnRH agonists, in that it does not lead to a 'flare-up' effect, it too, takes a toll on bone mineral density. Nevertheless, studies have shown that this new oral GnRH antagonist is well tolerated, and the side effects have been described as 'mild or moderate'. However, in order to examine whether elagolix can compete with or even surpass established gold-standard medical treatments in this field, further studies that directly compare elagolix to said treatments, might be necessary.
Perrett, Rebecca M.; McArdle, Craig A.
2013-01-01
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling. PMID:24312080
Kaya, D; Gram, A; Kowalewski, M P; Schäfer-Somi, S; Kuru, M; Boos, A; Aslan, S
2017-12-01
The goals of this study were as follows: (Experiment 1) to examine the basic capability of canine corpora lutea (CL) to respond to GnRH by assessing expression of gonadotropin-releasing hormone receptor (GnRH-R) in luteal samples collected throughout the luteal lifespan from non-pregnant dogs, and (Experiment 2) to investigate the effects of pre-pubertal application of the GnRH agonist deslorelin acetate on luteal function following the first oestrus. Mature CL were collected during the mid-luteal phase (days 30-45) from treated and control bitches. Transcript levels of several factors were determined: estrogen receptors (ESR1/ERα, ESR2/ERβ), progesterone (P4)-receptor (PGR), prolactin receptor (PRLR), PGE2-synthase (PTGES) and PGE2 receptors (PTGER2/EP2, PTGER4/EP4), vascular endothelial growth factor (VEGFA) and VEGF receptors (VEGFR1 and VEGFR2), cyclooxygenase 2 (COX2/PTGS2), steroidogenic acute regulatory protein (STAR) and 3β-hydroxysteroid dehydrogenase (3βHSD). Additionally, levels of Kisspeptin 1 (Kiss1) and its receptor (KISS1-R) were evaluated. Although generally low, GnRH-R expression was time dependent and was elevated during early dioestrus, with a significant decrease towards luteal regression. In deslorelin-treated and control dogs, its expression was either low or frequently below the detection limit. EP2 and VEGFR1 were higher in the treated group, which could be caused by a feedback mechanism after long-term suppression of reproductive activity. Despite large individual variations, 3βHSD was higher in the deslorelin-treated group. This, along with unchanged STAR expression, was apparently not mirrored in increased luteal functionality, because similar P4 levels were detected in both groups. Finally, the deslorelin-mediated long-term delay of puberty does not have negative carry-over effects on subsequent ovarian functionality in bitches. © 2017 Blackwell Verlag GmbH.
Wadas, B C; Hartshorn, C A; Aurand, E R; Palmer, J S; Roselli, C E; Noel, M L; Gore, A C; Veeramachaneni, D N R; Tobet, S A
2010-06-01
Developmental exposure to the agricultural fungicide vinclozolin can impair reproductive function in male rabbits and was previously found to decrease the number of immunoreactive-gonadotrophin-releasing hormone (GnRH) neurones in the region of the organum vasculosum of the lamina terminalis and rostral preoptic area by postnatal week (PNW) 6. In the present study, in an aim to further examine the disruption of GnRH neurones by foetal vinclozolin exposure, pregnant rabbits were dosed orally with vinclozolin, flutamide or carrot paste vehicle for the last 2 weeks of gestation. Offspring were euthanised at birth (males and females), PNW 6 (females), PNW 26 (adult males) or PNW 30 (adult females) of age. At birth and in adults, brains were sectioned and processed for immunoreactive GnRH. The numbers of immunoreactive GnRH neuronal perikarya were significantly decreased in vinclozolin-treated rabbits at birth and in adult littermates. By contrast, there was an increase in GnRH immunoreactivity in the terminals in the region of the median eminence. Analysis of PNW 6 female brains by radioimmunoassay revealed a two-fold increase in GnRH peptide content in the mediobasal hypothalamus in vinclozolin-treated rabbits. This finding was complemented by immunofluorescence analyses, which revealed a 2.8-fold increase in GnRH immunoreactivity in the median eminence of vinclozolin compared to vehicle-treated females at PNW 30. However, there was no difference between treatment groups in the measures of reproduction that were evaluated: ejaculation latency, conception rates or litter size. These results indicate that sub-acute, prenatal vinclozolin treatment is sufficient to create perdurable alterations in the GnRH neuronal network that forms an important input into the reproductive axis. Finally, the effect of vinclozolin on the GnRH neuronal network was not comparable to that of flutamide, suggesting that vinclozolin was not acting through anti-androgenic mechanisms.
Wadas, B.C.; Hartshorn, C.A.; Aurand, E.R.; Palmer, J.S.; Roselli, C.E.; Noel, M.L.; Gore, A.C.; Veeramachaneni, D.N.R.; Tobet, S.A.
2010-01-01
Developmental exposure to the agricultural fungicide vinclozolin can impair reproductive function in male rabbits and was previously found to decrease the number of immunoreactive-gonadotropin-releasing hormone (ir-GnRH) neurons in the region of the organum vasculosum of the lamina terminalis (OVLT) and rostral preoptic area (rPOA) by postnatal week (PNW) 6. To further examine the disruption of GnRH neurons by fetal vinclozolin exposure, in the current study, pregnant rabbits were dosed orally with vinclozolin, flutamide, or carrot paste vehicle for the last two weeks of gestation. Offspring were euthanized at birth (males and females), PNW6 (females), PNW26 (adult males), or PNW30 (adult females) of age. At birth and in adults, brains were sectioned and processed for immunoreactive GnRH. The numbers of immunoreactive GnRH neuronal perikarya were significantly decreased in vinclozolin-treated rabbits at birth and in adult littermates. By contrast, there was an increase in GnRH immunoreactivity in the terminals in the region of the median eminence. Analysis of PNW6 female brains by radioimmunoassay (RIA) revealed a two-fold increase in GnRH peptide content in the mediobasal hypothalamus in vinclozolin-treated rabbits. This finding was complemented by immunofluorescence analyses that showed a 2.8-fold increase in GnRH immunoreactivity in the median eminence of vinclozolin compared to vehicle-treated females at PNW30. However, there was no difference between treatment groups in the measures of reproduction that were evaluated: ejaculation latency, conception rates or litter size. These results indicate that subacute, prenatal vinclozolin treatment is sufficient to create perdurable alterations in the GnRH neuronal network that forms an important input into the reproductive axis. Finally, the effect of vinclozolin on the GnRH neuronal network was not comparable to that of flutamide, suggesting that vinclozolin was not acting through anti-androgenic mechanisms. PMID:20236232
Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, J.S.; Klibanski, A.; Neer, R.M.
To assess the effects of gonadal steroid replacement on bone density in men with osteoporosis due to severe hypogonadism, we measured cortical bone density in the distal radius by 125I photon absorptiometry and trabecular bone density in the lumbar spine by quantitative computed tomography in 21 men with isolated GnRH deficiency while serum testosterone levels were maintained in the normal adult male range for 12-31 months (mean +/- SE, 23.7 +/- 1.1). In men who initially had fused epiphyses (n = 15), cortical bone density increased from 0.71 +/- 0.02 to 0.74 +/- 0.01 g/cm2 (P less than 0.01), whilemore » trabecular bone density did not change (116 +/- 9 compared with 119 +/- 7 mg/cm3). In men who initially had open epiphyses (n = 6), cortical bone density increased from 0.62 +/- 0.01 to 0.70 +/- 0.03 g/cm2 (P less than 0.01), while trabecular bone density increased from 96 +/- 13 to 109 +/- 12 mg/cm3 (P less than 0.01). Cortical bone density increased 0.03 +/- 0.01 g/cm2 in men with fused epiphyses and 0.08 +/- 0.02 g/cm2 in men with open epiphyses (P less than 0.05). Despite these increases, neither cortical nor trabecular bone density returned to normal levels. Histomorphometric analyses of iliac crest bone biopsies demonstrated that most of the men had low turnover osteoporosis, although some men had normal to high turnover osteoporosis. We conclude that bone density increases during gonadal steroid replacement of GnRH-deficient men, particularly in men who are skeletally immature.« less
Sills, E Scott; Collins, Gary S; Salem, Shala A; Jones, Christopher A; Peck, Alison C; Salem, Rifaat D
2012-08-30
During in vitro fertilization (IVF), fertility patients are expected to self-administer many injections as part of this treatment. While newer medications have been developed to substantially reduce the number of these injections, such agents are typically much more expensive. Considering these differences in both cost and number of injections, this study compared patient preferences between GnRH-agonist and GnRH-antagonist based protocols in IVF. Data were collected by voluntary, anonymous questionnaire at first consultation appointment. Patient opinion concerning total number of s.c. injections as a function of non-reimbursed patient cost associated with GnRH-agonist [A] and GnRH-antagonist [B] protocols in IVF was studied. Completed questionnaires (n = 71) revealed a mean +/- SD patient age of 34 +/- 4.1 yrs. Most (83.1%) had no prior IVF experience; 2.8% reported another medical condition requiring self-administration of subcutaneous medication(s). When out-of-pocket cost for [A] and [B] were identical, preference for [B] was registered by 50.7% patients. The tendency to favor protocol [B] was weaker among patients with a health occupation. Estimated patient costs for [A] and [B] were $259.82 +/- 11.75 and $654.55 +/- 106.34, respectively (p < 0.005). Measured patient preference for [B] diminished as the cost difference increased. This investigation found consistently higher non-reimbursed direct medication costs for GnRH-antagonist IVF vs. GnRH-agonist IVF protocols. A conditional preference to minimize downregulation (using GnRH-antagonist) was noted among some, but not all, IVF patient sub-groups. Compared to IVF patients with a health occupation, the preference for GnRH-antagonist was weaker than for other patients. While reducing total number of injections by using GnRH-antagonist is a desirable goal, it appears this advantage is not perceived equally by all IVF patients and its utility is likely discounted heavily by patients when nonreimbursed medication costs reach a critical level.
2012-01-01
Background During in vitro fertilization (IVF), fertility patients are expected to self-administer many injections as part of this treatment. While newer medications have been developed to substantially reduce the number of these injections, such agents are typically much more expensive. Considering these differences in both cost and number of injections, this study compared patient preferences between GnRH-agonist and GnRH-antagonist based protocols in IVF. Methods Data were collected by voluntary, anonymous questionnaire at first consultation appointment. Patient opinion concerning total number of s.c. injections as a function of non-reimbursed patient cost associated with GnRH-agonist [A] and GnRH-antagonist [B] protocols in IVF was studied. Results Completed questionnaires (n = 71) revealed a mean +/− SD patient age of 34 +/− 4.1 yrs. Most (83.1%) had no prior IVF experience; 2.8% reported another medical condition requiring self-administration of subcutaneous medication(s). When out-of-pocket cost for [A] and [B] were identical, preference for [B] was registered by 50.7% patients. The tendency to favor protocol [B] was weaker among patients with a health occupation. Estimated patient costs for [A] and [B] were $259.82 +/− 11.75 and $654.55 +/− 106.34, respectively (p < 0.005). Measured patient preference for [B] diminished as the cost difference increased. Conclusions This investigation found consistently higher non-reimbursed direct medication costs for GnRH-antagonist IVF vs. GnRH-agonist IVF protocols. A conditional preference to minimize downregulation (using GnRH-antagonist) was noted among some, but not all, IVF patient sub-groups. Compared to IVF patients with a health occupation, the preference for GnRH-antagonist was weaker than for other patients. While reducing total number of injections by using GnRH-antagonist is a desirable goal, it appears this advantage is not perceived equally by all IVF patients and its utility is likely discounted heavily by patients when nonreimbursed medication costs reach a critical level. PMID:22935199
Maffucci, Jacqueline A.; Walker, Deena M.; Ikegami, Aiko; Woller, Michael J.; Gore, Andrea C.
2008-01-01
The loss of reproductive capacity during aging involves changes in the neural regulation of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons controlling reproduction. This neuronal circuitry includes glutamate receptors on GnRH neurons. Previously, we reported an increase in the expression of the NR2b subunit protein of the NMDA receptor on GnRH neurons in middle-aged compared to young female rats. Here, we examined the functional implications of the NR2b subunit on the onset of reproductive aging, using an NR2b-specific antagonist ifenprodil. Young (3–5 mos.) and middle-aged (10–13 mos.) female rats were ovariectomized (OVX), 17β-estradiol (E2) or vehicle (cholesterol) treated, and implanted with a jugular catheter. Serial blood sampling was undertaken every 10 minutes for 4 hours, with ifenprodil (10mg/kg) or vehicle injected (i.p.) after one hour of baseline sampling. The pulsatile release of pituitary LH and levels of GnRH mRNA in hypothalamus were quantified as indices of the reproductive axis. Our results showed effects of ifenprodil on both endpoints. In OVX rats given cholesterol, neither age nor ifenprodil had any effects on LH release. In E2-treated rats, aging was associated with significant decreases in pulsatile LH release. Additionally, ifenprodil stimulated parameters of pulsatile LH release in both young and middle-aged animals. Ifenprodil had few effects on GnRH mRNA; the only significant effect of ifenprodil was found in the middle-aged, cholesterol group. Together, these findings support a role for the NR2b subunit of the NMDAR in GnRH/LH regulation. Because most of these effects were exhibited on pituitary LH release in the absence of a concomitant change in GnRH gene expression, it is likely that NMDA receptors containing the NR2b subunit plays a role in GnRH-induced LH release, independent of de novo GnRH gene expression. PMID:18025808
Nuruddin, Syed; Krogenæs, Anette; Brynildsrud, Ola Brønstad; Verhaegen, Steven; Evans, Neil P; Robinson, Jane E; Haraldsen, Ira Ronit Hebold; Ropstad, Erik
2013-12-01
The nature of hormonal involvement in pubertal brain development has attracted wide interest. Structural changes within the brain that occur during pubertal development appear mainly in regions closely linked with emotion, motivation and cognitive functions. Using a sheep model, we have previously shown that peri-pubertal pharmacological blockade of gonadotropin releasing hormone (GnRH) receptors, results in exaggerated sex-differences in cognitive executive function and emotional control, as well as sex and hemisphere specific patterns of expression of hippocampal genes associated with synaptic plasticity and endocrine signaling. In this study, we explored effects of this treatment regime on the gene expression profile of the ovine amygdala. The study was conducted with 30 same-sex twin lambs (14 female and 16 male), half of which were treated with the GnRH agonist (GnRHa) goserelin acetate every 4th week, beginning before puberty, until approximately 50 weeks of age. Gene expression profiles of the left and right amygdala were measured using 8×15 K Agilent ovine microarrays. Differential expression of selected genes was confirmed by qRT-PCR (Quantitative real time PCR). Networking analyses and Gene Ontology (GO) Term analyses were performed with Ingenuity Pathway Analysis (IPA), version 7.5 and DAVID (Database for Annotation, Visualization and integrated Discovery) version 6.7 software packages, respectively. GnRHa treatment was associated with significant sex- and hemisphere-specific differential patterns of gene expression. GnRHa treatment was associated with differential expression of 432 (|logFC|>0.3, adj. p value <0.05) and 46 (p value <0.0.5) genes in the left and right amygdala, respectively, of female animals, relative to the reference sample which consisted of all a pooled sample from control and treated animals of both sexes. No genes were found to be differentially expressed as a result of GnRHa treatment in the male animals. The results indicated that GnRH may, directly and/or indirectly, be involved in the regulation of sex- and hemisphere-specific differential expression of genes in the amygdala. This finding should be considered when long-term peri-pubertal GnRHa treatment is used in children. Copyright © 2013 Elsevier Ltd. All rights reserved.
Choi, Young Jae; Kim, Na Na; Habibi, Hamid R; Choi, Cheol Young
2016-09-01
Hypothalamic peptide neurohormones such as gonadotropin-releasing hormones (GnRHs) and gonadotropin-inhibitory hormone (GnIH) play pivotal roles in the control of reproduction and gonadal maturation in teleost fish. To study the effects of GnIH on fish reproduction, we investigated the influence of seabream GnRH (sbGnRH) and GnIH (both alone and in combination) on levels of reproductive genes (GnIH, GnIH-receptor [GnIH-R], melatonin receptor [MT3], sbGnRH, and gonadotropic hormones [GTHs]) during different stages of gonadal maturation in male, female, and immature cinnamon clownfish, Amphiprion melanopus. The results showed that the expression levels of GnIH, GnIH-R, and MT3 genes increased after the GnIH injection, but decreased after the sbGnRH injection. In addition, these gene expression levels gradually lowered after GnIH3 and sbGnRH combination treatment, as compared to the MT3 mRNA levels of GnIH treatment alone. However, the expression levels of the HPG (hypothalamus-pituitary-gonad) axis genes (sbGnRH and GTHs) decreased after the GnIH injection, but increased after the sbGnRH injection. In all cinnamon clownfish groups, HPG axis gene mRNA levels gradually decreased after mixed GnIH3 and sbGnRH treatment, compared to GnIH treatment alone. The present study provides novel information on the effects of GnIH and strongly supports the hypothesis that GnIH plays an important role in the negative regulation of the HPG axis in the protandrous cinnamon clownfish. Copyright © 2016 Elsevier Inc. All rights reserved.
The kisspeptin-GnRH pathway in human reproductive health and disease
Skorupskaite, Karolina; George, Jyothis T; Anderson, Richard A
2014-01-01
BACKGROUND The discovery of kisspeptin as key central regulator of GnRH secretion has led to a new level of understanding of the neuroendocrine regulation of human reproduction. The related discovery of the kisspeptin-neurokinin B-dynorphin (KNDy) pathway in the last decade has further strengthened our understanding of the modulation of GnRH secretion by endocrine, metabolic and environmental inputs. In this review, we summarize current understanding of the physiological roles of these novel neuropeptides, and discuss the clinical relevance of these discoveries and their potential translational applications. METHODS A systematic literature search was performed using PUBMED for all English language articles up to January 2014. In addition, the reference lists of all relevant original research articles and reviews were examined. This review focuses mainly on published human studies but also draws on relevant animal data. RESULTS Kisspeptin is a principal regulator of the secretion of gonadotrophins, and through this key role it is critical for the onset of puberty, the regulation of sex steroid-mediated feedback and the control of adult fertility. Although there is some sexual dimorphism, both neuroanatomically and functionally, these functions are apparent in both men and women. Kisspeptin acts upstream of GnRH and, following paracrine stimulatory and inhibitory inputs from neurokinin B and dynorphin (KNDy neuropeptides), signals directly to GnRH neurones to control pulsatile GnRH release. When administered to humans in different isoforms, routes and doses, kisspeptin robustly stimulates LH secretion and LH pulse frequency. Manipulation of the KNDy system is currently the focus of translational research with the possibility of future clinical application to regulate LH pulsatility, increasing gonadal sex steroid secretion in reproductive disorders characterized by decreased LH pulsatility, including hypothalamic amenorrhoea and hypogonadotropic hypogonadism. Conversely there may be scope to reduce the activity of the KNDy system to reduce LH secretion where hypersecretion of LH adds to the phenotype, such as in polycystic ovary syndrome. CONCLUSIONS Kisspeptin is a recently discovered neuromodulator that controls GnRH secretion mediating endocrine and metabolic inputs to the regulation of human reproduction. Manipulation of kisspeptin signalling has the potential for novel therapies in patients with pathologically low or high LH pulsatility. PMID:24615662
Social regulation of gonadotropin-releasing hormone.
White, Stephanie A; Nguyen, Tuan; Fernald, Russell D
2002-09-01
Behavioral interactions among social animals can regulate both reproductive behavior and fertility. A prime example of socially regulated reproduction occurs in the cichlid fish Haplochromis burtoni, in which interactions between males dynamically regulate gonadal function throughout life. This plasticity is mediated by the brain, where neurons that contain the key reproductive regulatory peptide gonadotropin-releasing hormone (GnRH) change size reversibly depending on male social status. To understand how behavior controls the brain, we manipulated the social system of these fish, quantified their behavior and then assessed neural and physiological changes in the reproductive and stress axes. GnRH gene expression was assessed using molecular probes specific for the three GnRH forms in the brain of H. burtoni. We found that perception of social opportunity to increase status by a male leads to heightened aggressiveness, to increased expression of only one of the three GnRH forms and to increases in size of GnRH-containing neurons and of the gonads. The biological changes characteristic of social ascent happen faster than changes following social descent. Interestingly, behavioral changes show the reverse pattern: aggressive behaviors emerge more slowly in ascending animals than they disappear in descending animals. Although the gonads and GnRH neurons undergo similar changes in female H. burtoni, regulation occurs via endogenous rather than exogenous social signals. Our data show that recognition of social signals by males alters stress levels, which may contribute to the alteration in GnRH gene expression in particular neurons essential for the animal to perform in its new social status.
Galvão, K N; Santos, J E P
2010-06-01
Objectives were to evaluate risk factors affecting ovulatory responses and conception rate to the Ovsynch protocol. Holstein cows, 466, were submitted to the Ovsynch protocol [day 0, GnRH-1; day 7, prostaglandin (PG) F(2alpha); day 9, GnRH-2] and 103 cows were inseminated 12 h after GnRH-2. Information on parity, days in milk at GnRH-1, body condition, milk yield, exposure to heat stress, pre-synchronization with PGF(2alpha) and the use of progesterone insert from GnRH-1 to PGF(2alpha) was collected. Ovaries were scanned to determine responses to treatments. Overall, 54.7%, 10.6%, 2.2%, 81.1%, 9.0%, 91.5% and 36.9% of the cows ovulated to GnRH-1, multiple ovulated to GnRH-1, ovulated before GnRH-2, ovulated to GnRH-2, multiple ovulated to GnRH-2, experienced corpus luteum (CL) regression and conceived, respectively. Ovulation to GnRH-1 was greater in cows without a CL at GnRH-1, cows with follicles >19 mm and cows not pre-synchronized with PGF(2alpha) 14 days before GnRH-1. Multiple ovulations to GnRH-1 increased in cows without CL at GnRH-1 and cows with follicles < or =19 mm at GnRH-1. Ovulation before GnRH-2 was greater in cows without CL at PGF(2alpha). Ovulation to GnRH-2 increased in cows that received a progesterone insert, cows with a CL at GnRH-1, cows with follicles not regressing from the PGF(2alpha) to GnRH-2, cows with larger follicles at GnRH-2, cows that ovulated to GnRH-1 and cows not pre-synchronized. Multiple ovulations after GnRH-2 increased in cows with no CL at GnRH-1, multiparous cows and cows that multiple ovulated to GnRH-1. Conception rate at 42 days after AI increased in cows with body condition score > 2.75 and cows that ovulated to GnRH-2. Strategies that optimize ovulation to GnRH-2, such as increased ovulation to GnRH-1, should improve response to the Ovsynch protocol.
The role of brain peptides in the reproduction of blue gourami males (Trichogaster trichopterus).
Levy, Gal; Degani, Gad
2013-10-01
In all vertebrates, reproduction and growth are closely linked and both are controlled by complex hormonal interactions at the brain-pituitary level. In this study, we focused on the reciprocal interactions between brain peptides that regulate growth and reproductive functions in a teleostei fish (blue gourami Trichogaster trichopterus). An increase in gonadotropin-releasing hormone 1 (GnRH1) gene expression was detected during ontogeny, and this peptide increased growth hormone (GH) and β follicle-stimulating hormone (βFSH) gene expression in pituitary cell culture. However, although no change in gonadotropin-releasing hormone 2 (GnRH2) gene expression during the reproductive cycle or sexual behavior was detected, a stimulatory effect of this peptide on β gonadotropins (βGtH) gene expression was observed. In addition, pituitary adenylate cyclase-activating polypeptide 38 (PACAP-38) inhibited GnRH-analog-induced βFSH gene expression, and co-treatment of cells with GnRH-analog and PACAP-38 inhibited GnRH-analog-stimulatory and PACAP-38-inhibitory effects on GH gene expression. These findings together with previous studies were used to create a model summarizing the mechanism of brain peptides (GnRH, PACAP and its related peptide) and the relationship to reproduction and growth through pituitary hormone gene expression during ontogenesis and reproductive stages in blue gourami. © 2013 Wiley Periodicals, Inc.
Identification of gonadotropin-releasing hormone metabolites in greyhound urine.
Palmer, David; Rademaker, Katie; Martin, Ingrid; Hessell, Joan; Howitt, Rob
2017-10-01
Gonadotropin-releasing hormone (GnRH) is a 10-residue peptide hormone that induces secretion of luteinizing hormone (LH) and follicle-stimulating hormone into the blood from the pituitary gland. In males, LH acts on the testes to produce testosterone. The performance-enhancing potential of testosterone makes administration of exogenous GnRH a concern in sports doping control. Detection of GnRH abuse is challenging owing to its rapid clearance from the body and its degradation in urine. Following recent investigations of GnRH abuse in racing greyhounds in New Zealand, we carried out a GnRH administration study in greyhounds in an attempt to identify GnRH metabolites that might provide more facile detection of GnRH abuse; little information is available on in vivo metabolites of exogenous GnRH in any species and none in dogs. We identified three C-terminal GnRH metabolites in urine: GnRH 5-10, GnRH 6-10, and GnRH 7-10. These metabolites and intact GnRH, which was also detected in urine, were all excreted over a 1-3 h period after GnRH administration. Two of the GnRH metabolites - GnRH 5-10 and GnRH 6-10 - were more stable in urine than intact GnRH offering improved potential to detect GnRH administration. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Role of gonadotropin-releasing hormone (GnRH) in ovarian cancer
Gründker, Carsten; Emons, Günter
2003-01-01
The expression of GnRH (GnRH-I, LHRH) and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumors, including cancers of the ovary. The proliferation of human ovarian cancer cell lines is time- and dose-dependently reduced by GnRH and its superagonistic analogs. The classical GnRH receptor signal-transduction mechanisms, known to operate in the pituitary, are not involved in the mediation of antiproliferative effects of GnRH analogs in these cancer cells. The GnRH receptor rather interacts with the mitogenic signal transduction of growth-factor receptors and related oncogene products associated with tyrosine kinase activity via activation of a phosphotyrosine phosphatase resulting in downregulation of cancer cell proliferation. In addition GnRH activates nucleus factor κB (NFκB) and protects the cancer cells from apoptosis. Furthermore GnRH induces activation of the c-Jun N-terminal kinase/activator protein-1 (JNK/AP-1) pathway independent of the known AP-1 activators, protein kinase (PKC) or mitogen activated protein kinase (MAPK/ERK). Recently it was shown that human ovarian cancer cells express a putative second GnRH receptor specific for GnRH type II (GnRH-II). The proliferation of these cells is dose- and time-dependently reduced by GnRH-II in a greater extent than by GnRH-I (GnRH, LHRH) superagonists. In previous studies we have demonstrated that in ovarian cancer cell lines except for the EFO-27 cell line GnRH-I antagonist Cetrorelix has comparable antiproliferative effects as GnRH-I agonists indicating that the dichotomy of GnRH-I agonists and antagonists might not apply to the GnRH-I system in cancer cells. After GnRH-I receptor knock down the antiproliferative effects of GnRH-I agonist Triptorelin were abrogated while the effects of GnRH-I antagonist Cetrorelix and GnRH-II were still existing. In addition, in the ovarian cancer cell line EFO-27 GnRH-I receptor but not putative GnRH-II receptor expression was found. These data suggest that in ovarian cancer cells the antiproliferative effects of GnRH-I antagonist Cetrorelix and GnRH-II are not mediated through the GnRH-I receptor. PMID:14594454
A Multi-Function Guidance, Navigation and Control System for Future Earth and Space Missions
NASA Technical Reports Server (NTRS)
Gambino, Joel; Dennehy, Neil; Bauer, Frank H. (Technical Monitor)
2002-01-01
Over the past several years the Guidance, Navigation and Control Center (GNCC) at NASA's Goddard Space Flight Center (GSFC) has actively engaged in the development of advanced GN&C technology to enable future Earth and Space science missions. The Multi-Function GN&C System (MFGS) design presented in this paper represents the successful coalescence of several discrete GNCC hardware and software technology innovations into one single highly integrated, compact, low power and low cost unit that simultaneously provides autonomous real time on-board attitude determination solutions and navigation solutions with accuracies that satisfy many future GSFC mission requirements. The MFGS is intended to operate as a single self-contained multifunction unit combining the functions now typically performed by a number of hardware units on a spacecraft. However, recognizing the need to satisfy a variety of future mission requirements, design provisions have been included to permit the unit to interface with a number of external remotely mounted sensors and actuators such as magnetometers, sun sensors, star cameras, reaction wheels and thrusters. The result is a highly versatile MFGS that can be configured in multiple ways to suit a realm of mission-specific GN&C requirements. It is envisioned that the MFGS will perform a mission enabling role by filling the microsat GN&C technology gap. In addition, GSFC believes that the MFGS could be employed to significantly reduce volume, power and mass requirements on conventional satellites.
Kavanaugh, Scott I; Nozaki, Masumi; Sower, Stacia A
2008-08-01
We cloned a cDNA encoding a novel (GnRH), named lamprey GnRH-II, from the sea lamprey, a basal vertebrate. The deduced amino acid sequence of the newly identified lamprey GnRH-II is QHWSHGWFPG. The architecture of the precursor is similar to that reported for other GnRH precursors consisting of a signal peptide, decapeptide, a downstream processing site, and a GnRH-associated peptide; however, the gene for lamprey GnRH-II does not have introns in comparison with the gene organization for all other vertebrate GnRHs. Lamprey GnRH-II precursor transcript was widely expressed in a variety of tissues. In situ hybridization of the brain showed expression and localization of the transcript in the hypothalamus, medulla, and olfactory regions, whereas immunohistochemistry using a specific antiserum showed only GnRH-II cell bodies and processes in the preoptic nucleus/hypothalamus areas. Lamprey GnRH-II was shown to stimulate the hypothalamic-pituitary axis using in vivo and in vitro studies. Lamprey GnRH-II was also shown to activate the inositol phosphate signaling system in COS-7 cells transiently transfected with the lamprey GnRH receptor. These studies provide evidence for a novel lamprey GnRH that has a role as a third hypothalamic GnRH. In summary, the newly discovered lamprey GnRH-II offers a new paradigm of the origin of the vertebrate GnRH family. We hypothesize that due to a genome/gene duplication event, an ancestral gene gave rise to two lineages of GnRHs: the gnathostome GnRH and lamprey GnRH-II.
Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.
Lund, Carina; Pulli, Kristiina; Yellapragada, Venkatram; Giacobini, Paolo; Lundin, Karolina; Vuoristo, Sanna; Tuuri, Timo; Noisa, Parinya; Raivio, Taneli
2016-08-09
Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
ISS GN and C - First Year Surprises
NASA Technical Reports Server (NTRS)
Begley, Michael
2002-01-01
Assembly of the International Space Station (ISS) began in late 1998 with the joining of the first two US and Russ ian elements. For more than two years, the outpost was served by two Russian Guidance, Navigation, and Control (GN&C) systems. The station requires orbital translation and attitude control functions for its 100+ configurations, from the nascent two-module station to the half million kilogram completed station owned and operated by seventeen nations. With the launch of the US Laboratory module in February 2001, the integration of the US GN&C system with its Russian counterpart laid the foundation for such a robust system. In its first year of combined operation, the ISS GN&C system has performed admirably, even better than many expected, but there have been surprises. Loss of command capability, loss of communication between segments, a control system force-fight, and "non-propulsive vents" that weren't - such events have repeatedly underscored the importance of thorough program integration, testing, and operation, both across subsystem boundaries and across international borders.
Entanglement entropy in critical phenomena and analog models of quantum gravity
NASA Astrophysics Data System (ADS)
Fursaev, Dmitri V.
2006-06-01
A general geometrical structure of the entanglement entropy for spatial partition of a relativistic QFT system is established by using methods of the effective gravity action and the spectral geometry. A special attention is payed to the subleading terms in the entropy in different dimensions and to behavior in different states. It is conjectured, on the base of relation between the entropy and the action, that in a fundamental theory the ground state entanglement entropy per unit area equals 1/(4GN), where GN is the Newton constant in the low-energy gravity sector of the theory. The conjecture opens a new avenue in analogue gravity models. For instance, in higher-dimensional condensed matter systems, which near a critical point are described by relativistic QFT’s, the entanglement entropy density defines an effective gravitational coupling. By studying the properties of this constant one can get new insights in quantum gravity phenomena, such as the universality of the low-energy physics, the renormalization group behavior of GN, the statistical meaning of the Bekenstein-Hawking entropy.
Nuruddin, Syed; Bruchhage, Muriel; Ropstad, Erik; Krogenæs, Anette; Evans, Neil P; Robinson, Jane E; Endestad, Tor; Westlye, Lars T; Madison, Cindee; Haraldsen, Ira Ronit Hebold
2013-10-01
In many species sexual dimorphisms in brain structures and functions have been documented. In ovine model, we have previously demonstrated that peri-pubertal pharmacological blockade of gonadotropin releasing hormone (GnRH) action increased sex-differences of executive emotional behavior. The structural substrate of this behavioral alteration however is unknown. In this magnetic resonance image (MRI) study on the same animals, we investigated the effects of GnRH agonist (GnRHa) treatment on the volume of total brain, hippocampus and amygdala. In total 41 brains (17 treated; 10 females and 7 males, and 24 controls; 11 females and 13 males) were included in the MRI study. Image acquisition was performed with 3-T MRI scanner. Segmentation of the amygdala and the hippocampus was done by manual tracing and total gray and white matter volumes were estimated by means of automated brain volume segmentation of the individual T2-weighted MRI volumes. Statistical comparisons were performed with general linear models. Highly significant GnRHa treatment effects were found on the volume of left and right amygdala, indicating larger amygdalae in treated animals. Significant sex differences were found for total gray matter and right amygdala, indicating larger volumes in male compared to female animals. Additionally, we observed a significant interaction between sex and treatment on left amygdala volume, indicating stronger effects of treatment in female compared to male animals. The effects of GnRHa treatment on amygdala volumes indicate that increasing GnRH concentration during puberty may have an important impact on normal brain development in mammals. These novel findings substantiate the need for further studies investigating potential neurobiological side effects of GnRHa treatment on the brains of young animals and humans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Taniguchi, Naoyuki; Kizuka, Yasuhiko
2015-01-01
Glycosylation is catalyzed by various glycosyltransferase enzymes which are mostly located in the Golgi apparatus in cells. These enzymes glycosylate various complex carbohydrates such as glycoproteins, glycolipids, and proteoglycans. The enzyme activity of glycosyltransferases and their gene expression are altered in various pathophysiological situations including cancer. Furthermore, the activity of glycosyltransferases is controlled by various factors such as the levels of nucleotide sugars, acceptor substrates, nucleotide sugar transporters, chaperons, and endogenous lectin in cancer cells. The glycosylation results in various functional changes of glycoproteins including cell surface receptors and adhesion molecules such as E-cadherin and integrins. These changes confer the unique characteristic phenotypes associated with cancer cells. Therefore, glycans play key roles in cancer progression and treatment. This review focuses on glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics. Major N-glycan branching structures which are directly related to cancer are β1,6-GlcNAc branching, bisecting GlcNAc, and core fucose. These structures are enzymatic products of glycosyltransferases, GnT-V, GnT-III, and Fut8, respectively. The genes encoding these enzymes are designated as MGAT5 (Mgat5), MGAT3 (Mgat3), and FUT8 (Fut8) in humans (mice in parenthesis), respectively. GnT-V is highly associated with cancer metastasis, whereas GnT-III is associated with cancer suppression. Fut8 is involved in expression of cancer biomarker as well as in the treatment of cancer. In addition to these enzymes, GnT-IV and GnT-IX (GnT-Vb) will be also discussed in relation to cancer. © 2015 Elsevier Inc. All rights reserved.
2013-01-01
Background HMLEs (HMLE-SNAIL and Kras-HMLE, Kras-HMLE-SNAIL pairs) serve as excellent model system to interrogate the effect of SNAIL targeted agents that reverse epithelial-to-mesenchymal transition (EMT). We had earlier developed a SNAIL-p53 interaction inhibitor (GN-25) that was shown to suppress SNAIL function. In this report, using systems biology and pathway network analysis, we show that GN-25 could cause reversal of EMT leading to mesenchymal-to-epithelial transition (MET) in a well-recognized HMLE-SNAIL and Kras-HMLE-SNAIL models. Results GN-25 induced MET was found to be consistent with growth inhibition, suppression of spheroid forming capacity and induction of apoptosis. Pathway network analysis of mRNA expression using microarrays from GN-25 treated Kras-HMLE-SNAIL cells showed an orchestrated global re-organization of EMT network genes. The expression signatures were validated at the protein level (down-regulation of mesenchymal markers such as TWIST1 and TWIST2 that was concurrent with up-regulation of epithelial marker E-Cadherin), and RNAi studies validated SNAIL dependent mechanism of action of the drug. Most importantly, GN-25 modulated many major transcription factors (TFs) such as inhibition of oncogenic TFs Myc, TBX2, NR3C1 and led to enhancement in the expression of tumor suppressor TFs such as SMAD7, DD1T3, CEBPA, HOXA5, TFEB, IRF1, IRF7 and XBP1, resulting in MET as well as cell death. Conclusions Our systems and network investigations provide convincing pre-clinical evidence in support of the clinical application of GN-25 for the reversal of EMT and thereby reducing cancer cell aggressiveness. PMID:24004452
Moll, Solange; Yasui, Yukari; Abed, Ahmed; Murata, Takeshi; Shimada, Hideaki; Maeda, Akira; Fukushima, Naoshi; Kanamori, Masakazu; Uhles, Sabine; Badi, Laura; Cagarelli, Thomas; Formentini, Ivan; Drawnel, Faye; Georges, Guy; Bergauer, Tobias; Gasser, Rodolfo; Bonfil, R Daniel; Fridman, Rafael; Richter, Hans; Funk, Juergen; Moeller, Marcus J; Chatziantoniou, Christos; Prunotto, Marco
2018-06-01
Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase extensively implicated in diseases such as cancer, atherosclerosis and fibrosis. Multiple preclinical studies, performed using either a gene deletion or a gene silencing approaches, have shown this receptor being a major driver target of fibrosis and glomerulosclerosis. The present study investigated the role and relevance of DDR1 in human crescentic glomerulonephritis (GN). Detailed DDR1 expression was first characterized in detail in human GN biopsies using a novel selective anti-DDR1 antibody using immunohistochemistry. Subsequently the protective role of DDR1 was investigated using a highly selective, novel, small molecule inhibitor in a nephrotoxic serum (NTS) GN model in a prophylactic regime and in the NEP25 GN mouse model using a therapeutic intervention regime. DDR1 expression was shown to be mainly limited to renal epithelium. In humans, DDR1 is highly induced in injured podocytes, in bridging cells expressing both parietal epithelial cell (PEC) and podocyte markers and in a subset of PECs forming the cellular crescents in human GN. Pharmacological inhibition of DDR1 in NTS improved both renal function and histological parameters. These results, obtained using a prophylactic regime, were confirmed in the NEP25 GN mouse model using a therapeutic intervention regime. Gene expression analysis of NTS showed that pharmacological blockade of DDR1 specifically reverted fibrotic and inflammatory gene networks and modulated expression of the glomerular cell gene signature, further validating DDR1 as a major mediator of cell fate in podocytes and PECs. Together, these results suggest that DDR1 inhibition might be an attractive and promising pharmacological intervention for the treatment of GN, predominantly by targeting the renal epithelium.
Sandau, Ursula S.; Mungenast, Alison E.; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel
2011-01-01
We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication. PMID:21486931
DraGnET: Software for storing, managing and analyzing annotated draft genome sequence data
2010-01-01
Background New "next generation" DNA sequencing technologies offer individual researchers the ability to rapidly generate large amounts of genome sequence data at dramatically reduced costs. As a result, a need has arisen for new software tools for storage, management and analysis of genome sequence data. Although bioinformatic tools are available for the analysis and management of genome sequences, limitations still remain. For example, restrictions on the submission of data and use of these tools may be imposed, thereby making them unsuitable for sequencing projects that need to remain in-house or proprietary during their initial stages. Furthermore, the availability and use of next generation sequencing in industrial, governmental and academic environments requires biologist to have access to computational support for the curation and analysis of the data generated; however, this type of support is not always immediately available. Results To address these limitations, we have developed DraGnET (Draft Genome Evaluation Tool). DraGnET is an open source web application which allows researchers, with no experience in programming and database management, to setup their own in-house projects for storing, retrieving, organizing and managing annotated draft and complete genome sequence data. The software provides a web interface for the use of BLAST, allowing users to perform preliminary comparative analysis among multiple genomes. We demonstrate the utility of DraGnET for performing comparative genomics on closely related bacterial strains. Furthermore, DraGnET can be further developed to incorporate additional tools for more sophisticated analyses. Conclusions DraGnET is designed for use either by individual researchers or as a collaborative tool available through Internet (or Intranet) deployment. For genome projects that require genome sequencing data to initially remain proprietary, DraGnET provides the means for researchers to keep their data in-house for analysis using local programs or until it is made publicly available, at which point it may be uploaded to additional analysis software applications. The DraGnET home page is available at http://www.dragnet.cvm.iastate.edu and includes example files for examining the functionalities, a link for downloading the DraGnET setup package and a link to the DraGnET source code hosted with full documentation on SourceForge. PMID:20175920
Kim, Na Na; Shin, Hyun Suk; Habibi, Hamid R; Lee, Jehee; Choi, Cheol Young
2012-02-01
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in the control of reproduction and gonadal maturation in teleost fish. Fish have multiple GnRH genes that encode structurally distinct peptides. We identified salmon GnRH (sGnRH), seabream GnRH (sbGnRH), and chicken GnRH-II (cGnRH-II) by cDNA cloning in cinnamon clownfish (Amphiprion melanopus) using reverse transcription-PCR (RT-PCR) and rapid amplification of cDNA ends-PCR (RACE-PCR). Gene identity was confirmed by sequence alignment and subsequent phylogenetic analyses. We also investigated GnRH mRNA expression in the gonads by quantitative real time-PCR (Q-PCR), and measured plasma estradiol-17β (E(2)) levels in immature fish following treatment with the three molecular forms of GnRHs. The expression levels of sGnRH, sbGnRH, and cGnRH-II mRNA were higher in mature testes and ovaries, as compared to the levels in gonads at earlier stages of maturity. The levels of the three prepro-GnRH mRNA species and the plasma E(2) levels increased after injection of the three GnRH variants. These findings support the hypothesis that GnRH peptides play important roles in the regulation of the hypothalamic-pituitary-gonadal axis and are probably involved in paracrine control of gonadal development and sex change in cinnamon clownfish. Copyright © 2011 Elsevier Inc. All rights reserved.
MaGnET: Malaria Genome Exploration Tool.
Sharman, Joanna L; Gerloff, Dietlind L
2013-09-15
The Malaria Genome Exploration Tool (MaGnET) is a software tool enabling intuitive 'exploration-style' visualization of functional genomics data relating to the malaria parasite, Plasmodium falciparum. MaGnET provides innovative integrated graphic displays for different datasets, including genomic location of genes, mRNA expression data, protein-protein interactions and more. Any selection of genes to explore made by the user is easily carried over between the different viewers for different datasets, and can be changed interactively at any point (without returning to a search). Free online use (Java Web Start) or download (Java application archive and MySQL database; requires local MySQL installation) at http://malariagenomeexplorer.org joanna.sharman@ed.ac.uk or dgerloff@ffame.org Supplementary data are available at Bioinformatics online.
The relationship between pulsatile GnRH secretion and cAMP production in immortalized GnRH neurons.
Frattarelli, John L; Krsmanovic, Lazar Z; Catt, Kevin J
2011-06-01
In perifused immortalized GnRH neurons (GT1-7), simultaneous measurements of GnRH and cAMP revealed that the secretory profiles for both GnRH and cAMP are pulsatile. An analysis of GnRH and cAMP pulses in 16 independent experiments revealed that 25% of pulses coincide. Inversion of the peak and nadir levels was found in 33% and random relationship between GnRH and cAMP found in 42% of analyzed pulses. The random relation between GnRH and cAMP pulse resets to synchronous after an inverse relation between pulses occurred during the major GnRH release, indicating that GnRH acts as a switching mechanism to synchronize cAMP and GnRH release in perifused GT1-7 neurons. Activation of GnRH receptors with increasing agonist concentrations caused a biphasic change in cAMP levels. Low nanomolar concentrations increased cAMP production, but at high concentrations the initial increase was followed by a rapid decline to below the basal level. Blockade of the GnRH receptors by peptide and nonpeptide antagonists generated monotonic nonpulsatile increases in both GnRH and cAMP production. These findings indicate that cAMP positively regulates GnRH secretion but does not participate in the mechanism of pulsatile GnRH release.
Nock, Tanya G; Chand, Dhan; Lovejoy, David A
2011-04-01
The gonadotropin-releasing hormone (GnRH) and corticotropin-releasing family (CRF) are two neuropeptides families that are strongly conserved throughout evolution. Recently, the genome of the holocephalan, Callorhinchus milii (elephant shark) has been sequenced. The phylogenetic position of C. milii, along with the relatively slow evolution of the cartilaginous fish suggests that neuropeptides in this species may resemble the earliest gnathostome forms. The genome of the elephant shark was screened, in silico, using the various conserved motifs of both the vertebrate CRF paralogs and the insect diuretic hormone sequences to identify the structure of the C. milii CRF/DH-like peptides. A similar approach was taken to identify the GnRH peptides using conserved motifs in both vertebrate and invertebrate forms. Two CRF peptides, a urotensin-1 peptide and a urocortin 3 peptide were found in the genome. There was only about 50% sequence identity between the two CRF peptides suggesting an early divergence. In addition, the urocortin 2 peptide seems to have been lost and was identified as a pseudogene in C. milii. In contrast to the number of CRF family peptides, only a GnRH-II preprohormone with the conserved mature decapeptide was found. This confirms early studies about the identity of GnRH in the Holocephali, and suggests that the Holocephali and Elasmobranchii differ with respect to GnRH structure and function. Copyright © 2011 Elsevier Inc. All rights reserved.
NFκB-Induced Periostin Activates Integrin-β3 Signaling to Promote Renal Injury in GN
Prakoura, Niki; Kavvadas, Panagiotis; Kormann, Raphaёl; Dussaule, Jean-Claude; Chadjichristos, Christos E.
2017-01-01
De novo expression in the kidney of periostin, a protein involved in odontogenesis and osteogenesis, has been suggested as a biomarker of renal disease. In this study, we investigated the mechanism(s) of induction and the role of periostin in renal disease. Using a combination of bioinformatics, reporter assay, and chromatin immunoprecipitation analyses, we found that NFκB and other proinflammatory transcription factors induce periostin expression in vitro and that binding of these factors on the periostin promoter is enriched in glomeruli during experimental GN. Mice lacking expression of periostin displayed preserved renal function and structure during GN. Furthermore, delayed administration of periostin antisense oligonucleotides in wild-type animals with GN reversed already established proteinuria, diminished tissue inflammation, and improved renal structure. Lack of periostin expression also blunted the de novo renal expression of integrin-β3 and phosphorylation of focal adhesion kinase and AKT, known mediators of integrin-β3 signaling that affect cell motility and survival, observed during GN in wild-type animals. In vitro, recombinant periostin increased the expression of integrin-β3 and the concomitant phosphorylation of focal adhesion kinase and AKT in podocytes. Notably, periostin and integrin-β3 were highly colocalized in biopsy specimens from patients with inflammatory GN. These results demonstrate that interplay between periostin and renal inflammation orchestrates inflammatory and fibrotic responses, driving podocyte damage through downstream activation of integrin-β3 signaling. Targeting periostin may be a novel therapeutic strategy for treating CKD. PMID:27920156
Social Crowding during Development Causes Changes in GnRH1 DNA Methylation.
Alvarado, Sebastian G; Lenkov, Kapa; Williams, Blake; Fernald, Russell D
2015-01-01
Gestational and developmental cues have important consequences for long-term health, behavior and adaptation to the environment. In addition, social stressors cause plastic molecular changes in the brain that underlie unique behavioral phenotypes that also modulate fitness. In the adult African cichlid, Astatotilapia burtoni, growth and social status of males are both directly regulated by social interactions in a dynamic social environment, which causes a suite of plastic changes in circuits, cells and gene transcription in the brain. We hypothesized that a possible mechanism underlying some molecular changes might be DNA methylation, a reversible modification made to cytosine nucleotides that is known to regulate gene function. Here we asked whether changes in DNA methylation of the GnRH1 gene, the central regulator of the reproductive axis, were altered during development of A. burtoni. We measured changes in methylation state of the GnRH1 gene during normal development and following the gestational and developmental stress of social crowding. We found differential DNA methylation within developing juveniles between 14-, 28- and 42-day-old. Following gestational crowding of mouth brooding mothers, we saw differential methylation and transcription of GnRH1 in their offspring. Taken together, our data provides evidence for social control of GnRH1 developmental responses to gestational cues through DNA methylation.
Puberty suppression in gender identity disorder: the Amsterdam experience.
Kreukels, Baudewijntje P C; Cohen-Kettenis, Peggy T
2011-05-17
The use of gonadotropin-releasing hormone analogs (GnRHa) to suppress puberty in adolescents with gender dysphoria is a fairly new intervention in the field of gender identity disorders or transsexualism. GnRHa are used to give adolescents time to make balanced decisions on any further treatment steps, and to obtain improved results in the physical appearance of those who opt to continue with sex reassignment. The effects of GnRHa are reversible. However, concerns have been raised about the risk of making the wrong treatment decisions, as gender identity could fluctuate during adolescence, adolescents in general might have poor decision-making abilities, and there are potential adverse effects on health and on psychological and psychosexual functioning. Proponents of puberty suppression emphasize the beneficial effects of GnRHa on the adolescents' mental health, quality of life and of having a physical appearance that makes it possible for the patients to live unobtrusively in their desired gender role. In this Review, we discuss the evidence pertaining to the debate on the effects of GnRHa treatment. From the studies that have been published thus far, it seems that the benefits outweigh the risks. However, more systematic research in this area is needed to determine the safety of this approach.
Neuronal plasticity and seasonal reproduction in sheep
Lehman, Michael N.; Ladha, Zamin; Coolen, Lique M.; Hileman, Stanley M.; Connors, John M.; Goodman, Robert L.
2010-01-01
Seasonal reproduction represents a naturally occurring example of functional plasticity in the adult brain since it reflects changes in neuroendocrine pathways controlling GnRH secretion and, in particular, the responsiveness of GnRH neurons to estradiol negative feedback. Structural plasticity within this neural circuitry may, in part, be responsible for seasonal switches in the negative feedback control of GnRH secretion that underlies annual reproductive transitions. In this paper, we review evidence for structural changes in the circuitry responsible for seasonal inhibition of GnRH secretion in sheep. These include changes in synaptic inputs onto GnRH neurons, as well as onto dopamine neurons in the A15 cell group, a nucleus that play a key role in estradiol negative feedback. We also present preliminary data suggesting a role for neurotrophins and neurotrophin receptors as an early mechanistic step in the plasticity that accompanies seasonal reproductive transitions in the sheep. Finally, we review recent evidence suggesting that kisspeptin cells of the arcuate nucleus constitute a critical intermediary in the control of seasonal reproduction. While a majority of the data for a role of neuronal plasticity in seasonal reproduction has come from the sheep model, the players and principles are likely to have relevance for reproduction in a wide variety of vertebrates, including humans, and in both health and disease. PMID:21143669
Fontaine, Romain; Affaticati, Pierre; Yamamoto, Kei; Jolly, Cécile; Bureau, Charlotte; Baloche, Sylvie; Gonnet, Françoise; Vernier, Philippe; Dufour, Sylvie; Pasqualini, Catherine
2013-02-01
In many teleosts, the stimulatory control of gonadotrope axis by GnRH is opposed by an inhibitory control by dopamine (DA). The functional importance of this inhibitory pathway differs widely from one teleostean species to another. The zebrafish (Danio rerio) is a teleost fish that has become increasingly popular as an experimental vertebrate model. However, the role of DA in the neuroendocrine control of its reproduction has never been studied. Here the authors evaluated in sexually regressed female zebrafish the effects of in vivo treatments with a DA D2 receptor (D2-R) antagonist domperidone, or a GnRH agonist, alone and in combination, on the pituitary level of FSHβ and LHβ transcripts, the gonadosomatic index, and the ovarian histology. Only the double treatment with GnRH agonist and domperidone could induce an increase in the expression of LHβ, in the gonadosomatic index, and a stimulation of ovarian vitellogenesis, indicating that removal of dopaminergic inhibition is required for the stimulatory action of GnRH and reactivation of ovarian function to occur. Using double immunofluorescent staining on pituitary, the authors showed in this species the innervation of LH cells by tyrosine-hydroxylase immunoreactive fibers. Finally, using in situ hybridization and immunofluorescence, the authors showed that the three subtypes of zebrafish DA D2-R (D2a, D2b, and D2c) were expressed in LH-producing cells, suggesting that they all may be involved in mediating this inhibition. These results show for the first time that, in zebrafish, DA has a direct and potent inhibitory action capable of opposing the stimulatory effect of GnRH in the neuroendocrine control of reproduction.
(49,163,84)} .YlGn .q0-4{fill:rgb(255,255,204)} .YlGn .q1-4{fill:rgb(194,230,153)} .YlGn .q2-4{fill:rgb (120,198,121)} .YlGn .q3-4{fill:rgb(35,132,67)} .YlGn .q0-5{fill:rgb(255,255,204)} .YlGn .q1-5{fill:rgb )} .YlGnBu .q0-4{fill:rgb(255,255,204)} .YlGnBu .q1-4{fill:rgb(161,218,180)} .YlGnBu .q2-4{fill:rgb
Brown, J L; Bush, M; Packer, C; Pusey, A E; Monfort, S L; O'Brien, S J; Janssen, D L; Wildt, D E
1991-01-01
Pituitary-gonadal function was examined in male lions free-ranging in the Serengeti Plains or geographically isolated in the Ngorongoro Crater of Tanzania. Lions were classified by age as adult (6.1-9.8 years), young adult (3.3-4.5 years) or prepubertal (1.4-1.6 years, Serengeti Plains only). Each animal was anaesthetized and then bled at 5-min intervals for 100 min before and 140 min after i.v. administration of saline or GnRH (1 micrograms/kg body weight). Basal serum LH and FSH concentrations were similar (P greater than 0.05) among age classes and between locations. In Serengeti Plains lions, net LH peak concentrations after GnRH were approximately 35% greater (P less than 0.05) in prepubertal than in either adult or young adult animals. GnRH-stimulated LH release was similar (P greater than 0.05) between adult and young adult lions, and these responses were similar (P greater than 0.05) to those measured in Ngorongoro Crater lions. Basal and GnRH-stimulated testosterone secretion was higher (P less than 0.05) in adult than in young adult lions and lowest (P less than 0.05) in prepubertal lions. Age-class differences in testosterone production were related directly to the concentrations of LH receptors in the testis (P less than 0.05). Basal and GnRH-stimulated testosterone secretion and gonadotrophin receptor concentrations within age classes were similar (P greater than 0.05) between lions of the Serengeti Plains and Ngorongoro Crater. Lower motility and higher percentages of structurally abnormal spermatozoa were observed in electroejaculates of young adult compared to adult Serengeti Plains males (P less than 0.05) and were associated with decreased steroidogenic activity. In contrast, there were no age-related differences in ejaculate characteristics of Ngorongoro Crater lions. Seminal quality in the Crater population was poor in adult and young adult animals and was unrelated to alterations in pituitary or testicular function. In summary, only seminal quality in adult male lions was affected by location, whereas age significantly affected both basal and GnRH-stimulated testosterone secretion and seminal quality (Serengeti Plains only) in sexually mature males. The striking seminal/endocrine differences among pride (breeding) males of different ages raises questions about the impact of age on individual reproductive performance in this species.
Takamatsu, Shinji; Antonopoulos, Aristotelis; Ohtsubo, Kazuaki; Ditto, David; Chiba, Yasunori; Le, Dzung T.; Morris, Howard R.; Haslam, Stuart M.; Dell, Anne; Marth, Jamey D.; Taniguchi, Naoyuki
2010-01-01
N-Acetylglucosaminyltransferase-IV (GnT-IV) has two isoenzymes, GnT-IVa and GnT-IVb, which initiate the GlcNAcβ1-4 branch synthesis on the Manα1-3 arm of the N-glycan core thereby increasing N-glycan branch complexity and conferring endogenous lectin binding epitopes. To elucidate the physiological significance of GnT-IV, we engineered and characterized GnT-IVb-deficient mice and further generated GnT-IVa/-IVb double deficient mice. In wild-type mice, GnT-IVa expression is restricted to gastrointestinal tissues, whereas GnT-IVb is broadly expressed among organs. GnT-IVb deficiency induced aberrant GnT-IVa expression corresponding to the GnT-IVb distribution pattern that might be attributed to increased Ets-1, which conceivably activates the Mgat4a promoter, and thereafter preserved apparent GnT-IV activity. The compensative GnT-IVa expression might contribute to amelioration of the GnT-IVb-deficient phenotype. GnT-IVb deficiency showed mild phenotypic alterations in hematopoietic cell populations and hemostasis. GnT-IVa/-IVb double deficiency completely abolished GnT-IV activity that resulted in the disappearance of the GlcNAcβ1-4 branch on the Manα1-3 arm that was confirmed by MALDI-TOF MS and GC-MS linkage analyses. Comprehensive glycomic analyses revealed that the abundance of terminal moieties was preserved in GnT-IVa/-IVb double deficiency that was due to the elevated expression of glycosyltransferases regarding synthesis of terminal moieties. Thereby, this may maintain the expression of glycan ligands for endogenous lectins and prevent cellular dysfunctions. The fact that the phenotype of GnT-IVa/-IVb double deficiency largely overlapped that of GnT-IVa single deficiency can be attributed to the induced glycomic compensation. This is the first report that mammalian organs have highly organized glycomic compensation systems to preserve N-glycan branch complexity. PMID:20015870
USDA-ARS?s Scientific Manuscript database
The second mammalian GnRH isoform (GnRH-II) and its specific receptor (GnRHR-II) are abundantly produced within swine testes. GnRHR-II localizes to porcine Leydig cells and exogenous GnRH-II treatment robustly stimulates testosterone production in vivo, despite minimal secretion of luteinizing hormo...
The kisspeptin-GnRH pathway in human reproductive health and disease.
Skorupskaite, Karolina; George, Jyothis T; Anderson, Richard A
2014-01-01
The discovery of kisspeptin as key central regulator of GnRH secretion has led to a new level of understanding of the neuroendocrine regulation of human reproduction. The related discovery of the kisspeptin-neurokinin B-dynorphin (KNDy) pathway in the last decade has further strengthened our understanding of the modulation of GnRH secretion by endocrine, metabolic and environmental inputs. In this review, we summarize current understanding of the physiological roles of these novel neuropeptides, and discuss the clinical relevance of these discoveries and their potential translational applications. A systematic literature search was performed using PUBMED for all English language articles up to January 2014. In addition, the reference lists of all relevant original research articles and reviews were examined. This review focuses mainly on published human studies but also draws on relevant animal data. Kisspeptin is a principal regulator of the secretion of gonadotrophins, and through this key role it is critical for the onset of puberty, the regulation of sex steroid-mediated feedback and the control of adult fertility. Although there is some sexual dimorphism, both neuroanatomically and functionally, these functions are apparent in both men and women. Kisspeptin acts upstream of GnRH and, following paracrine stimulatory and inhibitory inputs from neurokinin B and dynorphin (KNDy neuropeptides), signals directly to GnRH neurones to control pulsatile GnRH release. When administered to humans in different isoforms, routes and doses, kisspeptin robustly stimulates LH secretion and LH pulse frequency. Manipulation of the KNDy system is currently the focus of translational research with the possibility of future clinical application to regulate LH pulsatility, increasing gonadal sex steroid secretion in reproductive disorders characterized by decreased LH pulsatility, including hypothalamic amenorrhoea and hypogonadotropic hypogonadism. Conversely there may be scope to reduce the activity of the KNDy system to reduce LH secretion where hypersecretion of LH adds to the phenotype, such as in polycystic ovary syndrome. Kisspeptin is a recently discovered neuromodulator that controls GnRH secretion mediating endocrine and metabolic inputs to the regulation of human reproduction. Manipulation of kisspeptin signalling has the potential for novel therapies in patients with pathologically low or high LH pulsatility. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Liu, Yingying; Fan, Wenhong; Xu, Zhizhen; Peng, Weihua; Luo, Shenglian
2018-05-01
Although the risk of graphene materials to aquatic organisms has drawn wide attention, the combined effects of graphene materials with other contaminants such as toxic metals, which may bring about more serious effects than graphene materials alone, have seldom been explored. Herein, the effects of graphene (GN) and graphene oxide (GO, an important oxidized derivative of graphene) on copper (Cu) toxicity to Daphnia magna were systematically investigated. The results indicated that GN remarkably increased the Cu accumulation in D. magna and enhanced the oxidative stress injury caused by Cu, whereas did not significantly alter D. magna acute mortality within the tested Cu concentrations (0-200 μg L -1 ). On the contrary, GO significantly decreased the Cu accumulation in D. magna and alleviated the oxidative stress injury caused by Cu. Meanwhile, the presence of GO significantly reduced the mortality of D. magna when Cu concentration exceeded 50 μg L -1 . The different effects of GN and GO on Cu toxicity were possibly dependent on the action of surface oxygenic functional group. Because of the introduction of surface oxygenic functional groups, the adsorption ability to metal ions, stability in water and interaction mode with organisms of GO are quite different from that of GN, causing different effects on Cu toxicity. This study provides important information on the bioavailability and toxicity of heavy metals as affected by graphene materials in natural water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neural Versus Gonadal GnIH: Are they Independent Systems? A Mini-Review.
Bentley, George E; Wilsterman, Kathryn; Ernst, Darcy K; Lynn, Sharon E; Dickens, Molly J; Calisi, Rebecca M; Kriegsfeld, Lance J; Kaufer, Daniela; Geraghty, Anna C; viviD, Dax; McGuire, Nicolette L; Lopes, Patricia C; Tsutsui, Kazuyoshi
2017-12-01
Based on research in protochordates and basal vertebrates, we know that communication across the first endocrine axes likely relied on diffusion. Because diffusion is relatively slow, rapid responses to some cues, including stress-related cues, may have required further local control of axis outputs (e.g., steroid hormone production by the gonads). Despite the evolution of much more efficient circulatory systems and complex nervous systems in vertebrates, production of many "neuro"transmitters has been identified outside of the hypothalamus across the vertebrate phylogeny and these neurotransmitters are known to locally regulate endocrine function. Our understanding of tissue-specific neuropeptide expression and their role coordinating physiological/behavioral responses of the whole organism remains limited, in part, due to nomenclature and historic dogma that ignores local regulation of axis output. Here, we review regulation of gonadotropin-inhibitory hormone (GnIH) across the reproductive axis in birds and mammals to bring further attention to context-dependent disparities and similarities in neuropeptide production by the brain and gonads. We find that GnIH responsiveness to cues of stress appears conserved across species, but that the response of specific tissues and the direction of GnIH regulation varies. The implications of differential regulation across tissues remain unclear in most studies, but further work that manipulates and contrasts function in different tissues has the potential to inform us about both organism-specific function and endocrine axis evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Inactivating KISS1 mutation and hypogonadotropic hypogonadism.
Topaloglu, A Kemal; Tello, Javier A; Kotan, L Damla; Ozbek, Mehmet N; Yilmaz, M Bertan; Erdogan, Seref; Gurbuz, Fatih; Temiz, Fatih; Millar, Robert P; Yuksel, Bilgin
2012-02-16
Gonadotropin-releasing hormone (GnRH) is the central regulator of gonadotropins, which stimulate gonadal function. Hypothalamic neurons that produce kisspeptin and neurokinin B stimulate GnRH release. Inactivating mutations in the genes encoding the human kisspeptin receptor (KISS1R, formerly called GPR54), neurokinin B (TAC3), and the neurokinin B receptor (TACR3) result in pubertal failure. However, human kisspeptin loss-of-function mutations have not been described, and contradictory findings have been reported in Kiss1-knockout mice. We describe an inactivating mutation in KISS1 in a large consanguineous family that results in failure of pubertal progression, indicating that functional kisspeptin is important for puberty and reproduction in humans. (Funded by the Scientific and Technological Research Council of Turkey [TÜBİTAK] and others.).
Geber, Selmo; Sales, Liana; Sampaio, Marcos A C
2002-07-01
Compare the efficacy and safety of two different GnRHa, used for pituitary suppression in IVF cycles. A total of 292 patients using depot goserelin (Group 1) and 167 using daily leuprolide acetate (Group 2) were compared. Days required to achieve pituitary function suppression, duration of ovarian stimulation, total dose of HMG, number of aspirated follicles, number of oocytes retrieved, and presence of functional ovarian cyst were analyzed. The time taken to achieve downregulation was similar. The mean number of ampoules used for superovulation was higher in Group 1; however, this difference was observed only for patients >40 years old that started GnRHa in the follicular phase. There was no difference between the two groups in the duration of superovulation, in the number of follicles aspirated, and the number of oocytes retrieved. In the group of patients with >40 years the incidence of ovarian cysts was higher in Group 2. Both routes of GnRHa have similar effects for pituitary suppression and ovulation induction in assisted reproductive technology. Therefore the long-acting GnRHa is an excellent option, as only a single subcutaneous dose is necessary, decreasing the risk of the patient to forget its use and, most important, it does not interfere in the patient's quality of life.
Differential effects of human and plant N-acetylglucosaminyltransferase I (GnTI) in plants.
Henquet, Maurice; Heinhuis, Bas; Borst, Jan Willem; Eigenhuijsen, Jochem; Schreuder, Mariëlle; Bosch, Dirk; van der Krol, Alexander
2010-08-01
In plants and animals, the first step in complex type N-glycan formation on glycoproteins is catalyzed by N-acetylglucosaminyltransferase I (GnTI). We show that the cgl1-1 mutant of Arabidopsis, which lacks GnTI activity, is fully complemented by YFP-labeled plant AtGnTI, but only partially complemented by YFP-labeled human HuGnTI and that this is due to post-transcriptional events. In contrast to AtGnTI-YFP, only low levels of HuGnTI-YFP protein was detected in transgenic plants. In protoplast co-transfection experiments all GnTI-YFP fusion proteins co-localized with a Golgi marker protein, but only limited co-localization of AtGnTI and HuGnTI in the same plant protoplast. The partial alternative targeting of HuGnTI in plant protoplasts was alleviated by exchanging the membrane-anchor domain with that of AtGnTI, but in stably transformed cgl1-1 plants this chimeric GnTI still did not lead to full complementation of the cgl1-1 phenotype. Combined, the results indicate that activity of HuGnTI in plants is limited by a combination of reduced protein stability, alternative protein targeting and possibly to some extend to lower enzymatic performance of the catalytic domain in the plant biochemical environment.
Mohamed, J Shaik; Benninghoff, Abby D; Holt, G Joan; Khan, Izhar A
2007-02-01
The cDNAs of the G protein-coupled receptor 54 (GPR54) and three prepro-gonadotropin-releasing hormones, GnRH-I (seabream GnRH), GnRH-II (chicken GnRH-II), and GnRH-III (salmon GnRH) were isolated and cloned from the brain of the teleost fish cobia, Rachycentron canadum. The cobia GPR54 cDNA was 95 and 51-56% identical to those of tilapia and mammalian models respectively. The GnRH cDNA sequences of cobia showed strong identities to those of tilapia, Atlantic croaker, red drum, and the seabass and seabream species. The real-time quantitative RT-PCR methods allowed detection of all three GnRH mRNAs on the first day after hatching (DAH). The GnRH-I mRNA levels, which were the lowest among the three GnRHs, increased gradually with two distinct peaks in larvae at 3 and 4 DAH. On the other hand, GnRH-II and GnRH-III mRNAs were significantly higher in larvae at 2 and 6 DAH compared with those on the preceding days. In addition, significant peaks of all the three GnRH mRNAs were observed in the brains of 26-day-old fish. The finding of higher GnRH-I and GnRH-II mRNAs in males than females at 153 DAH may be related to early puberty observed during the first year in laboratory-reared male cobia. Moreover, this study demonstrates for the first time the expression of GPR54 mRNA during larval development in a vertebrate species. The concomitant expression patterns of GPR54 and GnRH mRNAs during different stages of larval and juvenile developments, and during early puberty in male cobia suggest a potential relationship between GPR54 and multiple GnRHs during these stages of development consistent with the role of GPR54 in controlling GnRH release in mammals. The increase in GPR54 and GnRH mRNAs observed during early puberty in cobia is consistent with a similar change reported in pubertal rats. This finding together with the localization of GPR54 mRNAs on GnRH neurons in fish and mammals suggests that the GPR54-GnRH interactions may be conserved in different vertebrate groups.
Preliminary Design of the Guidance, Navigation, and Control System of the Altair Lunar Lander
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Ely, Todd; Sostaric, Ronald; Strahan, Alan; Riedel, Joseph E.; Ingham, Mitch; Wincentsen, James; Sarani, Siamak
2010-01-01
Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. This paper provides an overview of a preliminary design of the GN&C system of the Lunar Lander Altair. Key functions performed by the GN&C system in various mission phases will first be described. A set of placeholder GN&C sensors that is needed to support these functions is next described. To meet Crew safety requirements, there must be high degrees of redundancy in the selected sensor configuration. Two sets of thrusters, one on the Ascent Module (AM) and the other on the Descent Module (DM), will be used by the GN&C system. The DM thrusters will be used, among other purposes, to perform course correction burns during the Trans-lunar Coast. The AM thrusters will be used, among other purposes, to perform precise angular and translational controls of the ascent module in order to dock the ascent module with Orion. Navigation is the process of measurement and control of the spacecraft's "state" (both the position and velocity vectors of the spacecraft). Tracking data from the Earth-Based Ground System (tracking antennas) as well as data from onboard optical sensors will be used to estimate the vehicle state. A driving navigation requirement is to land Altair on the Moon with a landing accuracy that is better than 1 km (radial 95%). Preliminary performance of the Altair GN&C design, relative to this and other navigation requirements, will be given. Guidance is the onboard process that uses the estimated state vector, crew inputs, and pre-computed reference trajectories to guide both the rotational and the translational motions of the spacecraft during powered flight phases. Design objectives of reference trajectories for various mission phases vary. For example, the reference trajectory for the descent "approach" phase (the last 3-4 minutes before touchdown) will sacrifice fuel utilization efficiency in order to provide landing site visibility for both the crew and the terrain hazard detection sensor system. One output of Guidance is the steering angle commands sent to the 2 degree-of-freedom (dof) gimbal actuation system of the descent engine. The engine gimbal actuation system is controlled by a Thrust Vector Control algorithm that is designed taking into account the large quantities of sloshing liquids in tanks mounted on Altair. In this early design phase of Altair, the GN&C system is described only briefly in this paper and the emphasis is on the GN&C architecture (that is still evolving). Multiple companion papers will provide details that are related to navigation, optical navigation, guidance, fuel sloshing, rendezvous and docking, machine-pilot interactions, and others. The similarities and differences of GN&C designs for Lunar and Mars landers are briefly compared.
Rapid behavioral and genomic responses to social opportunity.
Burmeister, Sabrina S; Jarvis, Erich D; Fernald, Russell D
2005-11-01
From primates to bees, social status regulates reproduction. In the cichlid fish Astatotilapia (Haplochromis) burtoni, subordinate males have reduced fertility and must become dominant to reproduce. This increase in sexual capacity is orchestrated by neurons in the preoptic area, which enlarge in response to dominance and increase expression of gonadotropin-releasing hormone 1 (GnRH1), a peptide critical for reproduction. Using a novel behavioral paradigm, we show for the first time that subordinate males can become dominant within minutes of an opportunity to do so, displaying dramatic changes in body coloration and behavior. We also found that social opportunity induced expression of the immediate-early gene egr-1 in the anterior preoptic area, peaking in regions with high densities of GnRH1 neurons, and not in brain regions that express the related peptides GnRH2 and GnRH3. This genomic response did not occur in stable subordinate or stable dominant males even though stable dominants, like ascending males, displayed dominance behaviors. Moreover, egr-1 in the optic tectum and the cerebellum was similarly induced in all experimental groups, showing that egr-1 induction in the anterior preoptic area of ascending males was specific to this brain region. Because egr-1 codes for a transcription factor important in neural plasticity, induction of egr-1 in the anterior preoptic area by social opportunity could be an early trigger in the molecular cascade that culminates in enhanced fertility and other long-term physiological changes associated with dominance.
Kisspeptin Expression in Guinea Pig Hypothalamus: Effects of 17β-Estradiol
Bosch, Martha A.; Xue, Changhui; Rønnekleiv, Oline K.
2013-01-01
Kisspeptin is essential for reproductive functions in humans. As a model for the human we have used the female guinea pig, which has a long ovulatory cycle similar to that of primates. Initially, we cloned a guinea pig kisspeptin cDNA sequence and subsequently explored the distribution and 17β-estradiol (E2) regulation of kisspeptin mRNA (Kiss1) and protein (kisspeptin) by using in situ hybridization, real-time PCR and immunocytochemistry. In ovariectomized females, Kiss1 neurons were scattered throughout the preoptic periventricular areas (PV), but the vast majority of Kiss1 neurons were localized in the arcuate nucleus (Arc). An E2 treatment that first inhibits (negative feedback) and then augments (positive feedback) serum luteinizing hormone (LH) increased Kiss1 mRNA density and number of cells expressing Kiss1 in the PV at both time points. Within the Arc, Kiss1 mRNA density was reduced at both time points. Quantitative real-time PCR confirmed the in situ hybridization results during positive feedback. E2 reduced the number of immunoreactive kisspeptin cells in the PV at both time points, perhaps an indication of increased release. Within the Arc, the kisspeptin immunoreactivity was decreased during negative feedback but increased during positive feedback. Therefore, it appears that in guinea pig both the PV and the Arc kisspeptin neurons act cooperatively to excite gonadotropin-releasing hormone (GnRH) neurons during positive feedback. We conclude that E2 regulation of negative and positive feedback may reflect a complex interaction of the kisspeptin circuitry, and both the PV and the Arc respond to hormone signals to encode excitation of GnRH neurons during the ovulatory cycle. PMID:22173890
Somgird, Chaleamchat; Homkong, Pongpon; Sripiboon, Supaphen; Brown, Janine L; Stout, Tom A E; Colenbrander, Ben; Mahasawangkul, Sittidet; Thitaram, Chatchote
2016-01-01
Musth in adult bull elephants is a period of increased androgen concentrations ranging from a few weeks to several months. For captive elephant bull management, musth presents a serious challenge because of the aggressive behavior of musth bulls toward people and other elephants. Commercially available GnRH vaccines have been shown to suppress testicular function by interrupting the hypothalamo-pituitary-gonadal (HPG) axis in many species. The aim of this study was to test the efficacy of a GnRH vaccine in elephant bulls for suppressing the HPG axis and mitigating musth-related aggressive behavior. Five adult Asian elephant bulls (22-55 years old) were immunized with a GnRH vaccine starting with an initial injection 2-4 months before the predicted musth period, and followed by three boosters at approximately 4-week intervals. Blood samples were collected twice weekly for hormone and antibody titer analysis. An increase in GnRH antibody titers was observed in all bulls after the second or third booster, and titers remained elevated for 2-3 months after the final booster. Musth was attenuated and shortened in three bulls and postponed completely in two. We conclude that GnRH vaccination is capable of suppressing symptoms of musth in adult bull elephants. With appropriate timing, GnRH vaccination could be used to control or manage musth and aggressive behavior in captive elephant bulls. However, more work is needed to identify an optimal dose, booster interval, and vaccination schedule for complete suppression of testicular steroidogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.
A Plasmodesmal Glycosyltransferase-Like Protein
Zalepa-King, Lisa; Citovsky, Vitaly
2013-01-01
Plasmodesmata (Pd) are plant intercellular connections that represent cytoplasmic conduits for a wide spectrum of cellular transport cargoes, from ions to house-keeping proteins to transcription factors and RNA silencing signals; furthermore, Pd are also utilized by most plant viruses for their spread between host cells. Despite this central role of Pd in the plant life cycle, their structural and functional composition remains poorly characterized. In this study, we used a known Pd-associated calreticulin protein AtCRT1 as bait to isolate other Pd associated proteins in Arabidopsis thaliana. These experiments identified a beta-1,6-N-acetylglucosaminyl transferase-like enzyme (AtGnTL). Subcellular localization studies using confocal microscopy observed AtGnTL at Pd within living plant cells and demonstrated colocalization with a Pd callose-binding protein (AtPDCB1). That AtGnTL is resident in Pd was consistent with its localization within the plant cell wall following plasmolysis. Initial characterization of an Arabidopsis T-DNA insertional mutant in the AtGnTL gene revealed defects in seed germination and delayed plant growth. PMID:23469135
TENG, LOONG HUNG; AHMAD, MUNIRAH; NG, WAYNE TIONG WENG; SABARATNAM, SUBATHRA; RASAN, MARIA ITHAYA; PARHAR, ISHWAR; KHOO, ALAN SOO BENG
2015-01-01
Gonadotropin-releasing hormone (GnRH), or its analogues have been demonstrated to exhibit anti-proliferative effects on tumour cells in ovarian, endometrial and breast cancer through GnRH-receptors (GnRH-R). However, the role of GnRH in nasopharyngeal carcinoma (NPC) remains to be elucidated. In order to investigate the effects of GnRH in NPC, the present study examined the expression of the GnRH-R transcript in NPC and investigated the phenotypic changes in HK1 cells, a recurrent NPC-derived cell line, upon receiving GnRH treatment. Firstly, the GnRH-R transcript was demonstrated in the NPC cell lines and four snap frozen biopsies using reverse transcription-quantitative polymerase chain reaction. In addition, immunohistochemistry revealed the expression of GnRH-R in two of the eight (25%) NPC specimens. Treatment with GnRH induced a rapid increase in intracellular ionised calcium concentration in the NPC cells. GnRH and its agonists, triptorelin and leuprolide, exerted anti-proliferative effects on the NPC cells, as determined using an MTS assay. GnRH did not induce any cell cycle arrest in the HK1 cells under the conditions assessed in the present study. Time-lapse imaging demonstrated a reduction in cell motility in the GnRH-treated cells. In conclusion, GnRH, or its analogues may have antitumour effects on NPC cells. The consequences of alterations in the levels of GnRH on the progression of NPC require further examination. PMID:26151677
NASA Astrophysics Data System (ADS)
Zhao, Chunyan; Xu, Shihong; Feng, Chengcheng; Liu, Yifan; Yang, Yang; Wang, Yanfeng; Xiao, Yongshuang; Song, Zongcheng; Liu, Qinghua; Li, Jun
2017-10-01
Turbots (Schophthalmus maximus), one of the most important economic marine flatfish species, fail to undergo final spawning and spermiation naturally under artificial farming conditions. In vertebrates, reproduction is regulated by the brain-pituitary-gonadal axis (BPG-axis), and gonadotropin releasing hormone (GnRH) is one of its key components. Therefore, to better understand the physiology of reproduction in the turbot, three of the genes encoding GnRH subtypes—sbGnRH, cGnRH-II and sGnRH—were cloned and sequenced by isolating the cDNA sequences. The localizations and patterns of expression of their mRNAs were also evaluated during seasonal gonadal development. All three mRNAs were expressed abundantly in the brain; sbGnRH and sGnRH mRNAs were also detected in the gonads and pituitary gland, and sbGnRH expression was much higher than that of sGnRH, indicating the critical role of sbGnRH in regulating the BPG-axis. Moreover, the brain expression patterns of sbGnRH and sGnRH mRNAs showed an increased trend during gonadal development, peaking in mature stages. This indicated the direct regulation of gonadal development by the GnRH system. In addition, cGnRH-II mRNA expression showed no significant variations, suggesting that cGnRH-II is not critically involved in the control of reproduction. Further, the mRNA abundances of the three GnRH forms in the breeding season were significantly higher than those in immature and post-breeding stages in all analyzed brain areas. Therefore, we propose that sbGnRH is the most important hormone for the regulation of reproduction in turbot via the BPG-axis. These results will help in better understanding the reproductive endocrine mechanisms of turbots and lay the groundwork for additional studies aimed at comparing the reproductive physiology of wild individuals with those raised under artificial conditions.
Poulin, B; Rich, N; Mas, J L; Kordon, C; Enjalbert, A; Drouva, S V
1998-07-25
Exposure of the gonadotrope cells to gonadotropin-releasing hormone (GnRH) reduces their responsiveness to a new GnRH stimulation (homologous desensitization). The time frame as well as the mechanisms underlying this phenomenon are yet unclear. We studied in a gonadotrope cell line (alphaT3-1) the effects of short as well as long term GnRH pretreatments on the GnRH-induced phospholipases-C (PLC), -A2 (PLA2) and -D (PLD) activities, by measuring the production of IP3, total inositol phosphates (IPs), arachidonic acid (AA) and phosphatidylethanol (PEt) respectively. We demonstrated that although rapid desensitization of GnRH-induced IP3 formation did not occur in these cells, persistent stimulation of cells with GnRH or its analogue resulted in a time-dependent attenuation of GnRH-elicited IPs formation. GnRH-induced IPs desensitization was potentiated after direct activation of PKC by the phorbol ester TPA, suggesting the involvement of distinct mechanisms in the uncoupling exerted by either GnRH or TPA on GnRH-stimulated PI hydrolysis. The levels of individual phosphoinositides remained unchanged under any desensitization condition applied. Interestingly, while the GnRH-induced PLA2 activity was rapidly desensitized (2.5 min) after GnRH pretreatments, the neuropeptide-evoked PLD activation was affected at later times, indicating an important time-dependent contribution of these enzymatic activities in the sequential events underlying the GnRH-induced homologous desensitization processes in the gonadotropes. Under GnRH desensitization conditions, TPA was still able to induce PLD activation and to further potentiate the GnRH-evoked PLD activity. AlphaT3-1 cells possess several PKC isoforms which, except PKCzeta, were differentially down-regulated by TPA (PKCalpha, betaII, delta, epsilon, eta) or GnRH (PKCbetaII, delta, epsilon, eta). In spite of the presence of PKC inhibitors or down-regulation of PKC isoforms by TPA, the desensitizing effect of the neuropeptide on GnRH-induced IPs, AA and PEt formation remained unchanged. In conclusion, in alphaT3-1 cells the GnRH-induced homologous desensitization affects the GnRH coupling with PLC, PLA2 and PLD by mechanism(s) which do not implicate TPA-sensitive PKC isoforms, but likely reflect time-dependent modification(s) on the activation processes of the enzymes.
Wang, Qingqing; Qi, Xin; Tang, Haipei; Guo, Yin; Li, Shuisheng; Li, Gaofei; Yang, Xiaoli; Zhang, Haifa; Liu, Xiaochun; Lin, Haoran
2017-04-01
Gonadal steroids are critical factors in reproduction and sex reverse process. StAR (steroidogenic acute regulatory protein), transferring the cholesterol from the outer mitochondrial membrane to the inner membrane, is the rate-limiting factor of steroidogenesis. 3βHSD (3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase), converting Δ5-steroids into Δ4-steroids, is an important oxidoreductase in steroidogenesis. In the present study, StAR and 3βHSD1 were cloned and characterized from protogynous orange-spotted grouper. StAR cDNA contains an 861bp open reading frame (ORF), encoding a predicted protein of 286 amino acids, and the ORF of 3βHSD1 was 1125bp, encoding a predicted protein of 374 amino acids. The transcript of StAR was mainly expressed in gonad, while 3βHSD1 mRNA was predominantly detected in brain and gonad. In the previous study, we found the expression of GnIH mRNA level in male, as well as in 17 alpha-methyltestosterone (MT)-induced male fish was significantly higher than in female fish, this indicating that GnIH/GnIHR signaling might be involved in the regulation of sex reversal and male maintenance. In order to figure out the function of GnIH in steroidogenesis, the expression of StAR and 3βHSD1 regulated by GnIH was examined. In vitro study showed that treatment of cultured ovary fragments with gGnIH peptides significantly stimulated the expression of StAR and 3βHSD1. In addition, the mRNA levels of StAR and 3βHSD1 were significantly increased after intraperitoneal injection (i.p.) with gGnIH peptides. Moreover, during MT-induced sex change from female to male, the levels of StAR mRNA significantly increased by 5.2, 24.8 and 353.5 folds, and that of 3βHSD1 mRNA by 3.5, 32.5 and 55.4 folds at the 2nd, 4th and 6th week after MT implantation, respectively. Collectively, our results indicate that GnIH may be involved in the regulation of sex reversal or male maintenance by stimulating the expression of StAR and 3βHSD1 in protogynous grouper. Copyright © 2017 Elsevier Inc. All rights reserved.
Demeestere, Isabelle; Brice, Pauline; Peccatori, Fedro A; Kentos, Alain; Dupuis, Jehan; Zachee, Pierre; Casasnovas, Olivier; Van Den Neste, Eric; Dechene, Julie; De Maertelaer, Viviane; Bron, Dominique; Englert, Yvon
2016-08-01
We have reported previously that after 1-year follow up, gonadotropin-releasing hormone agonist (GnRHa) did not prevent chemotherapy-induced premature ovarian failure (POF) in patients with lymphoma, but may provide protection of the ovarian reserve. Here, we report the final analysis of the cohort after 5 years of follow up. A total of 129 patients with lymphoma were randomly assigned to receive either triptorelin plus norethisterone (GnRHa group) or norethisterone alone (control group) during chemotherapy. Ovarian function and fertility were reported after 2, 3, 4, and 5 to 7 years of follow up. The primary end point was POF, defined as at least one follicle-stimulating hormone value of > 40 IU/L after 2 years of follow up. Sixty-seven patients 26.21 ± 0.64 years of age had available data after a median follow-up time of 5.33 years in the GnRHa group and 5.58 years in the control group (P = .452). Multivariate logistic regression analysis showed a significantly increased risk of POF in patients according to age (P = .047), the conditioning regimen for hematopoietic stem cell transplant (P = .002), and the cumulative dose of cyclophosphamide > 5 g/m(2) (P = .019), but not to the coadministration of GnRHa during chemotherapy (odds ratio, 0.702; P = .651). The ovarian reserve, evaluated using anti-Müllerian hormone and follicle-stimulating hormone levels, was similar in both groups. Fifty-three percent and 43% achieved pregnancy in the GnRHa and control groups, respectively (P = .467). To the best of our knowledge, this is the first long-term analysis confirming that GnRHa is not efficient in preventing chemotherapy-induced POF in young patients with lymphoma and did not influence future pregnancy rate. These results reopen the debate about the drug's benefit in that it should not be recommended as standard for fertility preservation in patients with lymphoma. © 2016 by American Society of Clinical Oncology.
Glanowska, Katarzyna M; Moenter, Suzanne M
2015-01-01
GnRH release in the median eminence (ME) is the central output for control of reproduction. GnRH processes in the preoptic area (POA) also release GnRH. We examined region-specific regulation of GnRH secretion using fast-scan cyclic voltammetry to detect GnRH release in brain slices from adult male mice. Blocking endoplasmic reticulum calcium reuptake to elevate intracellular calcium evokes GnRH release in both the ME and POA. This release is action potential dependent in the ME but not the POA. Locally applied kisspeptin induced GnRH secretion in both the ME and POA. Local blockade of inositol triphospate-mediated calcium release inhibited kisspeptin-induced GnRH release in the ME, but broad blockade was required in the POA. In contrast, kisspeptin-evoked secretion in the POA was blocked by local gonadotropin-inhibitory hormone, but broad gonadotropin-inhibitory hormone application was required in the ME. Although action potentials are required for GnRH release induced by pharmacologically-increased intracellular calcium in the ME and kisspeptin-evoked release requires inositol triphosphate-mediated calcium release, blocking action potentials did not inhibit kisspeptin-induced GnRH release in the ME. Kisspeptin-induced GnRH release was suppressed after blocking both action potentials and plasma membrane Ca(2+) channels. This suggests that kisspeptin action in the ME requires both increased intracellular calcium and influx from the outside of the cell but not action potentials. Local interactions among kisspeptin and GnRH processes in the ME could thus stimulate GnRH release without involving perisomatic regions of GnRH neurons. Coupling between action potential generation and hormone release in GnRH neurons is thus likely physiologically labile and may vary with region.
Orion GN and C Model Based Development: Experience and Lessons Learned
NASA Technical Reports Server (NTRS)
Jackson, Mark C.; Henry, Joel R.
2012-01-01
The Orion Guidance Navigation and Control (GN&C) team is charged with developing GN&C algorithms for the Exploration Flight Test One (EFT-1) vehicle. The GN&C team is a joint team consisting primarily of Prime Contractor (Lockheed Martin) and NASA personnel and contractors. Early in the GN&C development cycle the team selected MATLAB/Simulink as the tool for developing GN&C algorithms and Mathworks autocode tools as the means for converting GN&C algorithms to flight software (FSW). This paper provides an assessment of the successes and problems encountered by the GN&C team from the perspective of Orion GN&C developers, integrators, FSW engineers and management. The Orion GN&C approach to graphical development, including simulation tools, standards development and autocode approaches are scored for the main activities that the team has completed through the development phases of the program.
The Gum Nebula and Related Problems
NASA Technical Reports Server (NTRS)
1973-01-01
Proceedings of a symposium concerning the Gum Nebula (GN) and related topics are reported. Papers presented include: Colin Gum and the discovery of the GN; identification of the GN as the fossil Stromgren sphere of Vela X Supernova; size and shape of GN; formation of giant H-2 regions following supernova explosions; radio astronomy Explorer 1 observations of GN; cosmic ray effects in the GN; low intensity H beta emission from the interstellar medium; and how to recognize and analyze GN. Astronomical charts and diagrams are included.
Functional hypothalamic amenorrhea: current view on neuroendocrine aberrations.
Meczekalski, Blazej; Podfigurna-Stopa, Agnieszka; Warenik-Szymankiewicz, Alina; Genazzani, Andrea Riccardo
2008-01-01
Functional hypothalamic amenorrhea (FHA) is defined as a non-organic and reversible disorder in which the impairment of gonadotropin-releasing hormone (GnRH) pulsatile secretion plays a key role. There are main three types of FHA: stress-related amenorrhea, weight loss-related amenorrhea and exercise-related amenorrhea. The spectrum of GnRH-luteinizing hormone (LH) disturbances in FHA is very broad and includes lower mean frequency of LH pulses, complete absence of LH pulsatility, normal-appearing secretion pattern and higher mean frequency of LH pulses. Precise mechanisms underlying the pathophysiology of FHA are very complex and unclear. Numerous neuropeptides, neurotransmitters and neurosteroids play important roles in the physiological regulation of GnRH pulsatile secretion and there is evidence that different neuropeptides may be involved in the pathophysiology of FHA. Particular attention is paid to such substances as allopregnanolone, neuropeptide Y, corticotropin-releasing hormone, leptin, ghrelin and beta-endorphin. Some studies reveal significant changes in these mentioned substances in patients with FHA. There are also speculations about use some of these substances or their antagonists in the treatment of FHA.
NASA Astrophysics Data System (ADS)
Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.
2015-07-01
In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.
Ratto, Marcelo; Huanca, Wilfredo; Singh, Jaswant; Adams, Gregg P
2006-02-01
Gonadotropins and GnRH have been used to electively induce ovulation in llamas and alpacas, but critical evaluation of the natural interval to ovulation after mating has not been performed nor has a direct comparison of the effects of natural mating versus hormone treatments on this interval and subsequent luteal development. The objectives of this study were to compare the effects of hormonal treatments and natural mating on ovulation induction, interval to ovulation, and luteal development in llamas. The ovaries of llamas were examined by transrectal ultrasonography once daily. Llamas with a large follicle were assigned randomly to be: (1) mated with an intact male (mated; n=10); (2) given 5 mg of LH im (LH; n=11); or (3) 50 microg of GnRH im (GnRH; n=10). Ultrasound examinations were performed every 4h from treatment (day 0) to ovulation and thereafter once daily for 15 consecutive days to monitor CL growth and regression (n=5 per group). Plasma progesterone concentrations were measured at days 0, 3, 6, 9, and 12 after treatment to evaluate CL function. The size of the largest preovulatory follicle at the time of treatment did not differ among groups (11+/-0.6, 10.5+/-0.8, 11.8+/-0.9 mm, for mated, LH, and GnRH groups, respectively; P=0.6). No differences were detected among groups (mated, LH, and GnRH) in ovulation rate (80%, 91%, 80%, respectively; P=0.6), or interval from treatment to ovulation (30.0+/-0.5, 29.3+/-0.6, 29.3+/-0.7h, respectively; P=0.9). Similarly, no differences were detected among groups (mated, LH, and GnRH) in maximum CL diameter (14.2+/-0.3, 13.2+/-0.5, and 13.0+/-0.7 mm, respectively; P=0.5), the day of maximum CL diameter (7.6+/-0.2, 7.6+/-0.2, and 7.4+/-0.4 mm, respectively; P=0.6), or the day on which the CL began to regress (12.3+/-0.3 [non-pregnant, n=3], 11.8+/-0.6, 12.2+/-0.4, respectively; P=0.4). The diameter of the CL and plasma progesterone concentrations changed over days (P<0.0001) but the profiles did not differ among groups. In summary, ovulation rate, interval to ovulation, and luteal development were similar among llamas that were mated naturally or treated with LH or GnRH. We conclude that both hormonal preparations are equally reliable for inducing ovulation and suitable for synchronization for artificial insemination or embryo transfer program.
Ciechanowska, Magdalena; Łapot, Magdalena; Malewski, Tadeusz; Mateusiak, Krystyna; Misztal, Tomasz; Przekop, Franciszek
2011-01-01
There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo-pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo-anterior pituitary unit. © CSIRO 2011 Open Access
Lu, Mingzhu; Zhu, Jing; Ling, Yang; Shi, Wenping; Zhang, Changsong; Wu, Haorong
2015-01-01
Aims: Expression of gonadotropin-releasing hormone receptor (GnRHR) has been demonstrated in a number of malignancies. The aim is to investigate the expression of GnRHR and prognosis in gastric cancer. Methods and materials: GnRHR mRNA was examined in tumor and non-tumor tissues from 48 gastric cancer patients by Real-time PCR. The GnRHR protein expression was performed by immunohistochemical analysis. Results: The expression of GnRHR mRNA was higher (mean ± SD, -10.06 ± 1.28) in gastric tumor tissues than matched non-tumor tissues (mean ± SD, -12.43 ± 1.33). GnRHR mRNA expression was associated with lymph node metastasis, distant metastasis, and TNM stage. We found the decreased expression of GnRHR mRNA were significantly correlated with poor overall survival (P = 0.003). Immunocytochemical staining of GnRHR in tumor tissues showed mainly weak staining (43.48%, 10/23) and moderate staining (21.74%, 5/23) in high GnRHR mRNA patients, and mainly negative staining in low GnRHR mRNA patients. And the staining of GnRHR was not detection in tumor tissues for more than half of gastric patients (52.08%, 25/48). These results implied that the loss of GnRHR protein could be a main event in gastric cancer. Conclusion: The GnRHR expression is very low in gastric cancer, and the loss of GnRHR expression could be a poor prognostic factor, which implied that GnRHR could play an important role in the development of gastric cancer. PMID:26550267
Expression and role of gonadotropin-releasing hormone 2 and its receptor in mammals
USDA-ARS?s Scientific Manuscript database
Gonadotropin-releasing hormone (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in some mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, s...
Utilization of GnRH-II receptor knockdown pigs to explore steroidogenesis in the testis
USDA-ARS?s Scientific Manuscript database
The historical form of gonadotropin-releasing hormone (GnRH-I) is well established as an important regulator of mammalian reproduction. More recently, a second form of GnRH (GnRH-II) was identified in mammals. GnRH-II is also a decapeptide, differing from GnRH-I by only 3 amino acids (His5, Trp7, ...
NASA Astrophysics Data System (ADS)
Huang, Huiyang; Li, Linming; Ye, Haihui; Feng, Biyun; Li, Shaojing
2013-03-01
Gonadotropin-releasing hormone (GnRH) is a crucial peptide for the regulation of reproduction. Using immunological techniques, we investigated the presence of GnRH in horseshoe crab Tachypleus tridentatus. Octopus GnRH-like immunoreactivity, tunicate GnRH-like immunoreactivity, and lamprey GnRH-I-like immunoreactivity were detected in the neurons and fibers of the protocerebrum. However, no mammal GnRH-like immunoreactivity or lamprey GnRH-III-like immunoreactivity was observed. Our results suggest that a GnRH-like factor, an ancient peptide, existed in the brain of T. tridentatus and may be involved in the reproductive endocrine system.
Patients with IgA nephropathy exhibit high systemic PDGF-DD levels.
Boor, Peter; Eitner, Frank; Cohen, Clemens D; Lindenmeyer, Maja T; Mertens, Peter R; Ostendorf, Tammo; Floege, Jürgen
2009-09-01
Platelet-derived growth factor (PDGF) is a central mediator of mesangioproliferative glomerulonephritis (GN). In experimental mesangioproliferative GN, PDGF-DD serum levels, unlike PDGF-BB, increased up to 1000-fold. We assessed disease activity in 72 patients with GN, established a novel PDGF-D ELISA and then determined their PDGF-DD levels. In parallel, we studied renal PDGF-DD mRNA expression by RT-PCR. PDGF-DD serum levels in patients with IgA nephropathy (IgAN) were significantly higher (1.67 +/- 0.45 ng/ml) and in patients with lupus nephritis significantly lower (0.66 +/- 0.86 ng/ml) compared to healthy controls (1.17 +/- 0.46 ng/ml), while patients with focal segmental glomerulosclerosis, membranous GN and ANCA-positive vasculitis did not differ from controls. The subgroup of IgAN patients with elevated PDGF-DD levels (27% of samples) did not differ in their clinical features from those with normal PDGF-DD levels. In IgAN patients with repetitive PDGF-DD determinations, most exhibited only minor fluctuations of serum levels over time. Intrarenal PDGF-DD mRNA expression did not differ between controls and patients, suggesting an extrarenal source of the elevated PDGF-DD in IgAN. Serum PDGF-DD levels were specifically elevated in patients with IgAN, in particular in those with early disease, i.e. preserved renal function. Our data support the rationale for anti-PDGF-DD therapy in mesangioproliferative GN.
Weiss, J M; Polack, S; Treeck, O; Diedrich, K; Ortmann, O
2006-08-01
The secretion of luteinizing hormone (LH) and the GnRH receptor (GnRH-R) concentration are modulated by ovarian steroids and GnRH. To elucidate whether this regulation is due to alterations at the transcriptional level, we examined the GnRH I-R mRNA expression in the gonadotroph-derived cell line alphaT3-1 treated with different estradiol and progesterone paradigms and the GnRH I agonist triptorelin. alphaT3-1 cells were treated with different steroid paradigms: 1 nM estradiol or 100 nM progesterone for 48 h alone or in combination. Cells were exposed to 10 nM or 100 pM triptorelin for 30 min, 3 h, 9 h, or, in pulsatile way, with a 5-min pulse per hour. The GnRH I-R mRNA was determined by Northern blot analysis. GnRH I-R mRNA from cells treated with continuous triptorelin decreased in a time- and concentration-dependent manner. Pulsatile triptorelin increased GnRH I-R gene expression. Progesterone alone further enhanced this effect, whereas estradiol and its combination with progesterone diminished it. Continuous combined treatment with estradiol and progesterone lead to a significant decrease of GnRH I-R mRNA by 30% and by 35% for estradiol alone. The addition of 10 nM triptorelin for 30 min or 3 h could not influence that steroid effect. In conclusion, estradiol and progesterone exclusively decreased GnRH I-R mRNA in alphaT3-1 cells no matter whether they are treated additionally with the GnRH I agonist triptorelin. The enhanced sensitivity of gonadotrophs and GnRH I-R upregulation by estradiol is not due to increased GnRH I gene expression because GnRH I-R mRNA is downregulated by estradiol and progesterone. Other pathways of the GnRH I-R signal transduction might be involved.
Yang, Ying; Zhou, Li-bin; Liu, Shang-quan; Tang, Jing-feng; Li, Feng-yin; Li, Rong-ying; Song, Huai-dong; Chen, Ming-dao
2005-08-01
To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion. Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagon-like peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexin1, orexin2, neuromedin-B, neuropeptide Y (NPY)1 and NPY5, neurotensin (NT)1, NT2, NT3, and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin, orexin A and orexin B at a cohort of concentrations for different lengths of time, and GnRH in medium was determined by radioimmunoassay (RIA). Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexin1, neuromedin-B, NPY1, NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7 cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.
Leptin Deficiency and Diet-Induced Obesity Reduce Hypothalamic Kisspeptin Expression in Mice
Howell, Christopher S.; Roa, Juan; Augustine, Rachael A.; Grattan, David R.; Anderson, Greg M.
2011-01-01
The hormone leptin modulates a diverse range of biological functions, including energy homeostasis and reproduction. Leptin promotes GnRH function via an indirect action on forebrain neurons. We tested whether leptin deficiency or leptin resistance due to a high-fat diet (HFD) can regulate the potent reproductive neuropeptide kisspeptin. In mice with normalized levels of estradiol, leptin deficiency markedly reduced kisspeptin gene expression, particularly in the arcuate nucleus (ARC), and kisspeptin immunoreactive cell numbers in the rostral periventricular region of the third ventricle (RP3V). The HFD model was used to determine the effects of diet-induced obesity and central leptin resistance on kisspeptin cell number and gene expression. DBA/2J mice, which are prone to HFD-induced infertility, showed a marked decrease in kisspeptin expression in both the RP3V and ARC and cell numbers in the RP3V after HFD. This is the first evidence that kisspeptin can be regulated by HFD and/or increased body weight. Next we demonstrated that leptin does not signal (via signal transducer and activator of transcription 3 or 5, or mammalian target of rapamycin) directly on kisspeptin-expressing neurons in the RP3V. Lastly, in leptin receptor-deficient mice, neither GnRH nor kisspeptin neurons were activated during a preovulatory-like GnRH/LH surge induction regime, indicating that leptin's actions on GnRH may be upstream of kisspeptin neurons. These data provide evidence that leptin's effects on reproductive function are regulated by kisspeptin neurons in both the ARC and RP3V, although in the latter site the effects are likely to be indirect. PMID:21325051
Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice.
Quennell, Janette H; Howell, Christopher S; Roa, Juan; Augustine, Rachael A; Grattan, David R; Anderson, Greg M
2011-04-01
The hormone leptin modulates a diverse range of biological functions, including energy homeostasis and reproduction. Leptin promotes GnRH function via an indirect action on forebrain neurons. We tested whether leptin deficiency or leptin resistance due to a high-fat diet (HFD) can regulate the potent reproductive neuropeptide kisspeptin. In mice with normalized levels of estradiol, leptin deficiency markedly reduced kisspeptin gene expression, particularly in the arcuate nucleus (ARC), and kisspeptin immunoreactive cell numbers in the rostral periventricular region of the third ventricle (RP3V). The HFD model was used to determine the effects of diet-induced obesity and central leptin resistance on kisspeptin cell number and gene expression. DBA/2J mice, which are prone to HFD-induced infertility, showed a marked decrease in kisspeptin expression in both the RP3V and ARC and cell numbers in the RP3V after HFD. This is the first evidence that kisspeptin can be regulated by HFD and/or increased body weight. Next we demonstrated that leptin does not signal (via signal transducer and activator of transcription 3 or 5, or mammalian target of rapamycin) directly on kisspeptin-expressing neurons in the RP3V. Lastly, in leptin receptor-deficient mice, neither GnRH nor kisspeptin neurons were activated during a preovulatory-like GnRH/LH surge induction regime, indicating that leptin's actions on GnRH may be upstream of kisspeptin neurons. These data provide evidence that leptin's effects on reproductive function are regulated by kisspeptin neurons in both the ARC and RP3V, although in the latter site the effects are likely to be indirect.
MaGnET: Malaria Genome Exploration Tool
Sharman, Joanna L.; Gerloff, Dietlind L.
2013-01-01
Summary: The Malaria Genome Exploration Tool (MaGnET) is a software tool enabling intuitive ‘exploration-style’ visualization of functional genomics data relating to the malaria parasite, Plasmodium falciparum. MaGnET provides innovative integrated graphic displays for different datasets, including genomic location of genes, mRNA expression data, protein–protein interactions and more. Any selection of genes to explore made by the user is easily carried over between the different viewers for different datasets, and can be changed interactively at any point (without returning to a search). Availability and Implementation: Free online use (Java Web Start) or download (Java application archive and MySQL database; requires local MySQL installation) at http://malariagenomeexplorer.org Contact: joanna.sharman@ed.ac.uk or dgerloff@ffame.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23894142
Yingling, Vanessa R; Xiang, Yongqing; Raphan, Theodore; Schaffler, Mitchell; Koser, Karen; Malique, Rumena
2007-01-01
Accrual of bone mass and strength during development is imperative in order to reduce the risk of fracture later in life. Although delayed pubertal onset is associated with an increased incidence of stress fracture, evidence supports the concept of “catch up” growth. It remains unclear if deficits in bone mass associated with delayed puberty have long term effects on trabecular bone structure and strength. The purpose of this study was to use texture-based analysis and histomorphometry to investigate the effect of a delay in puberty on trabecular bone mass and structure immediately post-puberty and at maturity in female rats. Forty-eight female Sprague Dawley rats (25 days) were randomly assigned to one of four groups; 1) short-term control (C-ST), 2) long-term control (C-LT), 3) short-term GnRH antagonist (G-ST) and 4) long-term GnRH antagonist (G-LT). Injections of either saline or gonadotropin-releasing hormone antagonist (GnRH-a) (100 μg/day) (Cetrotide™, Serono, Inc) were given intraperitoneally for 18 days (day 35–42) to both ST and LT. The ST groups were sacrificed after the last injection (day 43) and the LT groups at 6 months of age. Pubertal and gonadal development was retarded by the GnRA antagonist injections as indicated by a delay in vaginal opening, lower ovarian and uterine weights and suppressed estradiol levels in the short-term experimental animals (G-ST). Delayed puberty caused a transient reduction in trabecular bone area as assessed by histomorphometry. Specifically, the significant deficit in bone area resulted from a decreased number of trabecula and an increase in trabecular separation. Texture analysis, a new method to assess bone density and structural anisotropy, correlated well with the standard histomorphometry and measured significant deficits in the density measure (MDensity) in the G-ST group that remained at maturity (6 months). The texture energy deficit in the G-ST group was primarily in the 0° orientation (−13.2 %), which measures the longitudinal trabeculae in the proximal tibia. However, the deficit in the G-LT group was in the 45° and 135° orientations. These results suggest that any “catch-up” growth following the cessation of the GnRH-antagonist injection protocol may be directed in trabeculae oriented perpendicular to 0° at the expense of trabeculae in other orientations. PMID:16979963
Paullada-Salmerón, José A; Cowan, Mairi; Aliaga-Guerrero, María; Morano, Francesca; Zanuy, Silvia; Muñoz-Cueto, José A
2016-06-01
Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin synthesis and release from the pituitary of birds and mammals. However, the physiological role of orthologous GnIH peptides on the reproductive axis of fish is still uncertain, and their actions on the main neuroendocrine systems controlling reproduction (i.e., GnRHs, kisspeptins) have received little attention. In a recent study performed in the European sea bass, we cloned a cDNA encoding a precursor polypeptide that contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFamide (sbGnIH-2) peptide sequences, developed a specific antiserum against sbGnIH-2, and characterized its central and pituitary GnIH projections in this species. In this study, we analyzed the effects of intracerebroventricular injection of sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2, gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh levels. In addition, we determined the effects of GnIH on pituitary somatotropin (Gh) expression. The results obtained revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1, kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta, lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only down-regulated brain gnrh1 expression. However, at different doses, central administration of both sbGnIH-1 and sbGnIH-2 decreased Lh plasma levels. Our work represents the first study reporting the effects of centrally administered GnIH in fish and provides evidence of the differential actions of sbGnIH-1 and sbGnIH-2 on the reproductive axis of sea bass, the main inhibitory role being exerted by the sbGnIH-2 peptide. © 2016 by the Society for the Study of Reproduction, Inc.
Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS
2016-01-01
E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796
Maldonado, Luiz Guilherme Louzada; Franco, José Gonçalves; Setti, Amanda Souza; Iaconelli, Assumpto; Borges, Edson
2013-05-01
To compare cost-effectiveness between pituitary down-regulation with a GnRH agonist (GnRHa) short regimen on alternate days and GnRH antagonist (GnRHant) multidose protocol on in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) outcome. Prospective, randomized. A private center. Patients were randomized into GnRHa (n = 48) and GnRHant (n = 48) groups. GnRHa stimulation protocol: administration of triptorelin on alternate days starting on the first day of the cycle, recombinant FSH (rFSH), and recombinant hCG (rhCG) microdose. GnRHant protocol: administration of a daily dose of rFSH, cetrorelix, and rhCG microdose. ICSI outcomes and treatment costs. A significantly lower number of patients underwent embryo transfer in the GnRHa group. Clinical pregnancy rate was significantly lower and miscarriage rate was significantly higher in the GnRHa group. It was observed a significant lower cost per cycle in the GnRHa group compared with the GnRHant group ($5,327.80 ± 387.30 vs. $5,900.40 ± 472.50). However, mean cost per pregnancy in the GnRHa was higher than in the GnRHant group ($19,671.80 ± 1,430.00 vs. $11,328.70 ± 907.20). Although the short controlled ovarian stimulation protocol with GnRHa on alternate days, rFSH, and rhCG microdose may lower the cost of an individual IVF cycle, it requires more cycles to achieve pregnancy. NCT01468441. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Zhang, Qian; Luan, Hong; Wang, Le; He, Fan; Zhou, Huan; Xu, Xiaoli; Li, Xingai; Xu, Qing; Niki, Toshiro; Hirashima, Mitsuomi; Xu, Gang; Lv, Yongman; Yuan, Jin
2014-04-15
Antiglomerular basement membrane glomerulonephritis (anti-GBM GN) is a Th1- and Th17-predominant autoimmune disease. Galectin-9 (Gal-9), identified as the ligand of Tim-3, functions in diverse biological processes and leads to the apoptosis of CD4(+)Tim-3(+) T cells. It is still unclear how Gal-9 regulates the functions of Th1 and Th17 cells and prevents renal injury in anti-GBM GN. In this study, Gal-9 was administered to anti-GBM GN mice for 7 days. We found that Gal-9 retarded the increase of Scr, ameliorated renal tubular injury, and reduced the formation of crescents. The infiltration of Th1 and Th17 cells into the spleen and kidneys significantly decreased in Gal-9-treated nephritic mice. The reduced infiltration of Th1 and Th17 cells might be associated with the downregulation of CCL-20, CXCL-9, and CXCL-10 mRNAs in the kidney. In parallel, the blood levels of IFN-γ and IL-17A declined in Gal-9-treated nephritic mice at days 21 and 28. In addition, an enhanced Th2 cell-mediated immune response was observed in the kidneys of nephritic mice after a 7-day injection of Gal-9. In conclusion, the protective role of Gal-9 in anti-GBM GN is associated with the inhibition of Th1 and Th17 cell-mediated immune responses and enhanced Th2 immunity in the kidney.
Cui, Jian; Huang, Wan; Wu, Bo; Jin, Jin; Jing, Lin; Shi, Wen‐Pu; Liu, Zhen‐Yu; Yuan, Lin; Luo, Dan; Li, Ling
2018-01-01
Abstract While the importance of protein N‐glycosylation in cancer cell migration is well appreciated, the precise mechanisms by which N‐acetylglucosaminyltransferase V (GnT‐V) regulates cancer processes remain largely unknown. In the current study, we report that GnT‐V‐mediated N‐glycosylation of CD147/basigin, a tumor‐associated glycoprotein that carries β1,6‐N‐acetylglucosamine (β1,6‐GlcNAc) glycans, is upregulated during TGF‐β1‐induced epithelial‐to‐mesenchymal transition (EMT), which correlates with tumor metastasis in patients with hepatocellular carcinoma (HCC). Interruption of β1,6‐GlcNAc glycan modification of CD147/basigin decreased matrix metalloproteinase (MMP) expression in HCC cell lines and affected the interaction of CD147/basigin with integrin β1. These results reveal that β1,6‐branched glycans modulate the biological function of CD147/basigin in HCC metastasis. Moreover, we showed that the PI3K/Akt pathway regulates GnT‐V expression and that inhibition of GnT‐V‐mediated N‐glycosylation suppressed PI3K signaling. In summary, β1,6‐branched N‐glycosylation affects the biological function of CD147/basigin and these findings provide a novel approach for the development of therapeutic strategies targeting metastasis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:29431199
Hashem, N M; El-Azrak, K M; Nour El-Din, A N M; Taha, T A; Salem, M H
2015-01-15
This study was designed to evaluate the effect of GnRH treatment during different times of the reproductive cycle on ovarian activity, progesterone (P4) concentration, and subsequent fertility of low-prolific, subtropical, Rahmani ewes during breeding season. Forty-five ewes were synchronized for estrus using a double injection of 0.5 mL of PGF2α agonist (125-μg cloprostenol), 11 days apart. Ewes showing estrus (Day 0) were treated with 1 mL of GnRH agonist (4-μg buserelin) on the day of estrus (GnRH0, n = 12) or 7 days post-mating (GnRH7, n = 10) or on both days (GnRH0+7, n = 11) or not (control, n = 12). Ovarian response to the treatment and diagnosis of pregnancy were ultrasonographically monitored. Also, serum P4 concentration was determined weekly throughout 28 days post-mating. Results showed that neither total number of follicles nor their populations were changed on Day 0 or 7 days post-mating by the GnRH treatment. GnRH treatment on Day 0 or Day 7 post-mating or both days did not enhance ovulation rate compared with the control. The mean numbers of accessory CL increased (P < 0.05) in the GnRH7 group than those in the control and GnRH0 groups, whereas it was intermediate in the GnRH0+7 group. The greatest (P < 0.05) overall mean of serum P4 concentration was for the GnRH7 and GnRH0+7 groups, followed by the GnRH0 and control groups. Serum P4 concentration increased (P < 0.05) on Day 14 post-mating and continued higher (P < 0.05) until Day 28 post-mating in the GnRH7 and GnRH0+7 groups compared with the control. Regardless of the time of GnRH administration, GnRH treatment reduced (P < 0.05) pregnancy loss from Day 40 post-mating to parturition and tended to enhance (P < 0.20) lambing rate compared with the control. In conclusion, a single dose of GnRH at the time of estrus or 7 days post-mating could be used as an effective protocol to decrease pregnancy loss from Day 40 after mating to parturition in low-prolific Rahmani ewes. Copyright © 2015 Elsevier Inc. All rights reserved.
Madziva, Michael T; Mkhize, Nonhlanhla N; Flanagan, Colleen A; Katz, Arieh A
2015-08-15
The type II GnRH receptor (GnRH-R2) in contrast to mammalian type I GnRH receptor (GnRH-R1) has a cytosolic carboxy-terminal tail. We investigated the role of β-arrestin 1 in GnRH-R2-mediated signalling and mapped the regions in GnRH-R2 required for recruitment of β-arrestin, employing internalization assays. We show that GnRH-R2 activation of ERK is dependent on β-arrestin and protein kinase C. Appending the tail of GnRH-R2 to GnRH-R1 enabled GRK- and β-arrestin-dependent internalization of the chimaeric receptor. Surprisingly, carboxy-terminally truncated GnRH-R2 retained β-arrestin and GRK-dependent internalization, suggesting that β-arrestin interacts with additional elements of GnRH-R2. Mutating serine and threonine or basic residues of intracellular loop 3 did not abolish β-arrestin 1-dependent internalization but a receptor lacking these basic residues and the carboxy-terminus showed no β-arrestin 1-dependent internalization. Our results suggest that basic residues at the amino-terminal end of intracellular loop 3 or the carboxy-terminal tail are required for β-arrestin dependent internalization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela
2007-01-01
Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of LβT2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature αT3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA. PMID:15128600
Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela
2004-09-01
Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.
Kim, Seon Mi; Yoo, Taekyung; Lee, So Young; Kim, Eun Jeong; Lee, Soo Min; Lee, Min Hee; Han, Min Young; Jung, Seung-Hyun; Choi, Jung-Hye; Ryu, Keun Ho; Kim, Hun-Taek
2015-10-15
Suppression of the hypothalamic-pituitary-gonadal axis has been widely utilized for the management of gonadal-hormone-dependent diseases such as endometriosis. Efforts to develop orally available gonadotropin-releasing hormone (GnRH) antagonists for the treatment of gonadal-hormone-dependent diseases led to the discovery of SKI2670, a novel non-peptide GnRH antagonist. The present study was undertaken to pharmacologically characterize SKI2670 in vitro and in vivo. We measured binding affinity and antagonistic activity of SKI2670 for the GnRH receptors. Immediate suppression of gonadotropins by single dosing of SKI2670 was examined in castrated monkeys. Subsequently, influence on gonadal hormones by prolonged administration of SKI2670 was assessed in naive female monkeys. To investigate in vivo efficacy of SKI2670, regression of ectopic implants by repeated administration of SKI2670 was examined in a rat endometriosis model. SKI2670 is a potent functional antagonist for the human GnRH receptor, with subnanomolar binding affinity. In castrated monkeys, single administration of SKI2670 lowered serum luteinizing hormone (LH) levels stronger with longer duration when compared to elagolix at equivalent doses. Moreover, repeated dosing of SKI2670 suppressed serum levels of gonadotropins and gonadal hormones in intact female monkeys while elagolix suppressed serum LH levels only. Finally, it exhibited regressive effects on ectopic implants in a rat endometriosis model without bone loss. Our findings demonstrate robust GnRH antagonistic efficacy of SKI2670 in animal models, suggesting that SKI2670-induced suppression of the hypothalamic-pituitary-gonadal axis may be beneficial for the treatment of gonadal-hormone-dependent diseases such as endometriosis in humans. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, Sarah M.; Guevara, Esperanza; Woller, Michael J.
2009-06-01
Exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) causes functional deficits in neuroendocrine systems. We used an immortalized hypothalamic GT1-7 cell line, which synthesizes the neuroendocrine peptide gonadotropin-releasing hormone (GnRH), to examine the neurotoxic and endocrine disrupting effects of PCBs and their mechanisms of action. Cells were treated for 1, 4, 8, or 24 h with a range of doses of a representative PCB from each of three classes: coplanar (2,4,4',5-tetrachlorobiphenyl: PCB74), dioxin-like coplanar (2',3,4,4',5' pentachlorobiphenyl: PCB118), non-coplanar (2,2',4,4',5,5'-hexachlorobiphenyl: PCB153), or their combination. GnRH peptide concentrations, cell viability, apoptotic and necrotic cell death, and caspase activation weremore » quantified. In general, GnRH peptide levels were suppressed by high doses and longer durations of PCBs, and elevated at low doses and shorter timepoints. The suppression of GnRH peptide levels was partially reversed in cultures co-treated with the estrogen receptor antagonist ICI 182,780. All PCBs reduced viability and increased both apoptotic and necrotic cell death. Although the effects for the three classes of PCBs were often similar, subtle differences in responses, together with evidence that the combination of PCBs acted slightly different from individual PCBs, suggest that the three tested PCB compounds may act via slightly different or more than one mechanism. These results provide evidence that PCB congeners have endocrine disrupting and/or neurotoxic effects on the hypothalamic GnRH cell line, a finding that has implications for environmental endocrine disruption in animals.« less
VandeVrede, Lawren; Tavassoli, Ehsan; Luo, Jia; Qin, Zhihui; Yue, Lan; Pepperberg, David R; Thatcher, Gregory R
2014-01-01
Background and Purpose: Chlormethiazole (CMZ), a clinical sedative/anxiolytic agent, did not reach clinical efficacy in stroke trials despite neuroprotection demonstrated in numerous animal models. Using CMZ as a lead compound, neuroprotective methiazole (MZ) analogues were developed, and neuroprotection and GABAA receptor dependence were studied. Experimental Approach: Eight MZs were selected from a novel library, of which two were studied in detail. Neuroprotection, glutamate release, intracellular calcium and response to GABA blockade by picrotoxin were measured in rat primary cortical cultures using four cellular models of neurodegeneration. GABA potentiation was assayed in oocytes expressing the α1β2γ2 GABAA receptor. Key Results: Neuroprotection against a range of insults was retained even with substantial chemical modification. Dependence on GABAA receptor activity was variable: at the extremes, neuroprotection by GN-28 was universally sensitive to picrotoxin, while GN-38 was largely insensitive. In parallel, effects on extracellular glutamate and intracellular calcium were associated with GABAA dependence. Consistent with these findings, GN-28 potentiated α1β2γ2 GABAA function, whereas GN-38 had a weak inhibitory effect. Neuroprotection against moderate dose oligomeric Aβ1–42 was also tolerant to structural changes. Conclusions and Implications: The results support the concept that CMZ does not contain a single pharmacophore, rather that broad-spectrum neuroprotection results from a GABAA-dependent mechanism represented by GN-28, combined with a mechanism represented in GN-38 that shows the least dependence on GABAA receptors. These findings allow further refinement of the neuroprotective pharmacophore and investigation into secondary mechanisms that will assist in identifying MZ-based compounds of use in treating neurodegeneration. PMID:24116891
WAKABAYASHI, Yoshihiro; YAMAMURA, Takashi; SAKAMOTO, Kohei; MORI, Yuji; OKAMURA, Hiroaki
2012-01-01
Abstract Neurons in the arcuate nucleus (ARC) that concomitantly express kisspeptin, neurokinin B (NKB) and dynorphin A are termed KNDy neurons and are likely candidates for the intrinsic gonadotropin-releasing hormone (GnRH) pulse generator. Our hypothesis is that KNDy neurons are functionally and anatomically interconnected to generate discrete neural signals that govern pulsatile GnRH secretion. Our goal was to address this hypothesis using electrophysiological and anatomical experiments in goats. Bilateral electrodes targeting KNDy neurons were implanted into ovariectomized goats, and GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA volleys), was measured. Spontaneous and pheromone- or senktide (an NKB receptor agonist)-induced MUA volleys were simultaneously recorded from both sides of the ARC. An anterograde tracer, biotinylated dextran amine (BDA), was also injected unilaterally into the ARC of castrated male goats, and the distribution of fibers containing both BDA and NKB was examined using dual-labeling histochemistry. The results showed that MUA volleys, regardless of origin (spontaneous or experimentally induced), occur simultaneously between the right and left sides of the ARC. Tract tracing indicated that axons projecting from NKB neurons in the ARC were directly apposed to other NKB neuronal cells located bilaterally in the ARC. These results demonstrate that GnRH pulse generator activity occurs synchronously between both sides of the ARC in goats and that KNDy neurons are bilaterally interconnected in the ARC via NKB-containing fibers. Taken together, the results suggest that KNDy neurons form a neuronal circuit to synchronize burst activity among KNDy neurons and thereby generate discrete neural signals that govern pulsatile GnRH secretion. PMID:23080371
Quality of Life in Patients with Gluten Neuropathy: A Case-Controlled Study.
Zis, Panagiotis; Sarrigiannis, Ptolemaios Georgios; Rao, Dasappaiah Ganesh; Hadjivassiliou, Marios
2018-05-23
Gluten neuropathy (GN) is defined as an otherwise idiopathic peripheral neuropathy in the presence of serological evidence of gluten sensitivity (positive native gliadin antibodies and/or transglutaminase or endomysium antibodies). We aimed to compare the quality of life (QoL) of GN patients with that of control subjects and to investigate the effects of a gluten-free diet (GFD) on the QoL. All consecutive patients with GN attending a specialist neuropathy clinic were invited to participate. The Overall Neuropathy Limitations Scale (ONLS) was used to assess the severity of the neuropathy. The 36-Item Short Form Survey (SF-36) questionnaire was used to measure participants’ QoL. A strict GFD was defined as effectively being able to eliminate all circulating gluten sensitivity-related antibodies. Fifty-three patients with GN and 53 age- and gender-matched controls were recruited. Compared to controls, GN patients showed significantly worse scores in the physical functioning, role limitations due to physical health, energy/fatigue, and general health subdomains of the SF-36. After adjusting for age, gender, and disease severity, being on a strict GFD correlated with better SF-36 scores in the pain domain of the SF-36 (beta 0.317, p = 0.019) and in the overall health change domain of the SF-36 (beta 0.306, p = 0.017). In GN patients, physical dysfunctioning is the major determinant of poor QoL compared to controls. Routine checking of the elimination of gluten sensitivity-related antibodies that results from a strict GFD should be encouraged, as such elimination ameliorates the overall pain and health scores, indicating a better QoL.
Dickerson, Sarah M.; Guevara, Esperanza; Woller, Michael J.; Gore, Andrea C.
2009-01-01
Exposure to endocrine-disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) causes functional deficits in neuroendocrine systems. We used an immortalized hypothalamic GT1-7 cell line, which synthesizes the neuroendocrine peptide gonadotropin-releasing hormone (GnRH), to examine the neurotoxic and endocrine disrupting effects of PCBs and their mechanisms of action. Cells were treated for 1, 4, 8, or 24 h with a range of doses of a representative PCB from each of three classes: coplanar (2,4,4′,5-tetrachlorobiphenyl: PCB74), dioxin-like coplanar (2′,3,4,4′,5′ pentachlorobiphenyl: PCB118), non-coplanar (2,2′,4,4′,5,5′-hexachlorobiphenyl: PCB153), or their combination. GnRH peptide concentrations, cell viability, apoptotic and necrotic cell death, and caspase activation were quantified. In general, GnRH peptide levels were suppressed by high doses and longer durations of PCBs, and elevated at low doses and shorter time points. The suppression of GnRH peptide levels was partially reversed in cultures co-treated with the estrogen receptor antagonist ICI 182,780. All PCBs reduced viability and increased both apoptotic and necrotic cell death. Although the effects for the three classes of PCBs were often similar, subtle differences in responses, together with evidence that the combination of PCBs acted slightly differently from individual PCBs, suggest that the three tested PCB compounds may act via slightly different or more than one mechanism. These results provide evidence that PCB congeners have endocrine disrupting and/or neurotoxic effects on the hypothalamic GnRH cell line, a finding that has implications for environmental endocrine disruption in animals. PMID:19362103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, J. A.; Riechers, D.; Decarli, R.
2015-01-01
We present high-resolution observations of the 880 μm (rest-frame FIR) continuum emission in the z = 4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation (SF) in this unlensed galaxy on scales of 0.''3 × 0.''2 (∼2.1 × 1.3 kpc). The observations reveal a bright (16 ± 1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the Hubble Space Telescope/Wide Field Camera 3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuummore » data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended SF, and the peak star formation rate surface density (119 ± 8 M {sub ☉} yr{sup –1} kpc{sup –2}) implies that the SF in GN20 remains sub-Eddington on scales down to 3 kpc{sup 2}. We find that the SF efficiency (SFE) is highest in the central regions of GN20, leading to a resolved SF law with a power-law slope of Σ{sub SFR} ∼ Σ{sub H{sub 2}{sup 2.1±1.0}}, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the SF law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed SFE per free-fall time to include the star-forming medium on ∼kiloparsec scales in a galaxy 12 Gyr ago.« less
Zhang, Ying; Ji, Yajie; Li, Jianwei; Lei, Li; Wu, Siyu; Zuo, Wenjia; Jia, Xiaoqing; Wang, Yujie; Mo, Miao; Zhang, Na; Shen, Zhenzhou; Wu, Jiong; Shao, Zhimin; Liu, Guangyu
2018-04-01
To investigate ovarian function and therapeutic efficacy among estrogen receptor (ER)-positive, premenopausal breast cancer patients treated with gonadotropin-releasing hormone agonist (GnRHa) and chemotherapy simultaneously or sequentially. This study was a phase 3, open-label, parallel, randomized controlled trial (NCT01712893). Two hundred sixteen premenopausal patients (under 45 years) diagnosed with invasive ER-positive breast cancer were enrolled from July 2009 to May 2013 and randomized at a 1:1 ratio to receive (neo)adjuvant chemotherapy combined with sequential or simultaneous GnRHa treatment. All patients were advised to receive GnRHa for at least 2 years. The primary outcome was the incidence of early menopause, defined as amenorrhea lasting longer than 12 months after the last chemotherapy or GnRHa dose, with postmenopausal or unknown follicle-stimulating hormone and estradiol levels. The menstrual resumption period and survivals were the secondary endpoints. The median follow-up time was 56.9 months (IQR 49.5-72.4 months). One hundred and eight patients were enrolled in each group. Among them, 92 and 78 patients had complete primary endpoint data in the sequential and simultaneous groups, respectively. The rates of early menopause were 22.8% (21/92) in the sequential group and 23.1% (18/78) in the simultaneous group [simultaneous vs. sequential: OR 1.01 (95% CI 0.50-2.08); p = 0.969; age-adjusted OR 1.13; (95% CI 0.54-2.37); p = 0.737]. The median menstruation resumption period was 12.0 (95% CI 9.3-14.7) months and 10.3 (95% CI 8.2-12.4) months for the sequential and simultaneous groups, respectively [HR 0.83 (95% CI 0.59-1.16); p = 0.274; age-adjusted HR 0.90 (95%CI 0.64-1.27); p = 0.567]. No significant differences were evident for disease-free survival (p = 0.290) or overall survival (p = 0.514) between the two groups. For ER-positive premenopausal patients, the sequential use of GnRHa and chemotherapy showed ovarian preservation and survival outcomes that were no worse than simultaneous use. The application of GnRHa can probably be delayed until menstruation resumption after chemotherapy.
A Genetic Basis for Functional Hypothalamic Amenorrhea
Caronia, Lisa M.; Martin, Cecilia; Welt, Corrine K.; Sykiotis, Gerasimos P.; Quinton, Richard; Thambundit, Apisadaporn; Avbelj, Magdalena; Dhruvakumar, Sadhana; Plummer, Lacey; Hughes, Virginia A.; Seminara, Stephanie B.; Boepple, Paul A.; Sidis, Yisrael; Crowley, William F.; Martin, Kathryn A.; Hall, Janet E.; Pitteloud, Nelly
2011-01-01
BACKGROUND Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. METHODS We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. RESULTS Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kall-mann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. CONCLUSIONS Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.) PMID:21247312
A genetic basis for functional hypothalamic amenorrhea.
Caronia, Lisa M; Martin, Cecilia; Welt, Corrine K; Sykiotis, Gerasimos P; Quinton, Richard; Thambundit, Apisadaporn; Avbelj, Magdalena; Dhruvakumar, Sadhana; Plummer, Lacey; Hughes, Virginia A; Seminara, Stephanie B; Boepple, Paul A; Sidis, Yisrael; Crowley, William F; Martin, Kathryn A; Hall, Janet E; Pitteloud, Nelly
2011-01-20
Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kallmann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.).
A single sample GnRHa stimulation test in the diagnosis of precocious puberty
USDA-ARS?s Scientific Manuscript database
Gonadotropin-releasing hormone (GnRH) has been the standard test for diagnosing central precocious puberty. Because GnRH is no longer available, GnRH analogues (GnRHa) are now used. Random LH concentration, measured by the third-generation immunochemiluminometric assay, is a useful screening tool ...
GnRH Analogues in the Prevention of Ovarian Hyperstimulation Syndrome
Alama, Pilar; Bellver, Jose; Vidal, Carmen; Giles, Juan
2013-01-01
The GnRH analogue (agonist and antagonist GnRH) changed ovarian stimulation. On the one hand, it improved chances of pregnancy to obtain more oocytes and better embryos. This leads to an ovarian hyper-response, which can be complicated by the ovarian hyperstimulation syndrome (OHSS). On the other hand, the GnRH analogue can prevent the incidence of OHSS: GnRH antagonist protocols, GnRH agonist for triggering final oocyte maturation, either together or separately, coasting, and the GnRH analogue may prove useful for avoiding OHSS in high-risk patients. We review these topics in this article. PMID:23825982
Neurokinin B and serum albumin limit copper binding to mammalian gonadotropin releasing hormone.
Gul, Ahmad Samir; Tran, Kevin K; Jones, Christopher E
2018-02-26
Gonadotropin releasing hormone (GnRH) triggers secretion of luteinizing hormone and follicle stimulating hormone from gonadotropic cells in the anterior pituitary gland. GnRH is able to bind copper, and both in vitro and in vivo studies have suggested that the copper-GnRH complex is more potent at triggering gonadotropin release than GnRH alone. However, it remains unclear whether copper-GnRH is the active species in vivo. To explore this we have estimated the GnRH-copper affinity and have examined whether GnRH remains copper-bound in the presence of serum albumin and the neuropeptide neurokinin B, both copper-binding proteins that GnRH will encounter in vivo. We show that GnRH has a copper dissociation constant of ∼0.9 × 10 -9 M, however serum albumin and neurokinin B can extract metal from the copper-GnRH complex. It is therefore unlikely that a copper-GnRH complex will survive transit through the pituitary portal circulation and that any effect of copper must occur outside the bloodstream in the absence of neurokinin B. Copyright © 2018 Elsevier Inc. All rights reserved.
Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro
2016-01-01
The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm’-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment. PMID:27231931
Miller, Nichol L G; Wevrick, Rachel; Mellon, Pamela L
2009-01-15
Prader-Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS.
Miller, Nichol L.G.; Wevrick, Rachel; Mellon, Pamela L.
2009-01-01
Prader–Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS. PMID:18930956
Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro
2016-05-24
The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm'-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment.
G3X-K theory: A composite theoretical method for thermochemical kinetics
NASA Astrophysics Data System (ADS)
da Silva, Gabriel
2013-02-01
A composite theoretical method for accurate thermochemical kinetics, G3X-K, is described. This method is accurate to around 0.5 kcal mol-1 for barrier heights and 0.8 kcal mol-1 for enthalpies of formation. G3X-K is a modification of G3SX theory using the M06-2X density functional for structures and zero-point energies and parameterized for a test set of 223 heats of formation and 23 barrier heights. A reduced perturbation-order variant, G3X(MP3)-K, is also developed, providing around 0.7 kcal mol-1 accuracy for barrier heights and 0.9 kcal mol-1 accuracy for enthalpies, at reduced computational cost. Some opportunities to further improve Gn composite methods are identified and briefly discussed.
Hubbard physics in the symmetric half-filled periodic anderson-hubbard model
NASA Astrophysics Data System (ADS)
Hagymási, I.; Itai, K.; Sólyom, J.
2013-05-01
Two very different methods — exact diagonalization on finite chains and a variational method — are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied d sites ( gn d ) as a function of various parameters. In the absence of on-site Coulomb interaction ( U f ) between f electrons, the two methods yield similar results. The double occupancy of d levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite U f , while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value ( U {/d c }), which depends on U f and V.
Maddineni, S; Ocón-Grove, O M; Krzysik-Walker, S M; Hendricks, G L; Proudman, J A; Ramachandran, R
2008-09-01
Gonadotrophin-inhibitory hormone (GnIH), a hypothalamic RFamide, has been found to inhibit gonadotrophin secretion from the anterior pituitary gland originally in birds and, subsequently, in mammalian species. The gene encoding a transmembrane receptor for GnIH (GnIHR) was recently identified in the brain, pituitary gland and gonads of song bird, chicken and Japanese quail. The objectives of the present study are to characterise the expression of GnIHR mRNA and protein in the chicken pituitary gland, and to determine whether sexual maturation and gonadal steroids influence pituitary GnIHR mRNA abundance. GnIHR mRNA quantity was found to be significantly higher in diencephalon compared to either anterior pituitary gland or ovaries. GnIHR mRNA quantity was significantly higher in the pituitaries of sexually immature chickens relative to sexually mature chickens. Oestradiol or a combination of oestradiol and progesterone treatment caused a significant decrease in pituitary GnIHR mRNA quantity relative to vehicle controls. GnIHR-immunoreactive (ir) cells were identified in the chicken pituitary gland cephalic and caudal lobes. Furthermore, GnIHR-ir cells were found to be colocalised with luteinising hormone (LH)beta mRNA-, or follicle-stimulating hormone (FSH)beta mRNA-containing cells. GnIH treatment significantly decreased LH release from anterior pituitary gland slices collected from sexually immature, but not from sexually mature chickens. Taken together, GnIHR gene expression is possibly down regulated in response to a surge in circulating oestradiol and progesterone levels as the chicken undergoes sexual maturation to allow gonadotrophin secretion. Furthermore, GnIHR protein expressed in FSHbeta or LHbeta mRNA-containing cells is likely to mediate the inhibitory effect of GnIH on LH and FSH secretion.
Lu, Jie; Hathaway, Helen J; Royce, Melanie E; Prossnitz, Eric R; Miao, Yubin
2014-02-01
The purpose of this study was to examine whether the introduction of D-Phe could improve the GnRH receptor binding affinities of DOTA-conjugated D-Lys(6)-GnRH peptides. Building upon the construct of DOTA-Ahx-(D-Lys(6)-GnRH1) we previously reported, an aromatic amino acid of D-Phe was inserted either between the DOTA and Ahx or between the Ahx and D-Lys(6) to generate new DOTA-D-Phe-Ahx-(D-Lys(6)-GnRH) or DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) peptides. Compared to DOTA-Ahx-(D-Lys(6)-GnRH1) (36.1 nM), the introduction of D-Phe improved the GnRH receptor binding affinities of DOTA-D-Phe-Ahx-(D-Lys(6)-GnRH) (16.3 nM) and DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) (7.6 nM). The tumor targeting and pharmacokinetic properties of (111)In-DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) was determined in MDA-MB-231 human breast cancer-xenografted nude mice. Compared to (111)In-DOTA-Ahx-(D-Lys(6)-GnRH1), (111)In-DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) exhibited comparable tumor uptake with faster renal and liver clearance. The MDA-MB-231 human breast cancer-xenografted tumors were clearly visualized by single photon emission computed tomography (SPECT) using (111)In-DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) as an imaging probe, providing a new insight into the design of new GnRH peptides in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stimpfel, Martin; Vrtacnik-Bokal, Eda; Pozlep, Barbara; Virant-Klun, Irma
2015-01-01
The reports on how to stimulate the ovaries for oocyte retrieval in good prognosis patients are contradictory and often favor one type of controlled ovarian hyperstimulation (COH). For this reason, we retrospectively analyzed data from IVF/ICSI cycles carried out at our IVF Unit in good prognosis patients (aged <38 years, first and second attempts of IVF/ICSI, more than 3 oocytes retrieved) to elucidate which type of COH is optimal at our condition. The included patients were undergoing COH using GnRH agonist, GnRH antagonist or GnRH antagonist mild protocol in combination with gonadotrophins. We found significant differences in the average number of retrieved oocytes, immature oocytes, fertilized oocytes, embryos, transferred embryos, embryos frozen per cycle, and cycles with embryo freezing between studied COH protocols. Although there were no differences in live birth rate (LBR), miscarriages, and ectopic pregnancies between compared protocols, pregnancy rate was significantly higher in GnRH antagonist mild protocol in comparison with both GnRH antagonist and GnRH agonist protocols and cumulative LBR per cycle was significantly higher in GnRH antagonist mild protocol in comparison to GnRH agonist protocol. Our data show that GnRH antagonist mild protocol of COH could be the best method of choice in good prognosis patients.
Schagen, Sebastian E E; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette A; Hannema, Sabine E
2016-07-01
Puberty suppression using gonadotropin-releasing hormone agonists (GnRHas) is recommended by current guidelines as the treatment of choice for gender dysphoric adolescents. Although GnRHas have long been used to treat precocious puberty, there are few data on the efficacy and safety in gender dysphoric adolescents. Therefore, the Endocrine Society guideline recommends frequent monitoring of gonadotropins, sex steroids, and renal and liver function. To evaluate the efficacy and safety of GnRHa treatment to suppress puberty in gender dysphoric adolescents. Forty-nine male-to-female and 67 female-to-male gender dysphoric adolescents treated with triptorelin were included in the analysis. Physical examination, including assessment of Tanner stage, took place every 3 months and blood samples were drawn at 0, 3, and 6 months and then every 6 months. Body composition was evaluated using dual energy x-ray absorptiometry. GnRHa treatment caused a decrease in testicular volume in 43 of 49 male-to-female subjects. In one of four female-to-male subjects who presented at Tanner breast stage 2, breast development completely regressed. Gonadotropins and sex steroid levels were suppressed within 3 months. Treatment did not have to be adjusted because of insufficient suppression in any subject. No sustained abnormalities of liver enzymes or creatinine were encountered. Alkaline phosphatase decreased, probably related to a slower growth velocity, because height SD score decreased in boys and girls. Lean body mass percentage significantly decreased during the first year of treatment in girls and boys, whereas fat percentage significantly increased. Triptorelin effectively suppresses puberty in gender dysphoric adolescents. These data suggest routine monitoring of gonadotropins, sex steroids, creatinine, and liver function is not necessary during treatment with triptorelin. Further studies should evaluate the extent to which changes in height SD score and body composition that occur during GnRHa treatment can be reversed during subsequent cross-sex hormone treatment. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Pérez Sirkin, Daniela I; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M; Vissio, Paula G; Dufour, Sylvie
2017-01-01
GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation.
Pérez Sirkin, Daniela I.; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M.; Vissio, Paula G.; Dufour, Sylvie
2017-01-01
GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation. PMID:28878737
GPR54 and KiSS-1: role in the regulation of puberty and reproduction.
Kuohung, Wendy; Kaiser, Ursula B
2006-12-01
The finding of inactivating mutations in GPR54 in IHH patients and the lack of reproductive maturation of the GPR54 null mouse have uncovered a previously unrecognized role for GPR54 and KiSS-1 in the physiologic regulation of puberty and reproduction. This newly identified function for GPR54 and its cognate ligand, kisspeptin, has led to additional studies that have localized GPR54 and KiSS-1 mRNA in the hypothalamus, colocalized GPR54 in GnRH neurons, demonstrated GnRH-dependent activation of LH and FSH release by kisspeptin, and shown increased hypothalamic KiSS-1 and GPR54 mRNA levels at the time of puberty. Taken together, these findings establish the role of the kisspeptin-GPR54 system in the stimulation of GnRH neurons during puberty. The mechanisms by which kisspeptin activates GnRH release, as well as the trigger for this pathway at the onset of puberty, are yet to be elucidated. In the future, modulators of GPR54 activity, including kisspeptin, may prove valuable in clinical applications in the fields of both cancer therapy and reproductive medicine.
Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D
2016-01-01
Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338
Herman, Andrzej Przemysław; Tomaszewska-Zaremba, Dorota
2010-07-01
An immune/inflammatory challenge can affect reproduction at the level of the hypothalamus, pituitary gland, or gonads. Nonetheless, the major impact is thought to occur within the brain or the pituitary gland. The present study was designed to examine the effect of intravenous (i.v.) lipopolysaccharide (LPS) injection on the expression of gonadotropin-releasing hormone (GnRH) and the gonadotropin-releasing hormone receptor (GnRHR) genes in the hypothalamic structures where GnRH neurons are located as well as in the anterior pituitary gland (AP) of anestrous ewes. We also determined the effect of LPS on luteinizing hormone (LH) release. It was found that i.v. LPS injection significantly decreased GnRH and GnRHR mRNAs levels in the preoptic area (40%, p
Is the flexible GnRH antagonist protocol better suited for fresh eSET cycles?
Dahdouh, Elias M; Gomes, Francisco L A F; Granger, Louis; Carranza-Mamane, Belina; Faruqi, Faez; Kattygnarath, Tiao-Virirak; St-Michel, Pierre
2014-10-01
This study was performed to evaluate the efficacy of the flexible GnRH antagonist protocol in comparison with the long GnRH agonist protocol in elective single embryo transfer (eSET) practice. It was conducted in a publicly funded in vitro fertilization program. We performed a prospective cohort analysis of data from a private infertility clinic from August 2010 to August 2011. Three hundred fourteen women with normal ovarian reserve and undergoing fresh eSET cycles were included. Sixty-four women underwent follicular stimulation using a flexible GnRH antagonist protocol, and 250 underwent stimulation with a standard long mid-luteal GnRH agonist protocol. Implantation rates (35.9% in the GnRH antagonist group and 29.6% in the GnRH agonist group, P = 0.5) and ongoing pregnancy rates (32.8% in the GnRH antagonist group and 28.8% in the GnRH agonist group, P = 0.5) were equivalent in both groups. The duration of stimulation (9.8 ± 2 days vs. 10.7 ± 1.8 days, P < 0.001) and total FSH dose required (2044 vs. 2775 IU, P < 0.001) were lower in the GnRH antagonist group than in the GnRH agonist group. The number of mature oocytes (6.0 vs. 10.0, P < 0. 001) and number of embryos (5.0 vs. 7.0, P < 0.001) were also lower in GnRH antagonist group. However, the number of embryos cryopreserved was similar in both groups (median 2.0, P = 0.3). In women undergoing in vitro fertilization, the flexible GnRH antagonist protocol yields implantation and ongoing pregnancy rates that are similar to the long GnRH agonist protocol, and requires lower doses of gonadotropins and a shorter duration of treatment. The flexible GnRH antagonist protocol appears to be the protocol of choice for an eSET IVF program.
Morgan, Kevin; Stavrou, Emmanouil; Leighton, Samuel P; Miller, Nicola; Sellar, Robin; Millar, Robert P
2011-06-15
Human metastatic prostate cancer cell growth can be inhibited by GnRH analogs but effects on virus-immortalized prostate cells have not been investigated. Virus-immortalized prostate cells were stably transfected with rat GnRH receptor cDNA and levels of GnRH binding were correlated with GnRH effects on signaling, cell cycle, growth, exosome production, and apoptosis. High levels of cell surface GnRH receptor occurred in transfected papillomavirus-immortalized WPE-1-NB26 epithelial cells but not in non-tumourigenic RWPE-1, myoepithelial WPMY-1 cells, or SV40-immortalized PNT1A. Endogenous cell surface GnRH receptor was undetectable in non-transfected cells or cancer cell lines LNCaP, PC3, and DU145. GnRH receptor levels correlated with induction of inositol phosphates, elevation of intracellular Ca(2+) , cytoskeletal actin reorganization, modulation of ERK activation and cell growth-inhibition with GnRH agonists. Hoechst 33342 DNA staining-cell sorting indicated accumulation of cells in G2 following agonist treatment. Release of exosomes from transfected WPE-1-NB26 was unaffected by agonists, unlike induction observed in HEK293([SCL60]) cells. Increased PARP cleavage and apoptotic body production were undetectable during growth-inhibition in WPE-1-NB26 cells, contrasting with HEK293([SCL60]) . EGF receptor activation inhibited GnRH-induced ERK activation in WPE-1-NB26 but growth-inhibition was not rescued by EGF or PKC inhibitor Ro320432. Growth of cells expressing low levels of GnRH receptor was not affected by agonists. Engineered high-level GnRH receptor activation inhibits growth of a subset of papillomavirus-immortalized prostate cells. Elucidating mechanisms leading to clone-specific differences in cell surface GnRH receptor levels is a valuable next step in developing strategies to exploit prostate cell anti-proliferation using GnRH agonists. Copyright © 2010 Wiley-Liss, Inc.
Multivariable frequency domain identification via 2-norm minimization
NASA Technical Reports Server (NTRS)
Bayard, David S.
1992-01-01
The author develops a computational approach to multivariable frequency domain identification, based on 2-norm minimization. In particular, a Gauss-Newton (GN) iteration is developed to minimize the 2-norm of the error between frequency domain data and a matrix fraction transfer function estimate. To improve the global performance of the optimization algorithm, the GN iteration is initialized using the solution to a particular sequentially reweighted least squares problem, denoted as the SK iteration. The least squares problems which arise from both the SK and GN iterations are shown to involve sparse matrices with identical block structure. A sparse matrix QR factorization method is developed to exploit the special block structure, and to efficiently compute the least squares solution. A numerical example involving the identification of a multiple-input multiple-output (MIMO) plant having 286 unknown parameters is given to illustrate the effectiveness of the algorithm.
Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER.
Sobering, Andrew K; Watanabe, Reika; Romeo, Martin J; Yan, Benjamin C; Specht, Charles A; Orlean, Peter; Riezman, Howard; Levin, David E
2004-05-28
The yeast ERI1 gene encodes a small ER-localized protein that associates in vivo with GTP bound Ras2 in an effector loop-dependent manner. We showed previously that loss of Eri1 function results in hyperactive Ras phenotypes. Here, we demonstrate that Eri1 is a component of the GPI-GlcNAc transferase (GPI-GnT) complex in the ER, which catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the first step in the production of GPI-anchors for cell surface proteins. We also show that GTP bound Ras2 associates with the GPI-GnT complex in vivo and inhibits its activity, indicating that yeast Ras uses the ER as a signaling platform from which to negatively regulate the GPI-GnT. We propose that diminished GPI-anchor protein production contributes to hyperactive Ras phenotypes.
Overview of elagolix for the treatment of endometriosis.
Melis, Gian Benedetto; Neri, Manuela; Corda, Valentina; Malune, Maria Elena; Piras, Bruno; Pirarba, Silvia; Guerriero, Stefano; Orrù, Marisa; D'Alterio, Maurizio Nicola; Angioni, Stefano; Paoletti, Anna Maria
2016-05-01
Suppression of sex-steroid secretion is required in a variety of gynecological conditions. This can be achieved using gonadotropin releasing hormone (GnRH) agonists that bind pituitary gonadotropin receptors and antagonize the link-receptor of endogenous GnRH, inhibiting the mechanism of GnRH pulsatility. On the other hand, GnRH antagonists immediately reduce gonadal steroid levels, avoiding the initial stimulatory phase of the agonists. Potential benefits of GnRH antagonists over GnRH agonists include a rapid onset and reversibility of action. Older GnRH antagonists are synthetic peptides, obtained by modifications of certain amino acids in the native GnRH sequence. They require subcutaneous injections, implantation of long-acting depots. The peptide structure is responsible for histamine-related adverse events and the tendency to elicit hypersensitivity reactions. Research has worked towards the development of non-peptidic molecules exerting antagonist action on GnRH. They are available for oral administration and may have a more beneficial safety profile in comparison with peptide GnRH antagonists. This article focuses on the data of the literature about elagolix, a novel non-peptidic GnRHantagonist, in the treatment of endometriosis. Elagolix demonstrated efficacy in the management of endometriosis-associated pain and had an acceptable safety and tolerability profile. However, further studies are necessary to evaluate its non-inferiority in comparison with other endometriosis's treatments.
Puberty and Pubertal Growth in GH-treated SGA Children: Effects of 2 Years of GnRHa Versus No GnRHa.
van der Steen, Manouk; Lem, Annemieke J; van der Kaay, Danielle C M; Hokken-Koèelega, Anita C S
2016-05-01
Most studies on puberty in children born small for gestational age (SGA) report height and age at onset of puberty. GH-treated SGA children with an adult height (AH) expectation below -2.5 SDS at onset of puberty can benefit from an additional 2 years of GnRH analog (GnRHa) treatment. There are no data on puberty and growth after discontinuation of GnRHa treatment in GH-treated SGA children. This study aimed to investigate the effects on puberty and pubertal growth of 2 years GnRHa vs no GnRHa in GH-treated SGA children. This was a GH trial involving 76 prepubertal short SGA children (36 girls) treated with GH. Thirty-two children received additional GnRHa for 2 years. Pubertal stages were 3-monthly assessed according to Tanner. Age, bone age, and median height at pubertal onset were lower in girls and boys in the GH/GnRHa group compared with the GH group. In girls and boys treated with GH/GnRHa, pubertal duration after stop of GnRHa treatment was shorter than pubertal duration in those with GH only (40.9 vs 46.7 mo; P = .044; 50.8 vs 57.5 months; P = .006; respectively). Height gain from onset of puberty until AH, including height gain during 2 years of GnRHa treatment, was 25.4 cm in girls and 33.0 cm in boys, which was 6.6 cm more than girls and boys treated with GH only. AH was similar in children treated with GH/GnRHa compared with those with GH only. GH-treated SGA children who start puberty with an AH expectation below -2.5 SDS and are treated with 2 years of GnRHa have a shorter pubertal duration after discontinuation of GnRHa compared with pubertal duration in children treated with GH only. Height gain from onset of puberty until AH is, however, more due to adequate growth during 2 years of GnRHa treatment resulting in a similar AH as children treated with GH only.
GnRH-II and its receptor are critical regulators of testicular steroidogenesis in swine
USDA-ARS?s Scientific Manuscript database
The second mammalian form of GnRH (GnRH-II) and its receptor (GnRHR-II) are produced in one livestock species, the pig. However, the interaction of GnRH-II with its receptor does not stimulate gonadotropin secretion. Instead, both are abundantly produced in the gonads and have been implicated in aut...
USDA-ARS?s Scientific Manuscript database
The second mammalian GnRH isoform (GnRH-II) and its cognate receptor (GnRHR-II) are poor modulators of gonadotropin secretion in swine. However, both are abundantly produced within the porcine testis suggesting an autocrine/paracrine role. Within the boar testis, GnRHR-II immunolocalizes to the plas...
Production of a gonadotropin-releasing hormone 2 receptor knockdown (GnRHR2 KD) swine line
USDA-ARS?s Scientific Manuscript database
Swine are the only livestock species that produce both the second mammalian isoform of gonadotropin-releasing hormone (GnRH2) and its receptor (GnRHR2). Previously, we reported that GnRH2 and GnRHR2 mediate LH-independent testosterone secretion from porcine testes. To further explore this ligand-r...
NASA Astrophysics Data System (ADS)
Lei, Yajie; Hu, Guo-Hua; Zhao, Rui; Guo, Heng; Zhao, Xin; Liu, Xiaobo
2012-11-01
Exfoliated graphite nanoplatelets (xGnP) filled 4,4'-Bis (3,4-dicyanophenoxy) biphenyl (BPh) nanocomposites were prepared by a resin transfer molding process. The rheological behavior of the BPh pre-polymer, and the morphology and electrical, mechanical and thermal properties of the xGnP/BPh nanocomposites were systematically investigated. The results showed that the xGnP/BPh pre-polymer possessed a higher complex viscosity and storage modulus than the pure BPh and that the xGnP could significantly enhance the mechanical and electrical properties of the resulted nanocomposites. The electrical percolation threshold of the xGnP/BPh nanocomposites was between 5 and 10 wt% xGnP. The flexural strength and modulus of the xGnP/BPh nanocomposites with 10 wt% xGnP exhibited maximum values and their thermal stabilities were greatly improved. Those novel xGnP/BPh nanocomposites could have advanced applications in areas like aerospace and military industry.
Watts, C R; Mezei, M; Murphy, R F; Lovas, S
2001-04-01
The conformational space available to GnRH and lGnRH-III was compared using 5.2 ns constant temperature and pressure molecular dynamics simulations with explicit TIP3P solvation and the AMBER v. 5.0 force field. Cluster analysis of both trajectories resulted in two groups of conformations. Results of free energy calculations, in agreement with previous experimental data, indicate that a conformation with a turn from residues 5 through 8 is preferred for GnRH in an aqueous environment. By contrast, a conformation with a helix from residues 2 through 7 with a bend from residues 6 through 10 is preferred for lGnRH-III in an aqueous environment. The side chains of His2 and Trp3 in lGnRH-III occupy different regions of phase space and participate in weakly polar interactions different from those in GnRH. The unique conformational properties of lGnRH-III may account for its specific anti cancer activity.
Shishido, Fumi; Uemura, Satoshi; Kashimura, Madoka; Inokuchi, Jin-Ichi
2017-10-01
Glycosphingolipids (GSLs) are abundant in plasma membranes of mammalian cells, and their synthesis is strictly regulated in the Golgi apparatus. Disruption of GSL homeostasis is the cause of numerous diseases. Hundreds of molecular species of GSLs exist, and the detailed mechanisms underlying their homeostasis remain unclear. We investigated the physiological significance of isoform production for β1,4-N-acetyl-galactosaminyl transferase 1/B4GALNT1 (B4GN1), an enzyme involved in synthesis of ganglio-series GSLs GM2/GD2/GA2. We discovered a new mRNA variant (termed variant 2) of B4GN1 through EST clone search. A new isoform, M1-B4GN1, which has an NH 2 -terminal cytoplasmic tail longer than that of previously-known isoform M2-B4GN1, is translated from variant 2. M1-B4GN1 has R-based motif (a retrograde transport signal) in the cytoplasmic tail. M1-B4GN1 is partially localized in the endoplasmic reticulum (ER) depending on the R-based motif, whereas M2-B4GN1 is localized in the Golgi. Stability of M1-B4GN1 is higher than that of M2-B4GN1 because of the R-based motif. M2-B4GN1 forms a homodimer via disulfide bonding. When M1-B4GN1 and M2-B4GN1 were co-expressed in CHO-K1 cells, the two isoforms formed a heterodimer. The M1/M2-B4GN1 heterodimer was more stable than the M2-B4GN1 homodimer, but the heterodimer was not transported from the Golgi to the ER. Our findings indicate that stabilization of M1-B4GN1 homodimer and M1/M2-B4GN1 heterodimer by R-based motif is related to prolongation of Golgi retention, but not to retrograde transport from the Golgi to the ER. Coexistence of several B4GN1 isoforms having distinctive characteristics presumably helps maintain overall enzyme stability and GSL homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Phang, Y L; Soga, T; Kitahashi, T; Parhar, I S
2012-02-17
In addition to reproduction, gonadotropin-releasing hormone (GnRH) has been postulated to control cholesterol metabolism via cholesterol transport, which is carried out partly by the members of ATP-binding cassette (ABC) transporters G1 (ABCG1) and G4 (ABCG4). However, there is yet to be evidence demonstrating the relationship between these transporters with reference to GnRH neurons. In the present study, we cloned two ABCG1 messenger RNA (mRNA) variants and one ABCG4 mRNA and examined their expression in the brain including GnRH neurons (GnRH1, GnRH2, and GnRH3) in the cichlid tilapia (Oreochromis niloticus). Comparison of nucleotide sequences of the tilapia ABCG1 and ABCG4 with that of other fish species showed that both of these genes are evolutionarily conserved among fishes. ABCG1 and ABCG4 were shown to have high mRNA expressions in the CNS, pituitary, and gonads. In the brain, real-time polymerase chain reaction (PCR) showed that ABCG4 mRNA was higher than ABCG1a in all brain regions including the olfactory bulb (ABCG1=13.34, ABCG4=6796.35; P<0.001), dorsal telencephalon (ABCG1=8.64, ABCG4=10149.13; P=0.001), optic tectum (ABCG1=22.12, ABCG4=13931.04; P<0.01), cerebellum (ABCG1=8.68, ABCG4=12382.90; P<0.01), and preoptic area-midbrain-hypothalamus (ABCG1=21.36, ABCG4=13255.41; P=0.001). Similarly, although ABCG1 mRNA level is much higher in the pituitary compared with the brain, it was still significantly lower compared with ABCG4 (ABCG1=337.73, ABCG4=1157.87; P=0.01). The differential pattern of expression of ABCG1 and ABCG4 in the brain versus pituitary suggests that the two transporters are regulated by different mechanisms. Furthermore, ABCG1 and ABCG4 mRNA expressions were found in all three types of laser-captured GnRH neurons with highly similar percentage of expressions, suggesting that cholesterol efflux from GnRH neurons may require heterodimerization of both ABCG1 and ABCG4. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Barbour, Sean; Lo, Clifford; Espino-Hernandez, Gabriela; Gill, Jagbir; Levin, Adeera
2018-01-01
Glomerulonephritis (GN) is a common cause of end-stage renal disease in Canada and worldwide, and results in significant health care resource utilization and patient morbidity. However, GN has not been a traditional priority of provincial renal health care organizations, despite the known benefits to health services delivery and patient outcomes from integrated provincial care in other types of chronic kidney disease. To address this deficiency, the British Columbia (BC) Provincial Renal Agency created the BC GN Network in 2013 to coordinate provincial GN health services delivery informed by robust population-level data capture on all GN patients in the province via the BC GN Registry. This report describes the use of the BC GN Network infrastructure to systematically develop and evaluate a provincial GN drug formulary to improve patient and physician access to evidence-based immunosuppressive treatments for GN in a cost-efficient manner that successfully halted historical trends of increasing medication costs. An example is provided of using the provincial infrastructure to implement and subsequently evaluate an evidence-informed health policy of converting brand to generic tacrolimus for the treatment of GN. The BC GN Network, including the provincial drug formulary and data infrastructure, is an example of the benefits of expanding the mandate of provincial renal health administrative organizations to include the care of patients with GN, and constitutes a viable health delivery model that can be implemented in other Canadian provinces to achieve similar goals. PMID:29581884
Linker-based GnRH-PE chimeric proteins inhibit cancer growth in nude mice.
Ben-Yehudah, A; Yarkoni, S; Nechushtan, A; Belostotsky, R; Lorberboum-Galski, H
1999-04-01
Since the number of cancer-related deaths has not decreased in recent years, major efforts are being made to find new drugs for cancer treatment. In this report we introduce the gonadotropin releasing hormone-Pseudomonas exotoxin (GnRH-PE) based chimeric proteins L-GnRH-PE66 and L-GnRH-PE40. These proteins are composed of a GnRH moiety attached to modified forms of Pseudomonas exotoxin via a polylinker (gly4ser)2. The chimeric proteins L-GnRH-PE66 and L-GnRH-PE40 have the ability to target and kill adenocarcinoma cell lines in vitro, whereas non-adenocarcinoma cell lines are not affected. We demonstrate that L-GnRH-PE66 and L-GnRH-PE40 efficiently inhibit cancer growth. Nude mice were injected subcutaneously with the SW-48 adenocarcinoma cell line to produce xenograft tumours. When the tumours were established and visible, the animals were injected with chimeric proteins for 10 days. At the end of this period, a reduction of up to 3-fold in tumor size was obtained in the treated mice, as compared with the control group, which received equivalent amounts of GnRH; the difference was even greater 13 days after termination of treatment. Thus, the chimeric proteins L-GnRH-PE66 and L-GnRH-PE40 are promising candidates for treatment of a variety of adenocarcinomas and their use in humans should be considered.
Ghosh, Gopal Chandra; Sharma, Brijesh; Katageri, Bhimarey; Bhardwaj, Minakshi
2014-09-01
Glomerulonephritis (GN) is an immunological phenomenon in bacterial endocarditis. These may be pauci-immune/vasculitic GN, post-infective GN, and sub-endothelial membranoproliferative glomerulonephritis. Each type of glomerulonephritis usually occurs in isolation. We report a case of infective endocarditis with dual existence of pauci-immune/vasculitic GN and post infective type of GN at the same time.
USDA-ARS?s Scientific Manuscript database
Unlike the classical gonadotropin-releasing hormone (GnRH-I), the second mammalian GnRH isoform (GnRH-II; His5, Trp7, Tyr8) is a poor stimulator of gonadotropin secretion. In addition, GnRH-II is ubiquitously expressed, with transcript levels highest in tissues outside of the brain. A receptor speci...
Kasimanickam, R K; Hall, J B; Whittier, W D
2017-02-01
This study compared artificial insemination pregnancy rate (AI-PR) between 14-day CIDR-GnRH-PGF2α-GnRH and CIDR-PGF2α-GnRH synchronization protocol with two fixed AI times (56 or 72 hr after PGF2α). On day 0, heifers (n = 1311) from nine locations assigned body condition score (BCS: 1, emaciated; 9, obese), reproductive tract score (RTS: 1, immature, acyclic; 5, mature, cyclic) and temperament score (0, calm; and 1, excited) and fitted with a controlled internal drug release (CIDR, 1.38 g of progesterone) insert for 14 days. Within herd, heifers were randomly assigned either to no-GnRH group (n = 635) or to GnRH group (n = 676), and heifers in GnRH group received 100 μg of GnRH (gonadorelin hydrochloride, IM) on day 23. All heifers received 25 mg of PGF2α (dinoprost, IM) on day 30 and oestrous detection aids at the same time. Heifers were observed for oestrus thrice daily until AI. Within GnRH groups, heifers were randomly assigned to either AI-56 or AI-72 groups. Heifers in AI-56 group (n = 667) were inseminated at 56 hr (day 32 PM), and heifers in AI-72 group (n = 644) were inseminated at 72 hr (day 33 AM) after PGF2α administration. All heifers were given 100 μg of GnRH concurrently at the time AI. Controlling for BCS (p < .05), RTS (p < .05), oestrous expression (p < .001), temperament (p < .001) and GnRH treatment by time of insemination (p < .001), the AI-PR differed between GnRH treatment [GnRH (Yes - 60.9% (412/676) vs. No - 55.1% (350/635); p < .05)] and insemination time [AI-56 - 54.6% (364/667) vs. AI-72 - 61.8% (398/644); (p < .01)] groups. The GnRH treatment by AI time interaction influenced AI-PR (GnRH56 - 61.0% (208/341); GnRH72 - 60.9% (204/335); No-GnRH56 - 47.9% (156/326); No-GnRH72 - 62.8% (194/309); p < .001). In conclusion, 14-day CIDR synchronization protocol for FTAI required inclusion of GnRH on day 23 if inseminations were to be performed at 56 hr after PGF2α in order to achieve greater AI-PR. © 2016 Blackwell Verlag GmbH.
Li, Qing; Szatmary, Peter; Liu, Yanyang; Ding, Zhenyu; Zhou, Jin; Sun, Yi; Luo, Feng
2015-01-01
Therapy advances are constantly improving survival rates of cancer patients, however the toxic effects of chemotherapy drugs can seriously affect patients’ quality of life. In women, fertility and premature ovarian endocrine dysfunction are of particular concern. It is urgently we find methods to preserve or reconstruct ovarian function for these women. This study compares GnRHa treatment with ovarian tissue cryopreservation and orthotopic transplantation in a chemotherapy-induced ovarian damage murine model. 56 inbred Lewis rats were divided into 4 treatment groups: Saline control (group I); cyclophosphamide only (group II); cyclophosphamide plus GnRHa (group III); cyclophosphamide and grafting of thawed cryopreserved ovaries (group IV). Body weight, estrous cycle recovery time, ovarian weight, morphology and follicle count, as well as breeding and fertility were compared among groups. Only group IV was able to restore to normal body weight by the end of the observation period and resumed normal estrous cycles in a shorter time compared to other treatment groups. There was a decrease in primordial follicles in all treatment groups, but group III had the greatest reduction. Although, there was no difference in pregnancy, only one animal littered normal pups in group II, none littered in group III and four littered in group IV. Thus, cryopreservation and orthotopic transplantation of ovarian tissue can restore the fertility of rats subjected to chemotherapy in a manner that is superior to GnRHa treatment. We also observed increased rates of hepatic, splenic and pulmonary haemorrhage in group III, suggesting there may be synergistic toxicity of GnRHa and cyclophosphamide. PMID:25811681
Cui, Jian; Huang, Wan; Wu, Bo; Jin, Jin; Jing, Lin; Shi, Wen-Pu; Liu, Zhen-Yu; Yuan, Lin; Luo, Dan; Li, Ling; Chen, Zhi-Nan; Jiang, Jian-Li
2018-05-01
While the importance of protein N-glycosylation in cancer cell migration is well appreciated, the precise mechanisms by which N-acetylglucosaminyltransferase V (GnT-V) regulates cancer processes remain largely unknown. In the current study, we report that GnT-V-mediated N-glycosylation of CD147/basigin, a tumor-associated glycoprotein that carries β1,6-N-acetylglucosamine (β1,6-GlcNAc) glycans, is upregulated during TGF-β1-induced epithelial-to-mesenchymal transition (EMT), which correlates with tumor metastasis in patients with hepatocellular carcinoma (HCC). Interruption of β1,6-GlcNAc glycan modification of CD147/basigin decreased matrix metalloproteinase (MMP) expression in HCC cell lines and affected the interaction of CD147/basigin with integrin β1. These results reveal that β1,6-branched glycans modulate the biological function of CD147/basigin in HCC metastasis. Moreover, we showed that the PI3K/Akt pathway regulates GnT-V expression and that inhibition of GnT-V-mediated N-glycosylation suppressed PI3K signaling. In summary, β1,6-branched N-glycosylation affects the biological function of CD147/basigin and these findings provide a novel approach for the development of therapeutic strategies targeting metastasis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
π vs σ-Radical States of One-Electron Oxidized DNA/RNA Bases: A Density Functional Theory Study
Kumar, Anil; Sevilla, Michael D.
2013-01-01
As a result of their inherent planarity, DNA base radicals generated by one electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals there are a number of nucleobase analogs such as one-electron oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogs. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one electron oxidized bases of thymine, T(N3-H)•, and uracil, U(N3-H)• are very close in energy, i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one electron oxidized radicals of cytosine, C•+, C(N4-H)•, adenine, A•+, A(N6-H)•, and guanine, G•+, G(N2-H)•, G(N1-H)• the π-radicals are ca. 16 to 41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)• with three discrete water molecules in the gas phase, is found to form a three-electron σ bond between N3 atom of uracil and O atom of a water molecule but on inclusion of full solvation and discrete hydration the π-radical remains most stable.. PMID:24000793
π- vs σ-radical states of one-electron-oxidized DNA/RNA bases: a density functional theory study.
Kumar, Anil; Sevilla, Michael D
2013-10-03
As a result of their inherent planarity, DNA base radicals generated by one-electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals, there are a number of nucleobase analogues such as one-electron-oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogues. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one-electron-oxidized bases of thymine, T(N3-H)(•), and uracil, U(N3-H)(•), are very close in energy; i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one-electron-oxidized radicals of cytosine, C(•+), C(N4-H)(•), adenine, A(•+), A(N6-H)(•), and guanine, G(•+), G(N2-H)(•), G(N1-H)(•), the π-radicals are ca. 16-41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)(•) with three discrete water molecules in the gas phase is found to form a three-electron σ bond between the N3 atom of uracil and the O atom of a water molecule, but on inclusion of full solvation and discrete hydration, the π-radical remains most stable.
Londra, Laura; Moreau, Caroline; Strobino, Donna; Bhasin, Aarti; Zhao, Yulian
2016-09-01
To evaluate the association between different ovarian hyperstimulation protocols and ectopic pregnancy (EP) in in vitro fertilization (IVF) cycles in fresh autologous embryo transfer cycles in the United States between 2008 and 2011 as reported to the Society of Assisted Reproductive Technology (SART). Historical cohort study. Not applicable. None. None. All autologous cycles that resulted in a clinical pregnancy after a fresh, intrauterine embryo transfer and described characteristics of cycles according to protocol were included: luteal GnRH agonist, GnRH agonist flare, or GnRH antagonist. Multivariate logistic regression was conducted to investigate the association between type of protocol and EP. Among 136,605 clinical pregnancies, 2,645 (1.94%) were EP. Ectopic pregnancy was more frequent with GnRH antagonist (2.4%) cycles than with GnRH agonist flare (2.1%) or luteal GnRH agonist (1.6%) cycles. After adjusting for maternal and treatment characteristics, the GnRH antagonist and the GnRH agonist flare protocols were associated with increased odds of EP (adjusted odds ratio [aOR] 1.52; 95% confidence interval [CI], 1.39-1.65; and aOR 1.25; 95% CI, 1.09-1.44, respectively) compared with luteal GnRH agonist. Analysis of differences in the factors related to EP in luteal GnRH agonist versus GnRH antagonist protocols indicated that diminished ovarian reserve was associated with an increased risk of EP in luteal GnRH agonist but not in GnRH antagonist cycles. The type of protocol used during ovarian hyperstimulation in fresh autologous cycles was associated with EP. This finding suggests a role for extrapituitary GnRH on the tubal and uterine environment during ovarian hyperstimulation treatment for IVF. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Rahpeyma, Mehdi; Fotouhi, Fatemeh; Makvandi, Manouchehr; Ghadiri, Ata; Samarbaf-Zadeh, Alireza
2015-11-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV M RNA segment encodes two viral surface glycoproteins known as Gn and Gc. Viral glycoproteins can be considered as key targets for vaccine development. The current study aimed to investigate structural bioinformatics of CCHFV Gn protein and design a construct to make a recombinant bacmid to express by baculovirus system. To express the Gn protein in insect cells that can be used as antigen in animal model vaccine studies. Bioinformatic analysis of CCHFV Gn protein was performed and designed a construct and cloned into pFastBacHTb vector and a recombinant Gn-bacmid was generated by Bac to Bac system. Primary, secondary, and 3D structure of CCHFV Gn were obtained and PCR reaction with M13 forward and reverse primers confirmed the generation of recombinant bacmid DNA harboring Gn coding region under polyhedron promoter. Characterization of the detailed structure of CCHFV Gn by bioinformatics software provides the basis for development of new experiments and construction of a recombinant bacmid harboring CCHFV Gn, which is valuable for designing a recombinant vaccine against deadly pathogens like CCHFV.
Sethi, Sanjeev; Haas, Mark; Markowitz, Glen S; D'Agati, Vivette D; Rennke, Helmut G; Jennette, J Charles; Bajema, Ingeborg M; Alpers, Charles E; Chang, Anthony; Cornell, Lynn D; Cosio, Fernando G; Fogo, Agnes B; Glassock, Richard J; Hariharan, Sundaram; Kambham, Neeraja; Lager, Donna J; Leung, Nelson; Mengel, Michael; Nath, Karl A; Roberts, Ian S; Rovin, Brad H; Seshan, Surya V; Smith, Richard J H; Walker, Patrick D; Winearls, Christopher G; Appel, Gerald B; Alexander, Mariam P; Cattran, Daniel C; Casado, Carmen Avila; Cook, H Terence; De Vriese, An S; Radhakrishnan, Jai; Racusen, Lorraine C; Ronco, Pierre; Fervenza, Fernando C
2016-05-01
Renal pathologists and nephrologists met on February 20, 2015 to establish an etiology/pathogenesis-based system for classification and diagnosis of GN, with a major aim of standardizing the kidney biopsy report of GN. On the basis of etiology/pathogenesis, GN is classified into the following five pathogenic types, each with specific disease entities: immune-complex GN, pauci-immune GN, antiglomerular basement membrane GN, monoclonal Ig GN, and C3 glomerulopathy. The pathogenesis-based classification forms the basis of the kidney biopsy report. To standardize the report, the diagnosis consists of a primary diagnosis and a secondary diagnosis. The primary diagnosis should include the disease entity/pathogenic type (if disease entity is not known) followed in order by pattern of injury (mixed patterns may be present); score/grade/class for disease entities, such as IgA nephropathy, lupus nephritis, and ANCA GN; and additional features as detailed herein. A pattern diagnosis as the sole primary diagnosis is not recommended. Secondary diagnoses should be reported separately and include coexisting lesions that do not form the primary diagnosis. Guidelines for the report format, light microscopy, immunofluorescence microscopy, electron microscopy, and ancillary studies are also provided. In summary, this consensus report emphasizes a pathogenesis-based classification of GN and provides guidelines for the standardized reporting of GN. Copyright © 2016 by the American Society of Nephrology.
NASA Astrophysics Data System (ADS)
Zhang, Xiaotan; Liu, Dongyan; Ma, Yuling; Nie, Jing; Sui, Guoxin
2017-11-01
The graphene/polyurethane (GN@PU) sponge was prepared via simple dip-coating PU sponges in graphene aqueous suspension containing cellulose nanowhiskers (CNWs), where CNWs played a vital role to facilitate the uniform graphene sheets coated on the skeletons of polyurethane sponge (PU). The super-hydrophobic GN@PU sponge was obtained by optimizing the ratio of GN and CNWs to choose the final coating suspensions of GN/CNWs mixture or pure graphene. The GN@PU sponge showed densely packed graphene sheets, contributing super-hydrophobicity to the sponge with water contact angle of 152° and a large lubricating oil absorption value of 31 g g-1. The elasticity, mechanical durability, thermal and chemical stability were all found to be improved after coating with the thin GN layers. Moreover, the GN@PU sponges possess outstanding recyclability and stability since no decline in absorption efficiency was observed after more than 100 cycles.
Contribution of GnIH Research to the Progress of Reproductive Neuroendocrinology
Tsutsui, Kazuyoshi; Ubuka, Takayoshi; Son, You Lee; Bentley, George E.; Kriegsfeld, Lance J.
2015-01-01
Since the discovery of gonadotropin-releasing hormone (GnRH) in mammals at the beginning of the 1970s, it was generally accepted that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in mammals and other vertebrates. In 2000, however, gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that actively inhibits gonadotropin release, was discovered in quail. Numerous studies over the past decade and a half have demonstrated that GnIH serves as a key player regulating reproduction across vertebrates, acting on the brain and pituitary to modulate reproductive physiology and behavior. In the latter case, recent evidence indicates that GnIH can regulate reproductive behavior through changes in neurosteroid, such as neuroestrogen, biosynthesis in the brain. This review summarizes the discovery of GnIH, and the contributions to GnIH research focused on its mode of action, regulation of biosynthesis, and how these findings advance our understanding of reproductive neuroendocrinology. PMID:26635728
DeAngelis, Donald L.; Holland, J. Nathaniel
2006-01-01
Prey (N) dependence [g(N)], predator (P) dependence [g(P) or g(N,P)], and ratio dependence [f(P/N)] are often seen as contrasting forms of the predator's functional response describing predator consumption rates on prey resources in predator–prey and parasitoid–host interactions. Analogously, prey-, predator-, and ratio-dependent functional responses are apparently alternative functional responses for other types of consumer–resource interactions. These include, for example, the fraction of flowers pollinated or seeds parasitized in pollination (pre-dispersal) seed-parasitism mutualisms, such as those between fig wasps and fig trees or yucca moths and yucca plants. Here we examine the appropriate functional responses for how the fraction of flowers pollinated and seeds parasitized vary with the density of pollinators (predator dependence) or the ratio of pollinator and flower densities (ratio dependence). We show that both types of functional responses can emerge from minor, but biologically important variations on a single model. An individual-based model was first used to describe plant–pollinator interactions. Conditional upon on whether the number of flowers visited by the pollinator was limited by factors other than search time (e.g., by the number of eggs it had to lay, if it was also a seed parasite), and on whether the pollinator could directly find flowers on a plant, or had to search, the simulation results lead to either a predator-dependent or a ratio-dependent functional response. An analytic model was then used to show mathematically how these two cases can arise.
2013-01-01
Background With the continuous improvement of surgery and chemotherapeutic treatments, many tumour patients increasingly achieve long-term survival and can even be completely cured. However, platinum-containing drugs, which are widely used to treat a variety of types of cancer, cause menstrual disorders and ovarian failure, which in turn lead to infertility. Thus far, gonadotropin releasing hormone (GnRH) agonist (GnRHa) and antagonist (GnRHant) are reported to act as protective agents of the ovary in chemotherapy through the inhibition of the female gonadal axis. Nevertheless, they both have disadvantages that limit their use. GnRHa causes a flare-up effect during the first week after administration, and no long-acting GnRHant agent is available. GnRHa combined with GnRHant may prevent the flare-up effect of GnRHa and rapidly inhibit the female gonadal axis. Several clinical studies with small sample sizes have reported controversial conclusions. In this strictly controlled animal study, we investigated the advantages of combination treatment with GnRHa and GnRHant. Methods Rats aged 12 weeks were divided into six groups: Control, cisplatin (CDDP), GnRHa, GnRHant, Combination (sht, short-term) and Combination (lng, long-term) of GnRHa and GnRHant. The last four groups received Triptorelin (1 mg/kg·d, for 14 days), Cetrorelix (0.5 mg/kg·d, for 10 days), a combination of Triptorelin (1 mg/kg·d, for 10 days) and Cetrorelix (0.5 mg/kg·d, for 10 days) in the long-term group and for 3 days in the short-term group. The Control and CDDP groups received saline (1 ml/kg·d, for 10 day). Then, all groups apart from the Control group received cisplatin (1 mg/kg·d, for 10 days), and the Control group received another 10 days of saline as described above. Blood samples were collected to detect the serum levels of E2, LH and FSH. Observation of oestrous cyclicity was also performed after drug administration. Finally, bilateral ovaries were collected for histological study and follicle counting. Results We observed a flare-up effect in rats treated with GnRHa, but not in any of the combination groups. The percentage of normal cyclicity increased from 0% in the CDDP group to 25.0%, 33.3%, 66.7% and 41.7%, in the GnRHa, GnRHant, combination (lng) and combination (sht) groups, respectively. Pretreatment with GnRHa, GnRHant and combination (lng) significantly protected the primordial follicles from destruction by preserving 57.6%, 63.4%, 87.1% and 60.4% of the follicles, respectively. Conclusions The combination of a GnRH agonist with antagonist completely prevented the flare-up effect and enhanced the protective effect of the ovary from cisplatin-induced gonadotoxicity in rats. PMID:23452939
BPA Directly Decreases GnRH Neuronal Activity via Noncanonical Pathway.
Klenke, Ulrike; Constantin, Stephanie; Wray, Susan
2016-05-01
Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons.
Ikemoto, Tadahiro; Park, Min Kyun
2003-10-16
To elucidate the molecular phylogeny and evolution of a particular peptide, one must analyze not the limited primary amino acid sequences of the low molecular weight mature polypeptide, but rather the sequences of the corresponding precursors from various species. Of all the structural variants of gonadotropin-releasing hormone (GnRH), GnRH-II (chicken GnRH-II, or cGnRH-II) is remarkably conserved without any sequence substitutions among vertebrates, but its precursor sequences vary considerably. We have identified and characterized the full-length complementary DNA (cDNA) encoding the GnRH-II precursor and determined its genomic structure, consisting of four exons and three introns, in a reptilian species, the leopard gecko Eublepharis macularius. This is the first report about the GnRH-II precursor cDNA/gene from reptiles. The deduced leopard gecko prepro-GnRH-II polypeptide had the highest identities with the corresponding polypeptides of amphibians. The GnRH-II precursor mRNA was detected in more than half of the tissues and organs examined. This widespread expression is consistent with the previous findings in several species, though the roles of GnRH outside the hypothalamus-pituitary-gonadal axis remain largely unknown. Molecular phylogenetic analysis combined with sequence comparison showed that the leopard gecko is more similar to fishes and amphibians than to eutherian mammals with respect to the GnRH-II precursor sequence. These results strongly suggest that the divergence of the GnRH-II precursor sequences seen in eutherian mammals may have occurred along with amniote evolution.
Brain Endothelial Cells Control Fertility through Ovarian-Steroid–Dependent Release of Semaphorin 3A
Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G.; Tamagnone, Luca; Prevot, Vincent
2014-01-01
Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3a loxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction. PMID:24618750
Giacobini, Paolo; Parkash, Jyoti; Campagne, Céline; Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G; Tamagnone, Luca; Prevot, Vincent
2014-03-01
Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.
United States Control Module Guidance, Navigation, and Control Subsystem Design Concept
NASA Technical Reports Server (NTRS)
Polites, M. E.; Bartlow, B. E.
1997-01-01
Should the Russian Space Agency (RSA) not participate in the International Space Station (ISS) program, then the United States (U.S.) National Aeronautics and Space Administration (NASA) may choose to execute the ISS mission. However, in order to do this, NASA must build two new space vehicles, which must perform the functions that the Russian vehicles and hardware were to perform. These functions include periodic ISS orbit reboost, initial ISS attitude control, and U.S. On-Orbit Segment (USOS) control Moment gyroscope (CMG) momentum desaturation. The two new NASA vehicles that must perform these functions are called the U.S. control module (USCM) and the U.S. resupply module. This paper presents a design concept for the USCM GN&C subsystem, which must play a major role in ISS orbit reboost and initial attitude control, plus USOS CMG momentum desaturation. The proposed concept is structured similar to the USOS GN&C subsystem, by design. It is very robust, in that it allows the USCM to assume a variety of vehicle attitudes and stay power-positive. It has a storage/safe mode that places the USCM in a gravity-gradient orientation and keeps it there for extended periods of time without consuming a great deal of propellant. Simulation results are presented and discussed that show the soundness of the design approach. An equipment list is included that gives detailed information on the baselined GN&C components.
Antidiabetic effect of gomisin N via activation of AMP-activated protein kinase.
Jung, Dae Young; Kim, Ji-Hyun; Lee, Hoyoung; Jung, Myeong Ho
2017-12-16
Gomisin N (GN) is a lignan derived from Schisandra chinensis. AMP-activated kinase (AMPK) has gained attention as a therapeutic target for the treatment of metabolic syndrome. Previously, we reported that GN activated the AMPK pathway and ameliorated high-fat diet (HFD)-induced hepatic steatosis. In this study, we investigated the anti-diabetic effects of GN in C2C12 myotubes and HFD obese mice. GN enhanced the phosphorylation of AMPK/acetyl-CoA carboxylase (ACC) and Akt. In addition, GN promoted glucose uptake in C2C12 myotubes, which was accompanied by the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Treatment with compound C, an AMPK inhibitor, suppressed GN-mediated stimulation of glucose uptake. Furthermore, GN increased the expression of mitochondria biogenesis and fatty acid oxidation genes in C2C12 myotubes. In the in vivo study, administration of GN to HFD mice decreased the levels of fasting blood glucose and insulin, and improved glucose tolerance in HFD obese mice. GN administration rescued the decreased phosphorylation of AMPK and Akt and stimulated the expression of mitochondria biogenesis genes in the skeletal muscle of HFD mice. These findings suggested that GN exerted anti-hyperglycemic effects through AMPK activation. Copyright © 2017 Elsevier Inc. All rights reserved.
GnT1IP-L specifically inhibits MGAT1 in the Golgi via its luminal domain.
Huang, Hung-Hsiang; Hassinen, Antti; Sundaram, Subha; Spiess, Andrej-Nikolai; Kellokumpu, Sakari; Stanley, Pamela
2015-09-15
Mouse GnT1IP-L, and membrane-bound GnT1IP-S (MGAT4D) expressed in cultured cells inhibit MGAT1, the N-acetylglucosaminyltransferase that initiates the synthesis of hybrid and complex N-glycans. However, it is not known where in the secretory pathway GnT1IP-L inhibits MGAT1, nor whether GnT1IP-L inhibits other N-glycan branching N-acetylglucosaminyltransferases of the medial Golgi. We show here that the luminal domain of GnT1IP-L contains its inhibitory activity. Retention of GnT1IP-L in the endoplasmic reticulum (ER) via the N-terminal region of human invariant chain p33, with or without C-terminal KDEL, markedly reduced inhibitory activity. Dynamic fluorescent resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) assays revealed homomeric interactions for GnT1IP-L in the ER, and heteromeric interactions with MGAT1 in the Golgi. GnT1IP-L did not generate a FRET signal with MGAT2, MGAT3, MGAT4B or MGAT5 medial Golgi GlcNAc-tranferases. GnT1IP/Mgat4d transcripts are expressed predominantly in spermatocytes and spermatids in mouse, and are reduced in men with impaired spermatogenesis.
Pappa, Eleni V; Zompra, Aikaterini A; Diamantopoulou, Zoi; Spyranti, Zinovia; Pairas, George; Lamari, Fotini N; Katsoris, Panagiotis; Spyroulias, George A; Cordopatis, Paul
2012-01-01
Lamprey gonadotropin-releasing hormone type III (lGnRH-III) is an isoform of GnRH isolated from the sea lamprey (Petromyzon marinus) with negligible endocrine activity in mammalian systems. Data concerning the superior direct anticancer activity of lGnRH-III have been published, raising questions on the structure-activity relationship. We synthesized 21 lGnRH-III analogs with rational amino acid substitutions and studied their effect on PC3 and LNCaP prostate cancer cell proliferation. Our results question the importance of the acidic charge of Asp⁶ for the antiproliferative activity and indicate the significance of the stereochemistry of Trp in positions 3 and 7. Furthermore, conjugation of an acetyl-group to the side chain of Lys⁸ or side chain cyclization of amino acids 1-8 increased the antiproliferative activity of lGnRH-III demonstrating that the proposed salt bridge between Asp⁶ and Lys⁸ is not crucial. Conformational studies of lGnRH-III were performed through NMR spectroscopy, and the solution structure of GnRH-I was solved. In solution, lGnRH-III adopts an extended backbone conformation in contrast to the well-defined β-turn conformation of GnRH-I. Copyright © 2012 Wiley Periodicals, Inc.
Bayram, N; van Wely, M; van der Veen, F
2004-01-01
In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intravenous or subcutaneous route using a portable pump has been used successfully in patients with hypogonadotrophic hypogonadism. Assuming that the results would be similar in women with polycystic ovary syndrome (PCOS), pulsatile GnRH has been used to induce ovulation in these women. Although ovulation and pregnancy have been achieved, the effectiveness of pulsatile GnRH in women with PCOS has not been clearly demonstrated. To assess the effectiveness of pulsatile GnRH administration in women with polycystic ovary syndrome (PCOS), in terms of ongoing pregnancy, ovulation, clinical pregnancy, ovarian hyperstimulation syndrome (OHSS), multiple pregnancy, miscarriage, and multifollicular growth. We searched the Cochrane Menstrual Disorders & Subfertility Group trials register (searched 13 August 2003), the Cochrane Central Register of Controlled Trials (CENTRAL) (Cochrane Library Issue 2, August 2001), MEDLINE (January 1966 to August 2003), EMBASE (January 1985 to August 2003) and reference lists of articles. We also contacted manufacturers and researchers in the field. All relevant published randomised clinical trials were selected for inclusion if treatment consisted of pulsatile GnRH administration versus another treatment for ovulation induction in subfertile women with PCOS. Relevant data were extracted independently by two reviewers (NB, MW). Validity was assessed in terms of method of randomisation, completeness of follow-up, presence or absence of crossover and co-intervention. All trials were screened and analysed for predetermined quality criteria. 2X2 tables were generated for all the relevant outcomes. Odds ratios were generated using the Peto method. Four randomised clinical trials involving 57 women were identified comparing four different treatments: GnRH versus HMG, GnRH and FSH versus FSH, GnRH following pretreatment with GnRH agonist (GnRHa) versus GnRH only, GnRH following pretreatment with GnRHa versus clomiphene citrate. This means that there was only one trial in any one comparison. In two studies, data of pre- and post-crossover were not described separately. All trials were small and of too short duration to show any significant differences in pregnancy results. The odds ratio for ongoing pregnancy, only described in one trial, was 7.5 (95% CI 0.44 to 127) in the comparison GnRH following pretreatment with GnRHa versus GnRH only in favour of the first group. Multiple pregnancies were not seen. Ovarian hyperstimulation syndrome was seen only in women allocated to ovulation induction with HMG. The four trials describing four different comparisons with a short follow up (1 to 3 cycles) were too small to either prove or discard the value of pulsatile GnRH treatment in patients with polycystic ovary syndrome.
Rahpeyma, Mehdi; Fotouhi, Fatemeh; Makvandi, Manouchehr; Ghadiri, Ata; Samarbaf-Zadeh, Alireza
2015-01-01
Background Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV M RNA segment encodes two viral surface glycoproteins known as Gn and Gc. Viral glycoproteins can be considered as key targets for vaccine development. Objectives The current study aimed to investigate structural bioinformatics of CCHFV Gn protein and design a construct to make a recombinant bacmid to express by baculovirus system. Materials and Methods To express the Gn protein in insect cells that can be used as antigen in animal model vaccine studies. Bioinformatic analysis of CCHFV Gn protein was performed and designed a construct and cloned into pFastBacHTb vector and a recombinant Gn-bacmid was generated by Bac to Bac system. Results Primary, secondary, and 3D structure of CCHFV Gn were obtained and PCR reaction with M13 forward and reverse primers confirmed the generation of recombinant bacmid DNA harboring Gn coding region under polyhedron promoter. Conclusions Characterization of the detailed structure of CCHFV Gn by bioinformatics software provides the basis for development of new experiments and construction of a recombinant bacmid harboring CCHFV Gn, which is valuable for designing a recombinant vaccine against deadly pathogens like CCHFV. PMID:26862379
Kovacs, Peter; Matyas, Szabolcs; Bernard, l Artur; Kaali, Steven G
2004-06-01
To compare clinical outcome and costs of CC + gonadotropins with GnRHa + gonadotropins during IVF/ICSI cycles. Clinical outcome and expenses of 382 CC + gonadotropin and 964 GnRHa + gonadotropin cycles were compared. Medication costs were calculated on the basis of the mean number of ampoules and the proportion of various gonadotropins. Costs per clinical pregnancy were calculated on the basis of expenses and clinical pregnancy rates. Women in the CC + gonadotropin group were younger, and had fewer follicles, oocytes, embryos, and embryos transferred. Clinical pregnancy rates were higher in the GnRHa group (35.9 % vs 26.2%, p < 0.001). More ampoules of gonadotropins were used in the GnRHa group (24.0 +/- 0.3 vs 20.0 +/- 0.5, p < 0.001). Medication costs per cycle were higher in the GnRHa group (US dollars 357 vs 248). Expenses per pregnancy however were lower in the GnRHa group (USdollars 4197 vs 5335 with IVF; USdollars 5590 vs 7244 with ICSI). When different age subgroups with similar baseline characteristics and stimulation parameters were compared, pregnancy rates were significantly higher in the GnRHa groups. Medication cost per cycle was higher in the GnRHa subgroups, and the expense per pregnancy was lower with GnRHa protocol. Cost per cycle is higher with GnRHa + gonadotropin. However, because of the better performance of the GnRHa + gonadotropin stimulation, the cumulative costs are reduced by the time a clinical pregnancy is achieved.
NASA Astrophysics Data System (ADS)
Hodge, Jacqueline; Riechers, Dominik A.; Decarli, Roberto; Walter, Fabian; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut
2015-01-01
We present high-resolution observations of the 880μm (rest-frame far-infrared) continuum emission in the z=4.05 submillimeter galaxy GN20. These data, taken with the IRAM Plateau de Bure Interferometer (PdBI), allow us to resolve the obscured star formation on scales of 0.3'×0.2' (~2.1×1.3 kpc). The observations reveal a bright (16±1 mJy) dusty starburst centered on the cold molecular gas reservoir as traced by previous high-fidelity CO(2-1) imaging and showing a bar-like extension along the galaxy's major axis. The striking anti-correlation with the HST/WFC3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical light in all but one small region several kpc from the nucleus. A comparison with 1.2 mm PdBI data reveals no evidence for variations in the dust continuum slope across the source. A detailed star formation rate surface density map reveals values that peak at 119±8 M⊙ yr-1 kpc-2 in the galaxy's center, showing that the star formation in GN20 remains sub-Eddington on scales down to 3 kpc2. Lastly, we examine the resolved star formation law on the same scales, deriving a power law slope of ΣSFR ~ ΣH_22.1±1.0 and a mean depletion time of 130 Myr. Despite its disk-like morphology and the use of custom-derived CO-to-H2 conversion factors, GN20 lies roughly in-line with the other existing resolved starbursts and above the sequence of star forming disks, implying that the offset is not due solely to choice of conversion factor.
BPA Directly Decreases GnRH Neuronal Activity via Noncanonical Pathway
Klenke, Ulrike; Constantin, Stephanie
2016-01-01
Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons. PMID:26934298
Naor, Zvi; Jabbour, Henry N.; Naidich, Michal; Pawson, Adam J.; Morgan, Kevin; Battersby, Sharon; Millar, Michael R.; Brown, Pamela; Millar, Robert P.
2007-01-01
The asynchronous secretion of gonadotrope LH and FSH under the control of GnRH is crucial for ovarian cyclicity but the underlying mechanism is not fully resolved. Because prostaglandins (PG) are autocrine regulators in many tissues, we determined whether they have this role in gonadotropes. We first demonstrated that GnRH stimulates PG synthesis by induction of cyclooxygenase-2, via the protein kinase C/c-Src/phosphatidylinositol 3′-kinase/MAPK pathway in the LβT2 gonadotrope cell line. We then demonstrated that PGF2α and PGI2, but not PGE2 inhibited GnRH receptor expression by inhibition of phosphoinositide turnover. PGF2α, but not PGI2 or PGE2, reduced GnRH-induction of LHβ gene expression, but not the α-gonadotropin subunit or the FSHβ subunit genes. The prostanoid receptors EP1, EP2, FP, and IP were expressed in rat gonadotropes. Incubations of rat pituitaries with PGF2α, but not PGI2 or PGE2, inhibited GnRH-induced LH secretion, whereas the cyclooxygenase inhibitor, indomethacin, stimulated GnRH-induced LH secretion. None of these treatments had any effect on GnRH-induced FSH secretion. The findings have thus elaborated a novel GnRH signaling pathway mediated by PGF2α-FP and PGI2-IP, which acts through an autocrine/paracrine modality to limit autoregulation of the GnRH receptor and differentially inhibit LH and FSH release. These findings provide a mechanism for asynchronous LH and FSH secretions and suggest the use of combination therapies of GnRH and prostanoid analogs to treat infertility, diseases with unbalanced LH and FSH secretion and in hormone-dependent diseases such as prostatic cancer. PMID:17138645
Distribution of cytomegalovirus gN variants and associated clinical sequelae in infants.
Paradowska, Edyta; Jabłońska, Agnieszka; Studzińska, Mirosława; Suski, Patrycja; Kasztelewicz, Beata; Zawilińska, Barbara; Wiśniewska-Ligier, Małgorzata; Dzierżanowska-Fangrat, Katarzyna; Woźniakowska-Gęsicka, Teresa; Czech-Kowalska, Justyna; Lipka, Bożena; Kornacka, Maria; Pawlik, Dorota; Tomasik, Tomasz; Kosz-Vnenchak, Magdalena; Leśnikowski, Zbigniew J
2013-09-01
Human cytomegalovirus (HCMV) is the most widespread cause of congenital infection. The effects of various viral strains and viral loads on the infection outcome have been under debate. To determine the distribution of gN variants in HCMV strains isolated from children with congenital or postnatal infection and to establish the relationship between the viral genotype, the viral load, and the sequelae. The study population included congenitally HCMV-infected newborns and children with postnatal or unproven congenital HCMV infection. The genotyping was performed by RFLP analysis of PCR-amplified fragments, and the viral load was measured by quantitative real-time PCR. Our results demonstrated that the HCMV genotypes gN3b, gN4b, and gN4c were prevalent in the patients examined. There were no differences in the distributions of gN genotypes in the congenitally and postnatally infected children. Multiple HCMV strains were detected in both groups of children. A significant association between the HCMV gN4 genotype and the incidence of neurological disorders was observed (p=0.045). Our results suggest that the detection of the gN2 or the gN4 genotype may be indicative of serious manifestations in children. In contrast, the gN3b and the gN1 genotypes represent less pathogenic HCMV strains. The HCMV load in urine was significantly higher in children with congenital infection compared with children with postnatal infection. No correlation was found between the viral load and the genotype. Our results suggest that the gN genotype may be a virological marker of symptomatic HCMV infection in newborns. Copyright © 2013 Elsevier B.V. All rights reserved.
Henningsson, S; Madsen, K H; Pinborg, A; Heede, M; Knudsen, G M; Siebner, H R; Frokjaer, V G
2015-01-01
Sex-hormone fluctuations may increase risk for developing depressive symptoms and alter emotional processing as supported by observations in menopausal and pre- to postpartum transition. In this double-blinded, placebo-controlled study, we used blood−oxygen level dependent functional magnetic resonance imaging (fMRI) to investigate if sex-steroid hormone manipulation with a gonadotropin-releasing hormone agonist (GnRHa) influences emotional processing. Fifty-six healthy women were investigated twice: at baseline (follicular phase of menstrual cycle) and 16±3 days post intervention. At both sessions, fMRI-scans during exposure to faces expressing fear, anger, happiness or no emotion, depressive symptom scores and estradiol levels were acquired. The fMRI analyses focused on regions of interest for emotional processing. As expected, GnRHa initially increased and subsequently reduced estradiol to menopausal levels, which was accompanied by an increase in subclinical depressive symptoms relative to placebo. Women who displayed larger GnRHa-induced increase in depressive symptoms had a larger increase in both negative and positive emotion-elicited activity in the anterior insula. When considering the post-GnRHa scan only, depressive responses were associated with emotion-elicited activity in the anterior insula and amygdala. The effect on regional activity in anterior insula was not associated with the estradiol net decline, only by the GnRHa-induced changes in mood. Our data implicate enhanced insula recruitment during emotional processing in the emergence of depressive symptoms following sex-hormone fluctuations. This may correspond to the emotional hypersensitivity frequently experienced by women postpartum. PMID:26624927
Burt, Davina; Salvidio, Gennaro; Tarabra, Elena; Barutta, Federica; Pinach, Silvia; Dentelli, Patrizia; Camussi, Giovanni; Perin, Paolo Cavallo; Gruden, Gabriella
2007-01-01
In crescentic glomerulonephritis (GN), monocyte chemoattractant protein-1 (MCP-1) is overexpressed within the glomeruli, and MCP-1 blockade has renoprotective effects. Adult podocytes are in a quiescent state, but acquisition of a migratory/proliferative phenotype has been described in crescentic GN and implicated in crescent formation. The cognate CC chemokine receptor 2 (CCR2), the MCP-1 receptor, is expressed by other cell types besides monocytes and has been implicated in both cell proliferation and migration. We investigated whether MCP-1 binding to CCR2 can induce a migratory/proliferative response in cultured podocytes. MCP-1 binding to CCR2 enhanced podocyte chemotaxis/haptotaxis in a concentration-dependent manner and had a modest effect on cell proliferation. Closure of a wounded podocyte monolayer was delayed by CCR2 blockade, and CCR2 was overexpressed at the wound edge, suggesting a role for CCR2 in driving podocyte migration. Immunohistochemical analysis of kidney biopsies from patients with crescentic GN demonstrated CCR2 expression in both podocytes and cellular crescents, confirming the clinical relevance of our in vitro findings. In conclusion, the MCP-1/CCR2 system is functionally active in podocytes and may be implicated in the migratory events triggered by podocyte injury in crescentic GN and other glomerular diseases. PMID:18055544
Kisspeptin: past, present, and prologue.
Steiner, Robert A
2013-01-01
Research in the nineteenth and early twentieth century established that the brain awakens reproduction, governs reproductive activity in the adult of virtually all vertebrates. By 1950, nearly 100 years later, scientists realized that the hypothalamus and its neurosecretory products play a key role in regulating gonadal function in both males and females. Another 20 years would be required to reveal the chemical identity of GnRH and establish that neurons producing GnRH represent the final common pathway through which the brain regulates gonadotropin secretion. It had also become clear that GnRH neurons behave more like motor neurons-better perhaps at going than stopping-and are themselves regulated by a complex network of afferent inputs, which guide the tempo of sexual maturation, regulate estrous and menstrual cycles, control seasonal breeding, and stop reproduction under adversity. In 2003, the revelation that kisspeptin and its receptor are critical for reproduction opened a floodgate of research documenting the role of kisspeptin neurons as central processors of reproduction. Today, there is wide consensus that kisspeptin signaling in the brain is essential, providing the impetus to GnRH neurons to awaken at puberty and reigning the activity of these neurons when discretion is advised. We celebrate this watershed moment-with full knowledge that time and discovery will provide context and perspective to even these heady days.
Gaseous Nitrogen Orifice Mass Flow Calculator
NASA Technical Reports Server (NTRS)
Ritrivi, Charles
2013-01-01
The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.
Bergeron, Éric; Zivcec, Marko; Chakrabarti, Ayan K; Nichol, Stuart T; Albariño, César G; Spiropoulou, Christina F
2015-05-01
Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV's high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor's maturation to GP38, and Gn precursor's maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public health threat.
Bergeron, Éric; Zivcec, Marko; Chakrabarti, Ayan K.; Nichol, Stuart T.; Albariño, César G.; Spiropoulou, Christina F.
2015-01-01
Crimean Congo hemorrhagic fever virus (CCHFV) is a negative-strand RNA virus of the family Bunyaviridae (genus: Nairovirus). In humans, CCHFV causes fever, hemorrhage, severe thrombocytopenia, and high fatality. A major impediment in precisely determining the basis of CCHFV’s high pathogenicity has been the lack of methodology to produce recombinant CCHFV. We developed a reverse genetics system based on transfecting plasmids into BSR-T7/5 and Huh7 cells. In our system, bacteriophage T7 RNA polymerase produced complementary RNA copies of the viral S, M, and L segments that were encapsidated with the support, in trans, of CCHFV nucleoprotein and L polymerase. The system was optimized to systematically recover high yields of infectious CCHFV. Additionally, we tested the ability of the system to produce specifically designed CCHFV mutants. The M segment encodes a polyprotein that is processed by host proprotein convertases (PCs), including the site-1 protease (S1P) and furin-like PCs. S1P and furin cleavages are necessary for producing the non-structural glycoprotein GP38, while S1P cleavage yields structural Gn. We studied the role of furin cleavage by rescuing a recombinant CCHFV encoding a virus glycoprotein precursor lacking a functional furin cleavage motif (RSKR mutated to ASKA). The ASKA mutation blocked glycoprotein precursor’s maturation to GP38, and Gn precursor’s maturation to Gn was slightly diminished. Furin cleavage was not essential for replication, as blocking furin cleavage resulted only in transient reduction of CCHFV titers, suggesting that either GP38 and/or decreased Gn maturation accounted for the reduced virion production. Our data demonstrate that nairoviruses can be produced by reverse genetics, and the utility of our system uncovered a function for furin cleavage. This viral rescue system could be further used to study the CCHFV replication cycle and facilitate the development of efficacious vaccines to counter this biological and public health threat. PMID:25933376
Genazzani, Alessandro D; Podfigurna-Stopa, Agnieszka; Czyzyk, Adam; Katulski, Krzysztof; Prati, Alessia; Despini, Giulia; Angioni, Stefano; Simoncini, Tommaso; Meczekalski, Blazej
2016-01-01
To evaluate the influence of short-term estriol administration (10 d) on the hypothalamus-pituitary function and gonadotropins secretion in patients affected by functional hypothalamic amenorrhea (FHA). Controlled clinical study on patients with FHA (n = 12) in a clinical research environment. Hormonal determinations and gonadotropin (luteinizing hormone [LH] and FSH) response to a gonadotropin-releasing hormone (GnRH) bolus (10 μg) at baseline condition and after 10 d of therapy with 2 mg/d of estriol per os. Measurements of plasma LH, FSH, prolactin, estradiol, androstenedione, 17α-hydroxyprogesterone, insulin, cortisol, thyroid-stimulating hormone, free triiodothyronine, and free thyroxine. After treatment, the FHA patients showed a statistically significant increase of both LH and FSH plasma levels and the significant increase of their responses to the GnRH bolus. Estriol short-term therapy modulates within 10 d of administration the neuroendocrine control of the hypothalamus-pituitary unit and induces the recovery of both gonadotropins synthesis and secretion in hypogonadotropic patients with FHA.
Courtship interactions stimulate rapid changes in GnRH synthesis in male ring doves
Mantei, Kristen E.; Ramakrishnan, Selvakumar; Sharp, Peter J.; Buntin, John D.
2008-01-01
Many birds and mammals show changes in the hypothalamo-pituitary-gonadal (HPG) axis in response to social or sexual interactions between breeding partners. While alterations in GnRH neuronal activity play an important role in stimulating these changes, it remains unclear if acute behaviorally-induced alterations in GnRH release are accompanied by parallel changes in GnRH synthesis. To investigate this relationship, we examined changes in the activity of GnRH neurons in the brains of male ring doves following brief periods of courtship interactions with females. Such interactions have been previously shown to increase plasma LH in courting male doves at 24 h, but not at 1 h, after pairing with females. In the first study, males allowed to court females for 2 h had 60% more cells that showed immunocytochemical labeling for GnRH-I in the preoptic area (POA) of the hypothalamus than did control males that remained isolated from females. To determine whether an increase in GnRH gene expression preceded this increase in GnRH immunoreactivity in the POA, changes in the number of cells with detectable GnRH-I mRNA in the POA were measured by in situ hybridization following a 1 h period of courtship interactions with females. In this second study, courting males exhibited 40% more cells with GnRH-I in this region than did isolated control males. GnRH-immunoreactive neurons in two other diencephalic regions failed to show these courtship-induced changes. Plasma LH was not elevated after 1 or 2 h of courtship. These results demonstrate that the release of GnRH-I in the POA that is presumably responsible for courtship-induced pituitary and gonadal activation is accompanied by a rapid increase in GnRH synthesis that occurs before plasma LH levels increase. We suggest that this increase in GnRH synthesis is necessary to support the extended period of HPG axis activation that is seen in this species during the 5–10 day period of courtship and nest building activity. PMID:18706906
Ali, A; Hayder, M; Saifelnaser, E O H
2009-12-01
This study aimed to evaluate three regimes for oestrus and ovulation synchronization in Farafra ewes in the subtropics. During autumn, 43 ewes were assigned to (i) controlled internal drug releasing (CIDR)-eCG group, treated with CIDR for 12 days and eCG at insert withdrawal, n=13; (ii) PGF2alpha-PGF2alpha group, treated with two PGF2alpha injections at 11 days interval, n=14; and (iii) GnRH-PGF2alpha-GnRH group, treated with GnRH, followed 5 days later with PGF2alpha and 24 h later with a second GnRH, n=16. Oestrus-mating detection was carried out at 4 h intervals starting on day 0 [the day of CIDR withdrawal (CIDR-eCG group), the day of second PGF2alpha treatment (PGF2alpha-PGF2alpha group) and the day of PGF2alpha treatment (GnRH-PGF2alpha-GnRH group)]. Ovarian dynamics was monitored by ultrasound every 12 h beginning on day 0 and continued for 4 days. Blood samples were obtained daily for progesterone (P4) and oestradiol 17beta (E2) estimation starting on day 0 and continued for 4 days. The obtained results showed that, oestrus expression, ovulation and conception were greater (p<0.05) in CIDR-eCG and PGF2alpha-PGF2alpha groups than in GnRH-PGF2alpha-GnRH group. All ewes of PGF2alpha-PGF2alpha group presented, on day of second PGF2alpha injection with mature CL (P4>2.0 ng/ml), compared to 42.9% in GnRH-PGF2alpha-GnRH group (p=0.01). The peak of oestrus occurred 32-52, 48-60 and 28-96 h after the end of treatment in CIDR-eCG, PGF2alpha-PGF2alpha and GnRH-PGF2alpha-GnRH groups, respectively. Ovulation started 48 h after treatment in all groups and extended for 24, 36 and 48 h for CIDR-eCG, PGF2alpha-PGF2alpha and GnRH-PGF2alpha-GnRH groups, respectively. Results demonstrated that oestrus and ovulation synchronization could be efficiently achieved in Farafra ewes using either CIDR-eCG or PGF2alpha-PGF2alpha regimes; however, the GnRH-PGF2alpha-GnRH treatment induced a more spread oestrus and ovulation that may make the protocol inadequate for timed artificial insemination.
Yamanaka, C; Lebrethon, M C; Vandersmissen, E; Gerard, A; Purnelle, G; Lemaitre, M; Wilk, S; Bourguignon, J P
1999-10-01
GnRH[1-5], a subproduct resulting from degradation of GnRH by prolyl endopeptidase (PEP) and endopeptidase 24.15 (EP24.15) was known to account for an inhibitory autofeedback of GnRH secretion through an effect at the N-methyl-D-aspartate (NMDA) receptors. This study aimed at determining the possible role of such a mechanism in the early developmental changes in frequency of pulsatile GnRH secretion. Using retrochiasmatic explants from fetal male rats (day 20-21 of gestation), no GnRH pulses could be observed in vitro, whereas pulses occurred at a mean interval of 86 min from the day of birth onwards. This interval decreased steadily until day 25 (39 min), during the period preceding the onset of puberty. Based on GnRH[1-10] or GnRH[1-9] degradation and GnRH[1-5] generation after incubation with hypothalamic extracts, EP24.15 activity did not change with age, whereas PEP activity was maximal at days 5-10 and decreased subsequently until day 50. These changes were consistent with the ontogenetic variations in PEP messenger RNAs (mRNAs) quantitated using RT-PCR. Using fetal explants, the NMDA-evoked release of GnRH was potentiated in a dose-dependent manner by bacitracin, a competitive PEP inhibitor and the desensitization to the NMDA effect was prevented using 2 mM of bacitracin. At day 5, a higher bacitracin concentration of 20 mM was required for a similar effect. Pulsatile GnRH secretion from fetal explants was not caused to occur using bacitracin or Fmoc-Prolyl-Pyrrolidine-2-nitrile (Fmoc-Pro-PyrrCN), a noncompetitive PEP inhibitor. At postnatal days 5 and 15, a significant acceleration of pulsatility was obtained using 1 microM of Fmoc-Pro-PyrrCN or 2 mM of bacitracin. At 25 and 50 days, a lower bacitracin concentration of 20 microM was effective as well in increasing the frequency of GnRH pulsatility. We conclude that the GnRH inhibitory autofeedback resulting from degradation of the peptide is operational in the fetal hypothalamus but does not explain the absence of pulsatile GnRH secretion at that early age. After birth, PEP activity is high and may account for the low frequency of pulsatility. The potency of that effect decreases before the onset of puberty and may contribute to the acceleration of GnRH pulsatility.
Herde, Michel K; Herbison, Allan E
2015-11-01
GnRH neurons are the final output neurons of the hypothalamic network controlling fertility in mammals. In the present study, we used ankyrin G immunohistochemistry and neurobiotin filling of live GnRH neurons in brain slices from GnRH-green fluorescent protein transgenic male mice to examine in detail the location of action potential initiation in GnRH neurons with somata residing at different locations in the basal forebrain. We found that the vast majority of GnRH neurons are bipolar in morphology, elaborating a thick (primary) and thinner (secondary) dendrite from opposite poles of the soma. In addition, an axon-like process arising predominantly from a proximal dendrite was observed in a subpopulation of GnRH neurons. Ankyrin G immunohistochemistry revealed the presence of a single action potential initiation zone ∼27 μm in length primarily in the secondary dendrite of GnRH neurons and located 30 to 140 μm distant from the cell soma, depending on the type of process and location of the cell body. In addition to dendrites, the GnRH neurons with cell bodies located close to hypothalamic circumventricular organs often elaborated ankyrin G-positive axon-like structures. Almost all GnRH neurons (>90%) had their action potential initiation site in a process that initially, or ultimately after a hairpin loop, was coursing in the direction of the median eminence. These studies indicate that action potentials are initiated in different dendritic and axonal compartments of the GnRH neuron in a manner that is dependent partly on the neuroanatomical location of the cell body.
NASA Technical Reports Server (NTRS)
Flynn, Katherine M.; Miller, Shelly A.; Sower, Stacia A.; Schreibman, Martin P.
2002-01-01
The N-methyl-D-aspartate glutamate receptor (NMDAR) is found in hypothalamic nuclei involved in the regulation of reproduction in several species of mammals and fishes. NMDAR is believed to affect reproductive development and function by regulating gonadotropin releasing hormone (GnRH)-producing cells. These pathways are likely to be sexually dimorphic, as are several other neurotransmitter systems involved in reproductive function. In this report, male and female platyfish received intraperitoneal injections of 0, 5, 10, 20, 40 or 60 microg/g body wt. of the non-competitive NMDAR antagonist MK-801. Injections began at 6 weeks of age and continued thrice weekly until control animals reached puberty, as evidenced by anal fin maturation. The percent of pubescent animals was significantly affected by sex and treatment, with fewer MK-801-injected females in puberty than control females at each dose (P<0.001), and fewer pubescent females than males at 10, 20 and 40 microg/g (P<0.05). There were no MK-801-related effects in males. Histological analyses revealed typical immature gonads and pituitary glands in treated females, and typical mature morphology in control females and all males. Immunocytochemical distribution of the R1 subunit of the NMDAR within the brain-pituitary-gonad (BPG) axis was limited to GnRH-containing brain cells in all animals; however, NMDAR1 distribution was in an immature pattern in treated females and a mature pattern in all others. Neural concentrations of GnRH were unaffected by MK-801 treatment in both sexes. These data suggest that in the platyfish, NMDAR influence on reproductive development is sexually dimorphic and occurs at, or above, the level of GnRH-containing cells of the BPG axis.
Stephens, Shannon B Z; Rouse, Melvin L; Tolson, Kristen P; Liaw, Reanna B; Parra, Ruby A; Chahal, Navi; Kauffman, Alexander S
2017-01-01
The neuropeptide kisspeptin, encoded by Kiss1 , regulates reproduction by stimulating GnRH secretion. Kiss1- syntheizing neurons reside primarily in the hypothalamic anteroventral periventricular (AVPV/PeN) and arcuate (ARC) nuclei. AVPV/PeN Kiss1 neurons are sexually dimorphic, with females expressing more Kiss1 than males, and participate in estradiol (E 2 )-induced positive feedback control of GnRH secretion. In mice, most AVPV/PeN Kiss1 cells coexpress tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis (in this case, dopamine). Dopamine treatment can inhibit GnRH neurons, but the function of dopamine signaling arising specifically from AVPV/PeN Kiss1 cells is unknown. We generated a novel TH flox mouse and used Cre-Lox technology to selectively ablate TH specifically from Kiss1 cells. We then examined the effects of selective TH knock-out on puberty and reproduction in both sexes. In control mice, 90% of AVPV/PeN Kiss1 neurons coexpressed TH , whereas in mice lacking TH exclusively in Kiss1 cells (termed Kiss THKOs), TH was successfully absent from virtually all Kiss1 cells. Despite this absence of TH , both female and male Kiss THKOs displayed normal body weights, puberty onset, and basal gonadotropin levels in adulthood, although testosterone (T) was significantly elevated in adult male Kiss THKOs. The E 2 -induced LH surge was unaffected in Kiss THKO females, and neuronal activation status of kisspeptin and GnRH cells was also normal. Supporting this, fertility and fecundity were normal in Kiss THKOs of both sexes. Thus, despite high colocalization of TH and Kiss1 in the AVPV/PeN, dopamine produced in these cells is not required for puberty or reproduction, and its function remains unknown.
Adachi, Sachika; Yamada, Shunji; Takatsu, Yoshihiro; Matsui, Hisanori; Kinoshita, Mika; Takase, Kenji; Sugiura, Hitomi; Ohtaki, Tetsuya; Matsumoto, Hirokazu; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Inoue, Kinji; Maeda, Kei-Ichiro
2007-04-01
Metastin/kisspeptin, the KiSS-1 gene product, has been identified as an endogenous ligand of GPR54 that reportedly regulates GnRH/LH surges and estrous cyclicity in female rats. The aim of the present study was to determine if metastin/kisspeptin neurons are a target of estrogen positive feedback to induce GnRH/LH surges. We demonstrated that preoptic area (POA) infusion of the anti-rat metastin/kisspeptin monoclonal antibody blocked the estrogen-induced LH surge, indicating that endogenous metastin/kisspeptin released around the POA mediates the estrogen positive feedback effect on GnRH/LH release. Metastin/kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) may be responsible for mediating the feedback effect because the percentage of c-Fos-expressing KiSS-1 mRNA-positive cells to total KiSS-1 mRNA-positive cells was significantly higher in the afternoon than in the morning in the anteroventral periventricular nucleus (AVPV) of high estradiol (E(2))-treated females. The percentage of c-Fos-expressing metastin/kisspeptin neurons was not different between the afternoon and morning in the arcuate nucleus (ARC). Most of the KiSS-1 mRNA expressing cells contain ERalpha immunoreactivity in the AVPV and ARC. In addition, AVPV KiSS-1 mRNA expressions were highest in the proestrous afternoon and lowest in the diestrus 1 in females and were increased by estrogen treatment in ovariectomized animals. On the other hand, the ARC KiSS-1 mRNA expressions were highest at diestrus 2 and lowest at proestrous afternoon and were increased by ovariectomy and decreased by high estrogen treatment. Males lacking the surge mode of GnRH/LH release showed no obvious cluster of metastin/kisspeptin-immunoreactive neurons in the AVPV when compared with high E(2)-treated females, which showed a much greater density of these neurons. Taken together, the present study demonstrates that the AVPV metastin/kisspeptin neurons are a target of estrogen positive feedback to induce GnRH/LH surges in female rats.
NASA CEV Reference Entry GN&C System and Analysis
NASA Technical Reports Server (NTRS)
Munday, S.; Madsen, C.; Broome, J.; Gay, R.; Tigges, M.; Strahan, A.
2007-01-01
As part of its overall objectives, the Orion spacecraft will be required to perform entry and Earth landing functions for Low Earth Orbit (LEO) and Lunar missions. Both of these entry scenarios will begin with separation of the Service Module (SM), making them unique from other Orion mission phases in that only the Command Module (CM) portion of the Crew Exploration Vehicle (CEV) will be involved, requiring a CM specific Guidance, Navigation and Control (GN&C) system. Also common to these mission scenarios will be the need for GN&C to safely return crew (or cargo) to earth within the dynamic thermal and structural constraints of entry and within acceptable accelerations on the crew, utilizing the limited aerodynamic performance of the CM capsule. The lunar return mission could additionally require an initial atmospheric entry designed to support a precision skip and second entry, all to maximize downrange performance and ensure landing in the United States. This paper describes the Entry GN&C reference design, developed by the NASA-led team, that supports these entry scenarios and that was used to validate the Orion System requirements. Description of the reference design will include an overview of the GN&C functions, avionics, and effectors and will relate these to the specific design drivers of the entry scenarios, as well as the desire for commonality in vehicle systems to support the different missions. The discussion will also include the requirement for an Emergency Entry capability beyond that of the nominal performance of the multi-string GNC system, intended to return the crew to the earth in a survivable but unguided manner. Finally, various analyses will be discussed, including those completed to support validation efforts of the current CEV requirements, along with those on-going and planned with the intention to further refine the requirements and to support design development work in conjunction with the prime contractor. Some of these ongoing analyses will include work to size effectors (jets) and fuel budgets, to refine skip entry concepts, to characterize navigation performance and uncertainties, to provide for SM disposal offshore and to identify requirements to support target site selection.
Wong, M; O'Neill, S; Walsh, G; Smith, I E
2013-01-01
Premature ovarian failure and infertility following chemotherapy in early breast cancer (EBC) are major concerns for young women. The role of gonadotrophin-releasing hormone (GnRH) agonists with chemotherapy in EBC in reducing the incidence of chemotherapy-induced early menopause remains uncertain, and long-term data on the recovery of fertility are sparse. We report an audit of our experience with the GnRH agonist, goserelin (Zoladex®), used with chemotherapy to preserve ovarian function and maintain fertility. Pre-menopausal women were given goserelin subcutaneously every 28 days during chemotherapy, starting 0-14 days before treatment. The main clinical end point was recovery of menstruation after chemotherapy. The other end points were rate of successful conception and median time to recovery of menses. About 84% of 125 women recovered menstruation with the median time to recovery of 6 months (1-43 months), including 76% of 71 patients aged over 35. Of the 42 patients who attempted pregnancy, 71% (n=30) managed to achieve pregnancies. At the time of analysis, there were 42 pregnancies and 30 healthy deliveries. The GnRH agonist, goserelin, given with chemotherapy for EBC is associated with a low risk of long-term chemotherapy-induced amenorrhoea and a high chance of pregnancy. Further randomised trials are needed.
Choi, Young Jae; Habibi, Hamid R; Choi, Cheol Young
2016-06-24
The present study aimed to determine the relationship between melatonin and gonadotropin-inhibitory hormone (GnIH) and their effect on reproduction in cinnamon clownfish, Amphiprion melanopus. Accordingly, we investigated the expression pattern of GnIH, GnIH receptor (GnIH-R), and melatonin receptor (MT-R1) mRNA and protein, as well as the plasma levels of melatonin, during sex change in cinnamon clownfish. We found that GnIH and MT-R1 mRNA and melatonin activity were higher in fish with mature brain than in fish with developing gonads, and using double immunofluorescence staining, we found that both GnIH and MT-R1 proteins were co-expressed in the hypothalamus of cinnamon clownfish. These findings support the hypothesis that melatonin plays an important role in the negative regulation of maturation and GnIH regulation during reproduction. Copyright © 2016 Elsevier Inc. All rights reserved.
Sherwood, N M; Harvey, B; Brownstein, M J; Eiden, L E
1984-08-01
Immunoreactive gonadotropin-releasing hormone (Gn-RH) was extracted from brains of striped mullet, milkfish, rainbow trout, and chum salmon with acetone/HCl and petroleum ether. High pressure liquid chromatography and cross-reactivity studies show mullet, milkfish, and trout brains to contain a peptide chromatographically and immunologically identical to synthetic salmon Gn-RH, while the mammalian form of Gn-RH is detectable in none of these fishes. Gn-RH is present in immature 7-month-old and 4-year-old milkfish. A second immunoreactive peptide is separable by HPLC in all the fish studied. This "early-eluting" form of Gn-RH is unlikely to be a precursor; its cross-reactivity with antisera R-42 and #185 suggests that any modification is in the C-terminal region. Several possible roles for this peptide are advanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherwood, N.M.; Harvey, B.; Brownstein, M.J.
Immunoreactive gonadotropin-releasing hormone (Gn-RH) was extracted from brains of striped mullet, milkfish, rainbow trout, and chum salmon with acetone/HCl and petroleum ether. High pressure liquid chromatography and cross-reactivity studies show mullet, milkfish, and trout brains to contain a peptide chromatographically and immunologically identical to synthetic salmon Gn-RH, while the mammalian form of Gn-RH is detectable in none of these fishes. Gn-RH is present in immature 7-month-old and 4-year-old milkfish. A second immunoreactive peptide is separable by HPLC in all the fish studied. This early-eluting form of Gn-RH is unlikely to be a precursor; its cross-reactivity with antisera R-42 and number185more » suggests that any modification is in the C-terminal region. Several possible roles for this peptide are advanced.« less
Nonreproductive role of gonadotropin-releasing hormone in the control of ascidian metamorphosis.
Kamiya, Chisato; Ohta, Naoyuki; Ogura, Yosuke; Yoshida, Keita; Horie, Takeo; Kusakabe, Takehiro G; Satake, Honoo; Sasakura, Yasunori
2014-12-01
Gonadotropin-releasing hormones (GnRHs) are neuropeptides that play central roles in the reproduction of vertebrates. In the ascidian Ciona intestinalis, GnRHs and their receptors are expressed in the nervous systems at the larval stage, when animals are not yet capable of reproduction, suggesting that the hormones have non-reproductive roles. We showed that GnRHs in Ciona are involved in the animal's metamorphosis by regulating tail absorption and adult organ growth. Absorption of the larval tail and growth of the adult organs are two major events in the metamorphosis of ascidians. When larvae were treated with GnRHs, they completed tail absorption more frequently than control larvae. cAMP was suggested to be a second messenger for the induction of tail absorption by GnRHs. tGnRH-3 and tGnRH-5 (the "t" indicates "tunicate") inhibited the growth of adult organs by arresting cell cycle progression in parallel with the promotion of tail absorption. This study provides new insights into the molecular mechanisms of ascidian metamorphosis conducted by non-reproductive GnRHs. © 2014 Wiley Periodicals, Inc.
Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor.
Boonthum, Chatwalee; Namdee, Katawut; Boonrungsiman, Suwimon; Chatdarong, Kaywalee; Saengkrit, Nattika; Sajomsang, Warayuth; Ponglowhapan, Suppawiwat; Yata, Teerapong
2017-02-10
The main purpose of this study was to investigate the application of modified chitosan as a potential vector for gene delivery to gonadotropin-releasing hormone receptor (GnRHR)-expressing cells. Such design of gene carrier could be useful in particular for gene therapy for cancers related to the reproductive system, gene disorders of sexual development, and contraception and fertility control. In this study, a decapeptide GnRH was successfully conjugated to chitosan (CS) as confirmed by proton nuclear magnetic resonance spectroscopy ( 1 H NMR) and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The synthesized GnRH-conjugated chitosan (GnRH-CS) was able to condense DNA to form positively charged nanoparticles and specifically deliver plasmid DNA to targeted cells in both two-dimensional (2D) and three-dimensional (3D) cell cultures systems. Importantly, GnRH-CS exhibited higher transfection activity compared to unmodified CS. In conclusion, GnRH-conjugated chitosan can be a promising carrier for targeted DNA delivery to GnRHR-expressing cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
GnRHa to trigger final oocyte maturation: a time to reconsider.
Humaidan, P; Papanikolaou, E G; Tarlatzis, B C
2009-10-01
Recently GnRH antagonist protocols for the prevention of a premature LH surge were introduced, allowing final oocyte maturation to be triggered with a single bolus of a GnRH agonist (GnRHa). GnRHa is as effective as hCG for the induction of ovulation, and apart from the LH surge a FSH surge is also induced. Until recently, prospective randomized studies reported a poor clinical outcome when GnRHa was used to trigger final oocyte maturation in IVF/ICSI antagonist protocols, presumably due to a luteal phase deficiency, despite standard luteal phase supplementation with progesterone and estradiol. As GnRHa triggering of final oocyte maturation could possess advantages over hCG triggering in terms of a reduced if not eliminated risk of ovarian hyperstimulation syndrome (OHSS) and the retrieval of more mature oocytes, the challenge has been to rescue the luteal phase. In the literature now several studies report a luteal phase rescue with a reproductive outcome comparable to that of hCG induced final oocyte maturation. Although more research is needed, GnRHa triggering is now a valid alternative with potential benefits.
Kahraman, Korhan; Berker, Bulent; Atabekoglu, Cem Somer; Sonmezer, Murat; Cetinkaya, Esra; Aytac, Rusen; Satiroglu, Hakan
2009-06-01
To compare the efficacy of microdose GnRH agonist (GnRH-a) flare-up and multiple dose GnRH antagonist protocols in patients who have a poor response to a long luteal GnRH-a protocol. Prospective, randomized, clinical study. University hospital. Forty-two poor responder patients undergoing intracytoplasmic sperm injection (ICSI)-embryo transfer cycle. Twenty-one patients received microdose leuprolide acetate (LA) (50 microg twice daily) starting on the second day of withdrawal bleeding. The other 21 patients received 0.25 mg of cetrorelix daily when the leading follicle reached 14 mm in diameter. Serum E(2) levels, number of growing follicles and mature oocytes, embryo quality, dose of gonadotropin used, cancellation, fertilization, implantation rate and pregnancy rate (PR). The mean serum E(2) concentration on the day of hCG administration was significantly higher in the microdose GnRH-a group than in the GnRH antagonist group (1,904 vs. 1,362 pg/mL). The clinical PRs per started cycle of microdose GnRH-a and GnRH antagonist groups were 14.2% and 9.5%, respectively. There were no statistically significant differences in the other ovulation induction characteristics, fertilization and implantation rates. Microdose GnRH-a flare-up protocol and multiple dose GnRH antagonist protocol seem to have similar efficacy in improving treatment outcomes of poor responder patients.
Ozcan Cenksoy, Pinar; Ficicioglu, Cem; Kizilkale, Ozge; Suhha Bostanci, Mehmet; Bakacak, Murat; Yesiladali, Mert; Kaspar, Cigdem
2014-07-01
To compare the effects of microdose GnRH-a flare-up, GnRH antagonist/aromatase inhibitor letrozole and GnRH antagonist/clomiphene citrate protocols on IVF outcomes in poor responder patients. Of 225 patients, 83 patients were in microdose flare-up group (Group 1), 70 patients were in GnRH antagonist/letrozole group (Group 2) and 72 patients were in GnRH antagonist/clomiphene citrate group (Group 3). Demographic and endocrine characteristics, the total number of oocytes retrieved, cancellation rate and clinical pregnancy rate were collected Results: Total dosage of gonadotropins (p=0.002) and serum E2 levels on the day of hCG administration (p=0.010) were significantly higher and duration of stimulations (p=0.03) was significantly longer in group 1. The number of oocytes retrieved was significantly greater in group 1 and 2 when compare to those of group 3 (p=0,000). There was a trend towards increasing cycle cancellation rates with GnRH antagonist/clomiphene citrate and GnRH antagonist/letrozole. Our finding suggest that the results of microdose flare-up protocol are better than other two used treatment protocols, in terms of maximum estradiol levels, number of mature oocytes retrieved, and cancellation rate and it still seems to be superior the ovarian stimulation regime for the poor responder patients.
Senarai, Thanyaporn; Saetan, Jirawat; Tamtin, Montakan; Weerachatyanukul, Wattana; Sobhon, Prasert; Sretarugsa, Prepee
2016-08-01
Our previous studies have demonstrated that lamprey gonadotropin-releasing hormone-III (lGnRH-III)-like peptide occurs in the central nervous system (CNS) of decapod crustaceans (Macrobrachium rosenbergii, Penaeus monodon, Portunus pelagicus), and that lGnRH-III is the most potent in stimulating ovarian maturation compared with other GnRH isoforms. In this study, we examined the localization of lGnRH-III-like peptide in the CNS and male reproductive organs of the blue swimming crab by using anti-lGnRH-III as a probe. In the brain, lGnRH-III immunoreactivity (-ir) was detected in neurons of clusters 6, 10, 11, 14/15, 16, and 17 and in many neuropils. In the subesophageal ganglion, lGnRH-III-ir was present in neurons of the dorso-lateral and ventro-medial clusters. In the thoracic ganglia, lGnRH-III-ir was observed in the large-sized neurons between the thoracic neuropils and in the ventromedial cluster of the abdominal ganglia. In the testis, lGnRH-III-ir was detected in nurse cells, hemocytes, spermatids 2, and the outer and inner zones of the acrosomes of spermatozoa. Bioassay showed that lGnRH-III significantly increased the testis-somatic index, the percentage of late stages of seminiferous tubules (stages VII-IX), the diameter of the seminiferous tubules, and the number of BrdU-labeled early germ cells compared with the control groups. Thus, lGnRH-III-like peptide exists in the male crab and possibly enhances germ cell proliferation and maturation in the testes, leading to increased sperm production.
Teo, Chuin Hau; Soga, Tomoko; Parhar, Ishwar S
2017-01-01
Postweaning social isolation reduces the amplitude of the daily variation of CLOCK protein in the brain and induces lower reproductive activity. Gonadotropin-inhibitory hormone (GnIH) acts as an inhibitor in the reproductive system and has been linked to stress. Social isolation has been shown to lower neuronal activity of GnIH-expressing neurons in the dorsomedial hypothalamus (DMH). The exact mechanism by which social isolation may affect GnIH is still unclear. We investigated the impact of social isolation on regulatory cellular mechanisms in GnIH neurons. We examined via immunohistochemistry the expression of CLOCK protein at four different times throughout the day in GnIH cells tagged with enhanced fluorescent green protein (EGFP-GnIH) in 9-week-old adult male rats that have been raised for 6 weeks under postweaning social isolation and compared them with group-raised control rats of the same age. We also studied the expression of β-catenin-which has been shown to be affected by circadian proteins such as Bmal1-in EGFP-GnIH neurons to determine whether it could play a role in linking CLOCK in GnIH neurons. We found that social isolation modifies the pattern of CLOCK expression in GnIH neurons in the DMH. Socially isolated rats displayed greater CLOCK expression in the dark phase, while control rats displayed increased CLOCK expression in the light phase. Furthermore, β-catenin expression pattern in GnIH cells was disrupted by social isolation. This suggests that social isolation triggers changes in CLOCK and GnIH expression, which may be associated with an increase in nuclear β-catenin during the dark phase.
Rahpeyma, Mehdi; Samarbaf-Zadeh, Alireza; Makvandi, Manoochehr; Ghadiri, Ata A; Dowall, Stuart D; Fotouhi, Fatemeh
2017-07-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a major cause of tick-borne viral hemorrhagic disease in the world. Despite of its importance as a deadly pathogen, there is currently no licensed vaccine against CCHF disease. The attachment glycoprotein of CCHFV (Gn) is a potentially important target for protective antiviral immune responses. To characterize the expression of recombinant CCHFV Gn in an insect-cell-based system, we developed a gene expression system expressing the full-length coding sequence under a polyhedron promoter in Sf9 cells using recombinant baculovirus. Recombinant Gn was purified by affinity chromatography, and the immunoreactivity of the protein was evaluated using sera from patients with confirmed CCHF infection. Codon-optimized Gn was successfully expressed, and the product had the expected molecular weight for CCHFV Gn glycoprotein of 37 kDa. In time course studies, the optimum expression of Gn occurred between 36 and 48 hours postinfection. The immunoreactivity of the recombinant protein in Western blot assay against human sera was positive and was similar to the results obtained with the anti-V5 tag antibody. Additionally, mice were subjected to subcutaneous injection with recombinant Gn, and the cellular and humoral immune response was monitored. The results showed that recombinant Gn protein was highly immunogenic and could elicit high titers of antigen-specific antibodies. Induction of the inflammatory cytokine interferon-gamma and the regulatory cytokine IL-10 was also detected. In conclusion, a recombinant baculovirus harboring CCHFV Gn was constructed and expressed in Sf9 host cells for the first time, and it was demonstrated that this approach is a suitable expression system for producing immunogenic CCHFV Gn protein without any biosafety concerns.
Comparison of Ovulation Induction Protocols After Endometrioma Resection
Yasa, Cenk; Dural, Ozlem; Mutlu, Mehmet Firat; Celik, Cem; Ugurlucan, Funda Gungor; Buyru, Faruk
2014-01-01
Background and Objectives: The aim of this study was to compare the in vitro fertilization (IVF) outcomes of long gonadotropin-releasing hormone agonist (GnRH-a) and GnRH-antagonist (GnRH-ant) protocols in endometriosis patients who have undergone laparoscopic endometrioma resection surgery. To our knowledge, there is no study in the current literature that compares the effectiveness of long GnRH-a and GnRH-ant protocols in management of IVF cycles in endometriosis patients who underwent laparoscopic endometrioma resection surgery. Methods: Eighty-six patients with stage III to IV endometriosis who had undergone laparoscopic resection surgery for endometrioma were divided into 2 groups: those who had ovarian stimulation with a long GnRH-a protocol (n = 44), and those who had ovarian stimulation with a GnRH-ant protocol (n = 42). Results: The number of follicles on human chorionic gonadotropin injection day, duration of hyperstimulation, number of retrieved metaphase II oocytes, and total number of grade 1 embryos were statically significantly higher in the long GnRH-a protocol. There were no significant differences in positive β-human chorionic gonadotropin pregnancy rates (25% vs 21.4%; P = .269) and ongoing pregnancy rates per patient (20.5% vs 19.1%; P = .302) between the 2 protocols. Conclusions: Long GnRH-a and GnRH-ant protocols both present similar IVF outcomes in patients with endometriosis who have undergone laparoscopic endometrioma resection surgery. A long GnRH-a protocol may lead to a higher number of embryos that can be cryopreserved, providing the possibility of additional embryo transfers without having to go through the process of ovarian stimulation again. PMID:25392665
Shafiee-Kermani, Farideh; Han, Sang-oh; Miller, William L
2007-07-01
FSH is induced by activin, and this expression is modulated by GnRH through FSHB expression. This report focuses on the inhibitory effect of GnRH on activin-induced FSHB expression. Activin-treated primary murine pituitary cultures robustly express mutant ovine FSHBLuc-DeltaAP1, a luciferase transgene driven by 4.7 kb of ovine FSHB promoter. This promoter lacks two GnRH-inducible activator protein-1 sites, making it easier to observe GnRH-mediated inhibition. Luciferase expression from this transgene was decreased 94% by 100 nM GnRH with a half-time of approximately 4 h in pituitary cultures, and this inhibition was independent of follistatin. Activators of cAMP and protein kinase C like forskolin and phorbol 12-myristate 3-acetate (PMA), respectively, mimicked GnRH action. Kinetic studies of wild-type ovine FSHBLuc in LbetaT2 cells showed continuous induction by activin (4-fold) over 20 h. Most of this induction (78%) was blocked, beginning at 6 h. cAMP response element binding protein (CREB) was implicated in this inhibition because overexpression of its constitutively active mutant mimicked GnRH, and its inhibitor (inducible cAMP early repressor isoform II) reversed the inhibition caused by GnRH, forskolin, or PMA. In addition, GnRH, forskolin, or PMA increased the expression of a CREB-responsive reporter gene, 6xCRE-37PRL-Luc. Inhibition of nitric oxide type I (NOSI) by 7-nitroindazole also reversed GnRH-mediated inhibition by 60%. It is known that GnRH and CREB induce production of NOSI in gonadotropes and neuronal cells, respectively. These data support the concept that chronic GnRH inhibits activin-induced ovine FSHB expression by sequential activation of CREB and NOSI through the cAMP and/or protein kinase C pathways.
Shacham, Sharon; Cheifetz, Maya N; Fridkin, Mati; Pawson, Adam J; Millar, Robert P; Naor, Zvi
2005-08-12
Type I gonadotropin-releasing hormone (GnRH) receptor (GnRHR) is unique among mammalian G-protein-coupled receptors (GPCRs) in lacking a C-terminal tail, which is involved in desensitization in GPCRs. Therefore, we searched for inhibitory sites in the intracellular loops (ICLs) of the GnRHR. Synthetic peptides corresponding to the three ICLs were inserted into permeabilized alphaT3-1 gonadotrope cells, and GnRH-induced inositol phosphate (InsP) formation was determined. GnRH-induced InsP production was potentiated by ICL2 > ICL3 but not by the ICL1 peptides, suggesting they are acting as decoy peptides. We examined the effects of six peptides in which only one of the Ser or Thr residues was substituted with Ala or Glu. Only substitution of Ser153 with Ala or Glu ablated the potentiating effect upon GnRH-induced InsP elevation. ERK activation was enhanced, and the rate of GnRH-induced InsP formation was about 6.5-fold higher in the first 10 min in COS-1 cells that were transfected with mutants of the GnRHR in which the ICL2 Ser/Thr residues (Ser151, Ser153, and Thr142) or only Ser153 was mutated to Ala as compared with the wild type GnRHR. The data indicate that ICL2 harbors an inhibitory domain, such that exogenous ICL2 peptide serves as a decoy for the inhibitory site (Ser153) of the GnRHR, thus enabling further activation. GnRH does not induce receptor phosphorylation in alphaT3-1 cells. Because the phosphomimetic ICL2-S153E peptide did not mimic the stimulatory effect of the ICL2 peptide, the inhibitory effect of Ser153 operates through a phosphorylation-independent mechanism.
Delemarre-van de Waal, Henriette A
2004-11-01
Puberty is the result of reactivation of the gonadotropin releasing hormone (GnRH) pulse generator resulting in an increasing release of GnRH by the hypothalamus, which stimulates the gonadotropic cells of the pituitary to synthesize and secrete LH and FSH. Hypogonadotropic hypogonadism (HH) is often the result of GnRH deficiency. The clinical picture is characterized by the absence of pubertal development and infertility. It is difficult to differentiate HH from delayed puberty since low gonadotropin and low testosterone levels are found in both conditions. We hypothesized that long-term GnRH administration may differentiate between the two conditions by a difference in the increase of gonadotropins, the idea being that in normal delayed puberty the pituitary of the patient has been primed with GnRH during the fetal and early postnatal period. Seventeen adolescents suspected of having hypogonadotropic hypogonadism were treated with pulsatile GnRH for 7 days. At the present time, the diagnosis of these patients is known and the results of the long-term GnRH stimulation have been evaluated according to the present diagnosis. The results show that the increase in gonadotropins following GnRH treatment is similar in both conditions. Therefore, at a prepubertal age a normal delayed puberty cannot be distinguished from hypogonadotropic hypogonadism using long-term GnRH stimulation. Long-term pulsatile GnRH treatment is a physiological therapy for the induction of puberty. Unlike testosterone it has the advantage of stimulation of testicular growth and fertility, as well as virilization, in males. We have treated 68 male patients with HH with pulsatile GnRH. The results show testicular growth and virilization in all the patients and spermatogenesis in 58 patients. Wearing a portable pump is cumbersome. However, the patients were very motivated and adapted very easily to this inconvenience. When spermatogenesis had developed, GnRH treatment was changed to human chorionic gonadotropin (hCG) administration 1-2 times per week intramuscularly or subcutaneously. During hCG therapy spermatogenesis was maintained or even improved. At least ten patients fathered children. Pulsatile GnRH cannot distinguish between a normal delayed puberty and a hypothalamic defect in still prepubertal patients. Pulsatile GnRH offers an appropriate way to initiate testicular growth including virilization and fertility in males with hypogonadotropic hypogonadism.
[Functional hypothalamic amenorrhea].
Stárka, Luboslav; Dušková, Michaela
2015-10-01
Functional hypothalamic amenorrhea (FHA) besides pregnancy and syndrome of polycystic ovary is one of the most common causes of secondary amenorrhea. FHA results from the aberrations in pulsatile gonadotropin-releasing hormone (GnRH) secretion, which in turn causes impairment of the gonadotropins (follicle-stimulating hormone and luteinizing hormone). FHA is a form of the defence of organism in situations where life functions are more important than reproductive function. FHA is reversible; it can be normalized after ceasing the stress situation. There are three types of FHA: weight loss related, stress-related, and exercise-related amenorrhea. The final consequences are complex hormonal changes manifested by profound hypoestrogenism. Additionally, these patients present mild hypercortisolemia, low serum insulin levels, low insulin-like growth factor 1 (IGF-1) and low total triiodothyronine. Women health in this disorder is disturbed in several aspects including the skeletal system, cardiovascular system, and mental problems. Patients manifest a decrease in bone mass density, which is related to an increase in fracture risk. Therefore, osteopenia and osteoporosis are the main long-term complications of FHA. Cardiovascular complications include endothelial dysfunction and abnormal changes in the lipid profile. FHA patients present significantly higher depression and anxiety and also sexual problems compared to healthy subjects.
Bayram, N; van Wely, M; Vandekerckhove, P; Lilford, R; van Der Veen, F
2000-01-01
In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intra-venous or subcutaneous route using a portable pump has been used successfully in patients with hypogonadotrophic hypogonadism. Assuming that the results would be similar in polycystic ovary syndrome (PCOS), pulsatile GnRH has been used to induce ovulation in patients with PCOS. But, although ovulation and pregnancy has been achieved, the use of pulsatile GnRH in PCOS patients is controversial. To assess the effectiveness of pulsatile GnRH administration in women with clomiphene-resistant polycystic ovary syndrome (PCOS), in terms of ovulation induction, pregnancy, miscarriage, multiple pregnancy and ovarian hyperstimulation syndrome (OHSS). The search strategy of the Menstrual Disorders and Subfertility review group was used to identify all relevant trials. Please see Review Group details. All relevant published RCTs were selected. Non-randomised controlled trials were eligible for inclusion if treatment consisted of GnRH administration versus another treatment to induce ovulation in subfertile women with PCOS. A computerised MEDLINE and EMBASE search was used to identify randomised and non randomised controlled trials. The reference lists of all studies found were checked for relevant articles. One RCT (Bringer 1985a) and one abstract (Coelingh 1983) were identified this way. Relevant data were extracted independently by two reviewers (NB, MW). Validity was assessed in terms of method of randomization, completeness of follow-up, presence or absence of cross-over and co-intervention. All trials were screened and analysed for predetermined quality criteria. 2X2 tables were generated for all the relevant outcomes. Odds ratios were generated using the Peto modified Mantel-Haenszel technique. Three RCTs and one non-randomised comparative trial were identified comparing four different treatments: GnRH versus HMG, GnRH following GnRHa pre-treatment versus no pre-treatment, GnRH and FSH versus FSH, and GnRH following GnRHa pre-treatment versus GnRH following oral contraceptive pre-treatment. This means that there was only one trial in any one comparison. In the first two studies, data of pre- and post-cross-over were not described separately. Therefore, these results could not be included in the MetaView analysis. The odds ratio for ovulation rate was 16 (95 % CI: 1.1-239) in the study comparing GnRH and FSH with FSH. When GnRH after GnRHa pre-treatment was compared with GnRH after oral contraceptive pre-treatment, an odds ratio of 7.5 (95 % CI: 1.2-46) was obtained. All trials were small and of too short duration to show any significance in pregnancy results. Per study only one to four pregnancies occurred. Multiple pregnancies were not seen. OHSS was seen only in the patients stimulated with HMG. The four trials describing four different comparisons with a short follow up (1 to 3 cycles) were too small to either prove or discard the value of pulsatile GnRH treatment in patients with polycystic ovary syndrome.
Genazzani, Alessandro D; Meczekalski, Blazej; Podfigurna-Stopa, Agnieszka; Santagni, Susanna; Rattighieri, Erica; Ricchieri, Federica; Chierchia, Elisa; Simoncini, Tommaso
2012-02-01
To evaluate the influence of estriol administration on the hypothalamus-pituitary function and gonadotropins secretion in patients affected by functional hypothalamic amenorrhea (FHA). Controlled clinical study. Patients with FHA in a clinical research environment. Twelve hypogonadotropic patients affected by FHA. Pulsatility study of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and a gonadotropin-releasing hormone (GnRH) test (10 μg in bolus) at baseline condition and after 8 weeks of therapy with 2 mg/day of estriol. Measurements of plasma LH, FSH, estradiol (E(2)), androstenedione (A), 17α-hydroxyprogesterone (17-OHP), cortisol, androstenedione (A), testosterone (T), thyroid-stimulating hormone (TSH), free triiodothyronine (fT(3)), free thyroxine (fT(4)), and insulin, and pulse detection. After treatment, the FHA patients showed a statistically significant increase of LH plasma levels (from 0.7 ± 0.1 mIU/mL to 3.5 ± 0.3 mIU/mL) and a statistically significant increase of LH pulse amplitude with no changes in LH pulse frequency. In addition, the LH response to the GnRH bolus was a statistically significant increase. Estriol administration induced the increase of LH plasma levels in FHA and improved GnRH-induced LH secretion. These findings suggest that estriol administration modulates the neuroendocrine control of the hypothalamus-pituitary unit and induces the recovery of LH synthesis and secretion in hypogonadotropic patients with FHA. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Koda, Ryo; Nagahori, Katsuhiro; Kitazawa, Atsushi; Imanishi, Yuji; Yoshino, Atsunori; Kawamoto, Shinya; Ueda, Yoshihiko; Takeda, Tetsuro
2016-01-01
A 77-year-old man presented with a fever, non-productive cough, and edema formation. A laboratory analysis showed an elevated creatinine level (2.5 mg/dL), a high titer of myeloperoxidase (MPO)-anti-neutrophil cytoplasmic antibody (ANCA) (99 U/mL), positive reaction for antinuclear antibody (×320), hematuria, and massive proteinuria (3.33 g/day). A renal biopsy revealed crescentic and necrotizing glomerulonephritis (GN) with membranoproliferative GN features [double contour appearance of the glomerular basement membrane, granular deposition of immunoglobulin (Ig) G, IgM, and C3 along the capillary wall, subendothelial and subepithelial deposits with mesangial interposition]. A potential relationship between MPO-ANCA associated GN and membranoproliferative GN is discussed.
Cai, Guoneng; Yu, Zhengzhong; Ren, Rongrong; Tang, Dianping
2018-03-23
A competitive-displacement reaction strategy based on target-induced dissociation of gold nanoparticle coated graphene nanosheet (AuNPs/GN) from CdS quantum dot functionalized mesoporous titanium dioxide (CdS QDs/TiO 2 ) was designed for the sensitive photoelectrochemical (PEC) aptasensing of prostate-specific antigen (PSA) through the exciton-plasmon interaction (EPI) between CdS QDs and AuNPs. To construct such an aptasensing system, capture DNA was initially conjugated covalently onto CdS QDs/TiO 2 -modified electrode, and then AuNPs/GN-labeled PSA aptamer was bound onto biofunctionalized CdS QDs/TiO 2 via hybridization chain reaction of partial bases with capture DNA. Introduction of AuNPs/GN efficiently quenched the photocurrent of CdS QDs/TiO 2 thanks to energy transfer. Upon addition of target PSA, the sandwiched aptamer between CdS QDs/TiO 2 and AuNPs/GN reacted with the analyte analyte, thus resulting in the dissociation of AuNPs/GN from the CdS QDs/TiO 2 to increase the photocurrent. Under optimum conditions, the aptasensing platform exhibited a high sensitivity for PSA detection within a dynamic linear range of 1.0 pg/mL to 8.0 ng/mL at a low limitat of detection of 0.52 pg/mL. The interparticle distance of exciton-plasmon interaction and contents of AuNPs corresponding to EPI effect in this system were also studied. Good selectivity and high reproducibility were obtained for the analysis of target PSA. Importantly, the accuracy and matrix effect of PEC aptasensor was evaluated for the determination of human serum specimens and newborn calf serum-diluted PSA standards, giving a well-matched result with the referenced PSA ELISA kit.
The GnRH analogue triptorelin confers ovarian radio-protection to adult female rats.
Camats, N; García, F; Parrilla, J J; Calaf, J; Martín-Mateo, M; Caldés, M Garcia
2009-10-02
There is a controversy regarding the effects of the analogues of the gonadotrophin-releasing hormone (GnRH) in radiotherapy. This has led us to study the possible radio-protection of the ovarian function of a GnRH agonist analogue (GnRHa), triptorelin, in adult, female rats (Rattus norvegicus sp.). The effects of the X-irradiation on the oocytes of ovarian primordial follicles, with and without GnRHa treatment, were compared, directly in the female rats (F(0)) with reproductive parameters, and in the somatic cells of the resulting foetuses (F(1)) with cytogenetical parameters. In order to do this, the ovaries and uteri from 82 females were extracted for the reproductive analysis and 236 foetuses were obtained for cytogenetical analysis. The cytogenetical study was based on the data from 22,151 metaphases analysed. The cytogenetical parameters analysed to assess the existence of chromosomal instability were the number of aberrant metaphases (2234) and the number (2854) and type of structural chromosomal aberrations, including gaps and breaks. Concerning the reproductive analysis of the ovaries and the uteri, the parameters analysed were the number of corpora lutea, implantations, implantation losses and foetuses. Triptorelin confers radio-protection of the ovaries in front of chromosomal instability, which is different, with respect to the single and fractioned dose. The cytogenetical analysis shows a general decrease in most of the parameters of the triptorelin-treated groups, with respect to their controls, and some of these differences were considered to be statistically significant. The reproductive analysis indicates that there is also radio-protection by the agonist, although minor to the cytogenetical one. Only some of the analysed parameters show a statistically significant decrease in the triptorelin-treated groups.
Tornøe, Christoffer W; Agersø, Henrik; Senderovitz, Thomas; Nielsen, Henrik A; Madsen, Henrik; Karlsson, Mats O; Jonsson, E Niclas
2007-01-01
Aims To develop a population pharmacokinetic/pharmacodynamic (PK/PD) model of the hypothalamic–pituitary–gonadal (HPG) axis describing the changes in luteinizing hormone (LH) and testosterone concentrations following treatment with the gonadotropin-releasing hormone (GnRH) agonist triptorelin and the GnRH receptor blocker degarelix. Methods Fifty-eight healthy subjects received single subcutaneous or intramuscular injections of 3.75 mg of triptorelin and 170 prostate cancer patients received multiple subcutaneous doses of degarelix of between 120 and 320 mg. All subjects were pooled for the population PK/PD data analysis. A systematic population PK/PD model-building framework using stochastic differential equations was applied to the data to identify nonlinear dynamic dependencies and to deconvolve the functional feedback interactions of the HPG axis. Results In our final PK/PD model of the HPG axis, the half-life of LH was estimated to be 1.3 h and that of testosterone 7.69 h, which corresponds well with literature values. The estimated potency of LH with respect to testosterone secretion was 5.18 IU l−1, with a maximal stimulation of 77.5 times basal testosterone production. The estimated maximal triptorelin stimulation of the basal LH pool release was 1330 times above basal concentrations, with a potency of 0.047 ng ml−1. The LH pool release was decreased by a maximum of 94.2% by degarelix with an estimated potency of 1.49 ng ml−1. Conclusions Our model of the HPG axis was able to account for the different dynamic responses observed after administration of both GnRH agonists and GnRH receptor blockers, suggesting that the model adequately characterizes the underlying physiology of the endocrine system. PMID:17096678
Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.
Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M
2013-11-06
The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.
Environment, human reproduction, menopause, and andropause.
Vermeulen, A
1993-07-01
As the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator is an integrator of hormonal, metabolic, and neural signals, it is not surprising that the function of the hypothalamogonadal axis is subject to the influence of a large array of environmental factors. Before puberty, the central nervous system (CNS) restrains the GnRH pulse generator. Undernutrition, low socioeconomic status, stress, and emotional deprivation, all delay puberty. During reproductive life, among peripheral factors that effect the reproductive system, stress plays an important role. Stress, via the release of corticotropin-releasing factor (CRF), eventually triggered by interleukin 1, inhibits GnRH release, resulting in hypogonadism. Effects of CRF are probably mediated by the opioid system. Food restriction and underweight (anorexia nervosa), obesity, smoking, and alcohol all have negative effects on the GnRH pulse generator and gonadal function. Age and diet are important determinants of fertility in both men and women. The age-associated decrease in fertility in women has as a major determinant chromosomal abnormalities of the oocyte, with uterine factors playing a subsidiary role. Age at menopause, determined by ovarian oocyte depletion, is influenced by occupation, age at menarche, parity, age at last pregnancy, altitude, smoking, and use of oral contraceptives. Smoking, however, appears to be the major determinant. Premature menopause is most frequently attributable to mosaicism for Turner Syndrome, mumps ovaritis, and, above all, total hysterectomy, which has a prevalence of about 12-15% in women 50 years old. Premature ovarian failure with presence of immature follicles is most frequently caused by autoimmune diseases or is the consequence of irradiation or chemotherapy with alkylating cytostatics. Plasma estrogens have a physiological role in the prevention of osteoporosis. Obese women have osteoporosis less frequently than women who are not overweight. Early menopause, suppression of adrenal function (corticoids), and thyroid hormone treatment all increase the frequency of osteoporosis. Aging in men is accompanied by decreased Leydig cell and Sertoli cell function, which has a predominantly primary testicular origin, although changes also occur at the hypothalamopituitary level. Plasma testosterone levels, sperm production, and sperm quality decrease, but fertility, although declining, is preserved until senescence. Stress and disease states accelerate the decline on Leydig cell function. Many occupational noxious agents have a negative effect on fertility.(ABSTRACT TRUNCATED AT 400 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo
Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects onmore » the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis. - Highlights: • TBT disrupted proper functioning of the HPG axis in female rats. • TBT leads to obesity and abnormal kisspeptin/leptin signaling in female rats. • TBT impairs GnRH neurons function, estrogen negative feedback role and fertility in female rats. • TBT leads to hyperleptinemia that may be associated at least in part with abnormal HPG function.« less
Epidemiology of biopsy-proven glomerulonephritis in Queensland adults.
Jegatheesan, Dev; Nath, Karthik; Reyaldeen, Reza; Sivasuthan, Goutham; John, George T; Francis, Leo; Rajmokan, Mohana; Ranganathan, Dwarakanathan
2016-01-01
There is a paucity of data pertaining to the incidence of biopsy-proven glomerulonephritis (GN) in Australia. This retrospective study aims to review the data from all adult native renal biopsies performed in the state of Queensland from 2002 to 2011--comparing results with centres from across the world. Pathology reports of 3697 adult native kidney biopsies were reviewed, of which 2048 had GN diagnoses. Age, gender, clinical indication and histopathology findings were compared. The average age at biopsy was 48 ± 17 years. Male preponderance was noted overall (∼60%), with lupus nephritis being the only individual GN with female predilection. The average rate of biopsy was 12.04 per hundred thousand people per year (php/yr). Nephrotic and nephritic syndromes comprised approximately 75% of all clinical indications that lead to GN diagnoses. IgA nephropathy (1.41 php/yr) was the most common primary GN followed by focal segmental glomerulosclerosis (1.02 php/yr) and crescentic GN (0.73 php/yr). Diabetic nephropathy (0.84 php/yr), lupus nephritis (0.69 php/yr) and amyloidosis (0.19 php/yr) were the most commonly identified secondary GN. IgA nephropathy is the predominant primary GN in Queensland, and nephrotic syndrome the most common indication for a renal biopsy. While crescentic GN incidence has significantly increased with time, focal segmental glomerulosclerosis incidence has not shown any trend. Incidence of GN overall appears to increase with age. The annual rate of biopsy in this study appears lower than previously published in an Australian population. © 2015 Asian Pacific Society of Nephrology.
Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN.
Kumar, Santhosh V R; Kulkarni, Onkar P; Mulay, Shrikant R; Darisipudi, Murthy N; Romoli, Simone; Thomasova, Dana; Scherbaum, Christina R; Hohenstein, Bernd; Hugo, Christian; Müller, Susanna; Liapis, Helen; Anders, Hans-Joachim
2015-10-01
Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN. Copyright © 2015 by the American Society of Nephrology.
Youssef, M.A.F.; Abdelmoty, Hatem I.; Ahmed, Mohamed A.S.; Elmohamady, Maged
2015-01-01
Final oocyte maturation in GnRH antagonist co-treated IVF/ICSI cycles can be triggered with HCG or a GnRH agonist. We conducted a systematic review and meta-analysis of randomized controlled trials to evaluate the efficacy and safety of the final oocyte maturation trigger in GnRH antagonist co-treated cycles. Outcome measures were ongoing pregnancy rate (OPR) and ovarian hyperstimulation syndrome (OHSS) incidence. Searches: were conducted in MEDLINE, EMBASE, Science Direct, Cochrane Library, and databases of abstracts. There was a statistically significant difference against the GnRH agonist for OPR in fresh autologous cycles (n = 1024) with an odd ratio (OR) of 0.69 (95% CI: 0.52–0.93). In oocyte-donor cycles (n = 342) there was no evidence of a difference (OR: 0.91; 95% CI: 0.59–1.40). There was a statistically significant difference in favour of GnRH agonist regarding the incidence of OHSS in fresh autologous cycles (OR: 0.06; 95% CI: 0.01–0.33) and donor cycles respectively (OR: 0.06; 95% CI: 0.01–0.27). In conclusion GnRH agonist trigger for final oocyte maturation trigger in GnRH antagonist cycles is safer but less efficient than HCG. PMID:26257931
The luteal phase after GnRH-agonist triggering of ovulation: present and future perspectives.
Humaidan, Peter; Papanikolaou, E G; Kyrou, D; Alsbjerg, B; Polyzos, N P; Devroey, P; Fatemi, Human M
2012-02-01
In stimulated IVF/intracytoplasmic sperm injection cycles, the luteal phase is disrupted, necessitating luteal-phase supplementation. The most plausible reason behind this is the ovarian multifollicular development obtained after ovarian stimulation, resulting in supraphysiological steroid concentrations and consecutive inhibition of LH secretion by the pituitary via negative feedback at the level of the hypothalamic-pituitary axis. With the introduction of the gonadotrophin-releasing hormone-(GnRH) antagonist, an alternative to human chorionic gonadotrophin triggering of final oocyte maturation is the use of GnRH agonist (GnRHa) which reduces or even prevents ovarian hyperstimulation syndrome (OHSS). Interestingly, the current regimens of luteal support after HCG triggering are not sufficient to secure the early implanting embryo after GnRHa triggering. This review discusses the luteal-phase insufficiency seen after GnRHa triggering and the various trials that have been performed to assess the most optimal luteal support in relation to GnRHa triggering. Although more research is needed, GnRHa triggering is now an alternative to HCG triggering, combining a significant reduction in OHSS with high ongoing pregnancy rates. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Monaco, Davide; Fatnassi, Meriem; Padalino, Barbara; Aubé, Lydiane; Khorchani, Touhami; Hammadi, Mohamed; Lacalandra, Giovanni Michele
2015-10-01
GnRH treatment has been suggested to increase testosterone levels temporarily and to stimulate libido in stallions, but its use has not fully ascertained in dromedary camels. The aim of this work was to study the effects of administering 100 μg of GnRH on testosterone profile, libido and semen parameters in dromedary camels. The same bulls were used as self-controls and experimental group. Blood samples were collected every 20 min (T0-T12) for 4h, and semen collections were performed over a 2-hour period after T12. GnRH was administered immediately after T0. In GnRH-treated bulls, testosterone levels showed an upward trend, peaking after 140 min, and then slowly decreasing. GnRH administration also led to a decrease in mating time and an increase in spermatozoa concentration. Overall, it seems that administration of 100 μg GnRH might increase testosterone levels temporarily and enhance camel reproduction performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hill, S L; Grieger, D M; Olson, K C; Jaeger, J R; Dahlen, C R; Crosswhite, M R; Pereira, N Negrin; Underdahl, S R; Neville, B W; Ahola, J; Fischer, M C; Seidel, G E; Stevenson, J S
2016-09-01
We hypothesized that GnRH would increase pregnancy risk (PR) in a split-time AI program for cows in which estrus was not detected. A total of 1,236 suckled beef cows at 12 locations in 3 states (Colorado, Kansas, and North Dakota) were enrolled. Before applying the fixed-time AI program, BCS was assessed. Cows were treated on d -7 with a progesterone insert concurrent with 100 μg GnRH and on d 0 with 25 mg PGF plus removal of the insert. Estrus-detection patches were affixed to cows at insert removal. Estrus was defined to have occurred when an estrus-detection patch was >50% colored (activated). Cows in estrus by 65 h ( = 758; 61.3% of all cows) were randomly allocated to 2 treatments: 1) 100 μg GnRH and early + GnRH (E+G; = 373) or 2) AI only at 65 h (early - no GnRH [E-G]; = 385). The remaining cows were randomly allocated to 2 treatments: 1) 5(L+G; = 252) or 2) AI only at 84 h (late no GnRH [L-G]; = 226). Pregnancy was determined 35 d after AI via transrectal ultrasound. Pregnancy risk did not differ ( = 0.68) between E+G and E-G cows (61.9 vs. 60.4%, respectively). Conversely, for cows inseminated at 84 h, PR was greater ( = 0.01) in cows that received GnRH (L+G) compared with their herd mates not receiving GnRH (L- G; 41.7 vs. 30.8%, respectively). Of those cows not detected in estrus by 65 h, 42.1% were detected by 84 h, for a total expression of estrus by all cows of 77.6%. Administration of GnRH increased ( < 0.01) PR in cows not detected in estrus by 84 h (+GnRH = 33.4% [ = 146] vs. no GnRH = 15.0% [ = 128]) but had no effect in cows expressing estrus by 84 h (+GnRH = 65.3% [ = 103] vs. no GnRH = 61.7% [ = 97]). Neither estrus expression by 65 or 84 h nor PR was influenced by BCS, parity, or days postpartum at AI. Cows had greater PR when they had been detected in estrus before AI, and PR was improved by administration of GnRH at 65 h after insert removal in cows that were not detected in estrus and inseminated at 84 h.
Hershey, John; Mytinger, Andrea; Foster, Douglas L.; Padmanabhan, Vasantha
2011-01-01
The GnRH system represents a useful model of long-term neural plasticity. An unexplored facet of this plasticity relates to the ontogeny of GnRH neural afferents during critical periods when the hypothalamic-pituitary-gonadal axis is highly susceptible to perturbation by sex steroids. Sheep treated with testosterone (T) in utero exhibit profound reproductive neuroendocrine dysfunctions during their lifespan. The current study tested the hypothesis that these changes are associated with alterations in the normal ontogeny of GnRH afferents and glial associations. Adult pregnant sheep (n = 50) were treated with vehicle [control (CONT)] or T daily from gestational day (GD)30 to GD90. CONT and T fetuses (n = 4–6/treatment per age group) were removed by cesarean section on GD90 and GD140 and the brains frozen at −80°C. Brains were also collected from CONT and T females at 20–23 wk (prepubertal), 10 months (normal onset of puberty and oligo-anovulation), and 21 months (oligo-anovulation in T females). Tissue was analyzed for GnRH immunoreactivity (ir), total GnRH afferents (Synapsin-I ir), glutamate [vesicular glutamate transporter-2 (VGLUT2)-ir], and γ-aminobutyric acid [GABA, vesicular GABA transporter (VGAT)-ir] afferents and glial associations (glial fibrillary acidic protein-ir) with GnRH neurons using optical sectioning techniques. The results revealed that: 1) GnRH soma size was slightly reduced by T, 2) the total (Synapsin-I) GnRH afferents onto both somas and dendrites increased significantly with age and was reduced by T, 3) numbers of both VGAT and VGLUT inputs increased significantly with age and were also reduced by T, and 4) glial associations with GnRH neurons were reduced (<10%) by T. Together, these findings reveal a previously unknown developmental plasticity in the GnRH system of the sheep. The altered developmental trajectory of GnRH afferents after T reinforces the notion that prenatal programming plays an important role in the normal development of the reproductive neuroendocrine axis. PMID:21933866
Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay
Sorsa-Leslie, Tarja; Mason, Helen D; Harris, William J; Fowler, Paul A
2005-01-01
Background We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF). Methods A synthetic single-chain antibody (Tomlinson J) phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs) forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4–7). The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Results Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. Conclusion This study demonstrates that the combination of bioassay and phage display technologies is a powerful tool in the study of uncharacterised proteins that defy conventional approaches. In addition, we conclude that these data support suggestions that GnSAF may be structurally related to serum albumin or very tightly bound to serum albumin. PMID:16185358
Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay.
Sorsa-Leslie, Tarja; Mason, Helen D; Harris, William J; Fowler, Paul A
2005-09-26
We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF). A synthetic single-chain antibody (Tomlinson J) phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs) forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4-7). The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. This study demonstrates that the combination of bioassay and phage display technologies is a powerful tool in the study of uncharacterised proteins that defy conventional approaches. In addition, we conclude that these data support suggestions that GnSAF may be structurally related to serum albumin or very tightly bound to serum albumin.
Toftager, Mette; Sylvest, Randi; Schmidt, Lone; Bogstad, Jeanette; Løssl, Kristine; Prætorius, Lisbeth; Zedeler, Anne; Bryndorf, Thue; Pinborg, Anja
2018-01-01
To compare self-reported quality of life, psychosocial well-being, and physical well-being during assisted reproductive technology (ART) treatment in 1,023 women allocated to either a short GnRH antagonist or long GnRH agonist protocol. Secondary outcome of a prospective phase 4, open-label, randomized controlled trial. Four times during treatment a questionnaire on self-reported physical well-being was completed. Further, a questionnaire on self-reported quality of life and psychosocial well-being was completed at the day of hCG testing. Fertility clinics at university hospitals. Women referred for their first ART treatment were randomized in a 1:1 ratio and started standardized ART protocols. Gonadotropin-releasing hormone analogue; 528 women allocated to a short GnRH antagonist protocol and 495 women allocated to a long GnRH agonist protocol. Self-reported quality of life, psychosocial well-being, and physical well-being based on questionnaires developed for women receiving ART treatment. Baseline characteristics were similar, and response rates were 79.4% and 74.3% in the GnRH antagonist and GnRH agonist groups, respectively. Self-reported quality of life during ART treatment was rated similar and slightly below normal in both groups. However, women in the GnRH antagonist group felt less emotional (adjusted odds ratio [AOR] 0.69), less limited in their everyday life (AOR 0.74), experienced less unexpected crying (AOR 0.71), and rated quality of sleep better (AOR 1.55). Further, women receiving GnRH agonist treatment felt worse physically. Women in a short GnRH antagonist protocol rated psychosocial and physical well-being during first ART treatment better than did women in a long GnRH agonist protocol. However, the one item on self-reported general quality of life was rated similarly. NCT00756028. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Bashour, Nicholas Michael
2012-01-01
GnRH neurons are essential for reproduction, being an integral component of the hypothalamic-pituitary-gonadal axis. Progesterone (P4), a steroid hormone, modulates reproductive behavior and is associated with rapid changes in GnRH secretion. However, a direct action of P4 on GnRH neurons has not been previously described. Receptors in the progestin/adipoQ receptor family (PAQR), as well as progesterone receptor membrane component 1 (PgRMC1) and its partner serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1) mRNA binding protein 1 (SERBP1), have been shown to mediate rapid progestin actions in various tissues, including the brain. This study shows that PgRMC1 and SERBP1, but not PAQR, are expressed in prenatal GnRH neurons. Expression of PgRMC1 and SERBP1 was verified in adult mouse GnRH neurons. To investigate the effect of P4 on GnRH neuronal activity, calcium imaging was used on primary GnRH neurons maintained in explants. Application of P4 significantly decreased the activity of GnRH neurons, independent of secretion of gamma-aminobutyric acidergic and glutamatergic input, suggesting a direct action of P4 on GnRH neurons. Inhibition was not blocked by RU486, an antagonist of the classic nuclear P4 receptor. Inhibition was also maintained after uncoupling of the inhibitory regulative G protein (Gi/o), the signal transduction pathway used by PAQR. However, AG-205, a PgRMC1 ligand and inhibitor, blocked the rapid P4-mediated inhibition, and inhibition of protein kinase G, thought to be activated downstream of PgRMC1, also blocked the inhibitory activity of P4. These data show for the first time that P4 can act directly on GnRH neurons through PgRMC1 to inhibit neuronal activity. PMID:22822163
Franco, M; Thompson, P M; Brad, A M; Hansen, P J
2006-09-01
One strategy for improving fertility in cattle is mid-cycle administration of GnRH to increase progesterone secretion and delay luteolysis. This strategy might be especially useful during hot weather because heat stress increases uterine prostaglandin release and reduces development of the elongating embryo. A series of experiments was conducted to test the efficacy of GnRH for increasing fertility. There was no effect of administration of 100 microg GnRH at Day 11 after anticipated ovulation on pregnancy rates in virgin heifers subjected to timed artificial insemination (TAI) during the summer. Similarly, there was no beneficial effect of administration of GnRH at Day 11 after anticipated ovulation on pregnancy rates of lactating cows subjected to TAI in summer and winter. Three experiments tested effects of injection of GnRH at Days 14 or 15 after anticipated ovulation on pregnancy rates of lactating cows. The first experiment used 477 lactating cows subjected to TAI. Cows receiving GnRH at Day 14 had higher pregnancy rates in both summer and winter than cows receiving vehicle (20.3 versus 12.7%, P<0.02). When this experiment was repeated during summer with 137 cows, there was a negative effect of GnRH treatment at Day 14 on pregnancy rate. In the third experiment, lactating cows during summer were inseminated at detected estrus and cows were assigned to treatment with either GnRH or vehicle at Days 14 or 15 after insemination. Pregnancy rates were 25.6% (32/125) for cows receiving vehicle, 20.7% (19/92) for cows receiving GnRH at Day 14, and 20.3% (16/79) for cows receiving GnRH at Day 15. In conclusion, GnRH administration at Days 11-15 after anticipated ovulation or estrus did not consistently increase pregnancy rates in either cool or warm seasons.
Ahmad, Basir; Ahmed, Md Zulfazal; Haq, Soghra Khatun; Khan, Rizwan Hasan
2005-06-15
The effect of guanidine hydrochloride (GnHCl) on the global stability of human serum albumin (HSA) has been studied by fluorescence and circular dichroism spectroscopic measurements. The differential stability of native conformation of three HSA domains were explored by using domain-specific ligands, hemin (domain I), chloroform (domain II), bilirubin (at domain I/domain II interface) and diazepam (domain III). GnHCl induced unfolding transition curves as monitored by probes for secondary and tertiary structures were cooperative but noncoincidental. A strong ANS binding to the protein was observed around 1.8 M GnHCl, suggesting existence of intermediate states in the unfolding pathway of HSA. A gradual decrease (in the GnHCl concentration range 0.0-1.8 M) in the binding of diazepam indicates that domain III is the most labile to GnHCl denaturation. A significant increase in the binding of bilirubin up to 1.4 M GnHCl and decrease thereafter leading to complete abolishment of bilirubin binding at around 2.0 M GnHCl suggest favorable rearrangement and separation of domains I and II at 1.4 and 2.0 M GnHCl concentration, respectively. Above 1.6 M GnHCl, decrease of the binding of hemin, a ligand for domain I, chloroform, which binds in domain II and lone tryptophanyl fluorescence (Trp-214 located in domain II) indicate that at higher concentration of GnHCl domains I and II start unfolding simultaneously but the stability of domain I (7.4 Kcal/mol) is much more than domain II (4.3 Kcal/mol). A pictorial model for the unfolding of HSA domains, consistent with all these results, has been formulated, suggesting that domain III is the most labile followed by domain II while domain I is the most stable. A molten globule like state of domain III around 1.8 M GnHCl has also been identified and characterized.
Samoylov, Alexandre; Cochran, Anna; Schemera, Bettina; Kutzler, Michelle; Donovan, Caitlin; Petrenko, Valery; Bartol, Frank; Samoylova, Tatiana
2015-12-20
Phage display is based on genetic engineering of phage coat proteins resulting in fusion peptides displayed on the surface of phage particles. The technology is widely used for generation of phages with novel characteristics for numerous applications in biomedicine and far beyond. The focus of this study was on development of phage-peptide constructs that stimulate production of antibodies against gonadotropin releasing hormone (GnRH). Phage-peptide constructs that elicit production of neutralizing GnRH antibodies can be used for anti-fertility and anti-cancer applications. Phage-GnRH constructs were generated via selection from a phage display library using several types of GnRH antibodies as selection targets. Such phage constructs were characterized for sequence similarities to GnRH peptide and frequency of their occurrence in the selection rounds. Five of the constructs with suitable characteristics were tested in mice as a single dose 5×10(11) virions (vir) vaccine and were found to be able to stimulate production of GnRH-specific antibodies, but not to suppress testosterone (indirect indicator of GnRH antibody neutralizing properties). Next, one of the constructs was tested at a higher dose of 2×10(12) vir per mouse in combination with a poly(lactide-co-glycolide) (PLGA)-based adjuvant. This resulted in multifold increase in GnRH antibody production and significant reduction of serum testosterone, indicating that antibodies produced in response to the phage-GnRH immunization possess neutralizing properties. To achieve optimal immune responses for desired applications, phage-GnRH constructs can be modified with respect to flanking sequences of GnRH-like peptides displayed on phage. Anticipated therapeutic effects also might be attained using optimized phage doses, a combination of several constructs in a single treatment, or application of adjuvants and advanced phage delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Haeusler, Gabrielle M; Mechinaud, Francoise; Daley, Andrew J; Starr, Mike; Shann, Frank; Connell, Thomas G; Bryant, Penelope A; Donath, Susan; Curtis, Nigel
2013-07-01
Infection with antibiotic-resistant (AR) Gram-negative (GN) bacteria is associated with increased morbidity and mortality. The aim of this study was to determine risk factors and outcomes associated with GN bacteremia with acquired resistance to antibiotics used in the empiric treatment of febrile neutropenia in pediatric oncology patients at our institution. All episodes of GN bacteremia in oncology patients at the Royal Children's Hospital Melbourne, from 2003 to 2010 were retrospectively reviewed. Information regarding age, diagnosis, phase of treatment, inpatient status, previous AR GN infection, treatment with inotropes or ventilatory support, admission to intensive care unit, and hospital and intensive care unit length of stay were obtained from electronic records. A total of 280 episodes of GN bacteremia in 210 patients were identified. Of these, 42 episodes in 35 patients were caused by an AR GN organism. Factors independently associated with AR GN bacteremia were high-intensity chemotherapy (odds ratio 3.7, 95% confidence interval: 1.2-11.4), hospital-acquired bacteremia (odds ratio 4.3, 95% confidence interval: 2.0-9.6) and isolation of AR GN bacteria from any site within the preceding 12 months (odds ratio 9.9, 95% confidence interval: 3.8-25.5). Episodes of AR GN bacteremia were associated with longer median hospital length of stay (23.5 days versus 14.0 days; P = 0.0007), longer median intensive care unit length of stay (3.8 days versus 1.6 days; P = 0.02) and a higher rate of invasive ventilation (15% versus 5.2%; P = 0.03). No significant difference in infection-related or all-cause mortality between the 2 groups was identified. In pediatric oncology patients, AR GN bacteremia is associated with an increased rate of adverse outcomes and is more likely in patients who have received high-intensity chemotherapy, have been in hospital beyond 48 hours and who have had previous AR GN infection or colonization.
Chung, W C J; Matthews, T A; Tata, B K; Tsai, P-S
2010-08-01
Gonadotrophin-releasing hormone (GnRH) neurones control the onset and maintenance of fertility. Aberrant development of the GnRH system underlies infertility in Kallmann syndrome [KS; idiopathic hypogonadotropic hypogonadism (IHH) and anosmia]. Some KS patients harbour mutations in the fibroblast growth factor receptor 1 (Fgfr1) and Fgf8 genes. The biological significance of these two genes in GnRH neuronal development was corroborated by the observation that GnRH neurones were severely reduced in newborn transgenic mice deficient in either gene. In the present study, we hypothesised that the compound deficiency of Fgf8 and its cognate receptors, Fgfr1 and Fgfr3, may lead to more deleterious effects on the GnRH system, thereby resulting in a more severe reproductive phenotype in patients harbouring these mutations. This hypothesis was tested by counting the number of GnRH neurones in adult transgenic mice with digenic heterozygous mutations in Fgfr1/Fgf8, Fgfr3/Fgf8 or Fgfr1/Fgfr3. Monogenic heterozygous mutations in Fgfr1, Fgf8 or Fgfr3 caused a 30-50% decrease in the total number of GnRH neurones. Interestingly, mice with digenic mutations in Fgfr1/Fgf8 showed a greater decrease in GnRH neurones compared to mice with a heterozygous defect in the Fgfr1 or Fgf8 alone. This compounding effect was not detected in mice with digenic heterozygous mutations in Fgfr3/Fgf8 or Fgfr1/Fgfr3. These results support the hypothesis that IHH/KS patients with digenic mutations in Fgfr1/Fgf8 may have a further reduction in the GnRH neuronal population compared to patients harbouring monogenic haploid mutations in Fgfr1 or Fgf8. Because only Fgfr1/Fgf8 compound deficiency leads to greater GnRH system defect, this also suggests that these fibroblast growth factor signalling components interact in a highly specific fashion to support GnRH neuronal development.
Dulka, Eden A; Moenter, Suzanne M
2017-11-01
Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype. Copyright © 2017 Endocrine Society.
Phumsatitpong, Chayarndorn; Moenter, Suzanne M
2018-01-01
Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons. Copyright © 2018 Endocrine Society.
Liu, Xinhuai; Porteous, Robert; Herbison, Allan E
2017-01-01
Inputs from GABAergic and glutamatergic neurons are suspected to play an important role in regulating the activity of the gonadotropin-releasing hormone (GnRH) neurons. The GnRH neurons exhibit marked plasticity to control the ovarian cycle with circulating estradiol concentrations having profound "feedback" effects on their activity. This includes "negative feedback" responsible for suppressing GnRH neuron activity and "positive feedback" that occurs at mid-cycle to activate the GnRH neurons to generate the preovulatory luteinizing hormone surge. In the present study, we employed brain slice electrophysiology to question whether synaptic ionotropic GABA and glutamate receptor signaling at the GnRH neuron changed at times of negative and positive feedback. We used a well characterized estradiol (E)-treated ovariectomized (OVX) mouse model to replicate negative and positive feedback. Miniature and spontaneous postsynaptic currents (mPSCs and sPSCs) attributable to GABA A and glutamatergic receptor signaling were recorded from GnRH neurons obtained from intact diestrous, OVX, OVX + E (negative feedback), and OVX + E+E (positive feedback) female mice. Approximately 90% of GnRH neurons exhibited spontaneous GABA A -mPSCs in all groups but no significant differences in the frequency or kinetics of mPSCs were found at the times of negative or positive feedback. Approximately 50% of GnRH neurons exhibited spontaneous glutamate mPSCs but again no differences were detected. The same was true for spontaneous PSCs in all cases. These observations indicate that the kinetics of ionotropic GABA and glutamate receptor synaptic transmission to GnRH neurons remain stable across the different estrogen feedback states.
Can postoperative GnRH agonist treatment prevent endometriosis recurrence? A meta-analysis.
Zheng, Qiaomei; Mao, Hongluan; Xu, Ying; Zhao, Jing; Wei, Xuan; Liu, Peishu
2016-07-01
To investigate whether postoperative GnRH agonist (GnRH-a) treatment can prevent endometriosis recurrence. This meta-analysis searched PubMed, Embase and Cochrane Library for relevant studies published online before June 2015. Seven randomized controlled trials including 328 patients with postoperative GnRH-a treatment and 394 patients in control group were included in the meta-analysis. In the meta-analysis, the recurrence rate of GnRH-a group compared with control group was evaluated with odds ratio (OR) and its 95 % confidence interval (CI). Heterogeneity, small study effect and publication bias were, respectively, assessed using Higgins I (2), sensitivity analysis and funnel plot. Postoperative GnRH-a treatment for endometriosis (pooled OR = 0.71; 95 % CI 0.52-0.96) was superior to expectant or placebo treatment in prevention of the recurrence. The recurrence rate decreased significantly in patients who received 6 months GnRH-a treatment (pooled OR = 0.59, 95 % CI 0.38-0.90), whereas no significant difference of recurrence rate existed between patients with 3 months post-surgical GnRH-a therapy and the control group (pooled OR = 0.87, 95 % CI 0.56-1.34). No significant heterogeneity and small study effect were found in the meta-analysis. However, publication bias did existed in the present meta-analysis. Longer-term (6 months) postoperative administration of GnRH-a can decrease the recurrence risk of endometriosis, whereas 3 months duration of GnRH-a therapy makes no significant difference in preventing the recurrence of endometriosis. Therefore, instead of a 3 month therapy, the duration of the postoperative administration should be longer enough (6 months) to prevent the recurrence of endometriosis.
Investigating the effect of graphene nanoplatelets on the thermal conductivity of KAl(SO4)2 · 12H2O
NASA Astrophysics Data System (ADS)
Sun, Mingjie; Liu, Liqiang; Ma, Fukun; Jing, Min; Cui, Kaixuan; Lin, Liangkan
2018-04-01
This article, taking phase change material (PCM) aluminum potassium sulfate dodecahydrate (KAl(SO4)2 · 12H2O) as the object of study, researches the effects of graphene nanoplatelets (GN) on the thermal conductivity of KAl(SO4)2 · 12H2O. Correlated analysis shows that KAl(SO4)2 · 12H2O can be combined with GN to form KAl(SO4)2 · 12H2O/GN composites. The thermal conductivity of KAl(SO4)2 · 12H2O/GN composites improves significantly with the increase of GN contents. When the content of GN up to 2.5 wt%, the thermal conductivity of the composites is 1.311 W/m · k, increasing by 120% compared with the pure KAl(SO4)2 · 12H2O, the thermal storage time reduces by 31.9%. Meanwhile, GN can improve the undercooling of KAl(SO4)2 · 12H2O. When the content of GN is 2.5 wt%, the minimum undercooling is 31.1 °C, reducing by 28.5% compared with the pure KAl(SO4)2 · 12H2O. X-ray diffractometry (XRD) analysis shows that the crystal structure of KAl(SO4)2 · 12H2O is basically unchanged with the composite of GN after circulation. In general, GN have a great effect on improving the thermal conductivity of KAl(SO4)2 · 12H2O and have a good application prospect in the field of phase change thermal storage.
Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C; Munson, P J; Rodbard, D
1979-12-01
Studies of pituitary plasma membrane gonadotropin-releasing hormone (GnRH) receptors using [125I]-iodo-GnRH suffer major disadvantages. Only a small (less than 25%) proportion of specific tracer binding is to high affinity sites, with more than 70% bound to low affinity sites (Ka = 1 x 10(6) M-1). [125I]Iodo-GnRH is also inactivated during incubation with pituitary plasma membrane preparations. Two superactive analongs of GnRH, substituted in positions 6 and 10, were used as the labeled ligand to overcome these problems. Both analogs bound to the same high affinity sites as GnRH on bovine pituitary plasma membranes, though the affinity of the analogs was higher than that of the natural decapeptide (Ka = 2.0 x 10(9), 6.0 x 10(9), and 3.0 x 10(8) M-1 for [D-Ser(TBu)6]des-Gly10-GnRH ethylamide, [D-Ala6]des-Gly10-GnRH ethylamide, and GnRH, respectively. The labeled analogs bound to a single class of high affinity sites with less than 15% of the specific binding being to low affinity sites (Ka approximately equal to 1 x 10(6) M-1). The labeled analogs were not inactivated during incubation with the pituitary membrane preparations. Using the analogs as tracer, a single class of high affinity sites (K1 = 4.0 x 10(9) M-1) was also demonstrated on crude 10,800 x g rat pituitary membrane preparations. Use of these analogs as both the labeled and unlabeled ligand offers substantial advantages over GnRH for investigation of GnRH receptors, allowing accurate determination of changes in their numbers and affinities under various physiological conditions.
Cavagna, Mario; Maldonado, Luiz Guilherme Louzada; de Souza Bonetti, Tatiana Carvalho; de Almeida Ferreira Braga, Daniela Paes; Iaconelli, Assumpto; Borges, Edson
2010-06-01
To compare the outcomes of protocols for ovarian stimulation with recombinant hCG microdose, with GnRH agonists and antagonists for pituitary suppression. Prospective nonrandomized clinical trial. A private assisted reproduction center. We studied 182 patients undergoing intracytoplasmic sperm injection (ICSI) cycles, allocated into two groups: GnRH agonist group, in which patients received a GnRH agonist (n = 73), and a GnRH antagonist group, in which patients were administered a GnRH antagonist for pituitary suppression (n = 109). Pituitary suppression with GnRH agonist or GnRH antagonist. Ovarian stimulation carried out with recombinant FSH and supplemented with recombinant hCG microdose. Total dose of recombinant FSH and recombinant hCG administered; E(2) concentrations and endometrial width on the day of hCG trigger; number of follicles aspirated, oocytes and mature oocytes retrieved; fertilization, pregnancy (PR), implantation, and miscarriage rates. The total dose of recombinant FSH and recombinant hCG administered were similar between groups, as were the E(2) concentrations and endometrial width. The number of follicles aspirated, oocytes, and metaphase II oocytes collected were also comparable. There were no statistically significant differences in fertilization, PR, implantation, and miscarriage rates in the GnRH agonist and GnRH antagonist groups. When using recombinant hCG microdose supplementation for controlled ovarian stimulation (COS), there are no differences in laboratory or clinical outcomes with the use of either GnRH antagonist or agonist for pituitary suppression. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Schubert, S; Bauer, A; Molin, S; Skudlik, C; Geier, J
2017-03-01
Geriatric nurses (GN) have a high risk of occupational contact dermatitis (OCD), with chronic irritant contact dermatitis predominating. However, allergic contact dermatitis is an important issue as well. Little is known whether the relevant occupational allergen spectrum reported in the 1990s, including fragrances, preservatives, rubber chemicals and ingredients of surface disinfectants to be the most common sensitizers in GN, is still valid. To monitor the current allergen spectrum in GN with OCD and verify the validity of the patch test recommendations (baseline-, preservative-, ointment base-, rubber-, disinfectant, series and fragrances) in GN with suspected OCD given by the German Contact Dermatitis Research Group (DKG). Retrospective analysis of IVDK data (2005-2014) of 743 female GN with OCD, in comparison to 695 GN without OCD. GN with OCD reacted significantly more frequently to both fragrance mixes, hydroxyisohexyl 3-cyclohexene carboxaldehyde (HICC), thiuram mix, zinc diethyldithiocarbamate and mercaptobenzothiazole than GN without OCD. Reactions to MDBGN, methylchloroisothiazolinone/methylisothiazolinone and oil of turpentine occurred substantially, but not significantly more frequently among GN with OCD. The latter may be due to former use of a special alcoholic liniment in geriatric care. Among material from the patients' workplaces, tetrazepam was a frequent allergen, due to dust exposure from pill crushing. Furthermore, occupationally used protective gloves, body care products as well as surface disinfectants were often tested positively. The general allergen spectrum in GN with OCD is unchanged, so the DKG patch test recommendations are still valid. Prevention of occupational sensitization should focus on fragrance-free hygiene and body care products, usage of accelerator-free protective gloves and avoidance of drug dust exposure. © 2016 European Academy of Dermatology and Venereology.
Toni, Mattia; Spisni, Enzo; Griffoni, Cristiana; Santi, Spartaco; Riccio, Massimo; Lenaz, Patrizia; Tomasi, Vittorio
2006-01-01
It has been reported that cellular prion protein (PrPc) is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1) participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST)-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11), by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2) was triggered, suggesting that following translocations from rafts to caveolae or caveolaelike domains PrPc could interact with Cav-1 and induce signal transduction events. PMID:17489019
Waggener, W L; Carroll, E J
1998-02-01
Injections of synthetic human gonadotropin releasing hormone (GnRH) into the dorsal pelvic area were used in an attempt to stimulate sperm release in isolated males of eight anuran species including Xenopus laevis, Rana pipiens and Lepidobatrachus laevis. Sperm were obtained within 1-5 h post injection either by mechanical stimulation or by cloacal lavage. Sperm suspensions varied from 8 microL to 7 mL and the cell densities ranged from 4 x 10(5) to 4 x 10(7) sperm/mL. The sperm obtained from seven species using GnRH-induced release were viable based on light microscopic observations of motility. In addition, sperm preparations fertilized eggs in vitro and produced normal tadpoles in the case of L. laevis and L. Ilanensis. This hormonal method of anuran sperm collection will provide a convenient non-injurious way to obtain anuran sperm for basic studies of reproduction and development.
Role of cortactin in dynamic actin remodeling events in gonadotrope cells.
Navratil, Amy M; Dozier, Melissa G; Whitesell, Jennifer D; Clay, Colin M; Roberson, Mark S
2014-02-01
GnRH induces marked activation of the actin cytoskeleton in gonadotropes; however, the physiological consequences and cellular mechanisms responsible have yet to be fully elucidated. The current studies focus on the actin scaffolding protein cortactin. Using the gonadotrope-derived αT3-1 cell line, we found that cortactin is phosphorylated at Y(421), S(405), and S(418) in a time-dependent manner in response to the GnRH agonist buserelin (GnRHa). GnRHa induced translocation of cortactin to the leading edge of the plasma membrane where it colocalizes with actin and actin-related protein 3 (Arp3). Incubation of αT3-1 cells with the c-src inhibitor phosphoprotein phosphatase 1, blocked tyrosine phosphorylation of cortactin, reduced cortactin association with Arp3, and blunted actin reorganization in response to GnRHa. Additionally, we used RNA silencing strategies to knock down cortactin in αT3-1 cells. Knockdown of cortactin blocked the ability of αT3-1 cells to generate filopodia, lamellipodia, and membrane ruffles in response to GnRHa. We show that lamellipodia and filopodia are capable of LHβ mobilization in primary pituitary culture after GnRHa treatment, and disruption of these structures using jasplakinolide reduces LH secretion. Collectively, our findings suggest that after GnRHa activation, src activity leads to tyrosine phosphorylation of cortactin, which facilitates its association with Arp3 to engage the actin cytoskeleton. The reorganization of actin by cortactin potentially underlies GnRHa-induced secretory events within αT3-1 cells.
Gonadotropin-releasing hormone antagonist in in vitro fertilization superovulation.
Seng, Shay Way; Ong, Kee Jiet; Ledger, W L
2006-11-01
The use of gonadotropin-releasing hormone (GnRH) antagonists in in vitro fertilization superovulation remains controversial. The GnRH agonist 'long protocol' has been seen as the gold standard for many years. Comparisons and meta-analyses of the efficacy of GnRH antagonists and agonists have been largely inconclusive, with the dataset being contaminated with outdated reports of poorer efficacy with GnRH antagonists, which have stemmed from studies of their use as a second-line drug in older women and women who were poor responders. This work cannot reflect the actual clinical effectiveness of GnRH antagonist and must be interpreted with care. The major advantages of GnRH antagonists use in superovulation include a gentler and more patient-friendly stimulation cycle with less hypoestrogenic side effects, with the potential to lower the risk of ovarian hyperstimulation and enhanced embryo growth. Our current clinical experience with GnRH antagonists in in vitro fertilization is limited, although there are a growing number of in vitro fertilization centers embracing this new technology. There is a clear need for a modern, suitably powered clinical trial to demonstrate the place of GnRH antagonist-based superovulation protocols and in subgroups of patients, such as polycystic ovary syndrome or poor responders.
Bravo, P W; Stabenfeldt, G H; Fowler, M E; Lasley, B L
1992-11-01
The response of the pituitary gland and ovary to repeated copulatory periods and/or gonadotropin-releasing hormone (GnRH, i.v. 1000 micrograms) administration was determined in llamas and alpacas. Eighty adult females (41 llamas and 39 alpacas with ovulatory follicles) were divided into three general groups for each species as follows: copulation (one or two copulations at either 6- or 24-h intervals) GnRH treatment (one or two treatments at either 6- or 24-h intervals), and combined treatment (copulation followed by GnRH treatment, or GnRH followed by copulation at either 6- or 24-h intervals). An additional control (nontreated) group was composed of 4 llamas and 4 alpacas. The first copulation or treatment with GnRH provoked LH release sufficient to cause ovulation in most of the females (alpacas, 89%; llamas, 92%); urinary pregnanediol glucuronide values, used to verify ovulation, were significantly elevated 48 h after copulation and/or GnRH treatment. A second stimulus, copulation or GnRH, provoked no LH response with concentrations similar to those in nontreated controls and in females not ovulating. Llamas and alpacas thus were refractory to a second copulatory or GnRH stimulus with regard to LH release for up to 24 h following an initial ovulatory release of LH.
Development of recombinant canine adenovirus type-2 expressing the Gn glycoprotein of Seoul virus.
Yuan, Ziguo; Zhang, Xiuxiang; Zhang, Shoufeng; Liu, Ye; Gao, Shengyan; Zhang, Fei; Xu, Huijuan; Wang, Xiaohu; Hu, Rongliang
2008-05-01
Seoul virus glycoprotein Gn is a major structural protein and candidate antigen of hantavirus that induces a highly immunogenic response for hantavirus vaccine. In this study, a replication-competent recombinant canine adenovirus type-2 expressing Gn was constructed by the in vitro ligation method. The Gn expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the SV40 early mRNA polyadenylation signal, was cloned into the SspI site of the E3 region which is not essential for proliferation of CAV-2. Expression of Gn was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.
Histopathological retrospective study of canine renal disease in Korea, 2003~2008
Yhee, Ji-Young; Yu, Chi-Ho; Kim, Jong-Hyuk; Im, Keum-Soon; Chon, Seung-Ki
2010-01-01
Renal disease includes conditions affecting the glomeruli, tubules, interstitium, pelvis, and vasculature. Diseases of the kidney include glomerular diseases, diseases of the tubules and interstitium, diseases of renal pelvis, and developmental abnormalities. Renal tissue samples (n = 70) submitted to the Department of Veterinary Pathology of Konkuk University from 2003 to 2008 were included in this study. Tissue histopathology was performed using light microscopy with hematoxylin and eosin stains. Masson's trichrome, Congo Red, and Warthin starry silver staining were applied in several individual cases. Glomerular diseases (22.9%), tubulointerstitial diseases (8.6%), neoplastic diseases (8.6%), conditions secondary to urinary obstruction (24.3%), and other diseases (35.7%) were identified. Glomerulonephritis (GN) cases were classified as acute proliferative GN (5.7%), membranous GN (4.3%), membranoproliferative GN (4.3%), focal segmental GN (2.9%), and other GN (4.2%). The proportion of canine GN cases presently identified was not as high as the proportions identified in human studies. Conversely, urinary obstruction and end-stage renal disease cases were relatively higher in dogs than in human populations. PMID:21113095
Cohen, Lorenzo; Baile, Walter F; Henninger, Evelyn; Agarwal, Sandeep K; Kudelka, Andrzej P; Lenzi, Renato; Sterner, Janet; Marshall, Gailen D
2003-10-01
We examined the acute stress response associated with having to deliver either bad or good medical news using a simulated physician-patient scenario. Twenty-five healthy medical students were randomly assigned to a bad medical news (BN), a good medical news (GN), or a control group that read magazines during the session. Self-report measures were obtained before and after the task. Blood pressure and heart rate were measured throughout the task period. Four blood samples were obtained across the task period. The BN and GN tasks produced significant increases in self-reported distress and cardiovascular responses compared with the control group. There was also a significant increase in natural killer cell function 10 min into the task in the BN group compared with the control group. The BN task was also somewhat more stressful than the GN task, as shown by the self-report and cardiovascular data. These findings suggest that a simulated physician-patient scenario produces an acute stress response in the "physician," with the delivery of bad medical news more stressful than the delivery of good medical news.
Metallinou, Chryssa; Köster, Frank; Diedrich, Klaus; Nikolettos, Nikos; Asimakopoulos, Byron
2012-01-01
We investigated the effects of the gonadotropin-releasing hormone (GnRH) agonist triptorelin as well the GnRH antagonist cetrorelix those of on the viability and steroidogenesis in human granulosa luteinized (hGL) cell cultures. The hGL cells were obtained from 34 women undergoing ovarian stimulation for IVF treatment. The cells were cultured for 48 h with or without 1 nM or 3 nM of cetrorelix or triptorelin in serum-free media. The cell viability was evaluated by the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The concentrations of estradiol and progesterone in culture supernatants were measured by ELISA. Treatment with triptorelin slightly increased cell viability, whereas treatment with 3 nM cetrorelix led to a significant decrease. Estradiol concentrations were reduced with 3 nM triptorelin. Cultures treated with high-dose of either cetrorelix or triptorelin tended to secrete less progesterone than controls. Cetrorelix significantly reduces the viability of hGL cells. Triptorelin and cetrorelix may have minor effects on steroidogenesis. These results suggest that GnRH analogues may influence ovarian functions.
Fabrication of Nanocarbon Composites Using In Situ Chemical Vapor Deposition and Their Applications.
He, Chunnian; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun
2015-09-23
Nanocarbon (carbon nanotubes (CNTs) and graphene (GN)) composites attract considerable research interest due to their fascinating applications in many fields. Here, recent developments in the field of in situ chemical vapor deposition (CVD) for the design and controlled preparation of advanced nanocarbon composites are highlighted, specifically, CNT-reinforced bulk structural composites, as well as CNT, GN, and CNT/GN functional composites, together with their practical and potential applications. In situ CVD is a very attractive approach for the fabrication of composites because of its engaging features, such as its simplicity, low-cost, versatility, and tunability. The morphologies, structures, dispersion, and interface of the resulting nanocarbon composites can be easily modulated by varying the experimental parameters (such as temperature, catalysts, carbon sources, templates or template catalysts, etc.), which enables a great potential for the in situ synthesis of high-quality nanocarbons with tailored size and dimension for constructing high-performance composites, which has not yet been achieved by conventional methods. In addition, new trends of the in situ CVD toward nanocarbon composites are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Haahr, Thor; Roque, Matheus; Esteves, Sandro C; Humaidan, Peter
2017-01-01
The use of GnRH agonist (GnRHa) for final oocyte maturation trigger in oocyte donation and elective frozen embryo transfer cycles is well established due to lower ovarian hyperstimulation syndrome (OHSS) rates as compared to hCG trigger. A recent Cochrane meta-analysis concluded that GnRHa trigger was associated with reduced live birth rates (LBRs) in fresh autologous IVF cycles compared to hCG trigger. However, the evidence is not unequivocal, and recent trials have found encouraging reproductive outcomes among couples undergoing GnRHa trigger and individualized luteal LH activity support. Thus, the aim was to compare GnRHa trigger followed by luteal LH activity support with hCG trigger in IVF patients undergoing fresh embryo transfer. We conducted a systematic review and meta-analysis of randomized trials published until December 14, 2016. The population was infertile patients submitted to IVF/ICSI cycles with GnRH antagonist cotreatment who underwent fresh embryo transfer. The intervention was GnRHa trigger followed by LH activity luteal phase support (LPS). The comparator was hCG trigger followed by a standard LPS. The critical outcome measures were LBR and OHSS rate. The secondary outcome measures were number of oocytes retrieved, clinical and ongoing pregnancy rates, and miscarriage rates. A total of five studies met the selection criteria comprising a total of 859 patients. The LBR was not significantly different between the GnRHa and hCG trigger groups (OR 0.84, 95% CI 0.62, 1.14). OHSS was reported in a total of 4/413 cases in the GnRHa group compared to 7/413 in the hCG group (OR 0.48, 95% CI 0.15, 1.60). We observed a slight, but non-significant increase in miscarriage rate in the GnRHa triggered group compared to the hCG group (OR 1.85; 95% CI 0.97, 3.54). GnRHa trigger with LH activity LPS resulted in comparable LBRs compared to hCG trigger. The most recent trials reported LBRs close to unity indicating that individualization of the LH activity LPS improved the luteal phase deficiency reported in the first GnRHa trigger studies. However, LPS optimization is needed to further limit OHSS in the subgroup of normoresponder patients (<14 follicles ≥ 11 mm). CRD42016051091.
Zhou, Yong; Tao, Yajun; Yuan, Yuan; Zhang, Yanzhou; Miao, Jun; Zhang, Ron; Yi, Chuandeng; Gong, Zhiyun; Yang, Zefeng; Liang, Guohua
2018-03-01
A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.
Mathematical modeling of gonadotropin-releasing hormone signaling.
Pratap, Amitesh; Garner, Kathryn L; Voliotis, Margaritis; Tsaneva-Atanasova, Krasimira; McArdle, Craig A
2017-07-05
Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control reproduction. These are G q -coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Veyhl, Joseph; Dunn, Robert J.; Johnston, Wendy L.; Bennett, Alexa; Zhang, Lijia W.; Dennis, James W.; Schachter, Harry
2017-01-01
Glycoproteins such as growth factor receptors and extracellular matrix have well-known functions in development and cancer progression, however, the glycans at sites of modification are often heterogeneous molecular populations which makes their functional characterization challenging. Here we provide evidence for a specific, discrete, well-defined glycan modification and regulation of a stage-specific cell migration in Caenorhabditis elegans. We show that a chain-terminating, putative null mutation in the gene encoding a predicted β1,4-N-acetylgalactosaminyltransferase, named ngat-1, causes a maternally rescued temperature sensitive (ts) defect in the second phase of the three phase migration pattern of the posterior, but not the anterior, hermaphrodite Distal Tip Cell (DTC). An amino-terminal partial deletion of ngat-1 causes a similar but lower penetrance ts phenotype. The existence of multiple ts alleles with distinctly different molecular DNA lesions, neither of which is likely to encode a ts protein, indicates that NGAT-1 normally prevents innate temperature sensitivity for phase 2 DTC pathfinding. Temperature shift analyses indicate that the ts period for the ngat-1 mutant defect ends by the beginning of post-embryonic development–nearly 3 full larval stages prior to the defective phase 2 migration affected by ngat-1 mutations. NGAT-1 homologs generate glycan-terminal GalNAc-β1-4GlcNAc, referred to as LacdiNAc modifications, on glycoproteins and glycolipids. We also found that the absence of the GnT1/Mgat1 activity [UDP-N-acetyl-D-glucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase 1 (encoded by C. elegans gly-12, gly-13, and gly-14 and homologous to vertebrate GnT1/Mgat1)], causes a similar spectrum of DTC phenotypes as ngat-1 mutations–primarily affecting posterior DTC phase 2 migration and preventing manifestation of the same innate ts period as ngat-1. GnT1/Mgat1 is a medial Golgi enzyme known to modify mannose residues and initiate N-glycan branching, an essential step in the biosynthesis of hybrid, paucimannose and complex-type N-glycans. Quadruple mutant animals bearing putative null mutations in ngat-1 and the three GnT genes (gly-12, gly-13, gly-14) were not enhanced for DTC migration defects, suggesting NGAT-1 and GnT1 act in the same pathway. These findings suggest that GnTI generates an N-glycan substrate for NGAT-1 modification, which is required at restrictive temperature (25°C) to prevent, stabilize, reverse or compensate a perinatal thermo-labile process (or structure) causing late larval stage DTC phase 2 migration errors. PMID:28817611
Zhang, Hong; Liu, Ya-Qiong; Lu, Guang-Xiu; Gong, Fei
2016-12-01
Few successful pregnancies after age 45 years with low ovarian reserve have been reported. We report a 46-year-old woman with basal FSH 20.36 mIU/mL and an antral follicle count of four obtained two embryos and delivered a healthy infant with IVF using a microdose GnRH-a flare-up protocol combined with GnRH-ant.
Han, Xing-Fa; Li, Jun-Li; Zhou, Yu-Qin; Ren, Xiao-Hua; Liu, Gong-Cheng; Cao, Xiao-Han; Du, Xiao-Gang; Zeng, Xian-Yin
2016-01-01
GnRH sterilization vaccines have been developed for various practical and clinical reasons. However, conjugation of GnRH peptide to carrier protein has many drawbacks, hampering the further commercialization of GnRH vaccines. In this study, a new nonconjugated GnRH vaccine, D-Lys6-GnRH-tandem-dimer peptide (TDK), emulsified in Specol adjuvant was investigated for its immunocastration efficacy in young male rats. Prepubertal male rats were randomly allocated into three groups (n = 12): control (no treatment), surgically castrated or immunized against 100 μg TDK in Specol adjuvant at 6 weeks of age (with a booster 8 weeks later). Blood samples (for antibody titers and hormone concentrations) were collected at 2-week intervals until rats were killed (18 weeks of age). Compared to intact controls, active immunization against TDK reduced (P < 0.05) serum concentrations of testosterone, inhibin B, LH and FSH, prevented the onset of spermatogenesis at puberty. Furthermore, mRNA expressions of GnRH receptor, LH-β and FSH-β in the pituitary, LH receptor, FSH receptor, inhibin α, βA and βB subunit in the testes were decreased in immunocastrated rats compared to intact controls (P < 0.05). These results demonstrate for the first time that GnRH-tandem-dimer peptide emulsified in Specol is a promising veterinary sterilization medicine.
Engmann, Lawrence; Benadiva, Claudio; Humaidan, Peter
2016-03-01
Gonadotrophin releasing hormone agonist (GnRHa) trigger is effective in the induction of oocyte maturation and prevention of ovarian hyperstimulation syndrome during IVF treatment. This trigger concept, however, results in early corpora lutea demise and consequently luteal phase dysfunction and impaired endometrial receptivity. The aim of this strenghths, weaknesses, opportunities and threats analysis was to summarize the progress made over the past 15 years to optimize ongoing pregnancy rates after GnRHa trigger. The advantages and potential drawbacks of this type of triggering are reviewed. The current approach to the management of GnRHa trigger in autologous cycles is based on the peak serum oestradiol level or follicle number and aims at a fresh embryo transfer or a segmentation approach with elective cryopreservation policy. We recommend intensive luteal support with transdermal oestradiol and intramuscular progesterone alone if peak serum oestradiol is 4000 or more pg/ml after GnRHa trigger or dual trigger with GnRHa and HCG 1000 IU if peak serum oestradiol is less than 4000 pg/mL. On the contrary, we recommend HCG 1500 IU 35 h after GnRHa trigger if there are less than 25 follicles, or freeze all oocytes or embryos if there are over 25 follicles. Copyright © 2015. Published by Elsevier Ltd.
Poomthavorn, Preamrudee; Khlairit, Patcharin; Mahachoklertwattana, Pat
2009-01-01
A test involving 100 microg of intravenous gonadotropin-releasing hormone (GnRH) is a gold standard for confirming the diagnosis of central precocious puberty (CPP). However, intravenous GnRH for testing is commercially limited. To develop subcutaneous GnRH agonist (GnRH-A) testing and define a peak luteinizing hormone (LH) cutoff value in diagnosing CPP. A retrospective study of 101 girls with sexual precocity was undertaken. All girls underwent 100 microg subcutaneous GnRH-A (triptorelin) testing. Blood samples before and 30, 60, 90 and 120 min after GnRH-A injection were analyzed for LH and follicle-stimulating hormone levels. Criteria for diagnosing CPP include accelerated height, advanced bone age and pubertal-sized uterus and ovaries. Fifty-five girls were documented as having CPP. The remaining 46 girls were diagnosed with premature thelarche (PT). Peak LH concentration in the CPP group was significantly greater than that of the PT group with a median (range) of 10.0 IU/l (2.93-65.39) and 3.04 IU/l (0.19-8.82), respectively. Peak LH was achieved within 60 min following GnRH-A injection. Peak LH of 6 IU/l provided the most appropriate cutoff level in diagnosing CPP with a sensitivity of 89.1% and a specificity of 91.3%. Subcutaneous GnRH-A can be used as an alternative to confirm the diagnosis of CPP. Copyright 2009 S. Karger AG, Basel.
Chen, Lan; Tan, Yong; Chen, Shu-Ping
2017-10-01
The evaluation is based on clomiphene citrate (CC)+gonadotropin (Gn), clinical study on CC and Dingkun Dan's treatment on ovulation induction and clinical pregnancy effect of PCOS, and to provide ideas and methods for traditional Chinese medicine assisted reproductive treatment. This study selected 60 PCOS infertility patients treated with ovulation induction in reproductive medicine clinic, Jiangsu Province Hospital of traditional Chinese medicine during 2015-10-01-2017-04-23. They were randomly divided into two groups: Group A (CC+Gn+HCG) and Group B (CC+Gn+Dingkun Dan). These results were observed and compared including cycle ovulation rate, cycle cancellation rate, cycle pregnancy rate, cumulative pregnancy rate, endometrial thickness, duration of Gn, total amount of Gn, the occurring rate of luteinized unruptured follicle syndrome and ovarian hyperstimulation syndrome. Group A had lower cycle ovulation rate, cycle pregnancy rate, cumulative pregnancy rate and endometrial thickness, compared with Group B, the difference was statistically significant(P<0.05). However, Group A had higher cycle cancellation rate, duration of Gn and total amount of Gn, compared with Group B, the difference was statistically significant(P<0.05). In this study, no case of LUFS or OHSS was found in all patients. CC and Dingkun Dan had the effect of promoting ovulation on PCOS infertility patients, and CC+Gn+Dingkun Dan could elevate clinical pregnancy rate. Copyright© by the Chinese Pharmaceutical Association.
Immunoadsorption in Anti-GBM Glomerulonephritis: Case Report in a Child and Literature Review.
Dorval, Guillaume; Lion, Mathilde; Guérin, Sophie; Krid, Saoussen; Galmiche-Rolland, Louise; Salomon, Rémi; Boyer, Olivia
2017-11-01
Antiglomerular basement membrane glomerulonephritis (anti-GBM GN) is a rare autoimmune disease that is characterized by rapidly progressive glomerulonephritis that may be associated with pulmonary hemorrhage. Anti-GBM GN is caused by autoantibodies (classically type G immunoglobulin) directed against the α3 subunit of type IV collagen. Without any appropriate treatment, the disease is generally fulminant, and patient and kidney survival is poor. The current guidelines recommend the use of plasma exchanges and immunosuppressive drugs. Immunoadsorption (IA) can remove pathogenic IgGs from the circulation and do not require plasma infusions, contrary to plasma exchanges. IA has seldom been used in adult patients with good tolerance and efficiency. We report herein the first pediatric case successfully treated with IA combined with immunosuppressive drugs in a 7-year-old girl who presented acute kidney injury (estimated glomerular filtration rate 38 mL/minute/1.73 m 2 ). A kidney biopsy revealed numerous >80% glomerular crescents and linear IgG deposits along the glomerular basement membrane. Ten IA sessions led to rapid and sustained clearance of autoantibodies and improvement of kidney function until 21 months after onset (glomerular filtration rate 87 mL/minute/1.73 m 2 ). No adverse effect was noted. This report adds to the growing body of evidence suggesting IA as a therapeutic alternative to plasma exchanges in anti-GBM GN. The other 27 published pediatric cases of anti-GBM GN are reviewed. Copyright © 2017 by the American Academy of Pediatrics.
Dent, Matthew; Hurtado, Jonathan; Paul, Amber M; Sun, Haiyan; Lai, Huafang; Yang, Ming; Esqueda, Adrian; Bai, Fengwei; Steinkellner, Herta; Chen, Qiang
2016-12-01
The mAb E60 has the potential to be a desirable therapeutic molecule since it efficiently neutralizes all four serotypes of dengue virus (DENV). However, mammalian-cell-produced E60 exhibits antibody-dependent enhancement of infection (ADE) activity, rendering it inefficacious in vivo, and treated animals more susceptible to developing more severe diseases during secondary infection. In this study, we evaluated a plant-based expression system for the production of therapeutically suitable E60. The mAb was transiently expressed in Nicotiana benthamianaWT and a ∆XFT line, a glycosylation mutant lacking plant-specific N-glycan residues. The mAb was efficiently expressed and assembled in leaves and exhibited highly homogenous N-glycosylation profiles, i.e. GnGnXF3 or GnGn structures, depending on the expression host. Both E60 glycovariants demonstrated equivalent antigen-binding specificity and in vitro neutralization potency against DENV serotypes 2 and 4 compared with their mammalian-cell-produced counterpart. By contrast, plant-produced E60 exhibited reduced ADE activity in Fc gamma receptor expressing human cells. Our results suggest the ability of plant-produced antibodies to minimize ADE, which may lead to the development of safe and highly efficacious antibody-based therapeutics against DENV and other ADE-prone viral diseases. Our study provides so far unknown insight into the relationship between mAb N-glycosylation and ADE, which contributes to our understanding of how sugar moieties of antibodies modulate Fc-mediated functions and viral pathogenesis.
Silva, Mauricio E; Smulders, Juan P; Guerra, Monserrat; Valderrama, Ximena P; Letelier, Claudia; Adams, Gregg P; Ratto, Marcelo H
2011-05-30
The purpose of the study was to determine if the effect of llama OIF on LH secretion is mediated by stimulation of the hypothalamus or pituitary gland. Using a 2-by-2 factorial design to examine the effects of OIF vs GnRH with or without a GnRH antagonist, llamas with a growing ovarian follicle greater than or equal to 8 mm were assigned randomly to four groups (n = 7 per group) and a) pre-treated with 1.5 mg of GnRH antagonist (cetrorelix acetate) followed by 1 mg of purified llama OIF, b) pre-treated with 1.5 mg of cetrorelix followed by 50 micrograms of GnRH, c) pre-treated with a placebo (2 ml of saline) followed by 1 mg of purified llama OIF or d) pre-treated with a placebo (2 ml of saline) followed by 50 micrograms of GnRH. Pre-treatment with cetrorelix or saline was given as a single slow intravenous dose 2 hours before intramuscular administration of either GnRH or OIF. Blood samples for LH measurement were taken every 15 minutes from 1.5 hours before to 8 hours after treatment. The ovaries were examined by ultrasonography to detect ovulation and CL formation. Blood samples for progesterone measurement were taken every-other-day from Day 0 (day of treatment) to Day 16. Ovulation rate was not different (P = 0.89) between placebo+GnRH (86%) and placebo+OIF groups (100%); however, no ovulations were detected in llamas pre-treated with cetrorelix. Plasma LH concentrations surged (P < 0.01) after treatment in both placebo+OIF and placebo+GnRH groups, but not in the cetrorelix groups. Maximum plasma LH concentrations and CL diameter profiles did not differ between the placebo-treated groups, but plasma progesterone concentrations were higher (P < 0.05), on days 6, 8 and 12 after treatment, in the OIF- vs GnRH-treated group. Cetrorelix (GnRH antagonist) inhibited the preovulatory LH surge induced by OIF in llamas suggesting that LH secretion is modulated by a direct or indirect effect of OIF on GnRH neurons in the hypothalamus.
Comparison of synthesis of 15α-hydroxylated steroids in males of four North American lamprey species
Bryan, Mara B.; Young, Bradley A.; Close, David A.; Semeyn, Jesse; Robinson, T. Craig; Bayer, Jennifer M.; Li, Weiming
2006-01-01
Recent studies have provided evidence that 15α-hydroxytestosterone (15α-T) and 15α-hydroxyprogesterone (15α-P) are produced in vitro and in vivo in adult male sea lampreys (Petromyzonmarinus), and that circulatory levels increase in response to injections with gonadotropin-releasing hormone (GnRH). We examined four species from the Petromyzontidae family including silver lampreys (Ichthyomyzon unicuspis), chestnut lampreys (I. castaneus), American brook lampreys (Lethenteron appendix), and Pacific lampreys (Entosphenus tridentatus) to determine if these unusual steroids were unique to sea lampreys or a common feature in lamprey species. In vitro production was examined through incubations of testis with tritiated precursors, and 15α-T and 15α-P production was confirmed in all species through co-elution with standards on both high performance liquid chromatography (HPLC) and thin layerchromatography. In vivo production was proven by demonstrating that HPLC-fractionated plasma had peaks of immunoreactive 15α-T and 15α-P that co-eluted with standards through using previously developed radioimmunoassays for 15α-T and 15α-P. The possible functionality of 15α-T and 15α-P was further examined in silver and Pacific lampreys by investigating the effect of injection of either type of lamprey GnRH on plasma concentrations of 15α-T and 15α-P. Injections with exogenous GnRH did not affect circulatory levels of either steroid in silver lampreys, and only GnRH III elicited higher levels of both steroids in Pacific lampreys. The 15α-hydroxylase enzyme(s) for steroids appeared to present in adult males of all species examined, but the question of whether 15α-hydroxylated steroids are functional in these lamprey species, and the significance of the 15-hydroxyl group, requires further research.
Antón-Millán, Noemí; Garcia-Tojal, Javier; Marty-Roda, Marta; Garroni, Sebastiano; Cuesta-López, Santiago; Tamayo-Ramos, Juan Antonio
2018-05-07
The modification of carbon nanomaterials with biological molecules paves the way towards their use in biomedical and biotechnological applications, such as next generation biocatalytic processes, development of biosensors, implantable electronic devices, or drug delivery. In this study, different commercial graphene derivatives, namely, monolayer graphene oxide (GO), graphene oxide nanocolloids (GOC), and polycarboxylate functionalized graphene nanoplatelets (GN), were compared as biomolecule carrier matrices. Detailed spectroscopic analyses showed that GO and GOC were similar in composition and functional groups content, and very different to GN, while divergent morphological characteristics were observed for each nanomaterial through microscopy analyses. The commercial alpha-L-rhamnosidase RhaB1 from the probiotic bacterium Lactobacillus plantarum, selected as a model biomolecule for its relevant role in the pharma and food industries, was directly immobilized on the different materials. The binding efficiency and biochemical properties of RhaB1-GO, RhaB1-GOC, and RhaB1-GN composites were analyzed. RhaB1-GO and RhaB1-GOC showed high binding efficiency, while the enzyme loading on GN, not tested in previous enzyme immobilization studies, was low. The enzyme showed contrasting changes when immobilized on the different material supports. The effect of pH on the activity of the three RhaB1 immobilized versions was similar to that observed for the free enzyme, while the activity-temperature profiles and the response to the presence of inhibitors varied significantly between the RhaB1 versions. In addition, the apparent Km for the immobilized and soluble enzymes did not change. Finally, the free RhaB1 and the immobilized enzyme in GOC showed the best storage and reutilization stability, keeping most of its initial activity after 8 weeks of storage at 4°C, and 10 reutilization cycles respectively. This study shows, for the first time, that distinct commercial graphene derivatives can influence differently on the catalytic properties of an enzyme during its immobilization.
Dygalo, Nikolay N.; Shemenkova, Tatjana V.; Kalinina, Tatjana S.; Shishkina, Galina T.
2014-01-01
Testis growth during early life is important for future male fertility and shows acceleration during the first months of life in humans. This acceleration coincides with the peak in gonadotropic hormones in the blood, while the role of hypothalamic factors remains vague. Using neonatal rats to assess this issue, we found that day 9 of life is likely critical for testis development in rats. Before this day, testicular growth was proportional to body weight gain, but after that the testes showed accelerated growth. Hypothalamic kisspeptin and its receptor mRNA levels begin to elevate 2 days later, at day 11. A significant increase in the mRNA levels for gonadotropin-releasing hormone (GnRH) receptors in the hypothalamus between days 5 and 7 was followed by a 3-fold decrease in GnRH mRNA levels in this brain region during the next 2 days. Starting from day 9, hypothalamic GnRH mRNA levels increased significantly and positively correlated with accelerated testicular growth. Triptorelin, an agonist of GnRH, at a dose that had no effect on testicular growth during “proportional” period, increased testis weights during the period of accelerated growth. The insensitivity of testicular growth to GnRH during “proportional” period was supported by inability of a 2.5-fold siRNA knockdown of GnRH expression in the hypothalamus of the 7-day-old animals to produce any effect on their testis weights. GnRH receptor blockade with cetrorelix was also without effect on testis weights during “proportional” period but the same doses of this GnRH antagonist significantly inhibited “accelerated” testicular growth. GnRH receptor mRNA levels in the pituitary as well as plasma LH concentrations were higher during “accelerated” period of testicular growth than during “proportional” period. In general, our data defined two distinct periods in rat testicular development that are primarily characterized by different responses to GnRH signaling. PMID:24695464
Said, Abdelrahman; Elmanzalawy, Mona; Ma, Guanggang; Damiani, Armando Mario; Osterrieder, Nikolaus
2017-08-14
Rift Valley fever virus (RVFV) is an arthropod-borne bunyavirus that can cause serious and fatal disease in humans and animals. RVFV is a negative-sense RNA virus of the Phlebovirus genus in the Bunyaviridae family. The main envelope RVFV glycoproteins, Gn and Gc, are encoded on the M segment of RVFV and known inducers of protective immunity. In an attempt to develop a safe and efficacious RVF vaccine, we constructed and tested a vectored equine herpesvirus type 1 (EHV-1) vaccine that expresses RVFV Gn and Gc. The Gn and Gc genes were custom-synthesized after codon optimization and inserted into EHV-1 strain RacH genome. The rH_Gn-Gc recombinant virus grew in cultured cells with kinetics that were comparable to those of the parental virus and stably expressed Gn and Gc. Upon immunization of sheep, the natural host, neutralizing antibodies against RVFV were elicited by rH_Gn-Gc and protective titers reached to 1:320 at day 49 post immunization but not by parental EHV-1, indicating that EHV-1 is a promising vector alternative in the development of a safe marker RVFV vaccine.
NASA Technical Reports Server (NTRS)
Bruhweiler, F. C.; Kafatos, M.; Brandt, J. C.
1983-01-01
Obsrvations and theoretical investigations of the Gum nebula (GN) since about 1971 are reviewed. Direct observations of the GN, the Vela X supernova remnant (SNR), the Vela pulsar, and other stars in or near the GN are discussed with those of related phenomena such as the radio loops and known SNRs; the emphasis is on studies of the interstellar absorption lines, the evidence for hot gas in the GN, and the extended diffuse emission. The four basic models proposed for the GN are considered: a fossil Stromgren sphere, an old SNR, an H II region, or a superbubble. The GN physical parameters predicted by each model are listed in a table and compared. A minimum explanation which attributes the 36 x 36-deg filamentary structure and the 125-pc radius structure to the action of the stellar winds from Zeta Pup and Gamma-2 Vel (and perhaps the effect of a Vel X supernova explosion 20,000 years ago) is found most appropriate, at least until the questions of the net expansion rate of the GN (about 20 km/sec or about zero?) and the existence of the diffuse emission beyond the filamentary structure are resolved by observations.
Kuramochi, Asami; Tsutiya, Atsuhiro; Kaneko, Toyoji; Ohtani-Kaneko, Ritsuko
2011-10-01
In tilapia, hormone treatment during the period of sexual differentiation can alter the phenotype of the gonads, indicating that endocrine factors can cause gonadal sex reversal. However, the endocrine mechanism underlying sex reversal of reproductive behaviors remains unsolved. In the present study, we detected sexual dimorphism of gonadotropin-releasing hormone type III (GnRH3) neurons in Mozambique tilapia Oreochromis mossambicus. Our immunohistochemical observations showed sex differences in the number of GnRH3 immunoreactive neurons in mature tilapia; males had a greater number of GnRH3 neurons in the terminal ganglion than females. Treatment with androgen (11-ketotestosterone (11-KT) or methyltestosterone), but not that with 17β-estradiol, increased the number of GnRH3 neurons in females to a level similar to that in males. Furthermore, male-specific nest-building behavior was induced in 70% of females treated with 11-KT within two weeks after the onset of the treatment. These results indicate androgen-dependent regulation of GnRH3 neurons and nest-building behavior, suggesting that GnRH3 is importantly involved in sex reversal of male-specific reproductive behavior.
Role of neuropeptide Y (NPY) in the regulation of reproduction: study based on catfish model.
Subhedar, Nishikant; Gaikwad, Archana; Biju, K C; Saha, Subhash
2005-04-01
Significance of NPY in the regulation of GnRH-LH axis was evaluated. Considerable NPY immunoreactivity was seen in the components like olfactory system, basal telencephalon, preoptic and tuberal areas, and the pituitary gland that serve as neuroanatomical substrates for processing reproductive information. Close anatomical association as well as colocalizations of NPY and GnRH were seen in the olfactory receptor neurons, olfactory nerve fibers and their terminals in the glomeruli, ganglion cells of nervus terminalis, medial olfactory tracts, fibers in the ventral telencephalon and pituitary. In the pituitary, NPY fibers seem to innervate the GnRH as well as LH cells. Intracranial administration of NPY resulted in significant increase in the GnRH immunoreactivity in all the components of the olfactory system. In the pituitary, NPY augmented the population of GnRH fibers and LH cells. HPLC analysis showed that salmon GnRH content in the olfactory organ, bulb, preoptic area+telencephalon and pituitary was also significantly increased following NPY treatment. NPY may play a role in positive regulation of GnRH throughout the neuraxis and also up-regulate the LH cells in the pituitary.
Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation
Castilho, Alexandra; Gruber, Clemens; Thader, Andreas; Oostenbrink, Chris; Pechlaner, Maria; Steinkellner, Herta; Altmann, Friedrich
2015-01-01
We investigated N-glycan processing of immunoglobulin G1 using the monoclonal antibody cetuximab (CxMab), which has a glycosite in the Fab domain in addition to the conserved Fc glycosylation, as a reporter. Three GlcNAc (Gn) terminating bi-antennary glycoforms of CxMab differing in core fucosylation (α1,3- and α1,6-linkage) were generated in a plant-based expression platform. These GnGn, GnGnF3, and GnGnF6 CxMab variants were subjected in vivo to further processing toward sialylation and GlcNAc diversification (bisected and branching structures). Mass spectrometry-based glycan analyses revealed efficient processing of Fab glycans toward envisaged structures. By contrast, Fc glycan processing largely depend on the presence of core fucose. A particularly strong support of glycan processing in the presence of plant-specific core α1,3-fucose was observed. Consistently, molecular modeling suggests changes in the interactions of the Fc carbohydrate chain depending on the presence of core fucose, possibly changing the accessibility. Here, we provide data that reveal molecular mechanisms of glycan processing of IgG antibodies, which may have implications for the generation of glycan-engineered therapeutic antibodies with improved efficacies. PMID:26067753
2014-01-08
Precocious; Leuprolide Acetate; Luteinizing Hormone (LH); Gonadotrophin-releasing Hormone Agonist (GnRHa); Tanner Staging; Depot Formulation; Suppression of LH; Central Precocious Puberty (CPP); Gonadotrophin-releasing Hormone (GnRH); Lupron; GnRH Analog; Pediatrics Central Precocious Puberty
Prenatal programming of neuroendocrine reproductive function.
Evans, Neil P; Bellingham, Michelle; Robinson, Jane E
2016-07-01
It is now well recognized that the gestational environment can have long-lasting effects not only on the life span and health span of an individual but also, through potential epigenetic changes, on future generations. This article reviews the "prenatal programming" of the neuroendocrine systems that regulate reproduction, with a specific focus on the lessons learned using ovine models. The review examines the critical roles played by steroids in normal reproductive development before considering the effects of prenatal exposure to exogenous steroid hormones including androgens and estrogens, the effects of maternal nutrition and stress during gestation, and the effects of exogenous chemicals such as alcohol and environment chemicals. In so doing, it becomes evident that, to maximize fitness, the regulation of reproduction has evolved to be responsive to many different internal and external cues and that the GnRH neurosecretory system expresses a degree of plasticity throughout life. During fetal life, however, the system is particularly sensitive to change and at this time, the GnRH neurosecretory system can be "shaped" both to achieve normal sexually differentiated function but also in ways that may adversely affect or even prevent "normal function". The exact mechanisms through which these programmed changes are brought about remain largely uncharacterized but are likely to differ depending on the factor, the timing of exposure to that factor, and the species. It would appear, however, that some afferent systems to the GnRH neurons such as kisspeptin, may be critical in this regard as it would appear to be sensitive to a wide variety of factors that can program reproductive function. Finally, it has been noted that the prenatal programming of neuroendocrine reproductive function can be associated with epigenetic changes, which would suggest that in addition to direct effects on the exposed offspring, prenatal programming could have transgenerational effects on reproductive potential. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Shrestha, P K; Briski, K P
2015-07-09
Steroid positive-feedback activation of the gonadotropin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) neuroendocrine axis propagates the pre ovulatory LH surge, a crucial component of female reproduction. Our work shows that this key event is restrained by inhibitory metabolic input from hindbrain A2 noradrenergic neurons. GnRH neurons express the ultra-sensitive energy sensor adenosine 5'-monophosphate-activated protein kinase (AMPK); here, we investigated the hypothesis that GnRH nerve cell AMPK and peptide neurotransmitter responses to insulin-induced hypoglycemia are controlled by hindbrain lack of the oxidizable glycolytic end-product L-lactate. Data show that hypoglycemic inhibition of LH release in steroid-primed ovariectomized female rats was reversed by coincident caudal hindbrain lactate infusion. Western blot analyses of laser-microdissected A2 neurons demonstrate hypoglycemic augmentation [Fos, estrogen receptor-beta (ER-β), phosphoAMPK (pAMPK)] and inhibition (dopamine-beta-hydroxylase, GLUT3, MCT2) of protein expression in these cells, responses that were normalized by insulin plus lactate treatment. Hypoglycemia diminished rostral preoptic GnRH nerve cell GnRH-I protein and pAMPK content; the former, but not the latter response was reversed by lactate. Results implicate caudal hindbrain lactoprivic signaling in hypoglycemia-induced suppression of the LH surge, demonstrating that lactate repletion of that site reverses decrements in A2 catecholamine biosynthetic enzyme and GnRH neuropeptide precursor protein expression. Lack of effect of lactate on hypoglycemic patterns of GnRH AMPK activity suggests that this sensor is uninvolved in metabolic-inhibition of positive-feedback-stimulated hypophysiotropic signaling to pituitary gonadotropes. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Roland, Alison V; Moenter, Suzanne M
2011-02-01
Prenatal androgenization (PNA) of female mice with dihydrotestosterone programs reproductive dysfunction in adulthood, characterized by elevated luteinizing hormone levels, irregular estrous cycles, and central abnormalities. Here, we evaluated activity of GnRH neurons from PNA mice and the effects of in vivo treatment with metformin, an activator of AMP-activated protein kinase (AMPK) that is commonly used to treat the fertility disorder polycystic ovary syndrome. Estrous cycles were monitored in PNA and control mice before and after metformin administration. Before metformin, cycles were longer in PNA mice and percent time in estrus lower; metformin normalized cycles in PNA mice. Extracellular recordings were used to monitor GnRH neuron firing activity in brain slices from diestrous mice. Firing rate was higher and quiescence lower in GnRH neurons from PNA mice, demonstrating increased GnRH neuron activity. Metformin treatment of PNA mice restored firing activity and LH to control levels. To assess whether AMPK activation contributed to the metformin-induced reduction in GnRH neuron activity, the AMPK antagonist compound C was acutely applied to cells. Compound C stimulated cells from metformin-treated, but not untreated, mice, suggesting that AMPK was activated in GnRH neurons, or afferent neurons, in the former group. GnRH neurons from metformin-treated mice also showed a reduced inhibitory response to low glucose. These studies indicate that PNA causes enhanced firing activity of GnRH neurons and elevated LH that are reversible by metformin, raising the possibility that central AMPK activation by metformin may play a role in its restoration of reproductive cycles in polycystic ovary syndrome.
Ramaswamy, Suresh; Dwarki, Karthik; Ali, Barkat; Gibbs, Robert B.
2013-01-01
Puberty in primates is timed by 2 hypothalamic events: during late infancy a decline in pulsatile GnRH release occurs, leading to a hypogonadotropic state that maintains quiescence of the prepubertal gonad; and in late juvenile development, pulsatile GnRH release is reactivated and puberty initiated, a phase of development that is dependent on kisspeptin signaling. In the present study, we determined whether the arrest of GnRH pulsatility in infancy was associated with a change in kisspeptin expression in the mediobasal hypothalamus (MBH). Kisspeptin was determined using immunohistochemistry in coronal hypothalamic sections from agonadal male rhesus monkeys during early infancy when GnRH release as reflected by circulating LH concentrations was robust and compared with that in juveniles in which GnRH pulsatility was arrested. The distribution of immunopositive kisspeptin neurons in the arcuate nucleus of the MBH of infants was similar to that previously reported for adults. Kisspeptin cell body number was greater in infants compared with juveniles, and at the middle to posterior level of the arcuate nucleus, this developmental difference was statistically significant. Neurokinin B in the MBH exhibited a similar distribution to that of kisspeptin and was colocalized with kisspeptin in approximately 60% of kisspeptin perikarya at both developmental stages. Intensity of GnRH fiber staining in the median eminence was robust at both stages. These findings indicate that the switch that shuts off pulsatile GnRH release during infancy and that guarantees the subsequent quiescence of the prepubertal gonad involves a reduction in a stimulatory kisspeptin tone to the GnRH neuronal network. PMID:23525220
Romerowicz-Misielak, M; Tabecka-Lonczynska, A; Koziol, K; Gilun, P; Stefanczyk-Krzymowska, S; Och, W; Koziorowski, M
2016-06-01
Previous studies indicate that there are at least a few regulatory systems involved in photoperiodic synchronisation of reproductive activity, which starts with the retina and ends at the gonadotropin-releasing hormone (GnRH) pulse generator. Recently we have shown indicated that the amount of carbon monoxide (CO) released from the eye into the ophthalmic venous blood depends on the intensity of sunlight. The aim of this study was to test whether changes in the concentration of carbon monoxide in the ophthalmic venous blood may modulate reproductive activity, as measured by changes in GnRH and GnRH receptor gene expression. The animal model used was mature male swine crossbred from wild boars and domestic sows (n = 48). We conducted in vivo experiments to determine the effect of increased CO concentrations in the cavernous sinus of the mammalian perihypophyseal vascular complex on gene expression of GnRH and GnRH receptors as well as serum luteinizing hormone (LH) levels. The experiments were performed during long photoperiod days near the summer solstice (second half of June) and short photoperiod days near the winter solstice (second half of December). These crossbred swine demonstrated a seasonally-dependent marked variation in GnRH and GnRH receptor gene expression and systemic LH levels in response to changes in CO concentration in ophthalmic venous blood. These results seem to confirm the hypothesis of humoral phototransduction as a mechanism for some of bright light's effects in animal chronobiology and the effect of CO on GnRH and GnRH receptor gene expression.
Prakash, J; Ganiger, V; Prakash, S; Sivasankar, M; Sunder, S; Singh, U
2017-01-01
Human immunodeficiency virus (HIV) infection can cause a broad spectrum of renal diseases. However, there is paucity of Indian data on the patterns of renal lesions in HIV-seropositive patients. The aim of the present study was to delineate the spectrum of renal lesions in HIV/acquired immunodeficiency syndrome patients. In this prospective study, all HIV-positive patients of both genders aged >18 years were screened for renal disease. Patients with proteinuria of more than 1 g/24 h were subjected to renal biopsy. A total of 293 HIV-positive patients were screened; of these, 136 (46.4%) patients found to have renal involvement. Dipstick-positive proteinuria of 1+ or more was observed in 112 (38.2%) patients, and 16 (14.2%) patients had proteinuria of more than 1 g/24 h. Renal biopsy in 14 cases revealed glomerulonephritis (GN) in 12 (85.7%) (isolated GN in 4 [28.5%] and GN mixed with chronic TIN in 8 [57.1%]) patients. These include mesangioproliferative GN in 5 (35.7%), membranoproliferative GN in 2 (14.2%), focal segmental glomerulosclerosis in 2 (14.2%), diffuse proliferative GN in 2 (14.2%), and diabetic nephropathy in 1 (7.1%) patients. Chronic interstitial nephritis was noted in 10 (71.42%) (superimposed on GN in 8 [57.1%], isolated in 2 [14.2%]) patients. Granulomatous interstitial nephritis was seen in 3 (24.1%) cases. GN and chronic interstitial nephritis were noted in 85.7% and 71.42% of patients, respectively, mostly superimposed on each other. Mesangioproliferative GN was the most common glomerular lesion, but classical HIV-associated nephropathy was not observed.
Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; He, Fang; Ma, Liying; Li, Qunying; Li, Jiajun; Bacsa, Wolfgang; Zhao, Naiqin; He, Chunnian
2017-08-24
Graphene or graphene-like nanosheets have been emerging as an attractive reinforcement for composites due to their unique mechanical and electrical properties as well as their fascinating two-dimensional structure. It is a great challenge to efficiently and homogeneously disperse them within a metal matrix for achieving metal matrix composites with excellent mechanical and physical performance. In this work, we have developed an innovative in situ processing strategy for the fabrication of metal matrix composites reinforced with a discontinuous 3D graphene-like network (3D GN). The processing route involves the in situ synthesis of the encapsulation structure of 3D GN powders tightly anchored with Cu nanoparticles (NPs) (3D GN@Cu) to ensure mixing at the molecular level between graphene-like nanosheets and metal, coating of Cu on the 3D GN@Cu (3D GN@Cu@Cu), and consolidation of the 3D GN@Cu@Cu powders. This process can produce GN/Cu composites on a large scale, in which the in situ synthesized 3D GN not only maintains the perfect 3D network structure within the composites, but also has robust interfacial bonding with the metal matrix. As a consequence, the as-obtained 3D GN/Cu composites exhibit exceptionally high strength and superior ductility (the uniform and total elongation to failure of the composite are even much higher than the unreinforced Cu matrix). To the best of our knowledge, this work is the first report validating that a discontinuous 3D graphene-like network can simultaneously remarkably enhance the strength and ductility of the metal matrix.
D'Occhio, Michael J; Fordyce, Geoffry; Whyte, Tim R; Jubb, Tristan F; Fitzpatrick, Lee A; Cooper, Neil J; Aspden, William J; Bolam, Matt J; Trigg, Timothy E
2002-12-16
The ability of gonadotrophin releasing hormone (GnRH) agonist implants to suppress ovarian activity and prevent pregnancies, long-term, was examined in heifers and cows maintained under extensive management. At three cattle stations, heifers (2-year-old) and older cows (3- to 16-year-old) were assigned to a control group that received no treatment, or were treated with high-dose (12 mg, Station A) or low-dose (8 mg, Station B and Station C) GnRH agonist implants. The respective numbers of control and GnRH agonist-treated animals (heifers + cows) at each station were: Station A, 20 and 99; Station B, 19 and 89; Station C, 20 and 76. Animals were maintained with 4% bulls and monitored for pregnancy at 2-monthly intervals for approximately 12 months. Pregnancy rates for control heifers and control cows ranged from 60-90% and 80-100%, respectively, depending on the study site. The respective number of animals (heifers + cows) treated with GnRH agonist that conceived, and days to first conception, were: Station A, 9 (9%) and 336 +/- 3 days; Station B, 8 (10%) and 244 +/- 13 days; Station C, 20 (26%) and 231 +/- 3 days. Treatment with high-dose GnRH agonist prevented pregnancies for longer (approximately 300 days) than treatment with low-dose GnRH agonist (approximately 200 days). In the majority of heifers and cows treated with GnRH agonist, ovarian follicular growth was restricted to early antral follicles (2-4mm). The findings indicate that GnRH agonist implants have considerable potential as a practical technology to suppress ovarian activity and control reproduction in female cattle maintained in extensive rangelands environments. The technology also has broader applications in diverse cattle production systems. Copyright 2002 Elsevier Science B.V.
2012-01-01
Introduction The interdependence between endotoxemia, gram negative (GN) bacteremia and mortality has been extensively studied. Underlying patient risk and GN bacteremia types are possible confounders of the relationship. Methods Published studies with ≥10 patients in either ICU or non-ICU settings, endotoxemia detection by limulus assay, reporting mortality proportions and ≥1 GN bacteremia were included. Summary odds ratios (OR) for mortality were derived across all studies by meta-analysis for the following contrasts: sub-groups with either endotoxemia (group three), GN bacteremia (group two) or both (group one) each versus the group with neither detected (group four; reference group). The mortality proportion for group four is the proxy measure of study level risk within L'Abbé plots. Results Thirty-five studies were found. Among nine studies in an ICU setting, the OR for mortality was borderline (OR <2) or non-significantly increased for groups two (GN bacteremia alone) and three (endotoxemia alone) and patient group one (GN bacteremia and endotoxemia co-detected) each versus patient group four (neither endotoxemia nor GN bacteremia detected). The ORs were markedly higher for group one versus group four (OR 6.9; 95% confidence interval (CI), 4.4 -to 11.0 when derived from non-ICU studies. The distributions of Pseudomonas aeruginosa and Escherichia coli bacteremias among groups one versus two are significantly unequal. Conclusions The co-detection of GN bacteremia and endotoxemia is predictive of increased mortality risk versus the detection of neither but only in studies undertaken in a non-ICU setting. Variation in GN bacteremia species types and underlying risk are likely unrecognized confounders in the individual studies. PMID:22871090
Goericke-Pesch, Sandra; Georgiev, Plamen; Fasulkov, Ivan; Vodenicharov, Angel; Wehrend, Axel
2013-07-01
Slow-release GnRH agonist implants are considered an effective, reversible alternative to surgical castration in male tom cats. Individual differences exist regarding the onset of efficacy and might be delayed in some animals. Single measurements of testosterone (T) might result in basal concentrations also in intact male cats. Consequently, GnRH stimulation tests are performed to measure T increase in intact animals and to differentiate castrated from intact male cats. In this study, five tom cats were treated with a 4.7-mg deslorelin implant and GnRH stimulation tests using buserelin were performed before treatment and at 4-week intervals afterward until Week 20. After the last test in Week 20 all animals were castrated. Four of five animals had basal T after 4 weeks and-in contrast to pretreatment-application of buserelin did not result in any further T increase. In one animal, T was low after implant insertion, but not basal; however, a GnRH stimulation test induced a slight increase of T in Week 8 and 16 only and no response in Weeks 4, 12, and 20. Testicular volume was significantly decreased and penile spines disappeared in all cats. Testicular histology showed mixed atrophy, but also fully elongated spermatids in three of five male cats making infertility questionable. Because of the loss of the stimulatory effect of short-term GnRH application (buserelin), it can be assumed that long-term GnRH agonists also act by some mechanisms of downregulation of pituitary GnRH receptors in the tom cat. Copyright © 2013 Elsevier Inc. All rights reserved.
Boza, Aysen; Cakar, Erbil; Boza, Barıs; Api, Murat; Kayatas, Semra; Sofuoglu, Kenan
2016-01-01
Background: Microdose flare-up GnRH agonist and GnRH antagonist have become more popular in the management of poor ovarian responders (POR) in recent years; however, the optimal protocol for POR patients undergoing in vitro fertilization has still been a challenge. Methods: In this observational study design, two hundred forty four poor ovarian responders were retrospectively evaluated for their response to GnRH agonist protocol (group-1, n=135) or GnRH antagonist protocol (group-2, n=109). Clinical pregnancy rate was the primary end point and was compared between the groups. Student t-test, Mann Whitney U test and χ2-test were used to compare the groups. The p<0.05 was considered to show a statistically significant result. Results: The mean total gonadotropin doses were 3814±891 IU in group 1 and 3539±877 IU in group 2 (p=0.02). The number of metaphase-II oocytes (3.6±2.4 vs. 2.8±1.9, p=0.005) and implantation rates (27.8% vs. 18.8%, p=0.04) in group 1 and group 2, respectively were significantly different. The fertilization rate in group 1 and group 2 was 73% vs. 68%, respectively (p=0.5) and clinical pregnancy rate was 19.8% vs. 14.4%, respectively (p=0.13). Conclusion: The GnRH agonist microdose flare-up protocol has favorable outcomes with respect to the number of oocytes retrieved and implantation rate; nevertheless, the clinical pregnancy rate was found to be similar in comparison to GnRH antagonist protocol in poor ovarian responders. GnRH antagonist protocol appears to be promising with significantly lower gonadotropin requirement and lower treatment cost in poor ovarian responders. PMID:27478770
Boza, Aysen; Cakar, Erbil; Boza, Barıs; Api, Murat; Kayatas, Semra; Sofuoglu, Kenan
2016-01-01
Microdose flare-up GnRH agonist and GnRH antagonist have become more popular in the management of poor ovarian responders (POR) in recent years; however, the optimal protocol for POR patients undergoing in vitro fertilization has still been a challenge. In this observational study design, two hundred forty four poor ovarian responders were retrospectively evaluated for their response to GnRH agonist protocol (group-1, n=135) or GnRH antagonist protocol (group-2, n=109). Clinical pregnancy rate was the primary end point and was compared between the groups. Student t-test, Mann Whitney U test and χ (2)-test were used to compare the groups. The p<0.05 was considered to show a statistically significant result. The mean total gonadotropin doses were 3814±891 IU in group 1 and 3539±877 IU in group 2 (p=0.02). The number of metaphase-II oocytes (3.6±2.4 vs. 2.8±1.9, p=0.005) and implantation rates (27.8% vs. 18.8%, p=0.04) in group 1 and group 2, respectively were significantly different. The fertilization rate in group 1 and group 2 was 73% vs. 68%, respectively (p=0.5) and clinical pregnancy rate was 19.8% vs. 14.4%, respectively (p=0.13). The GnRH agonist microdose flare-up protocol has favorable outcomes with respect to the number of oocytes retrieved and implantation rate; nevertheless, the clinical pregnancy rate was found to be similar in comparison to GnRH antagonist protocol in poor ovarian responders. GnRH antagonist protocol appears to be promising with significantly lower gonadotropin requirement and lower treatment cost in poor ovarian responders.
Qi, Xin; Zhou, Wenyi; Wang, Qingqing; Guo, Liang; Lu, Danqi; Lin, Haoran
2017-04-01
Gonadotropin-inhibitory hormone (GnIH) plays a critical role in regulating gonadotropin-releasing hormone, gonadotropin hormone, and steroidogenesis in teleosts. In the present study, we sought to determine whether 17β-estradiol (E2) acts directly on GnIH neurons to regulate reproduction in goldfish, a seasonal breeder, and we investigated the role of estrogen receptors (ERs) in mediating this process. We found that GnIH neurons coexpress three types of ERs. Ovariectomy and letrozole implantation into female goldfish at the vitellogenic stage elicited a substantial decrease in the expression of GnIH messenger RNA (mRNA), and E2 supplementation abolished this effect. In primary cultured hypothalamus cells, E2 increased GnIH mRNA levels; surprisingly, selective ERα and ERβ agonists showed opposite effects in regulating GnIH mRNA levels. Using genome walking, we isolated a 2329-bp section of the GnIH promoter sequence, and 7 half-estrogen response elements (EREs) were found in the promoter region. Luciferase assays and electrophoretic mobility shift assay results show that the half-ERE element at -2203 is the key site for competitive binding between ERα and ERβ. Ovariectomy and letrozole implantation into female goldfish in the maturating stage did not change the GnIH mRNA expression levels. Taken together, these findings suggest that E2 binds to multiple types of ERs, which competitively bind to the same half-ERE binding site of the GnIH promoter to achieve both positive and negative feedback in response to estrogen to regulate goldfish reproduction at different stages of ovarian development. Copyright © 2017 Endocrine Society.
Chan Ng, Pauline; Huang, Chiung-Hui; Rajakulendran, Mohana; Tan, Michelle Meiling; Wang, Ping Ping; Tay, Lei Qiu; Goh, Siok Ying; Shek, Lynette Pei-Chi; Tham, Elizabeth Huiwen
2018-05-29
Gonadotropin-releasing hormone (GnRH) analogues are commonly used in pediatric patients in the treatment of central precocious puberty 1 . GnRH analogues suppress the secretion of gonadotropins and sex hormones, preventing progression to advanced puberty and reduced final adult height secondary to accelerated fusion of growth plates. GnRH analogues are also used in adults for treatment of endometriosis 2 and prostatic cancer 3 . Hypersensitivity reactions to GnRH analogues are exceedingly rare 4-6 and to date, we are unaware of any desensitization protocols for GnRH hypersensitivity in the literature or used in clinical practice. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Graphene nanoplatelet composite 'paper' as an electrostatic actuator.
Yu, Zeyang; Drzal, Lawrence T
2018-08-03
Graphene nanoplatelets (GnP) can be made into a thin 'paper' through vacuum filtration of GnP suspension. Electrodes were fabricated from the compressed GnP paper and then by coating the surface with epoxy. The electrostatic actuator was constructed from two parallel-aligned composite papers fixed at the anode and a cathode connected to ground. The two composite papers would then separate when a voltage was applied. The GnP paper was also modified to increase surface area by introducing porosity or adding ∼10 wt% C750 (GnP with diameter less than 1 μm); or changing the relative permittivity by adding barium titanate particles; or combining these two effects by adding CNCs. Overall the output work could be significantly improved to over 400%.
Orbital Maneuvering Vehicle (OMV) plume and plume effects study
NASA Technical Reports Server (NTRS)
Smith, Sheldon D.
1991-01-01
The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.
Functional hypothalamic amenorrhea and its influence on women's health.
Meczekalski, B; Katulski, K; Czyzyk, A; Podfigurna-Stopa, A; Maciejewska-Jeske, M
2014-11-01
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea. There are three types of FHA: weight loss-related, stress-related, and exercise-related amenorrhea. FHA results from the aberrations in pulsatile gonadotropin-releasing hormone (GnRH) secretion, which in turn causes impairment of the gonadotropins (follicle-stimulating hormone and luteinizing hormone). The final consequences are complex hormonal changes manifested by profound hypoestrogenism. Additionally, these patients present mild hypercortisolemia, low serum insulin levels, low insulin-like growth factor 1 (IGF-1) and low total triiodothyronine. The aim of this work is to review the available data concerning the effects of FHA on different aspects of women's health. Functional hypothalamic amenorrhea is related to profound impairment of reproductive functions including anovulation and infertility. Women's health in this disorder is disturbed in several aspects including the skeletal system, cardiovascular system, and mental problems. Patients manifest a decrease in bone mass density, which is related to an increase in fracture risk. Therefore, osteopenia and osteoporosis are the main long-term complications of FHA. Cardiovascular complications include endothelial dysfunction and abnormal changes in the lipid profile. FHA patients present significantly higher depression and anxiety and also sexual problems compared to healthy subjects. FHA patients should be carefully diagnosed and properly managed to prevent both short- and long-term medical consequences.
Framework Based Guidance Navigation and Control Flight Software Development
NASA Technical Reports Server (NTRS)
McComas, David
2007-01-01
This viewgraph presentation describes NASA's guidance navigation and control flight software development background. The contents include: 1) NASA/Goddard Guidance Navigation and Control (GN&C) Flight Software (FSW) Development Background; 2) GN&C FSW Development Improvement Concepts; and 3) GN&C FSW Application Framework.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.
2010-01-01
This final report summarizes the results of a comparative assessment of the fault tolerance and reliability of different Guidance, Navigation and Control (GN&C) architectural approaches. This study was proactively performed by a combined Massachusetts Institute of Technology (MIT) and Draper Laboratory team as a GN&C "Discipline-Advancing" activity sponsored by the NASA Engineering and Safety Center (NESC). This systematic comparative assessment of GN&C system architectural approaches was undertaken as a fundamental step towards understanding the opportunities for, and limitations of, architecting highly reliable and fault tolerant GN&C systems composed of common avionic components. The primary goal of this study was to obtain architectural 'rules of thumb' that could positively influence future designs in the direction of an optimized (i.e., most reliable and cost-efficient) GN&C system. A secondary goal was to demonstrate the application and the utility of a systematic modeling approach that maps the entire possible architecture solution space.
Joshi, R.N.; Safadi, F.F.; Barbe, M.F.; Carpio-Cano, Fe Del; Popoff, S.N.; Yingling, V.R.
2013-01-01
Hypothalamic amenorrhea and energy restriction during puberty affect peak bone mass accrual. One hypothesis suggests energy restriction alters hypothalamic function resulting in suppressed estradiol levels leading to bone loss. However, both positive and negative results have been reported regarding energy restriction and bone strength. Therefore, the purpose of this study was to investigate energy restriction and hypothalamic suppression during pubertal onset on bone mechanical strength and the osteogenic capacity of bone marrow-derived cells in two models: female rats treated with gonadotropin releasing hormone antagonists (GnRH-a) or 30% energy restriction. At 23 days of age, female Sprague Dawley rats were assigned to three groups: control group (C, n=10), GnRH-a group (n=10), and Energy Restriction (ER, n=12) group. GnRH-a animals received daily injections for 27 days. The animals in the ER group received 70% of the control animals’ intake. After sacrifice (50 days of age), body weight, uterine and muscle weights were measured. Bone marrow-derived stromal cells were cultured and assayed for proliferation and differentiation into osteoblasts. Outcome measures included bone strength, bone histomorphometry and architecture, serum IGF-1 and osteocalcin. GnRH-a suppressed uterine weight, decreased osteoblast proliferation, bone strength, trabecular bone volume and architecture compared to control. Elevated serum IGF-1 and osteocalcin levels and body weight were found. The ER model had an increase in osteoblast proliferation compared to the GnRH-a group, similar bone strength relative to body weight and increased trabecular bone volume in the lumbar spine compared to control. The ER animals were smaller but had developed bone strength sufficient for their size. In contrast, suppressed estradiol via hypothalamic suppression resulted in bone strength deficits and trabecular bone volume loss. In summary, our results support the hypothesis that during periods of nutritional stress the increased vertebral bone volume may be an adaptive mechanism to store mineral which differs from suppressed estradiol resulting from hypothalamic suppression. PMID:21807131
Altered neuroendocrine regulation of gonadotropin secretion in women distance runners.
Veldhuis, J D; Evans, W S; Demers, L M; Thorner, M O; Wakat, D; Rogol, A D
1985-09-01
We tested the hypothesis that the neuroendocrine control of gonadotropin secretion is altered in certain women distance runners with secondary amenorrhea. To this end, we quantitated the frequency and amplitude of spontaneous pulsatile LH secretion during a 24-h interval in nine such women. The ability of the pituitary gland to release LH normally was assessed by administration of graded bolus doses of GnRH during the subsequent 8 h. Compared to normally menstruating women, six of nine amenorrheic distance runners had a distinct reduction in spontaneous LH pulse frequency, with one, three, six, five, four, or two pulses per 24 h (normal, 8-15 pulses/24 h). This reduction in LH pulse frequency occurred without any significant alterations in plasma concentrations of estradiol and free testosterone or 24-h integrated serum concentrations of LH, FSH, or PRL. Moreover, in long-distance runners, the capacity of the pituitary gland to release LH was normal or accentuated in response to exogenous pulses of GnRH. In the six women athletes with diminished spontaneous LH pulsatility, acute ovarian responsiveness also was normal, since serum estradiol concentrations increased normally in response to the GnRH-induced LH pulses. Although long-distance runners had significantly lower estimated percent body fat compared to control women, specific changes in pulsatile gonadotropin release did not correlate with degree of body leanness. In summary, certain long-distance runners with secondary amenorrhea or severe oligomenorrhea have unambiguously decreased spontaneous LH pulse frequency with intact pituitary responsiveness to GnRH. This neuroendocrine disturbance may be relevant to exercise-associated amenorrhea, since pulsatile LH release is a prerequisite for cyclic ovarian function. We speculate that such alterations in pulsatile LH release in exercising women reflect an adaptive response of the hypothalamic pulse generator controlling the intermittent GnRH signal to the pituitary gland. The basis for amenorrhea in the remaining runners who have normal pulsatile properties of LH release is not known.
Sadler Gallagher, Jenny; Feldman, Henry A; Stokes, Natalie A; Laufer, Marc R; Hornstein, Mark D; Gordon, Catherine M; DiVasta, Amy D
2017-04-01
Use of gonadotropin-releasing hormone agonists (GnRHa) to treat endometriosis can cause mood and vasomotor side effects. "Add-back therapy," the combination of low-dose hormones, limits side effects but research is limited to adults. We sought to characterize quality of life (QOL) before treatment and to compare an add-back regimen of norethindrone acetate (NA) with conjugated estrogens (CEE) to NA alone for preventing side effects of GnRHa therapy in female adolescents with endometriosis. Twelve-month double-blind, placebo-controlled trial. Pediatric Gynecology clinic in Boston, Massachusetts. Fifty female adolescents (aged 15-22 years) with surgically confirmed endometriosis initiating treatment with GnRHa. Subjects were randomized to: NA (5 mg/d) with CEE (0.625 mg/d) or NA (5 mg/d) with placebo. All subjects received leuprolide acetate depot every 3 months. The Short Form-36 v2 Health Survey, Beck Depression Inventory II, and Menopause Rating Scale were completed at repeated intervals. At baseline, subjects reported impaired physical health-related QOL compared with national norms (all P < .0001). Over 12 months, these Short Form-36 v2 scores improved (all P < .05). Subjects receiving NA with CEE showed greater improvements in the pain, vitality, and physical health subscales (P between groups < .05) than those receiving NA alone, as well as better physical functioning (P < .05). There were no changes in depression or menopause-like symptoms in either group. Female adolescents with endometriosis initiating GnRHa therapy have impaired QOL. Treatment with GnRHa combined with add-back therapy led to improved QOL, with no worsening of mood or menopausal side effects. NA with CEE was superior to NA alone for improving physical health-related QOL. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background Conventional luteal support packages are inadequate to facilitate a fresh transfer after GnRH agonist (GnRHa) trigger in patients at high risk of developing ovarian hyperstimulation syndrome (OHSS). By providing intensive luteal-phase support with oestradiol and progesterone satisfactory implantation rates can be sustained. The objective of this study was to assess the live-birth rate and incidence of OHSS after GnRHa trigger and intensive luteal steroid support compared to traditional hCG trigger and conventional luteal support in OHSS high risk Asian patients. Methods We conducted a retrospective cohort study of 363 women exposed to GnRHa triggering with intensive luteal support compared with 257 women exposed to conventional hCG triggering. Women at risk of OHSS were defined by ovarian response ≥15 follicles ≥12 mm on the day of the trigger. Results Live-birth rates were similar in both groups GnRHa vs hCG; 29.8% vs 29.2% (p = 0.69). One late onset severe OHSS case was observed in the GnRHa trigger group (0.3%) compared to 18 cases (7%) after hCG trigger. Conclusions GnRHa trigger combined with intensive luteal steroid support in this group of OHSS high risk Asian patients can facilitate fresh embryo transfer, however, in contrast to previous reports the occurrence of late onset OHSS was not completely eliminated. PMID:24369069
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faraco, J.; Francke, U.; Toledo, S.
Familial idiopathic gonadotropin deficiency (FIGD) is an autosomal recessive disorder which results in failure to develop secondary sexual characteristics. The origin is a hypothalamic defect resulting in insufficient secretion of gonadotropin-releasing hormone GnRH (also called LHRH, luteinizing hormone releasing hormone) and follicle-stimuating hormone (FSH). FIGD has been determined to be a separate entity from Kallmann syndrome which presents with hypogonadism as well as anosmia. The FIGD phenotype appears to be analogous to the phenotype of the hpg (hypogonadal) mouse. Because the hpg phenotype is the result of a structurally abnormal GnRH gene, we have studied the GnRH gene in individualsmore » from a previously reported Brazilian FIGD family. An informative dimorphic marker in the signal peptide sequence of the GnRH gene allowed assessment of linkage between the disease gene and the GnRH locus in this pedigree. We have concluded that the GnRH locus is not linked to the disease-causing mutation in these hypogonadal individuals. Recent evidence suggests that neuropeptide Y (NPY) may play a role in the initiation of puberty. We hypothesize that mutations in NPY may result in failure to secrete GnRH. We have characterized three diallelic frequent-cutter restriction fragment length polymorphisms within the human NPY locus, and are currently using these markers to determine if the NPY gene is linked to, and possibly the site of the disease mutation in this kindred.« less
Primary hypogonadism in gonadotropin-releasing hormone II receptor knockdown boars
USDA-ARS?s Scientific Manuscript database
Paradoxically, the second mammalian GnRH isoform (GnRH-II) and its receptor (GnRHR-II) are not physiological regulators of gonadotropin secretion. Instead, our data suggests that both are abundantly produced in the porcine testis and mediate testosterone secretion, independent of luteinizing hormone...
Jordan, K M; Inskeep, E K; Knights, M
2009-12-01
Three experiments were conducted on anestrous ewes of Suffolk, Dorset, and Katahdin breeding to examine the potential value of GnRH to improve ovulation and pregnancy in response to introduction of rams. In Experiment 1, treatment with GnRH 2d after treatment with progesterone (P(4); 25mg i.m.) at introduction of rams was compared to treatment with P(4) alone at the time of introduction of rams. Treatment with GnRH did not increase percentages of ewes with a corpus luteum (CL) 14d after introduction of rams, pregnant 32d after treatment with PGF(2)alpha 14d after introduction of rams, or percent of treated ewes lambing to all services. In Experiment 2, treatments with GnRH on day 2, 7, or both after introduction of rams were compared. Treatments did not differ in mean estrous response, percentages of ewes with a detectable CL or number of CL present on day 11, or mean pregnancy and lambing rates. Therefore, neither one nor two injections of GnRH at these times appeared to be effective to induce anestrous ewes to breed. In Experiment 3, treatments compared included GnRH 4d before introduction of rams, GnRH 4d before and 1d after introduction of rams, ram introduction alone, and treatment with P(4) (25mg i.m.) at the time of introduction of rams. Percentages of ewes with concentrations of P(4) greater than 1ng/mL (indicating formation of CL had occurred) 7d after ram introduction tended to be greater (P<0.07) in ewes treated with GnRH or P(4) than in control ewes treated with ram introduction alone. However, there was no difference in P(4) concentrations between groups by day 11 or 12 after introduction of rams. Estrous response rates and percentages of ewes pregnant 95d after PGF(2)alpha was administered (on day 12 after introduction of rams) tended to be greater (P=0.08 and 0.06, respectively) in ewes treated with GnRH or P(4) than in ewes exposed to rams only. There was no difference in response variables between ewes treated with GnRH 4d before introduction of rams and ewes treated with GnRH 4d before and 1d after introduction of rams. In conclusion, treatment with GnRH 4d before ram introduction showed promise as an alternative to treatment with P(4) to improve the ovulatory response and reproductive performance of ewes introduced to rams during seasonal anestrus.
2015-10-01
resulting from estrogen (E2) deprivation therapy. [20% complete] Percent Fat 0 2 4 6 8 -20 0 20 40 Weeks post-surgery OVX SHAM **p = 0.0050 by 2-way...increased body fat percentage as assessed by DXA, B. decreased bone mineral density (BMD) as assessed by DXA, and C. reduced forelimb grip strength in...e.g., glucocorticoids, GnRH inhibitors, radiation, fracture , osteoporosis, etc.) could increase the homing of dormant disseminated cancer cells to
USDA-ARS?s Scientific Manuscript database
Paradoxically, the second mammalian GnRH isoform (GnRH-II) and its receptor (GnRHR-II) are not physiological regulators of gonadotropin secretion. Instead, data from our laboratory suggests that both are abundantly produced in the porcine testis and mediate testosterone secretion independent of lute...
Testis composition and steroidogenic protein abundance in GnRH-II receptor knockdown boars
USDA-ARS?s Scientific Manuscript database
Testosterone, secreted from Leydig cells, is classically stimulated by luteinizing hormone (LH) from the anterior pituitary gland, but an LH-independent mechanism of testosterone production has also been identified in the boar. Gonadotropin-releasing hormone II (GnRH-II) and its receptor (GnRHR-II) ...
Previous studies demonstrate that gonadotroph responsiveness to GnRH, GnRH binding, and the apparent number of GnRH receptors are all increased by 17B-estradiol (E) or inhibin (IN) in ovine pituitary cultures. rogesterone attenuates these effects. o explore differences between th...
Space micro-guidance and control - Applications and architectures
NASA Technical Reports Server (NTRS)
Mettler, Edward; Hadaegh, Fred Y.
1992-01-01
The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.
Space micro-guidance and control - Applications and architectures
NASA Astrophysics Data System (ADS)
Mettler, Edward; Hadaegh, Fred Y.
1992-07-01
The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.
NASA Technical Reports Server (NTRS)
Pawlikowski, Gerald J.; Dennehy, Cornelius J.
2010-01-01
The NASA Technical Fellows periodically conduct State-of-the-Discipline assessments. The GN&C Technical Fellow contracted Harlan Brown & Company in 2007 and 2009 to conduct independent, third party studies to gain unbiased insight and understanding into the attitudes and beliefs of NASA's GN&C Community of Practice (CoP). The paper first outlines the background, objectives and methodology of the studies. The paper then summarizes key study results of the 2007 baseline study, as well as the 2009 update. The update was then used to track and monitor perceptions, identify performance trends, identify areas where further improvement needs to be made in NASA's GN&C discipline. It also generated feedback on the recently developed GN&C CoP online knowledge capture and learning site.
Eftekhar, Maryam; Mohammadian, Farnaz; Yousefnejad, Fariba; Khani, Parisa
2013-01-01
This study compares the microdose flare-up protocol to the ultrashort gonadotropinreleasing hormone (GnRH) agonist flare combined with the fixed multidose GnRH antagonist protocol in poor responders undergoing ovarian stimulation. In this randomized clinical trial, 120 women who were candidates for assisted reproductive techniques (ART) and had histories of one or more failed in vitro fertilization (IVF) cycles with three or fewer retrieved oocytes were prospectively randomized into two groups. Group I (60 patients) received the microdose flare-up regimen and group II (60 patients) received the ultrashort GnRH agonist combined with fixed GnRH antagonist. There were no significant differences between the groups in the number of used gonadotropin ampoules (p=0.591), duration of stimulation (p=0.610), number of retrieved oocytes (p=0.802), fertilization rate (p=0.456), and the number of transferred embryos (p=0.954). The clinical pregnancy rates were statistically similar in group I (10%) compared with group II (13.3%, p=0.389). According to our results, there is no significant difference between these protocols for improving the ART outcome in poor responders. Additional prospective, randomized studies with more patients is necessary to determine the best protocol (Registration Number: IRCT201105096420N1).
Exploring Genetic Numeracy Skills in a Sample of U.S. University Students
Bergman, Margo W.; Goodson, Patricia; Goltz, Heather Honoré
2017-01-01
Misconceptions concerning numerical genetic risk exist even within educated populations. To more fully characterize and understand the extent of these risk misunderstandings, which have large potential impact on clinical care, we analyzed the responses from 2,576 students enrolled at 2 Southwestern universities using the PGRID tool, a 138-item web-based survey comprising measures of understanding of genetics, genetic disease, and genetic risk. The primary purpose of this study was to characterize the intersection of risk perception and knowledge, termed genetic numeracy (GN). Additionally, we identify sociodemographic factors that might shape varying levels of GN skills within the study sample and explore the impact of GN on genetic testing intentions using both the Marascuilo procedure and logistic regression analysis. Despite having some college coursework or at least one college degree, most respondents lacked high-level aptitude in understanding genetic inheritance risk, especially with respect to recessive disorders. Prior education about genetics and biology, as well as exposure to biomedical models of genetics, was associated with higher GN levels; exposure to popular media models of genetics was inversely associated with higher GN levels. Differing GN levels affects genetic testing intentions. GN will become more relevant as genetic testing is increasingly incorporated into general clinical care. PMID:28900615
Exploring Genetic Numeracy Skills in a Sample of U.S. University Students.
Bergman, Margo W; Goodson, Patricia; Goltz, Heather Honoré
2017-01-01
Misconceptions concerning numerical genetic risk exist even within educated populations. To more fully characterize and understand the extent of these risk misunderstandings, which have large potential impact on clinical care, we analyzed the responses from 2,576 students enrolled at 2 Southwestern universities using the PGRID tool, a 138-item web-based survey comprising measures of understanding of genetics, genetic disease, and genetic risk. The primary purpose of this study was to characterize the intersection of risk perception and knowledge, termed genetic numeracy (GN). Additionally, we identify sociodemographic factors that might shape varying levels of GN skills within the study sample and explore the impact of GN on genetic testing intentions using both the Marascuilo procedure and logistic regression analysis. Despite having some college coursework or at least one college degree, most respondents lacked high-level aptitude in understanding genetic inheritance risk, especially with respect to recessive disorders. Prior education about genetics and biology, as well as exposure to biomedical models of genetics, was associated with higher GN levels; exposure to popular media models of genetics was inversely associated with higher GN levels. Differing GN levels affects genetic testing intentions. GN will become more relevant as genetic testing is increasingly incorporated into general clinical care.
Vu, Maria; Weiler, Bradley; Trudeau, Vance L
2017-12-01
Gonadotropin-releasing hormone (GnRH) stimulates luteinizing hormone release to control ovulation and spermiation in vertebrates. Dopamine (DA) has a clear inhibitory role in the control of reproduction in numerous teleosts, and emerging evidence suggests that similar mechanisms may exist in amphibians. The interactions between GnRH and DA on spawning success and pituitary gene expression in the Northern leopard frog (Lithobates pipiens) were therefore investigated. Frogs were injected during the natural breeding season with a GnRH agonist [GnRH-A; (Des-Gly 10 , D-Ala 6 , Pro-NHEt 9 )-LHRH; 0.1μg/g and 0.4μg/g] alone and in combination with the dopamine receptor D2 antagonist metoclopramide (MET; 5μg/g and 10μg/g). Injected animals were allowed to breed in outdoor mesocosms. Time to amplexus and oviposition were assessed, and egg mass release, incidences of amplexus, egg mass weight, total egg numbers and fertilization rates were measured. To examine gene expression, female pituitaries were sampled at 12, 24 and 36h following injection of GnRH-A (0.4μg/g) alone and in combination with MET (10μg/g). The mRNA levels of the genes lhb, fshb, gpha, drd2 and gnrhr1 were measured using quantitative real-time PCR. Data were analyzed by a two-way ANOVA. Both GnRH-A doses increased amplexus, oviposition and fertilization alone. Co-injection of MET with GnRH-A did not further enhance spawning success. Injection of GnRH-A alone time-dependently increased expression of lhb, fshb, gpha and gnrhr1. The major effect of MET alone was to decrease expression of drd2. Importantly, the stimulatory effects of GnRH-A on lhb, gpha and gnrhr1 were potentiated by the co-injection of MET at 36h. At this time, expression of fshb was increased only in animals injected with both GnRH-A and MET. Spawning success was primarily driven by the actions of GnRH-A. The hypothesized inhibitory action of DA was supported by pituitary gene expression analysis. The results from this study provide a fundamental framework for future time- and dose-response investigations to improve current spawning methods in amphibians. Copyright © 2017. Published by Elsevier Inc.
Boepple, P A; Mansfield, M J; Wierman, M E; Rudlin, C R; Bode, H H; Crigler, J F; Crawford, J D; Crowley, W F
1986-02-01
Studies utilizing the administration of GnRH in various GnRH-deficient models have revealed the critical importance of the dose and mode of delivery of this releasing factor in determining the subsequent pituitary response. Chronic administration of long acting GnRH agonists (GnRHa), like continuous infusion of high doses of the native peptide, results in suppression of pituitary gonadotropin secretion. This selective and reversible suppression of gonadotropin secretion suggested several therapeutic applications for these analogs, particularly in the treatment of central precocious puberty (CPP), a disorder for which the previously available therapies lacked uniform efficacy and were associated with potential side effects. In our series, 74 children with CPP have been treated during the last 5 yr with the potent GnRH agonist, [D-Trp6, Pro9-ethylamide(NEt)]GnRH. Having selected a dose and route of administration that produced uniform suppression of spontaneous and stimulated pituitary gonadotropin secretion, GnRHa therapy resulted in a fall of gonadal sex steroid levels into the prepubertal range, a halting or regression of secondary sexual development, and a complete cessation of menses. Growth velocity slowed during therapy, with this slowing more pronounced during prolonged treatment periods and among those patients with more advanced chronological and skeletal ages. Skeletal maturation was retarded to a greater degree than linear growth, with resultant increases in the predictions for adult stature. Moreover, these benefits have been achieved in the absence of significant side effects. Complete reversal of the suppression of gonadarche has followed discontinuation of therapy; however, patterns of growth and skeletal maturation after discontinuation of GnRHa administration remain to be characterized. Thus, the impact of GnRHa therapy on final height must await further longitudinal study. The selective nature of GnRHa suppression of gonadarche also permits an investigation of the natural history of adrenarche and its discrete influences upon skeletal growth and maturation. In addition, GnRHa therapy of CPP provides a unique opportunity to study the effects of gonadal sex steroids on GH secretion and somatomedin-C (Sm-C) generation during sexual maturation. Finally, the detailed characterization of children with precocious puberty has helped to define more precisely a subset of patients whose precocity occurs in the absence of demonstrable gonadotropin secretion.(ABSTRACT TRUNCATED AT 400 WORDS)
Driving reproduction: RFamide peptides behind the wheel.
Kriegsfeld, Lance J
2006-12-01
The availability of tools for probing the genome and proteome more efficiently has allowed for the rapid discovery of novel genes and peptides that play important, previously uncharacterized roles in neuroendocrine regulation. In this review, the role of a class of neuropeptides containing the C-terminal Arg-Phe-NH(2) (RFamide) in regulating the reproductive axis will be highlighted. Neuropeptides containing the C-terminal Phe-Met-Arg-Phe-NH(2) (FMRFamide) were first identified as cardioregulatory elements in the bi-valve mollusk Macrocallista nimbosa. During the past two decades, numerous studies have shown the presence of structurally similar peptides sharing the RFamide motif across taxa. In vertebrates, RFamide peptides have pronounced influences on opiatergic regulation and neuroendocrine function. Two key peptides in this family are emerging as important regulators of the reproductive axis, kisspeptin and gonadotropin-inhibitory hormone (GnIH). Kisspeptin acts as the accelerator, directly driving gonadotropin-releasing hormone (GnRH) neurons, whereas GnIH acts as the restraint. Recent evidence suggests that both peptides play a role in mediating the negative feedback effects of sex steroids. This review presents the hypothesis that these peptides share complementary roles by responding to internal and external stimuli with opposing actions to precisely regulate the reproductive axis.
Driving Reproduction: RFamide Peptides Behind the Wheel
Kriegsfeld, Lance J.
2012-01-01
The availability of tools for probing the genome and proteome more efficiently has allowed for the rapid discovery of novel genes and peptides that play important, previously-uncharacterized roles in neuroendocrine regulation. In this review, the role of a class of neuropeptides containing the C-terminal Arg-Phe-NH2 (RFamide) in regulating the reproductive axis will be highlighted. Neuropeptides containing the C-terminal Phe- Met-Arg-Phe-NH2 (FMRFamide) were first identified as cardioregulatory elements in the bi-valve mollusk, Macrocallista nimbosa. During the past two decades, numerous studies have shown the presence of structurally-similar peptides sharing the RFamide motif across taxa. In vertebrates, RFamide peptides have pronounced influences on opiatergic regulation and neuroendocrine function. Two key peptides in this family are emerging as important regulators of the reproductive axis, kisspeptin and gonadotropin-inhibitory hormone (GnIH). Kisspeptin acts as the accelerator, directly driving gonadotropin-releasing hormone (GnRH) neurons, whereas GnIH acts as the restraint. Recent evidence suggests that both peptides play a role in mediating the negative feedback effects of sex steroids. This review presents the hypothesis that these peptides share complementary roles by responding to internal and external stimuli with opposing actions to precisely regulate the reproductive axis. PMID:16876801
Experience with cyproterone acetate in the treatment of precocious puberty.
Laron, Z; Kauli, R
2000-07-01
The authors review their experience (1967-present) in the use of cyproterone acetate (CPA) in precocious puberty. CPA was found effective in persistently suppressing pituitary gonadotropic secretion when administered orally at a dose of 50 mg b.i.d. (70-100 mg/d). After the introduction of gonadotropic analogues (GnRHa) for treatment of central precocious puberty, short term use of CPA was found useful to counteract the initial stimulatory effect of the GnRHa as well as an adjunct drug in case of very active adrenarche causing advanced bone age during GnRHa treatment. The final heights of girls treated with CPA and girls treated with D-Trp6-LHRH were found comparable: 157.8+/-5.1 cm vs 159.6+/-6.3 cm, respectively. The main adverse effects were occasional fatigue due to partial adrenal insufficiency with CPA and gynecomastia in a few boys. Liver function tests were normal in all patients with the exception of one boy with severe hypothalamic disease, including precocious puberty, who developed liver cirrhosis 3 years after stopping CPA following 5 years treatment. Other indications for CPA treatment during childhood and adolescence, such as fast puberty, congenital adrenal hyperplasia and acne, are also mentioned.
Herman, A P; Krawczyńska, A; Bochenek, J; Haziak, K; Romanowicz, K; Misztal, T; Antushevich, H; Herman, A; Tomaszewska-Zaremba, D
2013-05-01
This study was designed to determine the effect of a potent subcutaneously injected acetylcholinesterase inhibitor, rivastigmine (6mg/animal), on the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release during inflammation induced by an intravenous lipopolysaccharide (LPS) (400ng/kg) injection in ewes during the follicular phase of the estrous cycle. The results are expressed as the mean values from -2 to -0.5h before and +1 to +3h after treatment. Rivastigmine decreased the acetylcholinesterase concentration in the blood plasma from 176.9±9.5 to 99.3±15.1μmol/min/ml. Endotoxin suppressed LH (5.4±0.6ng/ml) and GnRH (4.6±0.4pg/ml) release; however, the rivastigmine injection restored the LH concentration (7.8±0.8ng/ml) to the control value (7.8±0.7ng/ml) and stimulated GnRH release (7.6±0.8pg/ml) compared to the control (5.9±0.4pg/ml). Immune stress decreased expression of the GnRH gene and its receptor (GnRH-R) in the median eminence as well as LHβ and GnRH-R in the pituitary. In the case of the GnRH and LHβ genes, the suppressive effect of inflammation was negated by rivastigmine. LPS stimulated cortisol and prolactin release (71.1±14.7 and 217.1±8.0ng/ml) compared to the control group (9.0±5.4 and 21.3±3.5ng/ml). Rivastigmine also showed a moderating effect on cortisol and prolactin secretion (43.1±13.1 and 169.7±29.5ng/ml). The present study shows that LPS-induced decreases in GnRH and LH can be reduced by the AChE inhibitor. This action of the AChE inhibitor could result from the suppression of pro-inflammatory cytokine release and the attenuation of the stress response. However, a direct stimulatory effect of ACh on GnRH/LH secretion should also be considered. Copyright © 2013 Elsevier B.V. All rights reserved.
Riaz Ahmed, Kausar Begam; Kanduluru, Ananda Kumar; Feng, Li; Fuchs, Philip L; Huang, Peng
2017-05-01
Metastatic melanoma is the most aggressive of all skin cancers and is associated with poor prognosis owing to lack of effective treatments. 25-epi Ritterostatin GN1N is a novel antitumor agent with yet undefined mechanisms of action. We sought to delineate the antitumor mechanisms of 25-epi Ritterostatin GN1N in melanoma cells to determine the potential of this compound as a treatment for melanoma. Activation of the endoplasmic reticulum (ER) stress protein glucose-regulated protein 78 (GRP78) has been associated with increased melanoma progression, oncogenic signaling, drug resistance, and suppression of cell death. We found that 25-epi Ritterostatin GN1N induced cell death in melanoma cells at nanomolar concentrations, and this cell death was characterized by inhibition of GRP78 expression, increased expression of the ER stress marker CHOP, loss of mitochondrial membrane potential, and lipidation of the autophagy marker protein LC3B. Importantly, normal melanocytes exhibited limited sensitivity to 25-epi Ritterostatin GN1N. Subsequent in vivo results demonstrated that 25-epi Ritterostatin GN1N reduced melanoma growth in mouse tumor xenografts and did not affect body weight, suggesting minimal toxicity. In summary, our findings indicate that 25-epi Ritterostatin GN1N causes ER stress and massive autophagy, leading to collapse of mitochondrial membrane potential and cell death in melanoma cells, with minimal effects in normal melanocytes. Thus, 25-epi Ritterostatin GN1N is a promising anticancer agent that warrants further investigation.
Martin, Cecilia; Balasubramanian, Ravikumar; Dwyer, Andrew A; Au, Margaret G; Sidis, Yisrael; Kaiser, Ursula B; Seminara, Stephanie B; Pitteloud, Nelly; Zhou, Qun-Yong; Crowley, William F
2011-04-01
A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a "second hit" or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans.
Martin, Cecilia; Balasubramanian, Ravikumar; Dwyer, Andrew A.; Au, Margaret G.; Sidis, Yisrael; Kaiser, Ursula B.; Seminara, Stephanie B.; Pitteloud, Nelly; Zhou, Qun-Yong
2011-01-01
A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a “second hit” or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans. PMID:21037178
The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies.
Jennes, L
1987-01-01
The distribution of gonadotropin-releasing hormone (GnRH)-containing neurons and fibers in the olfactory bulb was studied with light and electron microscopic immunohistochemistry in combination with retrograde transport of "True Blue" and horseradish peroxidase and lesion experiments. GnRH-positive neurons are found in the septal roots of the nervus terminalis, in the ganglion terminale, intrafascicularly throughout the nervus terminalis, in a dorso-ventral band in the caudal olfactory bulb, in various layers of the main and accessory olfactory bulb, and in the basal aspects of the nasal epithelium. Electron microscopic studies show that the nerve fibers in the nervus terminalis are not myelinated and are not surrounded by Schwann cell sheaths. In the ganglion terminale, "smooth" GnRH neurons are seen in juxtaposition to immunonegative neurons. Occasionally, axosomatic specializations are found in the ganglion terminale, but such synaptic contacts are not seen intrafascicularly in the nervus terminalis. Retrograde transport studies indicate that certain GnRH neurons in the septal roots of the nervus terminalis were linked to the amygdala. In addition, a subpopulation of nervus terminalis-related GnRH neurons has access to fenestrated capillaries whereas other GnRH neurons terminate at the nasal epithelium. Lesions of the nervus terminalis caudal to the ganglion terminale result in sprouting of GnRH fibers at both sites of the knife cut. The results suggest that GnRH in the olfactory system of the mouse can influence a variety of target sites either via the blood stream, via the external cerebrospinal fluid or via synaptic/asynaptic contacts with, for example, the receptor cells in the nasal mucosa.
Brown, J L; Goodrowe, K L; Simmons, L G; Armstrong, D L; Wildt, D E
1988-01-01
Frequent blood samples were collected to study hormonal responses to GnRH in male and female leopards and tigers. Animals were anaesthetized with ketamine-HCl and blood samples were collected every 5 min for 15 min before and 160 min after i.v. administration of GnRH (1 micrograms/kg body weight) or saline. No differences in serum cortisol concentrations were observed between sexes within species, but mean cortisol was 2-fold greater in leopards than tigers. GnRH induced a rapid rise in LH in all animals (18.3 +/- 0.9 min to peak). Net LH peak height above pretreatment levels was 3-fold greater in males than conspecific females and was also greater in tigers than leopards. Serum FSH increased after GnRH, although the magnitude of response was less than that observed for LH. Basal LH and FSH and GnRH-stimulated FSH concentrations were not influenced by sex or species. Serum testosterone increased within 30-40 min after GnRH in 3/3 leopard and 1/3 tiger males. Basal testosterone was 3-fold greater in tiger than leopard males. LH pulses (1-2 pulses/3 h) were detected in 60% of saline-treated animals, suggesting pulsatile gonadotrophin secretion; however, in males concomitant testosterone pulses were not observed. These results indicate that there are marked sex and species differences in basal and GnRH-stimulated hormonal responses between felids of the genus Panthera which may be related to differences in adrenal activity.
Toftager, M; Bogstad, J; Løssl, K; Prætorius, L; Zedeler, A; Bryndorf, T; Nilas, L; Pinborg, A
2017-03-01
Are cumulative live birth rates (CLBRs) similar in GnRH-antagonist and GnRH-agonist protocols for the first ART cycle including all subsequent frozen-thaw cycles from the same oocyte retrieval? The chances of at least one live birth following utilization of all fresh and frozen embryos after the first ART cycle are similar in GnRH-antagonist and GnRH-agonist protocols. Reproductive outcomes of ART treatment are traditionally reported as pregnancies per cycle or per embryo transfer. However, the primary concern is the overall chance of a live birth. After the first ART cycle with fresh embryo transfer, we found live birth rates (LBRs) of 22.8% and 23.8% (P = 0.70) for the GnRH-antagonist and GnRH-agonist protocols, respectively. But with CLBRs including both fresh and frozen embryos from the first oocyte retrieval, chances of at least one live birth increases. There are no previous randomized controlled trials (RCTs) comparing CLBRs in GnRH-antagonist versus GnRH-agonist protocols. Previous studies on CLBR are either retrospective cohort studies including multiple fresh cycles or RCTs comparing single embryo transfer (SET) with double embryo transfer (DET). CLBR was a secondary outcome in a Phase IV, dual-center, open-label, RCT including 1050 women allocated to a short GnRH-antagonist or a long GnRH-agonist protocol in a 1:1 ratio over a 5-year period using a web-based concealed randomization code. The minimum follow-up time from the first IVF cycle was 2 years. The aim was to compare CLBR between the two groups following utilization of all fresh and frozen embryos from the first ART cycle. All women referred for their first ART cycle at two public fertility clinics, <40 years of age were approached. A total of 1050 subjects were allocated to treatment and 1023 women started standardized ART protocols with recombinant human follitropin-β (rFSH) stimulation. Day-2 SET was planned and additional embryos were frozen and used in subsequent frozen-thawed cycles. All pregnancies generated from oocyte retrieval during the first IVF cycle including fresh and frozen-thaw cycles were registered. Ongoing pregnancy was determined by ultrasonography at gestational week 7-9 and live birth was irrespective of the duration of gestation. CLBR was defined as at least one live birth per allocated woman after fresh and frozen cycles. Subjects were censored out after the first live birth. Cox proportional hazard model was used to evaluate the relative prognostic significance of female age, BMI, the number of retrieved oocytes and the diagnosis of infertility in relation to the CLBR. Baseline characteristics were similar and equal proportions of patients continued with frozen-thaw (frozen embryo transfer, FET) cycles after their fresh ART cycle in the GnRH-antagonist and GnRH-agonist arms. When combining all fresh and frozen-thaw embryo transfers from first oocyte retrieval with a minimum of 2-year follow-up, the CLBR was 34.1% (182/534) in the GnRH-antagonist group versus 31.2% (161/516) in the GnRH-agonist group (odds ratio (OR):1.14; 95% CI: 0.88-1.48, P = 0.32). Mean time to the first live birth was 11.0 months in the GnRH-antagonist group compared to 11.5 months in the GnRH-agonist group (P < 0.01). The total number of deliveries from all FET cycles where embryos were thawed were higher in the antagonist group 64/330 (19.4%) compared to the agonist group 43/355 (12.1%) ((OR): 1.74; 95% CI: 1.14-2.66, P = 0.01). The evaluation of prognostic factors showed that more retrieved oocytes were associated with a significantly higher CLBR in both treatment groups. For the subgroup of obese women (BMI >30 kg/m2), the CLBR was significantly higher in the GnRH-antagonist group (P = 0.02). The duration of the trial is a possible limitation with introduction of new methods as 'Freeze all' and 'GnRH-agonist triggering', but as these treatments were used in only few women, a systematic bias is not likely. Blastocyst culture of surplus embryos for freezing was introduced to both groups simultaneously, thereby minimizing the risk of bias. Furthermore, with a minimum of 2-year follow-up, a minority (<1%) still had cryopreserved embryos and no live birth at the end of the trial. The post hoc prognostic covariate analyses with multiple strata should be interpreted with caution. Finally, the physicians were not blinded to GnRH treatment group after randomization. With the improvement of embryo culture, freezing and thawing methods as well as a strategy of elective SET, CLBR until first live birth provides an all-inclusive success rate for ART. When comparing GnRH-antagonist and GnRH-agonist protocols, we find similar CLBRs, despite more oocytes being retrieved in the GnRH-agonist protocol. An unrestricted research grant is funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA (MSD). The funders had no influence on the data collection, analyses or conclusions of the study. No conflict of interests to declare. EudraCT #: 2008-005452-24. ClinicalTrial.gov: NCT00756028. 18 September 2008. 14 January 2009. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Amano, Masafumi; Mizusawa, Nanami; Okubo, Kataaki; Amiya, Noriko; Mizusawa, Kanta; Chiba, Hiroaki; Yamamoto, Naoyuki; Takahashi, Akiyoshi
2014-04-01
The stress-related corticotropin-releasing hormone (CRH) was first identified by isolation of its cDNA from the brain of the Japanese eel Anguilla japonica. CRH cDNA encodes a signal peptide, a cryptic peptide and CRH (41 amino acids). The sequence homology to mammalian CRH is high. Next, the distribution of CRH-immunoreactive (ir) cell bodies and fibers in the brain and pituitary were examined by immunohistochemistry. CRH-ir cell bodies were detected in several brain regions, e.g., nucleus preopticus pars magnocellularis, nucleus preopticus pars gigantocellularis and formatio reticularis superius. In the brain, CRH-ir fibers were distributed not only in the hypothalamus but also in various regions. Some CRH-ir fibers projected to adrenocorticotropic hormone (ACTH) cells in the rostral pars distalis of the pituitary and also the α-melanocyte-stimulating hormone (α-MSH) cells in the pars intermedia of the pituitary. Finally, the neuroanatomical relationship between the CRH neurons and gonadotropin-releasing hormone (GnRH) neurons was examined by dual-label immunohistochemistry. CRH-ir fibers were found to be in close contact with GnRH-ir cell bodies in the hypothalamus and in the midbrain tegmentum and GnRH-ir fibers were in close contact with CRH-ir cell bodies in the nucleus preopticus pars magnocellularis. These results suggest that CRH has some physiological functions other than the stimulation of ACTH and α-MSH secretion and that reciprocal connections may exist between the CRH neurons and GnRH neurons in the brain of the Japanese eel.
Chiocca, Elena; Dati, Eleonora; Baroncelli, Giampiero I; Mora, Stefano; Parrini, Donatella; Erba, Paola; Bertelloni, Silvano
2009-01-01
In children with central precocious puberty (CPP), gonadotropin-releasing hormone (GnRH) analogue treatment has been associated with an increase in body mass index (BMI). We evaluated BMI and body composition in adolescents treated with GnRH analogue at their near final height to assess the long-term effects of therapy on these parameters. We studied 20 patients (14.8 +/- 1.6 years; 17 females) previously treated with triptorelin depot for CPP (3.75 mg/28 days) from 8.1 +/- 0.8 to 11.5 +/- 0.8 years. 23 healthy adolescents with normal onset of puberty (14.7 +/- 2.1 years, 19 females) were the controls. BMI and body composition (dual-energy x-ray absorptiometry) were assessed. Patients reached their near adult height (-0.5 +/- 1.1 standard deviation score (SDS)); the girls were menstruating and the majority (15/17) had regular cycles, the boys showed normal testicular function. BMI was unchanged from the start of GnRH analogue therapy (0.4 +/- 1.0 SDS) to near adult height (0.2 +/- 1.0 SDS, p = NS vs. 0). Total fat mass (TFM) was significantly increased (16,144 +/- 8,065 g; controls 10,712.1 +/- 4,120.4 g, p < 0.02); glucose homeostasis and lipid profile corresponded to reference ranges. GnRH analogue therapy did not show long-term detrimental effects on BMI, but it may increase TFM, suggesting that body composition should be monitored till adulthood. Copyright 2009 S. Karger AG, Basel.
Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease
El Machhour, Fala; Keuylian, Zela; Kavvadas, Panagiotis; Dussaule, Jean-Claude
2015-01-01
Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN. PMID:25421557
Leptin and Reproduction: Past Milestones, Present Undertakings and Future Endeavors
Chehab, Farid F.
2014-01-01
The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B and dynorphin and that could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that AgRP/NPY neurons project onto GnRH and kisspeptin neurons, allowing a crosstalk between food intake and reproduction. Finally, whereas puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. Mechanisms underlying leptin resistance in pregnancy have lagged, however the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the next decade to shed new light on these complex and essential pathways. PMID:25118207
Yousuf, Muhammad Rizwan; Martins, João Paulo N; Ahmad, Nasim; Nobis, Kerry; Pursley, J Richard
2016-10-01
The overarching objective of this study was to develop an alternative strategy for first and greater services that will improve fertility in lactating dairy cows for dairy operations limited by labor or other logistical constraints that make it difficult to use Presynch-11, G6G, or Double-Ovsynch. Our overall hypothesis was that simplification of a Presynch program through the combination of PGF2α and GnRH on the same day (PG + G), 7 days before the first GnRH of Ovsynch, would allow for similar ovulation and luteolysis rate and pregnancies per AI (P/AI) compared with G6G. Lactating dairy cows 58 to 64 days in milk (first service; n = 114), and cows diagnosed not pregnant 39 days after previous AI (second + service; n = 122) were blocked by parity and service and randomly assigned to control or PG + G. Control cows received G6G (n = 116) that consisted of PGF2α, 2-day GnRH, 6-day GnRH, 7-day PGF2α, 56-hour GnRH, and 16-hour AI. Treated cows (PG + G; n = 121) received PGF2α and GnRH, 7-day GnRH, 7-day PGF2α, 56-hour GnRH, and 16-hour AI. All cows received a second PGF2α 24 hours after the PGF2α of Ovsynch. First service cows received AI between 76 and 82 days in milk and second + service received AI 57 days after previous AI. Pregnancies/AI (n = 230) were similar in controls compared with treated cows on Day 35 (57 vs. 50%; P = 0.27) and Day 49 (54 vs. 47%; P = 0.33), respectively. Percent of cows ovulating after GnRH of the presynchronization was greater (P = 0.002) for controls vs. treated (80 vs. 58%); however, ovulation after first GnRH of Ovsynch was similar (67 vs. 68%; P = 0.86). Serum concentrations of progesterone were similar (P = 0.78) at the time of first GnRH of Ovsynch for control and treated cows (2.22 vs. 2.14 ng/mL). However, serum progesterone at the time of PGF2α of Ovsynch was greater (P = 0.002) for control cows compared with treated cows (5.75 vs. 4.64 ng/mL). In summary, administering both PGF2α and GnRH on the same day, 7 days before the start of Ovsynch, appears to be a simple alternative that results in acceptable P/AI but potentially less progesterone during the growth of the ovulatory follicle. Copyright © 2016 Elsevier Inc. All rights reserved.
Arshad, Usman; Qayyum, Arslan; Hassan, Mubbashar; Husnain, Ali; Sattar, Abdul; Ahmad, Nasim
2017-11-01
The objective of the present study was to determine the effect of resynchronization on Day 23 with either GnRH or P4 (controlled internal drug release device containing progesterone; CIDR) on pregnancy rate, cumulative pregnancy, and embryonic and fetal losses in CIDR-GnRH synchronized Nili-Ravi buffaloes. Buffaloes (n = 181) of mixed parity, lactating, 181 ± 73 days postpartum, a body condition score (BCS) of 3.2 ± 0.5 (scale of 1-5), and 450-600 kg weight were subjected to synchronization and resynchronization. All buffaloes received CIDR on Day -9.5. In addition, GnRH was injected 36 h after CIDR removal, and timed artificial insemination (TAI) was performed 18 h later (Day 0). On Day 23, buffaloes were randomly assigned to receive one of the following treatments: 1) CON (n = 63), 2) P4 (n = 55), and 3) GnRH (n = 63) for resynchronization (2nd AI). Pregnancy rate, and embryonic and fetal losses were monitored by serial ultrasonography on Days 30, 45, 60, and 90 after synchronization (1st TAI), respectively. The pregnancy rate in GnRH-treated buffaloes remained significantly and consistently higher (P < 0.05) than in the CON group at Days 30, 45, 60, and 90 after 1st TAI. Based on the pregnancy diagnosis, on Day 30 post 1st TAI, buffaloes that remained non-pregnant in the CON, P4, and GnRH groups received: 1) Artificial insemination on detected estrus (AIDE; n = 37), 2) CIDR-GnRH protocol (CIDR; n = 27), and 3) Ovsynch protocol (OVS; n = 23), respectively. The pregnancy rate in resynchronized buffaloes did not differ (P > 0.05) between the OVS and CIDR groups; whereas the, cumulative pregnancy rate in GnRH + OVS buffaloes (81%) after 1st and 2 nd AI when determined on Day 64 was higher (P < 0.05) than that in CON + AIDE (59%) buffaloes. The embryonic losses were significantly lower (P < 0.05) in GnRH-treated (18%) buffaloes, than in CON (42%) buffaloes on Day 45 post 1st TAI. Fetal losses were fewer and did not differ (P > 0.05) due to treatments on Day 60 or 90 post 1st AI. In conclusion, 1) the pregnancy rate and cumulative pregnancy rate in GnRH-treated buffaloes were higher than in CON buffaloes on Day 64 after synchronization and resynchronization, and 2) embryonic and fetal losses were lower in GnRH-treated buffaloes than in CON buffaloes when determined from Day 31-90 post 1st TAI. Copyright © 2017 Elsevier Inc. All rights reserved.
Varamini, Pegah; Rafiee, Amirreza; Giddam, Ashwini Kumar; Mansfeld, Friederike M; Steyn, Frederik; Toth, Istvan
2017-10-26
Gonadotropin-releasing hormone (GnRH) agonists (e.g., triptorelin) are used for androgen suppression therapy. They possess improved stability as compared to the natural GnRH, yet they suffer from a poor pharmacokinetic profile. To address this, we used a GnRH peptide-modified dendrimer platform with and without lipidation strategy. Dendrimers were synthesized on a polylysine core and bore either native GnRH (1, 2, and 5) or lipid-modified GnRH (3 and 4). Compound 3, which bore a lipidic moiety in a branched tetramer structure, showed approximately 10-fold higher permeability and metabolic stability and 39 times higher antitumor activity against hormone-resistant prostate cancer cells (DU145) relative to triptorelin. In gonadotropin-release experiments, dendrimer 3 was shown to be the most potent construct. Dendrimer 3 showed similar luteinizing hormone (LH)-release activity to triptorelin in mice. Our findings indicate that dendrimer 3 is a promising analog with higher potency for the treatment of hormone-resistant prostate cancer than the currently available GnRH agonists.
Gonadotropin-releasing hormone immunoreactivity in the adult and fetal human olfactory system.
Kim, K H; Patel, L; Tobet, S A; King, J C; Rubin, B S; Stopa, E G
1999-05-01
Studies in fetal brain tissue of rodents, nonhuman primates and birds have demonstrated that cells containing gonadotropin-releasing hormone (GnRH) migrate from the olfactory placode across the nasal septum into the forebrain. The purpose of this study was to examine GnRH neurons in components of the adult and fetal human olfactory system. In the adult human brain (n=4), immunoreactive GnRH was evident within diffusely scattered cell bodies and processes in the olfactory bulb, olfactory nerve, olfactory cortex, and nervus terminalis located on the anterior surface of the gyrus rectus. GnRH-immunoreactive structures showed a similar distribution in 20-week human fetal brains (n=2), indicating that the migration of GnRH neurons is complete at this time. In 10-11-week fetal brains (n=2), more cells were noted in the nasal cavity than in the brain. Our data are consistent with observations made in other species, confirming olfactory derivation and migration of GnRH neurons into the brain from the olfactory placode. Copyright 1999 Elsevier Science B.V.
Dawson, Alistair
2015-04-01
This paper reviews current knowledge of photoperiod control of GnRH-1 secretion and proposes a model in which two processes act together to regulate GnRH1 secretion. Photo-induction controls GnRH1 secretion and is directly related to prevailing photoperiod. Photo-inhibition, a longer term process, acts through GnRH1 synthesis. It progresses each day during daylight hours, but reverses during darkness. Thus, photo-inhibition gradually increases when photoperiods exceed 12h, and reverses under shorter photoperiods. GnRH1 secretion on any particular day is the net result of these two processes acting in tandem. The only difference between species is their sensitivity to photo-inhibition. This can potentially explain differences in timing and duration of breeding seasons between species, why some species become absolutely photorefractory and others relatively photorefractory, why breeding seasons end at the same time at different latitudes within species, and why experimental protocols sometimes produce results that appear counter to what happens naturally. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.
2008-01-01
This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA projects. This paper will then describe key issues and findings from several of the recent GN&C-related independent assessments and consultations performed and/or supported by the NESC GN&C TDT. Among the examples of the GN&C TDT s work that will be addressed in this paper are the following: the Space Shuttle Orbiter Repair Maneuver (ORM) assessment, the ISS CMG failure root cause assessment, the Demonstration of Autonomous Rendezvous Technologies (DART) spacecraft mishap consultation, the Phoenix Mars lander thruster-based controllability consultation, the NASA in-house Crew Exploration Vehicle (CEV) Smart Buyer assessment and the assessment of key engineering considerations for the Design, Development, Test & Evaluation (DDT&E) of robust and reliable GN&C systems for human-rated spacecraft.
Bommakanti, R K; Bokoch, G M; Tolley, J O; Schreiber, R E; Siemsen, D W; Klotz, K N; Jesaitis, A J
1992-04-15
Photoaffinity-labeled N-formyl chemotactic peptide receptors from human neutrophils solubilized in octyl glucoside exhibit two forms upon sucrose density gradient sedimentation, with apparent sedimentation coefficients of approximately 4 and 7 S. The 7 S form can be converted to the 4 S form by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) with an EC50 of approximately 20 nM, suggesting that the 7 S form may represent a physical complex of the receptor with endogenous G protein (Jesaitis, A. J., Tolley, J. O., Bokoch, G. M., and Allen, R. A. (1989) J. Cell Biol. 109, 2783-2790). To probe the nature of the 7 S form, we reconstituted the 7 S form from the 4 S form by adding purified G protein. The 4 S form, obtained by solubilizing GTP gamma S-treated neutrophil plasma membranes, was incubated with purified (greater than 95%) Gi protein from bovine brain (containing both Gi alpha 1 and Gi alpha 2) or with neutrophil G protein (Gn), and formation of the 7 S complex was analyzed on sucrose density gradients. The EC50 of 7 S complex formation induced by the two G proteins was 70 +/- 25 and 170 +/- 40 nM for Gn and Gi, respectively. No complexation was measurable when bovine transducin (Gt) was used up to 30 times the EC50 for Gn. The EC50 for Gi was the same for receptors, obtained from formyl peptide-stimulated or unstimulated cells. The addition of 10 microM GTP gamma S to the reconstituted 7 S complex caused a complete revision of the receptor to the 4 S form, and anti-Gi peptide antisera immunosedimented the 7 S form. ADP-ribosylation of Gi prevented formation of the 7 S form even at 20 times the concentration of unribosylated Gi normally used to attain 50% conversion to the 7 S form. These observations suggest that the 7 S species is a physical complex containing N-formyl chemotactic peptide receptor and G protein.
Psychological and medical care of gender nonconforming youth.
Vance, Stanley R; Ehrensaft, Diane; Rosenthal, Stephen M
2014-12-01
Gender nonconforming (GN) children and adolescents, collectively referred to as GN youth, may seek care to understand their internal gender identities, socially transition to their affirmed genders, and/or physically transition to their affirmed genders. Because general pediatricians are often the first point of contact with the health care system for GN youth, familiarity with the psychological and medical approaches to providing care for this population is crucial. The objective of this review is to provide an overview of existing clinical practice guidelines for GN youth. Such guidelines emphasize a multidisciplinary approach with collaboration of medical, mental health, and social services/advocacy providers. Appropriate training needs to be provided to promote comprehensive, culturally competent care to GN youth, a population that has traditionally been underserved and at risk for negative psychosocial outcomes. Copyright © 2014 by the American Academy of Pediatrics.
Discovery of an Orally Bioavailable Gonadotropin-Releasing Hormone Receptor Antagonist.
Kim, Seon-Mi; Lee, Minhee; Lee, So Young; Park, Euisun; Lee, Soo-Min; Kim, Eun Jeong; Han, Min Young; Yoo, Taekyung; Ann, Jihyae; Yoon, Suyoung; Lee, Jiyoun; Lee, Jeewoo
2016-10-13
We developed a compound library for orally available gonadotropin-releasing hormone (GnRH) receptor antagonists that were based on a uracil scaffold. On the basis of in vitro activity and CYP inhibition profile, we selected 18a (SKI2496) for further in vivo studies. Compound 18a exhibited more selective antagonistic activity toward the human GnRH receptors over the GnRHRs in monkeys and rats, and this compound also showed inhibitory effects on GnRH-mediated signaling pathways. Pharmacokinetic and pharmacodynamic evaluations of 18a revealed improved bioavailability and superior gonadotropic suppression activity compared with Elagolix, the most clinically advanced compound. Considering that 18a exhibited highly potent and selective antagonistic activity toward the hGnRHRs along with favorable pharmacokinetic profiles, we believe that 18a may represent a promising candidate for an orally available hormonal therapy.
Soldani, G; Del Tacca, M; Bambini, G; Polloni, A; Bernardini, C; Martinotti, E; Martino, E
1982-01-01
The effects of GnRH on gastric secretion and gastrin release from dogs provided with gastric fistulae and Heidenhain pouches have been investigated. A transient yet significant inhibition of pentagastrin-stimulated secretion from gastric fistulae was observed, while secretion from Heidenhain pouches was unchanged. The maximal inhibitory effect of GnRH on both acid and pepsin secretion stimulated by 2-deoxy-D-glucose was obtained from gastric fistulae. On the contrary, GnRH failed to affect either acid secretion stimulated by bethanechol or acid secretion and gastrin release induced by bombesin. The present results indicate that GnRH possesses an inhibitory action on gastric secretion from the vagally innervated stomach of the dog. The most likely inhibitory mechanism seems to be represented by a decrease of the vagal activity.
Brito, L F C; Baldrighi, J M; Wolf, C A; Ginther, O J
2017-01-01
The objective of the present study was to investigate the effect of reproductive hormones (GnRH, hCG, LH and progesterone) on the regulation of corpus luteum (CL) and ovarian blood flow. Diestrous mares received a single treatment of saline, 100μg gonadorelin (GnRH), or 1500IU hCG 10days after ovulation. Plasma LH and progesterone concentrations, resistance index (RI) for ovarian artery blood-flow, and percentage of corpus luteum (CL) with color-Doppler signals of blood flow were determined immediately before treatment (hour 0) and at hours 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, and 6. In the GnRH group, LH increased (P<0.0001) between hours 0 and 0.25 and then progressively decreased; concentration of LH was not affected in the saline and hCG groups. Progesterone concentration was not different among groups. In the GnRH group, RI tended (P<0.07) to decrease between hours 0 and 1.5 and increased (P<0.01) between hours 1.5 and 4. In the hCG group, two transient RI decreases (P<0.05) occurred before hour 2. The percentage change from hour 0 in the percentage of CL with blood-flow signals was greater at hour 0.5 in the GnRH group than in the saline group and was intermediate in the hCG group. The similarity among groups in progesterone concentration indicated that changes in progesterone were not involved in the GnRH and hCG stimulation of ovarian vascular perfusion. Effects of treatment might have been mediated through LH; however, since hCG biological activity is primarily LH-like, the differences in timing and degree of ovarian and luteal blood flow changes after GnRH or hCG administration in the present study suggest that GnRH might have a direct effect on ovarian blood vessels and vascular control. Copyright © 2016. Published by Elsevier B.V.
Configuring the Orion Guidance, Navigation, and Control Flight Software for Automated Sequencing
NASA Technical Reports Server (NTRS)
Odegard, Ryan G.; Siliwinski, Tomasz K.; King, Ellis T.; Hart, Jeremy J.
2010-01-01
The Orion Crew Exploration Vehicle is being designed with greater automation capabilities than any other crewed spacecraft in NASA s history. The Guidance, Navigation, and Control (GN&C) flight software architecture is designed to provide a flexible and evolvable framework that accommodates increasing levels of automation over time. Within the GN&C flight software, a data-driven approach is used to configure software. This approach allows data reconfiguration and updates to automated sequences without requiring recompilation of the software. Because of the great dependency of the automation and the flight software on the configuration data, the data management is a vital component of the processes for software certification, mission design, and flight operations. To enable the automated sequencing and data configuration of the GN&C subsystem on Orion, a desktop database configuration tool has been developed. The database tool allows the specification of the GN&C activity sequences, the automated transitions in the software, and the corresponding parameter reconfigurations. These aspects of the GN&C automation on Orion are all coordinated via data management, and the database tool provides the ability to test the automation capabilities during the development of the GN&C software. In addition to providing the infrastructure to manage the GN&C automation, the database tool has been designed with capabilities to import and export artifacts for simulation analysis and documentation purposes. Furthermore, the database configuration tool, currently used to manage simulation data, is envisioned to evolve into a mission planning tool for generating and testing GN&C software sequences and configurations. A key enabler of the GN&C automation design, the database tool allows both the creation and maintenance of the data artifacts, as well as serving the critical role of helping to manage, visualize, and understand the data-driven parameters both during software development and throughout the life of the Orion project.
Thomsen, Frederik Birkebæk; Sandin, Fredrik; Garmo, Hans; Lissbrant, Ingela Franck; Ahlgren, Göran; Van Hemelrijck, Mieke; Adolfsson, Jan; Robinson, David; Stattin, Pär
2017-12-01
In observational studies, men with prostate cancer treated with gonadotropin-releasing hormone (GnRH) agonists had a higher risk of cardiovascular disease (CVD) compared to men who had undergone orchiectomy. However, selection bias may have influenced the difference in risk. To investigate the association of type of androgen deprivation therapy (ADT) with risk of CVD while minimising selection bias. Semi-ecologic study of 6556 men who received GnRH agonists and 3330 men who underwent orchiectomy as primary treatment during 1992-1999 in the Prostate Cancer Database Sweden 3.0. We measured the proportion of men who received GnRH agonists as primary treatment in 580 experimental units defined by healthcare provider, diagnostic time period, and age at diagnosis. Incident or fatal CVD events in units with high and units with low use of GnRH agonists were compared. Net and crude probabilities were also analysed. The risk of CVD was similar between units with the highest and units with the lowest proportion of GnRH agonist use (relative risk 1.01, 95% confidence interval [CI] 0.93-1.11). Accordingly, there was no difference in the net probability of CVD after GnRH agonist compared to orchiectomy (hazard ratio 1.02, 95% CI 0.96-1.09). The 10-yr crude probability of CVD was 0.56 (95% CI 0.55-0.57) for men on GnRH agonists and 0.52 (95% CI 0.50-0.54) for men treated with orchiectomy. The main limitation was the nonrandom allocation to treatment, with younger men with lower comorbidity and less advanced cancer more likely to receive GnRH agonists. Our data do not support previous observations that GnRH agonists increase the risk of CVD in comparison to orchiectomy. We found a similar risk of cardiovascular disease between medical and surgical treatment as androgen deprivation therapy for prostate cancer. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Schuster, Sabine; Biri-Kovács, Beáta; Szeder, Bálint; Farkas, Viktor; Buday, László; Szabó, Zsuzsanna; Halmos, Gábor
2018-01-01
Gonadotropin releasing hormone-III (GnRH-III), a native isoform of the human GnRH isolated from sea lamprey, specifically binds to GnRH receptors on cancer cells enabling its application as targeting moieties for anticancer drugs. Recently, we reported on the identification of a novel daunorubicin–GnRH-III conjugate (GnRH-III–[4Lys(Bu), 8Lys(Dau=Aoa)] with efficient in vitro and in vivo antitumor activity. To get a deeper insight into the mechanism of action of our lead compound, the cellular uptake was followed by confocal laser scanning microscopy. Hereby, the drug daunorubicin could be visualized in different subcellular compartments by following the localization of the drug in a time-dependent manner. Colocalization studies were carried out to prove the presence of the drug in lysosomes (early stage) and on its site of action (nuclei after 10 min). Additional flow cytometry studies demonstrated that the cellular uptake of the bioconjugate was inhibited in the presence of the competitive ligand triptorelin indicating a receptor-mediated pathway. For comparative purpose, six novel daunorubicin–GnRH-III bioconjugates have been synthesized and biochemically characterized in which 6Asp was replaced by D-Asp, D-Glu and D-Trp. In addition to the analysis of the in vitro cytostatic effect and cellular uptake, receptor binding studies with 125I-triptorelin as radiotracer and degradation of the GnRH-III conjugates in the presence of rat liver lysosomal homogenate have been performed. All derivatives showed high binding affinities to GnRH receptors and displayed in vitro cytostatic effects on HT-29 and MCF-7 cancer cells with IC50 values in a low micromolar range. Moreover, we found that the release of the active drug metabolite and the cellular uptake of the bioconjugates were strongly affected by the amino acid exchange which in turn had an impact on the antitumor activity of the bioconjugates. PMID:29719573
Shahed, Asha; Young, Kelly A.
2010-01-01
The hypothalamic-pituitary-gonadal (HPG) axis is the key reproductive regulator in vertebrates. While gonadotropin releasing hormone (GnRH), follicle stimulating (FSH), and luteinizing (LH) hormones are primarily produced in the hypothalamus and pituitary, they can be synthesized in the gonads, suggesting an intraovarian GnRH-gonadotropin axis. Because these hormones are critical for follicle maturation and steroidogenesis, we hypothesized that this intraovarian axis may be important in photoperiod-induced ovarian regression/recrudescence in seasonal breeders. Thus, we investigated GnRH-1 and gonadotropin mRNA and protein expression in Siberian hamster ovaries during (1) the estrous cycle; where ovaries from cycling long day hamsters (LD;16L:8D) were collected at proestrus, estrus, diestrus I, and diestrus II and (2) during photoperiod induced regression/ recrudescence; where ovaries were collected from hamsters exposed to 14wks of LD, short days (SD;8L:16D), or 8wks post-transfer to LD after 14wks SD (PT). GnRH-1, LHβ, FSHβ, and common α subunit mRNA expression was observed in cycling ovaries. GnRH-1 expression peaked at diestrus I compared to other stages (p<0.05). FSHβ and LHβ mRNA levels peaked at proestrus and diestrus I (p<0.05), with no change in the α subunit across the cycle (p>0.05). SD exposure decreased ovarian mass and plasma estradiol concentrations (p<0.05) and increased GnRH-1, LHβ, FSHβ, and α subunit mRNA expression as compared to LD and, except for LH, compared to PT (p<0.05). GnRH and gonadotropin protein was also dynamically expressed across the estrous cycle and photoperiod exposure. The presence of cycling intraovarian GnRH-1 and gonadotropin mRNA suggests that these hormones may be locally involved in ovarian maintenance during SD regression and/or could potentially serve to prime ovaries for rapid recrudescence. PMID:20955709
Abel, Brent S.; Shaw, Natalie D.; Brown, Jenifer M.; Adams, Judith M.; Alati, Teresa; Martin, Kathryn A.; Pitteloud, Nelly; Seminara, Stephanie B.; Plummer, Lacey; Pignatelli, Duarte; Crowley, William F.; Welt, Corrine K.
2013-01-01
Context: Isolated hypogonadotropic hypogonadism (IHH) is caused by defective GnRH secretion or action resulting in absent or incomplete pubertal development and infertility. Most women with IHH ovulate with physiological GnRH replacement, implicating GnRH deficiency as the etiology. However, a subset does not respond normally, suggesting the presence of defects at the pituitary or ovary. Objectives: The objective of the study was to unmask pituitary or ovarian defects in IHH women using a physiological regimen of GnRH replacement, relating these responses to genes known to cause IHH. Design, Setting, and Subjects: This study is a retrospective analysis of 37 IHH women treated with iv pulsatile GnRH (75 ng/kg per bolus). Main Outcome Measures: Serum gonadotropin and sex steroid levels were measured, and 14 genes implicated in IHH were sequenced. Results: During their first cycle of GnRH replacement, normal cycles were recreated in 60% (22 of 37) of IHH women. Thirty percent of women (12 of 37) demonstrated an attenuated gonadotropin response, indicating pituitary resistance, and 10% (3 of 37) exhibited an exaggerated FSH response, consistent with ovarian resistance. Mutations in CHD7, FGFR1, KAL1, TAC3, and TACR3 were documented in IHH women with normal cycles, whereas mutations were identified in GNRHR, PROKR2, and FGFR1 in those with pituitary resistance. Women with ovarian resistance were mutation negative. Conclusions: Although physiological replacement with GnRH recreates normal menstrual cycle dynamics in most IHH women, hypogonadotropic responses in the first week of treatment identify a subset of women with pituitary dysfunction, only some of whom have mutations in GNRHR. IHH women with hypergonadotropic responses to GnRH replacement, consistent with an additional ovarian defect, did not have mutations in genes known to cause IHH, similar to our findings in a subset of IHH men with evidence of an additional testicular defect. PMID:23341491
Liu, Rong; Ma, Lina; Mei, Jia; Huang, Shu; Yang, Shaoqiang; Li, Enyuan; Yuan, Guohui
2017-02-21
A flexible and freestanding supercapacitor electrode with a N,P-co-doped carbon nanofiber network (N,P-CNFs)/graphene (GN) composite loaded on bacterial cellulose (BC) is first designed and fabricated in a simple, low-cost, and effective approach. The porous structure and excellent mechanical properties make the BC paper an ideal substrate that shows a large areal mass of 8 mg cm -2 . As a result, the flexible N,P-CNFs/GN/BC paper electrode shows appreciable areal capacitance (1990 mF cm -2 in KOH and 2588 mF cm -2 in H 2 SO 4 electrolytes) without sacrificing gravimetric capacitance (248.8 F g -1 and 323.5 F g -1 ), exhibits excellent cycling ability (without capacity loss after 20 000 cycles), and remarkable tensile strength (42.8 MPa). By direct coupling of two membrane electrodes, the symmetric supercapacitor delivers a prominent areal capacitance of 690 mF cm -2 in KOH and 898 mF cm -2 in H 2 SO 4 , and remarkable power/energy density (19.98 mW cm -2 /0.096 mW h cm -2 in KOH and 35.01 mW cm -2 /0.244 mW h cm -2 in H 2 SO 4 ). Additionally, it shows stable behavior in both bent and flat states. These results promote new opportunities for N,P-CNFs/GN/BC paper electrodes as high areal performance, freestanding electrodes for flexible supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rossmanith, W G; Wirth, U; Benz, R; Wolf, A S
1989-01-01
The LH secretory patterns and ovarian endocrine responses have been determined during pulsatile gonadotropin-releasing hormone (GnRH) administration for induction of ovulation in patients with hypothalamic amenorrhea (HA). However, until now these endocrine dynamics during GnRH therapy have not been thoroughly investigated in patients with polycystic ovarian disease (PCOD). Seven patients with HA and 4 patients with PCOD have therefore been studied to determine changes in LH pulsatile activity and in serum sex steroid levels in response to chronic intermittent GnRH stimulation. GnRH was administered intravenously (5-10 micrograms/90 minutes) by means of a portable infusion pump. Blood samples were obtained at 15-minute intervals for 4 hours on the day before the start of GnRH stimulation (control day) and on treatment days 5, 10 and 15. LH was determined in all samples and FSH, serum androgens and estrogens were measured in baseline samples by RIA. While 8 (62%) ovulations and 5 conceptions were observed in 13 treatment cycles in patients with HA, no ovulations were achieved during 9 treatment cycles in patients with PCOD. On the control day significantly (p less than 0.05) higher basal LH and testosterone (T) levels and significantly (p less than 0.05) lower FSH levels were found in the PCOD patients. The LH pulsatile profiles of the PCOD patients showed significantly (p less than 0.05) higher pulse amplitudes and areas under the curve (integrated responses). Pulsatile GnRH administration induced a significant (p less than 0.05) increase in LH pulse amplitudes in both HA and PCOD patients, and also increased (p less than 0.05) the integrated responses in patients with HA. During the GnRH stimulation, the LH interpulse intervals of both HA and PCOD patients were found to be similar to the frequency in which exogenous GnRH was administered. FSH levels rose continuously (p less than 0.001) during stimulation in patients with HA, but remained unchanged in patients with PCOD. In HA patients, T, androstenedione (AD) and estrone (E1) did not change during the GnRH treatment, but estradiol (E2) rose so that the ratios of aromatized estrogens to non-aromatized androgens (E1/AD, E2/T) increased. In contrast, T and AD increased significantly (p less than 0.05 or less) and E2 remained unchanged during stimulations in PCOD patients, which resulted in decreasing ratios of estrogens to androgens. These observations confirm that pulsatile GnRH administration can successfully induce ovulation in patients with HA by restoring the ovarian physiology. The data also demonstrate that pulsatile GnRH administration can influence the LH secretory patterns in PCOD patients.(ABSTRACT TRUNCATED AT 400 WORDS)
Rosenfield, Robert L; Mortensen, Monica; Wroblewski, Kristen; Littlejohn, Elizabeth; Ehrmann, David A
2011-11-01
Polycystic ovary syndrome (PCOS) patients typically have 17-hydroxyprogesterone (17OHP) hyperresponsiveness to GnRH agonist (GnRHa) (PCOS-T). The objective of this study was to determine the source of androgen excess in the one-third of PCOS patients who atypically lack this type of ovarian dysfunction (PCOS-A). Aged-matched PCOS-T (n= 40), PCOS-A (n= 20) and controls (n= 39) were studied prospectively in a General Clinical Research Center. Short (4 h) and long (4-7 day) dexamethasone androgen-suppression tests (SDAST and LDAST, respectively) were compared in subsets of subjects. Responses to SDAST and low-dose adrenocorticotropic hormone (ACTH) were then evaluated in all. Testosterone post-SDAST correlated significantly with testosterone post-LDAST and 17OHP post-GnRHa (r = 0.671-0.672), indicating that all detect related aspects of ovarian dysfunction. An elevated dehydroepiandrosterone peak in response to ACTH, which defined functional adrenal hyperandrogenism, was similarly prevalent in PCOS-T (27.5%) and PCOS-A (30%) and correlated significantly with baseline dehydroepiandrosterone sulfate (DHEAS) (r = 0.708). Functional ovarian hyperandrogenism was detected by subnormal testosterone suppression by SDAST in most (92.5%) PCOS-T, but significantly fewer PCOS-A (60%, P< 0.01). Glucose intolerance was absent in PCOS-A, but present in 30% of PCOS-T (P < 0.001). Most of the PCOS-A cases with normal testosterone suppression in response to SDAST (5/8) lacked evidence of adrenal hyperandrogenism and were obese. Functional ovarian hyperandrogenism was not demonstrable by SDAST in 40% of PCOS-A. Most of these cases had no evidence of adrenal hyperandrogenism. Obesity may account for most hyperandrogenemic anovulation that lacks a glandular source of excess androgen, and the SDAST seems useful in making this distinction.
Rosenfield, Robert L.; Mortensen, Monica; Wroblewski, Kristen; Littlejohn, Elizabeth; Ehrmann, David A.
2011-01-01
BACKGROUND Polycystic ovary syndrome (PCOS) patients typically have 17-hydroxyprogesterone (17OHP) hyperresponsiveness to GnRH agonist (GnRHa) (PCOS-T). The objective of this study was to determine the source of androgen excess in the one-third of PCOS patients who atypically lack this type of ovarian dysfunction (PCOS-A). METHODS Aged-matched PCOS-T (n= 40), PCOS-A (n= 20) and controls (n= 39) were studied prospectively in a General Clinical Research Center. Short (4 h) and long (4–7 day) dexamethasone androgen-suppression tests (SDAST and LDAST, respectively) were compared in subsets of subjects. Responses to SDAST and low-dose adrenocorticotropic hormone (ACTH) were then evaluated in all. RESULTS Testosterone post-SDAST correlated significantly with testosterone post-LDAST and 17OHP post-GnRHa (r = 0.671–0.672), indicating that all detect related aspects of ovarian dysfunction. An elevated dehydroepiandrosterone peak in response to ACTH, which defined functional adrenal hyperandrogenism, was similarly prevalent in PCOS-T (27.5%) and PCOS-A (30%) and correlated significantly with baseline dehydroepiandrosterone sulfate (DHEAS) (r = 0.708). Functional ovarian hyperandrogenism was detected by subnormal testosterone suppression by SDAST in most (92.5%) PCOS-T, but significantly fewer PCOS-A (60%, P< 0.01). Glucose intolerance was absent in PCOS-A, but present in 30% of PCOS-T (P < 0.001). Most of the PCOS-A cases with normal testosterone suppression in response to SDAST (5/8) lacked evidence of adrenal hyperandrogenism and were obese. CONCLUSIONS Functional ovarian hyperandrogenism was not demonstrable by SDAST in 40% of PCOS-A. Most of these cases had no evidence of adrenal hyperandrogenism. Obesity may account for most hyperandrogenemic anovulation that lacks a glandular source of excess androgen, and the SDAST seems useful in making this distinction. PMID:21908468
3D CSEM data inversion using Newton and Halley class methods
NASA Astrophysics Data System (ADS)
Amaya, M.; Hansen, K. R.; Morten, J. P.
2016-05-01
For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those applied in this paper.
Chaudhari, Nirja; Dawalbhakta, Mitali; Nampoothiri, Laxmipriya
2018-04-11
GnRH is the master molecule of reproduction that is influenced by several intrinsic and extrinsic factors such as neurotransmitters and neuropeptides. Any alteration in these regulatory loops may result in reproductive-endocrine dysfunction such as the polycystic ovarian syndrome (PCOS). Although low dopaminergic tone has been associated with PCOS, the role of neurotransmitters in PCOS remains unknown. The present study was therefore aimed at understanding the status of GnRH regulatory neurotransmitters to decipher the neuroendocrine pathology in PCOS. PCOS was induced in rats by oral administration of letrozole (aromatase inhibitor). Following PCOS validation, animals were assessed for gonadotropin levels and their mRNA expression. Neurotrasnmitter status was evaluated by estimating their levels, their metabolism and their receptor expression in hypothalamus, pituitary, hippocampus and frontal cortex of PCOS rat model. We demonstrate that GnRH and LH inhibitory neurotransmitters - serotonin, dopamine, GABA and acetylcholine - are reduced while glutamate, a major stimulator of GnRH and LH release, is increased in the PCOS condition. Concomitant changes were observed for neurotransmitter metabolising enzymes and their receptors as well. Our results reveal that increased GnRH and LH pulsatility in PCOS condition likely result from the cumulative effect of altered GnRH stimulatory and inhibitory neurotransmitters in hypothalamic-pituitary centre. This, we hypothesise, is responsible for the depression and anxiety-like mood disorders commonly seen in PCOS women.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.
2010-01-01
The National Aeronautics and Space Administration (NASA) is currently undergoing a substantial redirection. Notable among the changes occurring within NASA is the stated emphasis on technology development, integration, and demonstration. These new changes within the Agency should have a positive impact on the GN&C discipline given the potential for sizeable investments for technology development and in-space demonstrations of both Autonomous Rendezvous & Docking (AR&D) systems and Autonomous Precision Landing (APL) systems. In this paper the NASA Technical Fellow for Guidance, Navigation and Control (GN&C) provides a summary of the present technical challenges, critical needs, and future technological directions for NASA s GN&C engineering discipline. A brief overview of the changes occurring within NASA that are driving a renewed emphasis on technology development will be presented as background. The potential benefits of the planned GN&C technology developments will be highlighted. This paper will provide a GN&C State-of-the-Discipline assessment. The discipline s readiness to support the goals & objectives of each of the four NASA Mission Directorates is evaluated and the technical challenges and barriers currently faced by the discipline are summarized. This paper will also discuss the need for sustained investments to sufficiently mature the several classes of GN&C technologies required to implement NASA crewed exploration and robotic science missions.
Elkind-Hirsch, K E; Anania, C; Malinak, R
1996-09-01
To study the beneficial effects of oral contraceptive (OC) therapy following gonadotropin-releasing hormone agonist (GnRH-a) administration in women with polycystic ovary disease (PCOD). Twenty-three hyperandrogenic women (aged 15-39) were randomized into two groups; GnRH-a (depot every 28 days) for six months or combination therapy (GnRH-a plus OC "addback") for six months. Following six months of treatment with either therapy, all patients received OC therapy for at least six months. The hormonal state was evaluated at three-month intervals. Hormone levels of luteinizing hormone (LH), testosterone (T) and free T remained suppressed within the normal range in 11 of 17 patients (65%) during the six months of OC only therapy, while the other six patients showed "escape" from suppression, with the LH, T and free T concentrations rising to pre-GnRH-a treatment levels. Use of OC addback therapy did not potentiate the long-acting therapeutic effect of GnRH-a pretreatment; three of six patients in the escape group were pretreated with combination therapy and three with GnRH-a only. In the majority of women with PCOD, OC therapy following GnRH-a administration was effective in maintaining ovarian androgen suppression. Failure to maintain ovarian suppression in this patient population was associated with higher elevations of baseline free T concentrations.