Sample records for density functional simulations

  1. Bypassing the Kohn-Sham equations with machine learning.

    PubMed

    Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert

    2017-10-11

    Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

  2. Density Weighted FDF Equations for Simulations of Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2011-01-01

    In this report, we briefly revisit the formulation of density weighted filtered density function (DW-FDF) for large eddy simulation (LES) of turbulent reacting flows, which was proposed by Jaberi et al. (Jaberi, F.A., Colucci, P.J., James, S., Givi, P. and Pope, S.B., Filtered mass density function for Large-eddy simulation of turbulent reacting flows, J. Fluid Mech., vol. 401, pp. 85-121, 1999). At first, we proceed the traditional derivation of the DW-FDF equations by using the fine grained probability density function (FG-PDF), then we explore another way of constructing the DW-FDF equations by starting directly from the compressible Navier-Stokes equations. We observe that the terms which are unclosed in the traditional DW-FDF equations are now closed in the newly constructed DW-FDF equations. This significant difference and its practical impact on the computational simulations may deserve further studies.

  3. Insight into Hydrazinium Nitrates, Azides, Dicyanamide, and 5-Azidotetrazolate Ionic Materials from Simulations and Experiments

    DTIC Science & Technology

    2011-04-04

    agreement between simulation and experiment is seen for UDMH , with simulations up to slightly above the boiling point of 336 K falling within a density ...conjunction wi th M05-2X density funct ional. Inclusion of a l one-pair on hydrazinium-based cations significantly improved ion electrostatic description...cation-anion complexes employing aug-cc- pvDz (cc-pvTz) basis functions at MP2 level or in conjunction with M05-2X density functional. Inclusion of

  4. Unstable density distribution associated with equatorial plasma bubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kherani, E. A., E-mail: esfhan.kherani@inpe.br; Meneses, F. Carlos de; Bharuthram, R.

    2016-04-15

    In this work, we present a simulation study of equatorial plasma bubble (EPB) in the evening time ionosphere. The fluid simulation is performed with a high grid resolution, enabling us to probe the steepened updrafting density structures inside EPB. Inside the density depletion that eventually evolves as EPB, both density and updraft are functions of space from which the density as implicit function of updraft velocity or the density distribution function is constructed. In the present study, this distribution function and the corresponding probability distribution function are found to evolve from Maxwellian to non-Maxwellian as the initial small depletion growsmore » to EPB. This non-Maxwellian distribution is of a gentle-bump type, in confirmation with the recently reported distribution within EPB from space-borne measurements that offer favorable condition for small scale kinetic instabilities.« less

  5. Optimal atomic structure of amorphous silicon obtained from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes

    2017-06-01

    Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.

  6. Performance of exchange-correlation functionals in density functional theory calculations for liquid metal: A benchmark test for sodium.

    PubMed

    Han, Jeong-Hwan; Oda, Takuji

    2018-04-14

    The performance of exchange-correlation functionals in density-functional theory (DFT) calculations for liquid metal has not been sufficiently examined. In the present study, benchmark tests of Perdew-Burke-Ernzerhof (PBE), Armiento-Mattsson 2005 (AM05), PBE re-parameterized for solids, and local density approximation (LDA) functionals are conducted for liquid sodium. The pair correlation function, equilibrium atomic volume, bulk modulus, and relative enthalpy are evaluated at 600 K and 1000 K. Compared with the available experimental data, the errors range from -11.2% to 0.0% for the atomic volume, from -5.2% to 22.0% for the bulk modulus, and from -3.5% to 2.5% for the relative enthalpy depending on the DFT functional. The generalized gradient approximation functionals are superior to the LDA functional, and the PBE and AM05 functionals exhibit the best performance. In addition, we assess whether the error tendency in liquid simulations is comparable to that in solid simulations, which would suggest that the atomic volume and relative enthalpy performances are comparable between solid and liquid states but that the bulk modulus performance is not. These benchmark test results indicate that the results of liquid simulations are significantly dependent on the exchange-correlation functional and that the DFT functional performance in solid simulations can be used to roughly estimate the performance in liquid simulations.

  7. Performance of exchange-correlation functionals in density functional theory calculations for liquid metal: A benchmark test for sodium

    NASA Astrophysics Data System (ADS)

    Han, Jeong-Hwan; Oda, Takuji

    2018-04-01

    The performance of exchange-correlation functionals in density-functional theory (DFT) calculations for liquid metal has not been sufficiently examined. In the present study, benchmark tests of Perdew-Burke-Ernzerhof (PBE), Armiento-Mattsson 2005 (AM05), PBE re-parameterized for solids, and local density approximation (LDA) functionals are conducted for liquid sodium. The pair correlation function, equilibrium atomic volume, bulk modulus, and relative enthalpy are evaluated at 600 K and 1000 K. Compared with the available experimental data, the errors range from -11.2% to 0.0% for the atomic volume, from -5.2% to 22.0% for the bulk modulus, and from -3.5% to 2.5% for the relative enthalpy depending on the DFT functional. The generalized gradient approximation functionals are superior to the LDA functional, and the PBE and AM05 functionals exhibit the best performance. In addition, we assess whether the error tendency in liquid simulations is comparable to that in solid simulations, which would suggest that the atomic volume and relative enthalpy performances are comparable between solid and liquid states but that the bulk modulus performance is not. These benchmark test results indicate that the results of liquid simulations are significantly dependent on the exchange-correlation functional and that the DFT functional performance in solid simulations can be used to roughly estimate the performance in liquid simulations.

  8. Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory

    NASA Astrophysics Data System (ADS)

    Wittmann, René; Sitta, Christoph E.; Smallenburg, Frank; Löwen, Hartmut

    2017-10-01

    A density functional theory for the bulk phase diagram of two-dimensional orientable hard rods is proposed and tested against Monte Carlo computer simulation data. In detail, an explicit density functional is derived from fundamental mixed measure theory and freely minimized numerically for hard discorectangles. The phase diagram, which involves stable isotropic, nematic, smectic, and crystalline phases, is obtained and shows good agreement with the simulation data. Our functional is valid for a multicomponent mixture of hard particles with arbitrary convex shapes and provides a reliable starting point to explore various inhomogeneous situations of two-dimensional hard rods and their Brownian dynamics.

  9. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory.

    PubMed

    Patra, Chandra N

    2014-11-14

    A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.

  10. Charge Transport Properties in Disordered Organic Semiconductor as a Function of Charge Density: Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Shukri, Seyfan Kelil

    2017-01-01

    We have done Kinetic Monte Carlo (KMC) simulations to investigate the effect of charge carrier density on the electrical conductivity and carrier mobility in disordered organic semiconductors using a lattice model. The density of state (DOS) of the system are considered to be Gaussian and exponential. Our simulations reveal that the mobility of the charge carrier increases with charge carrier density for both DOSs. In contrast, the mobility of charge carriers decreases as the disorder increases. In addition the shape of the DOS has a significance effect on the charge transport properties as a function of density which are clearly seen. On the other hand, for the same distribution width and at low carrier density, the change occurred on the conductivity and mobility for a Gaussian DOS is more pronounced than that for the exponential DOS.

  11. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    PubMed

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  12. Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.

    PubMed

    Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2012-11-08

    A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.

  13. Density functional theory calculation of refractive indices of liquid-forming silicon oil compounds

    NASA Astrophysics Data System (ADS)

    Lee, Sanghun; Park, Sung Soo; Hagelberg, Frank

    2012-02-01

    A combination of quantum chemical calculation and molecular dynamics simulation is applied to compute refractive indices of liquid-forming silicon oils. The densities of these species are obtained from molecular dynamics simulations based on the NPT ensemble while the molecular polarizabilities are evaluated by density functional theory. This procedure is shown to yield results well compatible with available experimental data, suggesting that it represents a robust and economic route for determining the refractive indices of liquid-forming organic complexes containing silicon.

  14. Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast.

    PubMed

    Shao, J Y; Shu, C; Huang, H B; Chew, Y T

    2014-03-01

    A free-energy-based phase-field lattice Boltzmann method is proposed in this work to simulate multiphase flows with density contrast. The present method is to improve the Zheng-Shu-Chew (ZSC) model [Zheng, Shu, and Chew, J. Comput. Phys. 218, 353 (2006)] for correct consideration of density contrast in the momentum equation. The original ZSC model uses the particle distribution function in the lattice Boltzmann equation (LBE) for the mean density and momentum, which cannot properly consider the effect of local density variation in the momentum equation. To correctly consider it, the particle distribution function in the LBE must be for the local density and momentum. However, when the LBE of such distribution function is solved, it will encounter a severe numerical instability. To overcome this difficulty, a transformation, which is similar to the one used in the Lee-Lin (LL) model [Lee and Lin, J. Comput. Phys. 206, 16 (2005)] is introduced in this work to change the particle distribution function for the local density and momentum into that for the mean density and momentum. As a result, the present model still uses the particle distribution function for the mean density and momentum, and in the meantime, considers the effect of local density variation in the LBE as a forcing term. Numerical examples demonstrate that both the present model and the LL model can correctly simulate multiphase flows with density contrast, and the present model has an obvious improvement over the ZSC model in terms of solution accuracy. In terms of computational time, the present model is less efficient than the ZSC model, but is much more efficient than the LL model.

  15. Molecular simulation of disjoining-pressure isotherms for free liquid , Lennard-Jones thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Divesh; Newman, John; Radke, C.J.

    2001-10-01

    We present canonical-ensemble molecular-dynamics simulations of disjoining-pressure isotherms in Lennard-Jones free liquid films. Thermodynamics demands that the disjoining pressure is determined uniquely as a function of the chemical potential purely from the phase diagram of the fluid. Our results from molecular dynamics validate this argument. The inverse-sixth-power distance term in the Lennard-Jones intermolecular potential represents van der Waals dispersion forces. Hence, we compare our results with classical Hamaker theory that is based on dispersion forces but assumes a slab geometry for the density profile and completely neglects fluid structure and entropy. We find that the Hamaker constant obtained from ourmore » simulations is about an order of magnitude larger than that from classical theory. To investigate the origin of this discrepancy, we calculate the disjoining-pressure isotherm using a density-functional theory relaxing the inherent assumptions in the Hamaker theory and imparting to the fluid an approximate structure. For disjoining pressure as a function of chemical potential, the results of density-functional theory and molecular dynamics are very close. Even for disjoining-pressure isotherms, and the subsequently calculated Hamaker constant, results of the density-functional theory are closer to the molecular-dynamics simulations by about a factor of 4 compared to Hamaker theory. [References: 44]« less

  16. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-07

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  17. Simulations of Spray Reacting Flows in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar PDF Method

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    This paper presents the numerical simulations of the Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar probability density function (PDF) method. The flow field is calculated by using the Reynolds averaged Navier-Stokes equations (RANS and URANS) with nonlinear turbulence models, and when the scalar PDF method is invoked, the energy and compositions or species mass fractions are calculated by solving the equation of an ensemble averaged density-weighted fine-grained probability density function that is referred to here as the averaged probability density function (APDF). A nonlinear model for closing the convection term of the scalar APDF equation is used in the presented simulations and will be briefly described. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar PDF method in both improving the simulation quality and reducing the computing cost are observed.

  18. In search of a viable reaction pathway in the chelation of a metallo-protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2010-03-01

    Misfolded metallo-proteins are potential causal agents in the onset of neuro-degenerative diseases, such as Alzheimer's and Parkinson's Diseases (PD). Experimental results involving metal chelation have shown significant promise in symptom reduction and misfolding reversal. We explore, through atomistic simulations, potential reaction pathways for the chelation of Cu^2+ from the metal binding site in our representation of a partially misfolded α-synuclein, the protein implicated in PD. Our ab initio simulations use Density Functional Theory (DFT) and nudged elastic band to obtain the minimized energy coordinates of this reaction. Our simulations include ab initio water at the interaction site and in its first solvation shells, while the remainder is fully solvated with orbital-free DFT water representation [1]. Our ongoing studies of viable chelation agents include nicotine, caffeine and other potential reagents, we will review the best case agents in this presentation. [4pt] [1] Hodak M, Lu W, Bernholc J. Hybrid ab initio Kohn-Sham density functional theory/frozen-density orbital-free density functional theory simulation method suitable for biological systems. J. Chem. Phys. 2008 Jan;128(1):014101-9.

  19. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  20. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE PAGES

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  1. Dielectric properties of organic solvents from non-polarizable molecular dynamics simulation with electronic continuum model and density functional theory.

    PubMed

    Lee, Sanghun; Park, Sung Soo

    2011-11-03

    Dielectric constants of electrolytic organic solvents are calculated employing nonpolarizable Molecular Dynamics simulation with Electronic Continuum (MDEC) model and Density Functional Theory. The molecular polarizabilities are obtained by the B3LYP/6-311++G(d,p) level of theory to estimate high-frequency refractive indices while the densities and dipole moment fluctuations are computed using nonpolarizable MD simulations. The dielectric constants reproduced from these procedures are evaluated to provide a reliable approach for estimating the experimental data. An additional feature, two representative solvents which have similar molecular weights but are different dielectric properties, i.e., ethyl methyl carbonate and propylene carbonate, are compared using MD simulations and the distinctly different dielectric behaviors are observed at short times as well as at long times.

  2. Molecular dynamics simulations of dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L.A.; Kress, J.D.; Kwon, I.

    1993-12-31

    We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.

  3. Simulations of Turbulent Momentum and Scalar Transport in Non-Reacting Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey; Moder, Jeffrey P.

    2015-01-01

    This paper presents the numerical simulations of confined three-dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code (NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS); both without and with invoking the APDF or DWFDF equation. When the APDF (ensemble averaged probability density function) or DWFDF (density weighted filtered density function) equation is invoked, the simulations are of a hybrid nature, i.e., the transport equations of energy and species are replaced by the APDF or DWFDF equation. Results of simulations are compared with the available experimental data. Some positive impacts of the nonlinear turbulence models and the Eulerian scalar APDF and DWFDF approach are observed.

  4. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less

  5. Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Gicquel, L. Y. M.; Sheikhi, M. R. H.; Drozda, T. G.

    2002-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high speed reacting turbulent flows. NASA is interested in the design of various components involved in air breathing propulsion systems such as the scramjet. There is a demand for development of robust tools that can aid in the design procedure. The physics of high speed reactive flows is rich with many complexities. LES is regarded as one of the most promising means of simulating turbulent reacting flows.

  6. Density-Decomposed Orbital-Free Density Functional Theory for Covalent Systems and Application to Li-Si alloys

    NASA Astrophysics Data System (ADS)

    Xia, Junchao; Carter, Emily

    2014-03-01

    We propose a density decomposition scheme using a Wang-Govind-Carter (WGC)-based kinetic energy density functional (KEDF) to accurately and efficiently simulate covalent systems within orbital-free (OF) density functional theory (DFT). By using a local, density-dependent scale function, the total density is decomposed into a localized density within covalent bond regions and a flattened delocalized density, with the former described by semilocal KEDFs and the latter treated by the WGC KEDF. The new model predicts reasonable equilibrium volumes, bulk moduli, and phase ordering energies for various semiconductors compared to Kohn-Sham (KS) DFT benchmarks. The surface energy of Si(100) also agrees well with KSDFT. We further apply the model to study mechanical properties of Li-Si alloys, which have been recently recognized as a promising candidate for next-generation anodes of Li-ion batteries with outstanding capacity. We study multiple crystalline Li-Si alloys. The WGCD KEDF predicts accurate cell lattice vectors, equilibrium volumes, elastic moduli, electron densities, alloy formation and Li adsorption energies. Because of its quasilinear scaling, coupled with the level of accuracy shown here, OFDFT appears quite promising for large-scale simulation of such materials phenomena. Office of Naval Research, National Science Foundation, Tigress High Performance Computing Center.

  7. THE HALO MASS FUNCTION CONDITIONED ON DENSITY FROM THE MILLENNIUM SIMULATION: INSIGHTS INTO MISSING BARYONS AND GALAXY MASS FUNCTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faltenbacher, A.; Finoguenov, A.; Drory, N.

    2010-03-20

    The baryon content of high-density regions in the universe is relevant to two critical unanswered questions: the workings of nurture effects on galaxies and the whereabouts of the missing baryons. In this paper, we analyze the distribution of dark matter and semianalytical galaxies in the Millennium Simulation to investigate these problems. Applying the same density field reconstruction schemes as used for the overall matter distribution to the matter locked in halos, we study the mass contribution of halos to the total mass budget at various background field densities, i.e., the conditional halo mass function. In this context, we present amore » simple fitting formula for the cumulative mass function accurate to {approx}<5% for halo masses between 10{sup 10} and 10{sup 15} h {sup -1} M{sub sun}. We find that in dense environments the halo mass function becomes top heavy and present corresponding fitting formulae for different redshifts. We demonstrate that the major fraction of matter in high-density fields is associated with galaxy groups. Since current X-ray surveys are able to nearly recover the universal baryon fraction within groups, our results indicate that the major part of the so-far undetected warm-hot intergalactic medium resides in low-density regions. Similarly, we show that the differences in galaxy mass functions with environment seen in observed and simulated data stem predominantly from differences in the mass distribution of halos. In particular, the hump in the galaxy mass function is associated with the central group galaxies, and the bimodality observed in the galaxy mass function is therefore interpreted as that of central galaxies versus satellites.« less

  8. Transitioning NWChem to the Next Generation of Manycore Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Apra, Edoardo; Kowalski, Karol

    The NorthWest Chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers[6, 28, 49]. It contains an umbrella of modules that today includes Self Consistent Field (SCF), second order Mller-Plesset perturbation theory (MP2), Coupled Cluster, multi-conguration selfconsistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics, Car-Parrinello molecular dynamics, classical molecular dynamics (MD), QM/MM,more » AIMD/MM, GIAO NMR, COSMO, COSMO-SMD, and RISM solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities[ 22]. Moreover new capabilities continue to be added with each new release.« less

  9. Fluids density functional theory and initializing molecular dynamics simulations of block copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.

    2016-03-01

    Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.

  10. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    DOE PAGES

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovich, P.; Carter, T. A.; Friedman, B.

    Numerical simulation of plasma turbulence in the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] is presented. The model, implemented in the BOUndary Turbulence code [M. Umansky, X. Xu, B. Dudson et al., Contrib. Plasma Phys. 180, 887 (2009)], includes three-dimensional (3D) collisional fluid equations for plasma density, electron parallel momentum, and current continuity, and also includes the effects of ion-neutral collisions. In nonlinear simulations using measured LAPD density profiles but assuming constant temperature profile for simplicity, self-consistent evolution of instabilities and nonlinearly generated zonal flows results in a saturatedmore » turbulent state. Comparisons of these simulations with measurements in LAPD plasmas reveal good qualitative and reasonable quantitative agreement, in particular in frequency spectrum, spatial correlation, and amplitude probability distribution function of density fluctuations. For comparison with LAPD measurements, the plasma density profile in simulations is maintained either by direct azimuthal averaging on each time step, or by adding particle source/sink function. The inferred source/sink values are consistent with the estimated ionization source and parallel losses in LAPD. These simulations lay the groundwork for more a comprehensive effort to test fluid turbulence simulation against LAPD data.« less

  12. On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density

    NASA Astrophysics Data System (ADS)

    Dorini, F. A.; Cecconello, M. S.; Dorini, L. B.

    2016-04-01

    It is recognized that handling uncertainty is essential to obtain more reliable results in modeling and computer simulation. This paper aims to discuss the logistic equation subject to uncertainties in two parameters: the environmental carrying capacity, K, and the initial population density, N0. We first provide the closed-form results for the first probability density function of time-population density, N(t), and its inflection point, t*. We then use the Maximum Entropy Principle to determine both K and N0 density functions, treating such parameters as independent random variables and considering fluctuations of their values for a situation that commonly occurs in practice. Finally, closed-form results for the density functions and statistical moments of N(t), for a fixed t > 0, and of t* are provided, considering the uniform distribution case. We carried out numerical experiments to validate the theoretical results and compared them against that obtained using Monte Carlo simulation.

  13. Functional Annotation of Ion Channel Structures by Molecular Simulation.

    PubMed

    Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P

    2016-12-06

    Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Vibrational, spectroscopic, molecular docking and density functional theory studies on N-(5-aminopyridin-2-yl)acetamide

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Rekha, T. N.; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin

    2016-12-01

    Conformational analysis was carried out for N-(5-aminopyridin-2-yl)acetamide (APA) molecule. The most stable, optimized structure was predicted by the density functional theory calculations using the B3LYP functional with cc-pVQZ basis set. The optimized structural parameters and vibrational frequencies were calculated. The experimental and theoretical vibrational frequencies were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed, which reveals that the higher molecular reactivity and stability of the APA molecule and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the APA molecule. Antidiabetic activity was studied based on the molecular docking analysis and the APA molecule was identified that it can act as a good inhibitor against diabetic nephropathy.

  15. An Exospheric Temperature Model Based On CHAMP Observations and TIEGCM Simulations

    NASA Astrophysics Data System (ADS)

    Ruan, Haibing; Lei, Jiuhou; Dou, Xiankang; Liu, Siqing; Aa, Ercha

    2018-02-01

    In this work, thermospheric densities from the accelerometer measurement on board the CHAMP satellite during 2002-2009 and the simulations from the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) are employed to develop an empirical exospheric temperature model (ETM). The two-dimensional basis functions of the ETM are first provided from the principal component analysis of the TIEGCM simulations. Based on the exospheric temperatures derived from CHAMP thermospheric densities, a global distribution of the exospheric temperatures is reconstructed. A parameterization is conducted for each basis function amplitude as a function of solar-geophysical and seasonal conditions. Thus, the ETM can be utilized to model the thermospheric temperature and mass density under a specified condition. Our results showed that the averaged standard deviation of the ETM is generally less than 10% than approximately 30% in the MSIS model. Besides, the ETM reproduces the global thermospheric evolutions including the equatorial thermosphere anomaly.

  16. Oxygen reduction on a Pt(111) catalyst in HT-PEM fuel cells by density functional theory

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Li, Jie; Almheiri, Saif; Xiao, Jianyu

    2017-08-01

    The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM) fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system's energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn-Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111) surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system's energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.

  17. A Site Density Functional Theory for Water: Application to Solvation of Amino Acid Side Chains.

    PubMed

    Liu, Yu; Zhao, Shuangliang; Wu, Jianzhong

    2013-04-09

    We report a site density functional theory (SDFT) based on the conventional atomistic models of water and the universality ansatz of the bridge functional. The excess Helmholtz energy functional is formulated in terms of a quadratic expansion with respect to the local density deviation from that of a uniform system and a universal functional for all higher-order terms approximated by that of a reference hard-sphere system. With the atomistic pair direct correlation functions of the uniform system calculated from MD simulation and an analytical expression for the bridge functional from the modified fundamental measure theory, the SDFT can be used to predict the structure and thermodynamic properties of water under inhomogeneous conditions with a computational cost negligible in comparison to that of brute-force simulations. The numerical performance of the SDFT has been demonstrated with the predictions of the solvation free energies of 15 molecular analogs of amino acid side chains in water represented by SPC/E, SPC, and TIP3P models. For theTIP3P model, a comparison of the theoretical predictions with MD simulation and experimental data shows agreement within 0.64 and 1.09 kcal/mol on average, respectively.

  18. Geometric characterization and simulation of planar layered elastomeric fibrous biomaterials

    PubMed Central

    Carleton, James B.; D'Amore, Antonio; Feaver, Kristen R.; Rodin, Gregory J.; Sacks, Michael S.

    2014-01-01

    Many important biomaterials are composed of multiple layers of networked fibers. While there is a growing interest in modeling and simulation of the mechanical response of these biomaterials, a theoretical foundation for such simulations has yet to be firmly established. Moreover, correctly identifying and matching key geometric features is a critically important first step for performing reliable mechanical simulations. The present work addresses these issues in two ways. First, using methods of geometric probability we develop theoretical estimates for the mean linear and areal fiber intersection densities for two-dimensional fibrous networks. These densities are expressed in terms of the fiber density and the orientation distribution function, both of which are relatively easy-to-measure properties. Secondly, we develop a random walk algorithm for geometric simulation of two-dimensional fibrous networks which can accurately reproduce the prescribed fiber density and orientation distribution function. Furthermore, the linear and areal fiber intersection densities obtained with the algorithm are in agreement with the theoretical estimates. Both theoretical and computational results are compared with those obtained by post-processing of SEM images of actual scaffolds. These comparisons reveal difficulties inherent to resolving fine details of multilayered fibrous networks. The methods provided herein can provide a rational means to define and generate key geometric features from experimentally measured or prescribed scaffold structural data. PMID:25311685

  19. IPS analysis on relationship among velocity, density and temperature of the solar wind

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Tokumaru, M.; Fujiki, K.

    2015-12-01

    The IPS(Interplanetary Scintillation)-MHD(magnetohydrodynamics) tomography is a method we have developed to determine three-dimensional MHD solution of the solar wind that best matches the line-of-sight IPS solar-wind speed data (Hayashi et al., 2003). The tomographic approach is an iteration method in which IPS observations are simulated in MHD steady-state solution, then differences between the simulated observation and the actual IPS observation is reduced by modifying solar-wind boundary map at 50 solar radii. This forward model needs to assume solar wind density and temperature as function of speed. We use empirical functions, N(V) and T(V), derived from Helios in-situ measurement data within 0.5 AU in 1970s. For recent years, especially after 2006, these functions yield higher densities and lower temperatures than in-situ measurements indicate. To characterize the differences between the simulated and actual solar wind plasma, we tune parameters in the functions so that agreements with in-situ data (near the Earth and at Ulysses) will be optimized. This optimization approach can help better simulations of the solar corona and heliosphere, and will help our understandings on roles of magnetic field in solar wind heating and acceleration.

  20. Self-Consistent Determination of Atomic Charges of Ionic Liquid through a Combination of Molecular Dynamics Simulation and Density Functional Theory.

    PubMed

    Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2016-02-09

    A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields.

  1. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  2. Assessment of the Density Functional Tight Binding Method for Protic Ionic Liquids

    PubMed Central

    2015-01-01

    Density functional tight binding (DFTB), which is ∼100–1000 times faster than full density functional theory (DFT), has been used to simulate the structure and properties of protic ionic liquid (IL) ions, clusters of ions and the bulk liquid. Proton affinities for a wide range of IL cations and anions determined using DFTB generally reproduce G3B3 values to within 5–10 kcal/mol. The structures and thermodynamic stabilities of n-alkyl ammonium nitrate clusters (up to 450 quantum chemical atoms) predicted with DFTB are in excellent agreement with those determined using DFT. The IL bulk structure simulated using DFTB with periodic boundary conditions is in excellent agreement with published neutron diffraction data. PMID:25328497

  3. Density, structure, and dynamics of water: The effect of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Román-Pérez, G.; Soler, Jose M.; Artacho, Emilio; Fernández-Serra, M.-V.

    2011-01-01

    It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al. [J. Phys. Chem. B, 113, 11959 (2009)] to be underestimated by different GGA functionals for exchange and correlation, and corrected by the addition of interatomic pair potentials to describe van der Waals (vdW) interactions. In this contribution we present a DFT-AIMD study of liquid water using several GGA functionals as well as the van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. As expected, we find that the density of water is grossly underestimated by GGA functionals. When a vdW-DF is used, the density improves drastically and the experimental diffusivity is reproduced without the need of thermal corrections. We analyze the origin of the density differences between all the functionals. We show that the vdW-DF increases the population of non-H-bonded interstitial sites, at distances between the first and second coordination shells. However, it excessively weakens the H-bond network, collapsing the second coordination shell. This structural problem is partially associated to the choice of GGA exchange in the vdW-DF. We show that a different choice for the exchange functional is enough to achieve an overall improvement both in structure and diffusivity.

  4. A classical density functional theory of ionic liquids.

    PubMed

    Forsman, Jan; Woodward, Clifford E; Trulsson, Martin

    2011-04-28

    We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.

  5. HSE12 implementation in libxc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moussa, Jonathan E.

    2013-05-13

    This piece of software is a new feature implemented inside an existing open-source library. Specifically, it is a new implementation of a density functional (HSE, short for Heyd-Scuseria-Ernzerhof) for a repository of density functionals, the libxc library. It fixes some numerical problems with existing implementations, as outlined in a scientific paper recently submitted for publication. Density functionals are components of electronic structure simulations, which model properties of electrons inside molecules and crystals.

  6. Transitioning NWChem to the Next Generation of Manycore Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Apra, E; Kowalski, Karol

    The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less

  7. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems.

    PubMed

    Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele

    2016-12-28

    Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

  8. Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine

    DOE PAGES

    Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; ...

    2014-11-11

    We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Inmore » conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.« less

  9. Cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride and assignment using solid-state density functional theory.

    PubMed

    Hakey, Patrick M; Allis, Damian G; Ouellette, Wayne; Korter, Timothy M

    2009-04-30

    The cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride from 10.0 to 100.0 cm(-1) is presented, as is the complete structural analysis and vibrational assignment of the compound using solid-state density functional theory. This cryogenic investigation reveals multiple spectral features that were not previously reported in room-temperature terahertz studies of the title compound. Modeling of the compound employed eight density functionals utilizing both solid-state and isolated-molecule methods. The results clearly indicate the necessity of solid-state simulations for the accurate assignment of solid-state THz spectra. Assignment of the observed spectral features to specific atomic motions is based on the BP density functional, which provided the best-fit solid-state simulation of the experimental spectrum. The seven experimental spectral features are the result of thirteen infrared-active vibrational modes predicted at a BP/DNP level of theory with more than 90% of the total spectral intensity associated with external crystal vibrations.

  10. Validation of Variations in Mental Workload as a Function of Scenario Difficulty: Traffic Density and Visibility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fluctuations in mental workload can be expected as a function of traffic density and visibility. The aim of the current investigation was to establish simulation scenarios that differed in attentional processing requirements. Four scenarios were created and tested representing two levels of traffic density (urban versus freeway) and two levels of visibility (clear versus foggy). An array of mental workload assessment measures were used to exam changes in attentional processing requirements in each scenario. The assessment array consisted of physiological (P300 amplitude and latency) and behavioral (RT and accuracy) indices. Preliminary results indicate that workload differs significantly as a function of traffic density in rural versus freeway scenarios. Workload also differs significantly in rural versus freeway scenarios as a function of visibility as observed by a significant interaction between the two variables of interest. Results are discussed in terms of their application for validating the difficulty level of simulation scenarios as a format for examining mental workload.

  11. Brownian systems with spatially inhomogeneous activity

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Brader, J. M.

    2017-09-01

    We generalize the Green-Kubo approach, previously applied to bulk systems of spherically symmetric active particles [J. Chem. Phys. 145, 161101 (2016), 10.1063/1.4966153], to include spatially inhomogeneous activity. The method is applied to predict the spatial dependence of the average orientation per particle and the density. The average orientation is given by an integral over the self part of the Van Hove function and a simple Gaussian approximation to this quantity yields an accurate analytical expression. Taking this analytical result as input to a dynamic density functional theory approximates the spatial dependence of the density in good agreement with simulation data. All theoretical predictions are validated using Brownian dynamics simulations.

  12. The glass transition temperature of thin films: A molecular dynamics study for a bead-spring model.

    PubMed

    Stevenson, Craig S; Curro, John G; McCoy, John D

    2017-05-28

    Molecular dynamics simulations were carried out on free-standing liquid films of different thicknesses h using a bead-spring model of 10 beads per chain. The glass transition temperatures, T g , of the various films were determined from plots of the internal energy versus temperature. We used these simulations to test the validity of our earlier conjecture that the glass transition of a confined liquid could be approximated by pre-averaging over the non-uniform density profile of the film. Using the density profiles from our simulations, we computed the average density of the free-standing films as a function of temperature. In all our film simulations we found, within the error of the simulation, that T g of the film occurred at the same density (or packing fraction) as the bulk system at the bulk glass transition temperature T g B . By equating these densities at their respective glass transition temperatures, as suggested by the simulations, we deduced that T g /T g B is proportional to h 0 /h. This is consistent with previous simulations and experimental data. Moreover, the parameter h 0 is determinable in our model from the density profile of the films.

  13. Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: a partially perturbative density functional theory study.

    PubMed

    Peng, Bo; Yu, Yang-Xin

    2009-10-07

    The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.

  14. Statistics of cosmic density profiles from perturbation theory

    NASA Astrophysics Data System (ADS)

    Bernardeau, Francis; Pichon, Christophe; Codis, Sandrine

    2014-11-01

    The joint probability distribution function (PDF) of the density within multiple concentric spherical cells is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation theory as the Legendre transform of a function directly built in terms of the initial moments. In the context of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly models such a function for finite values of the variance. Detailed consequences of this assumption are explored. In particular the corresponding one-cell density probability distribution at finite variance is computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement with Λ -cold dark matter simulations at the few percent level for a wide range of density values and parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional (at fixed density) and marginal probability of the slope—the density difference between adjacent cells—and its fluctuations is also computed from the two-cell joint PDF; it also compares very well to simulations. It is emphasized that this could prove useful when studying the statistical properties of voids as it can serve as a statistical indicator to test gravity models and/or probe key cosmological parameters.

  15. Time-dependent quantum transport: An efficient method based on Liouville-von-Neumann equation for single-electron density matrix

    NASA Astrophysics Data System (ADS)

    Xie, Hang; Jiang, Feng; Tian, Heng; Zheng, Xiao; Kwok, Yanho; Chen, Shuguang; Yam, ChiYung; Yan, YiJing; Chen, Guanhua

    2012-07-01

    Basing on our hierarchical equations of motion for time-dependent quantum transport [X. Zheng, G. H. Chen, Y. Mo, S. K. Koo, H. Tian, C. Y. Yam, and Y. J. Yan, J. Chem. Phys. 133, 114101 (2010), 10.1063/1.3475566], we develop an efficient and accurate numerical algorithm to solve the Liouville-von-Neumann equation. We solve the real-time evolution of the reduced single-electron density matrix at the tight-binding level. Calculations are carried out to simulate the transient current through a linear chain of atoms, with each represented by a single orbital. The self-energy matrix is expanded in terms of multiple Lorentzian functions, and the Fermi distribution function is evaluated via the Padè spectrum decomposition. This Lorentzian-Padè decomposition scheme is employed to simulate the transient current. With sufficient Lorentzian functions used to fit the self-energy matrices, we show that the lead spectral function and the dynamics response can be treated accurately. Compared to the conventional master equation approaches, our method is much more efficient as the computational time scales cubically with the system size and linearly with the simulation time. As a result, the simulations of the transient currents through systems containing up to one hundred of atoms have been carried out. As density functional theory is also an effective one-particle theory, the Lorentzian-Padè decomposition scheme developed here can be generalized for first-principles simulation of realistic systems.

  16. Glass Formation of n-Butanol: Coarse-grained Molecular Dynamics Simulations Using Gay-Berne Potential Model

    NASA Astrophysics Data System (ADS)

    Xie, Gui-long; Zhang, Yong-hong; Huang, Shi-ping

    2012-04-01

    Using coarse-grained molecular dynamics simulations based on Gay-Berne potential model, we have simulated the cooling process of liquid n-butanol. A new set of GB parameters are obtained by fitting the results of density functional theory calculations. The simulations are carried out in the range of 290-50 K with temperature decrements of 10 K. The cooling characteristics are determined on the basis of the variations of the density, the potential energy and orientational order parameter with temperature, whose slopes all show discontinuity. Both the radial distribution function curves and the second-rank orientational correlation function curves exhibit splitting in the second peak. Using the discontinuous change of these thermodynamic and structure properties, we obtain the glass transition at an estimate of temperature Tg=120±10 K, which is in good agreement with experimental results 110±1 K.

  17. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation.

    PubMed

    Shokuhfar, Ali; Arab, Behrouz

    2013-09-01

    Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.

  18. KASCADE-Grande energy reconstruction based on the lateral density distribution using the QGSJet-II.04 interaction model

    NASA Astrophysics Data System (ADS)

    Gherghel-Lascu, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertania, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2017-06-01

    The charged particle densities obtained from CORSIKA simulated EAS, using the QGSJet-II.04 hadronic interaction model are used for primary energy reconstruction. Simulated data are reconstructed by using Lateral Energy Correction Functions computed with a new realistic model of the Grande stations implemented in Geant4.10.

  19. The force distribution probability function for simple fluids by density functional theory.

    PubMed

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  20. Bypassing the malfunction junction in warm dense matter simulations

    NASA Astrophysics Data System (ADS)

    Cangi, Attila; Pribram-Jones, Aurora

    2015-03-01

    Simulation of warm dense matter requires computational methods that capture both quantum and classical behavior efficiently under high-temperature and high-density conditions. The state-of-the-art approach to model electrons and ions under those conditions is density functional theory molecular dynamics, but this method's computational cost skyrockets as temperatures and densities increase. We propose finite-temperature potential functional theory as an in-principle-exact alternative that suffers no such drawback. In analogy to the zero-temperature theory developed previously, we derive an orbital-free free energy approximation through a coupling-constant formalism. Our density approximation and its associated free energy approximation demonstrate the method's accuracy and efficiency. A.C. has been partially supported by NSF Grant CHE-1112442. A.P.J. is supported by DOE Grant DE-FG02-97ER25308.

  1. Study regarding the density evolution of messages and the characteristic functions associated of a LDPC code

    NASA Astrophysics Data System (ADS)

    Drăghici, S.; Proştean, O.; Răduca, E.; Haţiegan, C.; Hălălae, I.; Pădureanu, I.; Nedeloni, M.; (Barboni Haţiegan, L.

    2017-01-01

    In this paper a method with which a set of characteristic functions are associated to a LDPC code is shown and also functions that represent the evolution density of messages that go along the edges of a Tanner graph. Graphic representations of the density evolution are shown respectively the study and simulation of likelihood threshold that render asymptotic boundaries between which there are decodable codes were made using MathCad V14 software.

  2. The van Hove distribution function for Brownian hard spheres: Dynamical test particle theory and computer simulations for bulk dynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Paul; Fortini, Andrea; Archer, Andrew J.; Schmidt, Matthias

    2010-12-01

    We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the "self " component having only one particle, the "distinct" component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy, and arrested dynamics at high densities.

  3. Terahertz Spectroscopy and Solid-State Density Functional Theory Calculations of Cyanobenzaldehyde Isomers.

    PubMed

    Dash, Jyotirmayee; Ray, Shaumik; Nallappan, Kathirvel; Kaware, Vaibhav; Basutkar, Nitin; Gonnade, Rajesh G; Ambade, Ashootosh V; Joshi, Kavita; Pesala, Bala

    2015-07-23

    Spectral signatures in the terahertz (THz) frequency region are mainly due to bulk vibrations of the molecules. These resonances are highly sensitive to the relative position of atoms in a molecule as well as the crystal packing arrangement. To understand the variation of THz resonances, THz spectra (2-10 THz) of three structural isomers: 2-, 3-, and 4-cyanobenzaldehyde have been studied. THz spectra obtained from Fourier transform infrared (FTIR) spectrometry of these isomers show that the resonances are distinctly different especially below 5 THz. For understanding the intermolecular interactions due to hydrogen bonds, four molecule cluster simulations of each of the isomers have been carried out using the B3LYP density functional with the 6-31G(d,p) basis set in Gaussian09 software and the compliance constants are obtained. However, to understand the exact reason behind the observed resonances, simulation of each isomer considering the full crystal structure is essential. The crystal structure of each isomer has been determined using X-ray diffraction (XRD) analysis for carrying out crystal structure simulations. Density functional theory (DFT) simulations using CRYSTAL14 software, utilizing the hybrid density functional B3LYP, have been carried out to understand the vibrational modes. The bond lengths and bond angles from the optimized structures are compared with the XRD results in terms of root-mean-square-deviation (RMSD) values. Very low RMSD values confirm the overall accuracy of the results. The simulations are able to predict most of the spectral features exhibited by the isomers. The results show that low frequency modes (<3 THz) are mediated through hydrogen bonds and are dominated by intermolecular vibrations.

  4. Application of London-type dispersion corrections to the solid-state density functional theory simulation of the terahertz spectra of crystalline pharmaceuticals.

    PubMed

    King, Matthew D; Buchanan, William D; Korter, Timothy M

    2011-03-14

    The effects of applying an empirical dispersion correction to solid-state density functional theory methods were evaluated in the simulation of the crystal structure and low-frequency (10 to 90 cm(-1)) terahertz spectrum of the non-steroidal anti-inflammatory drug, naproxen. The naproxen molecular crystal is bound largely by weak London force interactions, as well as by more prominent interactions such as hydrogen bonding, and thus serves as a good model for the assessment of the pair-wise dispersion correction term in systems influenced by intermolecular interactions of various strengths. Modifications to the dispersion parameters were tested in both fully optimized unit cell dimensions and those determined by X-ray crystallography, with subsequent simulations of the THz spectrum being performed. Use of the unmodified PBE density functional leads to an unrealistic expansion of the unit cell volume and the poor representation of the THz spectrum. Inclusion of a modified dispersion correction enabled a high-quality simulation of the THz spectrum and crystal structure of naproxen to be achieved without the need for artificially constraining the unit cell dimensions.

  5. Nonadiabatic Dynamics in Single-Electron Tunneling Devices with Time-Dependent Density-Functional Theory

    NASA Astrophysics Data System (ADS)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-04-01

    We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.

  6. Nonadiabatic Dynamics in Single-Electron Tunneling Devices with Time-Dependent Density-Functional Theory.

    PubMed

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-04-13

    We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.

  7. AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.

    2007-12-01

    We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.

  8. Equations of state and stability of MgSiO 3 perovskite and post-perovskite phases from quantum Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yangzheng; Cohen, Ronald E.; Stackhouse, Stephen

    2014-11-10

    In this study, we have performed quantum Monte Carlo (QMC) simulations and density functional theory calculations to study the equations of state of MgSiO 3 perovskite (Pv, bridgmanite) and post-perovskite (PPv) up to the pressure and temperature conditions of the base of Earth's lower mantle. The ground-state energies were derived using QMC simulations and the temperature-dependent Helmholtz free energies were calculated within the quasiharmonic approximation and density functional perturbation theory. The equations of state for both phases of MgSiO 3 agree well with experiments, and better than those from generalized gradient approximation calculations. The Pv-PPv phase boundary calculated from ourmore » QMC equations of state is also consistent with experiments, and better than previous local density approximation calculations. Lastly, we discuss the implications for double crossing of the Pv-PPv boundary in the Earth.« less

  9. Vapour-liquid interfacial properties of square-well chains from density functional theory and Monte Carlo simulation.

    PubMed

    Martínez-Ruiz, Francisco José; Blas, Felipe J; Moreno-Ventas Bravo, A Ignacio; Míguez, José Manuel; MacDowell, Luis G

    2017-05-17

    The statistical associating fluid theory for attractive potentials of variable range (SAFT-VR) density functional theory (DFT) developed by [Gloor et al., J. Chem. Phys., 2004, 121, 12740-12759] is used to predict the interfacial behaviour of molecules modelled as fully-flexible square-well chains formed from tangentially-bonded monomers of diameter σ and potential range λ = 1.5σ. Four different model systems, comprising 4, 8, 12, and 16 monomers per molecule, are considered. In addition to that, we also compute a number of interfacial properties of molecular chains from direct simulation of the vapour-liquid interface. The simulations are performed in the canonical ensemble, and the vapour-liquid interfacial tension is evaluated using the wandering interface (WIM) method, a technique based on the thermodynamic definition of surface tension. Apart from surface tension, we also obtain density profiles, coexistence densities, vapour pressures, and critical temperature and density, paying particular attention to the effect of the chain length on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The interfacial thickness and surface tension appear to exhibit an asymptotic limiting behaviour for long chains. A similar behaviour is also observed for the coexistence densities and critical properties. Agreement between theory and simulation results indicates that SAFT-VR DFT is only able to predict qualitatively the interfacial properties of the model. Our results are also compared with simulation data taken from the literature, including the vapour-liquid coexistence densities, vapour pressures, and surface tension.

  10. Communication: Simple liquids' high-density viscosity

    NASA Astrophysics Data System (ADS)

    Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-02-01

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  11. The structure and statistics of interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.

    2017-06-01

    We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.

  12. Time-dependent broken-symmetry density functional theory simulation of the optical response of entangled paramagnetic defects: Color centers in lithium fluoride

    NASA Astrophysics Data System (ADS)

    Janesko, Benjamin G.

    2018-02-01

    Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.

  13. A Wigner Monte Carlo approach to density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellier, J.M., E-mail: jeanmichel.sellier@gmail.com; Dimov, I.

    2014-08-01

    In order to simulate quantum N-body systems, stationary and time-dependent density functional theories rely on the capacity of calculating the single-electron wave-functions of a system from which one obtains the total electron density (Kohn–Sham systems). In this paper, we introduce the use of the Wigner Monte Carlo method in ab-initio calculations. This approach allows time-dependent simulations of chemical systems in the presence of reflective and absorbing boundary conditions. It also enables an intuitive comprehension of chemical systems in terms of the Wigner formalism based on the concept of phase-space. Finally, being based on a Monte Carlo method, it scales verymore » well on parallel machines paving the way towards the time-dependent simulation of very complex molecules. A validation is performed by studying the electron distribution of three different systems, a Lithium atom, a Boron atom and a hydrogenic molecule. For the sake of simplicity, we start from initial conditions not too far from equilibrium and show that the systems reach a stationary regime, as expected (despite no restriction is imposed in the choice of the initial conditions). We also show a good agreement with the standard density functional theory for the hydrogenic molecule. These results demonstrate that the combination of the Wigner Monte Carlo method and Kohn–Sham systems provides a reliable computational tool which could, eventually, be applied to more sophisticated problems.« less

  14. Molecular mechanics and structure of the fluid-solid interface in simple fluids

    NASA Astrophysics Data System (ADS)

    Wang, Gerald J.; Hadjiconstantinou, Nicolas G.

    2017-09-01

    Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.

  15. Influence of deep defects on device performance of thin-film polycrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Fehr, M.; Simon, P.; Sontheimer, T.; Leendertz, C.; Gorka, B.; Schnegg, A.; Rech, B.; Lips, K.

    2012-09-01

    Employing quantitative electron-paramagnetic resonance analysis and numerical simulations, we investigate the performance of thin-film polycrystalline silicon solar cells as a function of defect density. We find that the open-circuit voltage is correlated to the density of defects, which we assign to coordination defects at grain boundaries and in dislocation cores. Numerical device simulations confirm the observed correlation and indicate that the device performance is limited by deep defects in the absorber bulk. Analyzing the defect density as a function of grain size indicates a high concentration of intra-grain defects. For large grains (>2 μm), we find that intra-grain defects dominate over grain boundary defects and limit the solar cell performance.

  16. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  17. Force Field Accelerated Density Functional Theory Molecular Dynamics for Simulation of Reactive Systems at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Lindsey, Rebecca; Goldman, Nir; Fried, Laurence

    2017-06-01

    Atomistic modeling of chemistry at extreme conditions remains a challenge, despite continuing advances in computing resources and simulation tools. While first principles methods provide a powerful predictive tool, the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Simulating the effect of high column density absorbers on the one-dimensional Lyman α forest flux power spectrum

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-03-01

    We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.

  19. Ultra-stiff metallic glasses through bond energy density design.

    PubMed

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  20. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport

    USGS Publications Warehouse

    Langevin, Christian D.; Thorne, Daniel T.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing

    2008-01-01

    The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant-head boundaries with the Time-Variant Constant-Head (CHD) Package. These options allow for increased flexibility when using CHD flow boundaries with the zero-dispersive flux solute boundaries implemented by MT3DMS at constant-head cells. This report contains revised input instructions for the MT3DMS Dispersion (DSP) Package, Variable-Density Flow (VDF) Package, Viscosity (VSC) Package, and CHD Package. The report concludes with seven cases of an example problem designed to highlight many of the new features.

  1. Molecular simulation study of cavity-generated instabilities in the superheated Lennard-Jones liquid

    NASA Astrophysics Data System (ADS)

    Torabi, Korosh; Corti, David S.

    2010-10-01

    Previous equilibrium-based density-functional theory (DFT) analyses of cavity formation in the pure component superheated Lennard-Jones (LJ) liquid [S. Punnathanam and D. S. Corti, J. Chem. Phys. 119, 10224 (2003); M. J. Uline and D. S. Corti, Phys. Rev. Lett. 99, 076102 (2007)] revealed that a thermodynamic limit of stability appears in which no liquidlike density profile can develop for cavity radii greater than some critical size (being a function of temperature and bulk density). The existence of these stability limits was also verified using isothermal-isobaric Monte Carlo (MC) simulations. To test the possible relevance of these limits of stability to a dynamically evolving system, one that may be important for homogeneous bubble nucleation, we perform isothermal-isobaric molecular dynamics (MD) simulations in which cavities of different sizes are placed within the superheated LJ liquid. When the impermeable boundary utilized to generate a cavity is removed, the MD simulations show that the cavity collapses and the overall density of the system remains liquidlike, i.e., the system is stable, when the initial cavity radius is below some certain value. On the other hand, when the initial radius is large enough, the cavity expands and the overall density of the system rapidly decreases toward vaporlike densities, i.e., the system is unstable. Unlike the DFT predictions, however, the transition between stability and instability is not infinitely sharp. The fraction of initial configurations that generate an instability (or a phase separation) increases from zero to unity as the initial cavity radius increases over a relatively narrow range of values, which spans the predicted stability limit obtained from equilibrium MC simulations. The simulation results presented here provide initial evidence that the equilibrium-based stability limits predicted in the previous DFT and MC simulation studies may play some role, yet to be fully determined, in the homogeneous nucleation and growth of embryos within metastable fluids.

  2. Computing the Power-Density Spectrum for an Engineering Model

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1982-01-01

    Computer program for calculating of power-density spectrum (PDS) from data base generated by Advanced Continuous Simulation Language (ACSL) uses algorithm that employs fast Fourier transform (FFT) to calculate PDS of variable. Accomplished by first estimating autocovariance function of variable and then taking FFT of smoothed autocovariance function to obtain PDS. Fast-Fourier-transform technique conserves computer resources.

  3. A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.

    2003-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.

  4. On the phase diagram of water with density functional theory potentials: the melting temperature of Ice I-h with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Soohaeng; Zeng, Xiao Cheng; Xantheas, Sotiris S.

    2009-06-11

    The melting temperature (Tm) of ice Ih was determined from constant enthalphy (NPH) Born-Oppenheimer Molecular Dynamics (BOMD) simulations to be 417±3 K for the Perdew-Burke-Ernzerhof (PBE) and 411±4 K for the Becke-Lee-Yang-Parr (BLYP) density functionals using a coexisting ice (Ih)-liquid phase at constant pressures of P = 2,500 and 10,000 bar and a density ρ = 1 g/cm3, respectively. This suggests that ambient condition simulations at ρ = 1 g/cm3 will rather describe a supercooled state that is overstructured when compared to liquid water. This work was supported by the US Department of Energy Office of Basic Energy Sciences' Chemicalmore » Sciences program. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  5. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genova, Alessandro, E-mail: alessandro.genova@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide, E-mail: davide.ceresoli@cnr.it

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that aremore » linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH{sup •} radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH{sup •} radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.« less

  6. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical.

    PubMed

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  7. Plasmonic resonances of nanoparticles from large-scale quantum mechanical simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Xiang, Hongping; Zhang, Mingliang; Lu, Gang

    2017-09-01

    Plasmonic resonance of metallic nanoparticles results from coherent motion of its conduction electrons, driven by incident light. For the nanoparticles less than 10 nm in diameter, localized surface plasmonic resonances become sensitive to the quantum nature of the conduction electrons. Unfortunately, quantum mechanical simulations based on time-dependent Kohn-Sham density functional theory are computationally too expensive to tackle metal particles larger than 2 nm. Herein, we introduce the recently developed time-dependent orbital-free density functional theory (TD-OFDFT) approach which enables large-scale quantum mechanical simulations of plasmonic responses of metallic nanostructures. Using TD-OFDFT, we have performed quantum mechanical simulations to understand size-dependent plasmonic response of Na nanoparticles and plasmonic responses in Na nanoparticle dimers and trimers. An outlook of future development of the TD-OFDFT method is also presented.

  8. The distribution of density in supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Hopkins, Philip F.

    2017-11-01

    We propose a model for the statistics of the mass density in supersonic turbulence, which plays a crucial role in star formation and the physics of the interstellar medium (ISM). The model is derived by considering the density to be arranged as a collection of strong shocks of width ˜ M^{-2}, where M is the turbulent Mach number. With two physically motivated parameters, the model predicts all density statistics for M>1 turbulence: the density probability distribution and its intermittency (deviation from lognormality), the density variance-Mach number relation, power spectra and structure functions. For the proposed model parameters, reasonable agreement is seen between model predictions and numerical simulations, albeit within the large uncertainties associated with current simulation results. More generally, the model could provide a useful framework for more detailed analysis of future simulations and observational data. Due to the simple physical motivations for the model in terms of shocks, it is straightforward to generalize to more complex physical processes, which will be helpful in future more detailed applications to the ISM. We see good qualitative agreement between such extensions and recent simulations of non-isothermal turbulence.

  9. Density functional theory versus quantum Monte Carlo simulations of Fermi gases in the optical-lattice arena★

    NASA Astrophysics Data System (ADS)

    Pilati, Sebastiano; Zintchenko, Ilia; Troyer, Matthias; Ancilotto, Francesco

    2018-04-01

    We benchmark the ground state energies and the density profiles of atomic repulsive Fermi gases in optical lattices (OLs) computed via density functional theory (DFT) against the results of diffusion Monte Carlo (DMC) simulations. The main focus is on a half-filled one-dimensional OLs, for which the DMC simulations performed within the fixed-node approach provide unbiased results. This allows us to demonstrate that the local spin-density approximation (LSDA) to the exchange-correlation functional of DFT is very accurate in the weak and intermediate interactions regime, and also to underline its limitations close to the strongly-interacting Tonks-Girardeau limit and in very deep OLs. We also consider a three-dimensional OL at quarter filling, showing also in this case the high accuracy of the LSDA in the moderate interaction regime. The one-dimensional data provided in this study may represent a useful benchmark to further develop DFT methods beyond the LSDA and they will hopefully motivate experimental studies to accurately measure the equation of state of Fermi gases in higher-dimensional geometries. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2018-90021-1.

  10. One-dimensional continuum electronic structure with the density-matrix renormalization group and its implications for density-functional theory.

    PubMed

    Stoudenmire, E M; Wagner, Lucas O; White, Steven R; Burke, Kieron

    2012-08-03

    We extend the density matrix renormalization group to compute exact ground states of continuum many-electron systems in one dimension with long-range interactions. We find the exact ground state of a chain of 100 strongly correlated artificial hydrogen atoms. The method can be used to simulate 1D cold atom systems and to study density-functional theory in an exact setting. To illustrate, we find an interacting, extended system which is an insulator but whose Kohn-Sham system is metallic.

  11. Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies.

    PubMed

    Branicio, Paulo Sergio; Rino, José Pedro; Gan, Chee Kwan; Tsuzuki, Hélio

    2009-03-04

    Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.

  12. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    PubMed

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  13. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.

    PubMed

    Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg

    2017-05-09

    A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.

  14. Geometric characterization and simulation of planar layered elastomeric fibrous biomaterials

    DOE PAGES

    Carleton, James B.; D’Amore, Antonio; Feaver, Kristen R.; ...

    2014-10-13

    Many important biomaterials are composed of multiple layers of networked fibers. While there is a growing interest in modeling and simulation of the mechanical response of these biomaterials, a theoretical foundation for such simulations has yet to be firmly established. Moreover, correctly identifying and matching key geometric features is a critically important first step for performing reliable mechanical simulations. This paper addresses these issues in two ways. First, using methods of geometric probability, we develop theoretical estimates for the mean linear and areal fiber intersection densities for 2-D fibrous networks. These densities are expressed in terms of the fiber densitymore » and the orientation distribution function, both of which are relatively easy-to-measure properties. Secondly, we develop a random walk algorithm for geometric simulation of 2-D fibrous networks which can accurately reproduce the prescribed fiber density and orientation distribution function. Furthermore, the linear and areal fiber intersection densities obtained with the algorithm are in agreement with the theoretical estimates. Both theoretical and computational results are compared with those obtained by post-processing of scanning electron microscope images of actual scaffolds. These comparisons reveal difficulties inherent to resolving fine details of multilayered fibrous networks. Finally, the methods provided herein can provide a rational means to define and generate key geometric features from experimentally measured or prescribed scaffold structural data.« less

  15. A proposed simulation method for directed self-assembly of nanographene

    NASA Astrophysics Data System (ADS)

    Geraets, J. A.; Baldwin, J. P. C.; Twarock, R.; Hancock, Y.

    2017-09-01

    A methodology for predictive kinetic self-assembly modeling of bottom-up chemical synthesis of nanographene is proposed. The method maintains physical transparency in using a novel array format to efficiently store molecule information and by using array operations to determine reaction possibilities. Within a minimal model approach, the parameter space for the bond activation energies (i.e. molecule functionalization) at fixed reaction temperature and initial molecule concentrations is explored. Directed self-assembly of nanographene from functionalized tetrabenzanthracene and benzene is studied with regions in the activation energy phase-space showing length-to-width ratio tunability. The degree of defects and reaction reproducibility in the simulations is also determined, with the rate of functionalized benzene addition providing additional control of the dimension and quality of the nanographene. Comparison of the reaction energetics to available density functional theory data suggests the synthesis may be experimentally tenable using aryl-halide cross-coupling and noble metal surface-assisted catalysis. With full access to the intermediate reaction network and with dynamic coupling to density functional theory-informed tight-binding simulation, the method is proposed as a computationally efficient means towards detailed simulation-driven design of new nanographene systems.

  16. Room-temperature d0 ferromagnetism in carbon-doped Y2O3 for spintronic applications: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Chakraborty, Brahmananda; Nandi, Prithwish K.; Kawazoe, Yoshiyuki; Ramaniah, Lavanya M.

    2018-05-01

    Through density functional theory simulations with the generalized gradient approximation, confirmed by the more sophisticated hybrid functional, we predict the triggering of d0 ferromagnetism in C doped Y2O3 at a hole density of 3.36 ×1021c m-3 (one order less than the critical hole density of ZnO) having magnetic moment of 2.0 μB per defect with ferromagnetic coupling large enough to promote room-temperature ferromagnetism. The persistence of ferromagnetism at room temperature is established through computation of the Curie temperature by the mean field approximation and ab initio molecular dynamics simulations. The induced magnetic moment is mainly contributed by the 2 p orbital of the impurity C and the 2 p orbital of O and we quantitatively and extensively demonstrate through the analysis of density of states and ferromagnetic coupling that the Stoner criterion is satisfied to activate room-temperature ferromagnetism. As the system is stable at room temperature, C doped Y2O3 has feasible defect formation energy and ferromagnetism survives for the choice of hybrid exchange functional, and at room temperature we strongly believe that C doped Y2O3 can be tailored as a room-temperature diluted magnetic semiconductor for spintronic applications.

  17. A density functional theory for colloids with two multiple bonding associating sites.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2016-06-22

    Wertheim's multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement.

  18. Window for Optimal Frequency Operation and Reliability of 3DEG and 2DEG Channels for Oxide Microwave MESFETs and HFETs

    DTIC Science & Technology

    2016-04-01

    noise, and energy relaxation for doped zinc-oxide and structured ZnO transistor materials with a 2-D electron gas (2DEG) channel subjected to a strong...function on the time delay. Closed symbols represent the Monte Carlo data with hot-phonon effect at different electron gas density: 1•1017 cm-3...Monte Carlo simulation is performed for electron gas density of 1•1018 cm-3. Figure 18. Monte Carlo simulation of density-dependent hot-electron energy

  19. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  20. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sissay, Adonay; Abanador, Paul; Mauger, François

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less

  1. On the Relation Between Soft Electron Precipitations in the Cusp Region and Solar Wind Coupling Functions

    NASA Astrophysics Data System (ADS)

    Dang, Tong; Zhang, Binzheng; Wiltberge, Michael; Wang, Wenbin; Varney, Roger; Dou, Xiankang; Wan, Weixing; Lei, Jiuhou

    2018-01-01

    In this study, the correlations between the fluxes of precipitating soft electrons in the cusp region and solar wind coupling functions are investigated utilizing the Lyon-Fedder-Mobarry global magnetosphere model simulations. We conduct two simulation runs during periods from 20 March 2008 to 16 April 2008 and from 15 to 24 December 2014, which are referred as "Equinox Case" and "Solstice Case," respectively. The simulation results of Equinox Case show that the plasma number density in the high-latitude cusp region scales well with the solar wind number density (ncusp/nsw=0.78), which agrees well with the statistical results from the Polar spacecraft measurements. For the Solstice Case, the plasma number density of high-latitude cusp in both hemispheres increases approximately linearly with upstream solar wind number density with prominent hemispheric asymmetry. Due to the dipole tilt effect, the average number density ratio ncusp/nsw in the Southern (summer) Hemisphere is nearly 3 times that in the Northern (winter) Hemisphere. In addition to the solar wind number density, 20 solar wind coupling functions are tested for the linear correlation with the fluxes of precipitating cusp soft electrons. The statistical results indicate that the solar wind dynamic pressure p exhibits the highest linear correlation with the cusp electron fluxes for both equinox and solstice conditions, with correlation coefficients greater than 0.75. The linear regression relations for equinox and solstice cases may provide an empirical calculation for the fluxes of cusp soft electron precipitation based on the upstream solar wind driving conditions.

  2. Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Klein, J.-O.; Chappert, C.

    2014-01-20

    High current density is indispensable to shift domain walls (DWs) in magnetic nanowires, which limits the using of racetrack memory (RM) for low power and high density purposes. In this paper, we present perpendicular-magnetic-anisotropy (PMA) Co/Ni RM with global magnetic field assistance, which lowers the current density for DW motion. By using a compact model of PMA RM and 40 nm design kit, we perform mixed simulation to validate the functionality of this structure and analyze its density potential. Stochastic DW motion behavior has been taken into account and statistical Monte-Carlo simulations are carried out to evaluate its reliability performance.

  3. Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites

    NASA Astrophysics Data System (ADS)

    Bokdam, Menno; Lahnsteiner, Jonathan; Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg

    2017-10-01

    Which density functional is the "best" for structure simulations of a particular material? A concise, first principles, approach to answer this question is presented. The random phase approximation (RPA)—an accurate many body theory—is used to evaluate various density functionals. To demonstrate and verify the method, we apply it to the hybrid perovskite MAPbI3 , a promising new solar cell material. The evaluation is done by first creating finite temperature ensembles for small supercells using RPA molecular dynamics, and then evaluating the variance between the RPA and various approximate density functionals for these ensembles. We find that, contrary to recent suggestions, van der Waals functionals do not improve the description of the material, whereas hybrid functionals and the strongly constrained appropriately normed (SCAN) density functional yield very good agreement with the RPA. Finally, our study shows that in the room temperature tetragonal phase of MAPbI3 , the molecules are preferentially parallel to the shorter lattice vectors but reorientation on ps time scales is still possible.

  4. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    DOE PAGES

    Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...

    2016-04-20

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less

  5. Computer Simulation for Calculating the Second-Order Correlation Function of Classical and Quantum Light

    ERIC Educational Resources Information Center

    Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.

    2011-01-01

    We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…

  6. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Erkoç, Şakir

    2017-04-01

    Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.

  7. Simulations of nanocrystals under pressure: combining electronic enthalpy and linear-scaling density-functional theory.

    PubMed

    Corsini, Niccolò R C; Greco, Andrea; Hine, Nicholas D M; Molteni, Carla; Haynes, Peter D

    2013-08-28

    We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.

  8. Simulations of nanocrystals under pressure: Combining electronic enthalpy and linear-scaling density-functional theory

    NASA Astrophysics Data System (ADS)

    Corsini, Niccolò R. C.; Greco, Andrea; Hine, Nicholas D. M.; Molteni, Carla; Haynes, Peter D.

    2013-08-01

    We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], 10.1103/PhysRevLett.94.145501, it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.

  9. Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maerzke, Katie A.; McGrath, M. J.; Kuo, I-F W.

    2009-09-07

    Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature thatmore » are significantly under- and overestimated, respectively. We present a comprehensive density functional theory study to asses the accuracy of two popular exchange correlation functionals on the structure and density of liquid water at ambient conditions This work was supported by the US Department of Energy Office of Basic Energy Science Chemical Sciences Program. Battelle operates Pacific Northwest National Laboratory for the US Department of Energy.« less

  10. Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding.

    PubMed

    Goldman, Nir; Aradi, Bálint; Lindsey, Rebecca K; Fried, Laurence E

    2018-05-08

    We detail the creation of a multicenter density functional tight binding (DFTB) model for hydrogen on δ-plutonium, using a framework of new Slater-Koster interaction parameters and a repulsive energy based on the Chebyshev Interaction Model for Efficient Simulation (ChIMES), where two- and three-center atomic interactions are represented by linear combinations of Chebyshev polynomials. We find that our DFTB/ChIMES model yields a total electron density of states for bulk δ-Pu that compares well to that from Density Functional Theory, as well as to a grid of energy calculations representing approximate H 2 dissociation paths on the δ-Pu (100) surface. We then perform molecular dynamics simulations and minimum energy pathway calculations to determine the energetics of surface dissociation and subsurface diffusion on the (100) and (111) surfaces. Our approach allows for the efficient creation of multicenter repulsive energies with a relatively small investment in initial DFT calculations. Our efforts are particularly pertinent to studies that rely on quantum calculations for interpretation and validation, such as experimental determination of chemical reactivity both on surfaces and in condensed phases.

  11. Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath

    NASA Astrophysics Data System (ADS)

    Rivera-Rivera, Luis A.; Wagner, Albert F.; Sewell, Thomas D.; Thompson, Donald L.

    2015-01-01

    Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ˜100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.

  12. Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Rivera, Luis A.; Wagner, Albert F.; Sewell, Thomas D.

    2015-01-07

    Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is similar to 100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit withmore » the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities. (C) 2015 AIP Publishing LLC.« less

  13. Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath.

    PubMed

    Rivera-Rivera, Luis A; Wagner, Albert F; Sewell, Thomas D; Thompson, Donald L

    2015-01-07

    Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.

  14. Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Rivera, Luis A.; Sewell, Thomas D.; Thompson, Donald L.

    2015-01-07

    Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatzmore » function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane “simultaneously” colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.« less

  15. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    NASA Astrophysics Data System (ADS)

    Ba, Yan; Liu, Haihu; Li, Qing; Kang, Qinjun; Sun, Jinju

    2016-08-01

    In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.

  16. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement.

    PubMed

    Gao, Nuo; Zhu, S A; He, Bin

    2005-06-07

    We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.

  17. Simulation of surface processes

    PubMed Central

    Jónsson, Hannes

    2011-01-01

    Computer simulations of surface processes can reveal unexpected insight regarding atomic-scale structure and transitions. Here, the strengths and weaknesses of some commonly used approaches are reviewed as well as promising avenues for improvements. The electronic degrees of freedom are usually described by gradient-dependent functionals within Kohn–Sham density functional theory. Although this level of theory has been remarkably successful in numerous studies, several important problems require a more accurate theoretical description. It is important to develop new tools to make it possible to study, for example, localized defect states and band gaps in large and complex systems. Preliminary results presented here show that orbital density-dependent functionals provide a promising avenue, but they require the development of new numerical methods and substantial changes to codes designed for Kohn–Sham density functional theory. The nuclear degrees of freedom can, in most cases, be described by the classical equations of motion; however, they still pose a significant challenge, because the time scale of interesting transitions, which typically involve substantial free energy barriers, is much longer than the time scale of vibrations—often 10 orders of magnitude. Therefore, simulation of diffusion, structural annealing, and chemical reactions cannot be achieved with direct simulation of the classical dynamics. Alternative approaches are needed. One such approach is transition state theory as implemented in the adaptive kinetic Monte Carlo algorithm, which, thus far, has relied on the harmonic approximation but could be extended and made applicable to systems with rougher energy landscape and transitions through quantum mechanical tunneling. PMID:21199939

  18. Verification of Loop Diagnostics

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  19. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.

    PubMed

    Weysser, F; Puertas, A M; Fuchs, M; Voigtmann, Th

    2010-07-01

    We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.

  20. Scalable nuclear density functional theory with Sky3D

    NASA Astrophysics Data System (ADS)

    Afibuzzaman, Md; Schuetrumpf, Bastian; Aktulga, Hasan Metin

    2018-02-01

    In nuclear astrophysics, quantum simulations of large inhomogeneous dense systems as they appear in the crusts of neutron stars present big challenges. The number of particles in a simulation with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe techniques for an efficient and scalable parallel implementation of Sky3D, a nuclear density functional theory solver that operates on an equidistant grid. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on a Cray XC40 supercomputer.

  1. Monte Carlo Simulations of Electron Energy-Loss Spectra with the Addition of Fine Structure from Density Functional Theory Calculations.

    PubMed

    Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald

    2016-02-01

    A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.

  2. Structure and capacitance of an electric double layer of an asymmetric valency dimer electrolyte: A comparison of the density functional theory with Monte Carlo simulations

    DOE PAGES

    Henderson, Douglas; Silvestre-Alcantara, Whasington; Kaja, Monika; ...

    2016-08-18

    Here, the density functional theory is applied to a study of the structure and differential capacitance of a planar electric double layer formed by a valency asymmetric mixture of charged dimers and monomers. The dimer consists of two tangentially tethered hard spheres of equal diameters of which one is charged and the other is neutral, while the monomer is a charged hard sphere of the same size. The dimer electrolyte is next to a uniformly charged, smooth planar electrode. The electrode-particle singlet distributions, the mean electrostatic potential, and the differential capacitance for the model double layer are evaluated for amore » 2:1/1:2 valency electrolyte at a given concentration. Important consequences of asymmetry in charges and in ion shapes are (i) a finite, non-zero potential of zero charge, and (ii) asymmetric shaped 2:1 and 1:2 capacitance curves which are not mirror images of each other. Comparisons of the density functional results with the corresponding Monte Carlo simulations show the theoretical predictions to be in good agreement with the simulations overall except near zero surface charge.« less

  3. Nonstationary envelope process and first excursion probability

    NASA Technical Reports Server (NTRS)

    Yang, J.

    1972-01-01

    A definition of the envelope of nonstationary random processes is proposed. The establishment of the envelope definition makes it possible to simulate the nonstationary random envelope directly. Envelope statistics, such as the density function, joint density function, moment function, and level crossing rate, which are relevent to analyses of catastrophic failure, fatigue, and crack propagation in structures, are derived. Applications of the envelope statistics to the prediction of structural reliability under random loadings are discussed in detail.

  4. A general framework for numerical simulation of improvised explosive device (IED)-detection scenarios using density functional theory (DFT) and terahertz (THz) spectra.

    PubMed

    Shabaev, Andrew; Lambrakos, Samuel G; Bernstein, Noam; Jacobs, Verne L; Finkenstadt, Daniel

    2011-04-01

    We have developed a general framework for numerical simulation of various types of scenarios that can occur for the detection of improvised explosive devices (IEDs) through the use of excitation using incident electromagnetic waves. A central component model of this framework is an S-matrix representation of a multilayered composite material system. Each layer of the system is characterized by an average thickness and an effective electric permittivity function. The outputs of this component are the reflectivity and the transmissivity as functions of frequency and angle of the incident electromagnetic wave. The input of the component is a parameterized analytic-function representation of the electric permittivity as a function of frequency, which is provided by another component model of the framework. The permittivity function is constructed by fitting response spectra calculated using density functional theory (DFT) and parameter adjustment according to any additional information that may be available, e.g., experimentally measured spectra or theory-based assumptions concerning spectral features. A prototype simulation is described that considers response characteristics for THz excitation of the high explosive β-HMX. This prototype simulation includes a description of a procedure for calculating response spectra using DFT as input to the Smatrix model. For this purpose, the DFT software NRLMOL was adopted. © 2011 Society for Applied Spectroscopy

  5. First-Principles Molecular Dynamics Simulations of NaCl in Water: Performance of Advanced Exchange-Correlation Approximations in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Kanai, Yosuke

    Our ability to correctly model the association of oppositely charged ions in water is fundamental in physical chemistry and essential to various technological and biological applications of molecular dynamics (MD) simulations. MD simulations using classical force fields often show strong clustering of NaCl in the aqueous ionic solutions as a consequence of a deep contact pair minimum in the potential of mean force (PMF) curve. First-Principles Molecular Dynamics (FPMD) based on Density functional theory (DFT) with the popular PBE exchange-correlation approximation, on the other hand, show a different result with a shallow contact pair minimum in the PMF. We employed two of most promising exchange-correlation approximations, ωB97xv by Mardiorossian and Head-Gordon and SCAN by Sun, Ruzsinszky and Perdew, to examine the PMF using FPMD simulations. ωB97xv is highly empirically and optimized in the space of range-separated hybrid functional with a dispersion correction while SCAN is the most recent meta-GGA functional that is constructed by satisfying various known conditions in well-defined physical limits. We will discuss our findings for PMF, charge transfer, water dipoles, etc.

  6. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less

  7. A Scalable Implementation of Van der Waals Density Functionals

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, Francois

    2010-03-01

    Recently developed Van der Waals density functionals[1] offer the promise to account for weak intermolecular interactions that are not described accurately by local exchange-correlation density functionals. In spite of recent progress [2], the computational cost of such calculations remains high. We present a scalable parallel implementation of the functional proposed by Dion et al.[1]. The method is implemented in the Qbox first-principles simulation code (http://eslab.ucdavis.edu/software/qbox). Application to large molecular systems will be presented. [4pt] [1] M. Dion et al. Phys. Rev. Lett. 92, 246401 (2004).[0pt] [2] G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).

  8. Glass polymorphism in amorphous germanium probed by first-principles computer simulations

    NASA Astrophysics Data System (ADS)

    Mancini, G.; Celino, M.; Iesari, F.; Di Cicco, A.

    2016-01-01

    The low-density (LDA) to high-density (HDA) transformation in amorphous Ge at high pressure is studied by first-principles molecular dynamics simulations in the framework of density functional theory. Previous experiments are accurately reproduced, including the presence of a well-defined LDA-HDA transition above 8 GPa. The LDA-HDA density increase is found to be about 14%. Pair and bond-angle distributions are obtained in the 0-16 GPa pressure range and allowed us a detailed analysis of the transition. The local fourfold coordination is transformed in an average HDA sixfold coordination associated with different local geometries as confirmed by coordination number analysis and shape of the bond-angle distributions.

  9. Generalized non-equilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.

  10. Scanning tunneling microscopy image simulation of the rutile (110) TiO2 surface with hybrid functionals and the localized basis set approach

    NASA Astrophysics Data System (ADS)

    Di Valentin, Cristiana

    2007-10-01

    In this work we present a simplified procedure to use hybrid functionals and localized atomic basis sets to simulate scanning tunneling microscopy (STM) images of stoichiometric, reduced and hydroxylated rutile (110) TiO2 surface. For the two defective systems it is necessary to introduce some exact Hartree-Fock exchange in the exchange functional in order to correctly describe the details of the electronic structure. Results are compared to the standard density functional theory and planewave basis set approach. Both methods have advantages and drawbacks that are analyzed in detail. In particular, for the localized basis set approach, it is necessary to introduce a number of Gaussian function in the vacuum region above the surface in order to correctly describe the exponential decay of the integrated local density of states from the surface. In the planewave periodic approach, a thick vacuum region is required to achieve correct results. Simulated STM images are obtained for both the reduced and hydroxylated surface which nicely compare with experimental findings. A direct comparison of the two defects as displayed in the simulated STM images indicates that the OH groups should appear brighter than oxygen vacancies in perfect agreement with the experimental STM data.

  11. Parameterizing deep convection using the assumed probability density function method

    DOE PAGES

    Storer, R. L.; Griffin, B. M.; Höft, J.; ...

    2014-06-11

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  12. Parameterizing deep convection using the assumed probability density function method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storer, R. L.; Griffin, B. M.; Höft, J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.more » The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  13. Parameterizing deep convection using the assumed probability density function method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storer, R. L.; Griffin, B. M.; Hoft, Jan

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. Themore » same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  14. Self-contained filtered density function

    DOE PAGES

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...

    2017-09-18

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  15. Density-functional theory simulation of large quantum dots

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Baranger, Harold U.; Yang, Weitao

    2003-10-01

    Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.

  16. Self-contained filtered density function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  17. Self-contained filtered density function

    NASA Astrophysics Data System (ADS)

    Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.

    2017-09-01

    The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  18. Global and critical test of the perturbation density-functional theory based on extensive simulation of Lennard-Jones fluid near an interface and in confined systems.

    PubMed

    Zhou, Shiqi; Jamnik, Andrej

    2005-09-22

    The structure of a Lennard-Jones (LJ) fluid subjected to diverse external fields maintaining the equilibrium with the bulk LJ fluid is studied on the basis of the third-order+second-order perturbation density-functional approximation (DFA). The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at "dangerous" regions of the phase diagram, i.e., near the critical temperature or close to the gas-liquid coexistence curve. The accuracy of DFA predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. It is found that the DFA theory presented in this work performs successfully for the nonuniform LJ fluid only on the condition of high accuracy of the required bulk second-order direct correlation function. The present report further indicates that the proposed perturbation DFA is efficient and suitable for both supercritical and subcritical temperatures.

  19. Study of correlations from Ab-Initio Simulations of Liquid Water

    NASA Astrophysics Data System (ADS)

    Soto, Adrian; Fernandez-Serra, Marivi; Lu, Deyu; Yoo, Shinjae

    An accurate understanding of the dynamics and the structure of H2O molecules in the liquid phase is of extreme importance both from a fundamental and from a practical standpoint. Despite the successes of Molecular Dynamics (MD) with Density Functional Theory (DFT), liquid water remains an extremely difficult material to simulate accurately and efficiently because of fine balance between the covalent O-H bond, the hydrogen bond and the attractive the van der Waals forces. Small errors in those produce dramatic changes in the macroscopic properties of the liquid or in its structural properties. Different density functionals produce answers that differ by as much as 35% in ambient conditions, with none producing quantitative results in agreement with experiment at different mass densities. In order to understand these differences we perform an exhaustive scanning of the geometrical coordinates of MD simulations and study their statistical correlations with the simulation output quantities using advanced correlation analyses and machine learning techniques. This work was partially supported by DOE Award No. DE-FG02-09ER16052, by DOE Early Career Award No. DE-SC0003871, by BNL LDRD 16-039 project and BNL Contract No. DE-SC0012704.

  20. Study of correlations from Ab-Initio Simulations of Liquid Water

    NASA Astrophysics Data System (ADS)

    Soto, Adrian; Fernandez-Serra, Marivi; Lu, Deyu; Yoo, Shinjae

    An accurate understanding of the dynamics and the structure of H2O molecules in the liquid phase is of extreme importance both from a fundamental and from a practical standpoint. Despite the successes of Molecular Dynamics (MD) with Density Functional Theory (DFT), liquid water remains an extremely difficult material to simulate accurately and efficiently because of fine balance between the covalent O-H bond, the hydrogen bond and the attractive the van der Waals forces. Small errors in those produce dramatic changes in the macroscopic properties of the liquid or in its structural properties. Different density functionals produce answers that differ by as much as 35% in ambient conditions, with none producing quantitative results in agreement with experiment at different mass densities [J. Chem Phys. 139, 194502(2013)]. In order to understand these differences we perform an exhaustive scanning of the geometrical coordinates of MD simulations and study their statistical correlations with the simulation output quantities using advanced correlation analyses and machine learning techniques. This work was partially supported by DOE Award No. DE-FG02-09ER16052, by DOE Early Career Award No. DE-SC0003871, by BNL LDRD 16-039 project and BNL Contract No. DE-SC0012704.

  1. The virialization density of peaks with general density profiles under spherical collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, Douglas; Loeb, Abraham, E-mail: dsrubin@physics.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2013-12-01

    We calculate the non-linear virialization density, Δ{sub c}, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of Δ{sub c} which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for Δ{sub c} for halos in an Einstein de-Sitter and a ΛCDM universe. As examples, we consider power-law initial profiles as well as spherically averaged peak profiles calculated from the statisticsmore » of a Gaussian random field. We find that, depending on the profiles used, Δ{sub c} is smaller by a factor of a few to as much as a factor of 10 as compared to the density given by the standard calculation ( ≈ 200). Using our results, we show that, for halo finding algorithms that identify halos through an over-density threshold, the halo mass function measured from cosmological simulations can be enhanced at all halo masses by a factor of a few. This difference could be important when using numerical simulations to assess the validity of analytic models of the halo mass function.« less

  2. Computer program to simulate Raman scattering

    NASA Technical Reports Server (NTRS)

    Zilles, B.; Carter, R.

    1977-01-01

    A computer program is described for simulating the vibration-rotation and pure rotational spectrum of a combustion system consisting of various diatomic molecules and CO2 as a function of temperature and number density. Two kinds of spectra are generated: a pure rotational spectrum for any mixture of diatomic and linear triatomic molecules, and a vibrational spectrum for diatomic molecules. The program is designed to accept independent rotational and vibrational temperatures for each molecule, as well as number densities.

  3. Size dependence of yield strength simulated by a dislocation-density function dynamics approach

    NASA Astrophysics Data System (ADS)

    Leung, P. S. S.; Leung, H. S.; Cheng, B.; Ngan, A. H. W.

    2015-04-01

    The size dependence of the strength of nano- and micron-sized crystals is studied using a new simulation approach in which the dynamics of the density functions of dislocations are modeled. Since any quantity of dislocations can be represented by a density, this approach can handle large systems containing large quantities of dislocations, which may handicap discrete dislocation dynamics schemes due to the excessive computation time involved. For this reason, pillar sizes spanning a large range, from the sub-micron to micron regimes, can be simulated. The simulation results reveal the power-law relationship between strength and specimen size up to a certain size, beyond which the strength varies much more slowly with size. For specimens smaller than ∼4000b, their strength is found to be controlled by the dislocation depletion condition, in which the total dislocation density remains almost constant throughout the loading process. In specimens larger than ∼4000b, the initial dislocation distribution is of critical importance since the presence of dislocation entanglements is found to obstruct deformation in the neighboring regions within a distance of ∼2000b. This length scale suggests that the effects of dense dislocation clusters are greater in intermediate-sized specimens (e.g. 4000b and 8000b) than in larger specimens (e.g. 16 000b), according to the weakest-link concept.

  4. Reconstructing Solvent Density of Myoglobin Unit Cell from Proximal Radial Distribution Functions of Amino Acids

    NASA Astrophysics Data System (ADS)

    Galbraith, Madeline; Lynch, Gc; Pettitt, Bm

    Understanding the solvent density around a protein crystal structure is an important step for refining accurate crystal structures for use in dynamics simulations or in free energy calculations. The free energy of solvation has typically been approximated using an implicit continuum solvent model or an all atom MD simulation, with a trade-off between accuracy and computation time. For proteins, using precomputed proximal radial distribution functions (pRDFs) of the solvent to reconstruct solvent density on a grid is much faster than all atom MD simulations and more accurate than using implicit solvent models. MD simulations were run for the 20 common amino acids and pRDFs were calculated for several atom type data sets with and without hydrogens, using atom types representative of amino acid side chain atoms. Preliminary results from reconstructions suggest using a data set with 15 heavy atoms and 3 hydrogen yields results with the lowest error without a tradeoff on time. The results of using precomputed pRDFs to reconstruct the solvent density of water for the myoglobin (pdb ID 2mgk) unit cell quantifies the accuracy of the method in comparison with the crystallographic data. Funding Acknowledgement: This research was funded by the CPRIT Summer Undergraduate Program in Computational Cancer Biology, training Grant award RP 140113 from the Cancer Prevention & Research Institute of Texas (CPRIT).

  5. Density functional theory for polymeric systems in 2D.

    PubMed

    Słyk, Edyta; Roth, Roland; Bryk, Paweł

    2016-06-22

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.

  6. Theoretical Calculation of the Electron Transport Parameters and Energy Distribution Function for CF3I with noble gases mixtures using Monte Carlo simulation program

    NASA Astrophysics Data System (ADS)

    Jawad, Enas A.

    2018-05-01

    In this paper, The Monte Carlo simulation program has been used to calculation the electron energy distribution function (EEDF) and electric transport parameters for the gas mixtures of The trif leoroiodo methane (CF3I) ‘environment friendly’ with a noble gases (Argon, Helium, kryptos, Neon and Xenon). The electron transport parameters are assessed in the range of E/N (E is the electric field and N is the gas number density of background gas molecules) between 100 to 2000Td (1 Townsend = 10-17 V cm2) at room temperature. These parameters, namely are electron mean energy (ε), the density –normalized longitudinal diffusion coefficient (NDL) and the density –normalized mobility (μN). In contrast, the impact of CF3I in the noble gases mixture is strongly apparent in the values for the electron mean energy, the density –normalized longitudinal diffusion coefficient and the density –normalized mobility. Note in the results of the calculation agreed well with the experimental results.

  7. Linear Scaling Density Functional Calculations with Gaussian Orbitals

    NASA Technical Reports Server (NTRS)

    Scuseria, Gustavo E.

    1999-01-01

    Recent advances in linear scaling algorithms that circumvent the computational bottlenecks of large-scale electronic structure simulations make it possible to carry out density functional calculations with Gaussian orbitals on molecules containing more than 1000 atoms and 15000 basis functions using current workstations and personal computers. This paper discusses the recent theoretical developments that have led to these advances and demonstrates in a series of benchmark calculations the present capabilities of state-of-the-art computational quantum chemistry programs for the prediction of molecular structure and properties.

  8. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.

    PubMed

    Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua

    2004-04-15

    A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.

  9. Tunable non-interacting free-energy functionals: development and applications to low-density aluminum

    NASA Astrophysics Data System (ADS)

    Trickey, Samuel; Karasiev, Valentin

    We introduce the concept of tunable orbital-free non-interacting free-energy density functionals and present a generalized gradient approximation (GGA) with a subset of parameters defined from constraints and a few free parameters. Those free parameters are tuned to reproduce reference Kohn-Sham (KS) static-lattice pressures for Al at T=8 kK for bulk densities between 0.6 and 2 g/cm3. The tuned functional then is used in OF molecular dynamics (MD) simulations for Al with densities between 0.1 and 2 g/cm3 and T between 6 and 50 kK to calculate the equation of state and generate configurations for electrical conductivity calculations. The tunable functional produces accurate results. Computationally it is very effective especially at elevated temperature. Kohn-Shiam calculations for such low densities are affordable only up to T=10 kK, while other OF approximations, including two-point functionals, fail badly in that regime. Work supported by US DoE Grant DE-SC0002139.

  10. Phase transition in conjugated oligomers suspended in chloroform

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shikha; Kumar, Anupam; Yadav, S. N. S.; Mishra, Pankaj

    2015-08-01

    Density functional theory (DFT) has been used to investigate the isotropic-nematic (I-N) phase transition in a system of high aspect ratio conjugated oligomers suspended in chloroform. The interaction between the oligomers is modeled using Gay-Berne potential in which effect of solvent is implicit. Percus-Yevick integral equation theory has been used to evaluate the pair correlation functions of the fluid phase at several temperatures and densities. These pair correlation function has been used in the DFT to evaluate the I-N freezing parameters. Highly oriented nematic is found to stabilize at low density. The results obtained are in qualitative agreement with the simulation and are verifiable.

  11. Probabilistic Density Function Method for Stochastic ODEs of Power Systems with Uncertain Power Input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil

    Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.

  12. Melting slope of MgO from molecular dynamics and density functional theory

    NASA Astrophysics Data System (ADS)

    Tangney, Paul; Scandolo, Sandro

    2009-09-01

    We combine density functional theory (DFT) with molecular dynamics simulations based on an accurate atomistic force field to calculate the pressure derivative of the melting temperature of magnesium oxide at ambient pressure—a quantity for which a serious disagreement between theory and experiment has existed for almost 15 years. We find reasonable agreement with previous DFT results and with a very recent experimental determination of the slope. We pay particular attention to areas of possible weakness in theoretical calculations and conclude that the long-standing discrepancy with experiment could only be explained by a dramatic failure of existing density functionals or by flaws in the original experiment.

  13. Pair Potential That Reproduces the Shape of Isochrones in Molecular Liquids.

    PubMed

    Veldhorst, Arno A; Schrøder, Thomas B; Dyre, Jeppe C

    2016-08-18

    Many liquids have curves (isomorphs) in their phase diagrams along which structure, dynamics, and some thermodynamic quantities are invariant in reduced units. A substantial part of their phase diagrams is thus effectively one dimensional. The shapes of these isomorphs are described by a material-dependent function of density, h(ρ), which for real liquids is well approximated by a power law, ρ(γ). However, in simulations, a power law is not adequate when density changes are large; typical models, such as Lennard-Jones liquids, show that γ(ρ) ≡ d ln h(ρ)/d ln ρ is a decreasing function of density. This article presents results from computer simulations using a new pair potential that diverges at a nonzero distance and can be tuned to give a more realistic shape of γ(ρ). Our results indicate that the finite size of molecules is an important factor to take into account when modeling liquids over a large density range.

  14. Functional response of ungulate browsers in disturbed eastern hemlock forests

    USGS Publications Warehouse

    DeStefano, Stephen

    2015-01-01

    Ungulate browsing in predator depleted North American landscapes is believed to be causing widespread tree recruitment failures. However, canopy disturbances and variations in ungulate densities are sources of heterogeneity that can buffer ecosystems against herbivory. Relatively little is known about the functional response (the rate of consumption in relation to food availability) of ungulates in eastern temperate forests, and therefore how “top down” control of vegetation may vary with disturbance type, intensity, and timing. This knowledge gap is relevant in the Northeastern United States today with the recent arrival of hemlock woolly adelgid (HWA; Adelges tsugae) that is killing eastern hemlocks (Tsuga canadensis) and initiating salvage logging as a management response. We used an existing experiment in central New England begun in 2005, which simulated severe adelgid infestation and intensive logging of intact hemlock forest, to examine the functional response of combined moose (Alces americanus) and white-tailed deer (Odocoileus virginianus) foraging in two different time periods after disturbance (3 and 7 years). We predicted that browsing impacts would be linear or accelerating (Type I or Type III response) in year 3 when regenerating stem densities were relatively low and decelerating (Type II response) in year 7 when stem densities increased. We sampled and compared woody regeneration and browsing among logged and simulated insect attack treatments and two intact controls (hemlock and hardwood forest) in 2008 and again in 2012. We then used AIC model selection to compare the three major functional response models (Types I, II, and III) of ungulate browsing in relation to forage density. We also examined relative use of the different stand types by comparing pellet group density and remote camera images. In 2008, total and proportional browse consumption increased with stem density, and peaked in logged plots, revealing a Type I response. In 2012, stem densities were greatest in girdled plots, but proportional browse consumption was highest at intermediate stem densities in logged plots, exhibiting a Type III (rather than a Type II) functional response. Our results revealed shifting top–down control by herbivores at different stages of stand recovery after disturbance and in different understory conditions resulting from logging vs. simulated adelgid attack. If forest managers wish to promote tree regeneration in hemlock stands that is more resistant to ungulate browsers, leaving HWA-infested stands unmanaged may be a better option than preemptively logging them.

  15. Cylinders out of a top hat: counts-in-cells for projected densities

    NASA Astrophysics Data System (ADS)

    Uhlemann, Cora; Pichon, Christophe; Codis, Sandrine; L'Huillier, Benjamin; Kim, Juhan; Bernardeau, Francis; Park, Changbom; Prunet, Simon

    2018-06-01

    Large deviation statistics is implemented to predict the statistics of cosmic densities in cylinders applicable to photometric surveys. It yields few per cent accurate analytical predictions for the one-point probability distribution function (PDF) of densities in concentric or compensated cylinders; and also captures the density dependence of their angular clustering (cylinder bias). All predictions are found to be in excellent agreement with the cosmological simulation Horizon Run 4 in the quasi-linear regime where standard perturbation theory normally breaks down. These results are combined with a simple local bias model that relates dark matter and tracer densities in cylinders and validated on simulated halo catalogues. This formalism can be used to probe cosmology with existing and upcoming photometric surveys like DES, Euclid or WFIRST containing billions of galaxies.

  16. Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates

    NASA Astrophysics Data System (ADS)

    Zhang, Junfang; Rivero, Mayela; Choi, S. K.

    2007-02-01

    We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 Å. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.

  17. Large-Scale Hybrid Density Functional Theory Calculations in the Condensed-Phase: Ab Initio Molecular Dynamics in the Isobaric-Isothermal Ensemble

    NASA Astrophysics Data System (ADS)

    Ko, Hsin-Yu; Santra, Biswajit; Distasio, Robert A., Jr.; Wu, Xifan; Car, Roberto

    Hybrid functionals are known to alleviate the self-interaction error in density functional theory (DFT) and provide a more accurate description of the electronic structure of molecules and materials. However, hybrid DFT in the condensed-phase has a prohibitively high associated computational cost which limits their applicability to large systems of interest. In this work, we present a general-purpose order(N) implementation of hybrid DFT in the condensed-phase using Maximally localized Wannier function; this implementation is optimized for massively parallel computing architectures. This algorithm is used to perform large-scale ab initio molecular dynamics simulations of liquid water, ice, and aqueous ionic solutions. We have performed simulations in the isothermal-isobaric ensemble to quantify the effects of exact exchange on the equilibrium density properties of water at different thermodynamic conditions. We find that the anomalous density difference between ice I h and liquid water at ambient conditions as well as the enthalpy differences between ice I h, II, and III phases at the experimental triple point (238 K and 20 Kbar) are significantly improved using hybrid DFT over previous estimates using the lower rungs of DFT This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.

  18. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Gao, R.; Ding, Y.; Collins, L. A.; Kress, J. D.

    2017-04-01

    Using density-functional theory-based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ =0.001 -500 g /c m3 and T =2000 -108K . With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ˜20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1-10 eV (depending on density), while the former becomes higher in the low-T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ˜50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ˜10% slower; (2) the peak density of an in-flight Si shell during implosion is ˜20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ˜40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ˜30% and ˜70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. These results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.

  19. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    DOE PAGES

    Hu, S. X.; Gao, R.; Ding, Y.; ...

    2017-04-21

    Using density-functional theory–based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ=0.001–500g/cm 3 and T=2000–10 8K. With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ~20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1–10 eV (depending on density), while the former becomes highermore » in the low- T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ~50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ~10% slower; (2) the peak density of an in-flight Si shell during implosion is ~20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ~40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ~30% and ~70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. Furthermore, these results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.« less

  20. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.; Gao, R.; Ding, Y.

    Using density-functional theory–based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ=0.001–500g/cm 3 and T=2000–10 8K. With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ~20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1–10 eV (depending on density), while the former becomes highermore » in the low- T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ~50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ~10% slower; (2) the peak density of an in-flight Si shell during implosion is ~20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ~40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ~30% and ~70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. Furthermore, these results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.« less

  1. Density functional theory of freezing of a system of highly elongated ellipsoidal oligomer solutions

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shikha; Mishra, Pankaj

    2017-05-01

    We have used the density functional theory of freezing to study the liquid crystalline phase behavior of a system of highly elongated ellipsoidal conjugated oligomers dispersed in three different solvents namely chloroform, toluene and their equimolar mixture. The molecules are assumed to interact via solvent-implicit coarse-grained Gay-Berne potential. Pair correlation functions needed as input in the density functional theory have been calculated using the Percus-Yevick (PY) integral equation theory. Considering the isotropic and nematic phases, we have calculated the isotropic-nematic phase transition parameters and presented the temperature-density and pressure-temperature phase diagrams. Different solvent conditions are found not only to affect the transition parameters but also determine the capability of oligomers to form nematic phase in various thermodynamic conditions. In principle, our results are verifiable through computer simulations.

  2. Quantum mechanical/molecular mechanical/continuum style solvation model: time-dependent density functional theory.

    PubMed

    Thellamurege, Nandun M; Cui, Fengchao; Li, Hui

    2013-08-28

    A combined quantum mechanical/molecular mechanical/continuum (QM/MMpol/C) style method is developed for time-dependent density functional theory (TDDFT, including long-range corrected TDDFT) method, induced dipole polarizable force field, and induced surface charge continuum model. Induced dipoles and induced charges are included in the TDDFT equations to solve for the transition energies, relaxed density, and transition density. Analytic gradient is derived and implemented for geometry optimization and molecular dynamics simulation. QM/MMpol/C style DFT and TDDFT methods are used to study the hydrogen bonding of the photoactive yellow protein chromopore in ground state and excited state.

  3. Explicit densities of multidimensional ballistic Lévy walks.

    PubMed

    Magdziarz, Marcin; Zorawik, Tomasz

    2016-08-01

    Lévy walks have proved to be useful models of stochastic dynamics with a number of applications in the modeling of real-life phenomena. In this paper we derive explicit formulas for densities of the two- (2D) and three-dimensional (3D) ballistic Lévy walks, which are most important in applications. It turns out that in the 3D case the densities are given by elementary functions. The densities of the 2D Lévy walks are expressed in terms of hypergeometric functions and the right-side Riemann-Liouville fractional derivative, which allows us to efficiently evaluate them numerically. The theoretical results agree perfectly with Monte Carlo simulations.

  4. Nuclear ``pasta'' formation

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.

    2013-12-01

    The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics (MD) simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an initial density of 0.10fm-3 and then the density is decreased by expanding the simulation volume at different rates to densities of 0.01fm-3 or less. An originally uniform system of nuclear matter is observed to form spherical bubbles (“swiss cheese”), hollow tubes, flat plates (“lasagna”), thin rods (“spaghetti”) and, finally, nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate. This indicates nonequilibrium effects. We use this to determine the best ways to obtain lower energy states of the pasta system from MD simulations and to place constraints on the equilibration time of the system.

  5. Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Kimura, Y.; Hirota, N.

    We performed a molecular dynamics (MD) simulation for a system of 5 solute molecules in 495 solvent molecules interacting through the Lennard-Jones (LJ) 12-6 potential, in order to study solvent density effects on the diffusion coefficients in supercritical fluids. The effects of the size of the solute and the strength of the solute-solvent attractive interaction on the diffusion coefficient of the solute were examined. The diffusion coefficients of the solute molecules were calculated at T = 1.5 (in the LJ reduced unit), slightly above the critical temperature, from rho = 0.1 to rho = 0.95, where rho is the number density in the LJ reduced unit. The memory function in the generalized Langevin equation was calculated, in order to know the molecular origin of the friction on a solute. The memory function is separated into fast and slow components. The former arises from the solute-solvent repulsive interaction, and is interpreted as collisional Enskog-like friction. The interaction strength dependence of the collisional friction is larger in the low- and medium-density regions, which is consistent with the 'clustering' picture, i.e., the local density enhancement due to the solute-solvent attractive interaction. However, the slow component of the memory function suppresses the effect of the local density on the diffusion coefficients, and as a result the effect of the attractive interaction is smaller on the diffusion coefficients than on the local density. Nonetheless, the solvent density dependence of the effect of the attraction on the diffusion coefficient varies with the local density, and it is concluded that the local density is the principal factor that determines the interaction strength dependence of the diffusion coefficient in the low- and medium-density regions (p < 0.6).

  6. The large-scale correlations of multicell densities and profiles: implications for cosmic variance estimates

    NASA Astrophysics Data System (ADS)

    Codis, Sandrine; Bernardeau, Francis; Pichon, Christophe

    2016-08-01

    In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact `one external leg' cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.

  7. Simulating the dust content of galaxies: successes and failures

    NASA Astrophysics Data System (ADS)

    McKinnon, Ryan; Torrey, Paul; Vogelsberger, Mark; Hayward, Christopher C.; Marinacci, Federico

    2017-06-01

    We present full-volume cosmological simulations, using the moving-mesh code arepo to study the coevolution of dust and galaxies. We extend the dust model in arepo to include thermal sputtering of grains and investigate the evolution of the dust mass function, the cosmic distribution of dust beyond the interstellar medium and the dependence of dust-to-stellar mass ratio on galactic properties. The simulated dust mass function is well described by a Schechter fit and lies closest to observations at z = 0. The radial scaling of projected dust surface density out to distances of 10 Mpc around galaxies with magnitudes 17 < I < 21 is similar to that seen in Sloan Digital Sky Survey data, albeit with a lower normalization. At z = 0, the predicted dust density of Ωdust ≈ 1.3 × 10-6 lies in the range of Ωdust values seen in low-redshift observations. We find that the dust-to-stellar mass ratio anticorrelates with stellar mass for galaxies living along the star formation main sequence. Moreover, we estimate the 850 μm number density functions for simulated galaxies and analyse the relation between dust-to-stellar flux and mass ratios at z = 0. At high redshift, our model fails to produce enough dust-rich galaxies, and this tension is not alleviated by adopting a top-heavy initial mass function. We do not capture a decline in Ωdust from z = 2 to 0, which suggests that dust production mechanisms more strongly dependent on star formation may help to produce the observed number of dusty galaxies near the peak of cosmic star formation.

  8. The Structure of Liquid and Amorphous Hafnia.

    PubMed

    Gallington, Leighanne C; Ghadar, Yasaman; Skinner, Lawrie B; Weber, J K Richard; Ushakov, Sergey V; Navrotsky, Alexandra; Vazquez-Mayagoitia, Alvaro; Neuefeind, Joerg C; Stan, Marius; Low, John J; Benmore, Chris J

    2017-11-10

    Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf-O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf-Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf-Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.

  9. The Structure of Liquid and Amorphous Hafnia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne; Ghadar, Yasaman; Skinner, Lawrie

    Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that showmore » density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.« less

  10. The Structure of Liquid and Amorphous Hafnia

    DOE PAGES

    Gallington, Leighanne; Ghadar, Yasaman; Skinner, Lawrie; ...

    2017-11-10

    Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that showmore » density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO 6,7 polyhedra resembling that observed in the monoclinic phase.« less

  11. Channel simulation for direct detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct detection optical communication system. The system is capable of providing signal fading statistics which obey log normal, beta, Rayleigh, Ricean or chi-squared density functions. Experimental tests of the performance of the Channel Simulator are presented.

  12. Channel simulation for direct-detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct-detection optical communication system. The system is capable of providing signal fading statistics which obey log-normal, beta, Rayleigh, Ricean, or chi-square density functions. Experimental tests of the performance of the channel simulator are presented.

  13. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Miceli, Giacomo; de Gironcoli, Stefano; Pasquarello, Alfredo

    2015-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidmer, Alexandre, E-mail: alexandre@vidmer.com; Sclauzero, Gabriele; Pasquarello, Alfredo

    The infrared absorption spectra of jennite, tobermorite 14 Å, anomalous tobermorite 11 Å, and normal tobermorite 11 Å are simulated within a density-functional-theory scheme. The atomic coordinates and the cell parameters are optimized resulting in structures which agree with previous studies. The vibrational frequencies and modes are obtained for each mineral. The vibrational density of states is analyzed through extensive projections on silicon tetrahedra, oxygen atoms, OH groups, and water molecules. The coupling with the electric field is achieved through the use of density functional perturbation theory, which yields Born effective charges and dielectric constants. The simulated absorption spectra reproducemore » well the experimental spectra, thereby allowing for a detailed interpretation of the spectral features in terms of the underlying vibrational modes. In the far-infrared part of the absorption spectra, the interplay between Ca and Si related vibrations leads to differences which are sensitive to the calcium/silicon ratio of the mineral.« less

  15. Electrical double layers and differential capacitance in molten salts from density functional theory

    DOE PAGES

    Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.

    2014-08-05

    Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less

  16. Molecular Model for HNBR with Tunable Cross-Link Density.

    PubMed

    Molinari, N; Khawaja, M; Sutton, A P; Mostofi, A A

    2016-12-15

    We introduce a chemically inspired, all-atom model of hydrogenated nitrile butadiene rubber (HNBR) and assess its performance by computing the mass density and glass-transition temperature as a function of cross-link density in the structure. Our HNBR structures are created by a procedure that mimics the real process used to produce HNBR, that is, saturation of the carbon-carbon double bonds in NBR, either by hydrogenation or by cross-linking. The atomic interactions are described by the all-atom "Optimized Potentials for Liquid Simulations" (OPLS-AA). In this paper, first, we assess the use of OPLS-AA in our models, especially using NBR bulk properties, and second, we evaluate the validity of the proposed model for HNBR by investigating mass density and glass transition as a function of the tunable cross-link density. Experimental densities are reproduced within 3% for both elastomers, and qualitatively correct trends in the glass-transition temperature as a function of monomer composition and cross-link density are obtained.

  17. Advanced dielectric continuum model of preferential solvation

    NASA Astrophysics Data System (ADS)

    Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail

    2009-01-01

    A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.

  18. Homogeneous buoyancy-generated turbulence

    NASA Technical Reports Server (NTRS)

    Batchelor, G. K.; Canuto, V. M.; Chasnov, J. R.

    1992-01-01

    Using a theoretical analysis of fundamental equations and a numerical simulation of the flow field, the statistically homogeneous motion that is generated by buoyancy forces after the creation of homogeneous random fluctuations in the density of infinite fluid at an initial instant is examined. It is shown that analytical results together with numerical results provide a comprehensive description of the 'birth, life, and death' of buoyancy-generated turbulence. Results of numerical simulations yielded the mean-square density mean-square velocity fluctuations and the associated spectra as functions of time for various initial conditions, and the time required for the mean-square density fluctuation to fall to a specified small value was estimated.

  19. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  20. Nuclear quantum effects of light and heavy water studied by all-electron first principles path integral simulations

    NASA Astrophysics Data System (ADS)

    Machida, Masahiko; Kato, Koichiro; Shiga, Motoyuki

    2018-03-01

    The isotopologs of liquid water, H2O, D2O, and T2O, are studied systematically by first principles PIMD simulations, in which the whole entity of the electrons and nuclei are treated quantum mechanically. The simulation results are in reasonable agreement with available experimental data on isotope effects, in particular, on the peak shift in the radial distributions of H2O and D2O and the shift in the evaporation energies. It is found that, due to differences in nuclear quantum effects, the H atoms in the OH bonds more easily access the dissociative region up to the hydrogen bond center than the D (T) atoms in the OD (OT) bonds. The accuracy and limitation in the use of the current density-functional-theory-based first principles PIMD simulations are also discussed. It is argued that the inclusion of the dispersion correction or relevant improvements in the density functionals are required for the quantitative estimation of isotope effects.

  1. Equation of state of mixtures: density functional theory (DFT) simulations and experiments on Sandia's Z machine

    NASA Astrophysics Data System (ADS)

    Magyar, R. J.; Root, S.; Haill, T. A.; Schroen, D. G.; Mattsson, T. R.; Flicker, D. G.; Sandia National Laboratories Collaboration

    2011-06-01

    Mixtures of materials are expected to behave quite differently from their isolated constituents, particularly when the constituents atomic numbers differ significantly. To investigate the mixture behavior, we performed density functional theory (DFT) calculations on xenon/hydrogen, xenon/ethane, and platinum/hydrocarbon mixtures. In addition, we performed shock compression experiments on platinum-doped hydrocarbon foams up to 480 GPa using the Sandia Z-accelerator. Since the DFT simulations treat electrons and nuclei generically, simulations of pure and mix systems are expected to be of comparable accuracy. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. The role of de-mixing and the relative contributions of the enthalpy of mixing are explored. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Polymer density functional theory approach based on scaling second-order direct correlation function.

    PubMed

    Zhou, Shiqi

    2006-06-01

    A second-order direct correlation function (DCF) from solving the polymer-RISM integral equation is scaled up or down by an equation of state for bulk polymer, the resultant scaling second-order DCF is in better agreement with corresponding simulation results than the un-scaling second-order DCF. When the scaling second-order DCF is imported into a recently proposed LTDFA-based polymer DFT approach, an originally associated adjustable but mathematically meaningless parameter now becomes mathematically meaningful, i.e., the numerical value lies now between 0 and 1. When the adjustable parameter-free version of the LTDFA is used instead of the LTDFA, i.e., the adjustable parameter is fixed at 0.5, the resultant parameter-free version of the scaling LTDFA-based polymer DFT is also in good agreement with the corresponding simulation data for density profiles. The parameter-free version of the scaling LTDFA-based polymer DFT is employed to investigate the density profiles of a freely jointed tangent hard sphere chain near a variable sized central hard sphere, again the predictions reproduce accurately the simulational results. Importance of the present adjustable parameter-free version lies in its combination with a recently proposed universal theoretical way, in the resultant formalism, the contact theorem is still met by the adjustable parameter associated with the theoretical way.

  3. Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, Robert A.; ,

    1990-01-01

    A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.

  4. Monte Carlo simulation of hard spheres near random closest packing using spherical boundary conditions

    NASA Astrophysics Data System (ADS)

    Tobochnik, Jan; Chapin, Phillip M.

    1988-05-01

    Monte Carlo simulations were performed for hard disks on the surface of an ordinary sphere and hard spheres on the surface of a four-dimensional hypersphere. Starting from the low density fluid the density was increased to obtain metastable amorphous states at densities higher than previously achieved. Above the freezing density the inverse pressure decreases linearly with density, reaching zero at packing fractions equal to 68% for hard spheres and 84% for hard disks. Using these new estimates for random closest packing and coefficients from the virial series we obtain an equation of state which fits all the data up to random closest packing. Usually, the radial distribution function showed the typical split second peak characteristic of amorphous solids and glasses. High density systems which lacked this split second peak and showed other sharp peaks were interpreted as signaling the onset of crystal nucleation.

  5. Coherent nonlinear optical studies of elementary processes in biological complexes: diagrammatic techniques based on the wave function versus the density matrix

    PubMed Central

    Biggs, Jason D.; Voll, Judith A.; Mukamel, Shaul

    2012-01-01

    Two types of diagrammatic approaches for the design and simulation of nonlinear optical experiments (closed-time path loops based on the wave function and double-sided Feynman diagrams for the density matrix) are presented and compared. We give guidelines for the assignment of relevant pathways and provide rules for the interpretation of existing nonlinear experiments in carotenoids. PMID:22753822

  6. An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic

    NASA Astrophysics Data System (ADS)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-04-01

    The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.

  7. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    PubMed

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  8. How to formulate and solve "optimal stand density over time" problems for even-aged stands using dynamic programming.

    Treesearch

    Chung M. Chen; Dietmar W. Rose; Rolfe A. Leary

    1980-01-01

    Describes how dynamic programming can be used to solve optimal stand density problems when yields are given by prior simulation or by a new stand growth equation that is a function of the decision variable. Formulations of the latter type allow use of a calculus-based search procedure; they determine exact optimal residual density at each stage.

  9. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    PubMed

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  10. Nonparametric density estimation and optimal bandwidth selection for protein unfolding and unbinding data

    NASA Astrophysics Data System (ADS)

    Bura, E.; Zhmurov, A.; Barsegov, V.

    2009-01-01

    Dynamic force spectroscopy and steered molecular simulations have become powerful tools for analyzing the mechanical properties of proteins, and the strength of protein-protein complexes and aggregates. Probability density functions of the unfolding forces and unfolding times for proteins, and rupture forces and bond lifetimes for protein-protein complexes allow quantification of the forced unfolding and unbinding transitions, and mapping the biomolecular free energy landscape. The inference of the unknown probability distribution functions from the experimental and simulated forced unfolding and unbinding data, as well as the assessment of analytically tractable models of the protein unfolding and unbinding requires the use of a bandwidth. The choice of this quantity is typically subjective as it draws heavily on the investigator's intuition and past experience. We describe several approaches for selecting the "optimal bandwidth" for nonparametric density estimators, such as the traditionally used histogram and the more advanced kernel density estimators. The performance of these methods is tested on unimodal and multimodal skewed, long-tailed distributed data, as typically observed in force spectroscopy experiments and in molecular pulling simulations. The results of these studies can serve as a guideline for selecting the optimal bandwidth to resolve the underlying distributions from the forced unfolding and unbinding data for proteins.

  11. Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra.

    PubMed

    Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C

    2010-09-21

    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

  12. Density-dependent clustering: I. Pulling back the curtains on motions of the BAO peak

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.; Szapudi, István; McCullagh, Nuala; Szalay, Alexander S.; Falck, Bridget; Wang, Jie

    2018-05-01

    The most common statistic used to analyze large-scale structure surveys is the correlation function, or power spectrum. Here, we show how `slicing' the correlation function on local density brings sensitivity to interesting non-Gaussian features in the large-scale structure, such as the expansion or contraction of baryon acoustic oscillations (BAO) according to the local density. The sliced correlation function measures the large-scale flows that smear out the BAO, instead of just correcting them as reconstruction algorithms do. Thus, we expect the sliced correlation function to be useful in constraining the growth factor, and modified gravity theories that involve the local density. Out of the studied cases, we find that the run of the BAO peak location with density is best revealed when slicing on a ˜40 h-1 Mpc filtered density. But slicing on a ˜100 h-1 Mpc filtered density may be most useful in distinguishing between underdense and overdense regions, whose BAO peaks are separated by a substantial ˜5 h-1 Mpc at z = 0. We also introduce `curtain plots' showing how local densities drive particle motions toward or away from each other over the course of an N-body simulation.

  13. Monte Carlo study of four dimensional binary hard hypersphere mixtures

    NASA Astrophysics Data System (ADS)

    Bishop, Marvin; Whitlock, Paula A.

    2012-01-01

    A multithreaded Monte Carlo code was used to study the properties of binary mixtures of hard hyperspheres in four dimensions. The ratios of the diameters of the hyperspheres examined were 0.4, 0.5, 0.6, and 0.8. Many total densities of the binary mixtures were investigated. The pair correlation functions and the equations of state were determined and compared with other simulation results and theoretical predictions. At lower diameter ratios the pair correlation functions of the mixture agree with the pair correlation function of a one component fluid at an appropriately scaled density. The theoretical results for the equation of state compare well to the Monte Carlo calculations for all but the highest densities studied.

  14. Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory.

    PubMed

    Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan

    2015-12-08

    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.

  15. Electron-boson spectral density function of correlated multiband systems obtained from optical data: Ba0.6K0.4Fe2As2 and LiFeAs.

    PubMed

    Hwang, Jungseek

    2016-03-31

    We introduce an approximate method which can be used to simulate the optical conductivity data of correlated multiband systems for normal and superconducting cases by taking advantage of a reversed process in comparison to a usual optical data analysis, which has been used to extract the electron-boson spectral density function from measured optical spectra of single-band systems, like cuprates. We applied this method to optical conductivity data of two multiband pnictide systems (Ba0.6K0.4Fe2As2 and LiFeAs) and obtained the electron-boson spectral density functions. The obtained electron-boson spectral density consists of a sharp mode and a broad background. The obtained spectral density functions of the multiband systems show similar properties as those of cuprates in several aspects. We expect that our method helps to reveal the nature of strong correlations in the multiband pnictide superconductors.

  16. A simple scaling law for the equation of state and the radial distribution functions calculated by density-functional theory molecular dynamics

    NASA Astrophysics Data System (ADS)

    Danel, J.-F.; Kazandjian, L.

    2018-06-01

    It is shown that the equation of state (EOS) and the radial distribution functions obtained by density-functional theory molecular dynamics (DFT-MD) obey a simple scaling law. At given temperature, the thermodynamic properties and the radial distribution functions given by a DFT-MD simulation remain unchanged if the mole fractions of nuclei of given charge and the average volume per atom remain unchanged. A practical interest of this scaling law is to obtain an EOS table for a fluid from that already obtained for another fluid if it has the right characteristics. Another practical interest of this result is that an asymmetric mixture made up of light and heavy atoms requiring very different time steps can be replaced by a mixture of atoms of equal mass, which facilitates the exploration of the configuration space in a DFT-MD simulation. The scaling law is illustrated by numerical results.

  17. A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.

  18. Ion-mediated interactions in suspensions of oppositely charged nanoparticles

    NASA Astrophysics Data System (ADS)

    Dahirel, Vincent; Hansen, Jean Pierre

    2009-08-01

    The structure of oppositely charged spherical nanoparticles (polyions), dispersed in ionic solutions with continuous solvent (primitive model), is investigated by Monte Carlo (MC) simulations, within explicit and implicit microion representations, over a range of polyion valences and densities, and microion concentrations. Systems with explicit microions are explored by semigrand canonical MC simulations, and allow density-dependent effective polyion pair potentials vαβeff(r ) to be extracted from measured partial pair distribution functions. Implicit microion MC simulations are based on pair potentials of mean force vαβ(2)(r ) computed by explicit microion simulations of two charged polyions, in the low density limit. In the vicinity of the liquid-gas separation expected for oppositely charged polyions, the implicit microion representation leads to an instability against density fluctuations for polyion valences |Z| significantly below those at which the instability sets in within the exact explicit microion representation. Far from this instability region, the vαβ(2)(r ) are found to be fairly close to but consistently more repulsive than the effective pair potentials vαβeff(r ). This is corroborated by additional calculations of three-body forces between polyion triplets, which are repulsive when one polyion is of opposite charge to the other two. The explicit microion MC data were exploited to determine the ratio of salt concentrations c and co within the dispersion and the reservoir (Donnan effect). c /co is found to first increase before finally decreasing as a function of the polyion packing fraction.

  19. Molecular simulation of CO chemisorption on Co(0001) in presence of supercritical fluid solvent: A potential of mean force study

    NASA Astrophysics Data System (ADS)

    Asiaee, Alireza; Benjamin, Kenneth M.

    2016-08-01

    For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (no SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0-1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.

  20. Properties of Shocked Polymers: Mbar experiments on Z and multi-scale simulations

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.

    2010-03-01

    Significant progress has been made over the last few years in understanding properties of matter subject to strong shocks and other extreme conditions. High-accuracy multi-Mbar experiments and first-principles theoretical studies together provide detailed insights into the physics and chemistry of high energy-density matter. While comprehensive advances have been made for pure elements like deuterium, helium, and carbon, progress has been slower for equally important, albeit more challenging, materials like molecular crystals, polymers, and foams. Hydrocarbon based polymer foams are common materials and in particular they are used in designing shock- and inertial confinement fusion experiments. Depending on their initial density, foams shock to relatively higher pressure and temperature compared to shocked dense polymers/plastics. As foams and polymers are shocked, they exhibit both structural and chemical transitions. We will present experimental and theoretical results for shocked polymers in the Mbar regime. By shock impact of magnetically launched flyer plates on poly(4-methyl-1-pentene) foams, we create multi-Mbar pressures in a dense plasma mixture of hydrogen, carbon, at temperatures of several eV. Concurrently with executing experiments, we analyze the system by multi-scale simulations, from density functional theory to continuum magneto-hydrodynamics simulations. In particular, density functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal shock Hugoniot will be presented in detail for two hydrocarbon polymers: polyethylene (PE) and poly(4-methyl-1-pentene) (PMP).

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megala, M.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in

    The electronic and optical transfer properties of Benzene, Benzoic Acid (BA), Nitrobenzene (NB) and Para Nitro Benzoic Acid (PNBA) at ground and first excited state has been investigated by the Density functional theory (DFT)and Time Dependent Density Functional Theory (TDDFT) using SVWN functional/3-21G basis set respectively. Possible intra-molecular charge transfer and n to π* transitions in the ground and the first excitation states have been predicted by the molecular orbitals and the Natural Bond Orbital (NBO) analysis. The simulated absorption spectra have been generated and the result compared with existing experimental results.

  2. Mass Transport in the Warm, Dense Matter and High-Energy Density Regimes

    NASA Astrophysics Data System (ADS)

    Kress, J. D.; Burakovsky, L.; Ticknor, C.; Collins, L. A.; Lambert, F.

    2011-10-01

    Large-scale hydrodynamical simulations of fluids and plasmas under extreme conditions require knowledge of certain microscopic properties such as diffusion and viscosity in addition to the equation-of-state. To determine these dynamical properties, we employ quantum molecular dynamical (MD) simulations on large samples of atoms. The method has several advantages: 1) static, dynamical, and optical properties are produced consistently from the same simulations, and 2) mixture properties arise in a natural way since all intra- and inter-particle interactions are properly represented. We utilize two forms of density functional theory: 1) Kohn-Sham (KS-DFT) and 2) orbital-free (OF-DFT). KS-DFT is computationally intense due to its reliance on an orbital representation. As the temperature rises, the Thomas-Fermi approximation in OF-DFT begins to represent accurately the density functional, and provides an efficient and systematic means for extending the quantum simulations to very hot conditions. We have performed KS-DFT and OF-DFT calculations of the self-diffusion, mutual diffusion and shear viscosity for Al, Li, H, and LiH. We examine trends in these quantities and compare to more approximate forms such as the one-component plasma model. We also determine the validity of mixing rules that combine the properties of pure species into a composite result.

  3. Continuous time random walk model with asymptotical probability density of waiting times via inverse Mittag-Leffler function

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Chen, Wen

    2018-04-01

    The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.

  4. Remote Sensing, Sampling and Simulation Applications in Analyses of Insect Dispersion and Abundance in Cotton

    Treesearch

    J. L. Willers; J. M. McKinion; J. N. Jenkins

    2006-01-01

    Simulation was employed to create stratified simple random samples of different sample unit sizes to represent tarnished plant bug abundance at different densities within various habitats of simulated cotton fields. These samples were used to investigate dispersion patterns of this cotton insect. It was found that the assessment of spatial pattern varied as a function...

  5. Thermal density functional theory, ensemble density functional theory, and potential functional theory for warm dense matter

    NASA Astrophysics Data System (ADS)

    Pribram-Jones, Aurora

    Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the potential to transform the simulation of warm dense matter. As a semiclassical method, it connects the normally disparate regimes of cold condensed matter physics and hot plasma physics. This orbital-free approach captures the smooth classical density envelope and quantum density oscillations that are both crucial to accurate modeling of materials where temperature and pressure effects are influential.

  6. A Database of COBE-normalized Cold Dark Matter Simulations

    NASA Astrophysics Data System (ADS)

    Martel, Hugo; Matzner, Richard

    2000-02-01

    We have simulated the formation and evolution of large-scale structure in the universe, for 68 different COBE-normalized cosmological models. For each cosmological model, we have performed between one and three simulations, for a total of 160 simulations. This constitutes the largest database of cosmological simulations ever assembled, and the largest cosmological parameter space ever covered by such simulations. We are making this database available to the astronomical community. We provide instructions for accessing the database and for converting the data from computational units to physical units. The database includes tilted cold dark matter (TCDM) models, tilted open cold dark matter (TOCDM) models, and tilted Λ cold dark matter (TΛCDM) models. (For several simulations, the primordial exponent n of the power spectrum is near unity, hence these simulations can be considered as ``untilted.'') The simulations cover a four-dimensional cosmological parameter phase space, the parameters being the present density parameter Ω0, cosmological constant λ0, and Hubble constant H0, and the rms density fluctuation σ8 at scale 8 h-1 Mpc. All simulations were performed using a P3M algorithm with 643 particles on a 1283 mesh, in a cubic volume of comoving size 128 Mpc. Each simulation starts at a redshift of 24 and is carried up to the present. More simulations will be added to the database in the future. We have performed a limited amount of data reduction and analysis of the final states of the simulations. We computed the rms density fluctuation, the two-point correlation function, the velocity moments, and the properties of clusters. Our results are the following:1. The numerical value σnum8 of the rms density fluctuation differs from the value σcont8 obtained by integrating the power spectrum at early times and extrapolating linearly up the present. This results from the combined effects of discreteness in the numerical representation of the power spectrum, the presence of a Gaussian factor in the initial conditions, and late-time nonlinear evolution. The first of these three effects is negligible. The second and third are comparable, and can both modify the value of σ8 by up to 10%. Nonlinear effects, however, are important only for models with σ8>0.6, and can result in either an increase or a decrease in σ8.2. The observed galaxy two-point correlation function is well reproduced (assuming an unbiased relation between galaxies and mass) by models with σ8~0.8, nearly independently of the values of the other parameters, Ω0, λ0, and H0. For models with σ8>0.8, the correlation function is too large and its slope is too steep. For models with σ8<0.8, the correlation function is too small and its slope is too shallow.3. At small separations, r<1 Mpc, the velocity moments indicate that small clusters have reached virial equilibrium, while still accreting matter from the field. The velocity moments depend essentially upon Ω0 and σ8, and not λ0 and H0. The pairwise particle velocity dispersions are much larger than the observed pairwise galaxy velocity dispersion, for nearly all models. Velocity bias between galaxies and dark matter is needed to reconcile the simulations with observations.4. The cluster multiplicity function is decreasing for models with σ8~0.3. It has a horizontal plateau for models with σ8 in the range 0.4-0.9. For models with σ8>0.9, it has a U shape, which is probably a numerical artifact caused by the finite number of particles used in the simulations. For all models, clusters have densities in the range 100-1000 times the mean background density, the spin parameters λ are in the range 0.008-0.2, with the median near 0.05, and about 2/3 of the clusters are prolate. Rotationally supported disks do not form in these simulations.

  7. Molecular dynamics simulations of the amino acid-ZnO (10-10) interface: a comparison between density functional theory and density functional tight binding results.

    PubMed

    grosse Holthaus, Svea; Köppen, Susan; Frauenheim, Thomas; Ciacchi, Lucio Colombi

    2014-06-21

    We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101̄0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to form predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.

  8. Molecular dynamics simulations of the amino acid-ZnO (10-10) interface: A comparison between density functional theory and density functional tight binding results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holthaus, Svea große; Köppen, Susan, E-mail: koeppen@hmi.uni-bremen.de; Frauenheim, Thomas

    2014-06-21

    We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101{sup ¯}0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to formmore » predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.« less

  9. Layered interfaces between immiscible liquids studied by density-functional theory and molecular-dynamics simulations.

    PubMed

    Geysermans, P; Elyeznasni, N; Russier, V

    2005-11-22

    We present a study of the structure in the interface between two immiscible liquids by density-functional theory and molecular-dynamics calculations. The liquids are modeled by Lennard-Jones potentials, which achieve immiscibility by suppressing the attractive interaction between unlike particles. The density profiles of the liquids display oscillations only in a limited part of the simple liquid-phase diagram (rho,T). When approaching the liquid-vapor coexistence, a significant depletion appears while the layering behavior of the density profile vanishes. By analogy with the liquid-vapor interface and the analysis of the adsorption this behavior is suggested to be strongly related to the drying transition.

  10. Simulation of Mach Probes in Non-Uniform Magnetized Plasmas: the Influence of a Background Density Gradient

    NASA Astrophysics Data System (ADS)

    Haakonsen, Christian Bernt; Hutchinson, Ian H.

    2013-10-01

    Mach probes can be used to measure transverse flow in magnetized plasmas, but what they actually measure in strongly non-uniform plasmas has not been definitively established. A fluid treatment in previous work has suggested that the diamagnetic drifts associated with background density and temperature gradients affect transverse flow measurements, but detailed computational study is required to validate and elaborate on those results; it is really a kinetic problem, since the probe deforms and introduces voids in the ion and electron distribution functions. A new code, the Plasma-Object Simulator with Iterated Trajectories (POSIT) has been developed to self-consistently compute the steady-state six-dimensional ion and electron distribution functions in the perturbed plasma. Particle trajectories are integrated backwards in time to the domain boundary, where arbitrary background distribution functions can be specified. This allows POSIT to compute the ion and electron density at each node of its unstructured mesh, update the potential based on those densities, and then iterate until convergence. POSIT is used to study the impact of a background density gradient on transverse Mach probe measurements, and the results compared to the previous fluid theory. C.B. Haakonsen was supported in part by NSF/DOE Grant No. DE-FG02-06ER54512, and in part by an SCGF award administered by ORISE under DOE Contract No. DE-AC05-06OR23100.

  11. Force Field Accelerated Density Functional Theory Molecular Dynamics for Simulation of Reactive Systems at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Lindsey, Rebecca; Goldman, Nir; Fried, Laurence

    Understanding chemistry at extreme conditions is crucial in fields including geochemistry, astrobiology, and alternative energy. First principles methods can provide valuable microscopic insights into such systems while circumventing the risks of physical experiments, however the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ba, Yan; Liu, Haihu; Li, Qing

    2016-08-15

    In this paper, we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multi-relaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a new form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulatedmore » with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike/bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.« less

  13. Lattice density functional theory for confined Ising fluids: comparison between different functional approximations in slit pore

    NASA Astrophysics Data System (ADS)

    Chen, Xueqian; Feng, Wei; Liu, Honglai; Hu, Ying

    2016-09-01

    In this paper, Lafuente and Cuesta's cluster density functional theory (CDFT) and lattice mean field approximation (LMFA) are formulated and compared within the framework of lattice density functional theory (LDFT). As a comparison, an LDFT based on our previous work on nonrandom correction to LMFA is also developed, where local density approximation is adopted on the correction. The numerical results of density distributions of an Ising fluid confined in a slit pore obtained from Monte Carlo simulation are used to check these functional approximations. Due to rational treatment on the coupling between site-excluding entropic effect and contact-attracting enthalpic effect by CDFT with Bethe-Peierls approximation (named as BPA-CDFT for short), the improvement of BPA-CDFT beyond LMFA is checked as expected. And it is interesting that our LDFT has a comparative accuracy with BPA-CDFT. Apparent differences between the profiles such as solvation force, excess adsorption quantity and interfacial tension from LMFA and non-LMFAs are found in our calculations. We also discuss some possible theoretical extensions of BPA-CDFT.

  14. Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations.

    PubMed

    Morales, Miguel A; Pierleoni, Carlo; Schwegler, Eric; Ceperley, D M

    2010-07-20

    Using quantum simulation techniques based on either density functional theory or quantum Monte Carlo, we find clear evidence of a first-order transition in liquid hydrogen, between a low conductivity molecular state and a high conductivity atomic state. Using the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures near 2,000 K and pressures near 120 GPa. Furthermore, we have determined the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using quantum Monte Carlo energetics.

  15. Time-dependent density-functional theory simulation of local currents in pristine and single-defect zigzag graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shenglai, E-mail: shenglai.he@vanderbilt.edu; Russakoff, Arthur; Li, Yonghui

    2016-07-21

    The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductancemore » observed in recent experiments.« less

  16. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2017-02-01

    In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  17. Density implications of shift compensation postprocessing in holographic storage systems

    NASA Astrophysics Data System (ADS)

    Menetrier, Laure; Burr, Geoffrey W.

    2003-02-01

    We investigate the effect of data page misregistration, and its subsequent correction in postprocessing, on the storage density of holographic data storage systems. A numerical simulation is used to obtain the bit-error rate as a function of hologram aperture, page misregistration, pixel fill factors, and Gaussian additive intensity noise. Postprocessing of simulated data pages is performed by a nonlinear pixel shift compensation algorithm [Opt. Lett. 26, 542 (2001)]. The performance of this algorithm is analyzed in the presence of noise by determining the achievable areal density. The impact of inaccurate measurements of page misregistration is also investigated. Results show that the shift-compensation algorithm can provide almost complete immunity to page misregistration, although at some penalty to the baseline areal density offered by a system with zero tolerance to misalignment.

  18. The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test

    DOE PAGES

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain; ...

    2016-12-20

    Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  19. The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain

    Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  20. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain

    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  1. Binary collision approximations for the memory function for density fluctuations in equilibrium atomic liquids

    NASA Astrophysics Data System (ADS)

    Noah, Joyce E.

    Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and long time results while RA and S approximations do particularly well at predicting the short time behavior. Lastly, we also develop a series of non-graphically derived approximations and use an optimization procedure to determine the underlying memory function from the simulation data. These approaches provide valuable information about the memory function that will be used in the development of future kinetic theories.

  2. Comparison of effects of copropagated and precomputed atmosphere profiles on Monte Carlo trajectory simulation

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Omara, Thomas M.

    1990-01-01

    A realization of a stochastic atmosphere model for use in simulations is presented. The model provides pressure, density, temperature, and wind velocity as a function of latitude, longitude, and altitude, and is implemented in a three degree of freedom simulation package. This implementation is used in the Monte Carlo simulation of an aeroassisted orbital transfer maneuver and results are compared to those of a more traditional approach.

  3. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow.

    PubMed

    Bette, Henrik M; Habel, Lars; Emig, Thorsten; Schreckenberg, Michael

    2017-01-01

    We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P(v=0) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P(v∈{0,1}) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density.

  4. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow

    NASA Astrophysics Data System (ADS)

    Bette, Henrik M.; Habel, Lars; Emig, Thorsten; Schreckenberg, Michael

    2017-01-01

    We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P (v =0 ) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P (v ∈{0 ,1 }) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density.

  5. Assessment of Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) in Radiation Chemistry: Ionized Water Dimer.

    PubMed

    Chalabala, Jan; Uhlig, Frank; Slavíček, Petr

    2018-03-29

    Ionization in the condensed phase and molecular clusters leads to a complicated chain of processes with coupled electron-nuclear dynamics. It is difficult to describe such dynamics with conventional nonadiabatic molecular dynamics schemes since the number of states swiftly increases as the molecular system grows. It is therefore attractive to use a direct electron and nuclear propagation such as the real-time time-dependent density functional theory (RT-TDDFT). Here we report a RT-TDDFT benchmark study on simulations of singly and doubly ionized states of a water monomer and dimer as a prototype for more complex processes in a condensed phase. We employed the RT-TDDFT based Ehrenfest molecular dynamics with a generalized gradient approximate (GGA) functional and compared it with wave-function-based surface hopping (SH) simulations. We found that the initial dynamics of a singly HOMO ionized water dimer is similar for both the RT-TDDFT/GGA and the SH simulations but leads to completely different reaction channels on a longer time scale. This failure is attributed to the self-interaction error in the GGA functionals and it can be avoided by using hybrid functionals with large fraction of exact exchange (represented here by the BHandHLYP functional). The simulations of doubly ionized states are reasonably described already at the GGA level. This suggests that the RT-TDDFT/GGA method could describe processes following the autoionization processes such as Auger emission, while its applicability to more complex processes such as intermolecular Coulombic decay remains limited.

  6. First-principles simulations of shock front propagation in liquid deuterium

    NASA Astrophysics Data System (ADS)

    Gygi, Francois; Galli, Giulia

    2001-03-01

    We present large-scale first-principles molecular dynamics simulations of the formation and propagation of a shock front in liquid deuterium. Molecular deuterium was subjected to supersonic impacts at velocities ranging from 10 to 30 km/s. We used Density Functional Theory in the local density approximation, and simulation cells containing 1320 deuterium atoms. The formation of a shock front was observed and its velocity was measured and compared with the results of laser-driven shock experiments [1]. The pressure and density in the compressed fluid were also computed directly from statistical averages in appropriate regions of the simulation cell, and compared with previous first-principles calculations performed at equilibrium [2]. Details of the electronic structure at the shock front, and their influence on the properties of the compressed fluid will be discussed. [1] J.W.Collins et al. Science 281, 1178 (1998). [2] G.Galli, R.Q.Hood, A.U.Hazi and F.Gygi, Phys.Rev. B61, 909 (2000).

  7. DFT based vibrational spectroscopic investigations and biological activity of toxic material monocrotophos

    NASA Astrophysics Data System (ADS)

    Nimmi, D. E.; Sam, S. P. Chandhini; Praveen, S. G.; Binoy, J.

    2018-05-01

    Many organophosphate compounds exhibiting toxicity are widely used as pesticides and insecticides whose structural features can be explained excellently using geometric simulation using density functional theory and vibrational spectrum. In this work, the molecular structural parameters and vibrational frequencies of the fundamental modes of Monocrotophoshave been obtained using Density functional theory (DFT), using B3LYP functional with 6-311++G(d, p) basis sets and the detailed vibrational analysis of FT-IR and FT-Ramanspectral bands have been carried out using potential energy distribution (PED). The deviation from the resonance structure of phosphate group due to `bridging of oxygen' and π-resonance of amides has been investigated based on the spectral and geometric data. The molecular docking simulation of Monocrotophos with BSA and DNA has been performed to find the mode of binding and the interactions with BSA has been investigated with UV-Visible spectroscopic method, to assess the strength of binding.

  8. Flow and Transport in Highly Heterogeneous Porous Formations: Numerical Experiments Performed Using the Analytic Element Method

    NASA Astrophysics Data System (ADS)

    Jankovic, I.

    2002-05-01

    Flow and transport in porous formations are analyzed using numerical simulations. Hydraulic conductivity is treated as a spatial random function characterized by a probability density function and a two-point covariance function. Simulations are performed for a multi-indicator conductivity structure developed by Gedeon Dagan (personal communication). This conductivity structure contains inhomogeneities (inclusions) of elliptical and ellipsoidal geometry that are embedded in a homogeneous background. By varying the distribution of sizes and conductivities of inclusions, any probability density function and two-point covariance may be reproduced. The multi-indicator structure is selected since it yields simple approximate transport solutions (Aldo Fiori, personal communication) and accurate numerical solutions (based on the Analytic Element Method). The dispersion is examined for two conceptual models. Both models are based on the multi-indicator conductivity structure. The first model is designed to examine dispersion in aquifers with continuously varying conductivity. The inclusions in this model cover as much area/volume of the porous formation as possible. The second model is designed for aquifers that contain clay/sand/gravel lenses embedded in otherwise homogeneous background. The dispersion in both aquifer types is simulated numerically. Simulation results are compared to those obtained using simple approximate solutions. In order to infer transport statistics that are representative of an infinite domain using the numerical experiments, the inclusions are placed in a domain that was shaped as a large ellipse (2D) and a large spheroid (3D) that were submerged in an unbounded homogeneous medium. On a large scale, the large body of inclusions behaves like a single large inhomogeneity. The analytic solution for a uniform flow past the single inhomogeneity of such geometry yields uniform velocity inside the domain. The velocity differs from that at infinity and can be used to infer the effective conductivity of the medium. As many as 100,000 inhomogeneities are placed inside the domain for 2D simulations. Simulations in 3D were limited to 50,000 inclusions. A large number of simulations was conducted on a massively parallel supercomputer cluster at the Center for Computational Research, University at Buffalo. Simulations range from mildly heterogeneous formations to highly heterogeneous formations (variance of the logarithm of conductivity equal to 10) and from sparsely populated systems to systems where inhomogeneities cover 95% of the volume. Particles are released and tracked inside the core of constant mean velocity. Following the particle tracking, various medium, flow, and transport statistics are computed. These include: spatial moments of particle positions, probability density function of hydraulic conductivity and each component of velocity, their two-point covariance function in the direction of flow and normal to it, covariance of Lagrangean velocities, and probability density function of travel times to various break-through locations. Following the analytic nature of the flow solution, all the results are presented in dimensionless forms. For example, the dispersion coefficients are made dimensionless with respect to the mean velocity and size of inhomogeneities. Detailed results will be presented and compared to well known first-order results and the results that are based on simple approximate transport solutions of Aldo Fiori.

  9. Simulations of material mixing in laser-driven reshock experiments

    NASA Astrophysics Data System (ADS)

    Haines, Brian M.; Grinstein, Fernando F.; Welser-Sherrill, Leslie; Fincke, James R.

    2013-02-01

    We perform simulations of a laser-driven reshock experiment [Welser-Sherrill et al., High Energy Density Phys. (unpublished)] in the strong-shock high energy-density regime to better understand material mixing driven by the Richtmyer-Meshkov instability. Validation of the simulations is based on direct comparison of simulation and radiographic data. Simulations are also compared with published direct numerical simulation and the theory of homogeneous isotropic turbulence. Despite the fact that the flow is neither homogeneous, isotropic nor fully turbulent, there are local regions in which the flow demonstrates characteristics of homogeneous isotropic turbulence. We identify and isolate these regions by the presence of high levels of turbulent kinetic energy (TKE) and vorticity. After reshock, our analysis shows characteristics consistent with those of incompressible isotropic turbulence. Self-similarity and effective Reynolds number assessments suggest that the results are reasonably converged at the finest resolution. Our results show that in shock-driven transitional flows, turbulent features such as self-similarity and isotropy only fully develop once de-correlation, characteristic vorticity distributions, and integrated TKE, have decayed significantly. Finally, we use three-dimensional simulation results to test the performance of two-dimensional Reynolds-averaged Navier-Stokes simulations. In this context, we also test a presumed probability density function turbulent mixing model extensively used in combustion applications.

  10. Nonlocal kinetic energy functionals by functional integration.

    PubMed

    Mi, Wenhui; Genova, Alessandro; Pavanello, Michele

    2018-05-14

    Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, T s [ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δT s [ρ]δρ(r), yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for T s [ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.

  11. Nonlocal kinetic energy functionals by functional integration

    NASA Astrophysics Data System (ADS)

    Mi, Wenhui; Genova, Alessandro; Pavanello, Michele

    2018-05-01

    Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, Ts[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δ/Ts[ρ ] δ ρ (r ) , yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for Ts[ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.

  12. Multi-Paradigm Multi-Scale Simulations for Fuel Cell Catalysts and Membranes

    DTIC Science & Technology

    2006-01-01

    transfer studies on model systems. . Applying newly developed density functionals QM ( X3LYP ) for estimating the thermodynamics and kinetic energy...Density functional theory methods We have used many QM methods to probe chemical reaction mechanisms and find that the B3LYP and X3LYP [6] flavors of DFT...carried out QM calculations on the surface reactivity of the Pt and PtRu anode catalysts. This QM uses a new ab initio DFT-GGA method ( X3LYP ) [6

  13. Testing modified gravity using a marked correlation function

    NASA Astrophysics Data System (ADS)

    Armijo, Joaquí n.; Cai, Yan-Chuan; Padilla, Nelson; Li, Baojiu; Peacock, John A.

    2018-05-01

    In theories of modified gravity with the chameleon screening mechanism, the strength of the fifth force depends on environment. This induces an environment dependence of structure formation, which differs from ΛCDM. We show that these differences can be captured by the marked correlation function. With the galaxy correlation functions and number densities calibrated to match between f(R) and ΛCDM models in simulations, we show that the marked correlation functions from using either the local galaxy number density or halo mass as the marks encode extra information, which can be used to test these theories. We discuss possible applications of these statistics in observations.

  14. First-principles simulations of heat transport

    NASA Astrophysics Data System (ADS)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  15. Imaging electron wave functions inside open quantum rings.

    PubMed

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  16. Ultrafast semi-metallic layer formation in detonating nitromethane

    NASA Astrophysics Data System (ADS)

    Reed, Evan; Manaa, M. Riad; Fried, Laurence; Glaesemann, Kurt; Joannopoulos, John

    2008-03-01

    We present the first quantum molecular dynamics simulations behind a detonation front (up to 0.2 ns) of the explosive nitromethane (CH3NO2) represented by the density-functional-based tight-binding method (DFTB). This simulation is enabled by our recently developed multi-scale shock wave molecular dynamics technique (MSST) that opens the door to longer duration simulations by several orders of magnitude. The electronic density of states around the Fermi energy initially increases as metastable material states are produced but then later decreases, perhaps unexpectedly. These changes indicate that the shock front is characterized by an increase in optical thickness and conductivity followed by a reduction around 100 picoseconds behind the front. We find that a significant population of intermediate metastable molecules are charged and charged species play an important role in the density of states evolution. The transient transformation to a semi-metallic state can be understood within the Anderson picture of metallization.

  17. Phase and vacancy behaviour of hard "slanted" cubes

    NASA Astrophysics Data System (ADS)

    van Damme, R.; van der Meer, B.; van den Broeke, J. J.; Smallenburg, F.; Filion, L.

    2017-09-01

    We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the "slant" angle). More specifically, using a combination of event-driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we determine and characterize the equilibrium phases formed by these particles for various slant angles and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase is extremely high and depends only on the packing fraction and not the particle shape. At higher densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of this system by drawing a phase diagram in the slant angle-packing fraction plane.

  18. A Density Functional Approach to Polarizable Models: A Kim-Gordon-Response Density Interaction Potential for Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabacchi, G; Hutter, J; Mundy, C

    2005-04-07

    A combined linear response--frozen electron density model has been implemented in a molecular dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory, and a response contribution determined by the instaneous ionic configuration of the system. The method is free from empirical pair-potentials and the parameterization protocol involves only calculations on properly chosen subsystems. They apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparablemore » to Kohn-Sham density functional calculations.« less

  19. First Principles Study of Chemically Functionalized Graphene

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Vasiliev, Igor

    2015-03-01

    The electronic, structural and vibrational properties of carbon nanomaterials can be affected by chemical functionalization. We applied ab initio computational methods based on density functional theory to study the covalent functionalization of graphene with benzyne, carboxyl groups and tetracyanoethylene oxide (TCNEO). Our calculations were carried out using the SIESTA and Quantum-ESPRESSO electronic structure codes combined with the local density and generalized gradient approximations for the exchange correlation functional and norm-conserving Troullier-Martins pseudopotentials. The simulated Raman and infrared spectra of graphene functionalized with carboxyl groups and TCNEO were consistent with the available experimental results. The computed vibrational spectra of graphene functionalized with carboxyl groups showed that the presence of point defects near the functionalization site affects the Raman and infrared spectroscopic signatures of functionalized graphene. Supported by NSF CHE-1112388.

  20. Halbach array-based design and simulation of disc coreless permanen-magnet integrated starter generator

    NASA Astrophysics Data System (ADS)

    Li, Y. B.; Yang, Z. X.; Chen, W.; He, Q. Y.

    2017-11-01

    The functional performance, such as magnetic flux leakage, power density and efficiency, is related to the structural characteristics and design technique for the disc permanent magnet synchronous generators (PMSGs). Halbach array theory-based magnetic circuit structure is developed, and Maxwell3D simulation analysis approach of PMSG is proposed in this paper for integrated starter generator (ISG). The magnetization direction of adjacent permanent magnet is organized in difference of 45 degrees for focusing air gap side, and improving the performance of the generator. The magnetic field distribution and functional performance in load and/or unload conditions are simulated by Maxwell3D module. The proposed approach is verified by simulation analysis, the air gap flux density is 0.66T, and the phase voltage curve has the characteristics of a preferable sinusoidal wave and the voltage amplitude 335V can meet the design requirements while the disc coreless PMSG is operating at rated speed. And the developed magnetic circuit structure can be used for engineering design of the disc coreless PMSG to the integrated starter generator.

  1. Ab initio molecular dynamics simulation of LiBr association in water

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Philpott, Michael R.

    2000-12-01

    A computationally economical scheme which unifies the density functional description of an ionic solute and the classical description of a solvent was developed. The density functional part of the scheme comprises Car-Parrinello and related formalisms. The substantial saving in the computer time is achieved by performing the ab initio molecular dynamics of the solute electronic structure in a relatively small basis set constructed from lowest energy Kohn-Sham orbitals calculated for a single anion in vacuum, instead of using plane wave basis. The methodology permits simulation of an ionic solution for longer time scales while keeping accuracy in the prediction of the solute electronic structure. As an example the association of the Li+-Br- ion-pair system in water is studied. The results of the combined molecular dynamics simulation are compared with that obtained from the classical simulation with ion-ion interaction described by the pair potential of Born-Huggins-Mayer type. The comparison reveals an important role played by the polarization of the Br- ion in the dynamics of ion pair association.

  2. Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh

    2013-11-01

    Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.

  3. An entropy model to measure heterogeneity of pedestrian crowds using self-propelled agents

    NASA Astrophysics Data System (ADS)

    Rangel-Huerta, A.; Ballinas-Hernández, A. L.; Muñoz-Meléndez, A.

    2017-05-01

    An entropy model to characterize the heterogeneity of a pedestrian crowd in a counter-flow corridor is presented. Pedestrians are modeled as self-propelled autonomous agents that are able to perform maneuvers to avoid collisions based on a set of simple rules of perception and action. An observer can determine a probability distribution function of the displayed behavior of pedestrians based only on external information. Three types of pedestrian are modeled, relaxed, standard and hurried pedestrians depending on their preferences of turn and non-turn when walking. Thus, using these types of pedestrians two crowds can be simulated: homogeneous and heterogeneous crowds. Heterogeneity is measured in this research based on the entropy in function of time. For that, the entropy of a homogeneous crowd comprising standard pedestrians is used as reference. A number of simulations to measure entropy of pedestrian crowds were conducted by varying different combinations of types of pedestrians, initial simulation conditions of macroscopic flow, as well as density of the crowd. Results from these simulations show that our entropy model is sensitive enough to capture the effect of both the initial simulation conditions about the spatial distribution of pedestrians in a corridor, and the composition of a crowd. Also, a relevant finding is that entropy in function of density presents a phase transition in the critical region.

  4. Turbulence simulation mechanization for Space Shuttle Orbiter dynamics and control studies

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; King, R. L.

    1977-01-01

    The current version of the NASA turbulent simulation model in the form of a digital computer program, TBMOD, is described. The logic of the program is discussed and all inputs and outputs are defined. An alternate method of shear simulation suitable for incorporation into the model is presented. The simulation is based on a von Karman spectrum and the assumption of isotropy. The resulting spectral density functions for the shear model are included.

  5. Atomistic and molecular effects in electric double layers at high surface charges

    DOE PAGES

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less

  6. An EQT-cDFT approach to determine thermodynamic properties of confined fluids.

    PubMed

    Mashayak, S Y; Motevaselian, M H; Aluru, N R

    2015-06-28

    We present a continuum-based approach to predict the structure and thermodynamic properties of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomogeneous density and potential profiles of confined fluids. We use EQT potentials to construct a grand potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation force, of confined fluids as compared to the molecular dynamics simulation results.

  7. Anharmonic Thermal Oscillations of the Electron Momentum Distribution in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Erba, A.; Maul, J.; Itou, M.; Dovesi, R.; Sakurai, Y.

    2015-09-01

    Anharmonic thermal effects on the electron momentum distribution of a lithium fluoride single crystal are experimentally measured through high-resolution Compton scattering and theoretically modeled with ab initio simulations, beyond the harmonic approximation to the lattice potential, explicitly accounting for thermal expansion. Directional Compton profiles are measured at two different temperatures, 10 and 300 K, with a high momentum space resolution (0.10 a.u. in full width at half maximum), using synchrotron radiation. The effect of temperature on measured directional Compton profiles is clearly revealed by oscillations extending almost up to |p |=4 a .u . , which perfectly match those predicted from quantum-mechanical simulations. The wave-function-based Hartree-Fock method and three classes of the Kohn-Sham density functional theory (local-density, generalized-gradient, and hybrid approximations) are adopted. The lattice thermal expansion, as described with the quasiharmonic approach, is found to entirely account for the effect of temperature on the electron momentum density within the experimental accuracy.

  8. Molecular simulation of CO chemisorption on Co(0001) in presence of supercritical fluid solvent: A potential of mean force study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asiaee, Alireza; Benjamin, Kenneth M., E-mail: kenneth.benjamin@sdsmt.edu

    2016-08-28

    For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (nomore » SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0–1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.« less

  9. Kinetic Monte Carlo simulations of excitation density dependent scintillation in CsI and CsI(Tl)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiguo; Williams, Richard; Grim, Joel

    2013-08-15

    Nonlinear quenching of electron-hole pairs in the denser regions of ionization tracks created by γ-ray and high-energy electrons is a likely cause of the light yield nonproportionality of many inorganic scintillators. Therefore, kinetic Monte Carlo (KMC) simulations were carried out to investigate the scintillation properties of pure and thallium-doped CsI as a function of electron-hole pair density. The availability of recent experimental data on the excitation density dependence of the light yield of CsI following ultraviolet excitation allowed for an improved parameterization of the interactions between self-trapped excitons (STE) in the KMC model via dipole-dipole Förster transfer. The KMC simulationsmore » reveal that nonlinear quenching occurs very rapidly (within a few picoseconds) in the early stages of the scintillation process. In addition, the simulations predict that the concentration of thallium activators can affect the extent of nonlinear quenching as it has a direct influence on the STE density through STE dissociation and electron scavenging. This improved model will enable more realistic simulations of the nonproportional γ-ray and electron response of inorganic scintillators.« less

  10. Statistics of intensity in adaptive-optics images and their usefulness for detection and photometry of exoplanets.

    PubMed

    Gladysz, Szymon; Yaitskova, Natalia; Christou, Julian C

    2010-11-01

    This paper is an introduction to the problem of modeling the probability density function of adaptive-optics speckle. We show that with the modified Rician distribution one cannot describe the statistics of light on axis. A dual solution is proposed: the modified Rician distribution for off-axis speckle and gamma-based distribution for the core of the point spread function. From these two distributions we derive optimal statistical discriminators between real sources and quasi-static speckles. In the second part of the paper the morphological difference between the two probability density functions is used to constrain a one-dimensional, "blind," iterative deconvolution at the position of an exoplanet. Separation of the probability density functions of signal and speckle yields accurate differential photometry in our simulations of the SPHERE planet finder instrument.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R., E-mail: aluru@illinois.edu

    Empirical potential-based quasi-continuum theory (EQT) provides a route to incorporate atomistic detail into continuum framework such as the Nernst-Planck equation. EQT can also be used to construct a grand potential functional for classical density functional theory (cDFT). The combination of EQT and cDFT provides a simple and fast approach to predict the inhomogeneous density, potential profiles, and thermodynamic properties of confined fluids. We extend the EQT-cDFT approach to confined fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen inside slit-like channels of graphene. We show that the EQT-cDFT predictions for the structure of the confined fluidmore » mixture compare well with the molecular dynamics simulation results. In addition, our results show that graphene slit nanopores exhibit a selective adsorption of methane over hydrogen.« less

  12. Charge transport in nanostructured materials: Implementation and verification of constrained density functional theory

    DOE PAGES

    Goldey, Matthew B.; Brawand, Nicholas P.; Voros, Marton; ...

    2017-04-20

    The in silico design of novel complex materials for energy conversion requires accurate, ab initio simulation of charge transport. In this work, we present an implementation of constrained density functional theory (CDFT) for the calculation of parameters for charge transport in the hopping regime. We verify our implementation against literature results for molecular systems, and we discuss the dependence of results on numerical parameters and the choice of localization potentials. In addition, we compare CDFT results with those of other commonly used methods for simulating charge transport between nanoscale building blocks. As a result, we show that some of thesemore » methods give unphysical results for thermally disordered configurations, while CDFT proves to be a viable and robust approach.« less

  13. Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data

    NASA Astrophysics Data System (ADS)

    White, Andrew D.; Knight, Chris; Hocky, Glen M.; Voth, Gregory A.

    2017-01-01

    Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.

  14. Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data.

    PubMed

    White, Andrew D; Knight, Chris; Hocky, Glen M; Voth, Gregory A

    2017-01-28

    Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.

  15. Advanced capabilities for materials modelling with Quantum ESPRESSO

    NASA Astrophysics Data System (ADS)

    Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.

    2017-11-01

    Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

  16. Advanced capabilities for materials modelling with Quantum ESPRESSO.

    PubMed

    Giannozzi, P; Andreussi, O; Brumme, T; Bunau, O; Buongiorno Nardelli, M; Calandra, M; Car, R; Cavazzoni, C; Ceresoli, D; Cococcioni, M; Colonna, N; Carnimeo, I; Dal Corso, A; de Gironcoli, S; Delugas, P; DiStasio, R A; Ferretti, A; Floris, A; Fratesi, G; Fugallo, G; Gebauer, R; Gerstmann, U; Giustino, F; Gorni, T; Jia, J; Kawamura, M; Ko, H-Y; Kokalj, A; Küçükbenli, E; Lazzeri, M; Marsili, M; Marzari, N; Mauri, F; Nguyen, N L; Nguyen, H-V; Otero-de-la-Roza, A; Paulatto, L; Poncé, S; Rocca, D; Sabatini, R; Santra, B; Schlipf, M; Seitsonen, A P; Smogunov, A; Timrov, I; Thonhauser, T; Umari, P; Vast, N; Wu, X; Baroni, S

    2017-10-24

    Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

  17. Advanced capabilities for materials modelling with Quantum ESPRESSO.

    PubMed

    Andreussi, Oliviero; Brumme, Thomas; Bunau, Oana; Buongiorno Nardelli, Marco; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Cococcioni, Matteo; Colonna, Nicola; Carnimeo, Ivan; Dal Corso, Andrea; de Gironcoli, Stefano; Delugas, Pietro; DiStasio, Robert; Ferretti, Andrea; Floris, Andrea; Fratesi, Guido; Fugallo, Giorgia; Gebauer, Ralph; Gerstmann, Uwe; Giustino, Feliciano; Gorni, Tommaso; Jia, Junteng; Kawamura, Mitsuaki; Ko, Hsin-Yu; Kokalj, Anton; Küçükbenli, Emine; Lazzeri, Michele; Marsili, Margherita; Marzari, Nicola; Mauri, Francesco; Nguyen, Ngoc Linh; Nguyen, Huy-Viet; Otero-de-la-Roza, Alberto; Paulatto, Lorenzo; Poncé, Samuel; Giannozzi, Paolo; Rocca, Dario; Sabatini, Riccardo; Santra, Biswajit; Schlipf, Martin; Seitsonen, Ari Paavo; Smogunov, Alexander; Timrov, Iurii; Thonhauser, Timo; Umari, Paolo; Vast, Nathalie; Wu, Xifan; Baroni, Stefano

    2017-09-27

    Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software. © 2017 IOP Publishing Ltd.

  18. Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations

    PubMed Central

    Morales, Miguel A.; Pierleoni, Carlo; Schwegler, Eric; Ceperley, D. M.

    2010-01-01

    Using quantum simulation techniques based on either density functional theory or quantum Monte Carlo, we find clear evidence of a first-order transition in liquid hydrogen, between a low conductivity molecular state and a high conductivity atomic state. Using the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures near 2,000 K and pressures near 120 GPa. Furthermore, we have determined the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using quantum Monte Carlo energetics. PMID:20566888

  19. Correlated hydrogen bonding fluctuations and vibrational cross peaks in N-methyl acetamide: simulation based on a complete electrostatic density functional theory map.

    PubMed

    Hayashi, Tomoyuki; Mukamel, Shaul

    2006-11-21

    The coherent nonlinear response of the entire amide line shapes of N-methyl acetamide to three infrared pulses is simulated using an electrostatic density functional theory map. Positive and negative cross peaks contain signatures of correlations between the fundamentals and the combination state. The amide I-A and I-III cross-peak line shapes indicate positive correlation and anticorrelation of frequency fluctuations, respectively. These can be ascribed to correlated hydrogen bonding at C[double bond]O and N-H sites. The amide I frequency is negatively correlated with the hydrogen bond on carbonyl C[double bond]O, whereas the amide A and III are negatively and positively correlated, respectively, with the hydrogen bond on amide N-H.

  20. Computing thermal Wigner densities with the phase integration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beutier, J.; Borgis, D.; Vuilleumier, R.

    2014-08-28

    We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta andmore » coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.« less

  1. Computing thermal Wigner densities with the phase integration method.

    PubMed

    Beutier, J; Borgis, D; Vuilleumier, R; Bonella, S

    2014-08-28

    We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.

  2. Predictions of Crystal Structures from First Principles

    DTIC Science & Technology

    2007-06-01

    RDX crystal in hoped that the problem could be resolved by the molecular dynamics simulations . The fully ab initio development of density functional... Molecular Dynamics Simulations of RDX i.e., without any use of experimental results (except that Crystal the geometry of monomers was derived from X-ray...applied in molecular dynamics simulations of the RDX system, due to its size, is intractable by any high-level ab crystal. We performed isothermal

  3. Galaxy clusters and cold dark matter - A low-density unbiased universe?

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue

    1992-01-01

    Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.

  4. Effects of molecular elongation on liquid crystalline phase behaviour: isotropic-nematic transition

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra; Ram, Jokhan

    2003-08-01

    We present the density-functional approach to study the isotropic-nematic transitions and calculate the values of freezing parameters of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation, x0. For this, we have solved the Percus-Yevick integral equation theory to calculate the pair-correlation functions of a fluid the molecules of which interact via a Gay-Berne pair potential. These results have been used in the density-functional theory as an input to locate the isotropic-nematic transition and calculate freezing parameters for a range of length-to-width parameters 3.0⩽ x0⩽4.0 at reduced temperatures 0.95 and 1.25. We observed that as x0 is increased, the isotropic-nematic transition is seen to move to lower density at a given temperature. We find that the density-functional theory is good to study the freezing transitions in such fluids. We have also compared our results with computer simulation results wherever they are available.

  5. Time-Dependent Density Functional Theory for Open Systems and Its Applications.

    PubMed

    Chen, Shuguang; Kwok, YanHo; Chen, GuanHua

    2018-02-20

    Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent dynamics. Given the rapid development in ultrafast experiments with atomic resolution in recent years, time dependent simulation of open electronic systems will be useful to gain insight and understanding of such experiments. This Account will mainly focus on the practical aspects of the TDDFT-OS method, describing the numerical implementation and demonstrating the method with applications.

  6. Structure and Electronic Properties of Neutral and Negatively Charged RhBn Clusters (n = 3-10): A Density Functional Theory Study.

    PubMed

    Li, Peifang; Mei, Tingting; Lv, Linxia; Lu, Cheng; Wang, Weihua; Bao, Gang; Gutsev, Gennady L

    2017-08-31

    The geometrical structure and electronic properties of the neutral RhB n and singly negatively charged RhB n - clusters are obtained in the range of 3 ≤ n ≤ 10 using the unbiased CALYPSO structure search method and density functional theory (DFT). A combination of the PBE0 functional and the def2-TZVP basis set is used for determining global minima on potential energy surfaces of the Rh-doped B n clusters. The photoelectron spectra of the anions are simulated using the time-dependent density functional theory (TD-DFT) method. Good agreement between our simulated and experimentally obtained photoelectron spectra for RhB 9 - provides support to the validity of our theoretical method. The relative stabilities of the ground-state RhB n and RhB n - clusters are estimated using the calculated binding energies, second-order total energy differences, and HOMO-LUMO gaps. It is found that RhB 7 and RhB 8 - are the most stable species in the neutral and anionic series, respectively. The chemical bonding analysis reveals that the RhB 8 - cluster possesses two sets of delocalized σ and π bonds. In both cases, the Hückel 4N + 2 rule is fulfilled and this cluster possesses both σ and π aromaticities.

  7. Hierarchy of forward-backward stochastic Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2016-07-01

    Driven by the impetus to simulate quantum dynamics in photosynthetic complexes or even larger molecular aggregates, we have established a hierarchy of forward-backward stochastic Schrödinger equation in the light of stochastic unravelling of the symmetric part of the influence functional in the path-integral formalism of reduced density operator. The method is numerically exact and is suited for Debye-Drude spectral density, Ohmic spectral density with an algebraic or exponential cutoff, as well as discrete vibrational modes. The power of this method is verified by performing the calculations of time-dependent population differences in the valuable spin-boson model from zero to high temperatures. By simulating excitation energy transfer dynamics of the realistic full FMO trimer, some important features are revealed.

  8. Shock compression of strongly correlated oxides: A liquid-regime equation of state for cerium(IV) oxide

    NASA Astrophysics Data System (ADS)

    Weck, Philippe F.; Cochrane, Kyle R.; Root, Seth; Lane, J. Matthew D.; Shulenburger, Luke; Carpenter, John H.; Sjostrom, Travis; Mattsson, Thomas R.; Vogler, Tracy J.

    2018-03-01

    The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ =2.5 to 20 g /cm3 . The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.

  9. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimojo, Fuyuki; Hattori, Shinnosuke; Department of Physics, Kumamoto University, Kumamoto 860-8555

    We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at themore » peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.« less

  10. A generalized Poisson solver for first-principles device simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch; Brück, Sascha

    2016-01-28

    Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative methodmore » in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.« less

  11. Coarse-grained computation for particle coagulation and sintering processes by linking Quadrature Method of Moments with Monte-Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Yu, E-mail: yzou@Princeton.ED; Kavousanakis, Michail E., E-mail: mkavousa@Princeton.ED; Kevrekidis, Ioannis G., E-mail: yannis@Princeton.ED

    2010-07-20

    The study of particle coagulation and sintering processes is important in a variety of research studies ranging from cell fusion and dust motion to aerosol formation applications. These processes are traditionally simulated using either Monte-Carlo methods or integro-differential equations for particle number density functions. In this paper, we present a computational technique for cases where we believe that accurate closed evolution equations for a finite number of moments of the density function exist in principle, but are not explicitly available. The so-called equation-free computational framework is then employed to numerically obtain the solution of these unavailable closed moment equations bymore » exploiting (through intelligent design of computational experiments) the corresponding fine-scale (here, Monte-Carlo) simulation. We illustrate the use of this method by accelerating the computation of evolving moments of uni- and bivariate particle coagulation and sintering through short simulation bursts of a constant-number Monte-Carlo scheme.« less

  12. Simulating Excitons in MoS2 with Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Flamant, Cedric; Kolesov, Grigory; Kaxiras, Efthimios

    Monolayer molybdenum disulfide, owing to its graphene-like two-dimensional geometry whilst still having a finite bandgap, is a material of great interest in condensed matter physics and for potential application in electronic devices. In particular, MoS2 exhibits significant excitonic effects, a desirable quality for fundamental many-body research. Time-dependent density functional theory (TD-DFT) allows us to simulate dynamical effects as well as temperature-based effects in a natural way given the direct treatment of the time evolution of the system. We present a TD-DFT study of monolayer MoS2 exciton dynamics, examining various qualitative and quantitative predictions in pure samples and in the presence of defects. In particular, we generate an absorption spectrum through simulated pulse excitation for comparison to experiment and also analyze the response of the exciton in an external electric field.In this work we also discuss the electronic structure of the exciton in MoS2 with and without vacancies.

  13. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  14. Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory.

    PubMed

    De Giovannini, Umberto; Brunetto, Gustavo; Castro, Alberto; Walkenhorst, Jessica; Rubio, Angel

    2013-05-10

    Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experiment, provide additional information about electronic structure and dynamics that improve characterization of a system. As an extension of this approach, time-dependent 2D spectroscopy can also be simulated, in principle, for large-scale structures and extended systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Experimental investigation of adiabatic compression and heating using collision of an MHD-driven jet with a gas target cloud for magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Seo, Byonghoon; Li, Hui; Bellan, Paul

    2017-10-01

    We are studying magnetized target fusion using an experimental method where an imploding liner compressing a plasma is simulated by a high-speed MHD-driven plasma jet colliding with a gas target cloud. This has the advantage of being non-destructive so orders of magnitude more shots are possible. Since the actual density and temperature are much more modest than fusion-relevant values, the goal is to determine the scaling of the increase in density and temperature when an actual experimental plasma is adiabatically compressed. Two new-developed diagnostics are operating and providing data. The first new diagnostic is a fiber-coupled interferometer which measures line-integrated electron density not only as a function of time, but also as a function of position along the jet. The second new diagnostic is laser Thomson scattering which measures electron density and temperature at the location where the jet collides with the cloud. These diagnostics show that when the jet collides with a target cloud the jet slows down substantially and both the electron density and temperature increase. The experimental measurements are being compared with 3D MHD and hybrid kinetic numerical simulations that model the actual experimental geometry.

  16. Dissipative transport in superlattices within the Wigner function formalism

    DOE PAGES

    Jonasson, O.; Knezevic, I.

    2015-07-30

    Here, we employ the Wigner function formalism to simulate partially coherent, dissipative electron transport in biased semiconductor superlattices. We introduce a model collision integral with terms that describe energy dissipation, momentum relaxation, and the decay of spatial coherences (localization). Based on a particle-based solution to the Wigner transport equation with the model collision integral, we simulate quantum electronic transport at 10 K in a GaAs/AlGaAs superlattice and accurately reproduce its current density vs field characteristics obtained in experiment.

  17. Here and now: the intersection of computational science, quantum-mechanical simulations, and materials science

    NASA Astrophysics Data System (ADS)

    Marzari, Nicola

    The last 30 years have seen the steady and exhilarating development of powerful quantum-simulation engines for extended systems, dedicated to the solution of the Kohn-Sham equations of density-functional theory, often augmented by density-functional perturbation theory, many-body perturbation theory, time-dependent density-functional theory, dynamical mean-field theory, and quantum Monte Carlo. Their implementation on massively parallel architectures, now leveraging also GPUs and accelerators, has started a massive effort in the prediction from first principles of many or of complex materials properties, leading the way to the exascale through the combination of HPC (high-performance computing) and HTC (high-throughput computing). Challenges and opportunities abound: complementing hardware and software investments and design; developing the materials' informatics infrastructure needed to encode knowledge into complex protocols and workflows of calculations; managing and curating data; resisting the complacency that we have already reached the predictive accuracy needed for materials design, or a robust level of verification of the different quantum engines. In this talk I will provide an overview of these challenges, with the ultimate prize being the computational understanding, prediction, and design of properties and performance for novel or complex materials and devices.

  18. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce the number of transported reactive species and remove numerical stiffness. This paper briefly introduces the SFMDF model (highlighting key benefits and challenges), and discusses particle tracking for flows with shocks, the hybrid coupled RAS/PDF and LES/FDF model, flamelet generated manifolds (FGM) model, and the Irregularly Portioned Lagrangian Monte Carlo Finite Difference (IPLMCFD) methodology for scalable simulation of high-speed reacting compressible flows.

  19. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation.

    PubMed

    Wang, Cong; Jiang, Lan; Wang, Feng; Li, Xin; Yuan, Yanping; Xiao, Hai; Tsai, Hai-Lung; Lu, Yongfeng

    2012-07-11

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train.

  20. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    PubMed

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  1. Annual asymmetry in thermospheric density: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Dou, Xiankang; Burns, Alan; Wang, Wenbin; Luan, Xiaoli; Zeng, Zhen; Xu, Jiyao

    2013-05-01

    In this paper, the Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) observations during 2002-2010 are utilized to study the variation of the annual asymmetry in thermospheric density at 400 km under low solar activity condition (F10.7 = 80) based on the method of empirical orthogonal functions (EOFs). The derived asymmetry index (AI) in thermospheric density from the EOF analysis shows a strong latitudinal variation at night but varies a little with latitudes in daytime. Moreover, it exhibits a terdiurnal tidal signature at low to middle latitudes. The global mean value of the AI is 0.191, indicating that a 47% difference in thermosphere between the December and June solstices in the global average. In addition, the NCAR Thermosphere-Ionosphere Electrodynamics Global Circulation Model (TIEGCM) is used to explore the possible mechanisms responsible for the observed annual asymmetry in thermospheric density. It is found that the standard simulations give a lower AI and also a weaker day-to-night difference. The simulated AI shows a semidiurnal pattern in the equatorial and low-latitude regions in contrast with the terdiurnal tide signature seen in the observed AI. The daily mean AI obtained from the simulation is 0.125, corresponding to a 29% December-to-June difference in thermospheric density at 400 km. Further sensitivity simulations demonstrated that the effect of the varying Sun-Earth distance between the December and June solstices is the main process responsible for the annual asymmetry in thermospheric density, while the magnetic field configuration and tides from the lower atmosphere contribute to the temporal and spatial variations of the AI. Specifically, the simulations show that the Sun-Earth distance effect explains 93% of the difference in thermospheric density between December and June, which is mainly associated with the corresponding changes in neutral temperature. However, our calculation from the density observations reveals that the varying Sun-Earth distance effect only accounts for ~67% of the December-to-June difference in thermosphere density, indicating that the TIEGCM might significantly underestimate the forcing originating from the lower atmosphere.

  2. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  3. Direct numerical simulation of incompressible acceleration-driven variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul

    2015-11-01

    Fully developed turbulence in variable-density flow driven by an externally imposed acceleration field, e.g., gravity, is fundamental in many applications, such as inertial confinement fusion, geophysics, and astrophysics. Aspects of this turbulence regime are poorly understood and are of interest to fluid modeling. We investigate incompressible acceleration-driven variable-density turbulence by a series of direct numerical simulations of high-density fluid in-between slabs of low-density fluid, in a triply-periodic domain. A pseudo-spectral numerical method with a Helmholtz-Hodge decomposition of the pressure field, which ensures mass conservation, is employed, as documented in Chung & Pullin (2010). A uniform dynamic viscosity and local Schmidt number of unity are assumed. This configuration encapsulates a combination of flow phenomena in a temporally evolving variable-density shear flow. Density ratios up to 10 and Reynolds numbers in the fully developed turbulent regime are investigated. The temporal evolution of the vertical velocity difference across the shear layer, shear-layer growth, mean density, and Reynolds number are discussed. Statistics of Lagrangian accelerations of fluid elements and of vorticity as a function of the density ratio are also presented. This material is based upon work supported by the AFOSR, the DOE, the NSF GRFP, and Caltech.

  4. Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Thorneywork, Alice L.; Dullens, Roel P. A.; Roth, Roland

    2018-03-01

    Using dynamical density functional theory (DDFT), we theoretically study Brownian self-diffusion and structural relaxation of hard disks and compare to experimental results on quasi two-dimensional colloidal hard spheres. To this end, we calculate the self-van Hove correlation function and distinct van Hove correlation function by extending a recently proposed DDFT-approach for three-dimensional systems to two dimensions. We find that the theoretical results for both self-part and distinct part of the van Hove function are in very good quantitative agreement with the experiments up to relatively high fluid packing fractions of roughly 0.60. However, at even higher densities, deviations between the experiment and the theoretical approach become clearly visible. Upon increasing packing fraction, in experiments, the short-time self-diffusive behavior is strongly affected by hydrodynamic effects and leads to a significant decrease in the respective mean-squared displacement. By contrast, and in accordance with previous simulation studies, the present DDFT, which neglects hydrodynamic effects, shows no dependence on the particle density for this quantity.

  5. Quantum Chemical Simulation of the Interaction of Functional Groups in Polyurethanes with 3 d-Metal Ions During Their Extraction from Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Ksenofontov, M. A.; Bobkova, E. Yu.; Shundalau, M. B.; Ostrovskaya, L. E.; Vasil'eva, V. S.

    2017-11-01

    The interaction of the functional groups in the polyurethane foam adsorbent Penopurm® with the cations of some 3d-metals upon their extraction from aqueous solutions has been studied by atomic emission spectroscopy, UV/Vis and vibrational IR spectroscopy, and quantum chemical simulation using density functional theory. Penopurm® absorbs 3d-metal cations from aqueous solutions in the pH range 5-7. Some spectral criteria have been found indicating a predominant interaction of Ni2+ ions with various fragments of the polyurethane foam structure.

  6. Real time evolution at finite temperatures with operator space matrix product states

    NASA Astrophysics Data System (ADS)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  7. Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.

    2016-10-01

    We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.

  8. Wind farm density and harvested power in very large wind farms: A low-order model

    NASA Astrophysics Data System (ADS)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  9. Quantitative evaluation of simulated functional brain networks in graph theoretical analysis.

    PubMed

    Lee, Won Hee; Bullmore, Ed; Frangou, Sophia

    2017-02-01

    There is increasing interest in the potential of whole-brain computational models to provide mechanistic insights into resting-state brain networks. It is therefore important to determine the degree to which computational models reproduce the topological features of empirical functional brain networks. We used empirical connectivity data derived from diffusion spectrum and resting-state functional magnetic resonance imaging data from healthy individuals. Empirical and simulated functional networks, constrained by structural connectivity, were defined based on 66 brain anatomical regions (nodes). Simulated functional data were generated using the Kuramoto model in which each anatomical region acts as a phase oscillator. Network topology was studied using graph theory in the empirical and simulated data. The difference (relative error) between graph theory measures derived from empirical and simulated data was then estimated. We found that simulated data can be used with confidence to model graph measures of global network organization at different dynamic states and highlight the sensitive dependence of the solutions obtained in simulated data on the specified connection densities. This study provides a method for the quantitative evaluation and external validation of graph theory metrics derived from simulated data that can be used to inform future study designs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. On the joint spectral density of bivariate random sequences. Thesis Technical Report No. 21

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1995-01-01

    For univariate random sequences, the power spectral density acts like a probability density function of the frequencies present in the sequence. This dissertation extends that concept to bivariate random sequences. For this purpose, a function called the joint spectral density is defined that represents a joint probability weighing of the frequency content of pairs of random sequences. Given a pair of random sequences, the joint spectral density is not uniquely determined in the absence of any constraints. Two approaches to constraining the sequences are suggested: (1) assume the sequences are the margins of some stationary random field, (2) assume the sequences conform to a particular model that is linked to the joint spectral density. For both approaches, the properties of the resulting sequences are investigated in some detail, and simulation is used to corroborate theoretical results. It is concluded that under either of these two constraints, the joint spectral density can be computed from the non-stationary cross-correlation.

  11. Molecular dynamics simulation of liquid structure for undercooled Zr-Nb alloys assisted with electrostatic levitation experiments

    NASA Astrophysics Data System (ADS)

    Yang, S. J.; Hu, L.; Wang, L.; Wei, B.

    2018-06-01

    The liquid structures of undercooled Zr90Nb10, Zr70Nb30 and Zr50Nb50 alloys were studied by molecular dynamics simulation combined with electrostatic levitation experiments. The densities of three alloys were measured by electrostatic levitation to modify the Zr-Nb potential functions by adjusting parameters in potential functions. In simulation, the atomic packing in Zr-Nb alloys was more ordered at lower temperatures. The Voronoi tessellation analyses indicated Nb-centered clusters were easier to form than Zr-centered clusters although the Nb content was less than 50%. The partial pair distribution functions showed that the interactions among Zr atoms are quite different to that among Nb atoms.

  12. Simulation of Charged Systems in Heterogeneous Dielectric Media via a True Energy Functional

    NASA Astrophysics Data System (ADS)

    Jadhao, Vikram; Solis, Francisco J.; de la Cruz, Monica Olvera

    2012-11-01

    For charged systems in heterogeneous dielectric media, a key obstacle for molecular dynamics (MD) simulations is the need to solve the Poisson equation in the media. This obstacle can be bypassed using MD methods that treat the local polarization charge density as a dynamic variable, but such approaches require access to a true free energy functional, one that evaluates to the equilibrium electrostatic energy at its minimum. In this Letter, we derive the needed functional. As an application, we develop a Car-Parrinello MD method for the simulation of free charges present near a spherical emulsion droplet separating two immiscible liquids with different dielectric constants. Our results show the presence of nonmonotonic ionic profiles in the dielectric with a lower dielectric constant.

  13. High density liquid structure enhancement in glass forming aqueous solution of LiCl.

    PubMed

    Camisasca, G; De Marzio, M; Rovere, M; Gallo, P

    2018-06-14

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H 2 O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H 2 O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  14. High density liquid structure enhancement in glass forming aqueous solution of LiCl

    NASA Astrophysics Data System (ADS)

    Camisasca, G.; De Marzio, M.; Rovere, M.; Gallo, P.

    2018-06-01

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H2O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H2O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  15. Hierarchical optimization for neutron scattering problems

    DOE PAGES

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu; ...

    2016-03-14

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  16. Hierarchical optimization for neutron scattering problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  17. Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Pope, Stephen B.

    2014-05-01

    A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.

  18. Ab initio density-functional calculations in materials science: from quasicrystals over microporous catalysts to spintronics.

    PubMed

    Hafner, Jürgen

    2010-09-29

    During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.

  19. Bayesian nonparametric regression with varying residual density

    PubMed Central

    Pati, Debdeep; Dunson, David B.

    2013-01-01

    We consider the problem of robust Bayesian inference on the mean regression function allowing the residual density to change flexibly with predictors. The proposed class of models is based on a Gaussian process prior for the mean regression function and mixtures of Gaussians for the collection of residual densities indexed by predictors. Initially considering the homoscedastic case, we propose priors for the residual density based on probit stick-breaking (PSB) scale mixtures and symmetrized PSB (sPSB) location-scale mixtures. Both priors restrict the residual density to be symmetric about zero, with the sPSB prior more flexible in allowing multimodal densities. We provide sufficient conditions to ensure strong posterior consistency in estimating the regression function under the sPSB prior, generalizing existing theory focused on parametric residual distributions. The PSB and sPSB priors are generalized to allow residual densities to change nonparametrically with predictors through incorporating Gaussian processes in the stick-breaking components. This leads to a robust Bayesian regression procedure that automatically down-weights outliers and influential observations in a locally-adaptive manner. Posterior computation relies on an efficient data augmentation exact block Gibbs sampler. The methods are illustrated using simulated and real data applications. PMID:24465053

  20. Robust three-body water simulation model

    NASA Astrophysics Data System (ADS)

    Tainter, C. J.; Pieniazek, P. A.; Lin, Y.-S.; Skinner, J. L.

    2011-05-01

    The most common potentials used in classical simulations of liquid water assume a pairwise additive form. Although these models have been very successful in reproducing many properties of liquid water at ambient conditions, none is able to describe accurately water throughout its complicated phase diagram. The primary reason for this is the neglect of many-body interactions. To this end, a simulation model with explicit three-body interactions was introduced recently [R. Kumar and J. L. Skinner, J. Phys. Chem. B 112, 8311 (2008), 10.1021/jp8009468]. This model was parameterized to fit the experimental O-O radial distribution function and diffusion constant. Herein we reparameterize the model, fitting to a wider range of experimental properties (diffusion constant, rotational correlation time, density for the liquid, liquid/vapor surface tension, melting point, and the ice Ih density). The robustness of the model is then verified by comparing simulation to experiment for a number of other quantities (enthalpy of vaporization, dielectric constant, Debye relaxation time, temperature of maximum density, and the temperature-dependent second and third virial coefficients), with good agreement.

  1. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  2. Statistical analysis and modeling of intermittent transport events in the tokamak scrape-off layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Johan, E-mail: anderson.johan@gmail.com; Halpern, Federico D.; Ricci, Paolo

    The turbulence observed in the scrape-off-layer of a tokamak is often characterized by intermittent events of bursty nature, a feature which raises concerns about the prediction of heat loads on the physical boundaries of the device. It appears thus necessary to delve into the statistical properties of turbulent physical fields such as density, electrostatic potential, and temperature, focusing on the mathematical expression of tails of the probability distribution functions. The method followed here is to generate statistical information from time-traces of the plasma density stemming from Braginskii-type fluid simulations and check this against a first-principles theoretical model. The analysis ofmore » the numerical simulations indicates that the probability distribution function of the intermittent process contains strong exponential tails, as predicted by the analytical theory.« less

  3. Carbonic anhydrase inhibition of Schiff base derivative of imino-methyl-naphthalen-2-ol: Synthesis, structure elucidation, molecular docking, dynamic simulation and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Abbas, Saghir; Nasir, Hafiza Huma; Zaib, Sumera; Ali, Saqib; Mahmood, Tariq; Ayub, Khurshid; Tahir, Muhammad Nawaz; Iqbal, Jamshed

    2018-03-01

    In the present study, we have designed and synthesized a Schiff base derivative 3 and characterized by FT-IR, 1H and 13C NMR spectroscopy. Single crystal X-ray diffraction and NMR studies were also performed. The synthetic compound was screened for its inhibitory potential against carbonic anhydrase II. The experimental results were validated by molecular docking and dynamic simulations of compound 3 in the active pocket of enzyme. Important binding interactions with the key residues in the active site of the carbonic anhydrase enzyme were revealed. Moreover, supramolecular assembly of the title compound was analyzed by density functional theory (DFT) calculations. These studies rendered a more clear understanding for the demonstration of novel molecular mechanism involved in CA II inhibition by the synthesized compound.

  4. Investigation of Transport Parameters of Graphene-Based Nanostructures

    NASA Astrophysics Data System (ADS)

    Sergeyev, D. M.; Shunkeyev, K. Sh.

    2018-03-01

    The paper presents results of computer simulation of the main transport parameters of nanostructures obtained through the row-by-row removal of carbon atoms from graphene ribbon. Research into the electrical parameters is carried out within the density functional theory using the non-equilibrium Green functions in the local-density approximation. Virtual NanoLab based on Atomistix ToolKit is used to construct structures and analyze simulation results. Current-voltage characteristics, differential conductivity and transmittance spectra of nanostructures are calculated at different values of bias voltage. It is found that there is a large region of negative differential resistance in current-voltage characteristics of nanostructures caused by resonant tunneling of quasi-particles. Differential (dI/dV) characteristic also has similar changes. The obtained results can be useful for building novel electronic devices in the field of nanoelectronics.

  5. New optimization scheme to obtain interaction potentials for oxide glasses

    NASA Astrophysics Data System (ADS)

    Sundararaman, Siddharth; Huang, Liping; Ispas, Simona; Kob, Walter

    2018-05-01

    We propose a new scheme to parameterize effective potentials that can be used to simulate atomic systems such as oxide glasses. As input data for the optimization, we use the radial distribution functions of the liquid and the vibrational density of state of the glass, both obtained from ab initio simulations, as well as experimental data on the pressure dependence of the density of the glass. For the case of silica, we find that this new scheme facilitates finding pair potentials that are significantly more accurate than the previous ones even if the functional form is the same, thus demonstrating that even simple two-body potentials can be superior to more complex three-body potentials. We have tested the new potential by calculating the pressure dependence of the elastic moduli and found a good agreement with the corresponding experimental data.

  6. Simulation of IR and Raman spectra of p-hydroxyanisole and p-nitroanisole based on scaled DFT force fields and their vibrational assignments.

    PubMed

    Krishnakumar, V; Prabavathi, N

    2009-09-15

    This work deals with the vibrational spectroscopy of p-hydroxyanisole (PHA) and p-nitroanisole (PNA) by means of quantum chemical calculations. The mid and far FT-IR and FT-Raman spectra were recorded in the condensed state. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6-31G* method and basis set combination and were scaled using various scale factors which yield a good agreement between observed and calculated frequencies. The vibrational spectra were interpreted with the aid of normal coordinate analysis based on scaled density functional force field. The results of the calculations were applied to simulate infrared and Raman spectra of the title compounds, which showed excellent agreement with the observed spectra.

  7. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex.

    PubMed

    Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H

    2017-12-12

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.

  8. Lattice dynamics calculations based on density-functional perturbation theory in real space

    NASA Astrophysics Data System (ADS)

    Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias

    2017-06-01

    A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.

  9. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory

    NASA Astrophysics Data System (ADS)

    Langenbach, K.; Heilig, M.; Horsch, M.; Hasse, H.

    2018-03-01

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO2). The molecular model of CO2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  10. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory.

    PubMed

    Langenbach, K; Heilig, M; Horsch, M; Hasse, H

    2018-03-28

    A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO 2 ). The molecular model of CO 2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.

  11. Electrostatics of DNA-Functionalized Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoffmann, Kyle; Krishnamoorthy, Kurinji; Kewalramani, Sumit; Bedzyk, Michael; Olvera de La Cruz, Monica

    DNA-functionalized nanoparticles have applications in directed self-assembly and targeted cellular delivery of therapeutic proteins. In order to design specific systems, it is necessary to understand their self-assembly properties, of which the long-range electrostatic interactions are a critical component. We iteratively solved equations derived from classical density functional theory in order to predict the distribution of ions around DNA-functionalized Cg Catalase. We then compared estimates of the resonant intensity to those from SAXS measurements to estimate key features of DNA-functionalized proteins, such as the size of the region linking the protein and DNA and the extension of the single-stranded DNA. Using classical density functional theory and coarse-grained simulations, we are able to predict and understand these fundamental properties in order to rationally design new biomaterials.

  12. Reconstructing the Initial Density Field of the Local Universe: Methods and Tests with Mock Catalogs

    NASA Astrophysics Data System (ADS)

    Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; van den Bosch, Frank C.

    2013-07-01

    Our research objective in this paper is to reconstruct an initial linear density field, which follows the multivariate Gaussian distribution with variances given by the linear power spectrum of the current cold dark matter model and evolves through gravitational instabilities to the present-day density field in the local universe. For this purpose, we develop a Hamiltonian Markov Chain Monte Carlo method to obtain the linear density field from a posterior probability function that consists of two components: a prior of a Gaussian density field with a given linear spectrum and a likelihood term that is given by the current density field. The present-day density field can be reconstructed from galaxy groups using the method developed in Wang et al. Using a realistic mock Sloan Digital Sky Survey DR7, obtained by populating dark matter halos in the Millennium simulation (MS) with galaxies, we show that our method can effectively and accurately recover both the amplitudes and phases of the initial, linear density field. To examine the accuracy of our method, we use N-body simulations to evolve these reconstructed initial conditions to the present day. The resimulated density field thus obtained accurately matches the original density field of the MS in the density range 0.3 \\lesssim \\rho /\\bar{\\rho } \\lesssim 20 without any significant bias. In particular, the Fourier phases of the resimulated density fields are tightly correlated with those of the original simulation down to a scale corresponding to a wavenumber of ~1 h Mpc-1, much smaller than the translinear scale, which corresponds to a wavenumber of ~0.15 h Mpc-1.

  13. A simple phenomenological model for grain clustering in turbulence

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-01-01

    We propose a simple model for density fluctuations of aerodynamic grains, embedded in a turbulent, gravitating gas disc. The model combines a calculation for the behaviour of a group of grains encountering a single turbulent eddy, with a hierarchical approximation of the eddy statistics. This makes analytic predictions for a range of quantities including: distributions of grain densities, power spectra and correlation functions of fluctuations, and maximum grain densities reached. We predict how these scale as a function of grain drag time ts, spatial scale, grain-to-gas mass ratio tilde{ρ }, strength of turbulence α, and detailed disc properties. We test these against numerical simulations with various turbulence-driving mechanisms. The simulations agree well with the predictions, spanning ts Ω ˜ 10-4-10, tilde{ρ }˜ 0{-}3, α ˜ 10-10-10-2. Results from `turbulent concentration' simulations and laboratory experiments are also predicted as a special case. Vortices on a wide range of scales disperse and concentrate grains hierarchically. For small grains this is most efficient in eddies with turnover time comparable to the stopping time, but fluctuations are also damped by local gas-grain drift. For large grains, shear and gravity lead to a much broader range of eddy scales driving fluctuations, with most power on the largest scales. The grain density distribution has a log-Poisson shape, with fluctuations for large grains up to factors ≳1000. We provide simple analytic expressions for the predictions, and discuss implications for planetesimal formation, grain growth, and the structure of turbulence.

  14. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.

    2017-11-01

    We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (Cd) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of Cd with positive and negative surface potentials.

  15. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study.

    PubMed

    Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K

    2017-11-21

    We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (C d ) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of C d with positive and negative surface potentials.

  16. Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutsker, V.; Niehaus, T. A., E-mail: thomas.niehaus@physik.uni-regensburg.de; Aradi, B.

    2015-11-14

    Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply themore » method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.« less

  17. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.

    PubMed

    Nishizawa, Hiroaki; Nishimura, Yoshifumi; Kobayashi, Masato; Irle, Stephan; Nakai, Hiromi

    2016-08-05

    The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.

    PubMed

    Derricotte, Wallace D; Evangelista, Francesco A

    2015-06-14

    Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

  19. Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi; Lamperski, Stanisław; Sokołowska, Marta

    2017-07-01

    We have performed extensive Monte-Carlo simulations and classical density functional theory (DFT) calculations of the electrical double layer (EDL) near a cylindrical electrode in a primitive model (PM) modified by incorporating interionic dispersion interactions. It is concluded that (i) in general, an unsophisticated use of the mean field (MF) approximation for the interionic dispersion interactions does not distinctly worsen the classical DFT performance, even if the salt ions considered are highly asymmetrical in size (3:1) and charge (5:1), the bulk molar concentration considered is high up to a total bulk ion packing fraction of 0.314, and the surface charge density of up to 0.5 C m-2. (ii) More specifically, considering the possible noises in the simulation, the local volume charge density profiles are the most accurately predicted by the classical DFT in all situations, and the co- and counter-ion singlet distributions are also rather accurately predicted; whereas the mean electrostatic potential profile is relatively less accurately predicted due to an integral amplification of minor inaccuracy of the singlet distributions. (iii) It is found that the layered structure of the co-ion distribution is abnormally possible only if the surface charge density is high enough (for example 0.5 C m-2) moreover, the co-ion valence abnormally influences the peak height of the first counter-ion layer, which decreases with the former. (iv) Even if both the simulation and DFT indicate an insignificant contribution of the interionic dispersion interaction to the above three ‘local’ quantities, it is clearly shown by the classical DFT that the interionic dispersion interaction does significantly influence a ‘global’ quantity like the cylinder surface-aqueous electrolyte interfacial tension, and this may imply the role of the interionic dispersion interaction in explaining the specific Hofmeister effects. We elucidate all of the above observations based on the arguments from the liquid state theory and at the molecular scale.

  20. Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions

    PubMed Central

    Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alán

    2013-01-01

    Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory. PMID:24790954

  1. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only).

    PubMed

    Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F

    2008-02-13

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.

  2. Effective interactions between soft-repulsive colloids: experiments, theory, and simulations.

    PubMed

    Mohanty, Priti S; Paloli, Divya; Crassous, Jérôme J; Zaccarelli, Emanuela; Schurtenberger, Peter

    2014-03-07

    We describe a combined experimental, theoretical, and simulation study of the structural correlations between cross-linked highly monodisperse and swollen Poly(N-isopropylacrylamide) microgel dispersions in the fluid phase in order to obtain the effective pair-interaction potential between the microgels. The density-dependent experimental pair distribution functions g(r)'s are deduced from real space studies using fluorescent confocal microscopy and compared with integral equation theory and molecular dynamics computer simulations. We use a model of Hertzian spheres that is capable to well reproduce the experimental pair distribution functions throughout the fluid phase, having fixed the particle size and the repulsive strength. Theoretically, a monodisperse system is considered whose properties are calculated within the Rogers-Young closure relation, while in the simulations the role of polydispersity is taken into account. We also discuss the various effects arising from the finite resolution of the microscope and from the noise coming from the fast Brownian motion of the particles at low densities, and compare the information content from data taken in 2D and 3D through a comparison with the corresponding simulations. Finally different potential shapes, recently adopted in studies of microgels, are also taken into account to assess which ones could also be used to describe the structure of the microgel fluid.

  3. PREFACE: International Conference on Quantum Simulators and Design, Hiroshima, Japan, 3 6 December 2006

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Oguchi, Tamio

    2007-09-01

    This special issue of Journal of Physics: Condensed Matter comprises selected papers from the 1st International Conference on Quantum Simulators and Design (QSD2006) held in Hiroshima, Japan, 3-6 December 2006. This conference was organized under the auspices of the Development of New Quantum Simulators and Quantum Design Grant-in-Aid for Scientific Research on Priority Areas, Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), and Hiroshima University Quantum design is a computational approach to the development of new materials with specified properties and functionalities. The basic ingredient is the use of quantum simulations to design a material that meets a given specification of properties and functionalities. For this to be successful, the quantum simulation should be highly reliable and be applicable to systems of realistic size. A central interest is, therefore, the development of new methods of quantum simulation and quantum design. This includes methods beyond the local density approximation of density functional theory (LDA), order-N methods, methods dealing with excitations and reactions, and so on, as well as the application of these methods to the design of new materials and devices. The field of quantum design has developed rapidly in the past few years and this conference provides an international forum for experimental and theoretical researchers to exchange ideas. A total of 183 delegates from 8 countries participated in the conference. There were 18 invited talks, 16 oral presentations and 100 posters. There were many new ideas and we foresee dramatic progress in the coming years. The 2nd International Conference on Quantum Simulators and Design will be held in Tokyo, Japan, 31 May-3 June 2008.

  4. On the equilibrium charge density at tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1998-05-01

    The equilibrium charge density and free energy of tilt grain boundaries as a function of their misorientation is computed using a Monte Carlo simulation that takes into account both the electrostatic and configurational energies associated with charges at the grain boundary. The computed equilibrium charge density increases with the grain-boundary angle and approaches a saturation value. The equilibrium charge density at large-angle grain boundaries compares well with experimental values for large-angle tilt boundaries in GaAs. The computed grain-boundary electrostatic energy is in agreement with the analytical solution to a one-dimensional Poisson equation at high donor densities but indicates that the analytical solution overestimates the electrostatic energy at lower donor densities.

  5. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald

    2013-06-01

    Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.

  6. Regression-assisted deconvolution.

    PubMed

    McIntyre, Julie; Stefanski, Leonard A

    2011-06-30

    We present a semi-parametric deconvolution estimator for the density function of a random variable biX that is measured with error, a common challenge in many epidemiological studies. Traditional deconvolution estimators rely only on assumptions about the distribution of X and the error in its measurement, and ignore information available in auxiliary variables. Our method assumes the availability of a covariate vector statistically related to X by a mean-variance function regression model, where regression errors are normally distributed and independent of the measurement errors. Simulations suggest that the estimator achieves a much lower integrated squared error than the observed-data kernel density estimator when models are correctly specified and the assumption of normal regression errors is met. We illustrate the method using anthropometric measurements of newborns to estimate the density function of newborn length. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Quantum computing without wavefunctions: time-dependent density functional theory for universal quantum computation.

    PubMed

    Tempel, David G; Aspuru-Guzik, Alán

    2012-01-01

    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.

  8. Predicting vapor liquid equilibria using density functional theory: A case study of argon

    NASA Astrophysics Data System (ADS)

    Goel, Himanshu; Ling, Sanliang; Ellis, Breanna Nicole; Taconi, Anna; Slater, Ben; Rai, Neeraj

    2018-06-01

    Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) interactions using the first principles approach is a significant challenge. Due to the poor scaling of the post Hartree-Fock wave function theory with system size/basis functions, the Kohn-Sham density functional theory (DFT) is preferred for systems with a large number of molecules. However, traditional DFT cannot adequately account for medium to long range correlations which are necessary for modeling vdW interactions. Recent developments in DFT such as dispersion corrected models and nonlocal van der Waals functionals have attempted to address this weakness with a varying degree of success. In this work, we predict the VLE of argon and assess the performance of several density functionals and the second order Møller-Plesset perturbation theory (MP2) by determining critical and structural properties via first principles Monte Carlo simulations. PBE-D3, BLYP-D3, and rVV10 functionals were used to compute vapor liquid coexistence curves, while PBE0-D3, M06-2X-D3, and MP2 were used for computing liquid density at a single state point. The performance of the PBE-D3 functional for VLE is superior to other functionals (BLYP-D3 and rVV10). At T = 85 K and P = 1 bar, MP2 performs well for the density and structural features of the first solvation shell in the liquid phase.

  9. The EAGLE simulations: atomic hydrogen associated with galaxies

    NASA Astrophysics Data System (ADS)

    Crain, Robert A.; Bahé, Yannick M.; Lagos, Claudia del P.; Rahmati, Alireza; Schaye, Joop; McCarthy, Ian G.; Marasco, Antonino; Bower, Richard G.; Schaller, Matthieu; Theuns, Tom; van der Hulst, Thijs

    2017-02-01

    We examine the properties of atomic hydrogen (H I) associated with galaxies in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations of galaxy formation. EAGLE's feedback parameters were calibrated to reproduce the stellar mass function and galaxy sizes at z = 0.1, and we assess whether this calibration also yields realistic H I properties. We estimate the self-shielding density with a fitting function calibrated using radiation transport simulations, and correct for molecular hydrogen with empirical or theoretical relations. The `standard-resolution' simulations systematically underestimate H I column densities, leading to an H I deficiency in low-mass (M⋆ < 1010 M⊙) galaxies and poor reproduction of the observed H I mass function. These shortcomings are largely absent from EAGLE simulations featuring a factor of 8 (2) better mass (spatial) resolution, within which the H I mass of galaxies evolves more mildly from z = 1 to 0 than in the standard-resolution simulations. The largest volume simulation reproduces the observed clustering of H I systems, and its dependence on H I richness. At fixed M⋆, galaxies acquire more H I in simulations with stronger feedback, as they become associated with more massive haloes and higher infall rates. They acquire less H I in simulations with a greater star formation efficiency, since the star formation and feedback necessary to balance the infall rate is produced by smaller gas reservoirs. The simulations indicate that the H I of present-day galaxies was acquired primarily by the smooth accretion of ionized, intergalactic gas at z ≃ 1, which later self-shields, and that only a small fraction is contributed by the reincorporation of gas previously heated strongly by feedback. H I reservoirs are highly dynamic: over 40 per cent of H I associated with z = 0.1 galaxies is converted to stars or ejected by z = 0.

  10. Development of Fast and Reliable Free-Energy Density Functional Methods for Simulations of Dense Plasmas from Cold- to Hot-Temperature Regimes

    NASA Astrophysics Data System (ADS)

    Karasiev, V. V.

    2017-10-01

    Free-energy density functional theory (DFT) is one of the standard tools in high-energy-density physics used to determine the fundamental properties of dense plasmas, especially in cold and warm regimes when quantum effects are essential. DFT is usually implemented via the orbital-dependent Kohn-Sham (KS) procedure. There are two challenges of conventional implementation: (1) KS computational cost becomes prohibitively expensive at high temperatures; and (2) ground-state exchange-correlation (XC) functionals do not take into account the XC thermal effects. This talk will address both challenges and report details of the formal development of new generalized gradient approximation (GGA) XC free-energy functional which bridges low-temperature (ground state) and high-temperature (plasma) limits. Recent progress on development of functionals for orbital-free DFT as a way to address the second challenge will also be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Structure, thermodynamic and transport properties of imidazolium-based bis(trifluoromethylsulfonyl)imide ionic liquids from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Androulaki, Eleni; Vergadou, Niki; Ramos, Javier; Economou, Ioannis G.

    2012-06-01

    Molecular dynamics (MD) simulations have been performed in order to investigate the properties of [C n mim+][Tf2N-] (n = 4, 8, 12) ionic liquids (ILs) in a wide temperature range (298.15-498.15 K) and at atmospheric pressure (1 bar). A previously developed methodology for the calculation of the charge distribution that incorporates ab initio quantum mechanical calculations based on density functional theory (DFT) was used to calculate the partial charges for the classical molecular simulations. The wide range of time scales that characterize the segmental dynamics of these ILs, especially at low temperatures, required very long MD simulations, on the order of several tens of nanoseconds, to calculate the thermodynamic (density, thermal expansion, isothermal compressibility), structural (radial distribution functions between the centers of mass of ions and between individual sites, radial-angular distribution functions) and dynamic (relaxation times of the reorientation of the bonds and the torsion angles, self-diffusion coefficients, shear viscosity) properties. The influence of the temperature and the cation's alkyl chain length on the above-mentioned properties was thoroughly investigated. The calculated thermodynamic (primary and derivative) and structural properties are in good agreement with the experimental data, while the extremely sluggish dynamics of the ILs under study renders the calculation of their transport properties a very complicated and challenging task, especially at low temperatures.

  12. Molecular density functional theory of water describing hydrophobicity at short and long length scales

    NASA Astrophysics Data System (ADS)

    Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2013-10-01

    We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619 (2013)] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields: the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely, the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast, the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density, and making the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.

  13. Back in the saddle: large-deviation statistics of the cosmic log-density field

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.

    2016-08-01

    We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.

  14. Mean flows and blob velocities in scrape-off layer (SOLT) simulations of an L-mode discharge on Alcator C-Mod

    DOE PAGES

    Russell, D. A.; Myra, J. R.; D'Ippolito, D. A.; ...

    2016-06-10

    Two-dimensional scrape-off layer turbulence (SOLT) code simulations are compared with an L-mode discharge on the Alcator C-Mod tokamak [M. Greenwald, et al., Phys. Plasmas 21, 110501 (2014)]. Density and temperature profiles for the simulations were obtained by smoothly fitting Thomson scattering and mirror Langmuir probe (MLP) data from the shot. Simulations differing in turbulence intensity were obtained by varying a dissipation parameter. Mean flow profiles and density fluctuation amplitudes are consistent with those measured by MLP in the experiment and with a Fourier space diagnostic designed to measure poloidal phase velocity. Blob velocities in the simulations were determined from themore » correlation function for density fluctuations, as in the analysis of gas-puff-imaging (GPI) blobs in the experiment. In the simulations, it was found that larger blobs moved poloidally with the ExB flow velocity, v E , in the near-SOL, while smaller fluctuations moved with the group velocity of the dominant linear (interchange) mode, v E + 1/2 v di, where v di is the ion diamagnetic drift velocity. Comparisons are made with the measured GPI correlation velocity for the discharge. The saturation mechanisms operative in the simulation of the discharge are also discussed. In conclusion, it is found that neither sheared flow nor pressure gradient modification can be excluded as saturation mechanisms.« less

  15. Simulation of electric double-layer capacitors: evaluation of constant potential method

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Laird, Brian; Yang, Yang; Olmsted, David; Asta, Mark

    2014-03-01

    Atomistic simulations can play an important role in understanding electric double-layer capacitors (EDLCs) at a molecular level. In such simulations, typically the electrode surface is modeled using fixed surface charges, which ignores the charge fluctuation induced by local fluctuations in the electrolyte solution. In this work we evaluate an explicit treatment of charges, namely constant potential method (CPM)[1], in which the electrode charges are dynamically updated to maintain constant electrode potential. We employ a model system with a graphite electrode and a LiClO4/acetonitrile electrolyte, examined as a function of electrode potential differences. Using various molecular and macroscopic properties as metrics, we compare CPM simulations on this system to results using fixed surface charges. Specifically, results for predicted capacity, electric potential gradient and solvent density profile are identical between the two methods; However, ion density profiles and solvation structure yield significantly different results.

  16. High-density amorphous ice: A path-integral simulation

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.; Ramírez, Rafael

    2012-09-01

    Structural and thermodynamic properties of high-density amorphous (HDA) ice have been studied by path-integral molecular dynamics simulations in the isothermal-isobaric ensemble. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Quantum nuclear motion is found to affect several observable properties of the amorphous solid. At low temperature (T = 50 K) the molar volume of HDA ice is found to increase by 6%, and the intramolecular O-H distance rises by 1.4% due to quantum motion. Peaks in the radial distribution function of HDA ice are broadened with respect to their classical expectancy. The bulk modulus, B, is found to rise linearly with the pressure, with a slope ∂B/∂P = 7.1. Our results are compared with those derived earlier from classical and path-integral simulations of HDA ice. We discuss similarities and discrepancies with those earlier simulations.

  17. Density functional theory based molecular dynamics study of hydration and electronic properties of aqueous La(3+).

    PubMed

    Terrier, Cyril; Vitorge, Pierre; Gaigeot, Marie-Pierre; Spezia, Riccardo; Vuilleumier, Rodolphe

    2010-07-28

    Structural and electronic properties of La(3+) immersed in bulk water have been assessed by means of density functional theory (DFT)-based Car-Parrinello molecular dynamics (CPMD) simulations. Correct structural properties, i.e., La(III)-water distances and La(III) coordination number, can be obtained within the framework of Car-Parrinello simulations providing that both the La pseudopotential and conditions of the dynamics (fictitious mass and time step) are carefully set up. DFT-MD explicitly treats electronic densities and is shown here to provide a theoretical justification to the necessity of including polarization when studying highly charged cations such as lanthanoids(III) with classical MD. La(3+) was found to strongly polarize the water molecules located in the first shell, giving rise to dipole moments about 0.5 D larger than those of bulk water molecules. Finally, analyzing Kohn-Sham orbitals, we found La(3+) empty 4f orbitals extremely compact and to a great extent uncoupled from the water conduction band, while the 5d empty orbitals exhibit mixing with unoccupied states of water.

  18. Lattice and Valence Electronic Structures of Crystalline Octahedral Molybdenum Halide Clusters-Based Compounds, Cs2[Mo6X14] (X = Cl, Br, I), Studied by Density Functional Theory Calculations.

    PubMed

    Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki

    2017-06-05

    The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, D.O.

    It is recognized that some dynamic and noise environments are characterized by time histories which are not Gaussian. An example is high intensity acoustic noise. Another example is some transportation vibration. A better simulation of these environments can be generated if a zero mean non-Gaussian time history can be reproduced with a specified auto (or power) spectral density (ASD or PSD) and a specified probability density function (pdf). After the required time history is synthesized, the waveform can be used for simulation purposes. For example, modem waveform reproduction techniques can be used to reproduce the waveform on electrodynamic or electrohydraulicmore » shakers. Or the waveforms can be used in digital simulations. A method is presented for the generation of realizations of zero mean non-Gaussian random time histories with a specified ASD, and pdf. First a Gaussian time history with the specified auto (or power) spectral density (ASD) is generated. A monotonic nonlinear function relating the Gaussian waveform to the desired realization is then established based on the Cumulative Distribution Function (CDF) of the desired waveform and the known CDF of a Gaussian waveform. The established function is used to transform the Gaussian waveform to a realization of the desired waveform. Since the transformation preserves the zero-crossings and peaks of the original Gaussian waveform, and does not introduce any substantial discontinuities, the ASD is not substantially changed. Several methods are available to generate a realization of a Gaussian distributed waveform with a known ASD. The method of Smallwood and Paez (1993) is an example. However, the generation of random noise with a specified ASD but with a non-Gaussian distribution is less well known.« less

  20. Improving the efficiency of configurational-bias Monte Carlo: A density-guided method for generating bending angle trials for linear and branched molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepehri, Aliasghar; Loeffler, Troy D.; Chen, Bin, E-mail: binchen@lsu.edu

    2014-08-21

    A new method has been developed to generate bending angle trials to improve the acceptance rate and the speed of configurational-bias Monte Carlo. Whereas traditionally the trial geometries are generated from a uniform distribution, in this method we attempt to use the exact probability density function so that each geometry generated is likely to be accepted. In actual practice, due to the complexity of this probability density function, a numerical representation of this distribution function would be required. This numerical table can be generated a priori from the distribution function. This method has been tested on a united-atom model ofmore » alkanes including propane, 2-methylpropane, and 2,2-dimethylpropane, that are good representatives of both linear and branched molecules. It has been shown from these test cases that reasonable approximations can be made especially for the highly branched molecules to reduce drastically the dimensionality and correspondingly the amount of the tabulated data that is needed to be stored. Despite these approximations, the dependencies between the various geometrical variables can be still well considered, as evident from a nearly perfect acceptance rate achieved. For all cases, the bending angles were shown to be sampled correctly by this method with an acceptance rate of at least 96% for 2,2-dimethylpropane to more than 99% for propane. Since only one trial is required to be generated for each bending angle (instead of thousands of trials required by the conventional algorithm), this method can dramatically reduce the simulation time. The profiling results of our Monte Carlo simulation code show that trial generation, which used to be the most time consuming process, is no longer the time dominating component of the simulation.« less

  1. Lattice QCD at finite temperature and density from Taylor expansion

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Patrick

    2017-01-01

    In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.

  2. Application of SEAWAT to select variable-density and viscosity problems

    USGS Publications Warehouse

    Dausman, Alyssa M.; Langevin, Christian D.; Thorne, Danny T.; Sukop, Michael C.

    2010-01-01

    SEAWAT is a combined version of MODFLOW and MT3DMS, designed to simulate three-dimensional, variable-density, saturated groundwater flow. The most recent version of the SEAWAT program, SEAWAT Version 4 (or SEAWAT_V4), supports equations of state for fluid density and viscosity. In SEAWAT_V4, fluid density can be calculated as a function of one or more MT3DMS species, and optionally, fluid pressure. Fluid viscosity is calculated as a function of one or more MT3DMS species, and the program also includes additional functions for representing the dependence of fluid viscosity on temperature. This report documents testing of and experimentation with SEAWAT_V4 with six previously published problems that include various combinations of density-dependent flow due to temperature variations and/or concentration variations of one or more species. Some of the problems also include variations in viscosity that result from temperature differences in water and oil. Comparisons between the results of SEAWAT_V4 and other published results are generally consistent with one another, with minor differences considered acceptable.

  3. Total-energy Assisted Tight-binding Method Based on Local Density Approximation of Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki

    2018-06-01

    A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.

  4. Freezing of soft spheres: A critical test for weighted-density-functional theories

    NASA Astrophysics Data System (ADS)

    Laird, Brian B.; Kroll, D. M.

    1990-10-01

    We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ``second-order'' density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories.

  5. Downlink Probability Density Functions for EOS-McMurdo Sound

    NASA Technical Reports Server (NTRS)

    Christopher, P.; Jackson, A. H.

    1996-01-01

    The visibility times and communication link dynamics for the Earth Observations Satellite (EOS)-McMurdo Sound direct downlinks have been studied. The 16 day EOS periodicity may be shown with the Goddard Trajectory Determination System (GTDS) and the entire 16 day period should be simulated for representative link statistics. We desire many attributes of the downlink, however, and a faster orbital determination method is desirable. We use the method of osculating elements for speed and accuracy in simulating the EOS orbit. The accuracy of the method of osculating elements is demonstrated by closely reproducing the observed 16 day Landsat periodicity. An autocorrelation function method is used to show the correlation spike at 16 days. The entire 16 day record of passes over McMurdo Sound is then used to generate statistics for innage time, outage time, elevation angle, antenna angle rates, and propagation loss. The levation angle probability density function is compared with 1967 analytic approximation which has been used for medium to high altitude satellites. One practical result of this comparison is seen to be the rare occurrence of zenith passes. The new result is functionally different than the earlier result, with a heavy emphasis on low elevation angles. EOS is one of a large class of sun synchronous satellites which may be downlinked to McMurdo Sound. We examine delay statistics for an entire group of sun synchronous satellites ranging from 400 km to 1000 km altitude. Outage probability density function results are presented three dimensionally.

  6. An Integrated Study on a Novel High Temperature High Entropy Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shizhong

    2016-12-31

    This report summarizes our recent works of theoretical modeling, simulation, and experimental validation of the simulation results on the new refractory high entropy alloy (HEA) design and oxide doped refractory HEA research. The simulation of the stability and thermal dynamics simulation on potential thermal stable candidates were performed and related HEA with oxide doped samples were synthesized and characterized. The HEA ab initio density functional theory and molecular dynamics physical property simulation methods and experimental texture validation techniques development, achievements already reached, course work development, students and postdoc training, and future improvement research directions are briefly introduced.

  7. Solvation of fluoro-acetonitrile in water by 2D-IR spectroscopy: A combined experimental-computational study

    NASA Astrophysics Data System (ADS)

    Cazade, Pierre-André; Tran, Halina; Bereau, Tristan; Das, Akshaya K.; Kläsi, Felix; Hamm, Peter; Meuwly, Markus

    2015-06-01

    The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF-HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.

  8. Simulations of Coulomb systems confined by polarizable surfaces using periodic Green functions.

    PubMed

    Dos Santos, Alexandre P; Girotto, Matheus; Levin, Yan

    2017-11-14

    We present an efficient approach for simulating Coulomb systems confined by planar polarizable surfaces. The method is based on the solution of the Poisson equation using periodic Green functions. It is shown that the electrostatic energy arising from the surface polarization can be decoupled from the energy due to the direct Coulomb interaction between the ions. This allows us to combine an efficient Ewald summation method, or any other fast method for summing over the replicas, with the polarization contribution calculated using Green function techniques. We apply the method to calculate density profiles of ions confined between the charged dielectric and metal surfaces.

  9. Determination of Charge-Carrier Mobility in Disordered Thin-Film Solar Cells as a Function of Current Density

    NASA Astrophysics Data System (ADS)

    Mäckel, Helmut; MacKenzie, Roderick C. I.

    2018-03-01

    Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.

  10. Supernova Driving. II. Compressive Ratio in Molecular-cloud Turbulence

    NASA Astrophysics Data System (ADS)

    Pan, Liubin; Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2016-07-01

    The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of the compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.

  11. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations < δ {n}{{e}}> /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  12. Analysis of Different Cost Functions in the Geosect Airspace Partitioning Tool

    NASA Technical Reports Server (NTRS)

    Wong, Gregory L.

    2010-01-01

    A new cost function representing air traffic controller workload is implemented in the Geosect airspace partitioning tool. Geosect currently uses a combination of aircraft count and dwell time to select optimal airspace partitions that balance controller workload. This is referred to as the aircraft count/dwell time hybrid cost function. The new cost function is based on Simplified Dynamic Density, a measure of different aspects of air traffic controller workload. Three sectorizations are compared. These are the current sectorization, Geosect's sectorization based on the aircraft count/dwell time hybrid cost function, and Geosect s sectorization based on the Simplified Dynamic Density cost function. Each sectorization is evaluated for maximum and average workload along with workload balance using the Simplified Dynamic Density as the workload measure. In addition, the Airspace Concept Evaluation System, a nationwide air traffic simulator, is used to determine the capacity and delay incurred by each sectorization. The sectorization resulting from the Simplified Dynamic Density cost function had a lower maximum workload measure than the other sectorizations, and the sectorization based on the combination of aircraft count and dwell time did a better job of balancing workload and balancing capacity. However, the current sectorization had the lowest average workload, highest sector capacity, and the least system delay.

  13. Stability and Physical Accuracy Analysis of the Numerical Solutions to Wigner-Poisson Modeling of Resonant Tunneling Diodes

    DTIC Science & Technology

    2013-03-22

    discrete Wigner function is periodic in momentum space. The periodicity follows from the Fourier transform of the density matrix. The inverse...resonant-tunneling diode . The Green function method has been one of alternatives. Another alternative was to utilize the Wigner function . The Wigner ... function approach to the simulation of a resonant-tunneling diode offers many advantages. In the limit of the classical physics the Wigner equation

  14. Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, C. E.; Cassak, P. A., E-mail: Paul.Cassak@mail.wvu.edu; Swisdak, M.

    2016-08-15

    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields,more » simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al. [J. Geophys. Res. 120, 7748 (2015)]. Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.« less

  15. Path integral Monte Carlo and the electron gas

    NASA Astrophysics Data System (ADS)

    Brown, Ethan W.

    Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational principle inherent in the path integral Monte Carlo method to optimize the nodal surface. By using a ansatz resembling a free particle density matrix, we make a unique connection between a nodal effective mass and the traditional effective mass of many-body quantum theory. We then propose and test several alternate nodal ansatzes and apply them to single atomic systems. Finally, we propose a method to tackle the sign problem head on, by leveraging the relatively simple structure of permutation space. Using this method, we find we can perform exact simulations this of the electron gas and 3He that were previously impossible.

  16. Structure of an electric double layer containing a 2:2 valency dimer electrolyte

    DOE PAGES

    Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...

    2014-12-05

    In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less

  17. Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.

    PubMed

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2011-08-14

    Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.

  18. Properties of amorphous GaN from first-principles simulations

    NASA Astrophysics Data System (ADS)

    Cai, B.; Drabold, D. A.

    2011-08-01

    Amorphous GaN (a-GaN) models are obtained from first-principles simulations. We compare four a-GaN models generated by “melt-and-quench” and the computer alchemy method. We find that most atoms tend to be fourfold, and a chemically ordered continuous random network is the ideal structure for a-GaN albeit with some coordination defects. Where the electronic structure is concerned, the gap is predicted to be less than 1.0 eV, underestimated as usual by a density functional calculation. We observe a highly localized valence tail and a remarkably delocalized exponential conduction tail in all models generated. Based upon these results, we speculate on potential differences in n- and p-type doping. The structural origin of tail and defect states is discussed. The vibrational density of states and dielectric function are computed and seem consistent with experiment.

  19. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe2As2

    NASA Astrophysics Data System (ADS)

    Frawley, Keara G.; Bakst, Ian; Sypek, John T.; Vijayan, Sriram; Weinberger, Christopher R.; Canfield, Paul C.; Aindow, Mark; Lee, Seok-Woo

    2018-04-01

    The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.

  20. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe 2As 2

    DOE PAGES

    Frawley, Keara G.; Bakst, Ian; Sypek, John T.; ...

    2018-04-10

    In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less

  1. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frawley, Keara G.; Bakst, Ian; Sypek, John T.

    In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less

  2. Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green's functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindskog, M., E-mail: martin.lindskog@teorfys.lu.se; Wacker, A.; Wolf, J. M.

    2014-09-08

    We study the operation of an 8.5 μm quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents,more » agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.« less

  3. Feasibility of generating quantitative composition images in dual energy mammography: a simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Breast cancer is one of the most common malignancies in women. For years, mammography has been used as the gold standard for localizing breast cancer, despite its limitation in determining cancer composition. Therefore, the purpose of this simulation study is to confirm the feasibility of obtaining tumor composition using dual energy digital mammography. To generate X-ray sources for dual energy mammography, 26 kVp and 39 kVp voltages were generated for low and high energy beams, respectively. Additionally, the energy subtraction and inverse mapping functions were applied to provide compositional images. The resultant images showed that the breast composition obtained by the inverse mapping function with cubic fitting achieved the highest accuracy and least noise. Furthermore, breast density analysis with cubic fitting showed less than 10% error compare to true values. In conclusion, this study demonstrated the feasibility of creating individual compositional images and capability of analyzing breast density effectively.

  4. Density functional theory for hard uniaxial particles: Complex ordering of pear-shaped and spheroidal particles near a substrate

    NASA Astrophysics Data System (ADS)

    Schönhöfer, Philipp W. A.; Schröder-Turk, Gerd E.; Marechal, Matthieu

    2018-03-01

    We develop a density functional for hard particles with a smooth uniaxial shape (including non-inversion-symmetric particles) within the framework of fundamental measure theory. By applying it to a system of tapered, aspherical liquid-crystal formers, reminiscent of pears, we analyse their behaviour near a hard substrate. The theory predicts a complex orientational ordering close to the substrate, which can be directly related to the particle shape, in good agreement with our simulation results. Furthermore, the lack of particle inversion-symmetry implies the possibility of alternating orientations in subsequent layers as found in a smectic/lamellar phase of such particles. Both theory and Monte Carlo simulations confirm that such ordering occurs in our system. Our results are relevant for adsorption processes of asymmetric colloidal particles and molecules at hard interfaces and show once again that tapering strongly affects the properties of orientationally ordered phases.

  5. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium.

    PubMed

    Harbour, L; Dharma-Wardana, M W C; Klug, D D; Lewis, L J

    2016-11-01

    Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.

  6. Ethane and Xenon mixing: density functional theory (DFT) simulations and experiments on Sandia's Z machine

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph; Root, Seth; Mattsson, Thomas; Cochrane, Kyle

    2012-02-01

    The combination of ethane and xenon is one of the simplest binary mixtures in which bond breaking is expected to play a role under shock conditions. At cryogenic conditions, xenon is often understood to mix with alkanes such as Ethane as if it were also an alkane, but this model is expected to break down at higher temperatures and pressures. To investigate the breakdown, we have performed density functional theory (DFT) calculations on several xenon/ethane mixtures. Additionally, we have performed shock compression experiments on Xenon-Ethane using the Sandia Z - accelerator. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. An ab initio molecular dynamics and density functional theory study of the formation of phosphate chains from metathiophosphates.

    PubMed

    Mosey, Nicholas J; Woo, Tom K

    2006-09-04

    The reactions that occur between metathiophosphate (MTP) molecules are identified and examined through ab initio molecular dynamics simulations and static quantum chemical calculations at the density functional level of theory. The simulations show that certain types of MTPs can react to yield phosphate chains, while others only dimerize. These differences are rationalized in terms of reaction energies and the electronic structures of these molecules. In the reaction leading to the formation of phosphate chains, the reactive center, a tri-coordinate phosphorus atom, is continually regenerated. A polymerization mechanism linking MTPs to phosphate chains is developed on the basis of these results. This information sheds light on the underlying processes that may be responsible for the formation of phosphates under high-temperature conditions and may prove useful in the development of protocols for the rational synthesis of complex phosphate structures.

  8. INTERSTELLAR SONIC AND ALFVENIC MACH NUMBERS AND THE TSALLIS DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofflemire, Benjamin M.; Burkhart, Blakesley; Lazarian, A.

    2011-07-20

    In an effort to characterize the Mach numbers of interstellar medium (ISM) magnetohydrodynamic (MHD) turbulence, we study the probability distribution functions (PDFs) of spatial increments of density, velocity, and magnetic field for 14 ideal isothermal MHD simulations at a resolution of 512{sup 3}. In particular, we fit the PDFs using the Tsallis function and study the dependency of the fit parameters on the compressibility and magnetization of the gas. We find that the Tsallis function fits PDFs of MHD turbulence well, with fit parameters showing sensitivities to the sonic and Alfven Mach numbers. For three-dimensional density, column density, and Position-Position-Velocitymore » data, we find that the amplitude and width of the PDFs show a dependency on the sonic Mach number. We also find that the width of the PDF is sensitive to the global Alfvenic Mach number especially in cases where the sonic number is high. These dependencies are also found for mock observational cases, where cloud-like boundary conditions, smoothing, and noise are introduced. The ability of Tsallis statistics to characterize the sonic and Alfvenic Mach numbers of simulated ISM turbulence points to it being a useful tool in the analysis of the observed ISM, especially when used simultaneously with other statistical techniques.« less

  9. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    2017-05-26

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  10. Coarse-grained discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers [Discrete particle simulations of particle segregation in rotating fluidized beds in vortex chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Vikrant; Li, Tingwen; De Wilde, Juray

    Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less

  11. GPU Accelerated DG-FDF Large Eddy Simulator

    NASA Astrophysics Data System (ADS)

    Inkarbekov, Medet; Aitzhan, Aidyn; Sammak, Shervin; Givi, Peyman; Kaltayev, Aidarkhan

    2017-11-01

    A GPU accelerated simulator is developed and implemented for large eddy simulation (LES) of turbulent flows. The filtered density function (FDF) is utilized for modeling of the subgrid scale quantities. The filtered transport equations are solved via a discontinuous Galerkin (DG) and the FDF is simulated via particle based Lagrangian Monte-Carlo (MC) method. It is demonstrated that the GPUs simulations are of the order of 100 times faster than the CPU-based calculations. This brings LES of turbulent flows to a new level, facilitating efficient simulation of more complex problems. The work at Al-Faraby Kazakh National University is sponsored by MoES of RK under Grant 3298/GF-4.

  12. Modeling the Lyα Forest in Collisionless Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorini, Daniele; Oñorbe, José; Lukić, Zarija

    2016-08-11

    Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining the high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present in this paper "Iteratively Matched Statistics" (IMS), a novel method to accurately model the Lyα forest with collisionless N-body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) andmore » the power spectrum of the real-space Lyα forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N-body simulation, which we construct from the matter density. We demonstrate that our method can reproduce the PDF, line of sight and 3D power spectra of the Lyα forest with good accuracy (7%, 4%, and 7% respectively). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20%–80%), especially for N-body simulations with achievable mean inter-particle separations in large-volume simulations. Finally, in addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic "mock" skies for Lyα forest surveys.« less

  13. MODELING THE Ly α FOREST IN COLLISIONLESS SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorini, Daniele; Oñorbe, José; Hennawi, Joseph F.

    2016-08-20

    Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining the high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present “Iteratively Matched Statistics” (IMS), a novel method to accurately model the Ly α forest with collisionless N -body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) and themore » power spectrum of the real-space Ly α forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N -body simulation, which we construct from the matter density. We demonstrate that our method can reproduce the PDF, line of sight and 3D power spectra of the Ly α forest with good accuracy (7%, 4%, and 7% respectively). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20%–80%), especially for N -body simulations with achievable mean inter-particle separations in large-volume simulations. In addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic “mock” skies for Ly α forest surveys.« less

  14. Description of plasmon-like band in silver clusters: the importance of the long-range Hartree-Fock exchange in time-dependent density-functional theory simulations.

    PubMed

    Rabilloud, Franck

    2014-10-14

    Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.

  15. Density functional simulations as a tool to probe molecular interactions in wet supercritical CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2013-06-03

    Recent advances in mixed Gaussian and plane wave algorithms have made possible the effective use of density functional theory (DFT) in ab initio molecular dynamics (AIMD) simulations for large and chemically complex models of condensed phase materials. In this chapter, we are reviewing recent progress on the modeling and characterization of co-sequestration processes and reactivity in wet supercritical CO2 (sc-CO2). We examine the molecular transformations of mineral and metal components of a sequestration system in contact with water-bearing scCO2 media and aim to establish a reliable correspondence between experimental observations and theory models with predictive ability and transferability of resultsmore » in large scale geomechanical simulators. This work is funded by the Department of Energy, Office of Fossil Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. The Pacific Norhtwest National Laboratory (PNNL) is operated by Battelle for DOE under contract DE-AC06-76RL01830.« less

  16. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    PubMed

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Observations of non-linear plasmon damping in dense plasmas

    NASA Astrophysics Data System (ADS)

    Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.

    2018-05-01

    We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.

  18. Percolation analyses of observed and simulated galaxy clustering

    NASA Astrophysics Data System (ADS)

    Bhavsar, S. P.; Barrow, J. D.

    1983-11-01

    A percolation cluster analysis is performed on equivalent regions of the CFA redshift survey of galaxies and the 4000 body simulations of gravitational clustering made by Aarseth, Gott and Turner (1979). The observed and simulated percolation properties are compared and, unlike correlation and multiplicity function analyses, favour high density (Omega = 1) models with n = - 1 initial data. The present results show that the three-dimensional data are consistent with the degree of filamentary structure present in isothermal models of galaxy formation at the level of percolation analysis. It is also found that the percolation structure of the CFA data is a function of depth. Percolation structure does not appear to be a sensitive probe of intrinsic filamentary structure.

  19. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.

    PubMed

    Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I

    2018-04-16

    Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

  20. Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations.

    PubMed

    Zhou, Shiqi; Lamperski, Stanisław; Zydorczak, Maria

    2014-08-14

    Monte Carlo (MC) simulation and classical density functional theory (DFT) results are reported for the structural and electrostatic properties of a planar electric double layer containing ions having highly asymmetric diameters or valencies under extreme concentration condition. In the applied DFT, for the excess free energy contribution due to the hard sphere repulsion, a recently elaborated extended form of the fundamental measure functional is used, and coupling of Coulombic and short range hard-sphere repulsion is described by a traditional second-order functional perturbation expansion approximation. Comparison between the MC and DFT results indicates that validity interval of the traditional DFT approximation expands to high ion valences running up to 3 and size asymmetry high up to diameter ratio of 4 whether the high valence ions or the large size ion are co- or counter-ions; and to a high bulk electrolyte concentration being close to the upper limit of the electrolyte mole concentration the MC simulation can deal with well. The DFT accuracy dependence on the ion parameters can be self-consistently explained using arguments of liquid state theory, and new EDL phenomena such as overscreening effect due to monovalent counter-ions, extreme layering effect of counter-ions, and appearance of a depletion layer with almost no counter- and co-ions are observed.

  1. Drift of Phase Fluctuations in the ABC Model

    NASA Astrophysics Data System (ADS)

    Bertini, Lorenzo; Buttà, Paolo

    2013-07-01

    In a recent work, Bodineau and Derrida analyzed the phase fluctuations in the ABC model. In particular, they computed the asymptotic variance and, on the basis of numerical simulations, they conjectured the presence of a drift, which they guessed to be an antisymmetric function of the three densities. By assuming the validity of the fluctuating hydrodynamic approximation, we prove the presence of such a drift, providing an analytical expression for it. This expression is then shown to be an antisymmetric function of the three densities. The antisymmetry of the drift can also be inferred from a symmetry property of the underlying microscopic dynamics.

  2. Objective Molecular Dynamics with Self-consistent Charge Density Functional Tight-Binding (SCC-DFTB) Method

    NASA Astrophysics Data System (ADS)

    Dumitrica, Traian; Hourahine, Ben; Aradi, Balint; Frauenheim, Thomas

    We discus the coupling of the objective boundary conditions into the SCC density functional-based tight binding code DFTB+. The implementation is enabled by a generalization to the helical case of the classical Ewald method, specifically by Ewald-like formulas that do not rely on a unit cell with translational symmetry. The robustness of the method in addressing complex hetero-nuclear nano- and bio-fibrous systems is demonstrated with illustrative simulations on a helical boron nitride nanotube, a screw dislocated zinc oxide nanowire, and an ideal double-strand DNA. Work supported by NSF CMMI 1332228.

  3. III-Nitride, SiC and Diamond Materials for Electronic Devices. Symposium Held April 8-12 1996, San Francisco, California, U.S.A. Volume 423.

    DTIC Science & Technology

    1996-12-01

    gallium, nitrogen and gallium nitride structures. Thus it can be shown to be transferable and efficient for predictive molecular -dynamic simulations on...potentials and forces for the molecular dynamics simulations are derived by means of a density-functional based nonorthogonal tight-binding (DF-TB) scheme...LDA). Molecular -dynamics simulations for determining the different reconstructions of the SiC surface use the slab method (two-dimensional periodic

  4. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  5. Heavy component of spent nuclear fuel: Efficiency of model-substance ionization by electron-induced discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, N. N., E-mail: antonovnickola@gmail.com; Gavrikov, A. V.; Samokhin, A. A.

    The method of plasma separation of spent nuclear fuel can be tested with a model substance which has to be transformed from the condensed to plasma state. For this purpose, electron-induced discharge in lead vapor injected into the interelectrode gap is simulated using the kinetic approach. The ionization efficiency, the electrostatic-potential distribution, and those of the ion and electron densities in the discharge gap are derived as functions of the discharge-current density and concentration of the vapor of the model substance. Given a discharge-current density of 3.5 A/cm{sup 2} and a lead-vapor concentration of 2 × 10{sup 12} cm{sup –3},more » the simulated ionization efficiency proves to be nearly 60%. The discharge in lead vapor is also investigated experimentally.« less

  6. Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory

    DOE PAGES

    Mendl, Christian B.; Lu, Jianfeng; Lukkarinen, Jani

    2016-12-02

    We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remainsmore » conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. Furthermore, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.« less

  7. Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendl, Christian B.; Lu, Jianfeng; Lukkarinen, Jani

    We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remainsmore » conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. Furthermore, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.« less

  8. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks

    NASA Astrophysics Data System (ADS)

    Mignan, Arnaud

    2018-03-01

    The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.

  9. Kapton charging characteristics: Effects of material thickness and electron-energy distribution

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.

    1985-01-01

    Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.

  10. Binary data corruption due to a Brownian agent

    NASA Astrophysics Data System (ADS)

    Newman, T. J.; Triampo, Wannapong

    1999-05-01

    We introduce a model of binary data corruption induced by a Brownian agent (active random walker) on a d-dimensional lattice. A continuum formulation allows the exact calculation of several quantities related to the density of corrupted bits ρ, for example, the mean of ρ and the density-density correlation function. Excellent agreement is found with the results from numerical simulations. We also calculate the probability distribution of ρ in d=1, which is found to be log normal, indicating that the system is governed by extreme fluctuations.

  11. The effect of gas physics on the halo mass function

    NASA Astrophysics Data System (ADS)

    Stanek, R.; Rudd, D.; Evrard, A. E.

    2009-03-01

    Cosmological tests based on cluster counts require accurate calibration of the space density of massive haloes, but most calibrations to date have ignored complex gas physics associated with halo baryons. We explore the sensitivity of the halo mass function to baryon physics using two pairs of gas-dynamic simulations that are likely to bracket the true behaviour. Each pair consists of a baseline model involving only gravity and shock heating, and a refined physics model aimed at reproducing the observed scaling of the hot, intracluster gas phase. One pair consists of billion-particle resimulations of the original 500h-1Mpc Millennium Simulation of Springel et al., run with the smoothed particle hydrodynamics (SPH) code GADGET-2 and using a refined physics treatment approximated by pre-heating (PH) at high redshift. The other pair are high-resolution simulations from the adaptive-mesh refinement code ART, for which the refined treatment includes cooling, star formation and supernova feedback (CSF). We find that, although the mass functions of the gravity-only (GO) treatments are consistent with the recent calibration of Tinker et al. (2008), both pairs of simulations with refined baryon physics show significant deviations. Relative to the GO case, the masses of ~1014h-1Msolar haloes in the PH and CSF treatments are shifted by the averages of -15 +/- 1 and +16 +/- 2 per cent, respectively. These mass shifts cause ~30 per cent deviations in number density relative to the Tinker function, significantly larger than the 5 per cent statistical uncertainty of that calibration.

  12. Estimating effective data density in a satellite retrieval or an objective analysis

    NASA Technical Reports Server (NTRS)

    Purser, R. J.; Huang, H.-L.

    1993-01-01

    An attempt is made to formulate consistent objective definitions of the concept of 'effective data density' applicable both in the context of satellite soundings and more generally in objective data analysis. The definitions based upon various forms of Backus-Gilbert 'spread' functions are found to be seriously misleading in satellite soundings where the model resolution function (expressing the sensitivity of retrieval or analysis to changes in the background error) features sidelobes. Instead, estimates derived by smoothing the trace components of the model resolution function are proposed. The new estimates are found to be more reliable and informative in simulated satellite retrieval problems and, for the special case of uniformly spaced perfect observations, agree exactly with their actual density. The new estimates integrate to the 'degrees of freedom for signal', a diagnostic that is invariant to changes of units or coordinates used.

  13. Density-functional theory for fluid-solid and solid-solid phase transitions.

    PubMed

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  14. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways

    NASA Astrophysics Data System (ADS)

    Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2014-02-01

    Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.

  15. Topology of two-dimensional turbulent flows of dust and gas

    NASA Astrophysics Data System (ADS)

    Mitra, Dhrubaditya; Perlekar, Prasad

    2018-04-01

    We perform direct numerical simulations (DNS) of passive heavy inertial particles (dust) in homogeneous and isotropic two-dimensional turbulent flows (gas) for a range of Stokes number, St<1 . We solve for the particles using both a Lagrangian and an Eulerian approach (with a shock-capturing scheme). In the latter, the particles are described by a dust-density field and a dust-velocity field. We find the following: the dust-density field in our Eulerian simulations has the same correlation dimension d2 as obtained from the clustering of particles in the Lagrangian simulations for St<1 ; the cumulative probability distribution function of the dust density coarse grained over a scale r , in the inertial range, has a left tail with a power-law falloff indicating the presence of voids; the energy spectrum of the dust velocity has a power-law range with an exponent that is the same as the gas-velocity spectrum except at very high Fourier modes; the compressibility of the dust-velocity field is proportional to St2. We quantify the topological properties of the dust velocity and the gas velocity through their gradient matrices, called A and B , respectively. Our DNS confirms that the statistics of topological properties of B are the same in Eulerian and Lagrangian frames only if the Eulerian data are weighed by the dust density. We use this correspondence to study the statistics of topological properties of A in the Lagrangian frame from our Eulerian simulations by calculating density-weighted probability distribution functions. We further find that in the Lagrangian frame, the mean value of the trace of A is negative and its magnitude increases with St approximately as exp(-C /St) with a constant C ≈0.1 . The statistical distribution of different topological structures that appear in the dust flow is different in Eulerian and Lagrangian (density-weighted Eulerian) cases, particularly for St close to unity. In both of these cases, for small St the topological structures have close to zero divergence and are either vortical (elliptic) or strain dominated (hyperbolic, saddle). As St increases, the contribution to negative divergence comes mostly from saddles and the contribution to positive divergence comes from both vortices and saddles. Compared to the Eulerian case, the Lagrangian (density-weighted Eulerian) case has less outward spirals and more converging saddles. Inward spirals are the least probable topological structures in both cases.

  16. Why do gallium clusters have a higher melting point than the bulk?

    PubMed

    Chacko, S; Joshi, Kavita; Kanhere, D G; Blundell, S A

    2004-04-02

    Density functional molecular dynamical simulations have been performed on Ga17 and Ga13 clusters to understand the recently observed higher-than-bulk melting temperatures in small gallium clusters [Phys. Rev. Lett. 91, 215508 (2003)

  17. Monte Carlo simulations of dipolar and quadrupolar linear Kihara fluids. A test of thermodynamic perturbation theory

    NASA Astrophysics Data System (ADS)

    Garzon, B.

    Several simulations of dipolar and quadrupolar linear Kihara fluids using the Monte Carlo method in the canonical ensemble have been performed. Pressure and internal energy have been directly determined from simulations and Helmholtz free energy using thermodynamic integration. Simulations were carried out for fluids of fixed elongation at two different densities and several values of temperature and dipolar or quadrupolar moment for each density. Results are compared with the perturbation theory developed by Boublik for this same type of fluid and good agreement between simulated and theoretical values was obtained especially for quadrupole fluids. Simulations are also used to obtain the liquid structure giving the first few coefficients of the expansion of pair correlation functions in terms of spherical harmonics. Estimations of the triple point temperature to critical temperature ratio are given for some dipole and quadrupole linear fluids. The stability range of the liquid phase of these substances is shortly discussed and an analysis about the opposite roles of the dipole moment and the molecular elongation on this stability is also given.

  18. Evaluation of hydrogen bond networks in cellulose Iβ and II crystals using density functional theory and Car-Parrinello molecular dynamics.

    PubMed

    Hayakawa, Daichi; Nishiyama, Yoshiharu; Mazeau, Karim; Ueda, Kazuyoshi

    2017-09-08

    Crystal models of cellulose Iβ and II, which contain various hydrogen bonding (HB) networks, were analyzed using density functional theory and Car-Parrinello molecular dynamics (CPMD) simulations. From the CPMD trajectories, the power spectra of the velocity correlation functions of hydroxyl groups involved in hydrogen bonds were calculated. For the Iβ allomorph, HB network A, which is dominant according to the neutron diffraction data, was stable, and the power spectrum represented the essential features of the experimental IR spectra. In contrast, network B, which is a minor structure, was unstable because its hydroxymethyl groups reoriented during the CPMD simulation, yielding a different crystal structure to that determined by experiments. For the II allomorph, a HB network A is proposed based on diffraction data, whereas molecular modeling identifies an alternative network B. Our simulations showed that the interaction energies of the cellulose II (B) model are slightly more favorable than model II(A). However, the evaluation of the free energy should be waited for the accurate determination from the energy point of view. For the IR calculation, cellulose II (B) model reproduces the spectra better than model II (A). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Stellar feedback in galaxies and the origin of galaxy-scale winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.

  20. Role of density modulation in the spatially resolved dynamics of strongly confined liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Shibu, E-mail: shibu.saw@sydney.edu.au; Dasgupta, Chandan, E-mail: cdgupta@physics.iisc.ernet.in

    Confinement by walls usually produces a strong modulation in the density of dense liquids near the walls. Using molecular dynamics simulations, we examine the effects of the density modulation on the spatially resolved dynamics of a liquid confined between two parallel walls, using a resolution of a fraction of the interparticle distance in the liquid. The local dynamics is quantified by the relaxation time associated with the temporal autocorrelation function of the local density. We find that this local relaxation time varies in phase with the density modulation. The amplitude of the spatial modulation of the relaxation time can bemore » quite large, depending on the characteristics of the wall and thermodynamic parameters of the liquid. To disentangle the effects of confinement and density modulation on the spatially resolved dynamics, we compare the dynamics of a confined liquid with that of an unconfined one in which a similar density modulation is induced by an external potential. We find several differences indicating that density modulation alone cannot account for all the features seen in the spatially resolved dynamics of confined liquids. We also examine how the dynamics near a wall depends on the separation between the two walls and show that the features seen in our simulations persist in the limit of large wall separation.« less

  1. The risks and returns of stock investment in a financial market

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2013-03-01

    The risks and returns of stock investment are discussed via numerically simulating the mean escape time and the probability density function of stock price returns in the modified Heston model with time delay. Through analyzing the effects of delay time and initial position on the risks and returns of stock investment, the results indicate that: (i) There is an optimal delay time matching minimal risks of stock investment, maximal average stock price returns and strongest stability of stock price returns for strong elasticity of demand of stocks (EDS), but the opposite results for weak EDS; (ii) The increment of initial position recedes the risks of stock investment, strengthens the average stock price returns and enhances stability of stock price returns. Finally, the probability density function of stock price returns and the probability density function of volatility and the correlation function of stock price returns are compared with other literatures. In addition, good agreements are found between them.

  2. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less

  3. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew

    2009-03-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  4. Velocity Gradient Power Functional for Brownian Dynamics.

    PubMed

    de Las Heras, Daniel; Schmidt, Matthias

    2018-01-12

    We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.

  5. Velocity Gradient Power Functional for Brownian Dynamics

    NASA Astrophysics Data System (ADS)

    de las Heras, Daniel; Schmidt, Matthias

    2018-01-01

    We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.

  6. Simulation-based Bayesian inference for latent traits of item response models: Introduction to the ltbayes package for R.

    PubMed

    Johnson, Timothy R; Kuhn, Kristine M

    2015-12-01

    This paper introduces the ltbayes package for R. This package includes a suite of functions for investigating the posterior distribution of latent traits of item response models. These include functions for simulating realizations from the posterior distribution, profiling the posterior density or likelihood function, calculation of posterior modes or means, Fisher information functions and observed information, and profile likelihood confidence intervals. Inferences can be based on individual response patterns or sets of response patterns such as sum scores. Functions are included for several common binary and polytomous item response models, but the package can also be used with user-specified models. This paper introduces some background and motivation for the package, and includes several detailed examples of its use.

  7. A Balanced Approach to Adaptive Probability Density Estimation.

    PubMed

    Kovacs, Julio A; Helmick, Cailee; Wriggers, Willy

    2017-01-01

    Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE) method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests on univariate and bivariate experimental data show that the results are also aesthetically pleasing. This is due in part to the use of a visual criterion for setting the smoothing level of the density estimate. Our results suggest that BADE offers an attractive new take on the fundamental density estimation problem in statistics. We have applied it on molecular dynamics simulations of membrane pore formation. We also expect BADE to be generally useful for low-dimensional applications in other statistical application domains such as bioinformatics, signal processing and econometrics.

  8. Partially coherent electron transport in terahertz quantum cascade lasers based on a Markovian master equation for the density matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, O.; Karimi, F.; Knezevic, I.

    2016-08-01

    We derive a Markovian master equation for the single-electron density matrix, applicable to quantum cascade lasers (QCLs). The equation conserves the positivity of the density matrix, includes off-diagonal elements (coherences) as well as in-plane dynamics, and accounts for electron scattering with phonons and impurities. We use the model to simulate a terahertz-frequency QCL, and compare the results with both experiment and simulation via nonequilibrium Green's functions (NEGF). We obtain very good agreement with both experiment and NEGF when the QCL is biased for optimal lasing. For the considered device, we show that the magnitude of coherences can be a significantmore » fraction of the diagonal matrix elements, which demonstrates their importance when describing THz QCLs. We show that the in-plane energy distribution can deviate far from a heated Maxwellian distribution, which suggests that the assumption of thermalized subbands in simplified density-matrix models is inadequate. As a result, we also show that the current density and subband occupations relax towards their steady-state values on very different time scales.« less

  9. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems

    NASA Astrophysics Data System (ADS)

    Kanematsu, Nobuyuki; Inaniwa, Taku; Nakao, Minoru

    2016-07-01

    In the conventional procedure for accurate Monte Carlo simulation of radiotherapy, a CT number given to each pixel of a patient image is directly converted to mass density and elemental composition using their respective functions that have been calibrated specifically for the relevant x-ray CT system. We propose an alternative approach that is a conversion in two steps: the first from CT number to density and the second from density to composition. Based on the latest compilation of standard tissues for reference adult male and female phantoms, we sorted the standard tissues into groups by mass density and defined the representative tissues by averaging the material properties per group. With these representative tissues, we formulated polyline relations between mass density and each of the following; electron density, stopping-power ratio and elemental densities. We also revised a procedure of stoichiometric calibration for CT-number conversion and demonstrated the two-step conversion method for a theoretically emulated CT system with hypothetical 80 keV photons. For the standard tissues, high correlation was generally observed between mass density and the other densities excluding those of C and O for the light spongiosa tissues between 1.0 g cm-3 and 1.1 g cm-3 occupying 1% of the human body mass. The polylines fitted to the dominant tissues were generally consistent with similar formulations in the literature. The two-step conversion procedure was demonstrated to be practical and will potentially facilitate Monte Carlo simulation for treatment planning and for retrospective analysis of treatment plans with little impact on the management of planning CT systems.

  10. Elves and associated electron density changes due to cloud-to-ground and in-cloud lightning discharges

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Inan, U. S.; Glukhov, V. S.

    2010-04-01

    A 3-D finite difference time domain model is used to simulate the lightning electromagnetic pulse (EMP) and its interaction with the lower ionosphere. Results agree with the frequently observed, doughnut-shaped optical signature of elves but show that the structure exhibits asymmetry due to the presence of Earth's ambient magnetic field. Furthermore, in-cloud (horizontal) lightning channels produce observable optical emissions without the doughnut shape and, in fact, produce a much stronger optical output for the same channel current. Electron density perturbations associated with elves are also calculated, with contributions from attachment and ionization. Results presented as a function of parameters such as magnetic field direction, dipole current orientation, altitude and amplitude, and ambient ionospheric density profile demonstrate the highly nonlinear nature of the EMP-ionosphere interaction. Ionospheric effects of a sequence of in-cloud discharges are calculated, simulating a burst of in-cloud lightning activity and resulting in large density changes in the overlying ionosphere.

  11. Redshift-space distortions with the halo occupation distribution - II. Analytic model

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.

    2007-01-01

    We present an analytic model for the galaxy two-point correlation function in redshift space. The cosmological parameters of the model are the matter density Ωm, power spectrum normalization σ8, and velocity bias of galaxies αv, circumventing the linear theory distortion parameter β and eliminating nuisance parameters for non-linearities. The model is constructed within the framework of the halo occupation distribution (HOD), which quantifies galaxy bias on linear and non-linear scales. We model one-halo pairwise velocities by assuming that satellite galaxy velocities follow a Gaussian distribution with dispersion proportional to the virial dispersion of the host halo. Two-halo velocity statistics are a combination of virial motions and host halo motions. The velocity distribution function (DF) of halo pairs is a complex function with skewness and kurtosis that vary substantially with scale. Using a series of collisionless N-body simulations, we demonstrate that the shape of the velocity DF is determined primarily by the distribution of local densities around a halo pair, and at fixed density the velocity DF is close to Gaussian and nearly independent of halo mass. We calibrate a model for the conditional probability function of densities around halo pairs on these simulations. With this model, the full shape of the halo velocity DF can be accurately calculated as a function of halo mass, radial separation, angle and cosmology. The HOD approach to redshift-space distortions utilizes clustering data from linear to non-linear scales to break the standard degeneracies inherent in previous models of redshift-space clustering. The parameters of the occupation function are well constrained by real-space clustering alone, separating constraints on bias and cosmology. We demonstrate the ability of the model to separately constrain Ωm,σ8 and αv in models that are constructed to have the same value of β at large scales as well as the same finger-of-god distortions at small scales.

  12. A Pearson Effective Potential for Monte Carlo Simulation of Quantum Confinement Effects in nMOSFETs

    NASA Astrophysics Data System (ADS)

    Jaud, Marie-Anne; Barraud, Sylvain; Saint-Martin, Jérôme; Bournel, Arnaud; Dollfus, Philippe; Jaouen, Hervé

    2008-12-01

    A Pearson Effective Potential model for including quantization effects in the simulation of nanoscale nMOSFETs has been developed. This model, based on a realistic description of the function representing the non zero-size of the electron wave packet, has been used in a Monte-Carlo simulator for bulk, single gate SOI and double-gate SOI devices. In the case of SOI capacitors, the electron density has been computed for a large range of effective field (between 0.1 MV/cm and 1 MV/cm) and for various silicon film thicknesses (between 5 nm and 20 nm). A good agreement with the Schroedinger-Poisson results is obtained both on the total inversion charge and on the electron density profiles. The ability of an Effective Potential approach to accurately reproduce electrostatic quantum confinement effects is clearly demonstrated.

  13. The large-scale gravitational bias from the quasi-linear regime.

    NASA Astrophysics Data System (ADS)

    Bernardeau, F.

    1996-08-01

    It is known that in gravitational instability scenarios the nonlinear dynamics induces non-Gaussian features in cosmological density fields that can be investigated with perturbation theory. Here, I derive the expression of the joint moments of cosmological density fields taken at two different locations. The results are valid when the density fields are filtered with a top-hat filter window function, and when the distance between the two cells is large compared to the smoothing length. In particular I show that it is possible to get the generating function of the coefficients C_p,q_ defined by <δ^p^({vec}(x)_1_)δ^q^({vec}(x)_2_)>_c_=C_p,q_ <δ^2^({vec}(x))>^p+q-2^ <δ({vec}(x)_1_)δ({vec}(x)_2_)> where δ({vec}(x)) is the local smoothed density field. It is then possible to reconstruct the joint density probability distribution function (PDF), generalizing for two points what has been obtained previously for the one-point density PDF. I discuss the validity of the large separation approximation in an explicit numerical Monte Carlo integration of the C_2,1_ parameter as a function of |{vec}(x)_1_-{vec}(x)_2_|. A straightforward application is the calculation of the large-scale ``bias'' properties of the over-dense (or under-dense) regions. The properties and the shape of the bias function are presented in details and successfully compared with numerical results obtained in an N-body simulation with CDM initial conditions.

  14. Hydration of Li+ -ion in atom-bond electronegativity equalization method-7P water: a molecular dynamics simulation study.

    PubMed

    Li, Xin; Yang, Zhong-Zhi

    2005-02-22

    We have carried out molecular dynamics simulations of a Li(+) ion in water over a wide range of temperature (from 248 to 368 K). The simulations make use of the atom-bond electronegativity equalization method-7P water model, a seven-site flexible model with fluctuating charges, which has accurately reproduced many bulk water properties. The recently constructed Li(+)-water interaction potential through fitting to the experimental and ab initio gas-phase binding energies and to the measured structures for Li(+)-water clusters is adopted in the simulations. ABEEM was proposed and developed in terms of partitioning the electron density into atom and bond regions and using the electronegativity equalization method (EEM) and the density functional theory (DFT). Based on a combination of the atom-bond electronegativity equalization method and molecular mechanics (ABEEM/MM), a new set of water-water and Li(+)-water potentials, successfully applied to ionic clusters Li(+)(H(2)O)(n)(n=1-6,8), are further investigated in an aqueous solution of Li(+) in the present paper. Two points must be emphasized in the simulations: first, the model allows for the charges on the interacting sites fluctuating as a function of time; second, the ABEEM-7P model has applied the parameter k(lp,H)(R(lp,H)) to explicitly describe the short-range interaction of hydrogen bond in the hydrogen bond interaction region, and has a new description for the hydrogen bond. The static, dynamic, and thermodynamic properties have been studied in detail. In addition, at different temperatures, the structural properties such as radial distribution functions, and the dynamical properties such as diffusion coefficients and residence times of the water molecules in the first hydration shell of Li(+), are also simulated well. These simulation results show that the ABEEM/MM-based water-water and Li(+)-water potentials appear to be robust giving the overall characteristic hydration properties in excellent agreement with experiments and other molecular dynamics simulations on similar system.

  15. Liquid li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method

    DOE PAGES

    Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...

    2015-04-08

    The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less

  16. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    PubMed

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  17. Robust control algorithms for Mars aerobraking

    NASA Technical Reports Server (NTRS)

    Shipley, Buford W., Jr.; Ward, Donald T.

    1992-01-01

    Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.

  18. Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals

    DOE PAGES

    Ruiz Pestana, Luis; Mardirossian, Narbe; Head-Gordon, Martin; ...

    2017-02-27

    We have used ab initio molecular dynamics (AIMD) to characterize water properties using two meta-generalized gradient approximation (meta-GGA) functionals, M06-L-D3 and B97M-rV, and compared their performance against a standard GGA corrected for dispersion, revPBE-D3, at ambient conditions (298 K, and 1 g cm –3 or 1 atm). Simulations of the equilibrium density, radial distribution functions, self-diffusivity, the infrared spectrum, liquid dipole moments, and characterizations of the hydrogen bond network show that all three functionals have overcome the problem of the early AIMD simulations that erroneously found ambient water to be highly structured, but they differ substantially among themselves in agreementmore » with experiment on this range of water properties. We show directly using water cluster data up through the pentamer that revPBE-D3 benefits from a cancellation of its intrinsic functional error by running classical trajectories, whereas the meta-GGA functionals are demonstrably more accurate and would require the simulation of nuclear quantum effects to realize better agreement with all cluster and condensed phase properties.« less

  19. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Thi Nu; Ono, Shota; Ohno, Kaoru, E-mail: ohno@ynu.ac.jp

    Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronicmore » excited state configuration.« less

  20. Comparison of Fatigue Life Estimation Using Equivalent Linearization and Time Domain Simulation Methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Dhainaut, Jean-Michel

    2000-01-01

    The Monte Carlo simulation method in conjunction with the finite element large deflection modal formulation are used to estimate fatigue life of aircraft panels subjected to stationary Gaussian band-limited white-noise excitations. Ten loading cases varying from 106 dB to 160 dB OASPL with bandwidth 1024 Hz are considered. For each load case, response statistics are obtained from an ensemble of 10 response time histories. The finite element nonlinear modal procedure yields time histories, probability density functions (PDF), power spectral densities and higher statistical moments of the maximum deflection and stress/strain. The method of moments of PSD with Dirlik's approach is employed to estimate the panel fatigue life.

  1. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.

    PubMed

    Deng, Lu; Du, Jincheng

    2018-01-14

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Q n distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3 B and 4 B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  2. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  3. Applications of Density Functional Theory in Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.

  4. Theoretical study of the ammonia nitridation rate on an Fe (100) surface: a combined density functional theory and kinetic Monte Carlo study.

    PubMed

    Yeo, Sang Chul; Lo, Yu Chieh; Li, Ju; Lee, Hyuck Mo

    2014-10-07

    Ammonia (NH3) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (Eb) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (Eb) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH3 nitridation rate on the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH3 nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH3 nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH3 nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.

  5. Statistics of velocity gradients in two-dimensional Navier-Stokes and ocean turbulence.

    PubMed

    Schorghofer, Norbert; Gille, Sarah T

    2002-02-01

    Probability density functions and conditional averages of velocity gradients derived from upper ocean observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equations. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives from the ocean observations agree with the forced simulations, although they differ from unforced simulations reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that large coherent eddies play only a minor role in generating the observed statistics.

  6. Composite polarizability and the construction of an invariant function of refraction and mass density for solutions.

    PubMed

    Szymański, Krzysztof; Petrache, Horia I

    2011-04-14

    Re-examination of dynamical ionic polarizabilities in water solutions leads to the formulation of a solution function r(c), which combines the indices of refraction and mass densities of solutions. We show that this function should be independent of ionic concentration if the composite polarizabilities of hydrated solute clusters are constant. Using existing experimental data for a number of aqueous salt and organic solutions, we find that the r(c) function is either constant or varies linearly with concentration, in most cases with negligible slope. We use this function to compare ionic polarizabilities of crystals and aqueous solutions and to highlight how solute polarizabilities at infinite dilution scale with the electronic valence shell of cations and anions. The proposed r(c) function can be used generally to verify the consistency of experimental measurements and of simulation results, and it provides a test of assumptions in current theories of ionic polarizabilities.

  7. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    PubMed

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  8. Structural, electronic, and dynamical properties of liquid water by ab initio molecular dynamics based on SCAN functional within the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Zheng, Lixin; Chen, Mohan; Sun, Zhaoru; Ko, Hsin-Yu; Santra, Biswajit; Dhuvad, Pratikkumar; Wu, Xifan

    2018-04-01

    We perform ab initio molecular dynamics (AIMD) simulation of liquid water in the canonical ensemble at ambient conditions using the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient approximation (GGA) functional approximation and carry out systematic comparisons with the results obtained from the GGA-level Perdew-Burke-Ernzerhof (PBE) functional and Tkatchenko-Scheffler van der Waals (vdW) dispersion correction inclusive PBE functional. We analyze various properties of liquid water including radial distribution functions, oxygen-oxygen-oxygen triplet angular distribution, tetrahedrality, hydrogen bonds, diffusion coefficients, ring statistics, density of states, band gaps, and dipole moments. We find that the SCAN functional is generally more accurate than the other two functionals for liquid water by not only capturing the intermediate-range vdW interactions but also mitigating the overly strong hydrogen bonds prescribed in PBE simulations. We also compare the results of SCAN-based AIMD simulations in the canonical and isothermal-isobaric ensembles. Our results suggest that SCAN provides a reliable description for most structural, electronic, and dynamical properties in liquid water.

  9. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    DOE PAGES

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lowermore » temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.« less

  10. Orbital-free extension to Kohn-Sham density functional theory equation of state calculations: Application to silicon dioxide

    DOE PAGES

    Sjostrom, Travis; Crockett, Scott

    2015-09-02

    The liquid regime equation of state of silicon dioxide SiO 2 is calculated via quantum molecular dynamics in the density range of 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the α-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham density functional theory (DFT), and above 8 eV a new orbital-free DFT formulation, presented here, based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data are found to be in very good agreement with the current results. Finally both experimental and simulation data are used in constructing amore » new liquid regime equation of state table for SiO 2.« less

  11. Gaussian polarizable-ion tight binding.

    PubMed

    Boleininger, Max; Guilbert, Anne Ay; Horsfield, Andrew P

    2016-10-14

    To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).

  12. Gaussian polarizable-ion tight binding

    NASA Astrophysics Data System (ADS)

    Boleininger, Max; Guilbert, Anne AY; Horsfield, Andrew P.

    2016-10-01

    To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).

  13. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Erkal, Denis; Sanders, Jason L.

    2017-04-01

    Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r < 20 kpc) ≈ 0.2 per cent] assuming that the Pal 5 stream is 5 Gyr old. Improved data will allow measurements of the subhalo mass function down to 105 M⊙, thus definitively testing whether dark matter is clumpy on the smallest scales relevant for galaxy formation.

  14. Generalized nonequilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    2016-07-01

    Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of conditionally averaged nonequilibrium Green's function for multicomponent disorders.

  15. Determination of the mass function of extra-galactic GMCs via NIR color maps. Testing the method in a disk-like geometry

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Juvela, M.; Alves, J.

    2007-06-01

    The giant molecular clouds (GMCs) of external galaxies can be mapped with sub-arcsecond resolution using multiband observations in the near-infrared. However, the interpretation of the observed reddening and attenuation of light, and their transformation into physical quantities, is greatly hampered by the effects arising from the unknown geometry and the scattering of light by dust particles. We examine the relation between the observed near-infrared reddening and the column density of the dust clouds. In this paper we particularly assess the feasibility of deriving the mass function of GMCs from near-infrared color excess data. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions. We include the scattered light in the models and calculate near-infrared color maps from the simulated data. The color maps are compared with the true line-of-sight density distributions of the models. We extract clumps from the color maps and compare the observed mass function to the true mass function. For the physical configuration chosen in this study, essentially a face-on geometry, the observed mass function is a non-trivial function of the true mass function with a large number of parameters affecting its exact form. The dynamical range of the observed mass function is confined to 103.5dots 105.5 M_⊙ regardless of the dynamical range of the true mass function. The color maps are more sensitive in detecting the high-mass end of the mass function, and on average the masses of clouds are underestimated by a factor of ˜ 10 depending on the parameters describing the dust distribution. A significant fraction of clouds is expected to remain undetected at all masses. The simulations show that the cloud mass function derived from JHK color excess data using simple foreground screening geometry cannot be regarded as a one-to-one tracer of the underlying mass function.

  16. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study.

    PubMed

    Ding, Huanjun; Molloi, Sabee

    2012-08-07

    A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio of the dual energy image with respect to the square root of mean glandular dose, was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. For an average sized 4.5 cm thick breast, the FOM was maximized with a tube voltage of 46 kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (∼32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique.

  17. Periodicity in the autocorrelation function as a mechanism for regularly occurring zero crossings or extreme values of a Gaussian process.

    PubMed

    Wilson, Lorna R M; Hopcraft, Keith I

    2017-12-01

    The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.

  18. Periodicity in the autocorrelation function as a mechanism for regularly occurring zero crossings or extreme values of a Gaussian process

    NASA Astrophysics Data System (ADS)

    Wilson, Lorna R. M.; Hopcraft, Keith I.

    2017-12-01

    The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.

  19. Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio

    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on themore » bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex  = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.« less

  20. Density profile of dark matter haloes and galaxies in the HORIZON-AGN simulation: the impact of AGN feedback

    NASA Astrophysics Data System (ADS)

    Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie

    2017-12-01

    Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.

  1. Hybrid simulations of solenoidal radio-frequency inductively coupled hydrogen discharges at low pressures

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Li, Hong; Gao, Fei; Wang, You-Nian

    2016-12-01

    In this article, we have described a radio-frequency (RF) inductively coupled H2 plasma using a hybrid computational model, incorporating the Maxwell equations and the linear part of the electron Boltzmann equation into global model equations. This report focuses on the effects of RF frequency, gas pressure, and coil current on the spatial profiles of the induced electric field and plasma absorption power density. The plasma parameters, i.e., plasma density, electron temperature, density of negative ion, electronegativity, densities of neutral species, and dissociation degree of H2, as a function of absorption power, are evaluated at different gas pressures. The simulation results show that the utilization efficiency of the RF source characterized by the coupling efficiency of the RF electric field and power to the plasma can be significantly improved at the low RF frequency, gas pressure, and coil current, due to a low plasma density in these cases. The densities of vibrational states of H2 first rapidly increase with increasing absorption power and then tend to saturate. This is because the rapidly increased dissociation degree of H2 with increasing absorption power somewhat suppresses the increase of the vibrational states of H2, thus inhibiting the increase of the H-. The effects of absorption power on the utilization efficiency of the RF source and the production of the vibrational states of H2 should be considered when setting a value of the coil current. To validate the model simulations, the calculated electron density and temperature are compared with experimental measurements, and a reasonable agreement is achieved.

  2. Pair correlation functions and the wavevector-dependent surface tension in a simple density functional treatment of the liquid-vapour interface.

    PubMed

    Parry, A O; Rascón, C; Willis, G; Evans, R

    2014-09-03

    We study the density-density correlation function G(r, r') in the interfacial region of a fluid (or Ising-like magnet) with short-ranged interactions using square gradient density functional theory. Adopting a simple double parabola approximation for the bulk free-energy density, we first show that the parallel Fourier transform G(z, z'; q) and local structure factor S(z; q) separate into bulk and excess contributions. We attempt to account for both contributions by deriving an interfacial Hamiltonian, characterised by a wavevector dependent surface tension σ(q), and then reconstructing density correlations from correlations in the interface position. We show that the standard crossing criterion identification of the interface, as a surface of fixed density (or magnetization), does not explain the separation of G(z, z'; q) and the form of the excess contribution. We propose an alternative definition of the interface position based on the properties of correlations between points that 'float' with the surface and show that this describes the full q and z dependence of the excess contributions to both G and S. However, neither the 'crossing-criterion' nor the new 'floating interface' definition of σ(q) are quantities directly measurable from the total structure factor S(tot)(q) which contains additional q dependence arising from the non-local relation between fluctuations in the interfacial position and local density. Since it is the total structure factor that is measured experimentally or in simulations, our results have repercussions for earlier attempts to extract and interpret σ(q).

  3. SUPERNOVA DRIVING. II. COMPRESSIVE RATIO IN MOLECULAR-CLOUD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Liubin; Padoan, Paolo; Haugbølle, Troels

    2016-07-01

    The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of themore » compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.« less

  4. What correlation effects are covered by density functional theory?

    NASA Astrophysics Data System (ADS)

    He, Yuan; Grafenstein, Jurgen; Kraka, Elfi; Cremer, Dieter

    The electron density distribution rho(r) generated by a DFT calculation was systematically studied by comparison with a series of reference densities obtained by wavefunction theory (WFT) methods that cover typical electron correlation effects. As a sensitive indicator for correlation effects the dipole moment of the CO molecule was used. The analysis reveals that typical LDA and GGA exchange functionals already simulate effects that are actually reminiscent of pair and three-electron correlation effects covered by MP2, MP4, and CCSD(T) in WFT. Correlation functionals contract the density towards the bond and the valence region thus taking negative charge out of the van der Waals region. It is shown that these improvements are relevant for the description of van der Waals interactions. Similar to certain correlated single-determinant WFT methods, BLYP and other GGA functionals underestimate ionic terms needed for a correct description of polar bonds. This is compensated for in hybrid functionals by mixing in HF exchange. The balanced mixing of local and non-local exchange and correlation effects leads to the correct description of polar bonds as in the B3LYP description of the CO molecule. The density obtained with B3LYP is closer to CCSD and CCSD(T) than to MP2 or MP4, which indicates that the B3LYP hybrid functional mimics those pair and three-electron correlation effects, which in WFT are only covered by coupled cluster methods.

  5. An open-source framework for analyzing N-electron dynamics. II. Hybrid density functional theory/configuration interaction methodology.

    PubMed

    Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe

    2017-10-30

    In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of N-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one-electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser-driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher-level method provided a judicious choice of functional is made. Broadband excitation of a medium-sized organic chromophore further demonstrates the scalability of the method. In addition, the time-dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues. Electronic supplementary information (ESI) available: Movie showing simulation renderings of targeted (ρL = 1820/μm2, KD = 120 μM) nanoparticle selective binding to cancer (ρR = 256/μm2) vs. healthy (ρR = 64/μm2) cell surfaces. Target membrane proteins have linear color scale depending on binding energy ranging from white when unbound (URL = 0) to red when tightly bound (URL = UM). See DOI: 10.1039/c5nr03691g

  7. Structure and orientational ordering in a fluid of elongated quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra

    2013-01-01

    A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic-nematic transition in a system of fluids of elongated molecules interacting via the Gay-Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein-Zernike equation using the Percus-Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic-nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.

  8. Lattice model for calcium dynamics

    NASA Astrophysics Data System (ADS)

    Guisoni, Nara; de Oliveira, Mario José

    2005-06-01

    We present a simplified lattice model to study calcium dynamics in the endoplasmic reticulum membrane. Calcium channels and calcium ions are placed in two interpenetrating square lattices which are connected in two ways: (i) via calcium release and (ii) because transitions between channel states are calcium dependent. The opening or closing of a channel is a stochastic process controlled by two functions which depend on the calcium density on the channel neighborhood. The model is studied through mean field calculations and simulations. We show that the critical behavior of the model changes drastically depending on the opening/closing functions. For certain choices of these functions, all channels are closed at very low and high calcium densities and the model presents one absorbing state.

  9. Revealing electronic open quantum systems with subsystem TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishtal, Alisa, E-mail: alisa.krishtal@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustratemore » the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.« less

  10. Revealing electronic open quantum systems with subsystem TDDFT.

    PubMed

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  11. Revealing electronic open quantum systems with subsystem TDDFT

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-01

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  12. Nuclear quantum effects on structure and transport properties of dense liquid helium

    NASA Astrophysics Data System (ADS)

    Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin

    2015-11-01

    Transport properties of dense liquid helium under the conditions of planet's core and cool atmosphere of white dwarfs are important for determining the structure and evolution of these astrophysical objects. We have investigated these properties of dense liquid helium by using the improved centroid path-integral simulations combined with density functional theory. The results show that with the inclusion of nuclear quantum effects (NQEs), the self-diffusion is largely higher while the shear viscosity is notably lower than the results of without the inclusion of NQEs due to the lower collision cross sections even when the NQEs have little effects on the static structures. The potential surface of helium atom along the simulation trajectory is quite different between MD and PIMD simulations. We have shown that the quantum nuclear character induces complex behaviors for ionic transport properties of dense liquid helium. NQEs bring more fluctuations of local electronic density of states than the classical treatment. Therefore, in order to construct more reasonable structure and evolution model for the planets and WDs, NQEs must be reconsidered when calculating the transport properties at certain temperature and density conditions.

  13. The molecular, electronic structures and vibrational spectra of metal-free, N,N'-dideuterio and magnesium tetra-2,3-pyridino-porphyrazines: Density functional calculations.

    PubMed

    Liu, Zhongqiang; Zhang, Xianxi; Zhang, Yuexing; Li, Renjie; Jiang, Jianzhuang

    2006-10-01

    A theoretical investigation of the fully optimized geometries and electronic structures of the metal-free (TPdPzH(2)), N,N'-dideuterio (TPdPzD(2)), and magnesium (TPdPzMg) tetra-2,3-pyridino-porphyrazine has been conducted based on density functional theory. The optimized geometries at density functional theory level for these compounds are reported here for the first time. A comparison between the different molecules for the geometry, molecular orbital, and atomic charge is made. The substituent effect of the N atoms on the molecular structures of these compounds is discussed. The IR and Raman spectra for these three compounds have also been calculated at density functional B3LYP level using the 6-31G(d) basis set. Detailed assignments of the NH, NM, and pyridine ring vibrational bands in the IR and Raman spectra have been made based on assistance of animated pictures. The simulated IR spectra of TPdPzH(2) are compared with the experimental absorption spectra, and very good consistency has been found. The isotope effect on the IR and Raman spectra is also discussed.

  14. A density functional approach to ferrogels

    NASA Astrophysics Data System (ADS)

    Cremer, P.; Heinen, M.; Menzel, A. M.; Löwen, H.

    2017-07-01

    Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an ‘external pseudopotential’ when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.

  15. Modeling of the reactant conversion rate in a turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Frankel, S. H.; Madnia, C. K.; Givi, P.

    1992-01-01

    Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.

  16. Density-Functional-Theory-Based Equation-of-State Table of Beryllium for Inertial Confinement Fusion Applications

    NASA Astrophysics Data System (ADS)

    Ding, Y. H.; Hu, S. X.

    2017-10-01

    Beryllium has been considered a superior ablator material for inertial confinement fusion target designs. Based on density-functional-theory calculations, we have established a wide-range beryllium equation-of-state (EOS) table of density ρ = 0.001 to ρ = 500 g/cm3 and temperature T = 2000 to 108 K. Our first-principles equation-of-state (FPEOS) table is in better agreement with widely used SESAMEEOS table (SESAME2023) than the average-atom INFERNOmodel and the Purgatoriomodel. For the principal Hugoniot, our FPEOS prediction shows 10% stiffer behavior than the last two models at maximum compression. Comparisons between FPEOS and SESAMEfor off-Hugoniot conditions show that both the pressure and internal energy differences are within 20% between two EOS tables. By implementing the FPEOS table into the 1-D radiation-hydrodynamics code LILAC, we studied the EOS effects on beryllium target-shell implosions. The FPEOS simulation predicts up to an 15% higher neutron yield compared to the simulation using the SESAME2023 EOS table. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Performance analysis of boron nitride embedded armchair graphene nanoribbon metal-oxide-semiconductor field effect transistor with Stone Wales defects

    NASA Astrophysics Data System (ADS)

    Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu

    2014-01-01

    We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width ˜5 nm, the simulated ON current is found to be in the range of 265 μA-280 μA with an ON/OFF ratio 7.1 × 106-7.4 × 106 for a VDD = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.

  18. Dispersion interactions in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Andrinopoulos, Lampros; Hine, Nicholas; Mostofi, Arash

    2012-02-01

    Semilocal functionals in Density Functional Theory (DFT) achieve high accuracy simulating a wide range of systems, but miss the effect of dispersion (vdW) interactions, important in weakly bound systems. We study two different methods to include vdW in DFT: First, we investigate a recent approach [1] to evaluate the vdW contribution to the total energy using maximally-localized Wannier functions. Using a set of simple dimers, we show that it has a number of shortcomings that hamper its predictive power; we then develop and implement a series of improvements [2] and obtain binding energies and equilibrium geometries in closer agreement to quantum-chemical coupled-cluster calculations. Second, we implement the vdW-DF functional [3], using Soler's method [4], within ONETEP [5], a linear-scaling DFT code, and apply it to a range of systems. This method within a linear-scaling DFT code allows the simulation of weakly bound systems of larger scale, such as organic/inorganic interfaces, biological systems and implicit solvation models. [1] P. Silvestrelli, JPC A 113, 5224 (2009). [2] L. Andrinopoulos et al, JCP 135, 154105 (2011). [3] M. Dion et al, PRL 92, 246401 (2004). [4] G. Rom'an-P'erez, J.M. Soler, PRL 103, 096102 (2009). [5] C. Skylaris et al, JCP 122, 084119 (2005).

  19. Stochastic simulation of soil particle-size curves in heterogeneous aquifer systems through a Bayes space approach

    NASA Astrophysics Data System (ADS)

    Menafoglio, A.; Guadagnini, A.; Secchi, P.

    2016-08-01

    We address the problem of stochastic simulation of soil particle-size curves (PSCs) in heterogeneous aquifer systems. Unlike traditional approaches that focus solely on a few selected features of PSCs (e.g., selected quantiles), our approach considers the entire particle-size curves and can optionally include conditioning on available data. We rely on our prior work to model PSCs as cumulative distribution functions and interpret their density functions as functional compositions. We thus approximate the latter through an expansion over an appropriate basis of functions. This enables us to (a) effectively deal with the data dimensionality and constraints and (b) to develop a simulation method for PSCs based upon a suitable and well defined projection procedure. The new theoretical framework allows representing and reproducing the complete information content embedded in PSC data. As a first field application, we demonstrate the quality of unconditional and conditional simulations obtained with our methodology by considering a set of particle-size curves collected within a shallow alluvial aquifer in the Neckar river valley, Germany.

  20. Detectability of auditory signals presented without defined observation intervals

    NASA Technical Reports Server (NTRS)

    Watson, C. S.; Nichols, T. L.

    1976-01-01

    Ability to detect tones in noise was measured without defined observation intervals. Latency density functions were estimated for the first response following a signal and, separately, for the first response following randomly distributed instances of background noise. Detection performance was measured by the maximum separation between the cumulative latency density functions for signal-plus-noise and for noise alone. Values of the index of detectability, estimated by this procedure, were approximately those obtained with a 2-dB weaker signal and defined observation intervals. Simulation of defined- and non-defined-interval tasks with an energy detector showed that this device performs very similarly to the human listener in both cases.

  1. Application of Van Der Waals Density Functional Theory to Study Physical Properties of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Conroy, M. W.; Budzevich, M. M.; Lin, Y.; Oleynik, I. I.; White, C. T.

    2009-12-01

    An empirical correction to account for van der Waals interactions based on the work of Neumann and Perrin [J. Phys. Chem. B 109, 15531 (2005)] was applied to density functional theory calculations of energetic molecular crystals. The calculated equilibrium unit-cell volumes of FOX-7, β-HMX, solid nitromethane, PETN-I, α-RDX, and TATB show a significant improvement in the agreement with experimental results. Hydrostatic-compression simulations of β-HMX, PETN-I, and α-RDX were also performed. The isothermal equations of state calculated from the results show increased agreement with experiment in the pressure intervals studied.

  2. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.

    PubMed

    Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z

    2016-09-01

    The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. Copyright © 2016. Published by Elsevier Inc.

  3. Spacing distribution functions for the one-dimensional point-island model with irreversible attachment

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2011-07-01

    We study the configurational structure of the point-island model for epitaxial growth in one dimension. In particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate description of nucleation inside the gaps. Nucleation is described by the joint probability density pnXY(x,y), which represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional form for pnXY(x,y) describes excellently the statistical behavior of the system. We compare our analytical model with extensive numerical simulations. Our model retains the most relevant physical properties of the system.

  4. Warm Dense Matter Demonstrating Non-Drude Conductivity from Observations of Nonlinear Plasmon Damping

    NASA Astrophysics Data System (ADS)

    Witte, B. B. L.; Fletcher, L. B.; Galtier, E.; Gamboa, E.; Lee, H. J.; Zastrau, U.; Redmer, R.; Glenzer, S. H.; Sperling, P.

    2017-06-01

    We present simulations using finite-temperature density-functional-theory molecular dynamics to calculate the dynamic electrical conductivity in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew-Burke-Enzerhof and Heyd-Scuseria-Enzerhof (HSE) approximation indicates evident differences in the density of states and the dc conductivity. The HSE calculations show excellent agreement with experimental Linac Coherent Light Source x-ray plasmon scattering spectra revealing plasmon damping below the widely used random phase approximation. These findings demonstrate non-Drude-like behavior of the dynamic conductivity that needs to be taken into account to determine the optical properties of warm dense matter.

  5. Eulerian Mapping Closure Approach for Probability Density Function of Concentration in Shear Flows

    NASA Technical Reports Server (NTRS)

    He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The Eulerian mapping closure approach is developed for uncertainty propagation in computational fluid mechanics. The approach is used to study the Probability Density Function (PDF) for the concentration of species advected by a random shear flow. An analytical argument shows that fluctuation of the concentration field at one point in space is non-Gaussian and exhibits stretched exponential form. An Eulerian mapping approach provides an appropriate approximation to both convection and diffusion terms and leads to a closed mapping equation. The results obtained describe the evolution of the initial Gaussian field, which is in agreement with direct numerical simulations.

  6. Molecular dynamic simulation of Copper and Platinum nanoparticles Poiseuille flow in a nanochannels

    NASA Astrophysics Data System (ADS)

    Toghraie, Davood; Mokhtari, Majid; Afrand, Masoud

    2016-10-01

    In this paper, simulation of Poiseuille flow within nanochannel containing Copper and Platinum particles has been performed using molecular dynamic (MD). In this simulation LAMMPS code is used to simulate three-dimensional Poiseuille flow. The atomic interaction is governed by the modified Lennard-Jones potential. To study the wall effects on the surface tension and density profile, we placed two solid walls, one at the bottom boundary and the other at the top boundary. For solid-liquid interactions, the modified Lennard-Jones potential function was used. Velocity profiles and distribution of temperature and density have been obtained, and agglutination of nanoparticles has been discussed. It has also shown that with more particles, less time is required for the particles to fuse or agglutinate. Also, we can conclude that the agglutination time in nanochannel with Copper particles is faster that in Platinum nanoparticles. Finally, it is demonstrated that using nanoparticles raises thermal conduction in the channel.

  7. Nonparametric estimation of plant density by the distance method

    USGS Publications Warehouse

    Patil, S.A.; Burnham, K.P.; Kovner, J.L.

    1979-01-01

    A relation between the plant density and the probability density function of the nearest neighbor distance (squared) from a random point is established under fairly broad conditions. Based upon this relationship, a nonparametric estimator for the plant density is developed and presented in terms of order statistics. Consistency and asymptotic normality of the estimator are discussed. An interval estimator for the density is obtained. The modifications of this estimator and its variance are given when the distribution is truncated. Simulation results are presented for regular, random and aggregated populations to illustrate the nonparametric estimator and its variance. A numerical example from field data is given. Merits and deficiencies of the estimator are discussed with regard to its robustness and variance.

  8. Disk Density Tuning of a Maximal Random Packing

    PubMed Central

    Ebeida, Mohamed S.; Rushdi, Ahmad A.; Awad, Muhammad A.; Mahmoud, Ahmed H.; Yan, Dong-Ming; English, Shawn A.; Owens, John D.; Bajaj, Chandrajit L.; Mitchell, Scott A.

    2016-01-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations. PMID:27563162

  9. Statistical properties of swarms of self-propelled particles with repulsions across the order-disorder transition

    NASA Astrophysics Data System (ADS)

    Romenskyy, Maksym; Lobaskin, Vladimir

    2013-03-01

    We study dynamic self-organisation and order-disorder transitions in a two-dimensional system of self-propelled particles. Our model is a variation of the Vicsek model, where particles align the motion to their neighbours but repel each other at short distances. We use computer simulations to measure the orientational order parameter for particle velocities as a function of intensity of internal noise or particle density. We show that in addition to the transition to an ordered state on increasing the particle density, as reported previously, there exists a transition into a disordered phase at the higher densities, which can be attributed to the destructive action of the repulsions. We demonstrate that the transition into the ordered phase is accompanied by the onset of algebraic behaviour of the two-point velocity correlation function and by a non-monotonous variation of the velocity relaxation time. The critical exponent for the decay of the velocity correlation function in the ordered phase depends on particle concentration at low densities but assumes a universal value in more dense systems.

  10. Disk Density Tuning of a Maximal Random Packing.

    PubMed

    Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A; Mahmoud, Ahmed H; Yan, Dong-Ming; English, Shawn A; Owens, John D; Bajaj, Chandrajit L; Mitchell, Scott A

    2016-08-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations.

  11. Surface modification of TiO2 with metal oxide nanoclusters: a route to composite photocatalytic materials.

    PubMed

    Nolan, Michael

    2011-08-14

    Density functional theory simulations show that modifying rutile TiO(2) with metal oxide nanoclusters produces composite materials with potential visible light photocatalytic activity. This journal is © The Royal Society of Chemistry 2011

  12. An N-body Integrator for Planetary Rings

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.

    2011-04-01

    A planetary ring that is disturbed by a satellite's resonant perturbation can respond in an organized way. When the resonance lies in the ring's interior, the ring responds via an m-armed spiral wave, while a ring whose edge is confined by the resonance exhibits an m-lobed scalloping along the ring-edge. The amplitude of these disturbances are sensitive to ring surface density and viscosity, so modelling these phenomena can provide estimates of the ring's properties. However a brute force attempt to simulate a ring's full azimuthal extent with an N-body code will likely fail because of the large number of particles needed to resolve the ring's behavior. Another impediment is the gravitational stirring that occurs among the simulated particles, which can wash out the ring's organized response. However it is possible to adapt an N-body integrator so that it can simulate a ring's collective response to resonant perturbations. The code developed here uses a few thousand massless particles to trace streamlines within the ring. Particles are close in a radial sense to these streamlines, which allows streamlines to be treated as straight wires of constant linear density. Consequently, gravity due to these streamline is a simple function of the particle's radial distance to all streamlines. And because particles are responding to smooth gravitating streamlines, rather than discrete particles, this method eliminates the stirring that ordinarily occurs in brute force N-body calculations. Note also that ring surface density is now a simple function of streamline separations, so effects due to ring pressure and viscosity are easily accounted for, too. A poster will describe this N-body method in greater detail. Simulations of spiral density waves and scalloped ring-edges are executed in typically ten minutes on a desktop PC, and results for Saturn's A and B rings will be presented at conference time.

  13. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard, E-mail: elliot1@uakron.edu

    2014-07-14

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A newmore » chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces the excess accumulation of ethane at the interface.« less

  14. A nonadditive methanol force field: Bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model

    NASA Astrophysics Data System (ADS)

    Patel, Sandeep; Brooks, Charles L.

    2005-01-01

    We study the bulk and interfacial properties of methanol via molecular dynamics simulations using a CHARMM (Chemistry at HARvard Molecular Mechanics) fluctuating charge force field. We discuss the parametrization of the electrostatic model as part of the ongoing CHARMM development for polarizable protein force fields. The bulk liquid properties are in agreement with available experimental data and competitive with existing fixed-charge and polarizable force fields. The liquid density and vaporization enthalpy are determined to be 0.809 g/cm3 and 8.9 kcal/mol compared to the experimental values of 0.787 g/cm3 and 8.94 kcal/mol, respectively. The liquid structure as indicated by radial distribution functions is in keeping with the most recent neutron diffraction results; the force field shows a slightly more ordered liquid, necessarily arising from the enhanced condensed phase electrostatics (as evidenced by an induced liquid phase dipole moment of 0.7 D), although the average coordination with two neighboring molecules is consistent with the experimental diffraction study as well as with recent density functional molecular dynamics calculations. The predicted surface tension of 19.66±1.03 dyn/cm is slightly lower than the experimental value of 22.6 dyn/cm, but still competitive with classical force fields. The interface demonstrates the preferential molecular orientation of molecules as observed via nonlinear optical spectroscopic methods. Finally, via canonical molecular dynamics simulations, we assess the model's ability to reproduce the vapor-liquid equilibrium from 298 to 423 K, the simulation data then used to obtain estimates of the model's critical temperature and density. The model predicts a critical temperature of 470.1 K and critical density of 0.312 g/cm3 compared to the experimental values of 512.65 K and 0.279 g/cm3, respectively. The model underestimates the critical temperature by 8% and overestimates the critical density by 10%, and in this sense is roughly equivalent to the underlying fixed-charge CHARMM22 force field.

  15. Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative

    NASA Astrophysics Data System (ADS)

    Menon, Vidya V.; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Bielenica, Anna; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2018-03-01

    A novel thiourea derivative, 1-(3-bromophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF-22) is synthesized and characterized by FTIR, FT-Raman and NMR spectroscopy experimentally and theoretically. A detailed conformational analysis of the title molecule has been conducted in order to locate the lowest energy geometry, which was further subjected to the detailed investigation of spectroscopic, reactive, degradation and docking studies by density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Time dependent DFT (TD-DFT) calculations have been used also in order to simulate UV spectra and investigate charge transfer within molecule. Natural bond orbital analysis has been performed analyzing the charge delocalization and using HOMO and LUMO energies the electronic properties are analyzed. Molecular electrostatic potential map is used for the quantitative measurement of active sites in the molecule. In order to determine the locations possibly prone to electrophilic attacks we have calculated average local ionization energies and mapped them to the electron density surface. Further insight into the local reactivity properties have been obtained by calculation of Fukui functions, also mapped to the electron density surface. Possible degradation properties by the autoxidation mechanism have been assessed by calculations of bond dissociation energies for hydrogen abstraction. Atoms of title molecule with significant interactions with water molecules have been determined by calculations of radial distribution functions. The title compound can be a lead compound for developing new analgesic drug.

  16. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  17. Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications

    NASA Astrophysics Data System (ADS)

    Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2008-02-01

    A linear-scaling algorithm based on a divide-and-conquer (DC) scheme has been designed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). Electronic wave functions are represented on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel computers. The largest benchmark tests include 11.8×106 -atom ( 1.04×1012 electronic degrees of freedom) calculation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene. The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conventional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the result reaches the asymptotic value.

  18. What Does a Submillimeter Galaxy Selection Actually Select? The Dependence of Submillimeter Flux Density on Star Formation Rate and Dust Mass

    NASA Astrophysics Data System (ADS)

    Hayward, Christopher C.; Kereš, Dušan; Jonsson, Patrik; Narayanan, Desika; Cox, T. J.; Hernquist, Lars

    2011-12-01

    We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux density (e.g., a >~ 16 × boost in SFR yields a <~ 2 × boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large (gsim 15" or ~130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M sstarf >~ 6 × 1010 M ⊙). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.

  19. 2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.

  20. Validation of DSMC results for chemically nonequilibrium air flows against measurements of the electron number density in RAM-C II flight experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevyrin, Alexander A.; Vashchenkov, Pavel V.; Bondar, Yevgeniy A.

    An ionized flow around the RAM C-II vehicle in the range of altitudes from 73 to 81 km is studied by the Direct Simulation Monte Carlo (DSMC) method with three models of chemical reactions. It is demonstrated that vibration favoring in reactions of dissociation of neutral molecules affects significantly the predicted values of plasma density in the shock layer, and good agreement between the results of experiments and DSMC computations can be achieved in terms of the plasma density as a function of the flight altitude.

  1. Pressure effects on collective density fluctuations in water and protein solutions

    PubMed Central

    Russo, Daniela; Laloni, Alessio; Filabozzi, Alessandra; Heyden, Matthias

    2017-01-01

    Neutron Brillouin scattering and molecular dynamics simulations have been used to investigate protein hydration water density fluctuations as a function of pressure. Our results show significant differences between the pressure and density dependence of collective dynamics in bulk water and in concentrated protein solutions. Pressure-induced changes in the tetrahedral order of the water HB network have direct consequences for the high-frequency sound velocity and damping coefficients, which we find to be a sensitive probe for changes in the HB network structure as well as the wetting of biomolecular surfaces. PMID:29073065

  2. Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links.

    PubMed

    Lyke, Stephen D; Voelz, David G; Roggemann, Michael C

    2009-11-20

    The probability density function (PDF) of aperture-averaged irradiance fluctuations is calculated from wave-optics simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to strong. Results show that under weak scintillation conditions both the gamma-gamma and lognormal PDF models provide a good fit to the simulation data for all aperture sizes studied. Our results indicate that in moderate scintillation the gamma-gamma PDF provides a better fit to the simulation data than the lognormal PDF for all aperture sizes studied. In the strong scintillation regime, the simulation data distribution is gamma gamma for aperture sizes much smaller than the coherence radius rho0 and lognormal for aperture sizes on the order of rho0 and larger. Examples of how these results affect the bit-error rate of an on-off keyed free space optical communication link are presented.

  3. Non-Fickian dispersion of groundwater age

    PubMed Central

    Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.

    2014-01-01

    We expand the governing equation of groundwater age to account for non-Fickian dispersive fluxes using continuous random walks. Groundwater age is included as an additional (fifth) dimension on which the volumetric mass density of water is distributed and we follow the classical random walk derivation now in five dimensions. The general solution of the random walk recovers the previous conventional model of age when the low order moments of the transition density functions remain finite at their limits and describes non-Fickian age distributions when the transition densities diverge. Previously published transition densities are then used to show how the added dimension in age affects the governing differential equations. Depending on which transition densities diverge, the resulting models may be nonlocal in time, space, or age and can describe asymptotic or pre-asymptotic dispersion. A joint distribution function of time and age transitions is developed as a conditional probability and a natural result of this is that time and age must always have identical transition rate functions. This implies that a transition density defined for age can substitute for a density in time and this has implications for transport model parameter estimation. We present examples of simulated age distributions from a geologically based, heterogeneous domain that exhibit non-Fickian behavior and show that the non-Fickian model provides better descriptions of the distributions than the Fickian model. PMID:24976651

  4. Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Drozda, T. G.; Sheikhi, R. M.; Givi, Peyman

    2001-01-01

    The objective of this research is to develop and implement new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. We have just completed two (2) years of Phase I of this research. This annual report provides a brief and up-to-date summary of our activities during the period: September 1, 2000 through August 31, 2001. In the work within the past year, a methodology termed "velocity-scalar filtered density function" (VSFDF) is developed and implemented for large eddy simulation (LES) of turbulent flows. In this methodology the effects of the unresolved subgrid scales (SGS) are taken into account by considering the joint probability density function (PDF) of all of the components of the velocity and scalar vectors. An exact transport equation is derived for the VSFDF in which the effects of the unresolved SGS convection, SGS velocity-scalar source, and SGS scalar-scalar source terms appear in closed form. The remaining unclosed terms in this equation are modeled. A system of stochastic differential equations (SDEs) which yields statistically equivalent results to the modeled VSFDF transport equation is constructed. These SDEs are solved numerically by a Lagrangian Monte Carlo procedure. The consistency of the proposed SDEs and the convergence of the Monte Carlo solution are assessed by comparison with results obtained by an Eulerian LES procedure in which the corresponding transport equations for the first two SGS moments are solved. The unclosed SGS convection, SGS velocity-scalar source, and SGS scalar-scalar source in the Eulerian LES are replaced by corresponding terms from VSFDF equation. The consistency of the results is then analyzed for a case of two dimensional mixing layer.

  5. Plasma Theory and Simulation Group Annual Progress Report for 1991

    DTIC Science & Technology

    1991-12-31

    beam formation analitically : i) the resistance of the (low-density) to the final, high-density cylindrical wall can be approximated by the regime...model is developed that predicts the ion angular distribution function in a highly collisional sheath. In a previous study2, the normal ion velocity...gets a linear dispersion relation of the form W2 = k 2 (T + Ti/m. + m,), (40) which predicts ion acoustic waves. These waves have the highest frequency

  6. The Correlated Jacobi and the Correlated Cauchy-Lorentz Ensembles

    NASA Astrophysics Data System (ADS)

    Wirtz, Tim; Waltner, Daniel; Kieburg, Mario; Kumar, Santosh

    2016-01-01

    We calculate the k-point generating function of the correlated Jacobi ensemble using supersymmetric methods. We use the result for complex matrices for k=1 to derive a closed-form expression for the eigenvalue density. For real matrices we obtain the density in terms of a twofold integral that we evaluate numerically. For both expressions we find agreement when comparing with Monte Carlo simulations. Relations between these quantities for the Jacobi and the Cauchy-Lorentz ensemble are derived.

  7. Trap densities and transport properties of pentacene metal-oxide-semiconductor transistors: II—Numerical modeling of dc characteristics

    NASA Astrophysics Data System (ADS)

    Basile, A. F.; Kyndiah, A.; Biscarini, F.; Fraboni, B.

    2014-06-01

    A numerical procedure to calculate the drain-current (ID) vs. gate-voltage (VG) characteristics from numerical solutions of the Poisson equation for organic Thin-Film Transistors (TFTs) is presented. Polaron transport is modeled as two-dimensional charge transport in a semiconductor having free-carrier density of states proportional to the density of molecules and traps with energy equal to the polaron-hopping barrier. The simulated ID-VG curves are proportional to the product of the density of free carriers, calculated as a function of VG, and the intrinsic mobility, assumed to be a constant independent of temperature. The presence of traps in the oxide was also taken into account in the model, which was applied to a TFT made with six monolayers of pentacene grown on an oxide substrate. The polaron-hopping barrier determines the temperature dependence of the simulated ID-VG curves, trapping in the oxide is responsible for current reduction at high bias and the slope of the characteristics near threshold is related to the metal-semiconductor work-function difference. The values of the model parameters yielding the best match between calculations and experiments are consistent with previous experimental results and theoretical predictions. Therefore, this model enables to extract both physical and technological properties of thin-film devices from the temperature-dependent dc characteristics.

  8. Experimental Characterization of Magnetogasdynamic Phenomena in Ultra-High Velocity Pulsed Plasma Jets

    NASA Astrophysics Data System (ADS)

    Loebner, Keith; Wang, Benjamin; Cappelli, Mark

    2014-10-01

    The formation and propagation of high velocity plasma jets in a pulsed, coaxial, deflagration-type discharge is examined experimentally. A sensitive, miniaturized, immersed probe array is used to map out magnetic flux density and associated radial current density as a function of time and axial position. This array is also used to probe the magnetic field gradient across the exit of the accelerator and in the jet formation region. Sensitive interferometry via a continuous-wave helium-neon laser source is used to probe the structure of the plasma jet over multiple chords and axial locations. A two dimensional plasma density gradient profile at an instant in time during jet formation is compiled via Shack-Hartmann wavefront sensor analysis. The qualitative characteristics of rarefaction and/or shock wave formation as a function of chamber back-pressure is examined via fast-framing ICCD imaging. These measurements are compared to existing resistive MHD simulations of the coaxial deflagration accelerator and the ensuing rarefaction jet that is expelled from the electrode assembly. The physical mechanisms governing the behavior of the discharge and the formation of these high energy density plasma jets are proposed and validated against both theoretical models and numerically simulated behavior. This research was conducted with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

  9. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexesmore » in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.« less

  10. Investigation of electronic and magnetic properties of FeS: First principle and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim

    2018-06-01

    Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.

  11. Kinetic Monte Carlo Simulations of Scintillation Processes in NaI(Tl)

    NASA Astrophysics Data System (ADS)

    Kerisit, Sebastien; Wang, Zhiguo; Williams, Richard T.; Grim, Joel Q.; Gao, Fei

    2014-04-01

    Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this paper to simulate the kinetics of scintillation for a range of temperatures and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.

  12. A semi-metallic layer in detonating nitromethane

    NASA Astrophysics Data System (ADS)

    Reed, Evan; Manaa, Riad; Fried, Laurence; Glaesemann, Kurt; Joannopoulos, John

    2007-06-01

    We present the first ever glimpse behind a detonation front in a chemically reactive quantum molecular dynamics simulation (up to 0.2 ns) of the explosive nitromethane (CH3NO2) represented by the density-functional-based tight-binding method (DFTB). This simulation is enabled by our recently developed multi-scale shock wave molecular dynamics technique (MSST) that opens the door to longer duration simulations by several orders of magnitude. The electronic DOS around the Fermi energy initially increases as metastable material states are produced but then later decreases, perhaps unexpectedly. These changes indicate that the shock front is characterized by an increase in optical thickness followed by a reduction in optical thickness hundreds of picoseconds behind the front, explaining recent experimental observations. We find that a significant population of intermediate metastable molecules are charged and charged species play an important role in the density of states evolution and a possible Mott metal-insulator transition.

  13. First-Principles and Thermodynamic Simulation of Elastic Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

    NASA Astrophysics Data System (ADS)

    Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.

    2018-04-01

    Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.

  14. Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters

    DTIC Science & Technology

    2016-06-01

    simulations of the oxidation of Al4Cp * 4 show reasonable comparison with a DFT-based Car -Parrinello method, including correct prediction of hydride transfers...comparison with a DFT-based Car -Parrinello method, including correct prediction of hydride transfers from Cp* to the metal centers during the...initio molecular dynamics of the oxidation of Al4Cp * 4 using a DFT-based Car -Parrinello method. This simulation, which 43 several months on the

  15. Edge effects in vertically-oriented graphene based electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Zhang, Shuo; Yan, Jianhua; Cen, Kefa

    2016-08-01

    Vertically-oriented graphenes (VGs) have been demonstrated as a promising active material for electric double-layer capacitors (EDLCs), partially due to their edge-enriched structure. In this work, the 'edge effects', i.e., edges as the promoters of high capacitance, in VG based EDLCs are investigated with experimental research and numerical simulations. VGs with diverse heights (i.e., edge-to-basal ratios) and edge densities are prepared with varying the plasma-enabled growth time and employing different plasma sources. Electrochemical measurements show that the edges play a predominant role on the charge storage behavior of VGs. A simulation is further conducted to unveil the roles of the edges on the separation and adsorption of ions within VG channels. The initial charge distribution of a VG plane is obtained with density functional theory (DFT) calculations, which is subsequently applied to a molecular dynamics (MD) simulation system to gain the insights into the microscope EDLC structures. Compared with the basal planes, the edges present higher initial charge density (by 4.2 times), higher ion packing density (by 2.6 times), closer ion packing location (by 0.8 Å), and larger ion separation degree (by 14%). The as-obtained findings will be instructive in designing the morphology and structure of VGs for enhanced capacitive performances.

  16. Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory

    NASA Astrophysics Data System (ADS)

    Evans, Robert; Stewart, Maria C.; Wilding, Nigel B.

    2017-07-01

    We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.

  17. Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory.

    PubMed

    Evans, Robert; Stewart, Maria C; Wilding, Nigel B

    2017-07-28

    We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν ∥ , which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.

  18. Cyclic density functional theory: A route to the first principles simulation of bending in nanostructures

    NASA Astrophysics Data System (ADS)

    Banerjee, Amartya S.; Suryanarayana, Phanish

    2016-11-01

    We formulate and implement Cyclic Density Functional Theory (Cyclic DFT) - a self-consistent first principles simulation method for nanostructures with cyclic symmetries. Using arguments based on Group Representation Theory, we rigorously demonstrate that the Kohn-Sham eigenvalue problem for such systems can be reduced to a fundamental domain (or cyclic unit cell) augmented with cyclic-Bloch boundary conditions. Analogously, the equations of electrostatics appearing in Kohn-Sham theory can be reduced to the fundamental domain augmented with cyclic boundary conditions. By making use of this symmetry cell reduction, we show that the electronic ground-state energy and the Hellmann-Feynman forces on the atoms can be calculated using quantities defined over the fundamental domain. We develop a symmetry-adapted finite-difference discretization scheme to obtain a fully functional numerical realization of the proposed approach. We verify that our formulation and implementation of Cyclic DFT is both accurate and efficient through selected examples. The connection of cyclic symmetries with uniform bending deformations provides an elegant route to the ab-initio study of bending in nanostructures using Cyclic DFT. As a demonstration of this capability, we simulate the uniform bending of a silicene nanoribbon and obtain its energy-curvature relationship from first principles. A self-consistent ab-initio simulation of this nature is unprecedented and well outside the scope of any other systematic first principles method in existence. Our simulations reveal that the bending stiffness of the silicene nanoribbon is intermediate between that of graphene and molybdenum disulphide - a trend which can be ascribed to the variation in effective thickness of these materials. We describe several future avenues and applications of Cyclic DFT, including its extension to the study of non-uniform bending deformations and its possible use in the study of the nanoscale flexoelectric effect.

  19. Investigation of a Mercury-Argon Hot Cathode Discharge

    NASA Astrophysics Data System (ADS)

    Wamsley, Robert Charles

    Classical absorption and laser induced fluorescence (LIF) experiments are used to investigate processes in the cathode region of a Hg-Ar hot cathode discharge. The absorption and LIF measurements are used to test the qualitative understanding and develop a quantitative model of a hot cathode discharge. The main contribution of this thesis is a model of the negative glow region that demonstrates the importance of Penning ionization to the ionization balance in the negative glow. We modeled the excited argon balance equation using a Monte Carlo simulation. In this simulation we used the trapped radiative decay rate of the resonance levels and the Penning ionization rate as the dominant loss terms in the balance equation. The simulated data is compared to and found to agree with absolute excited argon densities measured in a classical absorption experiment. We found the primary production rate per unit volume of excited Ar atoms in the simulation is sharply peaked near the cathode hot spot. We used the ion production rate from this simulation and a Green's function solution to the ambipolar diffusion equation to calculate the contribution of Penning ionization to the total ion density. We compared the results of this calculation to our experimental values of the Hg ^+ densities in the negative glow. We found that Penning ionization is an important and possibly the dominant ionization process in the negative glow.

  20. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    NASA Astrophysics Data System (ADS)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-01

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

Top