THE SEDIMENTATION PROPERTIES OF THE SKIN-SENSITIZING ANTIBODIES OF RAGWEED-SENSITIVE PATIENTS
Andersen, Burton R.; Vannier, Wilton E.
1964-01-01
The sedimentation coefficients of the skin-sensitizing antibodies to ragweed were evaluated by the moving partition cell method and the sucrose density gradient method. The most reliable results were obtained by sucrose density gradient ultracentrifugation which showed that the major portion of skin-sensitizing antibodies to ragweed sediment with an average value of 7.7S (7.4 to 7.9S). This is about one S unit faster than γ-globulins (6.8S). The data from the moving partition cell method are in agreement with these results. Our studies failed to demonstrate heterogeneity of the skin-sensitizing antibodies with regard to sedimentation rate. PMID:14194391
Lateral baroclinic forcing enhances sediment transport from shallows to channel in an estuary
Lacy, Jessica R.; Gladding, Steve; Brand, Andreas; Collignon, Audric; Stacey, Mark
2014-01-01
We investigate the dynamics governing exchange of sediment between estuarine shallows and the channel based on field measurements at eight stations spanning the interface between the channel and the extensive eastern shoals of South San Francisco Bay. The study site is characterized by longitudinally homogeneous bathymetry and a straight channel, with friction more important than the Coriolis forcing. Data were collected for 3 weeks in the winter and 4 weeks in the late summer of 2009, to capture a range of hydrologic and meteorologic conditions. The greatest sediment transport from shallows to channel occurred during a pair of strong, late-summer wind events, with westerly winds exceeding 10 m/s for more than 24 h. A combination of wind-driven barotropic return flow and lateral baroclinic circulation caused the transport. The lateral density gradient was produced by differences in temperature and suspended sediment concentration (SSC). During the wind events, SSC-induced vertical density stratification limited turbulent mixing at slack tides in the shallows, increasing the potential for two-layer exchange. The temperature- and SSC-induced lateral density gradient was comparable in strength to salinity-induced gradients in South Bay produced by seasonal freshwater inflows, but shorter in duration. In the absence of a lateral density gradient, suspended sediment flux at the channel slope was directed towards the shallows, both in winter and during summer sea breeze conditions, indicating the importance of baroclinically driven exchange to supply of sediment from the shallows to the channel in South San Francisco Bay and systems with similar bathymetry.
Flow convergence caused by a salinity minimum in a tidal channel
Warner, John C.; Schoellhamer, David H.; Burau, Jon R.; Schladow, S. Geoffrey
2006-01-01
Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged) circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign) of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1) A simple one-dimensional (1D) finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2) A three-dimensional (3D) hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient) and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3) A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to transport through a constant direction density gradient. (4) A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.
Supercoiled circular DNA of an insect granulosis virus
Tweeten, Kathleen A.; Bulla, Lee A.; Consigli, Richard A.
1977-01-01
The DNA of the granulosis virus of the Indian meal moth, Plodia interpunctella, was characterized by physical chemical and electron microscopic techniques. Twenty-five percent of the DNA extracted from purified virus was isolated as supercoiled circular molecules. The remaining 75% consisted of relaxed circular molecules. These molecular forms were indicated by the production of two radioactive bands during sedimentation of 3H-labeled granulosis virus DNA in alkaline sucrose gradients or in equilibrium density gradients of neutral cesium chloride/propidium iodide. Electron microscopic visualization of the DNA that banded at the higher density in the latter gradients revealed supercoiled structures whereas that of DNA that banded at the lower density demonstrated relaxed circular molecules. The superhelical molecules were converted to relaxed circles by treatment with pancreatic DNase. The molecular weight of the viral DNA was calculated to be 81 × 106 by sedimentation in neutral sucrose and 78 × 106 by sedimentation in alkaline sucrose. The molecular weight estimated from length measurements in electron micrographs was 76 × 106. The buoyant density of the granulosis virus DNA was 1.703 g/cm3 and that of its insect host DNA was 1.697 g/cm3. Equilibrium sedimentation in cesium chloride and thermal denaturation indicated G + C contents of 44% and 39% for the viral and host DNA, respectively. Images PMID:198791
Supercoiled circular DNA of an insect granulosis virus.
Tweeten, K A; Bulla, L A; Consigli, R A
1977-08-01
The DNA of the granulosis virus of the Indian meal moth, Plodia interpunctella, was characterized by physical chemical and electron microscopic techniques. Twenty-five percent of the DNA extracted from purified virus was isolated as supercoiled circular molecules. The remaining 75% consisted of relaxed circular molecules. These molecular forms were indicated by the production of two radioactive bands during sedimentation of (3)H-labeled granulosis virus DNA in alkaline sucrose gradients or in equilibrium density gradients of neutral cesium chloride/propidium iodide. Electron microscopic visualization of the DNA that banded at the higher density in the latter gradients revealed supercoiled structures whereas that of DNA that banded at the lower density demonstrated relaxed circular molecules. The superhelical molecules were converted to relaxed circles by treatment with pancreatic DNase. The molecular weight of the viral DNA was calculated to be 81 x 10(6) by sedimentation in neutral sucrose and 78 x 10(6) by sedimentation in alkaline sucrose. The molecular weight estimated from length measurements in electron micrographs was 76 x 10(6). The buoyant density of the granulosis virus DNA was 1.703 g/cm(3) and that of its insect host DNA was 1.697 g/cm(3). Equilibrium sedimentation in cesium chloride and thermal denaturation indicated G + C contents of 44% and 39% for the viral and host DNA, respectively.
Callender, Edward; Rice, Karen C.
2000-01-01
Urban settings are a focal point for environmental contamination due to emissions from industrial and municipal activities and the widespread use of motor vehicles. As part of the National Water-Quality Assessment Program of the U.S. Geological Survey, streambed-sediment and dated reservoir-sediment samples were collected from the Chattahoochee River Basin and analyzed for total lead (Pb) and zinc (Zn) concentrations. The sampling transect extends from northern Georgia, through Atlanta, to the Gulf of Mexico and reflects a steep gradient in population density from nearly 1000 people/km2 in the Atlanta Metropolitan Area to fewer than 50 people/km2 in rural areas of southern Georgia and northern Florida. Correlations among population density, traffic density, and total and anthropogenic Pb and Zn concentrations indicate that population density is strongly related to traffic density and is a predictor of Pb and Zn concentrations in the environment derived from anthropogenic activities. Differences in the distributions of total Pb and Zn concentrations along the urban−suburban−rural gradient from Atlanta to the Florida Panhandle are related to temporal and spatial processes. That is, with the removal of leaded gasoline starting in the late 1970s, peak Pb concentrations have decreased to the present. Conversely, increased vehicular usage has kept Zn concentrations elevated in runoff from population centers, which is reflected in the continued enrichment of Zn in aquatic sediments. Sediments from rural areas also contain elevated concentrations of Zn, possibly in response to substantial power plant emissions for the region, as well as vehicular traffic.
NASA Astrophysics Data System (ADS)
Chen, Wei; de Swart, Huib E.
2018-03-01
This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.
Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning
Walsby, Anthony E; Holland, Daryl P
2005-01-01
Two particular difficulties in measuring the sinking velocities of phytoplankton cells are preventing convection within the sedimenting medium and determining the changing depth of the cells. These problems are overcome by using a density-stabilized sedimentation column scanned by a laser. For freshwater species, a suspension of phytoplankton is layered over a vertical density gradient of Percoll solution; as the cells sink down the column their relative concentration is measured by the forward scattering of light from a laser beam that repeatedly scans up and down the column. The Percoll gradient stabilizes the column, preventing vertical mixing by convection, radiation or perturbation of density by the descending cells. Measurements were made on suspensions of 15 μm polystyrene microspheres with a density of 1050 kg m−3; the mean velocity was 6.28 μm s−1, within 1.5% of that calculated by the Stokes equation, 6.36 μm s−1. Measurements made on the filamentous cyanobacterium Planktothrix rubescens gave mean velocities within the theoretical range of values based on the range of size, shape, orientation and density of the particles in a modified Stokes equation. Measurements on marine phytoplankton may require density gradients prepared with other substances. PMID:16849271
Large Eddy Simulations of Compositional Density Currents Flowing Over a Mobile Bed
NASA Astrophysics Data System (ADS)
Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.
2017-04-01
Density currents are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a current. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density currents scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density currents. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large Eddy Simulations (LES) of density currents generated by lock-exchange. The currents travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the current (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these circumstances, it is possible to focus alone on the effect of the dynamics of the current on the particles entrainment. To achieve this, LES-filtered Navier-Stokes equations are coupled with two scalar transport equations: one for salinity and one for sediment concentration. We discuss the use of different sediment pick-up and settling formulations, which are key factors in reproducing the correct erosion and sedimentation mechanisms. The simulations show the emergence of longitudinal bed forms, and highlight the role of turbulent structures in the entrainment pattern for different regions within the current.
NASA Astrophysics Data System (ADS)
Piliouras, A.; Kim, W.; Goggin, H.
2014-12-01
Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to determine (1) the effects of plants on delta growth and channel dynamics and (2) the influence of fine material on delta evolution. Vegetated experiments were compared to a control run without plants to isolate the effects of vegetation, and experiments with fine sediment were compared to a set of similar experiments with only sand. We found that alfalfa increased sediment trapping on the delta topset, and that the plants were especially effective at retaining fine material. Compared to the control run, the vegetated experiments showed an increased retention of fine sediment on the floodplain that resulted in increased delta relief and stronger pulses of shoreline progradation when channel avulsion and migration occurred. In other words, a higher amount of sediment storage with the addition of vegetation corresponded to a higher amount of sediment excavation during channelization events. In natural systems, dense bank vegetation is typically expected to help confine flow. We seeded our delta uniformly, which eliminated typical vegetation density gradients from riverbank to island center and therefore diminished the gradient in overbank sedimentation that best confines channels by creating levees. Dense clusters of alfalfa throughout the interior of the floodplain and delta islands were therefore able to induce flow splitting, where channels diverged around a stand of plants. This created several smaller channels that were then able to more widely distribute sediment at the delta front compared to unvegetated experiments. We conclude that plants are efficient sediment trappers that change the rate and amount of sediment storage in the delta topset, and that gradients in vegetation density are an important factor in determining how channel behavior may change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buddemeier, R.W.; Oberdorfer, J.A.
A wide variety of forces can produce head gradients that drive the flow and advective mixing of internal coral reef pore waters. Oscillatory gradients that produce mixing result from wave and tide action. Sustained gradients result from wave and tide-induced setup and ponding, from currents impinging on the reef structure, from groundwater heads, and from density differenced (temperature or salinity gradients). These gradients and the permeabilities and porosities of reef sediments are such that most macropore environments are dominated by advection rather than diffusion. The various driving forces must be analyzed to determine the individual and combined magnitudes of theirmore » effects on a specific reef pore-water system. Pore-water movement controls sediment diagenesis, the exchange of nutrients between sediments and benthos, and coastal/island groundwater resources. Because of the complexity of forcing functions, their interactions with specific local reef environments, experimental studies require careful incorporation of these considerations into their design and interpretation. 8 refs., 3 figs., 1 tab.« less
Purification of Giardia muris cysts by velocity sedimentation.
Sauch, J F
1984-01-01
Giardia muris cysts were separated from fecal contaminants in primary isolates by unit gravity velocity sedimentation. Crude isolates obtained by centrifugation over 1.0 M sucrose were overlaid onto a Percoll density gradient, 1.01 to 1.03 g/ml. G. muris cysts were well separated from faster-sedimenting fecal debris and slower-sedimenting Spironucleus muris and bacteria in 1.5 h. PMID:6486790
McGinnis, L. D.; Otis, R. M.
1979-01-01
Velocities were obtained from unreversed, refracted arrivals on analog records from a 48‐channel, 3.6-km hydrophone cable (3.89 km from the airgun array to the last hydrophone array). Approximately 200 records were analyzed along 1500 km of ship track on Georges Bank, northwest Atlantic Ocean, to obtain regional sediment velocity distribution to a depth of 1.4 km below sea level. This technique provides nearly continuous coverage of refraction velocities and vertical velocity gradients. Because of the length of the hydrophone cable and the vertical velocity gradients, the technique is applicable only to the Continental Shelf and the shallower parts of the Continental Slope in water depths less than 300 m. Sediment diagenesis, the influence of overburden pressure on compaction, lithology, density, and porosity are inferred from these data. Velocities of the sediment near the water‐sediment interface range from less than 1500 m/sec on the north edge of Georges Bank to 1830 m/sec for glacial deposits in the northcentral part of the bank. Velocity gradients in the upper 400 m range from 1.0km/sec/km(sec−1) on the south edge of the bank to 1.7sec−1 on the north. Minimum gradients of 0.8sec−1 were observed south of Nantucket Island. Velocities and velocity gradients are explained in relation to physical properties of the Cretaceous, Tertiary, and Pleistocene sediments. Isovelocity contours at 100-m/sec intervals are nearly horizontal in the upper 400 m. Isovelocity contours at greater depths show a greater difference from a mean depth because of the greater structural and lithological variation. Bottom densities inferred from the velocities range from 1.7 to 1.9g/cm3 and porosities range from 48 to 62 percent. The most significant factor controlling velocity distribution on Georges Bank is overburden pressure and resulting compaction. From the velocity data we conclude that Georges Bank has been partially overridden by a continental ice sheet.
Creeth, J. Michael; Bhaskar, K. Ramakrishnan; Donald, Alastair S. R.; Morgan, Walter T. J.
1974-01-01
1. The glycoprotein components of a human ovarian-cyst fluid were isolated by a solvent [95% (w/w) phenol]-extraction procedure; the phenol-insoluble water-soluble glycoprotein was further fractionated by (NH4)2SO4 and by ethanol to yield eight fractions. 2. The fractions were analysed in terms of amino acids, fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and sialic acid. Variations occurred, particularly in the proportion of peptide; these were partly correlated with varying extent of serological activity. 3. The fractions were characterized physicochemically in terms of buoyant density and degree of spreading in a density gradient, sedimentation velocity and molecular weight; their partial specific volumes and specific refraction increments were also determined. 4. The fractions showed wide variations in their sedimentation-velocity and density-gradient patterns, and gave evidence of pauci-dispersity in density. The fraction regarded as the most typical blood-group-specific glycoprotein sedimented as a single rapidly spreading peak and was of high molecular weight. 5. Significant correlations were observed between the physical properties of the glycoprotein fractions and the amount of their peptide component. The buoyant densities and sedimentation coefficients varied in a manner that suggested the existence of two families of glycoproteins. 6. It is suggested that variability in the extent of glycosylation, or in the degree of cross-linking, might account for the two families of glycoproteins, and that the extent of cross-linkage might also be a factor determining the solubility of these glycoproteins in hot saturated (NH4)2SO4. ImagesFig. 1.PLATE 1 PMID:4219280
NASA Technical Reports Server (NTRS)
Plank, L. D.; Kunze, M. E.; Todd, P. W.
1985-01-01
Cultured mouse leukemia cells line L5178Y were subjected to upward electrophoresis in a density gradient and the slower migrating cell populations were enriched in G2 cells. It is indicated that this cell line does not change electrophoretic mobility through the cell cycle. The possibility that increased sedimentation downward on the part of the larger G2 cells caused this separation was explored. Two different cell populations were investigated. The log phase population was found to migrate upward faster than the G2 population, and a similar difference between their velocities and calculated on the basis of a 1 um diameter difference between the two cell populations. The G2 and G1 enriched populations were isolated by Ficoll density gradient sedimentation. The bottom fraction was enriched in G2 cells and the top fraction was enriched with G1 cells, especially when compared with starting materials. The electrophoretic mobilities of these two cell populations did not differ significantly from one another. Cell diameter dependent migration curves were calculated and were found to be different. Families of migration curves that differ when cell size is considered as a parameter are predicted.
Harvey, R.W.; Metge, D.W.; Kinner, N.; Mayberry, N.
1997-01-01
Buoyant densities were determined for groundwater bacteria and microflagellates (protozoa) from a sandy aquifer (Cape Cod, MA) using two methods: (1) density-gradient centrifugation (DGC) and (2) Stoke's law approximations using sedimentation rates observed during natural-gradient injection and recovery tests. The dwarf (average cell size, 0.3 ??m), unattached bacteria inhabiting a pristine zone just beneath the water table and a majority (~80%) of the morphologically diverse community of free- living bacteria inhabiting a 5-km-long plume of organically-contaminated groundwater had DGC-determined buoyant densities <1.019 g/cm3 before culturing. In the aquifer, sinking rates for the uncultured 2-??m size class of contaminant plume bacteria were comparable to that of the bromide tracer (1.9 x 10-3 M), also suggesting a low buoyant density. Culturing groundwater bacteria resulted in larger (0.8-1.3 ??m), less neutrally- buoyant (1.043-1.081 g/cm3) cells with potential sedimentation rates up to 64-fold higher than those predicted for the uncultured populations. Although sedimentation generally could be neglected in predicting subsurface transport for the community of free-living groundwater bacteria, it appeared to be important for the cultured isolates, at least until they readapt to aquifer conditions. Culturing-induced alterations in size of the contaminant-plume microflagellates (2-3 ??m) were ameliorated by using a lower nutrient, acidic (pH 5) porous growth medium. Buoyant densities of the cultured microflagellates were low, i.e., 1.024-1.034 g/cm3 (using the DGC assay) and 1.017-1.039 g/cm3 (estimated from in-situ sedimentation rates), suggesting good potential for subsurface transport under favorable conditions.
Size-separation of silver nanoparticles using sucrose gradient centrifugation
Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won; ...
2015-08-28
Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less
Size-separation of silver nanoparticles using sucrose gradient centrifugation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won
Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less
Separation of cells from the rat anterior pituitary gland
NASA Technical Reports Server (NTRS)
Hymer, W. C.; Hatfield, J. Michael
1984-01-01
Data concerned with analyzing the cellular organization of the rat anterior pituitary gland are examined. The preparation of the cell suspensions and the methods used to separate pituitary cell types are described. Particular emphasis is given to velocity sedimentation at unit gravity, density gradient centrifugation, affinity methods, fluorescence activated cell sorting, and density gradient and continuous-flow electrophoresis. The difficulties encountered when attempting to compare data from different pituitary cell separation studies are discussed, and results from various experiments are presented. The functional capabilities of the separated cell populations can be tested in various culture systems.
Müller, F J; Pezon, C F; Pita, J C
1989-06-13
A method to study the polydispersity of zonally sedimenting and slowly diffusing macromolecules or particles in isokinetic or isovolumetric density gradients is presented. First, a brief theory is given for predicting the zonal profile after a "triangular" (or "inverse") zone is centrifuged. This type of zone is essential to preserve hydrodynamic stability of the very slowly diffusing polydisperse solutes. It is proven, both by semitheoretical considerations and by computer calculations, that the resulting concentration profile of macrosolute is almost identical with that obtainable with a rectangular zone coextensive with the triangular one and carrying the same total mass. Next, practical procedures are described for the convectionless layering of very small triangular zones (50 microL or less). The linearity and stability of the zones are experimentally tested and verified. Finally, the method is applied to cartilage proteoglycan preparations that included either the monomeric molecules only or both the monomeric and the aggregated ones. The zonal results are compared with those obtained by using conventional boundary sedimentation. The two sets of results are seen to coincide fairly well, thus proving that the present technique can add to preparative zonal centrifugation the analytical precision of boundary sedimentation. A multimodal polydisperse system is suggested to describe the aggregated proteoglycan macromolecules.
Assembly of multiple cell gradients directed by three-dimensional microfluidic channels.
Li, Yiwei; Feng, Xiaojun; Wang, Yachao; Du, Wei; Chen, Peng; Liu, Chao; Liu, Bi-Feng
2015-08-07
Active control over the cell gradient is essential for understanding biological systems and the reconstitution of the functionality of many types of tissues, particularly for organ-on-a-chip. Here, we propose a three-dimensional (3D) microfluidic strategy for generating controllable cell gradients. In this approach, a homogeneous cell suspension is loaded into a 3D stair-shaped PDMS microchannel to generate a cell gradient within 10 min by sedimentation. We demonstrate that cell gradients of various profiles (exponential and piecewise linear) can be achieved by precisely controlling the height of each layer during the fabrication. With sequential seeding, we further demonstrate the generation of two overlapping cell gradients on the same glass substrate with pre-defined designs. The cell gradient-based QD cytotoxicity assay also demonstrated that cell behaviors and resistances were regulated by the changes in cell density. These results reveal that the proposed 3D microfluidic strategy provides a simple and versatile means for establishing controllable gradients in cell density, opening up a new avenue for reconstructing functional tissues.
Geothermal studies in oil field districts of North China
NASA Astrophysics Data System (ADS)
Wang, Ji-An; Wang, Ji-Yang; Yan, Shu-Zhen; Lu, Xiu-Wen
In North China, Tertiary sediments give the main oil-genetic series. The mean value of terrestrial heat flow density has been considered to be 60 - 65 mW/m2, and the geothermal gradient in Tertiary sediments usually ranges from 30 to 40° C/km in the region studied. Supposing that the onset of oil generation lies at about 90° C, the upper limit of the depth of oil-generation is at about 2000 to 2500 m depth. Recent paleogeothermal studies using vitrinite reflectance, clay and authigenic minerals, as well as other methods showed that in Eocene the geothermal gradient has been higher than at present. Some results were obtained and discussed.
Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles.
Spruijt, E; Biesheuvel, P M
2014-02-19
In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation-diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state. Finally, we demonstrate that our model is not limited to hard spheres, by extending it to charged spherical particles, and to dumbbells, trimers and short chains of connected beads.
NASA Astrophysics Data System (ADS)
Field, J. P.; Breshears, D. D.; Whicker, J. J.; Zou, C. B.; Allen, C. D.
2007-12-01
Aeolian sediment transport and associated dust flux are important processes in dryland ecosystems where vegetation cover is inherently sparse relative to more mesic ecosystems. Aeolian processes in dryland ecosystems are strongly influenced by the spatial density of roughness elements, which is largely determined by woody plant height and spacing. Despite the global extent of dryland ecosystems, relatively few measurements of aeolian sediment transport have been made within these systems, and these few existing measurements have not been systematically evaluated with respect to gradients of woody plant cover. We report measured aeolian sediment transport in an undisturbed and disturbed semiarid grasslands in southern Arizona. To place our estimate in a broader context, we compared our site-specific findings to other recently published measurements of aeolian sediment transport in disturbed and undisturbed dryland ecosystems. We propose a new conceptual framework for dryland aeolian sediment transport and dust flux as a function of woody plant cover that integrates our site-specific data with the broader literature base. Our findings suggest that for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport and associated dust flux than grasslands, woodlands and forests due to wake interference flow associated with the height and spacing of woody roughness elements. Furthermore, the proposed framework suggests that for disturbed ecosystems, the upper bound for aeolian sediment transport increases as a function of decreasing woody plant cover. As a result, aeolian sediment transport spans a relatively small range in woodlands and forests, an intermediate range in shrublands, and the largest range in grasslands. Our framework is applicable both within locations and across broad gradients
Problem-based test: replication of mitochondrial DNA during the cell cycle.
Sétáló, György
2013-01-01
Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids, re-replication block, cell fractionation, Svedberg (sedimentation constant = [ S]), nuclear DNA, mitochondrial DNA, heavy and light mitochondrial DNA chains, heteroplasmy, mitochondrial diseases Copyright © 2013 Wiley Periodicals, Inc.
Isolation of zymogen granules from rat pancreas.
Rindler, Michael J
2006-01-01
This unit describes methods for preparing zymogen granules from rat pancreas. Zymogen granules are storage organelles in pancreatic acinar cells containing digestive enzymes that are released into the pancreatic duct. The protocols in this unit take advantage of the large size (up to 1 microm diameter) and high density (>1.20 g/cm(3) on sucrose gradients) of the granules as compared to other cellular organelles. They use a combination of differential sedimentation and density gradient separation to accomplish the purification. Similar procedures can be used to isolate zymogen granules from mouse pancreas and canine pancreas. A protocol for preparing zymogen granules from dog pancreas is also included.
NASA Astrophysics Data System (ADS)
Mackey, Tyler J.; Sumner, Dawn Y.; Hawes, Ian; Jungblut, Anne D.
2017-11-01
Cyanobacteria-dominated microbial mats in Lake Vanda grow with pinnacles and ridges separated by prostrate mat. Rocks protrude over microbial mats on the lake bottom to create localized, dm-scale gradients in sedimentation and irradiance. The effects of sedimentation on pinnacle and ridge growth were isolated from photosynthetic activity by contrasting growth across microenvironmental gradients. Sedimentation rate was measured as the mass of sand and mud sized sediment in mat that accumulated over 11 years, and the incident light was modeled near and under rocks by reconstructing topography using Structure from Motion techniques. Morphologically diverse pinnacles and ridges were documented in both exposed and sheltered mat microenvironments, in addition to growing downward from the underside of overhanging rocks. Mat that grew with > 40% irradiance under overhangs did not have consistent differences in pinnacle density or ridge abundance as a function of sedimentation rates or irradiance when compared to exposed mat. However, their morphology did change significantly with changes in the direction of incident irradiance. Where irradiance was < 40% ambient or light intersected the mat at very low angles, few pinnacles were present and ridges were preferentially aligned parallel to incident light direction. These observations indicate that pinnacle nucleation and spacing were not strongly influenced by sedimentation but pinnacle and ridge morphology varied in response to directional irradiance.
NASA Astrophysics Data System (ADS)
Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.
2003-12-01
The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.
A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes
NASA Astrophysics Data System (ADS)
Mehta, A. J.; Krishna, G.
2009-12-01
Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density, and a thorough verification against experimental data.
Separation of cells from the rat anterior pituitary gland
NASA Technical Reports Server (NTRS)
Hymer, Wesley C.; Hatfield, J. Michael
1983-01-01
Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining technique used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.
Evaluation of gravitational gradients generated by Earth's crustal structures
NASA Astrophysics Data System (ADS)
Novák, Pavel; Tenzer, Robert; Eshagh, Mehdi; Bagherbandi, Mohammad
2013-02-01
Spectral formulas for the evaluation of gravitational gradients generated by upper Earth's mass components are presented in the manuscript. The spectral approach allows for numerical evaluation of global gravitational gradient fields that can be used to constrain gravitational gradients either synthesised from global gravitational models or directly measured by the spaceborne gradiometer on board of the GOCE satellite mission. Gravitational gradients generated by static atmospheric, topographic and continental ice masses are evaluated numerically based on available global models of Earth's topography, bathymetry and continental ice sheets. CRUST2.0 data are then applied for the numerical evaluation of gravitational gradients generated by mass density contrasts within soft and hard sediments, upper, middle and lower crust layers. Combined gravitational gradients are compared to disturbing gravitational gradients derived from a global gravitational model and an idealised Earth's model represented by the geocentric homogeneous biaxial ellipsoid GRS80. The methodology could be used for improved modelling of the Earth's inner structure.
He, Ji-Jun; Cai, Qiang-Guo; Liu, Song-Bo
2012-05-01
Based on the field observation data of runoff and sediment yield produced by single rainfall events in runoff plots, this paper analyzed the variation patterns of runoff and sediment yield on the slopes with different gradients under different single rainfall conditions. The differences in the rainfall conditions had little effects on the variation patterns of slope runoff with the gradient. Under the conditions of six different rainfall events in the study area, the variation patterns of slope runoff with the gradient were basically the same, i. e., the runoff increased with increasing gradient, but the increment of the runoff decreased slightly with increasing gradient, which was mainly determined by the infiltration flux of atmospheric precipitation. Rainfall condition played an important role on the slope sediment yield. Generally, there existed a critical slope gradient for slope erosion, but the critical gradient was not a fixed value, which varied with rainfall condition. The critical slope gradient for slope erosion increased with increasing slope gradient. When the critical slope gradient was greater, the variation of slope sediment yield with slope gradient always became larger.
Yazdani Foshtomi, Maryam; Leliaert, Frederik; Derycke, Sofie; Willems, Anne; Vincx, Magda
2018-01-01
The presence of large densities of the piston-pumping polychaete Lanice conchilega can have important consequences for the functioning of marine sediments. It is considered both an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeochemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concentrations) and physical properties (grain size) of marine sediments, which could affect functional properties of sediment-inhabiting microbial communities. Here we investigated whether density-dependent effects of L. conchilega affected horizontal (m-scale) and vertical (cm-scale) patterns in the distribution, diversity and composition of the typical nosZ gene in the active denitrifying organisms. This gene plays a major role in N2O reduction in coastal ecosystems as the last step completing the denitrification pathway. We showed that both vertical and horizontal composition and richness of nosZ gene were indeed significantly affected when large densities of the bio-irrigator were present. This could be directly related to allogenic ecosystem engineering effects on the environment, reflected in increased oxygen penetration depth and oxygen concentrations in the upper cm of the sediment in high densities of L. conchilega. A higher diversity (Shannon diversity and inverse Simpson) of nosZ observed in patches with high L. conchilega densities (3,185–3,440 ind. m-2) at deeper sediment layers could suggest a downward transport of NO3− to deeper layers resulting from bio-irrigation as well. Hence, our results show the effect of L. conchilega bio-irrigation activity on denitrifying organisms in L. conchilega reefs. PMID:29408934
Foster, Gregory D; Cui, Vickie
2008-10-01
PAHs and PCBs were measured in river sediments along a 226 km longitudinal transect that spanned rural to urban land use settings through Valley and Ridge, Piedmont Plateau and Coastal Plain physiographic provinces in the Potomac River basin (mid-Atlantic USA). A gradient in PAH concentrations was found in river bed sediments along the upstream transect in the Potomac and Shenandoah Rivers that correlated with population densities in the nearby sub-basins. Sediment PAH concentrations halved per each approximately 40 km of transect distance upstream (i.e., the half-concentration distance) from the urban center (Washington, DC) of the Potomac River basin in direct proportion to population density. The PAH molecular composition was consistent across all geologic provinces, revealing a dominant pyrogenic source. Fluoranthene to perylene ratios served as useful markers for urban inputs, with a ratio > 2.4 observed in sediments near urban structures such as roadways, bridges and sewer outfalls. PCBs in sediments were not well correlated with population densities along the river basin transect, but the highest concentrations were found in the urban Coastal Plain region near Washington, DC and in the Shenandoah River near a known industrial Superfund site. PAHs were moderately correlated with sediment total organic carbon (TOC) in the Shenandoah River and Coastal Plain Potomac River regions, but TOC was poorly correlated with PCB concentrations throughout the entire basin. Although both PAHs and PCBs are widely recognized as urban-derived contaminants, their concentration profiles and geochemistry in river sediments were uniquely different throughout the upper Potomac River basin.
Torabi, Forough; Binduraihem, Adel; Miller, David
2017-03-01
Mature spermatozoa bind hyaluronic acid in the extracellular matrix via hyaladherins. Immature spermatozoa may be unable to interact because they do not express the appropriate hyaladherins on their surface. Fresh human semen samples were fractionated using differential density gradient centrifugation (DDGC) and the ability of these fractions to bind hyaluronic acid was evaluated. The presence of sperm hyaladherins was also assessed. CD44 was located mainly on the acrosome and equatorial segment and became more restricted to the equatorial segment in capacitated spermatozoa. Hyaluronic acid-TRITC (hyaluronic acid conjugated with tetramethylrhodamine isothiocyanante), a generic hyaluronic-acid-binding reagent, labelled the membrane and the neck region, particularly after capacitation. Sperm populations obtained after DDGC or after interaction with hyaluronic acid were assessed for DNA fragmentation and chromatin maturity. Strong relationships between both measures and sperm sedimentation and hyaluronic-acid-binding profiles were revealed. Capacitation enhanced hyaluronic acid binding of both DDGC-pelleted sperm and sperm washed free of seminal fluid. In conclusion, hyaladherins were detected on human sperm and a higher capacity for sperm hyaluronic-acid-binding was shown to correspond with their DDGC sedimentation profiles and with lower levels of DNA fragmentation and better chromatin maturity. Capacitation induced changes in the distribution and presence of hyaladherins may enhance hyaluronic-acid-binding. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
GOCE gravity gradient data for lithospheric modeling and geophysical exploration research
NASA Astrophysics Data System (ADS)
Bouman, Johannes; Ebbing, Jörg; Meekes, Sjef; Lieb, Verena; Fuchs, Martin; Schmidt, Michael; Fattah, Rader Abdul; Gradmann, Sofie; Haagmans, Roger
2013-04-01
GOCE gravity gradient data can improve modeling of the Earth's lithosphere and upper mantle, contributing to a better understanding of the Earth's dynamic processes. We present a method to compute user-friendly GOCE gravity gradient grids at mean satellite altitude, which are easier to use than the original GOCE gradients that are given in a rotating instrument frame. In addition, the GOCE gradients are combined with terrestrial gravity data to obtain high resolution grids of gravity field information close to the Earth's surface. We also present a case study for the North-East Atlantic margin, where we analyze the use of satellite gravity gradients by comparison with a well-constrained 3D density model that provides a detailed picture from the upper mantle to the top basement (base of sediments). We demonstrate how gravity gradients can increase confidence in the modeled structures by calculating the sensitvity of model geometry and applied densities at different observation heights; e.g. satellite height and near surface. Finally, this sensitivity analysis is used as input to study the Rub' al Khali desert in Saudi Arabia. In terms of modeling and data availability this is a frontier area. Here gravity gradient data help especially to set up the regional crustal structure, which in turn allows to refine sedimentary thickness estimates and the regional heat-flow pattern. This can have implications for hydrocarbon exploration in the region.
Isolation and purification of rabbit mesenchymal stem cells using an optimized protocol.
Lin, Chunbo; Shen, Maorong; Chen, Weiping; Li, Xiaofeng; Luo, Daoming; Cai, Jinhong; Yang, Yuan
2015-11-01
Mesenchymal stem cells were first isolated and grown in vitro by Friedenstein over 40 yr ago; however, their isolation remains challenging as they lack unique markers for identification and are present in very small quantities in mesenchymal tissues and bone marrow. Using whole marrow samples, common methods for mesenchymal stem cell isolation are the adhesion method and density gradient fractionation. The whole marrow sample adhesion method still results in the nonspecific isolation of mononuclear cells, and activation and/or potential loss of target cells. Density gradient fractionation methods are complicated, and may result in contamination with toxic substances that affect cell viability. In the present study, we developed an optimized protocol for the isolation and purification of mesenchymal stem cells based on the principles of hypotonic lysis and natural sedimentation.
Density dependence, spatial scale and patterning in sessile biota.
Gascoigne, Joanna C; Beadman, Helen A; Saurel, Camille; Kaiser, Michel J
2005-09-01
Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.
Influence of zero-G on single-cell systems and zero-G fermenter design concepts
NASA Technical Reports Server (NTRS)
Mayeux, J. V.
1977-01-01
An analysis was made to identify potential gravity-sensitive mechanisms that may be present in the single-cell growth system. Natural convection (density gradients, induced sedimentation, and buoyancy) is important in microbial systems. The absence of natural convection in the space-flight environment could provide an opportunity for new approaches for developments in industrial fermentation and agriculture. Some of the potential influences of gravity (i.e., convection, sedimentation, etc.) on the cell were discussed to provide insight into what experimental areas may be pursued in future space-flight research programs.
Transport of particles, drops, and small organisms in density stratified fluids
NASA Astrophysics Data System (ADS)
Ardekani, Arezoo M.; Doostmohammadi, Amin; Desai, Nikhil
2017-10-01
Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes, where density stratification naturally occurs due to temperature or salinity gradients. We explore the effects of stratification on the fundamental hydrodynamics of settling particles, rising drops, and small organisms. The results of our direct numerical simulations of the sedimentation of particles show that the presence of vertical density gradients in the water column can substantially affect the settling dynamics of a particle, interaction between a pair of particles, and settling rates and microstructure of suspension of particles. We show that elongation of particles affects both the settling orientation and the settling rate of particles in stratified fluids, which will have direct consequences on the vertical flux of particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and lakes. In particular, stratification has a major effect on the flow field, energy expenditure, and nutrient uptake of small organisms. In addition, the role of stratification in pattern formation of bioconvection plumes of algal cells and in biogenic mixing is investigated. In particular, the numerical approach allows for considering the effects of background turbulence and hydrodynamic perturbations produced by swimming organisms, shedding light on the contribution of organisms in the mixing process in aqueous environments.
Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, U.S.A.) kettle ponds
Roman, C.T.; Barrett, N.E.; Portnoy, J.W.
2001-01-01
The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.
Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, USA) kettle ponds
Roman, C.T.; Barrett, N.E.; Portnoy, J.W.
2001-01-01
The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.
Modeling sediment concentration of rill flow
NASA Astrophysics Data System (ADS)
Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen
2018-06-01
Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.
Ubiquity of microplastics in coastal seafloor sediments.
Ling, S D; Sinclair, M; Levi, C J; Reeves, S E; Edgar, G J
2017-08-15
Microplastic pollutants occur in marine environments globally, however estimates of seafloor concentrations are rare. Here we apply a novel method to quantify size-graded (0.038-4.0mm diam.) concentrations of plastics in marine sediments from 42 coastal and estuarine sites spanning pollution gradients across south-eastern Australia. Acid digestion/density separation revealed 9552 individual microplastics from 2.84l of sediment across all samples; equating to a regional average of 3.4 microplastics·ml -1 sediment. Microplastics occurred as filaments (84% of total) and particle forms (16% of total). Positive correlations between microplastic filaments and wave exposure, and microplastic particles with finer sediments, indicate hydrological/sediment-matrix properties are important for deposition/retention. Contrary to expectations, positive relationships were not evident between microplastics and other pollutants (heavy metals/sewage), nor were negative relationships with neighbouring reef biota detected. Rather, microplastics were ubiquitous across sampling sites. Positive associations with some faunal-elements (i.e. invertebrate species richness) nevertheless suggest high potential for microplastic ingestion. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dubey, C. P.; Tiwari, V. M.; Rao, P. R.
2017-12-01
Comprehension of subsurface structures buried under thick sediments in the region of Bay of Bengal is vital as structural features are the key parameters that influence or are caused by the subsurface deformation and tectonic events like earthquakes. Here, we address this issue using the integrated analysis and interpretation of gravity and full gravity gradient tensor with few seismic profiles available in the poorly known region. A 2D model of the deep earth crust-mantle is constructed and interpreted with gravity gradients and seismic profiles, which made it possible to obtain a visual image of a deep seated fault below the basement associated with thick sediments strata. Gravity modelling along a NE-SW profile crossing the hypocentre of the earthquake of 21 May 2014 ( M w 6.0) in the northern Bay of Bengal suggests that the location of intraplate normal dip fault earthquake in the upper mantle is at the boundary of density anomalies, which is probably connected to the crustal fault. We also report an enhanced structural trend of two major ridges, the 85°E and the 90°E ridges hidden under the sedimentary cover from the computed full gravity gradients tensor components.
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Fullea, Javier
2015-03-01
We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to the gravitational compaction of sedimentary rocks. Therefore, the density model is extended by including a linear increase in density with depth. Subsequent L2 and L∞ norm minimization procedures are applied to find the density parameters by adjusting both the vertical gravity and the vertical gravity gradient. We found that including the vertical gravity gradient in the interpretation of the GOCO03S-derived data reduces the non-uniqueness of the inverse gradiometric problem for density determination. The density structure of the sedimentary formations that provide the optimum predictions of the GOCO03S-derived gravity and vertical gradient of gravity consists of a surface density contrast with respect to surrounding rocks of 0.24-0.28 g/cm3 and its decrease with depth of 0.05-0.25 g/cm3 per 10 km. Moreover, the case where the sedimentary rocks are gravitationally completely compacted in the deepest parts of the basin is supported by L∞ norm minimization. However, this minimization also allows a remaining density contrast at the deepest parts of the sedimentary basin of about 0.1 g/cm3.
Interaction of lateral baroclinic forcing and turbulence in an estuary
Lacy, J.R.; Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.
2003-01-01
Observations of density and velocity in a channel in northern San Francisco Bay show that the onset of vertical density stratification during flood tides is controlled by the balance between the cross-channel baroclinic pressure gradient and vertical mixing due to turbulence. Profiles of velocity, salinity, temperature, and suspended sediment concentration were measured in transects across Suisun Cutoff, in northern San Francisco Bay, on two days over the 12.5-hour tidal cycle. During flood tides an axial density front developed between fresher water flowing from the shallows of Grizzly Bay into the northern side of Suisun Cutoff and saltier water flowing up the channel. North of the front, transverse currents were driven by the lateral salinity gradient, with a top-to-bottom velocity difference greater than 30 cm/s. South of the front, the secondary circulation was weak, and along-channel velocities were greater than to the north. The gradient Richardson number shows that stratification was stable north of the front, while the water column was turbulently mixed south of the front. Time-series measurements of velocity and salinity demonstrate that the front develops during each tidal cycle. In estuaries, longitudinal dynamics predict less stratification during flood than ebb tides. These data show that stratification can develop during flood tides due to a lateral baroclinic pressure gradient in estuaries with complex bathymetry.
1976-01-01
Normal human serum subjected to sucrose density gradient analysis exhibited multiple sedimenting species of properdin antigen. Properdin antigen distribution was dependent on serum concentration, ionic strength, temperature, and the presence of C3, and was not dependent on the presence of divalent metal cations or blood coagulation. In mixtures of purified components, properdin sedimented heavier in the presence of C3, C3b, or C3c. Addition of factor B to mixtures containing C3 and properdin was without effect. These data provide insights into earlier discrepancies concerning the sedimentation behavior of partially purified properdin, indicate a propensity of some constituents of the alternative pathway to form protein-protein complexes, and suggest caution in interpretation of immunopathological studies in which properdin deposits are found in the presence of C3. PMID:2647
Study on sound-speed dispersion in a sandy sediment at frequency ranges of 0.5-3 kHz and 90-170 kHz
NASA Astrophysics Data System (ADS)
Yu, Sheng-qi; Liu, Bao-hua; Yu, Kai-ben; Kan, Guang-ming; Yang, Zhi-guo
2017-03-01
In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710-1713 m/s with a weak positive gradient in the sand sample after being boiled (as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model (EDFM) and Buckingham's theory. However, the sound speed in the uncooked sandy sediment obviously decreases (about 80%) both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.
Metal concentrations in urban riparian sediments along an urbanization gradient
Daniel J. Bain; Ian D. Yesilonis; Richard V. Pouyat
2012-01-01
Urbanization impacts fluvial systems via a combination of changes in sediment chemistry and basin hydrology. While chemical changes in urban soils have been well characterized, similar surveys of riparian sediments in urbanized areas are rare. Metal concentrations were measured in sediments collected from riparian areas across the urbanization gradient in Baltimore, MD...
Jeffrey, P D; Nichol, L W; Smith, G D
1975-01-25
A method is presented by which an experimental record of total concentration as a function of radial distance, obtained in a sedimentation equilibrium experiment conducted with a noninteracting mixture in the absence of a density gradient, may be analyzed to obtain the unimodal distributions of molecular weight and of partial molar volume when these vary concomitantly and continuously. Particular attention is given to the caracterization of classes of lipoproteins exhibiting Gaussian distributions of these quantities, although the analysis is applicable to other types of unimodal distribution. Equations are also formulated permitting the definition of the corresponding distributions of partial specific volume and of density. The analysis procedure is based on a method (employing Laplace transforms) developed previously, but differs from it in that it avoids the necessity of differentiating experimental results, which introduces error. The method offers certain advantages over other procedures used to characterize and compare lipoprotein samples (exhibiting unimodal distributions) with regard to the duration of the experiment, economy of the sample, and, particularly, the ability to define in principle all of the relevant distributions from one sedimentation equilibrium experiment and an external measurement of the weight average partial specific volume. These points and the steps in the analysis procedure are illustrated with experimental results obtained in the sedimentation equilibrium of a sample of human serum low density lipoprotein. The experimental parameters (such as solution density, column height, and angular velocity) used in the conduction of these experiments were selected on the basis of computer-simulated examples, which are also presented. These provide a guide for other workers interested in characterizing lipoproteins of this class.
Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min
2012-06-01
Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.
Han, Liang; Hole, John; Stock, Joann; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan; Davenport, Kathy; Livers, Amanda
2016-01-01
Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65–90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ∼7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ∼1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ∼3 km depth in most of the valley, but at only ∼1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7–8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.
Cohesive Strength of Gas-hydrate-bearing Marine Sediments
NASA Astrophysics Data System (ADS)
Cook, A. E.; Goldberg, D.
2005-12-01
We examine the relationship between gas hydrate saturation and the cohesive strength of marine sediments in a variety of continental margin settings. The cohesive strength (cohesion) is a fundamental physical property controlling sediment resistance to compressive failure. The cohesion (Co), is typically defined by the uncompressive rock strength and the friction angle, but it can also be related to the dynamic Young's modulus (ED), where: Co = 1.5*10-3 ED. The dynamic Young's modulus is computed using in situ Vp, Vs, and bulk density borehole logs. The Co profiles are compared to estimates of the in situ hydrate saturation, Sh, calculated using electrical resistivity logs and the modified Archie formula: Sh = 1 - (aRw/RΦm)1/n. We will present results of these comparisons from data collected during Ocean Drilling Program Legs at Cascadia margin (204 & 168) and Blake Ridge (164), the JIP gas hydrate drilling project in the Gulf of Mexico, and Malik permafrost wells. In general, at all the sites investigated, Co steadily increases downhole as sediments compact due to overburden. In marine sediments, cohesion ranges from 500-2000kPa above the BSR, with a baseline gradient usually between 5 and 10 kPa/m. Preliminary results show at Cascadia margin that sediments with Sh > 15%, Co increases dramatically, at least 200kPa greater than the general trend of the downhole gradient. This suggests that Co is affected directly by Sh, and may be related to the rate of change in Sh (e.g. gradual or sharp) as a function of depth. Further study on the relationship between Co and Sh may provide information on the growth habit of gas hydrates in sediment pore spaces.
NASA Astrophysics Data System (ADS)
Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan R.; Davenport, Kathy K.; Livers, Amanda J.
2016-11-01
Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65-90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ˜7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ˜1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ˜3 km depth in most of the valley, but at only ˜1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7-8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.
NASA Astrophysics Data System (ADS)
Persico, Lyman P.; Nichols, Kyle K.; Bierman, Paul R.
2005-07-01
To quantify short-term sediment movement rates across Mojave Desert piedmonts, 1600 painted and numbered pebbles were laid out in paired, orthogonal, 20 m lines at 4 sites and resurveyed five times over 2 years and revisited 2 years later. Pebble lines cross shallow (5-15 cm), ephemeral channels and adjacent unconsolidated interfluves, the latter being the dominant landform at all sites. Two sites are located on surfaces that have been or are impacted by military training activities, including the use of tracked vehicles. The two other sites have not been disturbed by human impact. Three different processes transport pebbles. Episodic streamflow in ephemeral channels transports a few pebbles long distances (decimeters to meters) down gradient. Bioturbation moves many pebbles small distances (centimeters) in any direction, and vehicular disturbance transports pebbles varying distances (centimeters to meters) in any direction. Significant down-gradient sediment movement occurred dominantly in channels where flowing water was concentrated. Interfluves were stable surfaces where little transport occurred. Off-road vehicle use is coincident with accelerated pebble movement. Pebbles moved further and faster down gradient at the disturbed Iron Mountain and East Range Road sites (mean speeds of 0.18 and 0.34 m yr-1, respectively) than at the undisturbed Chemehuevi and Goldstone sites, (mean speeds of 0.17 and 0.02 m yr-1, respectively). Mean pebble movement is highly and negatively correlated with vegetation density. Short-term pebble movement rates are several times lower than long-term (103 to 104 year) rates, suggesting the importance of rare, extreme precipitation events for sediment transport such as those of fall and winter 2004.
THE SEPARATION OF DIFFERENT CELL CLASSES FROM LYMPHOID ORGANS
Shortman, Ken; Seligman, Kathrin
1969-01-01
1. Mammalian erythrocytes swell as the pH of the isotonic suspending medium is lowered, as a direct consequence of the specialized permeability properties of the erythrocyte membrane. Lymphocytes and granulocytes from a variety of sources did not exhibit this property. 2. The behaviour of mouse bone marrow erythroid cells at various stages of differentiation was studied by using a change in buoyant density with pH as an index of swelling. The ability to swell with a pH drop was acquired while the cell was still nucleated. All non-nucleated cells showed swelling. Most small erythroblasts shared this property, whereas most large erythroblasts did not. 3. The density shift with pH was used to provide a purification scheme specific for erythroid cells. The bone marrow cells were first centrifuged to equilibrium in an isotonic albumin density gradient at neutral pH. Regions of the gradient containing the erythroid cells were collected, and the cells were recovered and redistributed in an albumin gradient at acid pH. The erythroid cells showed a specific density shift which removed them from contaminants. Preparations containing 90–97% erythroblasts were obtained by this technique. 4. Differentiation within the erythroid series was accompanied by a general increase in cell buoyant density at neutral pH. This density increase may have been a discontinuous process, since erythroid cells appeared to form a number of density peaks. 5. The pH shift technique, in association with established density distribution and sedimentation velocity procedures, provides a range of cell separation techniques for biological or biochemical studies of erythroid cell differentiation in the complex cell mixtures in bone marrow or spleen. PMID:5801428
Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian
2017-06-01
Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.
Dyson, Kirstie E; Bulling, Mark T; Solan, Martin; Hernandez-Milian, Gema; Raffaelli, David G; White, Piran C L; Paterson, David M
2007-10-22
Despite the complexity of natural systems, heterogeneity caused by the fragmentation of habitats has seldom been considered when investigating ecosystem processes. Empirical approaches that have included the influence of heterogeneity tend to be biased towards terrestrial habitats; yet marine systems offer opportunities by virtue of their relative ease of manipulation, rapid response times and the well-understood effects of macrofauna on sediment processes. Here, the influence of heterogeneity on microphytobenthic production in synthetic estuarine assemblages is examined. Heterogeneity was created by enriching patches of sediment with detrital algae (Enteromorpha intestinalis) to provide a source of allochthonous organic matter. A gradient of species density for four numerically dominant intertidal macrofauna (Hediste diversicolor, Hydrobia ulvae, Corophium volutator, Macoma balthica) was constructed, and microphytobenthic biomass at the sediment surface was measured. Statistical analysis using generalized least squares regression indicated that heterogeneity within our system was a significant driving factor that interacted with macrofaunal density and species identity. Microphytobenthic biomass was highest in enriched patches, suggesting that nutrients were obtained locally from the sediment-water interface and not from the water column. Our findings demonstrate that organic enrichment can cause the development of heterogeneity which influences infaunal bioturbation and consequent nutrient generation, a driver of microphytobenthic production.
Environmental Drivers of the Canadian Arctic Megabenthic Communities
Roy, Virginie; Iken, Katrin; Archambault, Philippe
2014-01-01
Environmental gradients and their influence on benthic community structure vary over different spatial scales; yet, few studies in the Arctic have attempted to study the influence of environmental gradients of differing spatial scales on megabenthic communities across continental-scales. The current project studied for the first time how megabenthic community structure is related to several environmental factors over 2000 km of the Canadian Arctic, from the Beaufort Sea to northern Baffin Bay. Faunal trawl samples were collected between 2007 and 2011 at 78 stations from 30 to 1000 m depth and patterns in biomass, density, richness, diversity, and taxonomic composition were examined in relation to indirect/spatial gradients (e.g., depth), direct gradients (e.g., bottom oceanographic variables), and resource gradients (e.g., food supply proxies). Six benthic community types were defined based on their biomass-based taxonomic composition. Their distribution was significantly, but moderately, associated with large-scale (100–1000 km) environmental gradients defined by depth, physical water properties (e.g., bottom salinity), and meso-scale (10–100 km) environmental gradients defined by substrate type (hard vs. soft) and sediment organic carbon content. We did not observe a strong decline of bulk biomass, density and richness with depth or a strong increase of those community characteristics with food supply proxies, contrary to our hypothesis. We discuss how local- to meso-scale environmental conditions, such as bottom current regimes and polynyas, sustain biomass-rich communities at specific locations in oligotrophic and in deep regions of the Canadian Arctic. This study demonstrates the value of considering the scales of variability of environmental gradients when interpreting their relevance in structuring of communities. PMID:25019385
Bacterial communities associated with seagrass bed sediments are not well studied. The work presented here investigated several factors, including the presence or absence of vegetation, depth into sediment, and season, and their impact on bacterial community diversity. Double gra...
Modeling chemical gradients in sediments under losing and gaining flow conditions: The GRADIENT code
NASA Astrophysics Data System (ADS)
Boano, Fulvio; De Falco, Natalie; Arnon, Shai
2018-02-01
Interfaces between sediments and water bodies often represent biochemical hotspots for nutrient reactions and are characterized by steep concentration gradients of different reactive solutes. Vertical profiles of these concentrations are routinely collected to obtain information on nutrient dynamics, and simple codes have been developed to analyze these profiles and determine the magnitude and distribution of reaction rates within sediments. However, existing publicly available codes do not consider the potential contribution of water flow in the sediments to nutrient transport, and their applications to field sites with significant water-borne nutrient fluxes may lead to large errors in the estimated reaction rates. To fill this gap, the present work presents GRADIENT, a novel algorithm to evaluate distributions of reaction rates from observed concentration profiles. GRADIENT is a Matlab code that extends a previously published framework to include the role of nutrient advection, and provides robust estimates of reaction rates in sediments with significant water flow. This work discusses the theoretical basis of the method and shows its performance by comparing the results to a series of synthetic data and to laboratory experiments. The results clearly show that in systems with losing or gaining fluxes, the inclusion of such fluxes is critical for estimating local and overall reaction rates in sediments.
NASA Astrophysics Data System (ADS)
Zordan, Jessica; Schleiss, Anton J.; Franca, Mário J.
2016-04-01
Density or gravity currents are geophysical flows driven by density gradients between two contacting fluids. The physical trigger mechanism of these phenomena lays in the density differences which may be caused by differences in the temperature, dissolved substances or concentration of suspended sediments. Saline density currents are capable to entrain bed sediments inducing signatures in the bottom of sedimentary basins. Herein, saline density currents are reproduced in laboratory over a movable bed. The experimental channel is of the lock-exchange type, it is 7.5 m long and 0.3 m wide, divided into two sections of comparable volumes by a sliding gate. An upstream reach serves as a head tank for the dense mixture; the current propagates through a downstream reach where the main measurements are made. Downstream of the channel a tank exist to absorb the reflection of the current and thus artifacts due to the limited length of the channel. High performance thermoplastic polyurethane simulating fine sediments forms the movable bed. Measures of 3D instantaneous velocities will be made with the use of the non-intrusive technique of the ADV (Acoustic Doppler Current Profiler). With the velocity measurements, the evolution in time of the channel-bed shear stress due the passage of gravity currents is estimated. This is in turn related to the observed erosion and to such parameters determinant for the dynamics of the current as initial density difference, lock length and channel slope. This work was funded by the ITN-Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7-PEOPLE-2013-ITN under REA grant agreement n_607394-SEDITRANS.
Maier, Katherine L.; Brothers, Daniel; Paull, Charles K.; McGann, Mary; Caress, David W.; Conrad, James E.
2016-01-01
Variations in seabed gradient are widely acknowledged to influence deep-water deposition, but are often difficult to measure in sufficient detail from both modern and ancient examples. On the continental slope offshore Los Angeles, California, autonomous underwater vehicle, remotely operated vehicle, and shipboard methods were used to collect a dense grid of high-resolution multibeam bathymetry, chirp sub-bottom profiles, and targeted sediment core samples that demonstrate the influence of seafloor gradient on sediment accumulation, depositional environment, grain size of deposits, and seafloor morphology. In this setting, restraining and releasing bends along the active right-lateral Palos Verdes Fault create and maintain variations in seafloor gradient. Holocene down-slope flows appear to have been generated by slope failure, primarily on the uppermost slope (~ 100–200 m water depth). Turbidity currents created a low relief (< 10 m) channel, up-slope migrating sediment waves (λ = ~ 100 m, h ≤ 2 m), and a series of depocenters that have accumulated up to 4 m of Holocene sediment. Sediment waves increase in wavelength and decrease in wave height with decreasing gradient. Integrated analysis of high-resolution datasets provides quantification of morphodynamic sensitivity to seafloor gradients acting throughout deep-water depositional systems. These results help to bridge gaps in scale between existing deep-sea and experimental datasets and may provide constraints for future numerical modeling studies.
Belzunces, L P; Toutant, J P; Bounias, M
1988-01-01
The polymorphism of bee acetylcholinesterase was studied by sucrose-gradient-sedimentation analysis and non-denaturing electrophoretic analysis of fresh extracts. Lubrol-containing extracts exhibited only one form, which sedimented at 5 S when analysed on high-salt Lubrol-containing gradients and 6 S when analysed on low-salt Lubrol-containing gradients. The 5 S/6 S form aggregated upon removal of the detergent when sedimented on detergent-free gradients and was recovered in the detergent phase after Triton X-114 phase separation. Thus the 5 S/6 S enzyme corresponds to an amphiphilic acetylcholinesterase form. In detergent-free extracts three forms, whose apparent sedimentation coefficients are 14 S, 11 S and 7 S, were observed when sedimentations were performed on detergent-free gradients. Sedimentation analyses on detergent-containing gradients showed only a 5 S peak in high-salt detergent-free extracts and a 6 S peak, with a shoulder at about 7 S, in low-salt detergent-free extracts. Electrophoretic analysis in the presence of detergent demonstrated that the 14 S and 11 S peaks corresponded to aggregates of the 5 S/6 S form, whereas the 7 S peak corresponded to a hydrophilic acetylcholinesterase form which was recovered in the aqueous phase following Triton X-114 phase separation. The 5 S/6 S amphiphilic form could be converted into a 7.1 S hydrophilic form by phosphatidylinositol-specific phospholipase C digestion. Images Fig. 3. Fig. 6. PMID:2849414
Simon, N.S.; Kennedy, M.M.; Massoni, C.S.
1985-01-01
Field and laboratory evaluations were made of a simple, inexpensive diffusion-controlled sampler with ports on two sides at each interval which incorporates 0.2-??m polycarbonate membrane to filter samples in situ. Monovalent and divalent ions reached 90% of equilibrium between sampler contents and the external solution within 3 and 6 hours, respectively. Sediment interstitial water chemical gradients to depths of tens of centimeters were obtained within several days after placement. Gradients were consistent with those determined from interstitial water obtained by centrifugation of adjacent sediment. Ten milliliter sample volumes were collected at 1-cm intervals to determine chemical gradients and dissolved oxygen profiles at depth and at the interface between the sediment and water column. The flux of dissolved species, including oxygen, across the sediment-water interface can be assessed more accurately using this sampler than by using data collected from benthic cores. ?? 1985 Dr W. Junk Publishers.
The present environmental scenario of the Nador Lagoon (Morocco).
Ruiz, F; Abad, M; Olías, M; Galán, E; González, I; Aguilá, E; Hamoumi, N; Pulido, I; Cantano, M
2006-10-01
In this paper, we present a multivariate approach (waters, sediments, microfauna) concerning the environmental state of the Nador Lagoon (NE Morocco). The normal water quality parameters (salinity, pH, nutrients) of the dominant marine flows are altered by local fecal water effluents, urban discharges, sewages derived from a water treatment station, and residues originated in a slaughterhouse. The geochemical analyses carried out in surficial sediment samples show very high concentrations of all metals studied near an old iron mine and moderate contents between Nador and its treatment station. Ostracods are good bioindicators of these environmental impacts, with the presence of a highly brackish assemblage in the quieter, more confined areas or the appearance of opportunistic species under hypoxic conditions. In addition, these microcrustaceans are absent in polluted bottom sediments or areas with high hydrodynamic gradients, whereas they decrease in both density and diversity if the subaerial exposure increases.
Hall, Mark R.; Meinke, William; Goldstein, David A.
1973-01-01
Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins. PMID:4359958
Intracellular Virus-Specific Structures and RNAs in Oncornavirus-Producing Human Cells
Bukrinskaya, A. G.; Miller, G. G.; Lebedeva, E. N.; Zhdanov, V. M.
1974-01-01
Two kinds of virus-specific structures were isolated from the cytoplasm of Detroit-6 and human amnion cells producing oncornavirus-like particles. These structures represented A particles with the diameter of 70 to 80 nm and aggregated strands of nucleocapsids with the diameter of 3 and 6 nm. The structures were separated from cellular contaminants by isopycnic banding in linear sucrose gradients and subsequently further purified by sedimentation in velocity sucrose gradients. Their sedimentation coefficient was 250 and 150S, respectively. Both structures contain 60, 45, and 35S RNA species, and 150S structures also contained 20S RNA. The 35 and 20S RNA from the 150S structure formed hybrids with DNA enzymatically synthesized on extracellular virions. The structures displayed endogeneous polymerase activity, DNA product of the reaction being predominantly associated with 60S RNA. No 70S RNA was found in the cell structures of various densities. Also, the virions purified from tissue culture fluid contained 70S RNA. These findings are consistent with those on extracellular maturation of oncornavirus RNA. Images PMID:4810779
NASA Astrophysics Data System (ADS)
Rashid, H.; MacKillop, K.; Piper, D.; Vermooten, M.; Higgins, J.; Marche, B.; Langer, K.; Brockway, B.; Spicer, H. E.; Webb, M. D.; Fournier, E.
2015-12-01
The expansion and contraction of the late Pleistocene Laurentide ice-sheet (LIS) was the crucial determining factor for the geomorphic features and shelf and slope sediment mobility on the eastern Canadian continental margin, with abundant mass-transport deposits (MTDs) seaward of ice margins on the upper slope. Here, we report for the first time sediment failure and mass-transport deposits from the central Grand Banks slope in the Salar and Carson petroleum basins. High-resolution seismic profiles and multibeam bathymetry show numerous sediment failure scarps in 500-1600 m water depth. There is no evidence for an ice margin on the upper slope younger than MIS 6. Centimeter-scale X-ray fluorescence analysis (XRF), grain size, and oxygen isotope data from piston cores constrain sediment processes over the past 46 ka. Geotechnical measurements including Atterberg limit tests, vane shear measurements and triaxial and multi-stage isotropic consolidation tests allowed us to assess the instability on the continental margin. Cores with continuous undisturbed stratigraphy in contourite silty muds show normal downcore increase in bulk density and undrained peak shear strength. Heinrich (H) layers are identifiable by a marked increase in the bulk density, high Ca (ppm), increase in iceberg-rafted debris and lighter δ18O in the polar planktonic foram Neogloboquadrina pachyderma (sinistral): with a few C-14 dates they provide a robust chronology. There is no evidence for significant supply of sediment from the Grand Banks at the last-glacial maximum. Mass-transport deposits (MTD) are marked by variability in the bulk density, undrained shear strength and little variation in bulk density or Ca (ppm) values. The MTD are older than 46 ka on the central Grand Banks slope, whereas younger MTDs are present in southern Flemish Pass. Factor of safety calculations suggest the slope is statically stable up to gradients of 10°, but more intervals of silty mud may fail during earthquake-induced cyclic loading based on Atterberg tests. By analogy with the Holocene, contourites deposited in MIS 5e may be particularly silty and form a "weak layer" susceptible to failure.
Contrasting mercury and manganese deposition in a mangrove-dominated estuary (Guaratuba Bay, Brazil)
NASA Astrophysics Data System (ADS)
Sanders, C. J.; Santos, I. R.; Silva-Filho, E. V.; Patchineelam, S. R.
2008-08-01
Sediment cores were taken at seven sites along the mangrove-bound Guaratuba Bay estuary (southern Brazil), with the purpose of assessing conditions controlling Hg deposition along a horizontal estuarine sediment gradient. The data suggest contrasting depositional patterns for Hg and Mn in this relatively pristine setting. Total Hg contents of bulk sediments ranged from 12 to 36 ng/g along the estuary, the highest values being found in muddier organic-rich sediments of the upper estuary (the corresponding mud gradient is 12 to 42 wt.%, and the organic matter gradient 4 to 10 wt.%). Thus, the deposition of fine sediments relatively enriched in mercury occurs primarily in closer proximity to the freshwater source. The data also indicate a reverse gradient in reactive Mn contents, ranging from 29 to 81 μg/g, and increasing seaward. This implies that reactive Mn is mobilized from fine-grained reducing mangrove forest sediments in the upper estuary, and deposited downstream in sandier, oxygen-rich nearshore sediments. These results suggest that mangrove-surrounded estuaries may act as barriers to mercury transport to coastal waters, but as a source of manganese. The present findings also imply that reactive Mn may be used as an indication of Hg depositional patterns in other similar coastal sedimentary settings.
Regulatory Control of Breast Tumor Cell Poly (ADP-Ribose) Polymerase
2004-08-01
polyethylene glycol precipitation, ion exchange chromatography, and density gradient sedimentation (Malkas et al., 1990; Applegren et al., 1995; Coll et...jtl of 25 mM NH4HCO 3/50% acetonitrile were added and the tubes were mixed for 35-40 min on a low setting using a microtube mixer. The pale blue...these isoforms. Proteins identified in these spots are shown in table 1: Spot #* Predominant Protein MCF-10A 1 Heat Shock Protein 90 cc (hsp-90 ct) 2
Turbidity Currents In The Ocean; Are They Stably Stratified?
NASA Astrophysics Data System (ADS)
Kneller, B. C.; Nasr-Azadani, M.; Meiburg, E. H.
2013-12-01
A large proportion of the sediment generated by erosion of the continents is ultimately delivered to the deep ocean to form submarine fans, being carried to the margins of these fans by turbidity currents that flow through submarine channels that may be hundreds or even thousands of kilometers long. The persistence of these flows over extremely long distances with gradients that may be 10-4 or less, while maintaining sediment as coarse as fine-grained sand in suspension, is enigmatic, given the drag that one would expect to be experienced by such flows, and the effects of progressive dilution by entrainment of ambient seawater. The commonly-held view of the flow structure of turbidity currents, based on many laboratory and numerical simulations and rare observations in the ocean, is that of a vertical profile of time-averaged horizontal velocity with a maximum value close the bed, largely due to much higher drag on the upper boundary than on the lower. This upper boundary drag is related to Kelvin-Helmholtz (K-H) instabilities generated by shear between the current and the ambient seawater. K-H instabilities result when fluid shear dominates over density stratification within the turbidity current; the dimensionless ratio of these two influences is the gradient Richardson number. When this exceeds a value of 0.25 the stratification is stable, and no K-H instabilities will form, eliminating much of the drag and entrainment. The majority of the entrainment of ambient seawater into the turbidity current also occurs via the K-H instabilities. Analysis by Birman et al. (2009) suggests that there may be little or no entrainment of ambient fluid in turbidity currents flowing over low gradients, implying that K-H instabilities may be absent under these conditions. We examine the case of flows on the extremely low gradients of the ocean floor, and suggest some conditions that may lead to stably-stratified currents, with dramatically reduced drag, and a fundamentally different mean and turbulent velocity structure. We report preliminary results of direct numerical simulations that may help to constrain the conditions under which such currents may form. In order to model accurately the potentially stabilizing effect of significant density gradients within such currents, it may be useful to abandon the Boussinesq approximation (under which density variations appear only in the buoyancy term), and explicitly model the influence of density variations. Experiments reported by Sequeiros at al. (2010) show the type of velocity profiles expected in flows without K-H instabilities, which they relate to Froude-subcritical flow. We suggest that the presence of stable density stratification is far more representative of the structure of turbidity currents in long fan channels than are the more familiar profiles commonly reported. Birman, V.K., Meiburg, E. & Kneller, B., 2009. J. Fluid Mech., 619, 367-376. Sequeiros, O. E.; Spinewine, B., Beaubouef, R.T., Sun, T. García, M.H. & Parker, G. 2010. J. Hydr. Eng, 136, 412-433
NASA Astrophysics Data System (ADS)
Niyogi, Dev K.; Koren, Mark; Arbuckle, Chris J.; Townsend, Colin R.
2007-02-01
When native grassland catchments are converted to pasture, the main effects on stream physicochemistry are usually related to increased nutrient concentrations and fine-sediment input. We predicted that increasing nutrient concentrations would produce a subsidy-stress response (where several ecological metrics first increase and then decrease at higher concentrations) and that increasing sediment cover of the streambed would produce a linear decline in stream health. We predicted that the net effect of agricultural development, estimated as percentage pastoral land cover, would have a nonlinear subsidy-stress or threshold pattern. In our suite of 21 New Zealand streams, epilithic algal biomass and invertebrate density and biomass were higher in catchments with a higher proportion of pastoral land cover, responding mainly to increased nutrient concentration. Invertebrate species richness had a linear, negative relationship with fine-sediment cover but was unrelated to nutrients or pastoral land cover. In accord with our predictions, several invertebrate stream health metrics (Ephemeroptera-Plecoptera-Trichoptera density and richness, New Zealand Macroinvertebrate Community Index, and percent abundance of noninsect taxa) had nonlinear relationships with pastoral land cover and nutrients. Most invertebrate health metrics usually had linear negative relationships with fine-sediment cover. In this region, stream health, as indicated by macroinvertebrates, primarily followed a subsidy-stress pattern with increasing pastoral development; management of these streams should focus on limiting development beyond the point where negative effects are seen.
Electricity generation through a photo sediment microbial fuel cell using algae at the cathode.
Neethu, B; Ghangrekar, M M
2017-12-01
Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment-water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m 2 , which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.; Ganti, V. K.; Dietrich, W. E.
2009-12-01
Sediment transport on hillslopes can be thought of as a hopping process, where the sediment moves in a series of jumps. A wide range of processes shape the hillslopes which can move sediment to a large distance in the downslope direction, thus, resulting in a broad-tail in the probability density function (PDF) of hopping lengths. Here, we argue that such a broad-tailed distribution calls for a non-local computation of sediment flux, where the sediment flux is not only a function of local topographic quantities but is an integral flux which takes into account the upslope topographic “memory” of the point of interest. We encapsulate this non-local behavior into a simple fractional diffusive model that involves fractional (non-integer) derivatives. We present theoretical predictions from this nonlocal model and demonstrate a nonlinear dependence of sediment flux on local gradient, consistent with observations. Further, we demonstrate that the non-local model naturally eliminates the scale-dependence exhibited by any local (linear or nonlinear) sediment transport model. An extension to a 2-D framework, where the fractional derivative can be cast into a mixture of directional derivatives, is discussed together with the implications of introducing non-locality into existing landscape evolution models.
NASA Astrophysics Data System (ADS)
Karam, H. N.; Mulligan, A. E.; Abarca, E.; Gardner, A.; Hemond, H.; Harvey, C. F.
2013-12-01
We present time series of vertical pressure gradients in the sea floor at Waquoit Bay, MA, collected along a transect of locations perpendicular to shore, with a 10-minute resolution over two years. The custom-made instruments used for data collection measure pressure differences with an accuracy of 0.5 mm freshwater head, and record pore water and surface water salinities, allowing a robust calculation of the direction and magnitude of flux across the sediment-water interface given an estimate of sediment permeability. Distinct processes of seawater circulation in the subsurface driven by different forcings, including storms, tides, variations in fresh groundwater head, and salinity gradients in coastal groundwater, are manifest as different frequency components in the time series. We characterize the relative contributions of these different forcings to seafloor fluxes at our site, as a function of the time of year and the distance from shore. We find that: 1) Sea level variations drive variations in seafloor flux at time scales of hours to weeks, around a mean flux that is produced by processes with longer time scales, including the seasonal cycle in fresh groundwater head and the density-driven circulation of seawater through the coastal aquifer. 2) Seafloor flux responds non-linearly to shifts in seawater level. Furthermore, this response is asymmetric, with very low tides producing an amplified response in submarine groundwater discharge relative to the recharge produced by equivalently high tides. 3) The amplitude of seafloor pressure gradients shows a three-fold increase during winters relative to summers. We present a model to explain this effect based on the increase in shallow pore water viscosity at colder temperatures. We generalize our findings to help guide the design of sampling studies of seafloor fluxes at other sites. Finally, we present the distribution of subsurface residence times for seawater in Waquoit Bay, derived from our pressure gradient data sets, and discuss the implications for surface water and sediment chemistry.
The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent
Tixador, Philippe; Herzog, Laëtitia; Reine, Fabienne; Jaumain, Emilie; Chapuis, Jérôme; Le Dur, Annick; Laude, Hubert; Béringue, Vincent
2010-01-01
Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics. PMID:20419156
NASA Astrophysics Data System (ADS)
van der Wal, Daphne; Lambert, Gwladys I.; Ysebaert, Tom; Plancke, Yves M. G.; Herman, Peter M. J.
2017-10-01
Variations in abundance and diversity of estuarine benthic macrofauna are typically described along the salinity gradient. The influence of gradients in water depth, hydrodynamic energy and sediment properties are less well known. We studied how these variables influence the distribution of subtidal macrofauna in the polyhaline zone of a temperate estuary (Westerschelde, SW Netherlands). Macrofauna density, biomass and species richness, combined in a so-called ecological richness, decreased with current velocities and median grain-size and increased with organic carbon of the sediment, in total explaining 39% of the variation. The macrofauna community composition was less well explained by the three environmental variables (approx. 12-15% in total, with current velocity explaining approx. 8%). Salinity, water depth and distance to the intertidal zone had a very limited effect on both ecological richness and the macrofauna community. The proportion of (surface) deposit feeders (including opportunistic species), decreased relative to that of omnivores and carnivores with increasing current velocity and sediment grain-size. In parallel, the proportion of burrowing sessile benthic species decreased relative to that of mobile benthic species that are able to swim. Correspondingly, spatial variations in hydrodynamics yielded distinct hotspots and coldspots in ecological richness. The findings highlight the importance of local hydrodynamic conditions for estuarine restoration and conservation. The study provides a tool based on a hydrodynamic model to assess and predict ecological richness in estuaries.
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Shiri, Jalal
2012-06-01
Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.
Use of vertical temperature gradients for prediction of tidal flat sediment characteristics
Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei
2012-01-01
Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.
NASA Astrophysics Data System (ADS)
Azarmanesh, H.; Javanshir, A.
2009-04-01
Management of coastal environments requires understanding of ecological relationships among different habitats and their biotas.. The mollusk diversity and density and sedimentological properties of mangrove (Avicennia marina) stands of two different seasons in Teyab have been compared. Pollutant area and cleaner area showed clear separation on the basis of environmental characteristics and benthic mollusks. Numbers of mollusks taxa were generally larger at cleaner sites, and numbers of individuals of several taxa were also larger at other sites. The total number of individuals was not different between the two seasons, largely due to the presence of large numbers of the Mud-living gastropod Cerithium cingulata at the pollutant sites. Differences in the Mollusks were coincident with differences in the nature of the sediment. Sediments in cleaner stands were more compacted and contained lesser organic matter and leaf litter.Analysis of sediment chemistry suggested that mangrove sediment in the Cleaner sites were able to take up more N and P than those in the other sites. Key Words: Sustainable development, Impact, Gastropods, Bivalves, Persian Gulf
Casas, D.; Ercilla, G.; Estrada, F.; Alonso, B.; Baraza, J.; Lee, H.; Kayen, R.; Chiocci, F.
2004-01-01
Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20??), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22?? to 29??. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area. Copyright ?? Taylor & Francis Inc.
Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths
Tenzer, R.; Gladkikh, V.
2014-01-01
We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686
Dyson, Kirstie E; Bulling, Mark T; Solan, Martin; Hernandez-Milian, Gema; Raffaelli, David G; White, Piran C.L; Paterson, David M
2007-01-01
Despite the complexity of natural systems, heterogeneity caused by the fragmentation of habitats has seldom been considered when investigating ecosystem processes. Empirical approaches that have included the influence of heterogeneity tend to be biased towards terrestrial habitats; yet marine systems offer opportunities by virtue of their relative ease of manipulation, rapid response times and the well-understood effects of macrofauna on sediment processes. Here, the influence of heterogeneity on microphytobenthic production in synthetic estuarine assemblages is examined. Heterogeneity was created by enriching patches of sediment with detrital algae (Enteromorpha intestinalis) to provide a source of allochthonous organic matter. A gradient of species density for four numerically dominant intertidal macrofauna (Hediste diversicolor, Hydrobia ulvae, Corophium volutator, Macoma balthica) was constructed, and microphytobenthic biomass at the sediment surface was measured. Statistical analysis using generalized least squares regression indicated that heterogeneity within our system was a significant driving factor that interacted with macrofaunal density and species identity. Microphytobenthic biomass was highest in enriched patches, suggesting that nutrients were obtained locally from the sediment–water interface and not from the water column. Our findings demonstrate that organic enrichment can cause the development of heterogeneity which influences infaunal bioturbation and consequent nutrient generation, a driver of microphytobenthic production. PMID:17698480
In Vitro Product of a Ribonucleic Acid Polymerase Induced by Influenza Virus
Mahy, B. W. J.; Bromley, P. A.
1970-01-01
The ribonucleic acid (RNA)-dependent RNA polymerase induced in the microsomal fraction of cells infected with influenza virus synthesized a mixture of single-and double-stranded RNA in vitro. The single-stranded RNA sedimented mainly in the 8S region on sucrose density gradients, with a smaller proportion of the RNA sedimenting at 18S. This sedimentation pattern corresponds closely to that of incomplete influenza virus RNA. The double-stranded RNA formed in vitro sedimented at 11S, but molecules which may be replicative intermediate, sedimenting at 14 to 20S, were also detected in the in vitro reaction product. Similar species of RNA were detected in vivo by pulse-labeling infected cells at the time of polymerase harvest, but the proportion of each RNA species was different, most of the RNA being single-stranded and sedimenting in the 18S region. An 11S double-stranded RNA was also synthesized in vivo. Pulse chase analysis of the double-stranded RNA synthesized in vitro showed that most is stable, and only a small proportion turns over during the reaction. A proportion of the RNA formed in vitro could be annealed to RNA formed in infected cells and to RNA extracted from purified virus. PMID:5480408
GOCE gravity gradient data for lithospheric modeling - From well surveyed to frontier areas
NASA Astrophysics Data System (ADS)
Bouman, J.; Ebbing, J.; Gradmann, S.; Fuchs, M.; Fattah, R. Abdul; Meekes, S.; Schmidt, M.; Lieb, V.; Haagmans, R.
2012-04-01
We explore how GOCE gravity gradient data can improve modeling of the Earth's lithosphere and thereby contribute to a better understanding of the Earth's dynamic processes. The idea is to invert satellite gravity gradients and terrestrial gravity data in the well explored and understood North-East Atlantic Margin and to compare the results of this inversion, providing improved information about the lithosphere and upper mantle, with results obtained by means of models based upon other sources like seismics and magnetic field information. Transfer of the obtained knowledge to the less explored Rub' al Khali desert is foreseen. We present a case study for the North-East Atlantic margin, where we analyze the use of satellite gravity gradients by comparison with a well-constrained 3D density model that provides a detailed picture from the upper mantle to the top basement (base of sediments). The latter horizon is well resolved from gravity and especially magnetic data, whereas sedimentary layers are mainly constrained from seismic studies, but do in general not show a prominent effect in the gravity and magnetic field. We analyze how gravity gradients can increase confidence in the modeled structures by calculating a sensitivity matrix for the existing 3D model. This sensitivity matrix describes the relation between calculated gravity gradient data and geological structures with respect to their depth, extent and relative density contrast. As the sensitivity of the modeled bodies varies for different tensor components, we can use this matrix for a weighted inversion of gradient data to optimize the model. This sensitivity analysis will be used as input to study the Rub' al Khali desert in Saudi Arabia. In terms of modeling and data availability this is a frontier area. Here gravity gradient data will be used to better identify the extent of anomalous structures within the basin, with the goal to improve the modeling for hydrocarbon exploration purposes.
Relationship of geological and geothermal field properties: Midcontinent area, USA, an example
Forster, A.; Merriam, D.F.; Brower, J.C.
1993-01-01
Quantitative approaches to data analysis in the last decade have become important in basin modeling and mineral-resource estimation. The interrelation of geological, geophysical, geochemical, and geohydrological variables is important in adjusting a model to a real-world situation. Revealing the interdependences of variables can contribute in understanding the processes interacting in sedimentary basins. It is reasonably simple to compare spatial data of the same type but more difficult if different properties are involved. Statistical techniques, such as cluster analysis or principal components analysis, or some algebraic approaches can be used to ascertain the relations of standardized spatial data. In this example, structural configuration on five different stratigraphic horizons, one total sediment thickness map, and four maps of geothermal data were copared. As expected, the structural maps are highly related because all had undergone about the same deformation with differing degrees of intensity. The temperature gradients derived (1) from shallow borehole logging measurements under equilibrium conditions with the surrounding rock, and (2) from non-equilibrium bottom-hole temperatures (BHT) from deeper depths are mainly independent of each other. This was expected and confirmed also for the two temperature maps at 1000 ft which were constructed using both types of gradient values. Thus, it is evident that the use of a 2-point (BHT and surface temperature) straightline calculation of a mean temperature gradient gives different information about the geothermal regime than using gradients from temperatures logged under equilibrium conditions. Nevertheless, it is useful to determine to what a degree the larger dataset of nonequilibrium temperatures could reflect quantitative relationships to geologic conditions. Comparing all maps of geothermal information vs. the structural and the sediment thickness maps, it was determined that all correlations are moderately negative or slightly positive. These results are clearly shown by the cluster analysis and the principal components. Considering a close relationship between temperature and thermal conductivity of the sediments as observed for most of the Midcontinent area and relatively homogeneous heat-flow density conditions for the study area these results support the following assumptions: (1) undifferentiated geothermal gradients, computed from temperatures of different depth intervals and differing sediment properties, cannot contribute to an improved understanding of the temperature structure and its controls within the sedimentary cover, and (2) the quantitative approach of revealing such relations needs refined datasets of temperature information valid for the different depth levels or stratigraphic units. ?? 1993 International Association for Mathematical Geology.
Effects of algal-derived carbon on sediment methane ...
Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. Another potential disservice resulting from algal blooms is the enhanced production of methane (CH4), a potent greenhouse gas, in aquatic sediments. Laboratory experiments have shown that algal biomass additions to sediment cores increase rates of CH4 production, but it is unclear whether or not this effect occurs at the ecosystem scale. The goal of this research was to explore the link between algal-derived carbon and methane production in the sediment of a eutrophic reservoir located in southwest Ohio, using a sampling design that capitalized on spatial and temporal gradients in autochthonous carbon input to sediments. Specifically, we aimed to determine if the within-reservoir gradient of sediment algal-derived organic matter and sediment CH4 production rates correlate. This was done by retrieving sediment cores from 15 sites within the reservoir along a known gradient of methane emission rates, at two separate time points in 2016: late spring before the sediments had received large amounts of algal input and mid-summer after algal blooms had been prevalent in the reservoir. Potential CH4 production rates, sediment organic matter source, and microbial community composition were charac
Sedimentation and mobility of PDCs: a reappraisal of ignimbrites' aspect ratio.
Giordano, Guido; Doronzo, Domenico M
2017-06-30
The aspect ratio of ignimbrites is a commonly used parameter that has been related to the energy of the parent pyroclastic density currents (PDCs). However this parameter, calculated as the ratio between the average thickness and the average lateral extent of ignimbrites, does not capture fundamental differences in pyroclastic flow mobility nor relates to lithofacies variations of the final deposits. We herein introduce the "topological aspect ratio" (ARt) as the ratio of the local deposit thickness (Ht) to the distance between the local site and the maximum runout distance (Lt), where Ht is a proxy for the PDC tendency to deposit, and Lt a proxy for the PDC mobility or its tendency to further transport the pyroclastic material. The positive versus negative spatial gradient d(ARt)/dx along flow paths discriminate zones where PDCs are forced (i.e. where they transport the total energy under the action of mass discharge rate) from zones where they are inertial (i.e. where they transport the total energy under the action of viscous or turbulent fluidization). Though simple to apply, the topological aspect ratio and its spatial gradient are powerful descriptors of the interplay between sedimentation and mobility of PDCs, and of the resulting lithofacies variations.
NASA Astrophysics Data System (ADS)
Lea, Devin M.; Legleiter, Carl J.
2016-01-01
Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study sought to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8-km reach. Aerial photographs from 1994 to 2012 and ground-based surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and DEM developed from LiDAR data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Collectively, we refer to these methods as the stream power gradient (SPG) framework. The results of this study were compromised by methodological limitations of the SPG framework and revealed some complications likely to arise when applying this framework to small, wandering, gravel-bed rivers. Correlations between stream power gradients and sediment flux were generally weak, highlighting the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote sensing could help improve understanding of the spatial organization of stream power, sediment transport, and channel change in dynamic natural rivers.
NASA Astrophysics Data System (ADS)
Carvajal, C.; Paull, C. K.; Caress, D. W.; Anderson, K.; Lundsten, E. M.; Gwiazda, R.; Fildani, A.; Dykstra, M.; McGann, M.; Maier, K. L.; Herguera, J. C.
2016-12-01
Channel to lobe transition zones (CLTZ) are elusive sectors of the seafloor. They record complex interactions between sediment-gravity flows, flow confinement, and gradient that can result in contrasting geomorphologies. If present, structural controls can add additional intricacies. We illustrate such complexities in the Navy Fan CLTZ offshore California/Mexico using AUV-collected high-resolution (1x1x0.25 m) bathymetry and chirp profiles. The AUV bathymetry images the fine scale details of the seafloor, otherwise unresolved in surface-ship-mounted multibeam bathymetry. Three morphological areas standout that in a direction transverse to sediment transport are: 1) An unconfined area with variable but overall steep gradients (0.5o-1.7o), and considerable erosion shown by numerous large scours that truncate underlying strata. These scours are elongate (<500x180 m), deep (<18 m), asymmetric (steeper proximally), and more prominent along steeper gradients; 2) An area of moderate confinement along a smoother, gentler gradient (0.2o-0.5o; 0.9o locally). This area is 8 km long with a channel (WxD: 233x11 m) that transitions basinwards to low confinement (WxD: 1000x4 m); and 3) An area with an escarpment (<25 m high, <19o) and ridge of the San Clemente Fault. We hypothesize that the erosional morphologies of the unconfined areas reflect swifter turbidity currents due to high gradients, which resulted from relief along the San Clemente Fault and probably from differential seafloor aggradation. In the moderate confinement area, the smoother and gentler seafloor may be related to more efficient sediment dispersal able to transfer/deposit sediment to heal structural relief (though not completely) while avoiding significant local aggradation, hence preventing major gradient build up. In the faulted area, the steep and prominent structure reroutes the sediments. The findings of this study have broad application to any seafloor areas with rapid changes of gradient.
NASA Astrophysics Data System (ADS)
Wiberg, Patricia L.; Drake, David E.; Cacchione, David A.
1994-08-01
Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the SMITH [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient γ 0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of γ 0 as low as 5 × 10 -5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with γ 0 ≈ 0.002. The effects of limiting availability and employing a higher γ 0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed.
Wiberg, P.L.; Drake, D.E.; Cacchione, D.A.
1994-01-01
Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the Smith [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient ??0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of ??0 as low as 5 ?? 10-5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with ??0 ??? 0.002. The effects of limiting availability and employing a higher ??0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed. ?? 1994.
Ivarie, Robert D.; Pène, Jacques J.
1970-01-01
Linear density gradients of Renografin have resolved two components of bacterial deoxyribonucleic acid (DNA) in sheared lysates. Component 1, at equilibrium density after 5 hr of centrifugation, is enriched for newly synthesized DNA and markers near the origin and terminus of replication. It contains 5% of total cellular protein, 25% of the phospholipids, 30 to 50% of the DNA, 4 to 11% of unstable ribonucleic acid (RNA), RNA polymerase, and low amounts of DNA polymerase. The material is sensitive to Pronase and Sarkosyl. In unsheared lysates, all of the DNA forms a band at this position. Shearing the lysate generates a slow-sedimenting fraction of DNA (component 2) which contains more uniformly labeled than newly synthesized DNA. These observations suggest that replicating DNA and DNA at the origin and possibly the terminus of replication are associated with membrane. The amount of uniformly labeled DNA in component 1 and an estimate of the number of chromosomal fragments suggest that other parts of the chromosome are possibly associated with the membrane. PMID:4992373
Bioaccumulation of PCBs Across Concentration Gradients in Sediments
Sediment bioaccumulation tests with Lumbriculus variegatus quantify the relationships between the chemical residues in sediments and benthic invertebrates, and these relationships are expressed as biota-sediment accumulation factors (BSAF). At some field sites, BSAFs decr...
Zhao, Feng; Filker, Sabine; Stoeck, Thorsten; Xu, Kuidong
2017-09-12
Benthic ciliates and the environmental factors shaping their distribution are far from being completely understood. Likewise, deep-sea systems are amongst the least understood ecosystems on Earth. In this study, using high-throughput DNA sequencing, we investigated the diversity and community composition of benthic ciliates in different sediment layers of a seamount and an adjacent abyssal plain in the tropical Western Pacific Ocean with water depths ranging between 813 m and 4566 m. Statistical analyses were used to assess shifts in ciliate communities across vertical sediment gradients and water depth. Nine out of 12 ciliate classes were detected in the different sediment samples, with Litostomatea accounting for the most diverse group, followed by Plagiopylea and Oligohymenophorea. The novelty of ciliate genetic diversity was extremely high, with a mean similarity of 93.25% to previously described sequences. On a sediment depth gradient, ciliate community structure was more similar within the upper sediment layers (0-1 and 9-10 cm) compared to the lower sediment layers (19-20 and 29-30 cm) at each site. Some unknown ciliate taxa which were absent from the surface sediments were found in deeper sediments layers. On a water depth gradient, the proportion of unique OTUs was between 42.2% and 54.3%, and that of OTUs shared by all sites around 14%. However, alpha diversity of the different ciliate communities was relatively stable in the surface layers along the water depth gradient, and about 78% of the ciliate OTUs retrieved from the surface layer of the shallowest site were shared with the surface layers of sites deeper than 3800 m. Correlation analyses did not reveal any significant effects of measured environmental factors on ciliate community composition and structure. We revealed an obvious variation in ciliate community along a sediment depth gradient in the seamount and the adjacent abyssal plain and showed that water depth is a less important factor shaping ciliate distribution in deep-sea sediments unlike observed for benthic ciliates in shallow seafloors. Additionally, an extremely high genetic novelty of ciliate diversity was found in these habitats, which points to a hot spot for the discovery of new ciliate species.
Powell, Jeffrey R.
2003-01-01
Response of fish communities to cropland density and natural environmental setting were evaluated at 20 streams in the Eastern Highland Rim Ecoregion of the lower Tennessee River Basin during the spring of 1999. Sites were selected to represent a gradient of cropland densities in basins draining about 30 to 100 square miles. Fish communities were sampled by using a combination of seining and electrofishing techniques. A total of 10,550 individual fish, representing 63 species and 15 families, were collected during the study and included the families Cyprinidae (minnows), 18 species; Percidae (perch and darters), 12 species; and Centrarchidae (sunfish), 12 species. Assessments of environmental characteristics, including instream and terrestrial data and land-cover data, were conducted for each site. Instream measurements, such as depth, velocity, substrate type, and embeddedness, were recorded at 3 points across 11 equidistant transects at each site. Terrestrial measurements, such as bank angle, canopy angle, and canopy closure percentage, were made along the stream bank and midchannel areas. Water-quality data collected included pH, dissolved oxygen, specific conductivity, water temperature, nutrients, and fecal-indicator bacteria. Substrate embeddedness was the only variable correlated with both cropland density and fish communities (as characterized by ordination scores and several community level metrics). Multivariate and nonparametric correlation techniques were used to evaluate fish-community responses to physical and chemical factors associated with a cropland-density gradient, where the gradient was defined as the percentage of the basin in row crops. Principal component analysis and correspondence analysis suggest that the Eastern Highland Rim Ecoregion is composed of three subgroups of sites based on inherent physical and biological differences. Data for the subgroup containing the largest number of sites were then re-analyzed, revealing that several environmental variables, such as nutrient concentrations, stream gradient, bankfull width, and substrate embeddedness, were related to cropland density; however, only a subset of those variables (substrate embeddedness, elevation, and streamflow) were related to fish communities. Results from this analysis suggest that although many water-quality and habitat variables are covariant with cropland density, most of the variables do not significantly affect fish-community composition; instead, fish communities primarily respond to the cumulative effects of sedimentation.
Tide-driven fluid mud transport in the Ems estuary
NASA Astrophysics Data System (ADS)
Becker, Marius; Maushake, Christian; Winter, Christian
2014-05-01
The Ems estuary, located at the border between The Netherlands and Germany, experienced a significant change of the hydrodynamic regime during the past decades, as a result of extensive river engineering. With the net sediment transport now being flood-oriented, suspended sediment concentrations have increased dramatically, inducing siltation and formation of fluid mud layers, which, in turn, influence hydraulic flow properties, such as turbulence and the apparent bed roughness. Here, the process-based understanding of fluid mud is essential to model and predict mud accumulation, not only regarding the anthropogenic impact, but also in view of the expected changes of environmental boundary conditions, i.e., sea level rise. In the recent past, substantial progress has been made concerning the understanding of estuarine circulation and influence of tidal asymmetry on upstream sediment accumulation. While associated sediment transport formulations have been implemented in the framework of numerical modelling systems, in-situ data of fluid mud are scarce. This study presents results on tide-driven fluid mud dynamics, measured during four tidal cycles aside the navigation channel in the Ems estuary. Lutoclines, i.e., strong vertical density gradients, were detected by sediment echo sounder (SES). Acoustic Doppler current profiles (ADCP) of different acoustic frequencies were used to determine hydrodynamic parameters and the vertical distribution of suspended sediment concentrations in the upper part of the water column. These continuous profiling measurements were complemented by CTD, ADV, and OBS casts. SES and ADCP profiles show cycles of fluid mud entrainment during accelerating flow, and subsequent settling, and the reformation of a lutocline during decelerating flow and slack water. Significant differences are revealed between flood and ebb phase. Highest entrainment rates are measured at the beginning of the flood phase, associated with strong current shear and rapid vertical mixing, inducing the highest instantaneous suspended sediment flux measured during the tidal cycle. During decelerating flood currents a lutocline is again established at a certain distance above the consolidated river bed. During slack water after the flood phase the concentration gradient increases and the thickness of the fluid mud layer below is constant, also during a significant part of the ebb phase. As water depth decreases during ebb, entrainment occurs only at the upper part of the fluid mud layer. The suspended sediment flux is low compared to the flood phase. These observations are further elaborated using turbulence parameters obtained from ADV and ADCP, explaining the difference between ebb and flood concerning the vertical location of the maximum concentration gradient. This study is funded through DFG-Research Center / Excellence Cluster "The Ocean in the Earth System". The Senckenberg Institute and the Federal Waterways Engineering and Research Institute are acknowledged for technical support.
Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi
2018-05-01
Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our results provide the underlying insights needed to guide the control of nitrogen and phosphorus loss on loess hills.
Coates, Delphine A; Deschutter, Yana; Vincx, Magda; Vanaverbeke, Jan
2014-04-01
The growing development of offshore wind energy installations across the North Sea is producing new hard anthropogenic structures in the natural soft sediments, causing changes to the surrounding macrobenthos. The extent of modification in permeable sediments around a gravity based wind turbine in the Belgian part of the North Sea was investigated in the period 2011-2012, along four gradients (south-west, north-east, south-east, north-west). Sediment grain size significantly reduced from 427 μm at 200 m to 312 ± 3 μm at 15 m from the foundation along the south-west and north-west gradients. The organic matter content increased from 0.4 ± 0.01% at 100 m to 2.5 ± 0.9% at 15 m from the foundation. The observed changes in environmental characteristics triggered an increase in the macrobenthic density from 1390 ± 129 ind m⁻² at 200 m to 18 583 ± 6713 ind m⁻² at 15 m together with an enhanced diversity from 10 ± 2 at 200 m to 30 ± 5 species per sample at 15 m. Shifts in species dominance were also detected with a greater dominance of the ecosystem-engineer Lanice conchilega (16-25%) close to the foundation. This study suggests a viable prediction of the effects offshore wind farms could create to the naturally occurring macrobenthos on a large-scale. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of detergents on ribosomal precursor subunits of Bacillus megaterium.
Body, A; Brownstein, B H
1978-01-01
Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction.
Effects of Detergents on Ribosomal Precursor Subunits of Bacillus megaterium
Body, Barbara A.; Brownstein, Bernard H.
1978-01-01
Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction. PMID:412833
Reach-scale characterization of large woody debris in a low-gradient, Midwestern U.S.A. river system
NASA Astrophysics Data System (ADS)
Martin, Derek J.; Pavlowsky, Robert T.; Harden, Carol P.
2016-06-01
Addition of large woody debris (LWD) to rivers has increasingly become a popular stream restoration strategy, particularly in river systems of the Midwestern United States. However, our knowledge of LWD dynamics is mostly limited to high gradient montane river systems, or coastal river systems. The LWD-related management of low-gradient, Midwestern river systems is thus largely based on higher gradient analogs of LWD dynamics. This research characterizes fluvial wood loads and investigates the relationships between fluvial wood, channel morphology, and sediment deposition in a relatively low-gradient, semiconfined, alluvial river. The LWD and channel morphology were surveyed at nine reaches along the Big River in southeastern Missouri to investigate those relationships in comparison to other regions. Wood loads in the Big River are low (3-114 m3/100 m) relative to those of higher gradient river systems of the Pacific Northwest, but high relative to lower-gradient river systems of the Eastern United States. Wood characteristics such as size and orientation suggest that the dominant LWD recruitment mechanism in the Big River is bank erosion. Also, ratios of wood geometry to channel geometry show that the Big River maintains a relatively high wood transport capacity for most of its length. Although LWD creates sites for sediment storage, the overall impact on reach-scale sediment storage in the Big River is low (< 4.2% of total in-channel storage). However, wood loads, and thus opportunities for sediment storage, have the potential to grow in the future as Midwestern riparian forests mature. This study represents the first of its kind within this particular type of river system and within this region and thus serves as a basis for understanding fluvial wood dynamics in low-gradient river systems of the Midwestern United States.
Sediment core and glacial environment reconstruction - a method review
NASA Astrophysics Data System (ADS)
Bakke, Jostein; Paasche, Øyvind
2010-05-01
Alpine glaciers are often located in remote and high-altitude regions of the world, areas that only rarely are covered by instrumental records. Reconstructions of glaciers has therefore proven useful for understanding past climate dynamics on both shorter and longer time-scales. One major drawback with glacier reconstructions based solely on moraine chronologies - by far the most common -, is that due to selective preservation of moraine ridges such records do not exclude the possibility of multiple Holocene glacier advances. This problem is true regardless whether cosmogenic isotopes or lichenometry have been used to date the moraines, or also radiocarbon dating of mega-fossils buried in till or underneath the moraines themselves. To overcome this problem Karlén (1976) initially suggested that glacial erosion and the associated production of rock-flour deposited in downstream lakes could provide a continuous record of glacial fluctuations, hence overcoming the problem of incomplete reconstructions. We want to discuss the methods used to reconstruct past glacier activity based on sediments deposited in distal glacier-fed lakes. By quantifying physical properties of glacial and extra-glacial sediments deposited in catchments, and in downstream lakes and fjords, it is possible to isolate and identify past glacier activity - size and production rate - that subsequently can be used to reconstruct changing environmental shifts and trends. Changes in average sediment evacuation from alpine glaciers are mainly governed by glacier size and the mass turnover gradient, determining the deformation rate at any given time. The amount of solid precipitation (mainly winter accumulation) versus loss due to melting during the ablation-season (mainly summer temperature) determines the mass turnover gradient in either positive or negative direction. A prevailing positive net balance will lead to higher sedimentation rates and vice versa, which in turn can be recorded in downstream lakes. To retrieve these glacial sediments it is necessary to collect sediment cores from the lake bottom. Reading the glacial signal, as preserved in the lake sediments, now includes the application of various methods such as measuring the amount of minerogenic versus biologic matter (typically inferred from Loss-on-ignition (LOI)), grain size analysis (GSA), magnetic properties (MP), geochemical elements (GE), Rare-Earth Elements (REE), Bulk Sediment Density (BSD), but also other techniques such as XRF analyses. Moreover, detailed glacier reconstructions can also be used to assess denudation rates, chemical and physical weathering as well specific glaciological changes.
Deep sea sedimentation processes and geomorphology: Northwest Atlantic continental margin
NASA Astrophysics Data System (ADS)
Mosher, David; Campbell, Calvin; Gardner, Jim; Chaytor, Jason; Piper, David; Rebesco, Michele
2017-04-01
Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data informed by subbottom profiler and seismic reflection data. Erosion by off-shelf sediment transport in turbidity currents creates gullies, canyons and channels and a steep upper slope. Amalgamation of these conduits produces singular channels and turbidite fan complexes on the lower slope, flattening slope-profile gradients. The effect is an exponentially decaying "graded" slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a "stepped" slope, and/or a significant downslope gradient change where MTDs pinch out. Large drift deposits created by geostrophic currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. They form a linear "above grade" profile along their crests from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts form "stepped" slope profiles, where they onlap the margin. Trough-mouth fan complexes become more common along the margin with increasing latitude. Sediment deposition and retention, particularly those dominated by glacigenic debris flows, characterize these segments producing an "above grade" slope profile. Understanding these geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping in which gradients and gradient change is a critical metric.
Drenth, Benjamin J.
2013-01-01
Airborne gravity gradient (AGG) data are rapidly becoming standard components of geophysical mapping programs, due to their advantages in cost, access, and resolution advantages over measurements of the gravity field on the ground. Unlike conventional techniques that measure the gravity field, AGG methods measure derivatives of the gravity field. This means that effects of terrain and near-surface geology are amplified in AGG data, and that proper terrain corrections are critically important for AGG data processing. However, terrain corrections require reasonable estimates of density for the rocks and sediments that make up the terrain. A recommended philosophical approach is to use the terrain and surface geology, with their strong expression in AGG data, to the interpreter’s advantage. An example of such an approach is presented here for an area with very difficult ground access and little ground gravity data. Nettleton-style profiling is used with AGG data to estimate the densities of the sand dunefield and adjacent Precambrian rocks from the area of Great Sand Dunes National Park in southern Colorado. Processing of the AGG data using the density estimate for the dunefield allows buried structures, including a hypothesized buried basement bench, to be mapped beneath the sand dunes.
McFadden, B A; Lord, J M; Rowe, A; Dilks, S
1975-05-01
D-Ribulose-1,5-bisphosphate carboxylase has been purified in one step by sedimenting extracts of autotrophically-grown Euglena gracilis into a linear 0.2-0.8 M sucrose density gradient. The resultant product was pure by the criteria of disc electrophoresis in gels polymerized from 5 or 7.5% acrylamide and sedimentation. The molecular weight of the enzyme estimated by density gradient centrifugation and electrophoresis in gels polymerized from various concentrations of acrylamide was 5.25 X 10(5). The S20,W was 16.4 S. Dissociation and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate established that the enzyme was composed of two types of subunits (mr 50,000 and 15,000). The oligomeric structure was visualized through negative staining and transmission electron microscopy leading to a model for the quaternary structure. Although the enzyme was moderately unstable, the estimated maximal specific activity was 1.6 mumol CO2 fixed min-1 mg protien-1 at 30 degrees C and pH 8.0 Km values were 2.2 m M, 15. 1 MUM and 0.63 mM for Mg2+, ribulose 1,5-bisphosphate, and CO2, respectively, when measured under air. 6-Phospho-D-gluconate was a noncompetitive inhibitor with respect to ribulose 1,5-bisphosphate (Ki = 0.04 mM). Oxygen was a competitive inhibitor with respect to CO2 suggesting that the enzyme was also an oxygenase. The latter was confirmed by experiments showing a molar equivalence between ribulose-1,5-bisphosphate-dependent oxygen consumption and phosphoglycerate production.
Urbanization influences on aquatic communities in northeastern Illinois streams
Fitzpatrick, F.A.; Harris, M.A.; Arnold, T.L.; Richards, K.D.
2004-01-01
Biotic indices and sediment trace element concentrations for 43 streams in northeastern Illinois (Chicago area) from the 1980s and 1990s were examined along an agricultural to urban land cover gradient to explore the relations among biotic integrity, sediment chemistry, and urbanization. The Illinois fish Alternative Index of Biotic Integrity (AIBI) ranged from poor to excellent in agricultural/rural streams, but streams with more than 10 percent watershed urban land (about 500 people/mi2) had fair or poor index scores. A macroinvertebrate index (MBI) showed similar trends. A qualitative habitat index (PIBI) did not correlate to either urban indicator. The AIBI and MBI correlated with urban associated sediment trace element concentrations. Elevated copper concentrations in sediment occurred in streams with greater than 40 percent watershed urban land. The number of intolerant fish species and modified index of biotic integrity scores increased in some rural, urbanizing, and urban streams from the 1980s to 1990s, with the largest increases occurring in rural streams with loamy/sandy surficial deposits. However, smaller increases also occurred in urban streams with clayey surficial deposits and over 50 percent watershed urban land. These data illustrate the potentially complex spatial and temporal relations among biotic integrity, sediment chemistry, watershed urban land, population density, and regional and local geologic setting.
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus; (Phil) Greenwood, Philip
2014-05-01
Alpine and mountain slopes represent important pathways that link high altitude grazing areas to meadows and rangelands at lower elevations. Given the often acute gradient of mountain slopes, they represent a convenient and potentially highly efficient runoff conveyance route that facilitates the downslope transfer of fine-sediment and sediment-bound nutrients and contaminants during erosion events. Above a certain gradient, many slopes host small steps, or `terracettes`. As these are generally orientated across slope, their genesis is usually attributed to a combination of soil creep, coupled with (and often accentuated by) grazing animals. Motivated by the prevalence of these distinct landform features and lack of information on their role as runoff conveyance routes, this communication reports preliminary results from an investigation to explore the possibility that terracettes may act as preferential flow-paths, with an as yet undocumented ability to greatly influence surface hydrology in mountainous and steeply-sloping environments. A ca. 40 m2 area of vegetated terracettes and section of adjacent thalweg, with gradients ranging from approximately 25-35o, were scanned using an automated Topcon IS03 Total Station at a resolution of 0.1 * 0.1 m. Data were converted to a Digital Elevation Model (DEM) in ArcGIS 10 Geographical Information System (GIS), and queried using Spatial Analyst (Surface Hydrology; Flow Accumulation function) to identify slope-sections that could act as preferential flow-pathways during runoff events. These data were supplemented by information on soil physical properties that included grain size composition, bulk density and porosity, in order to establish spatial variations in soil characteristics associated with the vertical and horizontal terracette features. Combining the digital and in-situ data indicate that the technique is able to identify preferential surface flow-paths. Such information could greatly benefit the future management of grazing and rangelands in Alpine, mountain and steeply sloping environments. With higher resolution data covering larger areas, as well as the possibility of using fallout radionuclide data to establish sediment residence times on depositional areas, it is envisioned that runoff and transportation of fine-sediment and sediment-associated nutrients and contaminants down these flow pathways could be modeled, predicted and their effects mitigated and perhaps eventually reduced.
NASA Astrophysics Data System (ADS)
Wobus, C.; Tucker, G.; Anderson, R.; Kean, J.; Small, E.; Hancock, G.
2007-12-01
The cross-sectional form of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate changes in channel cross-sectional geometry through time. We have developed a 2D numerical model that computes the formation of a channel in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Boundary shear stress is calculated using a simple approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local boundary surface. The resulting model predictions for the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with the predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ~3%, and the predicted peak shear stress is consistent to within ~7%. The efficiency of our model makes it suitable for calculations of long-term morphologic change both in single cross-sections and in series of cross-sections arrayed downstream. For a uniform substrate, the model predicts a strong tendency toward a fixed width-to-depth ratio, regardless of gradient or discharge. The model predicts power-law relationships between width and discharge with an exponent near 2/5, and between width and gradient with an exponent near -1/5. Recent enhancements to the model include the addition of sediment, which increases the width-to-depth ratio at steady state by favoring erosion of the channel walls relative to the channel bed (the "cover effect"). Inclusion of a probability density function of discharges with a simple parameterization of weathering along channel banks leads to the formation of model strath terraces. Downstream changes in substrate erodibility or tectonic uplift rate lead to step-function changes in channel width, consistent with empirical observations. Finally, explicit inclusion of bedload transport allows channel width, gradient, and the pattern of sediment flux to evolve dynamically, allowing us to explore the response of bedrock channels to both spatial patterns of rock uplift, and temporal variations in sediment input.
Spatio-temporal distribution patterns of the epibenthic community in the coastal waters of Suriname
NASA Astrophysics Data System (ADS)
Willems, Tomas; De Backer, Annelies; Wan Tong You, Kenneth; Vincx, Magda; Hostens, Kris
2015-10-01
This study aimed to characterize the spatio-temporal patterns of the epibenthic community in the coastal waters of Suriname. Data were collected on a (bi)monthly basis in 2012-2013 at 15 locations in the shallow (<40 m) coastal area, revealing three spatially distinct species assemblages, related to clear gradients in some environmental parameters. A species-poor coastal assemblage was discerned within the muddy, turbid-water zone (6-20 m depth), dominated by Atlantic seabob shrimp Xiphopenaeus kroyeri (Crustacea: Penaeoidea). Near the 30 m isobath, sediments were much coarser (median grain size on average 345±103 μm vs. 128±53 μm in the coastal assemblage) and water transparency was much higher (on average 7.6±3.5 m vs. 2.4±2.1 m in the coastal assemblage). In this zone, a diverse offshore assemblage was found, characterized by brittle stars (mainly Ophioderma brevispina and Ophiolepis elegans) and a variety of crabs, sea stars and hermit crabs. In between both zones, a transition assemblage was noted, with epibenthic species typically found in either the coastal or offshore assemblages, but mainly characterized by the absence of X. kroyeri. Although the epibenthic community was primarily structured in an on-offshore gradient related to depth, sediment grain size and sediment total organic carbon content, a longitudinal (west-east) gradient was apparent as well. The zones in the eastern part of the Suriname coastal shelf seemed to be more widely stretched along the on-offshore gradient. Although clear seasonal differences were noted in the environmental characteristics (e.g. dry vs. rainy season), this was not reflected in the epibenthic community structure. X. kroyeri reached very high densities (up to 1383 ind 1000 m-²) in the shallow coastal waters of Suriname. As X. kroyeri is increasingly exploited throughout its range, the current study provides the ecological context for its presence and abundance, which is crucial for an ecosystem approach and the sustainable management of this commercially important species and its habitat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, T.L.; Hansen, R.; Kure, L.K.
Experimental data for fluoranthene and feeding selectivity in combination with reaction-diffusion modeling suggest that ingestion of contaminated sediment may often be the dominant uptake pathway for deposit-feeding invertebrates in sediments. A dietary absorption efficiency of 56% and accompanying forage ratio of 2.4 were measured using natural sediment that had been dual-labeled ({sup 14}C:{sup 51}Cr) with fluoranthene and fed to the marine deposit-feeding polychaete Capitella species I. Only 3 to 4% of the total absorption could be accounted for by desorption during gut passage. These data were then used as input into a reaction-diffusion model to calculate the importance of uptakemore » from ingested sediment relative to pore-water exposure. The calculations predict a fluoranthene dietary uptake flux that is 20 to 30 times greater than that due to pore water. Factors that act to modify or control the formation of local chemical gradients, boundary layers, or dietary absorption rates including particle selection or burrow construction will be important in determining the relative importance of potential exposure pathways. From a chemical perspective, the kinetics of the adsorption and desorption process are especially important as they will strongly influence the boundary layer immediately surrounding burrowing animals or irrigated tubes. The most important biological factors likely include irrigation behavior and burrow density and size.« less
Benthic impacts of intertidal oyster culture, with consideration of taxonomic sufficiency.
Forrest, Barrie M; Creese, Robert G
2006-01-01
An investigation of the impacts from elevated intertidal Pacific oyster culture in a New Zealand estuary showed enhanced sedimentation beneath culture racks compared with other sites. Seabed elevation beneath racks was generally lower than between them, suggesting that topographic patterns more likely result from a local effect of rack structures on hydrodynamic processes than from enhanced deposition. Compared with control sites, seabed sediments within the farm had a greater silt/clay and organic content, and a lower redox potential and shear strength. While a marked trend in macrofaunal species richness was not evident, species composition and dominance patterns were consistent with a disturbance gradient, with farm effects not evident 35 m from the perimeter of the racks. Of the environmental variables measured, sediment shear strength was most closely associated with the distribution and density of macrofauna, suggesting that human-induced disturbance from farming operations may have contributed to the biological patterns. To evaluate the taxonomic sufficiency needed to document impacts, aggregation to the family level based on Linnean classification was compared with an aggregation scheme based on ;general groups' identifiable with limited taxonomic expertise. Compared with species-level analyses, spatial patterns of impact were equally discernible at both aggregation levels used, provided density rather than presence/absence data were used. Once baseline conditions are established and the efficacy of taxonomic aggregation demonstrated, a ;general group' scheme provides an appropriate and increasingly relevant tool for routine monitoring.
Ralston, David K.; Geyer, W. Rockwell; Warner, John C.
2012-01-01
Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.
NASA Astrophysics Data System (ADS)
Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.
2004-11-01
Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.
NASA Astrophysics Data System (ADS)
Lea, D. M.; Legleiter, C. J.
2014-12-01
Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing. This study used remotely sensed data and field measurements to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to assess lateral channel mobility and develop a morphologic sediment budget for quantifying net sediment flux for a series of budget cells. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from LiDAR data were used to obtain the discharge and slope values, respectively, needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of channel mobility and sediment transfer. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volume of sediment eroded or deposited during each time increment. Our results indicated a lack of strong correlation between stream power gradients and sediment flux, which we attributed to the geomorphic complexity of the Soda Butte Creek watershed and the inability of our relatively simple statistical approach to link sediment dynamics expressed at a sub-budget cell scale to larger-scale driving forces such as stream power gradients. Future studies should compare the moderate spatial resolution techniques used in this study to very-high resolution data acquired from new fluvial remote sensing technologies to better understand the amount of error associated with stream power, sediment transport, and channel change calculated from historical datasets.
NASA Astrophysics Data System (ADS)
Livsey, D. N.; Downing-Kunz, M.; Schoellhamer, D. H.; Shellenbarger, G.; Wright, S. A.
2016-12-01
Tidal marshes are an important component of estuarine ecosystems. Within the San Francisco Bay Estuary (SFB) tidal marshes play an important role in food web dynamics, are home to an array of endemic mammals, birds, and fishes, filter pollutants, and dampen coastal flooding. With 80% of SFB tidal marshes lost to human development, numerous restoration efforts are underway. The largest tidal marsh restoration project in SFB, the South Bay Salt Pond Restoration Project, is underway in Lower South San Francisco Bay to restore 60,000 ha of this critical habitat; however, rising sea levels, could jeopardize these gains without concomitant vertical accretion rates of the marsh surface via organic matter accumulation and sediment deposition. Recent work in Lower South Bay using continuously collected data from water years (WY) 2009-11 indicates that the direction of net springtime residual sediment flux is related to the amount of springtime Sacramento-San Joaquin Delta (Delta) outflow. Large outflow freshens the Central Bay, causing a density gradient and inverse gravitational circulation that flushes Lower South Bay. In this study we extend the sediment budget for Lower South Bay from WY 2011 to present using 15-minute turbidity and velocity data paired with Acoustic Doppler Current Profiler cross-sectional measurements and in situ suspended-sediment concentration samples to: 1) further examine the mechanisms controlling net springtime residual sediment flux, and 2) further test the hypothesis that Delta outflow controls the direction of net sediment flux for Lower South Bay.
Sediment transport by runoff on debris-mantled dryland hillslopes
NASA Astrophysics Data System (ADS)
Michaelides, Katerina; Martin, Gareth J.
2012-09-01
Hillslopes supply sediment to river channels, and therefore impact drainage basin functioning and evolution. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the long-term topographic evolution of drainage basins, but their specific interactions during individual storm events are not well understood. Runoff-driven erosion of coarse particles, prevalent in dryland environments, presents a particular set of conditions for sediment transport that is poorly resolved in current models. In order to address this gap, we developed a particle-based, force-balance model for sheetwash sediment transport on coarse, debris-mantled hillslopes within a rainfall-runoff model. We use the model to examine how the interplay between hillslope attributes (gradient, length and grain size distribution) and runoff characteristics affects sediment transport, grain-size changes on the hillslope, and sediment supply to the slope base. The relationship between sediment flux and hillslope gradient was found to transition from linear above a threshold to sigmoidal depending on hillslope length, initial grain sizes, and runoff characteristics. Grain sizes supplied to the slope base vary in a complex manner with hillslope attributes but an overall coarsening of the hillslopes is found to occur with increasing gradient, corroborating previous findings from field measurements. Intense, short duration storms result in within-hillslope sediment redistribution and equifinality in sediment supply for different hillslope characteristics, which explain the lack of field evidence for any systematic relationships. Our model findings provide insights into hillslope responses to climatic forcing and have theoretical implications for modeling hillslope evolution in dry lands.
Crystal growth in a low gravity environment
NASA Technical Reports Server (NTRS)
Carruthers, J. R.
1977-01-01
Crystal growth in microgravity possesses several distinct technological advantages over earth-bound processes; containerless handling and reduction of density gradient driven as well as sedimentation flows. Experiments performed in space to date have been basically reproductions of processes currently used on earth and the results have clarified our understanding of crystal growth dynamics. In addition, both unresolved problems and areas requiring further study on earth have been identified. Future work in space processing of materials must address these areas of study as soon as possible if the full potential of a space environment to develop new techniques and materials is to be realized.
Preliminary Isostatic Gravity Map of Joshua Tree National Park and Vicinity, Southern California
Langenheim, V.E.; Biehler, Shawn; McPhee, D.K.; McCabe, C.A.; Watt, J.T.; Anderson, M.L.; Chuchel, B.A.; Stoffer, P.
2007-01-01
This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in Joshua Tree National Park, southern California. This map will serve as a basis for modeling the shape of basins beneath the Park and in adjacent valleys and also for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure, reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic or structural boundaries. High-density basement rocks exposed within the Eastern Transverse Ranges include crystalline rocks that range in age from Proterozoic to Mesozoic and these rocks are generally present in the mountainous areas of the quadrangle. Alluvial sediments, usually located in the valleys, and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range of densities, but, on average, are less dense than the pre-Cenozoic basement rocks. Basalt within the Park is as dense as crystalline basement, but is generally thin (less than 100 m thick; e.g., Powell, 2003). Isostatic residual gravity values within the map area range from about 44 mGal over Coachella Valley to about 8 mGal between the Mecca Hills and the Orocopia Mountains. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the San Andreas Fault bounding the east side of Coachella Valley and east-west-striking, left-lateral faults, such as the Pinto Mountain, Blue Cut, and Chiriaco Faults (Fig. 1). Gravity gradients also define concealed basin-bounding faults, such as those beneath the Chuckwalla Valley (e.g. Rotstein and others, 1976). These gradients result from juxtaposing dense basement rocks against thick Cenozoic sedimentary rocks.
Bottom currents and sediment transport in Long Island Sound: A modeling study
Signell, R.P.; List, J.H.; Farris, A.S.
2000-01-01
A high resolution (300-400 m grid spacing), process oriented modeling study was undertaken to elucidate the physical processes affecting the characteristics and distribution of sea-floor sedimentary environments in Long Island Sound. Simulations using idealized forcing and high-resolution bathymetry were performed using a three-dimensional circulation model ECOM (Blumberg and Mellor, 1987) and a stationary shallow water wave model HISWA (Holthuijsen et al., 1989). The relative contributions of tide-, density-, wind- and wave-driven bottom currents are assessed and related to observed characteristics of the sea-floor environments, and simple bedload sediment transport simulations are performed. The fine grid spacing allows features with scales of several kilometers to be resolved. The simulations clearly show physical processes that affect the observed sea-floor characteristics at both regional and local scales. Simulations of near-bottom tidal currents reveal a strong gradient in the funnel-shaped eastern part of the Sound, which parallels an observed gradient in sedimentary environments from erosion or nondeposition, through bedload transport and sediment sorting, to fine-grained deposition. A simulation of estuarine flow driven by the along-axis gradient in salinity shows generally westward bottom currents of 2-4 cm/s that are locally enhanced to 6-8 cm/s along the axial depression of the Sound. Bottom wind-driven currents flow downwind along the shallow margins of the basin, but flow against the wind in the deeper regions. These bottom flows (in opposition to the wind) are strongest in the axial depression and add to the estuarine flow when winds are from the west. The combination of enhanced bottom currents due to both estuarine circulation and the prevailing westerly winds provide an explanation for the relatively coarse sediments found along parts of the axial depression. Climatological simulations of wave-driven bottom currents show that frequent high-energy events occur along the shallow margins of the Sound, explaining the occurrence of relatively coarse sediments in these regions. Bedload sediment transport calculations show that the estuarine circulation coupled with the oscillatory tidal currents result in a net westward transport of sand in much of the eastern Sound. Local departures from this regional westward trend occur around topographic and shoreline irregularities, and there is strong predicted convergence of bedload transport over most of the large, linear sand ridges in the eastern Sound, providing a mechanism which prevents their decay. The strong correlation between the near-bottom current intensity based on the model results and the sediment response, as indicated by the distribution of sedimentary environments, provides a framework for predicting the long-term effects of anthropogenic activities.
Salt-dome-related diagenesis of Miocene sediment, Black Bayou field, Cameron Parish, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leger, W.R.
1988-09-01
The Black Bayou field is associated with a salt dome that pierces Miocene sediment and rises to within 900 ft (275 m) of the surface. The Louisiana Gulf Coast regional geothermal gradient is locally affected by the salt dome. The gradient increases to values greater than the regional gradient, 1.26/degrees/F/100 ft (23/degrees/C/km), near the dome. Local effects of the salt dome on clastic diagenesis have been determined by studying sandstone samples adjacent to and away from the salt dome within Miocene sediment. Sample depths range from 4155 to 6145 ft (1266 to 1873 m). Distances of samples from the edgemore » of the dome range from 82 to 820 ft (25 to 250 m).« less
NASA Astrophysics Data System (ADS)
Grzelak, Katarzyna; Kotwicki, Lech; Hasemann, Christiane; Soltwedel, Thomas
2017-08-01
Bathymetric patterns in standing stocks and diversity are a major topic of investigation in deep-sea biology. From the literature, responses of metazoan meiofauna and nematodes to bathymetric gradients are well studied, with a general decrease in biomass and abundance with increasing water depth, while bathymetric diversity gradients often, although it is not a rule, show a unimodal pattern. Spatial distribution patterns of nematode communities along bathymetric gradients are coupled with surface-water processes and interacting physical and biological factors within the benthic system. We studied the nematode communities at the Long-Term Ecological Research (LTER) observatory HAUSGARTEN, located in the Fram Strait at the Marginal Ice Zone, with respect to their standing stocks as well as structural and functional diversity. We evaluated whether nematode density, biomass and diversity indices, such as H0, Hinf, EG(50), Θ- 1, are linked with environmental conditions along a bathymetric transect spanning from 1200 m to 5500 m water depth. Nematode abundance, biomass and diversity, as well as food availability from phytodetritus sedimentation (indicated by chloroplastic pigments in the sediments), were higher at the stations located at upper bathyal depths (1200-2000 m) and tended to decrease with increasing water depth. A faunal shift was found below 3500 m water depth, where genus composition and trophic structure changed significantly and structural diversity indices markedly decreased. A strong dominance of very few genera and its high turnover particularly at the abyssal stations (4000-5500 m) suggests that environmental conditions were rather unfavorable for most genera. Despite the high concentrations of sediment-bound chloroplastic pigments and elevated standing stocks found at the deepest station (5500 m), nematode genus diversity remained the lowest compared to all other stations. This study provides a further insight into the knowledge of deep-sea nematodes, their diversity patterns and a deeper understanding of the environmental factors shaping nematodes communities at bathyal and abyssal depths.
Wishart, D.N.; Slater, L.D.; Schnell, D.L.; Herman, G.C.
2009-01-01
The pneumatic fracturing technique is used to enhance the permeability and porosity of tight unconsolidated soils (e.g. clays), thereby improving the effectiveness of remediation treatments. Azimuthal self potential gradient (ASPG) surveys were performed on a compacted, unconsolidated clay block in order to evaluate their potential to delineate contaminant migration pathways in a mechanically-induced fracture network. Azimuthal resistivity (ARS) measurements were also made for comparative purposes. Following similar procedures to those used in the field, compressed kaolinite sediments were pneumatically fractured and the resulting fracture geometry characterized from strike analysis of visible fractures combined with strike data from optical borehole televiewer (BHTV) imaging. We subsequently injected a simulated treatment (electrolyte/dye) into the fractures. Both ASPG and ARS data exhibit anisotropic geoelectric signatures resulting from the fracturing. Self potentials observed during injection of electrolyte are consistent with electrokinetic theory and previous laboratory results on a fracture block model. Visual (polar plot) analysis and linear regression of cross plots show ASPG lobes are correlated with azimuths of high fracture strike density, evidence that the ASPG anisotropy is a proxy measure of hydraulic anisotropy created by the pneumatic fracturing. However, ARS data are uncorrelated with fracture strike maxima and resistivity anisotropy is probably dominated by enhanced surface conduction along azimuths of weak 'starter paths' formed from pulverization of the clay and increases in interfacial surface area. We find the magnitude of electrokinetic SP scales with the applied N2 gas pressure gradient (??PN2) for any particular hydraulically-active fracture set and that the positive lobe of the ASPG anomaly indicates the flow direction within the fracture network. These findings demonstrate the use of ASPG in characterizing the effectiveness of (1) pneumatic fracturing and (2) defining likely flow directions of remedial treatments in unconsolidated sediments and rock. ?? 2008 Elsevier B.V. All rights reserved.
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
River discharge reduces reef coral diversity in Palau.
Golbuu, Yimnang; van Woesik, Robert; Richmond, Robert H; Harrison, Peter; Fabricius, Katharina E
2011-04-01
Coral community structure is often governed by a suite of processes that are becoming increasingly influenced by land-use changes and related terrestrial discharges. We studied sites along a watershed gradient to examine both the physical environment and the associated biological communities. Transplanted corals showed no differences in growth rates and mortality along the watershed gradient. However, coral cover, coral richness, and coral colony density increased with increasing distance from the mouth of the bay. There was a negative relationship between coral cover and mean suspended solids concentration. Negative relationships were also found between terrigenous sedimentation rates and the richness of adult and juvenile corals. These results have major implications not only for Pacific islands but for all countries with reef systems downstream of rivers. Land development very often leads to increases in river runoff and suspended solids concentrations that reduce coral cover and coral diversity on adjacent reefs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tweeten, K A; Bulla, L A; Consigli, R A
1977-09-01
A procedure was developed for purification of a granulosis virus inclusion body produced in vivo in the Indian meal moth, Plodia interpunctella (Hübner). Purification was accomplished by differential centrifugation, treatment with sodium deoxycholate, and velocity sedimentation in sucrose gradients. The adequacy of the procedure was confirmed by mixing experiments in which uninfected, radioactively labeled larvae were mixed with infected, unlabeled larvae. After purification, the virus was shown to be free of host tissue, to retain its physical integrity, and to be highly infectious per os. Preparations of purified virus consisted of homogeneous populations of intact inclusion bodies (210 by 380 nm) whose buoyant density was 1.271 g/cm3 when centrifuged to equilibrium in sucrose gradients. Electron microscopy of thin-sectioned virus or of virus sequentially disrupted on electron microscope grids demonstrated three components: protein matrix, envelope, and nucleocapsid.
Tweeten, K A; Bulla, L A; Consigli, R A
1977-01-01
A procedure was developed for purification of a granulosis virus inclusion body produced in vivo in the Indian meal moth, Plodia interpunctella (Hübner). Purification was accomplished by differential centrifugation, treatment with sodium deoxycholate, and velocity sedimentation in sucrose gradients. The adequacy of the procedure was confirmed by mixing experiments in which uninfected, radioactively labeled larvae were mixed with infected, unlabeled larvae. After purification, the virus was shown to be free of host tissue, to retain its physical integrity, and to be highly infectious per os. Preparations of purified virus consisted of homogeneous populations of intact inclusion bodies (210 by 380 nm) whose buoyant density was 1.271 g/cm3 when centrifuged to equilibrium in sucrose gradients. Electron microscopy of thin-sectioned virus or of virus sequentially disrupted on electron microscope grids demonstrated three components: protein matrix, envelope, and nucleocapsid. Images PMID:334076
NASA Astrophysics Data System (ADS)
Michaud, Emma; Aller, Robert, C.; Stora, Georges
2010-11-01
The coupling between biogenic reworking activity and reactive organic matter patterns within deposits is poorly understood and often ignored. In this study, we examined how common experimental treatments of sediment affect the burrowing behavior of the polychaete Nephtys incisa and how these effects may interact with reactive organic matter distributions to alter diagenetic transport - reaction balances. Sediment and animals were recovered from a subtidal site in central Long Island Sound, USA. The upper 15 cm of the sediment was sectioned into sub-intervals, and each interval separately sieved and homogenized. Three initial distributions of sediment and organic substrate reactivity were setup in a series of microcosms: (1) a reconstituted natural pattern with surface-derived sediment overlying sediment obtained from progressively deeper material to a depth of 15 cm (Natural); (2) a 15 cm thick sediment layer composed only of surface-derived sediment (Rich); and (3) a 15 cm thick layer composed of uniformally mixed sediment from the original 15 cm sediment profile (Averaged). The two last treatments are comparable to that used in microcosms in many previous studies of bioturbation and interspecific functional interaction experiments. Sediment grain size distributions were 97.5% silt-clay and showed no depth dependent patterns. Sediment porosity gradients were slightly altered by the treatments. Nepthys were reintroduced and aquariums were X-rayed regularly over 5 months to visualize and quantify spatial and temporal dynamics of burrows. The burrowing behaviour of adult populations having similar total biovolume, biomass, abundance, and individual sizes differed substantially as a function of treatment. Burrows in sediment with natural property gradients were much shallower and less dense than those in microcosms with altered gradients. The burrow volume/biovolume ratio was also lower in the substrate with natural organic reactivity gradients. Variation in food resources or in sediment mechanical properties associated with treatments, the latter in part coupled to remineralization processes such as exopolymer production, may explain the burrowing responses. In addition to demonstrating how species may respond to physical sedimentation events (substrate homogenization) and patterns of reactive organic matter redistribution, these experiments suggest that infaunal species interactions in microcosms, including the absolute and relative fluxes of remineralized solutes, may be subject to artifacts depending on exactly how sediments are introduced experimentally. Nonlocal transport and cylinder microenvironment transport - reaction models readily demonstrate how the multiple interactions between burrowing patterns and remineralization rate distributions can alter relative flux balances, decomposition pathways, and time to steady state.
Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape
Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles
2015-01-01
Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.
LeBlanc, Denis R.; Garabedian, Stephen P.; Hess, Kathryn M.; Gelhar, Lynn W.; Quadri, Richard D.; Stollenwerk, Kenneth G.; Wood, Warren W.
1991-01-01
A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse in July 1985 and monitored in three dimensions as they moved as far as 280 m down-gradient through an array of multilevel samplers. The bromide cloud moved horizontally at a rate of 0.42 m per day. It also moved downward about 4 m because of density-induced sinking early in the test and accretion of areal recharge from precipitation. After 200 m of transport, the bromide cloud had spread more than 80 m in the direction of flow, but was only 14 m wide and 4–6 m thick. The lithium and molybdate clouds followed the same path as the bromide cloud, but their rates of movement were retarded about 50% relative to bromide movement because of sorption onto the sediments.
Wood and Sediment Dynamics in River Corridors
NASA Astrophysics Data System (ADS)
Wohl, E.; Scott, D.
2015-12-01
Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.
Effects of wave shape on sheet flow sediment transport
Hsu, T.-J.; Hanes, D.M.
2004-01-01
A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.
Maret, Terry R.; MacCoy, Dorene E.
2002-01-01
As part of the U.S. Geological Survey's National Water Quality Assessment Program, fish assemblages, environmental variables, and associated mine densities were evaluated at 18 test and reference sites during the summer of 2000 in the Coeur d'Alene and St. Regis river basins in Idaho and Montana. Multimetric and multivariate analyses were used to examine patterns in fish assemblages and the associated environmental variables representing a gradient of mining intensity. The concentrations of cadmium (Cd), lead (Pb), and zinc (Zn) in water and streambed sediment found at test sites in watersheds where production mine densities were at least 0.2 mines/km2 (in a 500-m stream buffer) were significantly higher than the concentrations found at reference sites. Many of these metal concentrations exceeded Ambient Water Quality Criteria (AWQC) and the Canadian Probable Effect Level guidelines for streambed sediment. Regression analysis identified significant relationships between the production mine densities and the sum of Cd, Pb, and Zn concentrations in water and streambed sediment (r2 = 0.69 and 0.66, respectively; P < 0.01). Zinc was identified as the primary metal contaminant in both water and streambed sediment. Eighteen fish species in the families Salmonidae, Cottidae, Cyprinidae, Catostomidae, Centrarchidae, and Ictaluridae were collected. Principal components analysis of 11 fish metrics identified two distinct groups of sites corresponding to the reference and test sites, predominantly on the basis of the inverse relationship between percent cottids and percent salmonids (r = -0.64; P < 0.05). Streams located downstream from the areas of intensive hard-rock mining in the Coeur d'Alene River basin contained fewer native fish and lower abundances as a result of metal enrichment, not physical habitat degradation. Typically, salmonids were the predominant species at test sites where Zn concentrations exceeded the acute AWQC. Cottids were absent at these sites, which suggests that they are more severely affected by elevated metals than are salmonids.
Biogeochemical Gradients in Wetland Sediments and their Effect on the Fate Trace Metals
NASA Astrophysics Data System (ADS)
Jaffe, P. R.; Choi, J.; Xu, S.
2005-12-01
The interactions between sediment biogeochemistry processes and higher plants play a major role on trace metal mobility in wetlands. Most wetland sediments are characterized by steep redox gradients, resulting from the sequential utilization of different electron acceptors during the degradation of organic matter provided by leaf litter and root turnover. Metals in wetland sediments may be immobilized due to precipitation or adsorption to different organic and inorganic sediment constituents. Adsorption onto iron, and manganese oxides, are important in the rhizosphere where iron oxyhydroxide plaques may form on the surface of roots. As the sediments becomes more reduced, bioavailable iron and manganese oxides are used as electron acceptor and are gradually depleted, resulting in the mobilization of some adsorbed species (i.e., As(V), phosphate, etc.), the reduction of some trace metals such as Cr(VI) (which is then immobilized as Cr(III)), and for more reduced conditions the immobilization of trace metals (i.e., Cd, Pb, Zn) as sulfides. Results from numerical simulations, laboratory experiments, and field measurements will be presented, showing how redox gradients and hence, trace-metal immobilization, in wetlands respond to external forcing functions such as changes in nutrient loading, plant distribution, seasonal and diurnal plant activity (specifically evapotranspiration and oxygen release), and temporal or spatial changes in the profile of iron and manganese oxides.
Johnson, Erica; Austin, Bradley J; Inlander, Ethan; Gallipeau, Cory; Evans-White, Michelle A; Entrekin, Sally
2015-10-15
Oil and gas extraction in shale plays expanded rapidly in the U.S. and is projected to expand globally in the coming decades. Arkansas has doubled the number of gas wells in the state since 2005 mostly by extracting gas from the Fayetteville Shale with activity concentrated in mixed pasture-deciduous forests. Concentrated well pads in close proximity to streams could have adverse effects on stream water quality and biota if sedimentation associated with developing infrastructure or contamination from fracturing fluid and waste occurs. Cumulative effects of gas activity and local habitat conditions on macroinvertebrate communities were investigated across a gradient of gas well activity (0.2-3.6 wells per km(2)) in ten stream catchments in spring 2010 and 2011. In 2010, macroinvertebrate density was positively related to well pad inverse flowpath distance from streams (r=0.84, p<0.001). Relatively tolerant mayflies Baetis and Caenis (r=0.64, p=0.04), filtering hydropsychid caddisflies (r=0.73, p=0.01), and chironomid midge densities (r=0.79, p=0.008) also increased in streams where more well pads were closer to stream channels. Macroinvertebrate trophic structure reflected environmental conditions with greater sediment and primary production in streams with more gas activity close to streams. However, stream water turbidity (r=0.69, p=0.02) and chlorophyll a (r=0.89, p<0.001) were the only in-stream variables correlated with gas well activities. In 2011, a year with record spring flooding, a different pattern emerged where mayfly density (p=0.74, p=0.01) and mayfly, stonefly, and caddisfly richness (r=0.78, p=0.008) increased in streams with greater well density and less silt cover. Hydrology and well pad placement in a catchment may interact to result in different relationships between biota and catchment activity between the two sample years. Our data show evidence of different macroinvertebrate communities expressed in catchments with different levels of gas activity that reinforce the need for more quantitative analyses of cumulative freshwater-effects from oil and gas development. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
LI, Honglei; Fang, Jian; Braitenberg, Carla; Wang, Xinsheng
2015-04-01
As the highest, largest and most active plateau on Earth, the Qinghai-Tibet Plateau has a complex crust-mantle structure, especially in its eastern part. In response to the subduction of the lithospheric mantle of the Indian plate, large-scale crustal motion occurs in this area. Despite the many previous studies, geodynamic processes at depth remain unclear. Knowledge of crust and upper mantle density distribution allows a better definition of the deeper geological structure and thus provides critically needed information for understanding of the underlying geodynamic processes. With an unprecedented precision of 1-2 mGal and a spatial resolution better than 100 km, GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission products can be used to constrain the crust-mantle density distribution. Here we used GOCE gravitational gradients at an altitude of 10km after reducing the effects of terrain, sediment thickness variations, and Moho undulations to image the density structures of eastern Tibet up to 200 km depths. We inverted the residual satellite gravitational gradients using a least square approach. The initial density model for the inversion is based on seismic velocities from the tomography. The model is composed of rectangular blocks, having a uniform density, with widths of about 100 km and variable thickness and depths. The thickness of the rectangular cells changes from10 to 60km in accordance with the seismic model. Our results reveal some large-scale, structurally controlled density variations at depths. The lithospheric root defined by higher-density contrast features from southwest to northeast, with shallowing in the central part: base of lithosphere reaches a depth of180 km, less than 100km, and 200 km underneath the Lhasa, Songpan-Ganzi, and Ordos crustal blocks, respectively. However, these depth values only represent a first-order parameterization because they depend on model discretization inherited from the original seismic tomography model. For example, the thickness of the uniform density blocks centered at140 km depth is as large as 60 km. Low-density crustal anomalies beneath the southern Lhasa and Songpan-Ganzi blocks in our model support the idea of weak lower crust and possible crustal flow, as a result of the thermal anomalies caused by the upwelling of hot deep materials. The weak lower crust may cause the decoupling of the upper crust and the mantle. These results are consistent with many other geophysical studies, confirming the effectiveness of the GOCE gravitational gradient data. Using these data in combination with other geodynamic constraints (e.g., gravity and seismic structure and preliminary reference Earth model), an improved dynamic model can be derived.
NASA Astrophysics Data System (ADS)
Lacharité, Myriam; Metaxas, Anna
2017-08-01
Benthic habitats on deep continental margins (> 1000 m) are now considered heterogeneous - in particular because of the occasional presence of hard substrate in a matrix of sand and mud - influencing the distribution of megafauna which can thrive on both sedimented and rocky substrates. At these depths, optical imagery captured with high-definition cameras to describe megafauna can also describe effectively the fine-scale sediment properties in the immediate vicinity of the fauna. In this study, we determined the relationship between local heterogeneity (10-100 sm) in fine-scale sediment properties and the abundance, composition, and diversity of megafauna along a large depth gradient (1000-3000 m) in a previously-unexplored habitat: the Northeast Fan, which lies downslope of submarine canyons off the Gulf of Maine (northwest Atlantic). Substrate heterogeneity was quantified using a novel approach based on principles of computer vision. This approach proved powerful in detecting gradients in sediment, and sporadic complex features (i.e. large boulders) in an otherwise homogeneous environment because it characterizes sediment properties on a continuous scale. Sediment heterogeneity influenced megafaunal diversity (morphospecies richness and Shannon-Wiener Index) and community composition, with areas of higher substrate complexity generally supported higher diversity. However, patterns in abundance were not influenced by sediment properties, and may be best explained by gradients in food supply. Our study provides a new approach to quantify fine-scale sediment properties and assess their role in shaping megafaunal communities in the deep sea, which should be included into habitat studies given their potential ecological importance.
NASA Astrophysics Data System (ADS)
Olu, K.; Decker, C.; Pastor, L.; Caprais, J.-C.; Khripounoff, A.; Morineaux, M.; Ain Baziz, M.; Menot, L.; Rabouille, C.
2017-08-01
Methane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep-sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex. The exceptionally high organic content of the surface sediment in the active lobe complex was correlated with unusual densities of macrofauna for this depth, enhanced by a factor 7-8, compared with those of the older, abandoned lobe, whose sediment carbon content is still higher than in Angola Basin at same depth. Macrofaunal communities, dominated by cossurid polychaetes and tanaids were also more closely related to those colonizing low-flow cold seeps than those of typical deep-sea sediment. In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with high densities, low diversity and dominance of sulfide-tolerant polychaetes and gastropods in the most sulfidic habitats. In addition, diversity was higher in vesicomyid bivalve beds, which appeared to bio-irrigate the upper sediment layers. High beta-diversity is underscored by the variability of geochemical gradients in vesicomyid assemblages, and by the vesicomyid population characteristics that vary in density, size and composition. By modifying the sediment geochemistry differently according to their morphology and physiology, the different vesicomyid species play an important role structuring macrofauna composition and vertical distribution. Dynamics of turbiditic deposits at a longer temporal scale (thousands of years) and their spatial distribution in the lobe area also resulted in high heterogeneity of the "cold-seep-like communities". Dynamics of chemosynthetic habitats and associated macrofauna in the active lobe area resembled those previously observed at the Regab pockmark along the Congo margin and rapid succession is expected to cope with high physical disturbance by frequent turbiditic events and huge sedimentation rates. Finally, we propose a model of the temporal evolution of these peculiar habitats and communities on longer timescales in response to changes in distributary channels within the lobe complex.
NASA Astrophysics Data System (ADS)
Woodland, Alan; Girnis, Andrei; Bulatov, Vadim; Brey, Gerhard; Höfer, Heidi; Gerdes, Axel
2017-04-01
Strong thermal and chemical gradients are characteristic of the slab-mantle interface in subduction zones where relatively cold sediments become juxtaposed with hotter peridotite of the mantle wedge. The formation of arc magmas is directly related to mass transfer processes under these conditions. We have undertaken a series of experiments to simulate interactions and mass transfer at the slab-mantle interface. In addition to having juxtaposed sediment and peridotite layers, the experiments were performed under different thermal gradients. The sediment had a composition similar to GLOSS (1) and also served as the source of H2O, CO2 and a large selection of trace elements. The peridotite was a depleted garnet harzburgite formed from a mixture of natural hand-picked olivine, opx and garnet. Graphite was added to this mixture to establish a redox gradient between the two layers. Experiments were performed at 7.5-10 GPa to simulate the processes during deep subduction. The thermal gradient was achieved by displacing the sample capsule (Re-lined Pt) from the center of the pressure cell. The gradient was monitored with separate thermocouples at each end of the capsule and by subsequent opx-garnet thermometry across the sample. Maximum temperatures varied from 1400˚ -900˚ C and gradients ranged from 200˚ -800˚ C. Thus, in some experiments melting occurred in the sediment layer and in others this layer remained subsolidus, only devolatilizing. Major and trace elements were transported both in the direction of melt percolation to the hot zone, as well as down temperature. This leads to the development of zones with discrete phase assemblages. Olivine in the peridotite layer becomes converted to orthopyroxene, which is due to Si addition, but also migration of Mg and Fe towards the sediment. In the coldest part of a sample, the sediment is converted into an eclogitic cpx + garnet assemblage. A thin zone depleted in almost all trace elements is formed in peridotite directly above the sediment/peridotite boundary and defines the region of maximum metasomatic alteration. With a low Tmin, fluid-mobile Ba, Rb, Sr and Li are more strongly transported into the melt zone compared to HFSE and REE. At Tmin > 700˚ C, all incompatible elements are extracted from the solid into the melt. However, the mineral assemblage controls which elements are held back in the solid residue (i.e. MREE, HREE, Y, Sc, and to a lesser extent Ti, Zr and Hf in garnet). Peridotite-sediment interaction can produce humite-group minerals, particularly in the presence of F. Negative Nb-Ta anomalies are caused by rutile and/or humite phases. Transport of melt or fluid from the sediment to the overlying mantle wedge produces metasomatized magma sources from which basaltic melts with sedimentary geochemical signatures can be derived. Adding even 1% of melt or fluid to depleted mantle peridotite is sufficient to produce basaltic melts with incompatible element contents similar to those observed in natural subduction-related magmas. Such signatures are retained at 6.5 and even 10 GPa when Tmin < 700˚ C. Plank, T., Langmuir C., 1998. Chem. Geol. 145, 325-394.
NASA Astrophysics Data System (ADS)
Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.
2017-12-01
Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured in the experiment. The comprehensive scale of the Monterey Coordinated Canyon Experiment allows us to integrate sediment traps with ADCP instrument data and seafloor core samples, which provides important new data to constrain how, when, and what sediment is transported through submarine canyons and how this is archived in seafloor deposits.
NASA Astrophysics Data System (ADS)
Lea, Devin M.
Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study used remote sensing and GIS tools along with field data to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from light detection and ranging (LiDAR) data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Results indicated a lack of strong correlation between stream power gradients and sediment response, highlighting the geomorphic complexity of Soda Butte Creek and the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote sensing could help improve understanding of the spatial organization of stream power, sediment transport, and channel change in dynamic natural rivers.
Zhukov, V A; Shishkina, L N; Sergeev, A A; Malkova, E M; Riabchikova, E I; Petrishchenko, V A; Sergeev, A N; Ustiuzhanina, N V; Nesvizhskiĭ, Iu V; Vorob'ev, A A
2008-01-01
The levels of susceptibility to influenza virus A/Aichi/2/68 H3N2 and the virus yield were determined using primary cells of the trachea and lungs of CD-1 mice and Wistar rats, and for 3 sets of cells obtained from primary lung cells of the both species by centrifugation in the gradient of density and by sedimentation on a surface. The values of ID50 virus dose for 10(6) cells and virus yield per 1 infected cell determined for primary mice cells were 4.0+/-0.47 and 3.2+/-0.27 IgEID50 (lung cells), 3.8+/-0.17 and 3.3+/-0.20 IgEID50 (tracheal cells), and those determined for primary rat cells were 4.0+/-0.35 and 2.1+/-0.24 IgEID50 (lung cells), 3.7+/-0.27 and 2.2+/-0.46 IgEID50 (tracheal cells). The values of ID50 and yield measured for mixtures of cells obtained from primary lung cells by centrifugation in gradient of density and by sedimentation on a surface differed insignificantly (p = 0.05) from the values of the corresponding parameters measured for lung and tracheal cells for both rats and mice. The analysis of data on the variation of the concentrations of different cell types in the experimental cell mixtures shows that type 1 and 2 alveolocytes possess significantly lower (p = 0.05) susceptibility and productivity vs. ciliated cells of the both species. The investigation was conducted within the frame of the ISTC/DARPA#450p project.
Chang, Yu-Jen; Tien, Kuei-Erh; Wen, Cheng-Hao; Hsieh, Tzu-Bou; Hwang, Shiaw-Min
2014-04-01
Very small embryonic-like (VSEL) stem cells are a rare cell population present in bone marrow, cord blood and other tissues that displays a distinct small cell size and the ability to give rise to cells of the three germ layers. VSEL stem cells were reported to be discarded in the red blood cell fraction by Ficoll-Paque density gradient centrifugation during the processing of bone marrow and cord blood specimens. However, most cord blood banks do not include density gradient centrifugation in their procedures while red blood cells are removed by Hespan sedimentation following the Cord Blood Transplantation Study cord blood bank standard operating procedures (COBLT SOP). To clarify the retention of VSEL stem cells, we investigated the recovery of VSEL stem cells following COBLT SOP guidelines. The recovery of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells of umbilical cord blood was examined by flow cytometry before and after COBLT SOP processing, and relative expression of pluripotent genes was analyzed by quantitative polymerase chain reaction. CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells were mostly recovered in the final products following COBLT SOP guidelines. The expression of pluripotent genes could be maintained at >80% in products after hetastarch (Hespan; B. Braun Medical Inc., Irvine, CA, USA) processing. The rare sub-population of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells survived after Hespan sedimentation. This finding suggests that umbilical cord blood units cryopreserved by COBLT SOP in cord blood banks should retain most VSEL stem cells present in the un-processed specimens. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
DNA of a Human Hepatitis B Virus Candidate
Robinson, William S.; Clayton, David A.; Greenman, Richard L.
1974-01-01
Particles containing DNA polymerase (Dane particles) were purified from the plasma of chronic carriers of hepatitis B antigen. After a DNA polymerase reaction with purified Dane particle preparations treated with Nonidet P-40 detergent, Dane particle core structures containing radioactive DNA product were isolated by sedimentation in a sucrose density gradient. The radioactive DNA was extracted with sodium dodecyl sulfate and isolated by band sedimentation in a preformed CsCl gradient. Examination of the radioactive DNA band by electron microscopy revealed exclusively circular double-stranded DNA molecules approximately 0.78 μm in length. Identical circular molecules were observed when DNA was isolated by a similar procedure from particles that had not undergone a DNA polymerase reaction. The molecules were completely degraded by DNase 1. When Dane particle core structures were treated with DNase 1 before DNA extraction, only 0.78-μm circular DNA molecules were detected. Without DNase treatment of core structures, linear molecules with lengths between 0.5 and 12 μm, in addition to the 0.78-μm circles were found. These results suggest that the 0.78-μm circular molecules were in a protected position within Dane particle cores and the linear molecules were not within core structures. Length measurements on 225 circular molecules revealed a mean length of 0.78 ± 0.09 μm which would correspond to a molecular weight of around 1.6 × 106. The circular molecules probably serve as primer-template for the DNA polymerase reaction carried out by Dane particle cores. Thermal denaturation and buoyant density measurements on the Dane particle DNA polymerase reaction product revealed a guanosine plus cytosine content of 48 to 49%. Images PMID:4847328
NASA Astrophysics Data System (ADS)
Schulz, E.; Grasso, F.; Le Hir, P.; Verney, R.; Thouvenin, B.
2018-01-01
Understanding the sediment dynamics in an estuary is important for its morphodynamic and ecological assessment as well as, in case of an anthropogenically controlled system, for its maintenance. However, the quantification of sediment fluxes and budgets is extremely difficult from in-situ data and requires thoroughly validated numerical models. In the study presented here, sediment fluxes and budgets in the lower Seine Estuary were quantified and investigated from seasonal to annual time scales with respect to realistic hydro- and meteorological conditions. A realistic three-dimensional process-based hydro- and sediment-dynamic model was used to quantify mud and sand fluxes through characteristic estuarine cross-sections. In addition to a reference experiment with typical forcing, three experiments were carried out and analyzed, each differing from the reference experiment in either river discharge or wind and waves so that the effects of these forcings could be separated. Hydro- and meteorological conditions affect the sediment fluxes and budgets in different ways and at different locations. Single storm events induce strong erosion in the lower estuary and can have a significant effect on the sediment fluxes offshore of the Seine Estuary mouth, with the flux direction depending on the wind direction. Spring tides cause significant up-estuary fluxes at the mouth. A high river discharge drives barotropic down-estuary fluxes at the upper cross-sections, but baroclinic up-estuary fluxes at the mouth and offshore so that the lower estuary gains sediment during wet years. This behavior is likely to be observed worldwide in estuaries affected by density gradients and turbidity maximum dynamics.
Nitrate consumption in sediments of the German Bight (North Sea)
NASA Astrophysics Data System (ADS)
Neumann, Andreas; van Beusekom, Justus E. E.; Holtappels, Moritz; Emeis, Kay-Christian
2017-09-01
Denitrification on continental margins and in coastal sediments is a major sink of reactive N in the present nitrogen cycle and a major ecosystem service of eutrophied coastal waters. We analyzed the nitrate removal in surface sediments of the Elbe estuary, Wadden Sea, and adjacent German Bight (SE North Sea) during two seasons (spring and summer) along a eutrophication gradient ranging from a high riverine nitrate concentrations at the Elbe Estuary to offshore areas with low nitrate concentrations. The gradient encompassed the full range of sediment types and organic carbon concentrations of the southern North Sea. Based on nitrate penetration depth and concentration gradient in the porewater we estimated benthic nitrate consumption rates assuming either diffusive transport in cohesive sediments or advective transport in permeable sediments. For the latter we derived a mechanistic model of porewater flow. During the peak nitrate discharge of the river Elbe in March, the highest rates of diffusive nitrate uptake were observed in muddy sediments (up to 2.8 mmol m- 2 d- 1). The highest advective uptake rate in that period was observed in permeable sediment and was tenfold higher (up to 32 mmol m- 2 d- 1). The intensity of both diffusive and advective nitrate consumption dropped with the nitrate availability and thus decreased from the Elbe estuary towards offshore stations, and were further decreased during late summer (minimum nitrate discharge) compared to late winter (maximum nitrate discharge). In summary, our rate measurements indicate that the permeable sediment accounts for up to 90% of the total benthic reactive nitrogen consumption in the study area due to the high efficiency of advective nitrate transport into permeable sediment. Extrapolating the averaged nitrate consumption of different sediment classes to the areas of Elbe Estuary, Wadden Sea and eastern German Bight amounts to an N-loss of 3.1 ∗ 106 mol N d- 1 from impermeable, diffusion-controlled sediment, and 5.2 ∗ 107 mol N d- 1 from permeable sediment with porewater advection.
NASA Astrophysics Data System (ADS)
Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.
2017-12-01
High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are being used to refine relations for sediment entrainment and sediment flux in sandy and muddy, lowland rivers and deltas.
NASA Astrophysics Data System (ADS)
Mosher, D. C.; Campbell, C.; Piper, D.; Chaytor, J. D.; Gardner, J. V.; Rebesco, M.
2016-12-01
Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data in concert with subbottom profiler and seismic reflection data. Most of the continental margin has a steep (>3o) upper slope down to 1500 to 2500 m and then a gradual middle and lower slope with a general concave upward shape There is a constant interplay of deep sea sedimentation processes, but the general morphology is dictated by the dominant one. Erosion by off-shelf sediment transport in turbidity currents creating channels, gullies and canyons creates the steep upper slope. These gullies and canyons amalgamate to form singular channels that are conduits to the abyssal plain. This process results in a general seaward flattening of gradients, producing an exponentially decaying slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a two-segment slope, and/or a significant downslope gradient change where MTDs pinch out. Large sediment bodies deposited by contour-following currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. Along their crests, they form a linear profile from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts tend to form bathymetric steps in profile, where they onlap the margin. Stacked drifts create several steps. Turbidites of the abyssal plain onlap the lowermost drift creating a significant gradient change at this juncture. Understanding the geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping, for example, in which gradient change is a critical metric.
STUDIES ON PNEUMONIA VIRUS OF MICE (PVM) IN CELL CULTURE
Harter, Donald H.; Choppin, Purnell W.
1967-01-01
Pneumonia virus of mice (PVM) has been serially propagated in a line of baby hamster kidney (BHK21) cells. A maximum titer of 6.3 x 106 TCID50 per ml was obtained, and there was little variation in yield on serial passage. PVM grown in BHK21 cells was antigenically similar to virus obtained from the mouse lung, but was somewhat less virulent for the mouse after 10 serial passages in these cells. Virus produced by BHK21 cells agglutinated mouse erythrocytes without prior heating or other treatment. Sedimentation of PVM in the ultracentrifuge or precipitation by ammonium sulfate resulted in a loss in infectivity but an increase in hemagglutinating activity, presumably due to disruption of the virus particle. In a potassium tartrate density gradient, the major portion of infective virus sedimented at a density of approximately 1.15, and noninfective hemagglutinin, at a density of approximately 1.13. Stock virus preparations appear to contain a large amount of noninfective hemagglutinin. The replication of PVM was not inhibited by 5-fluoro-2'-deoxyuridine, 5-bromo-2'-deoxyuridine, or 5-iodo-2'-deoxyuridine. Infected cells contained eosinophilic cytoplasmic inclusions which showed the acridine orange staining characteristic of single-stranded RNA. Foci of viral antigen were observed in the cytoplasm of infected cells by fluorescent antibody staining. The results suggest that PVM is an RNA virus that replicates in the cytoplasm. PMID:4165740
Spiral density waves and vertical circulation in protoplanetary discs
NASA Astrophysics Data System (ADS)
Riols, A.; Latter, H.
2018-06-01
Spiral density waves dominate several facets of accretion disc dynamics - planet-disc interactions and gravitational instability (GI) most prominently. Though they have been examined thoroughly in two-dimensional simulations, their vertical structures in the non-linear regime are somewhat unexplored. This neglect is unwarranted given that any strong vertical motions associated with these waves could profoundly impact dust dynamics, dust sedimentation, planet formation, and the emissivity of the disc surface. In this paper, we combine linear calculations and shearing box simulations in order to investigate the vertical structure of spiral waves for various polytropic stratifications and wave amplitudes. For sub-adiabatic profiles, we find that spiral waves develop a pair of counter-rotating poloidal rolls. Particularly strong in the non-linear regime, these vortical structures issue from the baroclinicity supported by the background vertical entropy gradient. They are also intimately connected to the disc's g modes which appear to interact non-linearly with the density waves. Furthermore, we demonstrate that the poloidal rolls are ubiquitous in gravitoturbulence, emerging in the vicinity of GI spiral wakes, and potentially transporting grains off the disc mid-plane. Other than hindering sedimentation and planet formation, this phenomena may bear on observations of the disc's scattered infrared luminosity. The vortical features could also impact on the turbulent dynamo operating in young protoplanetary discs subject to GI, or possibly even galactic discs.
Ma, Jun; Liu, Yi; Yu, Guangbin; Li, Hongbo; Yu, Shen; Jiang, Yueping; Li, Guilin; Lin, Jinchang
2016-05-15
Spatial patterns of metal distribution along urban-rural or multi-city gradients indicate that the urbanization process directly lead to metal enrichment and contamination in the environments. However, it has not yet looked at homogenization dynamics of an urban-rural gradient pattern over time with urbanization process in an area. This study monitored anthropogenic metals (Cr, Cu, Pb, and Zn) in surface sediments from channels of a newly-opened National Wetland Park to elucidate the urbanization-driven dissolution of urban-rural gradient pattern between 2008 and 2011. Sixty-eight surface sediment samples were taken from these channels in July of both 2008 and 2011. Results showed that a spatial distribution pattern of total metal contents along the gradient of urbanization influence, evident in 2008, was homogenized in 2011 with the area development. The lead stable isotope ratio analysis identified anthropogenic Pb origins from vehicular exhausts, cements, and coal flying ashes, which elevated metal contents in the inner channels via atmospheric deposition. Specific hazard quotients of the metal contamination in surface sediment were also assessed and enhanced over time in the study wetland park. These findings suggest that emissions from traffic, construction, and energy generation contribute metal loadings in the urbanizing environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa
NASA Astrophysics Data System (ADS)
Vos, Richard G.; Tankard, Anthony J.
1981-07-01
Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Ruiz, J.; White, A. E.; Ren, Y.
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less
Neotectonic Activity from Karewa Sediments, Kashmir Himalaya, India
NASA Astrophysics Data System (ADS)
Agarwal, K. K.; Shah, R. A.; Achyuthan, H.; Singh, D. S.; Srivastava, S.; Khan, I.
2018-01-01
Intermontane basin sedimentation occurred during Pliocene-Pleistocene in the Karewa Basin which formed after the continent-continent collision resulting in the formation of Himalayan orogenic belt around Eocene. These are elongated, narrow, thrust bounded basins which have formed during the late stages of orogeny. Situated at a height of 1700-1800 m above sea level, the Karewa basin received sediments because of ponding of a pre-existing river system and the tectonic movements along the Great Himalayan Ranges in the north and the Pir-Panjal ranges in the south along active faults. About 1300 m thick sediments of largely fluvio-lacustrine, glacio-fluvio-lacustrine and eolian origin are exposed having evidences of neotectonically formed structural features such as folds and faults. Folds are more prominent in the Lower Karewa formation (Hirpur Formation) while faults (mostly normal faults) are abundant in the Upper Karewas (Nagum Formation). Drainage in the area varies from dendritic to anastomosing to parallel. Anastomosing drainage suggests sudden decrease in gradient while presence of linear features such as faults and ridges is evident by parallel drainage. Study of morphometric parameters such as stream length (Lsm) and stream length ratios (RL), bifurcation ratio (Rb), drainage density (D), form factor (Rf), circularity ratio (Rc), and elongation ratio (Re) also indicate intense tectonic activity in the recent past.
Density Gradients in Chemistry Teaching
ERIC Educational Resources Information Center
Miller, P. J.
1972-01-01
Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)
Relationships between heat flow, thermal and pressure fields in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Husson, L.; Henry, P.; Le Pichon, X.
2004-12-01
The thermal field of the Gulf of Mexico (GoM) is restored from a comprehensive temperature-depth database. A striking feature is the systematic sharp gradient increase between 2500 and 4000 m. The analysis of the pressure (fracturation tests and mud weights) indicates a systematic correlation between the pressure and temperature fields, as well as with the thickness of Plio-Pleistocene sedimentary layer, and is interpreted as the fact of cooling from fluid flow in the upper, almost hydrostatically pressured layer. The Nusselt number, that we characterize by the ratio between the near high-P gradient over low-P gradient varies spatially and is correlated to the structural pattern of the GoM; this observation outlines the complex relationships between heat and fluid flows, structure and sedimentation. The deep thermal signal is restored in terms of gradient and heat flow density from a statistical analysis of the thermal data combined to the thermal modelling of about 175 wells. At a regional scale, although the sedimentary cover is warmer in Texas than in Louisiana in terms of temperature, the steady state basal heat flow is higher in Louisiana. In addition, beneath the Corsair Fault, which lay offshore parallel to the Texan coast, the high heat flow suggests a zone of Tertiary lithospheric thinning.
Validation of a coupled wave-flow model in a high-energy setting: the mouth of the Columbia River
Elias, Edwin P.L.; Gelfenbaum, Guy R.; van der Westhuysen, André J.
2012-01-01
A monthlong time series of wave, current, salinity, and suspended-sediment measurements was made at five sites on a transect across the Mouth of Columbia River (MCR). These data were used to calibrate and evaluate the performance of a coupled hydrodynamic and wave model for the MCR based on the Delft3D modeling system. The MCR is a dynamic estuary inlet in which tidal currents, river discharge, and wave-driven currents are all important. Model tuning consisted primarily of spatial adjustments to bottom drag coefficients. In combination with (near-) default parameter settings, the MCR model application is able to simulate the dominant features in the tidal flow, salinity and wavefields observed in field measurements. The wave-orbital averaged method for representing the current velocity profile in the wave model is considered the most realistic for the MCR. The hydrodynamic model is particularly effective in reproducing the observed vertical residual and temporal variations in current structure. Density gradients introduce the observed and modeled reversal of the mean flow at the bed and augment mean and peak flow in the upper half of the water column. This implies that sediment transport during calmer summer conditions is controlled by density stratification and is likely net landward due to the reversal of flow near the bed. The correspondence between observed and modeled hydrodynamics makes this application a tool to investigate hydrodynamics and associated sediment transport.
Validation of a coupled wave-flow model in a high-energy setting: The mouth of the Columbia River
NASA Astrophysics Data System (ADS)
Elias, Edwin P. L.; Gelfenbaum, Guy; Van der Westhuysen, André J.
2012-09-01
A monthlong time series of wave, current, salinity, and suspended-sediment measurements was made at five sites on a transect across the Mouth of Columbia River (MCR). These data were used to calibrate and evaluate the performance of a coupled hydrodynamic and wave model for the MCR based on the Delft3D modeling system. The MCR is a dynamic estuary inlet in which tidal currents, river discharge, and wave-driven currents are all important. Model tuning consisted primarily of spatial adjustments to bottom drag coefficients. In combination with (near-) default parameter settings, the MCR model application is able to simulate the dominant features in the tidal flow, salinity and wavefields observed in field measurements. The wave-orbital averaged method for representing the current velocity profile in the wave model is considered the most realistic for the MCR. The hydrodynamic model is particularly effective in reproducing the observed vertical residual and temporal variations in current structure. Density gradients introduce the observed and modeled reversal of the mean flow at the bed and augment mean and peak flow in the upper half of the water column. This implies that sediment transport during calmer summer conditions is controlled by density stratification and is likely net landward due to the reversal of flow near the bed. The correspondence between observed and modeled hydrodynamics makes this application a tool to investigate hydrodynamics and associated sediment transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houghton, J.P.; Lees, D.C.; Driskell, W.B.
1994-12-31
Native little neck (Protothaca staminea) and butter clams (Saxidomus giganteus) were quantitatively surveyed from 1989 through 1993 to evaluate effects from the Exxon Valdez oil spill. Hydraulic washing of sand and gravel beaches altered beach morphology by transporting material down slope from upper elevations, often burying the lower beach in several centimeters of sediment having a relatively low content of fines and organic carbon. Hydraulically washed beaches showed significant reductions in clam densities in 1989 and 1990. Recruitment of clams was very limited on these beaches through 1993; as a result, clam densities on these hydraulically washed beaches remain verymore » depressed compared to those on beaches that were unoiled or oiled but not washed. Littlenecks transplanted from a reference site to a heavily oiled but untreated site showed significant patterns of increased mortality, decreased growth, and increased bioaccumulation of PAH in response to a gradient in sediment PAH, This same heavily oiled site has consistently had among the highest rates of hardshelled clam recruitment of any of the sites sampled. Littlenecks also were transplanted to another heavily oiled beach that had been hydraulically washed and had little remaining hydrocarbons. These clams showed very high survival, yet this beach has had very little clam recruitment. It is hypothesized that recruitment at this site may be inhibited by the low level of finer sediments and low organic content remaining after washing.« less
Ortmann, Alice C; Brannock, Pamela M; Wang, Lei; Halanych, Kenneth M
2018-04-17
Meiobenthic community structure in the northern Gulf of Mexico has been shown to be driven by geographical differences due to inshore-offshore gradients and location relative to river discharge. Samples collected along three transects spanning Mobile Bay, Alabama, showed significant differences in meiobenthic communities east of the bay compared to those sampled from the west. In contrast, analysis of bacterial and archaeal communities from the same sediment samples shows that the inshore-offshore gradient has minimal impact on their community structure. Significant differences in community structure were observed for Bacteria and Archaea between the east and west samples, but there was no difference in richness or diversity. Grouped by sediment type, higher richness was observed in silty samples compared to sandy samples. Significant differences were also observed among sediment types for community structure with bacteria communities in silty samples having more anaerobic sulfate reducers compared to aerobic heterotrophs, which had higher abundances in sandy sediments. This is likely due to increased organic matter in the silty sediments from the overlying river leading to low oxygen habitats. Most archaeal sequences represented poorly characterized high-level taxa, limiting interpretation of their distributions. Overlap between groups based on transect and sediment characteristics made determining which factor is more important in structuring bacterial and archaeal communities difficult. However, both factors are driven by discharge from the Mobile River. Although inshore-offshore gradients do not affect Bacteria or Archaea to the same extent as the meiobenthic communities, all three groups are strongly affected by sediment characteristics.
Strong influence of the littoral zone on sedimentary lipid biomarkers in a meromictic lake.
Bovee, R J; Pearson, A
2014-11-01
Planktonic sulfur bacteria growing in zones of photic zone euxinia (PZE) are important primary producers in stratified, sulfur-rich environments. The potential for export and burial of microbial biomass from anoxic photic zones remains relatively understudied, despite being of fundamental importance to interpreting the geologic record of bulk total organic carbon (TOC) and individual lipid biomarkers. Here we report the relative concentrations and carbon isotope ratios of lipid biomarkers from the water column and sediments of meromictic Mahoney Lake. The data show that organic matter in the central basin sediments is indistinguishable from material at the lake shoreline in both its lipid and carbon isotopic compositions. However, this material is not consistent with either the lipid profile or carbon isotope composition of biomass obtained directly from the region of PZE. Due to the strong density stratification and the intensive carbon and sulfur recycling pathways in the water column, there appears to be minimal direct export of the sulfur-oxidizing planktonic community to depth. The results instead suggest that basinal sediments are sourced via the littoral environment, a system that integrates an indigenous shoreline microbial community, the degraded remains of laterally rafted biomass from the PZE community, and detrital remains of terrigenous higher plants. Material from the lake margins appears to travel downslope, traverse the strong density gradient, and become deposited in the deep basin; its final composition may be largely heterotrophic in origin. This suggests an important role for clastic and/or authigenic minerals in aiding the burial of terrigenous and mat-derived organic matter in euxinic systems. Downslope or mineral-aided transport of anoxygenic, photoautotrophic microbial mats may have been a significant sedimentation process in early Earth history. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Smeulders, G. G. B.; Koho, K. A.; de Stigter, H. C.; Mienis, F.; de Haas, H.; van Weering, T. C. E.
2014-01-01
The extent of the cold-water coral mounds in the modern ocean basins has been recently revealed by new state-of-the-art equipment. However, not much is known about their geological extent or development through time. In the facies model presented here seven different types of seabed substrate are distinguished, which may be used for reconstruction of fossil coral habitats. The studied substrates include: off-mound settings, (foram) sands, hardgrounds, dead coral debris, and substrates characterized by a variable density of living coral framework. Whereas sediment characteristics only provide a basis for distinguishing on- and off-mound habitats and the loci of most prolific coral growth, benthic foraminiferal assemblages are the key to identifying different mound substrates in more detail. Specific foraminiferal assemblages are distinguished that are characteristic of these specific environments. Assemblages from off-mound settings are dominated by (attached) epifaunal species such as Cibicides refulgens and Cibicides variabilis. The attached epibenthic species Discanomalina coronata is also common in off-mound sediments, but it is most abundant where hardgrounds have formed. In contrast, the settings with coral debris or living corals attract shallow infaunal species that are associated with more fine-grained soft sediments. The typical ‘living coral assemblage' is composed of Cassidulina obtusa, Bulimina marginata, and Cassidulina laevigata. The abundance of these species shows an almost linear increase with the density of the living coral cover. The benthic foraminifera encountered from off-mound to top-mound settings appear to represent a gradient of decreasing current intensity and availability of suspended food particles, and increasing availability of organic matter associated with fine-grained sediment trapped in between coral framework.
Geographical variation in oligochaete density and biomass in subtropical mangrove wetlands of China
NASA Astrophysics Data System (ADS)
Chen, Xinwei; Cai, Lizhe; Zhou, Xiping; Rao, Yiyong
2017-10-01
Oligochaetes play an important role in nutrient cycling and energy flow in benthic food webs as well as in mangrove wetlands. However, they have not been as extensively studied as other macrofaunal groups such as polychaetes, gastropods, bivalves, and crustaceans. Under the assumption that oligochaete density and biomass obey specific geographical distribution patterns in subtropical mangrove wetlands of China, we investigated these two parameters in the Luoyang Estuary of Quanzhou Bay, Zhangjiang Estuary and Gaoqiao mangrove wetlands. A geographical gradient in oligochaete density was present in Aegiceras corniculatum and Kandelia obovata habitats, whereby it decreased from lower latitudes to higher latitudes. Further, ANOVA tests on oligochaete distribution revealed that both oligochaete density and biomass were significantly influenced by region, season and region × season at the A. corniculatum and K. obovata habitats. The annual average oligochaete density and biomass at the A. corniculatum habitat were higher than that at the K. obovata habitat, in both the Luoyang and Zhangjiang estuaries. There were significant correlations between oligochaete density and biomass and sediment particle size parameters, confirming that sand, silt, and clay contents were the key environmental factors affecting oligochaete distribution.
Biogenic disturbance determines invasion success in a subtidal soft-sediment system.
Lohrer, Andrew M; Chiaroni, Luca D; Hewitt, Judi E; Thrush, Simon F
2008-05-01
Theoretically, disturbance and diversity can influence the success of invasive colonists if (1) resource limitation is a prime determinant of invasion success and (2) disturbance and diversity affect the availability of required resources. However, resource limitation is not of overriding importance in all systems, as exemplified by marine soft sediments, one of Earth's most widespread habitat types. Here, we tested the disturbance-invasion hypothesis in a marine soft-sediment system by altering rates of biogenic disturbance and tracking the natural colonization of plots by invasive species. Levels of sediment disturbance were controlled by manipulating densities of burrowing spatangoid urchins, the dominant biogenic sediment mixers in the system. Colonization success by two invasive species (a gobiid fish and a semelid bivalve) was greatest in plots with sediment disturbance rates < 500 cm(3) x m(-2) x d(-1), at the low end of the experimental disturbance gradient (0 to > 9000 cm(3) x m(-2) x d(-1)). Invasive colonization declined with increasing levels of sediment disturbance, counter to the disturbance-invasion hypothesis. Increased sediment disturbance by the urchins also reduced the richness and diversity of native macrofauna (particularly small, sedentary, surface feeders), though there was no evidence of increased availability of resources with increased disturbance that would have facilitated invasive colonization: sediment food resources (chlorophyll a and organic matter content) did not increase, and space and access to overlying water were not limited (low invertebrate abundance). Thus, our study revealed the importance of biogenic disturbance in promoting invasion resistance in a marine soft-sediment community, providing further evidence of the valuable role of bioturbation in soft-sediment systems (bioturbation also affects carbon processing, nutrient recycling, oxygen dynamics, benthic community structure, and so on.). Bioturbation rates are influenced by the presence and abundance of large burrowing species (like spatangoid urchins). Therefore, mass mortalities of large bioturbators could inflate invasion risk and alter other aspects of ecosystem performance in marine soft-sediment habitats.
Wu, Zhihao; Wang, Shengrui; He, Mengchang; Zhang, Li; Jiao, Lixin
2015-10-01
Labile P, Fe, and sulfide with the high spatial resolution in sediment porewater of five sites (A-E) of Dianchi Lake (China) were measured at same locations using AgI/Chelex-100, Chelex-100, and ferrihydrite DGT (diffusive gradients in thin films) probes. DGT derived P/Fe/S concentrations in sediment porewater on millimeter or sub-millimeter scale in order to reveal the element remobilization process and the mechanism of "internal P-loading" of sediments in Dianchi Lake. Decomposition of alga biomass in the uppermost sediment layer and the reductive dissolution of Fe-bound P in the anoxic sediment were the two main processes causing P release. A dynamic numerical model-DIFS (DGT-induced flux in sediments) was used to assess sediment-P reactivity (capacity of solid pool and rate of transfer) and P release risk by kinetic parameter-T C (1089∼20,450 s), distribution coefficient-K d (167.09∼502.0 cm(3) g(-1)), resupply parameter-R (from 0.242 to 0.518), and changes of dissolved/sorbed concentration, R and M at the microzone of DGT/porewater/sediment.
Bioirrigation impacts on sediment respiration and microbial metabolic activity
NASA Astrophysics Data System (ADS)
Baranov, V. A.; Lewandowski, J.; Romeijn, P.; Krause, S.
2015-12-01
Some bioturbators build tubes in the sediment and pump water through their burrows (ventilation). Oxygen is transferred through the burrow walls in the adjacent sediment (bioirrigation). Bioirrigation is playing a pivotal role in the mediation of biogeochemical processes in lake sediments and has the potential to enhance nutrient cycling. The present study investigates the impact of bioirrigation on lake sediment metabolism, respiration rates and in particular, the biogeochemical impacts of bioirrigation intensity as a function of organism density. We therefore apply the bioreactive Resazurin/Resorufin smart tracer system for quantifying the impact of different densities of Chironomidae (Diptera) larvae (0-2112 larvae/m2) on lake sediment respiration in a microcosm experiment. Tracer decay has been found to be proportional to the amount of the aerobic respiration at the sediment-water interface. Tracer transformation was in good agreement with Chironomidae density (correlation, r=0.9). Tracer transformation rates (and sediment respiration) were found to be correlated to Chironomidae density, with highest transformation rates observed in the microcosms with highest density of 2112 larvae/m2. This relationship was not linear though, with sediment respiration rates at the highest larvae densities declining from the linear trend predicted from lower and intermediate larvae density-respiration relationships. We interpret this effect as a density dependent suppression of the Chironomid's metabolic activity. The observations of this study have implications for eutrophied lakes with high densities of bioirrigators. Despite high density of bioirrigirrigating benthos, mineralization of the organic matter in such habitats would likely be lower than in lakes with intermediate densities of the bioturbators.
dos Santos, A C F; Marques, E L S; Gross, E; Souza, S S; Dias, J C T; Brendel, M; Rezende, R P
2012-01-27
Currently, the effect of crude oil on ammonia-oxidizing bacterium communities from mangrove sediments is little understood. We studied the diversity of ammonia-oxidizing bacteria in mangrove microcosm experiments using mangrove sediments contaminated with 0.1, 0.5, 1, 2, and 5% crude oil as well as non-contaminated control and landfarm soil from near an oil refinery in Camamu Bay in Bahia, Brazil. The evolution of CO(2) production in all crude oil-contaminated microcosms showed potential for mineralization. Cluster analysis of denaturing gradient gel electrophoresis-derived samples generated with primers for gene amoA, which encodes the functional enzyme ammonia monooxygenase, showed differences in the sample contaminated with 5% compared to the other samples. Principal component analysis showed divergence of the non-contaminated samples from the 5% crude oil-contaminated sediment. A Venn diagram generated from the banding pattern of PCR-denaturing gradient gel electrophoresis was used to look for operational taxonomic units (OTUs) in common. Eight OTUs were found in non-contaminated sediments and in samples contaminated with 0.5, 1, or 2% crude oil. A Jaccard similarity index of 50% was found for samples contaminated with 0.1, 0.5, 1, and 2% crude oil. This is the first study that focuses on the impact of crude oil on the ammonia-oxidizing bacterium community in mangrove sediments from Camamu Bay.
NASA Astrophysics Data System (ADS)
Smith, C. G.; Marot, M. E.; Osterman, L. E.; Adams, C. S.; Haller, C.; Jones, M.
2016-12-01
Tropical cyclones are a major driver of change in coastal and estuarine environments. Heightened waves and sea level associated with tropical cyclones act to erode sediment from one environment and redistribute it to adjacent environments. The fate and transport of this redistributed material is of great importance to the long-term sediment budget, which in turns affects the vulnerability of these coastal systems. The spatial variance in both storm impacts and sediment redistribution is large. At the regional-scale, difference in storm impacts can often be attributed to natural variability in geologic parameters (sediment availability/erodibility), coastal geomorphology (including fetch, shoreline tortuosity, back-barrier versus estuarine shoreline, etc.), storm characteristics (intensity, duration, track/approach), and ecology (vegetation type, gradient, density). To assess storm characteristics and coastal geomorphology on a regional-scale, cores were collected from seven Juncus marshes located in coastal regions of Alabama and Mississippi (i.e., Mobile Bay, Bon Secour Bay, Mississippi Sound, and Grand Bay) expected to have been impacted by Hurricane Frederic (1979). All cores were sectioned and processed for water content, organic matter (loss-on-ignition), and select cores analyzed for foraminiferal assemblages, stable isotopes and bulk metals to aid in the identification of storm events. Excess lead-210 and cesium-137 were used to develop chronologies for the cores and evaluate mass accumulation rates and sedimentation rates. Temporal variations in accumulation rates of inorganic and organic sediments were compared with shoreline and areal change rates derived from historic aerial imagery to evaluate potential changes in sediment exchange prior to, during, and following the storm. A combined geospatial and geologic approach will improve our understanding of coastal change in estuarine marsh environments, as well help refine the influence of storms on regional sediment budgets.
MICROBIAL DIVERSITY IN SURFACE SEDIMENTS: A COMPARISON OF TWO ESTUARINE CONTINUUMS
The microbial diversity in estuarine sediments of the Altamaha and Savannah Rivers in Georgia were compared temporally and spatially using phospholipid fatty acid (PLFA) analysis. Surface sediment samples collected along a salinity gradient were also analyzed for ATP, TOC, and C ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.
2016-11-15
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less
Geochemical constraints on the distribution of gas hydrates in the Gulf of Mexico
Paull, C.K.; Ussler, W.; Lorenson, T.; Winters, W.; Dougherty, J.
2005-01-01
Gas hydrates are common within near-seafloor sediments immediately surrounding fluid and gas venting sites on the continental slope of the northern Gulf of Mexico. However, the distribution of gas hydrates within sediments away from the vents is poorly documented, yet critical for gas hydrate assessments. Porewater chloride and sulfate concentrations, hydrocarbon gas compositions, and geothermal gradients obtained during a porewater geochemical survey of the northern Gulf of Mexico suggest that the lack of bottom simulating reflectors in gas-rich areas of the gulf may be the consequence of elevated porewater salinity, geothermal gradients, and microbial gas compositions in sediments away from fault conduits.
Spatial Patterns of Road-Induced Backwater Sediment Storage Across A Rural to Urban Gradient
NASA Astrophysics Data System (ADS)
Copeland, M.; Bain, D.
2017-12-01
Road networks dominate many landscapes and often interact with stream networks to alter basin sediment dynamics. Currently, conceptual models of catchment-scale sediment fluxes remain at a coarse scale (i.e., the entire catchment) and are unable to resolve important human-driven sediment storage processes. The spatio-temporal complexity of the interactions between road networks and streams has made it challenging to infer the fine-scale impacts of road crossings on fluvial systems. Here, road crossings in multiple drainage networks and the associated backwater sediment accumulations are examined along a rural to urban gradient around Pittsburgh, PA. Preliminary results indicate that upstream drainage area, channel slope, and human activities control stream crossing type and therefore drive associated sediment accumulation, particularly in urban headwater channels. The data indicate that the combination of land use intensity and infrastructure age influences the volume of sediment trapped in road-induced backwaters. Clarification of the coupled human, road-building, and natural stream adjustments will allow for more effective treatments of fluvial impacts, such as the "urban stream syndrome."
NASA Astrophysics Data System (ADS)
Paterson, A. T.; Fortier, C. M.; Long, B.; Kokesh, B. S.; Lim, S. J.; Campbell, B. J.; Anderson, L. C.; Engel, A. S.
2017-12-01
Lucinids, chemosymbiotic marine bivalves, occupy strong redox gradient habitats, including the rhizosphere of coastal seagrass beds and mangrove forests in subtropical to tropical ecosystems. Lucinids and their sulfide-oxidizing gammaproteobacterial endosymbionts, which are acquired from the environment, provide a critical ecosystem service by removing toxic reduced sulfur compounds from the surrounding environment, and lucinids may be an important food source to economically valuable fisheries. The habitats of Phacoides pectinatus, Stewartia floridana, Codakia orbicularis, Ctena orbiculata, and Lucina pensylvanica lucinids in Florida and San Salvador in The Bahamas were evaluated in comprehensive malacological, microbiological, and geochemical surveys. Vegetation cover included different seagrass species or calcareous green macroalgae. All sites were variably affected by anthropogenic activities, as evidenced by visible prop scars in seagrass beds, grain size distributions atypical of low energy environments (i.e., artificial fill or dredge material from nearby channels), and high levels of pyrogenic hydrocarbon compounds in sediment indicative of urbanization impact. Where present, lucinid population densities frequently exceeded 2000 individuals per cubic meter, and were typically more abundant underlying seagrass compared to unvegetated, bare sand. Dissolved oxygen and sulfide levels varied from where lucinids were recovered. The sediment bacterial communities from classified 16S rRNA gene sequences indicated that the diversity of putative anaerobic groups increased with sediment depth, but putative aerobes, including of Gammaproteobacteria related to the lucinid endosymbionts, decreased with depth. Where multiple seagrass species co-occurred, retrieved bacterial community compositions correlated to overlying seagrass species, but diversity differed from bare sand patches, including among putative free-living endosymbiont groups. As such, continued sea-level rise and urbanization near shallow marine ecosystems can negatively impact the lucinid chemosymbiotic system and lucinid habitat because of changes to the redox gradients and/or vegetation cover that support putative lucinid endosymbiont diversity in the environment.
Searching for Abrupt Circulation Shifts in Marine Isotope Stage 2 and 3
NASA Astrophysics Data System (ADS)
Henry, L. E.; Lynch-Stieglitz, J.; Schmidt, M. W.
2008-12-01
During Marine Isotope Stage 3, DO events were recorded in the Greenland ice cores and North Atlantic Ocean sediment records. Some cold DO stadials have been associated with massive freshwater inputs, termed Heinrich Events. These Heinrich Events are frequently associated with "drop dead" circulation periods in which the production of North Atlantic Deep Water is greatly diminished. DO events are thought to result from a restructuring of the overturning circulation. We explore these proposed changes in Atlantic Ocean circulation by examining changes in seawater density in the Florida Straits. The density is inferred from the δ18O of the benthic foraminifera C. pachyderma and P. ariminensis taken from core-sites on the Florida and Greater Bahamas Bank margins. The flow through the Florida Straits is in near- geostrophic balance. This means that the vertical shear in the current is reflected in a strong density gradient across the Straits. During the Younger Dryas and the Last Glacial Maximum the density gradient was reduced consistent with weaker flow through the Straits at these times. A weakening of the Florida Current would be expected if the large scale Atlantic Meridional Overturning Circulation weakened, as has been proposed based on other studies. The Younger Dyras event manifests itself as well-correlated decreases in δ18O from the cores on the Florida margin, while their counterparts taken from the Bahamas remain relatively stable when adjusted for global ice volume. Here, we will present data extending back 32kyr, focusing on those cores taken from the Florida Margin which can resolve millennial scale changes during Marine Isotope Stage 2 and Late Stage 3. We will examine the relationship between circulation changes, as reflected in Florida Margin density, and the three most recent Heinrich events, as well as the most recent DO events.
USDA-ARS?s Scientific Manuscript database
Purpose Sediments from a rural to urban gradient along the Alafia River in Florida, United States were investigated to determine the risk of environmental contamination with legacy (organochlorine pesticides, OCPs) and new contaminants (pharmaceuticals). Materials and methods Bed sediments (0-10 cm)...
Phillips, D.H.; Kumara, M.P.; Jayatissa, L.P.; Krauss, Ken W.; Huxham, M.
2017-01-01
Understanding the effects of seedling density on sediment accretion, biogeochemistry and belowground biomass in mangrove systems can help explain ecological functioning and inform appropriate planting densities during restoration or climate change mitigation programs. The objectives of this study were to examine: 1) impacts of mangrove seedling density on surface sediment accretion, texture, belowground biomass and biogeochemistry, and 2) origins of the carbon (C) supplied to the mangroves in Palakuda, Puttalam Lagoon, Sri Lanka. Rhizophora mucronata propagules were planted at densities of 6.96, 3.26, 1.93 and 0.95 seedlings m−2along with an unplanted control (0 seedlings m−2). The highest seedling density generally had higher sediment accretion rates, finer sediments, higher belowground biomass, greatest number of fine roots and highest concentrations of C and nitrogen (N) (and the lowest C/N ratio). Sediment accretion rates, belowground biomass (over 1370 days), and C and N concentrations differed significantly between seedling densities. Fine roots were significantly greater compared to medium and coarse roots across all plantation densities. Sulphur and carbon stable isotopes did not vary significantly between different density treatments. Isotope signatures suggest surface sediment C (to a depth of 1 cm) is not derived predominantly from the trees, but from seagrass adjacent to the site.
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley
2015-11-01
Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.
Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor
1983-01-01
Treatment of short-term monolayer cultures of rat hepatocytes with the proton ionophore, monensin, abolishes asialoglycoprotein degradation, despite little effect of the drug on either surface binding of ligand or internalization of prebound ligand. Centrifuging cell homogenates on Percoll density gradients indicates that, as a result of monensin treatment, ligand does not enter lysosomes but sediments instead in a lower density subcellular fraction that is likely an endocytic vesicle. Analyzing the degree of receptor association of intracellular ligand revealed that monensin prevents the dissociation of the receptor-ligand complex that normally occurs subsequent to endocytosis. The weak base, chloroquine, also blocks this intracellular dissociation. Evidence from sequential substitution experiments is presented, indicating that monensin and chloroquine act at the same point in the sequence of events leading to ligand dissociation. These data are discussed in terms of a pH-mediated dissociation of the receptor-ligand complex within a prelysosomal endocytic vesicle. PMID:6304116
A study of cell electrophoresis as a means of purifying growth hormone secreting cells
NASA Technical Reports Server (NTRS)
Plank, Lindsay D.; Hymer, W. C.; Kunze, M. Elaine; Marks, Gary M.; Lanham, J. Wayne
1983-01-01
Growth hormone secreting cells of the rat anterior pituitary are heavily laden with granules of growth hormone and can be partialy purified on the basis of their resulting high density. Two methods of preparative cell electrophoresis were investigated as methods of enhancing the purification of growth hormone producing cells: density gradient electrophoresis and continuous flow electrophoresis. Both methods provided a two- to four-fold enrichment in growth hormone production per cell relative to that achieved by previous methods. Measurements of electrophoretic mobilities by two analytical methods, microscopic electrophoresis and laser-tracking electrophoresis, revealed very little distinction between unpurified anterior pituitary cell suspensions and somatotroph-enriched cell suspensions. Predictions calculated on the basis of analytical electrophoretic data are consistent with the hypothesis that sedimentation plays a significant role in both types of preparative electrophoresis and the electrophoretic mobility of the growth hormone secreting subpopulation of cells remains unknown.
Single fiber lignin distributions based on the density gradient column method
Brian Boyer; Alan W. Rudie
2007-01-01
The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...
Meiofauna communities along an abyssal depth gradient in the Drake Passage
NASA Astrophysics Data System (ADS)
Gutzmann, E.; Martínez Arbizu, P.; Rose, A.; Veit-Köhler, G.
2004-07-01
Meiofauna standing stocks and community structure are reported for the first time for abyssal soft-sediment samples in Antarctic waters. At seven stations within a depth range of 2274-5194 m a total of 128 sediment cores were retrieved with a multiple corer (MUC) on board of the R.V. Polarstern during the ANDEEP-1 cruise (ANT XIX/3). The metazoan meiofauna (defined by a lower size limit of 40 μm) was identified and counted, and one core per station was preserved for CPE, C/N, TOM and grain size analyses. Meiofauna densities are in the range of 2731 Ind./10 cm 2 at 2290 m depth and 75 Ind./10 cm 2 at 3597 m depth, with nematodes being the dominant group at all stations. Nematodes account for 84-94% followed by copepods with 2-8% of the total meiofauna. Other frequent taxa found at each station are kinorhynchs, loriciferans, tantulocarids, ostracods and tardigrades. There is a general tendency of decreasing abundances of metazoan meiofauna with increasing depth, but not all higher level taxa displayed this pattern. In addition, a tendency of decreasing higher taxon density with increasing depth was observed. Standing stocks are higher than the average found at similar depths in other oceans.
Membrane-association of mRNA decapping factors is independent of stress in budding yeast
Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy
2016-01-01
Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation. PMID:27146487
Membrane-association of mRNA decapping factors is independent of stress in budding yeast.
Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy
2016-05-05
Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation.
Amato, Elvio D; Simpson, Stuart L; Jarolimek, Chad V; Jolley, Dianne F
2014-04-15
Many sediment quality assessment frameworks incorporate contaminant bioavailability as a critical factor regulating toxicity in aquatic ecosystems. However, current approaches do not always adequately predict metal bioavailability to organisms living in the oxidized sediment surface layers. The deployment of the diffusive gradients in thin films (DGT) probes in sediments allows labile metals present in pore waters and weakly bound to the particulate phase to be assessed in a time-integrated manner in situ. In this study, relationships between DGT-labile metal fluxes within 5 mm of the sediment-water interface and lethal and sublethal effects to the amphipod Melita plumulosa were assessed in a range of contaminated estuarine sediments during 10-day laboratory-based bioassays. To account for differing toxicities of metals, DGT fluxes were normalized to water (WQG) or sediment quality guidelines or toxicity thresholds specific for the amphipod. The better dose-response relationship appeared to be the one based on WQG-normalized DGT fluxes, which successfully predicted toxicity despite the wide range of metals and large variations in sediment properties. The study indicated that the labile fraction of metals measured by DGT is useful for predicting metal toxicity to benthic invertebrates, supporting the applicability of this technique as a rapid monitoring tool for sediments quality assessments.
Zhang, Li-Mei; Duff, Aoife M; Smith, Cindy J
2018-04-24
Terrestrial-marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia-oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil-sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE-sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil-interface-sediment gradient with salinity and pH identified as major environmental drivers. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
A rain splash transport equation assimilating field and laboratory measurements
Dunne, T.; Malmon, D.V.; Mudd, S.M.
2010-01-01
Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment. Copyright 2010 by the American Geophysical Union. Copyright 2010 by the American Geophysical Union.
Langenheim, V.E.; Roberts, C.W.; McCabe, C.A.; McPhee, D.K.; Tilden, J.E.; Jachens, R.C.
2006-01-01
This isostatic residual gravity map is part of a three-dimensional mapping effort focused on the subsurface distribution of rocks of the Sonoma volcanic field in Napa and Sonoma counties, northern California. This map will serve as a basis for modeling the shapes of basins beneath the Santa Rosa Plain and Napa and Sonoma Valleys, and for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field (after accounting for variations caused by elevation, terrain, and deep crustal structure explained below) reflect the distribution of densities in the mid to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. High-density basement rocks exposed within the northern San Francisco Bay area include those of the Mesozoic Franciscan Complex and Great Valley Sequence present in the mountainous areas of the quadrangle. Alluvial sediment and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range in densities, but, on average, are less dense than the Mesozoic basement rocks. Isostatic residual gravity values within the map area range from about -41 mGal over San Pablo Bay to about 11 mGal near Greeg Mountain 10 km east of St. Helena. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the West Napa fault bounding the west side of Napa Valley, the projection of the Hayward fault in San Pablo Bay, the Maacama Fault, and the Rodgers Creek fault in the vicinity of Santa Rosa. These gradients result from juxtaposing dense basement rocks against thick Tertiary volcanic and sedimentary rocks.
Larsen, Matthew C.; Figueroa Alamo, Carlos; Gray, John R.; Fletcher, William
2001-01-01
A newly refined technique for continuously and automatically sensing the density of a water-sediment mixture is being tested at a U.S. Geological Survey streamflow-gaging station in Puerto Rico. Originally developed to measure crude oil density, the double bubbler instrument measures fluid density by means of pressure transducers at two elevations in a vertical water column. By subtracting the density of water from the value measured for the density of the water-sediment mixture, the concentration of suspended sediment can be estimated. Preliminary tests of the double bubbler instrument show promise but are not yet conclusive.
NASA Astrophysics Data System (ADS)
Switzer, Ryan D.; Parnell, P. Ed; Leichter, James L.; Driscoll, Neal W.
2016-02-01
Landscape and seascape structures are typically complex and manifest as patch mosaics within characteristic biomes, bordering one another in gradual or abrupt ecotones. The underlying patch structure in coastal shelf ecosystems is driven by the interaction of tectonic, sedimentary, and sea level dynamic processes. Animals and plants occupy and interact within these mosaics. Terrestrial landscape ecological studies have shown that patch structure is important for ecological processes such as foraging, connectivity, predation, and species dynamics. The importance of patch structure for marine systems is less clear because far fewer pattern-process studies have been conducted in these systems. For many coastal shelf systems, there is a paucity of information on how species occupy shelf seascapes, particularly for seascapes imbued with complex patch structure and ecotones that are common globally due to tectonic activity. Here, we present the results of a study conducted along a myriameter-scale gradient of bottom and sub-bottom geological forcing altered by tectonic deformation, sea level transgression and sediment allocation. The resulting seascape is dominated by unconsolidated sediments throughout, but also exhibits increasing density and size of outcropping patches along a habitat patch gradient forced by the erosion of a sea level transgressive surface that has been deformed and tilted by tectonic forcing. A combination of sub-bottom profiling, multibeam bathymetry, and ROV surveys of the habitats and the demersal megafauna occupying the habitats indicate (1) significant beta diversity along this gradient, (2) biological diversity does not scale with habitat diversity, and (3) species occupy the patches disproportionately (non-linearly) with regard to the proportional availability of their preferred habitats. These results indicate that shelf habitat patch structure modulates species specific processes and interactions with other species. Further studies are needed to examine experimentally the mechanics of how patch structure modulates ecological processes in shelf systems. Our results also provide further support for including multiple spatial scales of patch structure for the application of remote habitat sensing as a surrogate for biological community structure.
Burton, G Allen; Rosen, Gunther; Chadwick, D Bart; Greenberg, Marc S; Taulbee, W Keith; Lotufo, Guilherme R; Reible, Danny D
2012-03-01
In situ-based testing using aquatic organisms has been widely reported, but is often limited in scope and practical usefulness in making decisions on ecological risk and remediation. To provide this capability, an integrated deployment system, the Sediment Ecotoxicity Assessment (SEA) Ring was developed, which incorporates rapid in situ hydrological, chemical, bioaccumulation, and toxicological Lines-of-Evidence (LoE) for assessing sediment and overlying water contamination. The SEA Ring system allows for diver-assisted, or diverless, deployment of multiple species of ecologically relevant and indigenous organisms in three different exposures (overlying water, sediment-water interface, and bulk sediment) for periods ranging from two days to three weeks, in a range of water systems. Measured endpoints were both sublethal and lethal effects as well as bioaccumulation. In addition, integrated passive sampling devices for detecting nonpolar organics (solid phase micro-extraction fibers) and metals (diffusive gradients in thin films) provided gradient measures in overlying waters and surficial sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.
Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L
2010-02-01
Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.
Polychaete community structure in the South Eastern Arabian Sea continental margin (200-1000 m)
NASA Astrophysics Data System (ADS)
Abdul Jaleel, K. U.; Anil Kumar, P. R.; Nousher Khan, K.; Correya, Neil S.; Jacob, Jini; Philip, Rosamma; Sanjeevan, V. N.; Damodaran, R.
2014-11-01
Macrofaunal polychaete communities (>500 μm) in the South Eastern Arabian Sea (SEAS) continental margin (200-1000 m) are described, based on three systematic surveys carried out in 9 transects (at ~200 m, 500 m and 1000 m) between 7°00‧and 14°30‧N latitudes. A total of 7938 polychaetes belonging to 195 species were obtained in 136 grab samples collected at 27 sites. Three distinct assemblages were identified in the northern part of the SEAS margin (10-14°30‧N), occupying the three sampled depth strata (shelf edge, upper and mid-slope) and two assemblages (shelf edge and slope) in the south (7-10°N). Highest density of polychaetes and dominance of a few species were observed in the shelf edge, where the Arabian Sea oxygen minimum zone (OMZ) impinged on the seafloor, particularly in the northern transects. The resident fauna in this region (Cossura coasta, Paraonis gracilis, Prionospio spp. and Tharyx spp.) were characteristically of smaller size, and well suited to thrive in the sandy sediments in OMZ settings. Densities were lowest along the most northerly transect (T9), where dissolved oxygen (DO) concentrations were extremely low (<0.15 ml l-1, i.e.<6.7 μmol l-1). Beyond the realm of influence of the OMZ (i.e. mid-slope, ~1000 m), the faunal density decreased while species diversity increased. The relative proportion of silt increased with depth, and the dominance of the aforementioned species decreased, giving way to forms such as Paraprionospio pinnata, Notomastus sp., Eunoe sp. and lumbrinerids. Relatively high species richness and diversity were observed in the sandy sediments of the southern sector (7-9°N), where influence of the OMZ was less intense. The area was also characterized by certain species (e.g. Aionidella cirrobranchiata, Isolda pulchella) that were nearly absent in the northern region. The gradients in DO concentration across the core and lower boundary of the OMZ, along with bathymetric and latitudinal variation in sediment texture, were responsible for differences in polychaete size and community structure on the SEAS margin. Spatial and temporal variations were observed in organic matter (OM) content of the sediment, but these were not reflected in the density, diversity or distribution pattern of the polychaetes.
Turbulence suppression at water density interfaces: observations under moderate wind forcing.
NASA Astrophysics Data System (ADS)
Marcello Falcieri, Francesco; Kanth, Lakshmi H.; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Malačič, Vlado; Sclavo, Mauro; Carniel, Sandro
2016-04-01
Water column stratification has a strong influence on the behaviour of turbulence kinetic energy (TKE) dissipation rates. Density gradient interfaces, due to thermohaline characteristics and to suspended sediment concentration, can act as a barrier and significantly damp TKE. Between January 30th - February 4th 2014 (CARPET2014 oceanographic campaign on R/V URANIA) we collected the very first turbulence data in the Gulf of Trieste (a small bay located in the North-eartern part of the Adriatic Sea). Observation consisted of 38 CTD casts and 478 microstructure profiles (145 ensembles) collected with a free-falling probe (MSS90L). Among those 48 were grouped in three sets of yoyo casts, each lasting for about 12 consecutive hours. The meteorological conditions during the campaign were of moderate wind (average wind speed 10 m s-1) and heat flux (net negative heat flux ranging from 150 to 400 W m-2). The water column characteristics in the Gulf during the campaign evolved from well-mixed to stratified conditions with waters intruding from the Adriatic Sea at the bottom. Two types of water intrusions were found during yoyo casts: one coming from the Adriatic Sea northern coast (i.e. warmer, saltier and more turbid) and one coming from the open sea in front of the Po Delta (i.e. cooler, fresher and less turbid). Our observations show that under moderate wind forcing, the GOT was not completely mixed due to the interfaces created by the bottom waters intruding from the open sea. The comparison of microstructure profiles collected during well mixed and stratified conditions permitted us to highlight the effect of different stratification on TKE dissipation rates. While during well mixed condition TKE profiles are governed just by their forcing, the two intrusions showed different impacts on TKE dissipation rate profiles. The coastal one, with high turbidity, acted as a barrier to surface driven turbulence dumping it of almost two order of magnitude, while the one coming from the open sea, with low sediment concentrations and a smaller vertical density gradient, was not able to suppress downward penetration of turbulence from the surface.
Effect of fluorodeoxyuridine on the sedimentation of nucleoids from HeLa cells in sucrose gradients.
Synzynys, B I; Brozmanová, J; Saenko, A S
1987-01-01
Sedimentation properties of nucleoids from HeLa cells cultured for 6 or 24 h with 10(-6) M fluorodeoxyuridine (FdUrd) were studied in neutral sucrose gradients. Independently on the presence and concentrations of ethidium bromide in the gradient, nucleoids from FdUrd treated cells sedimented farther than those from untreated cells. However, the maximum relaxation of supercoiled DNA, observed at the concentration of 5 micrograms/ml of ethidium bromide, was significantly lower in cells treated with FdUrd, which indicated that prior incubation with FdUrd did not increase the degree of DNA supercoiling but altered by some way the conformation of DNA in nucleus. Previously we have found, that treatment of HeLa cells with FdUrd resulted in the stimulation of DNA synthesis, which proved to be resistant to ultraviolet and gamma-irradiation. From the present results it is possible to suggest, that alterations of chromatine structure should be included in facilitating of DNA synthesis on DNA template damaged by ultraviolet or gamma irradiation.
Risk assessment of metals in road-deposited sediment along an urban-rural gradient.
Zhao, Hongtao; Li, Xuyong
2013-03-01
We applied the traditional risk assessment methods originally designed for soils and river sediments to evaluation of risk associated with metals in road-deposited sediment (RDS) along an urban-rural gradient that included central urban (UCA), urban village (UVA), central suburban county (CSA), rural town (RTA), and rural village (RVA) areas in the Beijing metropolitan region. A new indicator RI(RDS) was developed which integrated the RDS characteristics of mobility, grain size and amount with the potential ecological risk index. The risk associated with metals in RDS in urban areas was generally higher than that in rural areas based on the assessment using traditional methods, but the risk was higher in urban and rural village areas than the areas with higher administration units based on the indicator RI(RDS). These findings implied that RDS characteristics variation with the urban-rural gradient must be considered in metal risk assessment and RDS washoff pollution control. Copyright © 2012 Elsevier Ltd. All rights reserved.
A straightforward method for measuring the range of apparent density of microplastics.
Li, Lingyun; Li, Mengmeng; Deng, Hua; Cai, Li; Cai, Huiwen; Yan, Beizhan; Hu, Jun; Shi, Huahong
2018-10-15
Density of microplastics has been regarded as the primary property that affect the distribution and bioavailability of microplastics in the water column. For measuring the density of microplastis, we developed a simple and rapid method based on density gradient solutions. In this study, we tested four solvents to make the density gradient solutions, i.e., ethanol (0.8 g/cm 3 ), ultrapure water (1.0 g/cm 3 ), saturated NaI (1.8 g/cm 3 ) and ZnCl 2 (1.8 g/cm 3 ). Density of microplastics was measured via observing the float or sink status in the density gradient solutions. We found that density gradient solutions made from ZnCl 2 had a larger uncertainty in measuring density than that from NaI, most likely due to a higher surface tension of ZnCl 2 solution. Solutions made from ethanol, ultrapure water, and NaI showed consistent density results with listed densities of commercial products, indicating that these density gradient solutions were suitable for measuring microplastics with a density range of 0.8-1.8 g/cm 3 . Copyright © 2018 Elsevier B.V. All rights reserved.
The influence of large wood accumulations on riparian seed bank diversity
NASA Astrophysics Data System (ADS)
Osei, N. A.
2012-04-01
Little is known about the structure and complexity of seed bank within the riparian corridor and the how large wood accumulations contribute to riparian seed bank diversity. This study aimed to examine and quantify seed bank assemblage and diversity along the undisturbed riparian corridor of the Highland Water, a second order lowland stream draining the New Forest. Seed bank samples were collected from five riparian corridor microhabitats namely mid-channel bars, floodplains, bare banks, banks adjacent large wood accumulations and within large wood accumulations that differed in their hydrologic connectivity with the river. Descriptive statistics and ordination methods applied to the floristic and sediment data sets indicates that sediment organic matter content, species richness and proportions of functional types distinctly differed among the riparian microhabitats types but there was no difference in viable seed densities. Banks adjacent large wood accumulations were the most floristically diverse and rich in organic matter with mid-channel bars exhibiting the reverse. This was due to the ability of large wood accumulations to buffer varying magnitudes of physical gradients and sort seeds and sediments, therefore altering the character of bare banks. This study not only strengthen the evidence that riparian corridors exhibit elevated spatial sediment and vegetation heterogeneity but also demonstrates the importance of large wood accumulation as habitat modifiers, ecosystem engineers and conservation sink for moisture, organic matter and seeds, resources essential for riparian vegetation conservation, recovery and restoration efforts.
NASA Astrophysics Data System (ADS)
Kittelmann, S.; Friedrich, M. W.
2005-12-01
Tetrachloroethene (perchloroethylene, PCE), a persistent contaminant in aquifers, soils and sediments, can be reductively dechlorinated by anaerobic microorganisms in a process referred to as dehalorespiration. However, the biodiversity of dehalorespiring microorganisms and their distribution especially in pristine environments is largely unexplored. Therefore, the aim of this study was to detect potentially novel PCE-dehalorespiring microorganisms by using stable isotope probing (SIP), a technique that allows to directly identify the function of uncultivated microbial populations. We simulated a PCE contamination by incubating pristine river sediment in the presence of PCE at a steady, low aqueous concentration (20 μM). Dehalogenation activity in microcosms (20 nmol cis-dichloroethene per ml slurry per day formed) was detected already after 4 weeks at 20°C with sediment indigenous electron donors. The microbial community in sediment incubations was probed with 13C-labelled acetate (0.5 mM) as electron donor and carbon source at 15°C for 3 days. After RNA extraction, "heavy" 13C-rRNA and light 12C-rRNA were separated by isopycnic centrifugation, and Bacteria-related populations in gradient fractions were characterised by terminal restriction fragment length polymorphism analysis and cloning. In heavy gradient fractions from the microcosm with PCE, we detected a prominent 506-bp terminal restriction fragment (T-RF) and a few minor T-RFs only. In contrast, in the control without PCE, Bacteria-specific rRNA was restricted to light gradient fractions, and the prominent T-RFs found in the PCE-dechlorinating microcosm were of minor importance. Apparently, 13C-acetate was incorporated into bacterial rRNA more effectively in PCE-respiring microcosms. Thus, rRNA-SIP provides strong evidence for the presence of PCE-dehalorespiring, 13C-acetate-utilising populations in river sediment microcosms. Cloning/sequencing analysis identified the prominent members of the heavy gradient fractions as members of the phylum Chloroflexi only distantly related to cultivated dechlorinating Dehalococcides spp.
Near-bed observations of high-concentration sediment transport in the Changjiang Estuary
NASA Astrophysics Data System (ADS)
Zhou, Z.; Ge, J.; Ding, P.
2017-12-01
The North Passage, the core of turbidity maximum in the Changjiang Estuary, is now under the strong sedimentation due to the abundant sediment supply from the upstream Changjiang River and the river-tide interacted dynamics. Recent studies suggested that strong siltation could be attributed to bottom high-concentration sediment transport, which however is very difficult to be detected and observed by vessel-anchored survey methods. To better understand the mechanisms of sediment transport and deposition in the channel region of the North Passage and its adjacent areas, we conducted continuous field observations which covered spring and neap tide period in the wintertime of 2016, the summertime of 2015 and 2017, focusing on near-bottom sediment transport. Tripods mounted with multiple instruments, including up-looking and down-looking Acoustic Doppler Current Profilers(ADCP), Vector Current Meter(ADV), Optical Backscatter Sensor(OBS), ASM, ALEC and RBR were used to observe the near-bottom physical process and its induced sediment dynamics. Results of these observations clearly described the current-wave-sediment interaction, which produced different patterns of bottom mud suspension at different tripods. Both hydrodynamic features and suspended sediment showed variations between spring and neap tide. Taking data of 2016 as an example, averaged suspended sediment concentration(SSC) at two tripods was 1.52 g/L and 2.13 g/L during the neap tide, 4.51 g/L and 5.75 g/L with the peak value reaching 25 g/L during the spring tide. At the tripod which was closer to the channel region, three peaks of SSC during the spring tide occurred near the flood slack with notable salinity increase, indicating the impact of saltwater intrusion on the bottom hydrodynamics. The results showed the occurrence of high-concentration suspended sediment was probably related to combined effects of bottom salinity intrusion, turbulent kinetic energy(TKE) and local stratification due to density gradient from intruded salinity and local sediment suspension. Meanwhile, tripods' monitoring identified a significant cross-channel component of residual current, which could produce potential bottom sediment accumulation in the channel region within the North Passage.
Carlisle, D.M.; Meador, M.R.; Moulton, S.R.; Ruhl, P.M.
2007-01-01
Tolerance of macroinvertebrate taxa to chemical and physical stressors is widely used in the analysis and interpretation of bioassessment data, but many estimates lack empirical bases. Our main objective was to estimate genus- and family-level indicator values (IVs) from a data set of macroinvertebrate communities, chemical, and physical stressors collected in a consistent manner throughout the United States. We then demonstrated an application of these IVs to detect alterations in benthic macroinvertebrate assemblages along gradients of urbanization in New England and Alabama. Principal components analysis (PCA) was used to create synthetic gradients of chemical stressors, for which genus- and family-level weighted averages (WAs) were calculated. Based on results of PCA, WAs were calculated for three synthetic gradients (ionic concentration, nutrient concentration, and dissolved oxygen/water temperature) and two uncorrelated physical variables (suspended sediment concentration and percent fines). Indicator values for each stress gradient were subsequently created by transforming WAs into ten ordinal ranks based on percentiles of values across all taxa. Mean IVs of genera and families were highly correlated to road density in Alabama and New England, and supported the conclusions of independent assessments of the chemical and physical stressors acting in each geographic area. Family IVs were nearly as responsive to urbanization as genus IVs. The limitations of widespread use of these IVs are discussed.
Barrier island breach evolution: Alongshore transport and bay-ocean pressure gradient interactions
Safak, Ilgar; Warner, John C.; List, Jeffrey
2016-01-01
Physical processes controlling repeated openings and closures of a barrier island breach between a bay and the open ocean are studied using aerial photographs and atmospheric and hydrodynamic observations. The breach site is located on Pea Island along the Outer Banks, separating Pamlico Sound from the Atlantic Ocean. Wind direction was a major control on the pressure gradients between the bay and the ocean to drive flows that initiate or maintain the breach opening. Alongshore sediment flux was found to be a major contributor to breach closure. During the analysis period from 2011 to 2016, three hurricanes had major impacts on the breach. First, Hurricane Irene opened the breach with wind-driven flow from bay to ocean in August 2011. Hurricane Sandy in October 2012 quadrupled the channel width from pressure gradient flows due to water levels that were first higher on the ocean side and then higher on the bay side. The breach closed sometime in Spring 2013, most likely due to an event associated with strong alongshore sediment flux but minimal ocean-bay pressure gradients. Then, in July 2014, Hurricane Arthur briefly opened the breach again from the bay side, in a similar fashion to Irene. In summary, opening and closure of breaches are shown to follow a dynamic and episodic balance between along-channel pressure gradient driven flows and alongshore sediment fluxes.
NASA Astrophysics Data System (ADS)
Duchemin, Gérald; Jorissen, Frans J.; Le Loc'h, François; Andrieux-Loyer, Françoise; Hily, Christian; Thouzeau, Gérard
2008-08-01
Living benthic foraminiferal faunas of six stations from the continental shelf of the Bay of Biscay have been investigated during three successive seasons (spring, summer and autumn 2002). For the three investigated stations, bottom water oxygen concentration, oxygen penetration into the sediment and sediment organic carbon contents are all relatively similar. Therefore, we think that the density and the composition of the foraminiferal faunas is mainly controlled by the quantity and quality of organic input resulting from a succession of phytoplankton bloom events, occurring from late February to early September. The earliest blooms are positioned at the shelf break, late spring and early summer blooms occur off Brittany, whereas in late summer and early autumn, only coastal blooms appear, often in the vicinity of river outlets. In spring, the benthic foraminiferal faunas of central (B, C and D) and outer (E) continental shelf stations are characterised by strong dominance in the first area and strong presence in the second area of Nonionella iridea. In fact, station E does not serve as a major depocenter for the remains of phytoplankton blooms. If station E is not considered, the densities of this taxon show a clear gradient from the shelf-break, where the species dominates the assemblages, to the coast, where it attains very low densities. We explain this gradient as a response to the presence, in early spring, of an important phytoplankton bloom, mainly composed of coccolithophorids, over the shelf break. This observation is supported by the maximum particles flux values at stations close to the shelf break (18.5 g m - 2 h - 1 ) and lower values in a station closer to the coast (6.8 g m - 2 h - 1 ). In summer, the faunal density is maximum at station A, relatively close to more varied phytoplancton blooms that occur off Brittany until early June. We suggest that the dominant species, Nonion fabum, Cassidulina carinata and Bolivina ex. gr. dilatata respond to phytodetritus input from these blooms. In autumn, the rich faunas of inner shelf station G are dominated by N. fabum, B. ex. gr. dilatata, Hyalinea balthica and Nonionella turgida. These taxa seem to be correlated with the presence of coastal blooms phenomena, in front of river outlets. They may be favoured by an organic input with a significant contribution of terrestrial, rather low quality organic matter.
Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1
NASA Technical Reports Server (NTRS)
Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.
1974-01-01
Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.
Lee, J.-S.; Lee, B.-G.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.; Brown, C.L.
2000-01-01
The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing four levels of AVS (0.5, 7.5, 15, 35 ??mol/g). The results were compared to sediments spiked with four levels of Cd-Ni-Zn mixtures at one AVS concentration (7.5 ??mol/g). A vertical redox gradient was generated in each treatment by an 18-d incubation with an oxidized water column. [AVS] in the surface sediments decreased by 65-95% due to oxidation during incubation; initial [AVS] was maintained at 0.5-7.5 cm depth. PW metal concentrations were correlated with [SEM - AVS] among all data. But PW metal concentrations were variable, causing the distribution coefficient, Kd(pw) (the ratio of [SEM] to PW metal concentrations) to vary by 2-3 orders of magnitude at a given [SEM - AVS]. One reason for the variability was that vertical profiles in PW metal concentrations appeared to be influenced by diffusion as well as [SEM - AVS]. The presence of animals appeared to enhance the diffusion of at least Zn. The generalization that PW metal concentrations are controlled by [SEM - AVS] is subject to some important qualifications if vertical gradients are complicated, metal concentrations vary, or equilibration times differ.The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing four levels of AVS (0.5, 7.5, 15, 35 ??mol/g). The results were compared to sediments spiked with four levels of Cd-Ni-Zn mixtures at one AVS concentration (7.5 ??mol/g). A vertical redox gradient was generated in each treatment by an 18-d incubation with an oxidized water column. [AVS] in the surface sediments decreased by 65-95% due to oxidation during incubation; initial [AVS] was maintained at 0.5-7.5 cm depth. PW metal concentrations were correlated with [SEM - AVS] among all data. But PW metal concentrations were variable, causing the distribution coefficient, Kdpw (the ratio of [SEM] to PW metal concentrations) to vary by 2-3 orders of magnitude at a given [SEM - AVS]. One reason for the variability was that vertical profiles in PW metal concentrations appeared to be influenced by diffusion as well as [SEM - AVS]. The presence of animals appeared to enhance the diffusion of at least Zn. The generalization that PW metal concentrations are controlled by [SEM - AVS] is subject to some important qualifications if vertical gradients are complicated, metal concentrations vary, or equilibration times differ.
Devices, systems, and methods for conducting assays with improved sensitivity using sedimentation
Schaff, Ulrich Y.; Koh, Chung-Yan; Sommer, Gregory J.
2016-04-05
Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.
Devices, systems, and methods for conducting assays with improved sensitivity using sedimentation
Schaff, Ulrich Y; Koh, Chung-Yan; Sommer, Gregory J
2015-02-24
Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.
In Search for Diffuse Hydrothermal Venting at North Pond, Western Flank of the Mid-Atlantic-Ridge
NASA Astrophysics Data System (ADS)
Villinger, H. W.; Becker, K.; Hulme, S.; Kaul, N. E.; Müller, P.; Wheat, C. G.
2015-12-01
We present results from temperature measurements made with a ROV temperature lance in sediments deposited on the slopes of abyssal hills and small basins surrounding North Pond. North Pond is a ~8x15 km large sediment basin located on ~7 Ma year old crust west of the Mid-Atlantic Ridge at 23°N. Data were collected with the ROV Jason II during cruise MSM37 on the German RV Maria S. Merian in April 2014. The temperature lance consists of a 60 cm long stainless steel tube (o.d. 12 mm) housing 8 thermistors with a spacing of 80 mm, resulting in an active length of 56 cm. Data are logged with an 8-channel data logger (XR-420-T8, RBR, Ottawa) and transmitted online to the control van of the ROV. Data reduction and temperature gradient calculation is done according to the HFRED algorithm (Villinger & Davis, 1987). 90 sites in total were visited, 88 gave good data for temperature gradient calculation. Calculated gradients are usually of good to very good quality. The gradients vary between less than 20 to more than 1000 mK/m reflecting the very heterogeneous distribution of geothermal heat flow. The expected conductive lithospheric heat flow for North Pond is ~190 mW/m2 (geothermal gradient of ~190 mK/m with a thermal conductivity of 1 W/Km). The highest temperature gradients are measured in places where temperature ~50 cm below the sediment-water boundary exceeds bottom water temperature by ~0.5 K . These high temperature gradients may reflect local hydrothermal circulation within the pillow lavas, however no focused discharge was detected. The analysis of temperature measurements made with the ROV-mounted CTD shows clearly detectable bottom water temperature anomalies. We infer that they are either caused by hydrothermal discharge through the thin sediment cover or through unsedimented pillow basalts nearby. Hydrothermal circulation in a North-Pond-like environment appears to be diffuse in nature, hence very difficult if not impossible to detect and to quantify.
Tofu wastewater treatment by sediment microbial fuel cells
NASA Astrophysics Data System (ADS)
Rinaldi, W.; Abubakar; Rahmi, R. F.; Silmina
2018-03-01
This research aimed to measure power density generated by sediment microbial fuel cells (SMFCs) by varying anode position and wastewater concentration. Anode position was varied at 2 cm and 4 cm under the surface of sediment, while wastewater concentration varied into 25%, 50%, 75% and 100%. The electrodes employed was stainless steel mesh, while the organic subtrate source was taken from wastewater of soybean washing and boiling process. The sediment was taken from the Lamnyong River around the outlet of tofu industry wastewater. SMFCs was run until the power density was relatively small. The produced electricity represented in power density. The results of this research showed that power density was decreased over time. Generated power density by varying 2 cm and 4 cm position of anode under the sediment surface was not significantly different, while the lowest wastewater concentration, 25%, gave the highest power density.
NASA Astrophysics Data System (ADS)
Ogston, A. S.; Walsh, J. P.; Hale, R. P.
2011-12-01
The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly, these flows play a significant role in the morpholigcal development of the continental margin. These sites, synthesized with examples from multiple other environments, provide a basis for understanding the interactions between physical processes responsible for the transport of sediment from river mouths to the sites of ultimate deposition.
NASA Astrophysics Data System (ADS)
Akgün, Aykut; Türk, Necdet
2011-09-01
Erosion is one of the most important natural hazard phenomena in the world, and it poses a significant threat to Turkey in terms of land degredation and desertification. To cope with this problem, we must determine which areas are erosion-prone. Many studies have been carried out and different models and methods have been used to this end. In this study, we used a logistic regression to prepare an erosion susceptibility map for the Ayvalık region in Balıkesir (NW Turkey). The following were our assessment parameters: weathering grades of rocks, slope gradient, structural lineament density, drainage density, land cover, stream power index (SPI) and profile curvature. These were processed by Idrisi Kilimanjaro GIS software. We used logistic regression analysis to relate predictor variables to the occurrence or non-occurrence of gully erosion sites within geographic cells, and then we used this relationship to produce a probability map for future erosion sites. The results indicate that lineament density, weathering grades of rocks and drainage density are the most important variables governing erosion susceptibility. Other variables, such as land cover and slope gradient, were revealed as secondary important variables. Highly weathered basalt, andesite, basaltic andesite and lacustrine sediments were the units most susceptible to erosion. In order to calculate the prediction accuracy of the erosion susceptibility map generated, we compared it with the map showing the gully erosion areas. On the basis of this comparison, the area under curvature (AUC) value was found to be 0.81. This result suggests that the erosion susceptibility map we generated is accurate.
Evaluating Sediment Mobility for Siting Nearshore Berms
2016-04-01
placement of dredged sediment that may contain more fine silts and clays than are allowed for placement directly on the beach. The United States Army...used in the density and viscosity calculations. For this technical note an example study site is selected and the sediment mobility indexes are...acceleration due to gravity, sρ is the sediment density, ρ is the water density, v is the kinematic viscosity of water, crθ is the Shields
NASA Astrophysics Data System (ADS)
Koo, Bon Joo; Seo, Jaehwan
2017-12-01
Bioturbation, especially sediment reworking by the activities of macroinvertebrates, such as feeding and burrowing, is one of the major processes that affect the physical, chemical, and biological characteristics of marine sediments. Given the importance of sediment reworking, this study was designed to evaluate the sediment reworking rate of a polychaete, Perinereis aibuhitensis, which is dominant in the upper tidal flats on the west coast of Korea, based on quantification of pellet production during spring and fall surveys. The density of individuals was higher in fall than in spring, whereas, due to a difference in the proportion of adults between the two seasons, the morphometric dimensions of the worm and its pellets were significantly longer and heavier in the spring. Hourly pellet production per inhabitant and density were closely related, with pellet production gradually decreasing as density increased. Daily pellet production was much higher in spring than in fall, mostly due to an increase in daytime production. The sediment reworking rate of Perinereis was similar in the two seasons in which observations were made and depended on its density and the sediment reworking rate per individual. The overall sediment reworking rate of Perinereis was 31 mm yr-1 based on its density in the study area.
Carbon isotope dynamics in the water column and surface sediments of marginal seas
NASA Astrophysics Data System (ADS)
Lipka, Marko; Liu, Bo; Schmiedinger, Iris; Böttcher, Michael E.
2017-04-01
The microbial mineralization of organic matter in marine sediments leads to the accumulation of dissolved inorganic carbon (DIC) and other metabolites into the interstitial waters. Pore water profiles sensitively reflect the zones of dominant biogeochemical processes, net trans-formation rates, and diffusive and advective transport of dissolved species across the sediment-water interface. They are controlled by different factors like sedimentology, bottom water currents and redox conditions, microbial activity, and the availability of electron acceptors/donors. The biogeochemical processes create steep gradients in DIC and its carbon isotope composition. One boundary condition for transport processes in the sediment is defined by the composition of the water column, which is under impact by physical mixing processes (e.g., salinity gradient; sediment-water exchange), biological activity and carbon dioxide exchange at the water-atmosphere interface. We present here the results of detailed biogeochemical investigations of vertical water column and pore water profiles from two brackish marginal seas: the Baltic Sea and the Black Sea. The water column on a transect between the North Sea and the southern Baltic Sea as well within the Black Sea were investigated on three cruises with RV MS Merian (MSM33, MSM50, MSM51). In addition, biogeochemical processes and associated element fluxes across the sediment-water interface were studied in key regions of Baltic Sea and Black Sea using pore water and sediment samples retrieved from sediment cores that were collected with a multi-coring device. Water samples were analyzed for metals, nutrients, and metabolites concentrations as well as stable carbon isotope composition of DIC to allow a modeling of steady-state transformation, volumetric transformation rates and element fluxes. The isotope composition of the dissolved inorganic carbon system shows a gradient between the North and the Baltic Sea, following the salinity during winter time. Element fluxes across the sediment-water interface depend on bottom water redox conditions, sedimentology and organic contents. Advective fluxes induced by sedimentation events, macro zoobenthos and wave action can affect the top sections of the sediment, thereby modifying shallow concentration gradients. By means of non-steady state modelling of pore water profiles we were able to identify the impact of mixing processes and sedimentation events in the oxic part of the Baltic Sea. In the Black Sea, on the other hand, anaerobic processes control the dynamics in DI13C under permanent euxinic conditions. A Keeling plot analysis was performed on pore waters to identify the δ13C of DIC released upon oxidation of DOC or methane. The carbon isotope composition of DIC is found to be a highly sensitive tool for understanding carbon cycling in the water column and sediments. Acknowledgements: The study is supported by BMBF during FONA-SECOS project, DFG (cruises MSM33, MSM50 and MSM51) and Leibniz IOW.
NASA Astrophysics Data System (ADS)
Sharma, Nandlal; Reuter, Dirk
2017-11-01
Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.
Logging-related increases in stream density in a northern California watershed
Matthew S. Buffleben
2012-01-01
Although many sediment budgets estimate the effects of logging, few have considered the potential impact of timber harvesting on stream density. Failure to consider changes in stream density could lead to large errors in the sediment budget, particularly between the allocation of natural and anthropogenic sources of sediment.This study...
Zhu, Yao-Jun; Bourgeois, C; Lin, Guang-Xuan; Wu, Xiao-Dong; Guo, Ju-Lan; Guo, Zhi-Hua
2012-08-01
Mangrove wetland is an important type of coastal wetlands, and also, an important sediment trap. Sediment is an essential medium for mangrove recruitment and development, which records the environmental history of mangrove wetlands and can be used for the analysis of material sources and the inference of the materials depositing process, being essential to the ecological restoration and conservation of mangrove. In this paper, surface sediment samples were collected along a hydrodynamic gradient in Gaoqiao, Zhanjiang Mangrove National Nature Reserve in 2011. The characteristics of the surface sediments were analyzed based on grain size analysis, and the prediction surfaces were generated by the geo-statistical methods with ArcGIS 9.2 software. A correlation analysis was also conducted on the sediment organic matter content and the mangrove community structure. In the study area, clay and silt dominated the sediment texture, and the mean content of sand, silt, and clay was (27.8 +/- 15.4)%, (40.3 +/- 15.4)%, and (32.1 +/- 11.4)%, respectively. The spatial gradient of the sediment characteristics was expressed in apparent interpolation raster. With increasing distance from the seawall, the sediment sand content increased, clay content decreased, and silt content was relatively stable at a certain level. There was a positive correlation between the contents of sediment organic matter and silt, and a negative correlation between the contents of sediment organic matter and sand. Much more sediment organic matter was located at the high tide area with weak tide energy. There existed apparent discrepancies in the characteristics of the surface sediments in different biotopes. The sediment characteristics had definite correlations with the community structure of mangroves, reflecting the complicated correlations between the hydrodynamic conditions and the mangroves.
NASA Astrophysics Data System (ADS)
Mitchell, Steven B.; Green, Malcolm O.; MacDonald, Iain T.; Pritchard, Mark
2017-11-01
We present a first interpretation of three days of measurements made in 2013 from the tidal reaches of the Kaipara River (New Zealand) under both low and high freshwater inputs and a neap tidal cycle. During the first day, we occupied two stations that were approximately 6 km apart in a tidal reach that runs for 25 km from the river mouth to the upstream limit of tidal influence. During the second day, longitudinal surveys were conducted over a distance of 6 km centred on the upstream station. The data reveal a turbidity maximum in the form of a high-concentration 'plug' of suspended mud that was advected downstream on the ebbing tide past the upper (HB) measurement station and which exchanged sediment with the seabed by settling at low slack water and by resuspension in the early flooding tide. The data suggest that fine sediment is transported landwards and trapped in the upper part of the tidal reach under these low-flow conditions. On the third day of measurements we repeated the experiments of the first day but later in the year, for a much higher freshwater flow. This interpretation of our data set highlights the potential contribution of a range of processes to the generation of the observed suspended-sediment signals, including resuspension of local bed sediment, advection by the tidal current, settling of suspended sediment over a long timescale compared to the advection timescale, advection of longitudinal gradients in suspended sediment, and suppression of vertical mixing by density stratification of the water column. The level of temporal and spatial detail afforded by these measurements allows a much clearer understanding of the timing and importance of vertical stratification on the transport of suspended particulate matter than is generally possible using fixed-point sensors.
NASA Astrophysics Data System (ADS)
Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.
2018-02-01
Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.
Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu
2016-07-20
Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.
A new method for mapping variability in vertical seepage flux in streambeds
NASA Astrophysics Data System (ADS)
Chen, Xunhong; Song, Jinxi; Cheng, Cheng; Wang, Deming; Lackey, Susan O.
2009-05-01
A two-step approach was used to measure the flux across the water-sediment interface in river channels. A hollow tube was pressed into the streambed and an in situ sediment column of the streambed was created inside the tube. The hydraulic gradient between the two ends of the sediment column was measured. The vertical hydraulic conductivity of the sediment column was determined using a falling-head permeameter test in the river. Given the availability of the hydraulic gradient and vertical hydraulic conductivity of the streambed, Darcy’s law was used to calculate the specific discharge. This approach was applied to the Elkhorn River and one tributary in northeastern Nebraska, USA. The results suggest that the magnitude of the vertical flux varied greatly within a short distance. Furthermore, the flux can change direction from downward to upward between two locations only several meters apart. This spatial pattern of variation probably represents the inflow and outflow within the hyporheic zone, not the regional ambient flow systems. In this study, a thermal infrared camera was also used to detect the discharge locations of groundwater in the streambed. After the hydraulic gradient and the vertical hydraulic conductivity were estimated from the groundwater spring, the discharge rate was calculated.
Xu, D Z; Deitch, E A; Sittig, K; Qi, L; McDonald, J C
1988-01-01
Mononuclear cells isolated by density gradient centrifugation from the peripheral blood of burn patients, but not healthy volunteers, are contaminated with large numbers of nonmononuclear cells. These contaminating leukocytes could cause artifactual alterations in standard in vitro tests of lymphocyte function. Thus, we compared the in vitro blastogenic response of density gradient purified leukocytes and T-cell purified lymphocytes from 13 burn patients to mitogenic (PHA) and antigenic stimuli. The mitogenic and antigenic response of the patients' density gradient purified leukocytes were impaired compared to healthy volunteers (p less than 0.01). However, when the contaminating nonlymphocytes were removed, the patients' cells responded normally to both stimuli. Thus, density gradient purified mononuclear cells from burn patients are contaminated by leukocytes that are not phenotypically or functionally lymphocytes. Since the lymphocytes from burn patients respond normally to PHA and alloantigens after the contaminating nonlymphocyte cell population has been removed, it appears that in vitro assays of lymphocyte function using density gradient purified leukocytes may give spurious results. PMID:2973771
X-DRAIN and XDS: a simplified road erosion prediction method
William J. Elliot; David E. Hall; S. R. Graves
1998-01-01
To develop a simple road sediment delivery tool, the WEPP program modeled sedimentation from forest roads for more than 50,000 combinations of distance between cross drains, road gradient, soil texture, distance from stream, steepness of the buffer between the road and the stream, and climate. The sediment yield prediction from each of these runs was stored in a data...
Onset of submarine debris flow deposition far from original giant landslide.
Talling, P J; Wynn, R B; Masson, D G; Frenz, M; Cronin, B T; Schiebel, R; Akhmetzhanov, A M; Dallmeier-Tiessen, S; Benetti, S; Weaver, P P E; Georgiopoulou, A; Zühlsdorff, C; Amy, L A
2007-11-22
Submarine landslides can generate sediment-laden flows whose scale is impressive. Individual flow deposits have been mapped that extend for 1,500 km offshore from northwest Africa. These are the longest run-out sediment density flow deposits yet documented on Earth. This contribution analyses one of these deposits, which contains ten times the mass of sediment transported annually by all of the world's rivers. Understanding how this type of submarine flow evolves is a significant problem, because they are extremely difficult to monitor directly. Previous work has shown how progressive disintegration of landslide blocks can generate debris flow, the deposit of which extends downslope from the original landslide. We provide evidence that submarine flows can produce giant debris flow deposits that start several hundred kilometres from the original landslide, encased within deposits of a more dilute flow type called turbidity current. Very little sediment was deposited across the intervening large expanse of sea floor, where the flow was locally very erosive. Sediment deposition was finally triggered by a remarkably small but abrupt decrease in sea-floor gradient from 0.05 degrees to 0.01 degrees. This debris flow was probably generated by flow transformation from the decelerating turbidity current. The alternative is that non-channelized debris flow left almost no trace of its passage across one hundred kilometres of flat (0.2 degrees to 0.05 degrees) sea floor. Our work shows that initially well-mixed and highly erosive submarine flows can produce extensive debris flow deposits beyond subtle slope breaks located far out in the deep ocean.
Insights from field observations into controls on flow front speed in submarine sediment flows
NASA Astrophysics Data System (ADS)
Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.
2017-12-01
Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.
DeFelice, R.C.; Parrish, J.D.
2001-01-01
The invertebrate assemblages in sediments bordering exposed fringing reefs at Hanalei Bay, Kauai, Hawaii, were examined during July to September 1994. Densities of invertebrate animals larger than 0.5 mm in sediments of the bay ranged from counts of 10 260 m-2 in the fine carbonate sands of the central bay to 870 m-2 in the habitat dominated by terrigenous silt near the reef edge close to the Hanalei river mouth. Similar sediment types supported broadly similar infaunal communities. Within the primarily carbonate sediments, mean grain size and wave exposure appear to have an important influence on the community. Taxonomic richness, number of individuals, and diversity showed significant negative relationships with exposure to wave energy (as estimated by sand ripple wavelength). The number of individuals was also significantly correlated with mean grain size. Overall, polychaetes and small crustaceans were numerically dominant among the major taxonomic groups investigated. Macrophagous and microphagous polychaetes had significant, but opposite, associations with grain size. In addition, microphagous polychaetes were significantly negatively correlated with wave exposure. No habitat variable measured could explain the variation in percent composition of crustaceans or echinoderms in the sedimentary habitats. The percentage of gastropods in the community was significantly negatively correlated with grain size, grain-size standard deviation and exposure, and positively with percent organic carbon. Bivalves were significantly positively associated with depth and grain size. These strong relationships imply that, in Hanalei Bay, physical processes are especially important in influencing assemblage structure, and that community structure and composition vary continuously along environmental gradients.
Feris, Kevin; Ramsey, Philip; Frazar, Chris; Moore, Johnnie N.; Gannon, James E.; Holben, William E.
2003-01-01
The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to α-, β-, and γ-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities. PMID:12957946
Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing.
Sharp, Christine E; Martínez-Lorenzo, Azucena; Brady, Allyson L; Grasby, Stephen E; Dunfield, Peter F
2014-10-01
We investigated methanotrophic bacteria in sediments of several warm geothermal springs ranging in temperature from 22 to 45 °C. Methane oxidation was measured at potential rates up to 141 μmol CH4 d(-1) g(-1) sediment. Active methanotrophs were identified using (13) CH4 stable-isotope probing (SIP) incubations performed at close to in situ temperatures for each site. Quantitative (q) PCR of pmoA genes identified the position of the heavy ((13) C-labelled) DNA fractions in density gradients, and 16S rRNA gene pyrotag sequencing of the heavy fractions was performed to identify the active methanotrophs. Methanotroph communities identified in heavy fractions of all samples were predominated by species similar (≥ 95% 16S rRNA gene identities) to previously characterized Gammaproteobacteria and Alphaproteobacteria methanotrophs. Among the five hottest samples (45 °C), members of the Gammaproteobacteria genus Methylocaldum dominated in two cases, while three others were dominated by an OTU closely related (96.8% similarity) to the Alphaproteobacteria genus Methylocapsa. These results suggest that diverse methanotroph groups are adapted to warm environments, including the Methylocapsa-Methylocella-Methyloferula group, which has previously only been detected in cooler sites. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Annual sediment flux estimates in a tidal strait using surrogate measurements
Ganju, N.K.; Schoellhamer, D.H.
2006-01-01
Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights reserved.
Atlantic Ocean Circulation and Climate: The Current View From the Geological Record
NASA Astrophysics Data System (ADS)
Curry, W.
2006-12-01
Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.
Mechanisms of muddy clinothem progradation on the Southwest Louisiana Chenier Plain inner shelf
NASA Astrophysics Data System (ADS)
Denommee, Kathryn C.; Bentley, Samuel J.; Harazim, Dario
2018-06-01
In both modern and ancient shelf settings, mud-dominated successions commonly contain complex stratigraphic geometries in which low-gradient clinothems feature prominently. Despite their ubiquity, the full range of mechanisms responsible for sediment dispersal and clinothem progradation in such settings is not well understood. Using sediment core data (210PbXS, 137Cs, grain size, porosity, X-radiography) and shallow seismic observations, this study examines the mechanisms of across-shelf sediment transport and clinothem progradation on the muddy Southwest Louisiana Atchafalaya Chenier Plain inner shelf. Observations indicate that rapid transfer of organic matter-rich sediment to the outer topsets and clinothem rollover occurs mainly via hydrodynamic fluid-mud processes during times of high wave-current bed shear stress (e.g., during the passage of storms). Rapid sedimentation, wave perturbation, and the development of biogenic methane within the shallow seabed result in the generation of large internal pore water pressures such that the clinothem rollover and foreset sediments are inherently in a condition of incipient failure. Subsequent basinward sediment transfer to the foresets occurs largely in association with low-gradient (<0.02°) mass-failure events, evidenced by widespread scarping and mudflows on the seabed. These represent an important and as yet unattributed mechanism for clinothem progradation in the study area and are likely to drive basinward sediment transport in other muddy shelf clinothem systems, both modern and ancient.
NASA Astrophysics Data System (ADS)
Freed, R.; Smith, L.; Bugai, D.
2001-12-01
In the Borschi watershed, 3 km south of the Chernobyl nuclear power plant, we have found the transfer of 90Sr in wetlands pore waters to surface waters and the subsequent flow of wetland surface waters to the stream, largely effect the concentration of 90Sr in the Borschi channel. In Borschi, we have observed that during most of the year, wetlands are the main source of 90Sr contributing to the Borschi stream and channel bottom sediments are a secondary source. Wetland pore waters have at least an order of magnitude higher concentration of 90Sr than all other surface and subsurface waters. Pore water data obtained using peepers shows the 90Sr diffusion gradient is high in near-surface wetland sediments while the 90Sr diffusion gradient is moderate to insignificant in near-surface channel sediments. Channel and wetland sediments are highly depleted in 90Sr compared with immobile nuclear fission products such as europium-154 and can account for all of the 90Sr removed by the stream since the accident. While channel sediments are largely depleted in exchangeable 90Sr, wetland sediments represent a large source of exchangeable 90Sr. Removal of 90Sr by the stream from the wetland and channel sediments is on the same order as mass loss by decay.
Virus purification by CsCl density gradient using general centrifugation.
Nasukawa, Tadahiro; Uchiyama, Jumpei; Taharaguchi, Satoshi; Ota, Sumire; Ujihara, Takako; Matsuzaki, Shigenobu; Murakami, Hironobu; Mizukami, Keijirou; Sakaguchi, Masahiro
2017-11-01
Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13' and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.
Multilevel samplers as microcosms to assess microbial response to biostimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Brett R.; Peacock, Aaron D.; Park, Melora M.
Passive multilevel samplers (MLS) containing a solid matrix for microbial colonization were used in conjunction with a push-pull biostimulation experiment designed to promote biological U(VI) and Tc(VII) reduction. MLS were deployed at 24 elevations in the injection well and two down gradient wells to investigate the spatial variability in microbial community composition and growth prior to and following biostimulation. The microbial community was characterized by real-time PCR (Q-PCR) quantification of Bacteria, NO3- reducing bacteria (nirS and nirK), δ-proteobacteria, Geobacter sp., and methanogens (mcrA). Pretest cell densities were low overall but varied substantially with significantly greater Bacterial populations detected at circumneutralmore » pH (T-test, α=0.05) suggesting carbon substrate and low pH limitations of microbial activity. Although pretest cell densities were low, denitrifying bacteria were dominant members of the microbial community. Biostimulation with an ethanol amended groundwater resulted in concurrent NO3- and Tc(VII) reduction followed by U(VI) reduction. Q-PCR analysis of MLS revealed significant (1-2 orders of magnitude, T-test, α=0.05) increases in cell densities of Bacteria, denitrifiers, δ-proteobacteria, Geobacter sp., and methanogens in response to biostimulation. Traditionally characterization of sediment samples has been used to investigate the microbial community response to biostimulation, however, collection of sediment samples is expensive and not conducive to deep aquifers or temporal studies. The results presented demonstrate that push-pull tests with passive MLS provide an inexpensive approach to determine the effect of biostimulation on contaminant concentrations, geochemical conditions, and the microbial community composition and function.« less
Oliver, L M; Fisher, W S; Fore, L; Smith, A; Bradley, P
2018-03-13
Coral reef condition on the south shore of St. Thomas, U.S. Virgin Islands, was assessed at various distances from Charlotte Amalie, the most densely populated city on the island. Human influence in the area includes industrial activity, wastewater discharge, cruise ship docks, and impervious surfaces throughout the watershed. Anthropogenic activity was characterized using a landscape development intensity (LDI) index, sedimentation threat (ST) estimates, and water quality (WQ) impairments in the near-coastal zone. Total three-dimensional coral cover, reef rugosity, and coral diversity had significant negative coefficients for LDI index, as did densities of dominant species Orbicella annularis, Orbicella franksi, Montastraea cavernosa, Orbicella faveolata, and Porites porites. However, overall stony coral colony density was not significantly correlated with stressors. Positive relationships between reef rugosity and ST, between coral diversity and ST, and between coral diversity and WQ were unexpected because these stressors are generally thought to negatively influence coral growth and health. Sponge density was greater with higher disturbance indicators (ST and WQ), consistent with reports of greater resistance by sponges to degraded water quality compared to stony corals. The highest FoRAM (Foraminifera in Reef Assessment and Monitoring) indices indicating good water quality were found offshore from the main island and outside the harbor. Negative associations between stony coral metrics and LDI index have been reported elsewhere in the Caribbean and highlight LDI index potential as a spatial tool to characterize land-based anthropogenic stressor gradients relevant to coral reefs. Fewer relationships were found with an integrated stressor index but with similar trends in response direction.
Benthic processes and coastal aquaculture: merging models and field data at a local scale
NASA Astrophysics Data System (ADS)
Brigolin, Daniele; Rabouille, Christophe; Bombled, Bruno; Colla, Silvia; Pastres, Roberto; Pranovi, Fabio
2016-04-01
Shellfish farming is regarded as an organic extractive aquaculture activity. However, the production of faeces and pseudofaeces, in fact, leads to a net transfer of organic matter from the water column to the surface sediment. This process, which is expected to locally affect the sediment biogeochemistry, may also cause relevant changes in coastal areas characterized by a high density of farms. In this paper, we present the result of a study recently carried out in the Gulf of Venice (northern Adriatic sea), combining mathematical modelling and field sampling efforts. The work aimed at using a longline mussel farm as an in-situ test-case for modelling the differences in soft sediments biogeochemical processes along a gradient of organic deposition. We used an existing integrated model, allowing to describe biogeochemical fluxes towards the mussel farm and to predict the extent of the deposition area underneath it. The model framework includes an individual-based population dynamic model of the Mediterranean mussel coupled with a Lagrangian deposition model and a 1D benthic model of early diagenesis. The work was articulated in 3 steps: 1) the integrated model allowed to simulate the downward fluxes of organic matter originated by the farm, and the extent of its deposition area; 2) based on the first model application, two stations were localized, at which sediment cores were collected during a field campaign, carried out in June 2015. Measurements included O2 and pH microprofiling, porosity and micro-porosity, Total Organic Carbon, and pore waters NH4, PO4, SO4, Alkalinity, and Dissolved Inorganic Carbon; 3) two distinct early diagenesis models were set-up, reproducing observed field data in the sampled cores. Observed oxygen microprofiles showed a different behavior underneath the farm with respect to the outside reference station. In particular, a remarkable decrease in the oxygen penetration depth, and an increase in the O2 influx calculated from the concentration gradients were observed. The integrated model described above allowed to extend the simulation over the entire farmed area, and to explore the response of the prediction to changes in water temperature.
Wu, Zhihao; Wang, Shengrui; Luo, Jun
2018-05-15
DGT (diffusive gradients in thin films) technique and DIFS (DGT induced fluxes in sediment) model are firstly designed for macrophyte-rhizobox system and in-situ macrophytes in Lake Erhai. Dynamics of phosphorus (P) transfer in Zizania latifolia (ZL) and Myriophyllum verticiilatur (MV) rhizosphere is revealed and phytoremediation performance for P in sediment is evaluated. Dynamic transfer process of P at DGT/sediment interface includes (i) diffusion flux and concentration gradients at DGT(root)/porewater interface leading to porewater concentration (C 0 ) depletion and (ii) P desorption from labile P pool in sediment solid to resupply C 0 depletion. Fe-redox controlled P release from Fe-bound P (BD-P2) and then NH 4 Cl-P1 in rhizosphere sediment resupplies porewater depletion due to DGT (root) sink. K d (labile P pool size in solid phase), r (resupply ratio) and kinetic exchange (Tc and k -1 ) lead to change characters of DIFS curves of (1) r against deployment time and (2) C solu (dissolved concentration) against distance at 24 h. They include two opposite types of "fast" and "slow" rate of resupplies. Sediment properties and DIFS parameters control P diffusion and resupply in rhizosphere sediment. Phytoremoval ability for sediment P in lake is estimated to be 23.4 (ZL) or 15.0 t a -1 (MV) by "DGT-flux" method. Copyright © 2018 Elsevier B.V. All rights reserved.
Use of Total Electron Content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coisson, P.
In presence of electron density gradients the thin shell approximation for the ionosphere used together with a simple mapping function to convert slant Total Electron Content TEC to vertical TEC could lead to TEC conversion errors Therefore these mapping function errors can be used to identify the effects of the electron density gradients in the ionosphere In the present work high precision GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions In particular the data corresponding to the geographic area of the American sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the coinciding pierce point technique The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere
NASA Astrophysics Data System (ADS)
Kim, Sora; Bahk, Jang-Jun; Kim, Daechoul; Lee, Gwang Soo; Kim, Seong-Pil
2017-04-01
A total of 288 piston and box core samples were collected and analyzed to characterize the physical properties and geoacoustic provinces of surficial sediments in the southern part of the East Sea. Based on in-situ condition sound velocity (converted laboratory sound velocity to in-situ condition sound velocity) and sediment properties (sediment textures and physical properties), the study area was divided into eight provinces (Province IA, IB, IC, II, III, IV, VA, and VB) : (1) Province IA : hemi-pelagic mud partially mixed with intermittent sandy sediments originating from the outer shelf due to slide/slump or mass flows (in-situ condition sound velocity: 1439 m/s, mean grain size: 8.5Φ, bulk density: 1.24 g/cm3,and porosity: 84%); (2) Province IB : Holocene muddy sediments are dominant, but in some area that is influenced by the surrounding land and coast (in-situ condition sound velocity: 1448 m/s, mean grain size: 8.3Φ, bulk density: 1.32 g/cm3, and porosity: 79%); (3) Province IC : muddy sediments that were deposited during the Holocene (in-situ condition sound velocity: 1457 m/s, mean grain size: 7.8Φ, bulk density: 1.36 g/cm3, and porosity: 78%); (4) Province II : mixed recent and relict sediments (in-situ condition sound velocity: 1493 m/s, mean grain size: 5.9Φ, bulk density: 1.53 g/cm3, and porosity: 68%); (5) Province III (Pohang) : there is a mixture of muddy sediments and sandy sediments and sediments from Hyeongsan River are mostly deposited (in-situ condition sound velocity: 1586 m/s, mean grain size: 4.1Φ, bulk density: 1.74 g/cm3, and porosity: 57%); (6) Province IV : coarse-grained relict sediments formed during the Pleistocene (in-situ condition sound velocity: 1572 m/s, mean grain size: 4.1Φ, bulk density: 1.76 g/cm3, and porosity: 55%); (7) Province VA : relict sand with some gravel, show marked differences from the area in which muddy sediments are deposited (in-situ condition sound velocity: 1662 m/s, mean grain size: 3.3Φ, bulk density: 1.82 g/cm3, and porosity: 51%), and (8) Province VB : similar to but coarser sediments than Province IV (in-situ condition sound velocity: 1667 m/s, mean grain size: 3.2Φ, bulk density: 1.87 g/cm3, and porosity: 46%). The in-situ condition sound velocity, mean grain size, and bulk density increased from Province IA to Province VB, whereas the porosity and water content decrease. Variability of the physical and acoustic properties tended to follow the general of the mean grain size. The classification of each province using the in-situ condition sound velocity corrected with the temperature and sediment type provides a better reflection of the sediment properties and sedimentary environment.
Physio-chemical and morphological characteristics of avian encephalomyelitis virus
Gosting, L.H.; Grinnell, B.W.; Matsumoto, M.
1980-01-01
Avian encephalomyelitis virus (AEV) was purified from infected chick embryos by a gradient centrifugation in cesium chloride. The virus had a buoyant density of 1.31 to 1.32 g/ml and a sedimentation coefficient of 148 S. The purified AEV was resistant to treatments with chloroform, acid pH or trypsin. The presence of Mg++ stabilized the virus against heat inactivation (56°C, 1 h). Electron microscopic study showed the virus to be 24 to 32 nm in diameter. The surface structure of the purified virus was not easily discernable. Nevertheless, with uranyl acetate-stained particles, Markham's rotation technique revealed that AEV has five-fold symmetry with 32 or 42 capsomers. Exact classification of AEV awaits characterization of the viral nucleic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutzler, F.W.; Painter, G.S.
1992-02-15
A fully self-consistent series of nonlocal (gradient) density-functional calculations has been carried out using the augmented-Gaussian-orbital method to determine the magnitude of gradient corrections to the potential-energy curves of the first-row diatomics, Li{sub 2} through F{sub 2}. Both the Langreth-Mehl-Hu and the Perdew-Wang gradient-density functionals were used in calculations of the binding energy, bond length, and vibrational frequency for each dimer. Comparison with results obtained in the local-spin-density approximation (LSDA) using the Vosko-Wilk-Nusair functional, and with experiment, reveals that bond lengths and vibrational frequencies are rather insensitive to details of the gradient functionals, including self-consistency effects, but the gradient correctionsmore » reduce the overbinding commonly observed in the LSDA calculations of first-row diatomics (with the exception of Li{sub 2}, the gradient-functional binding-energy error is only 50--12 % of the LSDA error). The improved binding energies result from a large differential energy lowering, which occurs in open-shell atoms relative to the diatomics. The stabilization of the atom arises from the use of nonspherical charge and spin densities in the gradient-functional calculations. This stabilization is negligibly small in LSDA calculations performed with nonspherical densities.« less
Sediment dynamics of a high gradient stream in the Oi river basin of Japan
Hideji Maita
1991-01-01
This paper discusses the effects of the valley width for discontinuities of sediment transport in natural stream channels. The results may be summarized as follows: 1)ln torrential rivers. deposition or erosion depend mostly on the sediment supply. not on the magnitude of the flow discharge. 2)Wide valley floors of streams are depositional spaces where the excess...
Adolphson, Debbie L.; Fazio, David J.; Harris, Mitchell A.
2001-01-01
Data collection for the lower Illinois River Basin (LIRB) National Water-Quality Assessment (NAWQA) program began in 1996. Data on habitat, fish, benthic macroinvertebrates, and sediment were collected at eight stations on six streams in the basin--Illinois River, Panther Creek, Mackinaw River, Indian Creek, Sangamon River, and La Moine River. These streams typically flow through agricultural lands with very low gradients. Substrates typically are clay to gravel with areas of cobble. Banks are high, steep, and sparsely vegetated. Topographic surveys provide illustrations of the geometry that promote understanding of channel geometry and a data set that, in the future, can be used by others to assess stream changes. Suspended-sediment particle size, woody debris, and stream velocity are important to fish and benthic macroinvertebrate communities. Fine particles (silts and clays) were abundant in suspended sediment and stream banks, and fish insectivorous cyprinid community composition increased with decreases in the concentration of these suspended fines. Suckers were prevalent in stream reaches with abundant woody-snag cover, whereas sunfish communities were most abundant in areas with slow water velocities. Hydropsychidae, Chironomidae, and Baetidae were the most abundant benthic macroinvertebrate families collected throughout the region, but stream size and water velocity were important to benthic macroinvertebrate community composition. Tricorythodes mayflies and Elmidae had higher relative abundance at sites in small- and moderate-size drainage basins, and Baetidae density was greatest in reaches with highest water velocity.
Biological effects of long term fine limestone tailings discharge in a fjord ecosystem.
Brooks, Lucy; Melsom, Fredrik; Glette, Tormod
2015-07-15
Benthic infaunal data collected from 1993 to 2010 were analysed to examine the effect of long term discharge of fine limestone tailings on macrofaunal species assemblages in a fjord. Relative distance from the outfall and proportion of fine tailings in the sediment were correlated with benthic community structure. Diversity decreased with increasing proportion of fine tailings. Biological Traits Analysis (BTA) was used to explore the temporal and spatial effects of the tailings gradient on macrofaunal functional attributes. BTA revealed that all stations along a pressure gradient of fine limestone tailings were dominated by free-living species. As the proportion of fine tailings in the sediment increased, there was an increase in fauna that were smaller, highly mobile, living on or nearer the surface sediment, with shorter lifespans. There was a decrease in permanent tube dwellers, those fauna with low or no mobility, that live deeper in the sediment and have longer lifespans (>5 yrs). Copyright © 2015 Elsevier Ltd. All rights reserved.
Littoral transport rates in the Santa Barbara Littoral Cell: a process-based model analysis
Elias, E. P. L.; Barnard, Patrick L.; Brocatus, John
2009-01-01
Identification of the sediment transport patterns and pathways is essential for sustainable coastal zone management of the heavily modified coastline of Santa Barbara and Ventura County (California, USA). A process-based model application, based on Delft3D Online Morphology, is used to investigate the littoral transport potential along the Santa Barbara Littoral Cell (between Point Conception and Mugu Canyon). An advanced optimalization procedure is applied to enable annual sediment transport computations by reducing the ocean wave climate in 10 wave height - direction classes. Modeled littoral transport rates compare well with observed dredging volumes, and erosion or sedimentation hotspots coincide with the modeled divergence and convergence of the transport gradients. Sediment transport rates are strongly dependent on the alongshore variation in wave height due to wave sheltering, diffraction and focusing by the Northern Channel Islands, and the local orientation of the geologically-controlled coastline. Local transport gradients exceed the net eastward littoral transport, and are considered a primary driver for hot-spot erosion.
Quantifying groundwater dependency of riparian surface hydrologic features using the exit gradient
This study examines groundwater exit gradients as a way to quantify groundwater interactions with surface water. We calibrated high resolution groundwater models for the basin fill sediments in the lower Calapooia watershed, Oregon, using data collected between 1928--2000. The e...
NASA Astrophysics Data System (ADS)
Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej
2018-04-01
This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.
NASA Astrophysics Data System (ADS)
Bachman, Richard T.; Hamilton, Edwin L.; Curray, Joseph R.
1983-11-01
Supplement is available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009. Document B83-007; $2.50. Payment must accompany order. Measurements of mean sound velocities in the first, largely unlithified layers in the seafloor were made using the sonobuoy technique in several areas in the northern Indian Ocean. Older measurements were added to new measurements, and regressions for mean and instantaneous velocity versus one-way travel time of sound are presented for the central Bengal Fan, the central Andaman Sea Basin, the Nicobar Fan, and the Sunda Trench. New data and regression equations are presented for the Mergui-north Sumatra Basin and for four forearc basins between Sumatra and Java and the Sunda Trench. Minimum velocity gradients were found in those areas where sedimentation rates were high, and sediments have accumulated in thick sections which have not had time to fully consolidate (porosity in the top of the sediment section has not been fully reduced under overburden pressure). These minimum velocity gradients (just under the seafloor) were found in the four forearc basins where they ranged from 0.34 s-1 to 0.84 s-1 with an average of 0.58 s-1. The near-surface velocity gradient in the Sunda Trench was 1.33 s-1, but was higher in the adjacent, fossil Nicobar Fan (1.62 s-1). In the surface of the Bengal Fan the velocity gradient was low in the upper fan (0.86 s-1), high in the central fan (1.94 s-1), and again lower in the southern fan (1.18 s-1), which may support sedimentation models calling for bypassing of the central fan and higher rates of accumulation on the southern fan.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach
2017-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.
Mezquita, C; Teng, C S
1977-01-01
We developed a technique to separate nuclei of rooster testis by centrifugation through a discontinuous sucrose density gradient and by sedimentation at unit gravity. Four different major fractions obtained from testicular nuclei and one from the vas deferens were characterized according to their velocity of sedimentation, morphology and DNA content. The ratios (w/w) of basic proteins, non-histone proteins and RNA to DNA decreased during spermiogenesis both in nuclei and chromatin. Changes in the electrophoretic patterns of histones and non-histone proteins were detected especially in the elongated spermatids. The lack of uptake of [3H]uridine in elongating and elongated spermatids and in spermatozoa was demonstrated by radioautography and by the detection of labelled RNA extracted from different fractions of nuclei. Template activity for RNA synthesis and the binding of actinomycin D by testicular nuclei reached a peak in the elongated spermatid stage, when the histones are replaced by the protamine. Images PLATE 1 PLATE 2 PLATE 3 PLATE 4 PLATE 5 PMID:560187
Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream
NASA Astrophysics Data System (ADS)
Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Benthem, Adam J.
2013-01-01
Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest nonequilibrium channel conditions. Both peak discharge and number of peaks above base have substantially increased since the mid-1960s when urbanization of the watershed began. Deposition patterns are most closely correlated with channel gradient, sinuosity, and channel width/floodplain width for recent and historic periods. The substantial amounts of fine grained sediment deposited on the floodplain over the past two centuries or so do not appear to be closely related to historic mill pond presence or location. The floodplain continues to provide the critical ecosystem service of sediment trapping in the face of multiple human alterations. Trends in sediment deposition/erosion may react rapidly to land use practices within the watershed and offer a valuable barometer of the effects of management actions.
Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream
Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Bentham, Adam J.
2012-01-01
Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest nonequilibrium channel conditions. Both peak discharge and number of peaks above base have substantially increased since the mid-1960s when urbanization of the watershed began. Deposition patterns are most closely correlated with channel gradient, sinuosity, and channel width/floodplain width for recent and historic periods. The substantial amounts of fine grained sediment deposited on the floodplain over the past two centuries or so do not appear to be closely related to historic mill pond presence or location. The floodplain continues to provide the critical ecosystem service of sediment trapping in the face of multiple human alterations. Trends in sediment deposition/erosion may react rapidly to land use practices within the watershed and offer a valuable barometer of the effects of management actions.
A New Method for the Determination of Annual Sediment Fluxes from Varved Lake Sediments
NASA Astrophysics Data System (ADS)
Francus, P.; Massa, C.; Lapointe, F.
2013-12-01
Calculation of sediment mass accumulation rates instead of thickness accumulation is preferable for paleoclimatic reconstruction as it eliminates the effects of dilution and compaction. Annually laminated lake sediment sequences (varved) theoretically allow for the estimation of sediment fluxes at annual scale, but the calculation is limited by discrete bulk density measurements, often carried out at a much lower resolution (usually 1 cm) than the varves (ranging from 0.07 to 27.3 mm, average 1.84 mm according to Ojala et al. 2012). Since many years the development of automated logging instruments made available continuous and high resolution sediment property data, in a non-destructive fashion. These techniques can easily be used to extract the physical and chemical parameters of sediments at the varve scale (down to 100 μm). Here we present a robust method to calculate annual sediment fluxes from varved lake sediments by combining varves thickness measurements to core logging data, and provide an example for its applications. Several non-destructive densitometric methods applied to the Strathcona Lake sediment, northern Ellesmere Island, Canada (78°33'N; 82°05'W) were compared: Hounsfield Units from a CT-Scan, coherent/incoherent ratio and X-ray radiography (of both split core and sediment slabs, from an Itrax core Scanner), and gamma ray attenuation density. Core logging data were statistically compared to 400 discrete measurements of dry bulk density, wet bulk density and water content performed at 2 mm contiguous intervals. A very strong relationship was found between X-ray grey level on sediment slab and dry bulk density. Relative X-ray densities, at 100μm resolution, were then successfully calibrated against real densities. The final step consisted in binning the calibrated densities to the corresponding varve thickness and then to calculate the annual mass accumulation rates by multiplying the two parameters for each varve year. Strathcona Lake is located directly downstream of the Agassiz ice cap and contains laminated sediments whose accumulation is directly related to hydrological inputs generated by the melting of the ice cap. Over the last 65 years, annual sediment accumulation rates in Strathcona Lake documented an increase in high-energy hydrologic discharge events from 1990 to 2009. This timing is in agreement with evidence for an increase in the amount of melt on the adjacent Agassiz Ice Cap, as recorded in ice cores. A good correspondence was also found between annual mass accumulation rates and Eureka air temperature records, suggesting that temperature changes affected the extent of summer melting on the Agassiz Ice Cap, leading to high sediment yield to Strathcona Lake. Ojala, A.E.K., Francus, P., Zolitschka, B., Besonen, M. and Lamoureux, S.F. (2012) Characteristics of sedimentary varve chronologies - A review. Quaternary Science Reviews, 43, 45-60.
Kerfahi, Dorsaf; Hall-Spencer, Jason M; Tripathi, Binu M; Milazzo, Marco; Lee, Junghoon; Adams, Jonathan M
2014-05-01
The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.
BACTERIAL METHYLMERCURY DEGRADATION IN FLORIDA EVERGLADES PEAT SEDIMENT
Methylmercury (MeHg) degradation was investigated along an eutrophication gradient in the Florida Everglades by quantifying 14CH4 and 14CO2 production after incubation of anaerobic sediments with [14C]MeHg. Degradation rate constants (k) were consistently <=0.1 d-1 and decreased ...
Macrobenthic communities from estuaries throughout the northern Gulf of Mexico were studied to assess the influence of sediment contaminants and natural environmental factors on macrobenthic community trophic structure. Community trophic data were also used to evaluate whether re...
Algae contribute to trophic and biogeochemical processes in tidal wetlands. We investigated patterns of sediment pigment content and macroalgal abundance and diversity in marshes in four Oregon estuaries representing a variety of vegetation types, salinity regimes, and tidal ele...
40 CFR 230.25 - Salinity gradients.
Code of Federal Regulations, 2013 CFR
2013-07-01
... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...
40 CFR 230.25 - Salinity gradients.
Code of Federal Regulations, 2014 CFR
2014-07-01
... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...
40 CFR 230.25 - Salinity gradients.
Code of Federal Regulations, 2011 CFR
2011-07-01
... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...
40 CFR 230.25 - Salinity gradients.
Code of Federal Regulations, 2012 CFR
2012-07-01
... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...
The effect of density gradients on hydrometers
NASA Astrophysics Data System (ADS)
Heinonen, Martti; Sillanpää, Sampo
2003-05-01
Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.
Delaune, R D; Gambrell, R P; Jugsujinda, Aroon; Devai, Istavan; Hou, Aixin
2008-07-15
Concentration of total Hg, methyl Hg, and other heavy metals were determined in sediment collected along a salinity gradient in a Louisiana Gulf Coast estuary. Surface sediment was collected at established coordinates (n = 292) along a salinity gradient covering Lake Maurepas, Lake Pontchartrain, Lake Borgne and the Chandeleur Sound located in the 12,170 km(2) Pontchartrain basin estuary southeastern coastal Louisiana. Lake Maurepas sediment with lower salinity contained higher levels of methyl Hg (0.80 microg/kg) than Lake Pontchartrain (0.55 microg/kg). Lake Maurepas sediment also had higher levels of total Hg (98.0 microg/kg) as compared to Lake Pontchartrain (67.0 microg/kg). Average total Hg content of Lake Borgne and the Chandeleur Sound sediment was 24.0 microg/kg dry sediment and methyl Hg content averaged 0.21 microg/kg dry sediment. Methyl Hg content of sediment was positively correlated with total Hg, organic matter and clay content of sediment. Methyl Hg was inversely correlated with salinity, sediment Eh and sand content. Total Hg and methyl Hg decreased with increase in salinity in the order of Lake Maurepas > Lake Pontchartrain > Lake Borgne/ the Chandeleur Sound. Lake Maurepas containing several times higher amount of methyl Hg in sediment as compared to Lake Pontchartrain and Lake Borgne and the Chandeleur Sound is an area that could serve as potential source of mercury to the aquatic food chain. Methyl Hg content of sediment in the estuary could be predicted by the equation: Methyl Hg = 0.11670-0.0625 x Salinity + 0.05349 x O.M. + 0.00513 x Total Hg - 0.00250 x Clay. Concentrations of other toxic heavy metals (Pb, Cd, Ni, Cu and Zn) in sediment were not elevated and was statistically correlated with sediment texture and iron and aluminum content of sediment.
Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Segre, P. N.; McClymer, J. P.
2004-01-01
The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.
NASA Astrophysics Data System (ADS)
Bollmann, J.; Brabec, B.
2001-12-01
Abundance and assemblage compositions of microplankton, together with their chemical and stable isotopic composition, have been among the most successful methods in paleoceanography. One of the most frequently applied techniques for reconstruction of paleo-temperature is a transfer function using the relative abundance of planktic foraminifera in sediment samples. Here we present evidence, suggesting that absolute sea surface temperature for a given location can be also calculated from the relative abundance of Gephyrocapsa morphotypes in sediment samples with an accuracy comparable to foraminifera transfer functions. By extrapolating this finding, paleo-enviromental interpretations can be obtained for the Late Pleistocene and discrepancies between the different currently used methods (e.g., foraminifer, alkenone and Ca/Mg derived temperature estimates) might be resolved. Eighty-one Holocene sediment samples were selected from the Pacific, Indian and Atlantic Oceans covering a temperature gradient from 13.4° C to 29.4° C, a salinity gradient from 32.21 to 37.34 and a productivity gradient of 0.045 to 0.492μ g chlorophyll/L. Standard multiple linear regression analyses were applied to this data set, linking the relative abundance of Gephyrocapsa morphotypes to mean sea surface temperature. The best model revealed an r2 of 0.8 with a standard residual error of 1.8° C for calculation of the mean sea surface temperature.
Piper, David J.W.; Normark, William R.
2009-01-01
How the processes that initiate turbidity currents influence turbidite deposition is poorly understood, and many discussions in the literature rely on concepts that are overly simplistic. Marine geological studies provide information on the initiation and flow path of turbidity currents, including their response to gradient. In case studies of late Quaternary turbidites on the eastern Canadian and western U.S. margins, initiation processes are inferred either from real-time data for historical flows or indirectly from the age and contemporary paleogeography, erosional features, and depositional record. Three major types of initiation process are recognized: transformation of failed sediment, hyperpycnal flow from rivers or ice margins, and resuspension of sediment near the shelf edge by oceanographic processes. Many high-concentration flows result from hyperpycnal supply of hyperconcentrated bedload, or liquefaction failure of coarse-grained sediment, and most tend to deposit in slope conduits and on gradients < 0.5° at the base of slope and on the mid fan. Highly turbulent flows, from transformation of retrogressive failures and from ignitive flows that are triggered by oceanographic processes, tend to cannibalize these more proximal sediments and redeposit them on lower gradients on the basin plain. Such conduit flushing provides most of the sediment in large turbidites. Initiation mechanism exerts a strong control on the duration of turbidity flows. In most basins, there is a complex feedback between different types of turbidity-current initiation, the transformation of the flows, and the associated slope morphology. As a result, there is no simple relationship between initiating process and type of deposit.
Taheri, Mehrshad; Braeckman, Ulrike; Vincx, Magda; Vanaverbeke, Jan
2014-08-01
The responses of nematode communities to short-term hypoxia (1 and 7 days) were investigated in three North Sea stations with different sediment types (coarse silt, fine sand and medium sand). In the field, nematode density, diversity, vertical distribution and community structure differ among the stations. In the laboratory, oxic and hypoxic treatments were established for 1 and 7 days for all sediment types. Comparison between field control and oxic day 1 treatments showed that experimental sediment handling did not affect nematode characteristics. Our results revealed that short-term hypoxia did not affect total density, diversity, community composition, vertical density profiles (except in the fine sand) and densities of five dominant species in all sediment types. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cantero, Mariano I.; Balachandar, S.; Cantelli, Alessandro; Pirmez, Carlos; Parker, Gary
2009-03-01
In this work we present direct numerical simulations (DNS) of sediment-laden channel flows. In contrast to previous studies, where the flow has been driven by a constant, uniform pressure gradient, our flows are driven by the excess density imposed by suspended sediment. This configuration provides a simplified model of a turbidity current and is thus called the turbidity current with a roof configuration. Our calculations elucidate with DNS for the first time several fascinating features of sediment-laden flows, which may be summarized as follows. First, the presence of sediment breaks the symmetry of the flow because of a tendency to self-stratify. More specifically, this self-stratification is manifested in terms of a Reynolds-averaged suspended sediment concentration that declines in the upward normal direction and a Reynolds-averaged velocity profile with a maximum that is below the channel centerline. Second, this self-stratification damps the turbulence, particularly near the bottom wall. Two regimes are observed, one in which the flow remains turbulent but the level of turbulence is reduced and another in which the flow relaminarizes in a region near the bottom wall, i.e., bed. Third, the analysis allows the determination of a criterion for the break between these two regimes in terms of an appropriately defined dimensionless settling velocity. The results provide guidance for the improvement of Reynolds-averaged closures for turbulent flow in regard to stratification effects. Although the analysis reported here is not performed at the scale of large oceanic turbidity currents, which have sufficiently large Reynolds numbers to be inaccessible via DNS at this time, the implication of flow relaminarization is of considerable importance. Even a swift oceanic turbidity current which at some point crosses the threshold into the regime of relaminarization may lose the capacity to reentrain sediment that settles on the bed and thus may quickly die as it loses its driving force.
Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hung D.; Cao, Bin; Mishra, Bhoopesh
2012-01-01
The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000more » μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state.« less
Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium.
Nguyen, Hung Duc; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk
2012-01-01
The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000 μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state. Copyright © 2011 Elsevier Ltd. All rights reserved.
Goerlitz, D.F.
1981-01-01
Methods for the determination of pentachlorophenol (PCP) in water and aquifer sediments are presented. Reverse-phase high-performance liquid chromotography employing ion suppression and gradient elution is used. PCP can be determined directly in water at a lower limit of detection Of 0.2 micrograms per liter. For extracts of sediment, PCP can be determined to a lower limit of 1.0 micrograms per kilogram.
Acoustic Wave Dispersion and Scattering in Complex Marine Sediment Structures
2018-03-21
Developed theory and methodology to distinguish between the two major classes of volume heterogeneities, discrete particles or a fluctuation...acoustics of muddy sediments has become of intense interest in the ONR community and very large and non -linear gradients have been observed in such...method was applied to measured reflection data in a muddy sediment area, where highly non -linear depth-dependent profiles were obtained – informed by the
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James
2016-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.
Stochastic sediment property inversion in Shallow Water 06.
Michalopoulou, Zoi-Heleni
2017-11-01
Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.
The New Bedford Harbor Superfund Site Long Term ...
Background. New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. Approach. A systematic, probabilistic sampling design was used to select approximately 70 sediment sampling stations. Sediment was collected at each station and chemical (e.g., PCBs, metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. There have been six sample collections to date: 1993-baseline, 1995-post hot spot removal, 1999-prior to full scale dredging, and then at 5 year intervals: 2004, 2009, and 2014. Mussel (Mytilus edulis) bioaccumulation has also been measured twice yearly. Results. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been
Pires, Ana C C; Cleary, Daniel F R; Almeida, Adelaide; Cunha, Angela; Dealtry, Simone; Mendonça-Hagler, Leda C S; Smalla, Kornelia; Gomes, Newton C M
2012-08-01
Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages.
Pires, Ana C. C.; Cleary, Daniel F. R.; Almeida, Adelaide; Cunha, Ângela; Dealtry, Simone; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia
2012-01-01
Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages. PMID:22660713
NASA Astrophysics Data System (ADS)
Massari, F.
2017-10-01
Inferred supercritical structures and bedforms, including sediment waves and backset-bedded sets, are identified as components of coarse-grained siliciclastic and bioclastic, high-gradient clinoform wedges (Plio-Pleistocene of southern Italy) and canyon head infills (Tortonian of Venetian pre-Alps), showing evidence of having been built out in a setting influenced by shallow-marine hydrodynamics. The facies identified are dominated by a range of traction carpets, formed after segregation of coarser particles in the lower part of bipartite density underflows. The generation of backset-bedded sets is thought to imply scouring due to impact of a submerged hydraulic jump on the bed, and upstream migration of the jump, concomitant with the deposition of backset beds on the stoss side of the developing bedform. Submerged hydraulic jumps apparently formed spontaneously and in any position on the foreset and toeset, without requiring any precursor bed defect. The mostly solitary, non-cyclical character of the bedforms prevents their attribution to cyclic steps. The sets of backset beds are locally underlain by chaotic infills of deep, steep-sided scours attributed to vigorous erosion at the hydraulic jump, accompanied by instantaneous loss in transport capacity which results in rapid plugging of the scour (hydraulic jump facies of Postma et al., 2014). Gravel waves have a distinct internal stratigraphy, and their length to amplitude ratios show lower mean values and higher variability when compared to sediment waves consisting of sand. The presence of supercritical bedforms on steep foreset slopes of the studied clinoform systems, even in proximity to the topset-foreset rollover, is believed to reflect high inefficiency of mud-poor and short run-out bipartite underflows episodically transporting relatively small volumes of coarse-grained sediment. This may also account for common solitary, non-cyclical bedforms. It is proposed that during intense oceanographic events, such as coastal storms, seaward sediment entrainment, assisted by gravity, was very effective on the gently sloping subaqueous topset, and that, beyond the topset-foreset rollover, the flows evolved to high-concentration turbidity underflows with supercritical Froude numbers. The flows are inferred to have been sustained, probably lasting for the duration of the meteorological events, and to have commonly been unsteady in discharge, fluctuating in concentration and size of transported sediments, and subject to peaks in velocity. The characteristics of the structures are regarded as typical of the systems fed by oceanographic processes, and may fall into the class of coarse-grained ;small sediment waves with mixed relief; of Symons et al. (2016), formed from a combination of erosion and deposition, and by the action of stratified flows depositing from denser basal layers, and typically restricted to small-scale shallow-marine slope systems.
Kanaya, Gen
2014-04-01
Influences of sediment types on recolonization of estuarine macrozoobenthos were tested using enclosures in a hypertrophic lagoon. Three types of azoic sediment, sand (S), sulfide-rich mud (M), and mud removed of sulfide through iron addition (MFe), were set in field for 35 days during a hypoxic period. A total of 14 taxa including opportunistic polychaetes and amphipods occurred. Infaunal community in S treatment was characterized by highest diversity, total density and biomass, and population density of five dominant taxa, while those parameters were lowest in M treatment. Sulfide removal in MFe treatment achieved much higher density, biomass, and population densities of several taxa in the sediment. Multivariate analyses demonstrated that the established community structure was unique to each treatment. These imply that dissolved sulfide level as well as sediment grain size is a key determinant for the community composition and recolonization speed of early colonists in estuarine soft-bottom habitats. Copyright © 2014 Elsevier Ltd. All rights reserved.
Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary
Schaffranek, Raymond W.; Baltzer, Robert A.; ,
1990-01-01
A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.
Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico.
Johnson, C N; Flowers, A R; Noriea, N F; Zimmerman, A M; Bowers, J C; DePaola, A; Grimes, D J
2010-11-01
Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities.
The objectives of this poster were 1)to evaluate the impact of MTM/VF on the functional attributes SOD, soil/sediment respiration rate, soil/sediment DEA and dissolved trace gas concentrations across gradients of mining disturbance and hydrolgy and 2)compare these functional attr...
Computer-Aided Tomography (CT) has been demonstrated to be a cost efficient tool for the qualitative and quantitative study of estuarine benthic communities along pollution gradients.
Now we have advanced this technology to successfully visualize and discriminate three dimen...
Use of total electron content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coïsson, P.
In the presence of electron density gradients the thin shell approximation for the ionosphere, used together with a simple mapping function to convert slant total electron content (TEC) to vertical TEC, could lead to TEC conversion errors. These "mapping function errors" can therefore be used to detect the electron density gradients in the ionosphere. In the present work GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions. In particular the data corresponding to the geographic area of the American Sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the "coinciding pierce point technique". The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere. In addition, the possibility to assess an ionospheric shell height able to minimize the mapping function errors has been verified.
Webster, Gordon; O'Sullivan, Louise A.; Meng, Yiyu; Williams, Angharad S.; Sass, Andrea M.; Watkins, Andrew J.; Parkes, R. John; Weightman, Andrew J.
2014-01-01
Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2–8 × 107 16S rRNA gene copies cm−3) than the high-salinity marine sites from BR and AR (2 × 104–2 × 107 and 4 × 106–2 × 107 16S rRNA gene copies cm−3, respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the ‘Bathyarchaeota’ (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only ‘marine’ group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments. PMID:25764553
The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities
Clark, Graeme F.; Stark, Jonathan S.; Palmer, Anne S.; Riddle, Martin J.; Johnston, Emma L.
2017-01-01
On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics. PMID:28076438
The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities.
Clark, Graeme F; Stark, Jonathan S; Palmer, Anne S; Riddle, Martin J; Johnston, Emma L
2017-01-01
On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics.
Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.
1998-01-01
Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off San Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the San Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been chemically characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.
Dramatic undercutting of piedmont rivers after the 2008 Wenchuan Ms 8.0 Earthquake
Fan, Niannian; Nie, Ruihua; Wang, Qiang; Liu, Xingnian
2016-01-01
Changes in river channel erosion or deposition affect the geomorphic evolution, aquatic ecosystems, and river regulation strategies. Fluvial processes are determined by the flow, sediment and boundary conditions, and it has long been expected that increasing sediment supply will induce aggradation. Here, based on thorough field surveys, we show the unexpected undercutting of the piedmont rivers influenced by the 2008 Wenchuan (Ms 8.0) Earthquake. The rivers flow from the Longmen Mountain with significant topographic relief to the flat Chengdu plain. In the upstreams, sediment supply increased because of the landslides triggered by the earthquake, causing deposition in the upstream mountain reaches. However, the downstream plain reaches suffered undercutting instead of deposition, and among those rivers, Shiting River was the most seriously affected, with the largest undercutting depth exceeding 20 m. The reasons for this unexpected undercutting are proposed herein and relate to both natural and anthropogenic causes. In addition, we also demonstrate, at least for certain conditions, such as rivers flowing from large-gradient mountain regions to low-gradient plain regions, that upstream sediment pulses may induce aggradation in upstream and degradation in downstream, causing the longitudinal profile to steepen to accommodate the increasing sediment flux. PMID:27857220
Wu, Xinliang; Wei, Yujie; Wang, Junguang; Xia, Jinwen; Cai, Chongfa; Wei, Zhiyuan
2018-04-15
Soil erosion poses a major threat to the sustainability of natural ecosystems. The main objective of this study was to investigate the effects of soil type and rainfall intensity on sheet erosion processes (hydrological, erosional processes and sediment characteristics) from temperate to tropical climate. Field plot experiments were conducted under pre-wetted bare fallow condition for five soil types (two Luvisols, an Alisol, an Acrisol and a Ferralsol) with heavy textures (silty clay loam, silty clay and clay) derived separately from loess deposits, quaternary red clays and basalt in central-south China. Rainfall simulations were performed at two rainfall intensities (45 and 90mmh -1 ) and lasted one hour after runoff generation. Runoff coefficient, sediment concentration, sediment yield rate and sediment effective size distribution were determined at 3-min intervals. Runoff temporal variations were similar at the high rainfall intensity, but exhibited a remarkable difference at the low rainfall intensity among soil types except for tropical Ferralsol. Illite was positively correlated with runoff coefficient (p<0.05). Rainfall intensity significantly contributed to the erosional process (p<0.001). Sediment concentration and yield rate were the smallest for the tropical Ferralsol and sediment concentration was the largest for the temperate Luvisol. The regimes (transport and detachment) limiting erosion varied under the interaction of rainfall characteristics (intensity and duration) and soil types, with amorphous iron oxides and bulk density jointly enhancing soil resistance to erosive forces (Adj-R 2 >88%, p<0.001). Sediment size was dominated by <0.1mm size fraction for the Luvisols and bimodally distributed with the peaks at <0.1mm and 1-0.5mm size for the other soil types. Exchangeable sodium decreased sediment size while rainfall intensity and clay content increased it (Adj-R 2 =96%, p<0.01). These results allow to better understand the climate effect on erosion processes at the spatial-temporal scale from the perspective of soil properties. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A; Orth, Dr. Donald J; Dolloff, Dr. Charles A
2013-01-01
Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread practice, it is essential to evaluate the biotic response to restoration projects in order to improve the efficacy of future applications. The purpose of our study was to evaluate the response of the macroinvertebrate community to gravel addition in a high-gradient,more » regulated river in western North Carolina. We collected benthic macroinvertebrate samples from gravel-enhanced areas and unenhanced areas for 1 season before gravel addition, and for 4 seasons afterwards. Repeated measures multivariate analysis of variance indicated that the responses of macroinvertebrates to gravel addition were generally specific to individual taxa or particular functional feeding groups and did not lead to consistent patterns in overall family richness, diversity, density, or evenness. Non-metric multi-dimensional scaling showed that shifts in macroinvertebrate community composition were temporary and dependent upon site conditions and season. Correlations between macroinvertebrate response variables and substrate microhabitat variables existed with or without the inclusion of data from enhanced areas, which suggests that substrate-biotic relationships were present before gravel addition. A review of the current literature suggests that the responses of benthic macroinvertebrates to substrate restoration are inconsistent and dependent upon site conditions and the degree habitat improvement of pre-restoration site conditions.« less
NASA Astrophysics Data System (ADS)
Alammar, Montaha; Austin, William
2017-04-01
The present study represents an attempt to evaluate the impacts of marine aquaculture on benthic foraminiferal communities in order to develop an improved, quantitative understanding of their response to the variation in benthic environmental gradients associated with fish farms in Scotland. Furthermore, their performance as a bio-monitoring tool will be discussed and outlined in ongoing research to evaluate their performance alongside traditional bioecological indicators. Foraminiferal faunas offer the potential to assess ecological quality status through their response to stress gradients (e.g. organic matter enrichment), such as that caused by intensive fish farming in coastal sediments. In this study, we followed the Foraminiferal Bio-Monitoring (FOBIMO) protocol (Schönfeld. et al., 2012), which proposed a standardised methodology of using foraminifera as a bio-monitoring tool to evaluate the quality of the marine ecosystem and applied these protocols to the rapidly expanding marine aquaculture sector in Scotland, UK. Eight stations were sampled along a transect in Loch Creran, west coast of Scotland, to describe the spatial and down-core (temporal) distribution pattern of benthic foraminiferal assemblages. Triplicate, Rose-Bengal stained samples from an interval of (0-1cm) below the sediment surface were studied at each station from below the fish cages (impacted stations) to a distance from the farming sites (control stations). Morphospecies counts were conducted, and the organic carbon and the grain size distributions determined. Species richness beneath these fish farming cages were analysed and showed a reduction of foraminifera density and diversity at the impacted stations.
NASA Astrophysics Data System (ADS)
Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.
2018-02-01
Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma and for /k c ω p < 4 in linear polarized plasma. Therefore, the shear stress and density gradient tend to stabilize the Weibel instability for /k c ω p < 4 in linear polarized plasma. Also, the shear stress and density gradient tend to stabilize the Weibel instability for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.
Fácio, Cássio L; Previato, Lígia F; Machado-Paula, Ligiane A; Matheus, Paulo Cs; Araújo, Edilberto
2016-12-01
This study aimed to assess and compare sperm motility, concentration, and morphology recovery rates, before and after processing through sperm washing followed by swim-up or discontinuous density gradient centrifugation in normospermic individuals. Fifty-eight semen samples were used in double intrauterine insemination procedures; 17 samples (group 1) were prepared with sperm washing followed by swim-up, and 41 (group 2) by discontinuous density gradient centrifugation. This prospective non-randomized study assessed seminal parameters before and after semen processing. A dependent t-test was used for the same technique to analyze seminal parameters before and after semen processing; an independent t-test was used to compare the results before and after processing for both techniques. The two techniques produced decreases in sample concentration (sperm washing followed by swim-up: P<0.000006; discontinuous density gradient centrifugation: P=0.008457) and increases in motility and normal morphology sperm rates after processing. The difference in sperm motility between the two techniques was not statistically significant. Sperm washing followed by swim-up had better morphology recovery rates than discontinuous density gradient centrifugation (P=0.0095); and the density gradient group had better concentration recovery rates than the swim-up group (P=0.0027). The two methods successfully recovered the minimum sperm values needed to perform intrauterine insemination. Sperm washing followed by swim-up is indicated for semen with high sperm concentration and better morphology recovery rates. Discontinuous density gradient centrifugation produced improved concentration recovery rates.
Density Gradient Columns for Chemical Displays.
ERIC Educational Resources Information Center
Guenther, William B.
1986-01-01
Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)
NASA Astrophysics Data System (ADS)
Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team
2008-07-01
Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.
Arana, Inés; Orruño, Maite; Seco, Carolina; Muela, Alicia; Barcina, Isabel
2008-03-01
The ability of Urografin or Percoll density gradient centrifugations to separate nonculturable subpopulations from heterogeneous Escherichia coli populations was analysed. Bacterial counts (total, active and culturable cells) and flow cytometric analyses were carried out in all recovered bands. After Urografin centrifugation, and despite the different origin of E. coli populations, a common pattern was obtained. High-density bands were formed mainly by nonculturable cells. However, the increase in cell density would not be common to all nonculturable cells, since part of this subpopulations banded in low-density zones, mixed with culturable cells. Bands obtained after Percoll centrifugation were heterogeneous and culturable and nonculturable cells were recovered along the gradient. Thus, fractionation in Urografin cannot be only attributed to changes in buoyant densities during the transition from culturable to nonculturable state. Urografin density gradients allow us to obtain enriched fractions in nonculturable subpopulations from a heterogeneous population, but working conditions should be carefully chosen to avoid Urografin toxicity.
Effect of density gradient centrifugation on reactive oxygen species in human semen.
Takeshima, Teppei; Yumura, Yasushi; Kuroda, Shinnosuke; Kawahara, Takashi; Uemura, Hiroji; Iwasaki, Akira
2017-06-01
Density gradient centrifugation can separate motile sperm from immotile sperm and other cells for assisted reproduction, but may also remove antioxidants from seminal plasma, resulting in oxidative stress. Therefore, we investigated reactive oxygen species (ROS) concentrations and distribution in semen before and after density gradient centrifugation. We assessed semen volume, sperm concentration, sperm motility, and ROS levels before and after density gradient centrifugation (300 x g for 20 minutes) in 143 semen samples from 118 patients. The ROS removal rate was evaluated in ROS-positive samples and ROS formation rate in ROS-negative samples. Thirty-eight of 143 untreated samples (26.6%) were ROS-positive; sperm motility was significantly lower in these samples than in ROS-negative samples (p < 0.05). After density gradient centrifugation, only seven of the 38 ROS-positive samples (18.42%) exhibited a ROS-positive lower layer (containing motile sperm) with a ROS removal rate of 81.58%, whereas the upper layer was ROS-positive in 24 samples (63.16%). In the ROS-negative group (n = 105), ROS was detected in 19 samples after centrifugation (18.10%, ROS generation rate), of which 18 were ROS-positive only in the upper layer or interface and the other was ROS-positive in both layers. Density gradient centrifugation can separate motile sperm from immotile sperm as well as remove ROS (including newly generated ROS). This data supports the view that density gradient centrifugation can select motile spermatozoa without enhancing oxidative stress. ROS: reactive oxygen species; SOD: superoxide dismutase; GPx: glutathione peroxidase; DNA: deoxyribonucleic acid; DGC: density gradient centrifugation; IUI: intrauterine insemination; IVF: in vitro fertilization; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; EDTA: ethylenediaminetetraacetic acid; HTF: HEPES-buffered human tubal fluid; IMSI: intracytoplasmic morphologically selected sperm injection; SMAS: sperm motility analyzing system; CASA: computer-assisted semen analyzer; WHO: World Health Organization.
Application of Sub-Bottom Profiler to Study Riverbed Structure and Sediment Density
NASA Astrophysics Data System (ADS)
Rui, Wang; Changzheng, Li; Xiaofei, Yan
2018-03-01
In this pater, we present a study on the riverbed structure and sediment density in-situ test by using sub-bottom profiler. Compared with traditional direct observation methods, the sub-bottom profiler method based on sonar technology is non-contact, low-disturbance and high-efficient. We finish the investigation of several sections in Sanmenxia and Xiaolangdi reservoirs, which located on the main channel of lower reaches of Yellow River. Collected data show a detailed layered structure of the riverbed sediment which believed caused by sedimentary processes in different periods. Further more, we analyse the reflection coefficient of water-sediment interface and inverse the sediment density data from the raw wave record. The inversion method is based on the effective density fluid model and Kozeny-Carman formula. The comparison of the inversion results and sample tests shows that the in-situ test is reliable and useable.
Goedkoop, Willem; Peterson, Märit
2003-01-01
In this laboratory study, we address the effect of Chironomus bioturbation (0, 2,000, 6,000, and 18,000 ind/m2) and sediment organic matter content (10, 20, and 40%) on the fate, distribution, and bioavailability of 14C-lindane under standardized conditions in toxicity tests with artificial sediment. The results show that both Chironomus burrowing activity and sediment organic matter strongly modify test conditions. Larval mortality and development were inversely related with Chironomus densities and lindane concentration. Sediment organic matter content affected larval development rates but not mortality. Partitioning of lindane between the sediment, overlying water, and interstitial water was affected negatively by Chironomus larval densities: however, sediment partitioning was positively affected by sediment organic matter content. Bioturbation by Chironomus resulted in a remobilization of particle-associated lindane to the interstitial and overlying water, implying an increase in the bioavailability of the test compound. Strong positive relationships were found between Chironomus densities and lindane concentrations in interstitial water. The presence of Chironomus also resulted in lower label recovery. Label recovery on sediment particles ranged from 49 to 61% of initially added label in microcosms without Chironomus, from 41 to 56% at low larval densities, and from 15 to 50% at high larval densities. These results show that large discrepancies may exist between nominal test concentrations (from test compound additions) and true exposure concentrations even under standardized test conditions, which can introduce a relatively large error term in risk assessments. Calculations show that volatilization may be a quantitatively important sink for test compounds.
Statistics of Experiments on Cluster Formation and Transport in a Gravitational Field
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1993-01-01
Metastable state relaxation in a gravitational field is investigated in the case of non-critical binary solutions. A relaxation description is presented in terms of the time-dependent Ginzburg-Landau formalism for a non-conserved order parameter. A new ansatz for solution of the corresponding partial nonlinear stochastic differential equation is discussed. It is proved that, for the supersaturated solution under consideration, the metastable state relaxation in a gravitational field leads to formation of solute concentration gradients due to the sedimentation of subcritical solute clusters. The pure discussion of the possible methods to compare theoretical results and experimental data related to solute sedimentation in a gravitational field is presented. It is shown that in order to describe these experiments it is necessary to deal both with the value of the solute concentration gradient and with its formation rate. The stochastic nature of the sedimentation process is shown.
NASA Astrophysics Data System (ADS)
Heijenk, R.; Geertsema, M.; Miller, B.; de Jong, S. M.
2015-12-01
Spreads and other low gradient landslides are common in glacial lake sediments in north eastern British Columbia. Both pre and post glacial lake sediments, largely derived from shale bedrock are susceptible to low-gradient landslides. Bank erosion by rivers and streams and high pore pressures, have contributed to the landslides. We used LiDAR for mapping the extent of the glaciolacustrine sediments and map and characterise landslides in the Pine River valley, near Chetwynd, British Columbia. We included metrics such as travel angle, length, area, and elevation to distinguish rotational and translational landslides. We mapped 45 landslides in the Pine River valley distinguishing between rotational and translational landslides. The rotational landslides commonly have a smaller area and smaller travel length than translational landslides. Most rotational slides involved overlying alluvial fans, while most translational slides involved terraces.
Skibinski, David O. F.
2018-01-01
Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment. PMID:29702650
Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density
NASA Astrophysics Data System (ADS)
Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing
2017-12-01
Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.
NASA Astrophysics Data System (ADS)
Benda, L. E.
2009-12-01
Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and sediment storage are described by their probability densities. There are a number of general principles (hypotheses) that stem from this conceptual and numerical framework that may inform the science of erosion and sedimentation in river basins. Rainstorms and other perturbations, characterized by probability distributions of event frequency and magnitude, stochastically drive sediment influx to channel networks. The frequency-magnitude distribution of sediment supply that is typically skewed reflects strong interactions among climate, topography, vegetation, and geotechnical controls that vary between regions; the distribution varies systematically with basin area and the spatial pattern of erosion sources. Probability densities of sediment flux and storage evolve from more to less skewed forms downstream in river networks due to the convolution of the population of sediment sources in a watershed that should vary with climate, network patterns, topography, spatial scale, and degree of erosion asynchrony. The sediment flux and storage distributions are also transformed downstream due to diffusion, storage, interference, and attrition. In stochastic systems, the characteristically pulsed sediment supply and transport can create translational or stationary-diffusive valley and channel depositional landforms, the geometries of which are governed by sediment flux-network interactions. Episodic releases of sediment to the network can also drive a system memory reflected in a Hurst Effect in sediment yields and thus in sedimentological records. Similarly, discreet events of punctuated erosion on hillslopes can lead to altered surface and subsurface properties of a population of erosion source areas that can echo through time and affect subsequent erosion and sediment flux rates. Spatial patterns of probability densities have implications for the frequency and magnitude of sediment transport and storage and thus for the formation of alluvial and colluvial landforms throughout watersheds. For instance, the combination and interference of probability densities of sediment flux at confluences creates patterns of riverine heterogeneity, including standing waves of sediment with associated age distributions of deposits that can vary from younger to older depending on network geometry and position. Although the watershed world of probability densities is rarified and typically confined to research endeavors, it has real world implications for the day-to-day work on hillslopes and in fluvial systems, including measuring erosion, sediment transport, mapping channel morphology and aquatic habitats, interpreting deposit stratigraphy, conducting channel restoration, and applying environmental regulations. A question for the geomorphology community is whether the stochastic framework is useful for advancing our understanding of erosion and sedimentation and whether it should stimulate research to further develop, refine and test these and other principles. For example, a changing climate should lead to shifts in probability densities of erosion, sediment flux, storage, and associated habitats and thus provide a useful index of climate change in earth science forecast models.
Lord, J. M.; Kagawa, T.; Beevers, Harry
1972-01-01
The occurrence and subcellular distribution of enzymes of the cytidine diphosphate choline pathway of lecithin synthesis have been examined. Choline kinase (EC 2.7.1.32) was completely soluble, while phosphorylcholine-cytidyl transferase (EC 2.7.7.15) and phosphorylcholine-glyceride transferase (EC 2.7.8.2) were associated with particulate fractions. Although components sedimenting at 10,000 to 100,000 × g contained both enzymes, phosphorylcholine-cytidyl transferase and particularly phosphorylcholine-glyceride transferase were present in the 10,000 × g pellet, which contained the major organelles, mitochondria, and glyoxysomes. When the crude homogenate was centrifuged on a sucrose density gradient, four major bands of particulate protein were recovered. A band at density 1.24 g/cm3 contained the glyoxysomes and was devoid of phosphorylcholine-cytidyl transferase and phosphorylcholine-glyceride transferase activity. Enzyme activity was barely detectable in the mitochondria, at density 1.18 g/cm2. Phosphorylcholine-glyceride transferase was found almost exclusively in a sharp band at density 1.12 g/cm3, and phosphorylcholinecytidyl transferase was found in the uppermost band at density 1.08 g/cm3. Thus, for the synthesis of lecithin in their membranes, the glyoxysomes and mitochondria depend on enzymes elsewhere in the cell; the final two steps in lecithin formation occur, apparently exclusively, in separate particulate cell components. Images PMID:4506764
Johnson, C. N.; Flowers, A. R.; Noriea, N. F.; Zimmerman, A. M.; Bowers, J. C.; DePaola, A.; Grimes, D. J.
2010-01-01
Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities. PMID:20817802
Gravitational dynamics of biosystems - Some speculations
NASA Technical Reports Server (NTRS)
Kessler, J. O.; Bier, M.
1976-01-01
The response of organisms to gravity is generally discussed in terms of hypotheses involving sedimentation and other static effects. This paper considers several complex, inhomogeneous fluid-containing systems that are intended to model some possible dynamic effects of gravity on biosystems. It is shown that the presence of gravity may result in modified long range transport, concentration oscillations, and broken symmetries. The magnitude of density-gradient-driven convective transport times, and their ratios to diffusive transport times, are calculated for cell dimensions of six different plant varieties. The results indicate that further investigation of gravitational convection effects may be realistic in some cases and is definitely not in others. The results of this paper should aid in the planning of 'zero-gravity' experiments concerning plant geotropism and bio-materials processing.
Preparative electrophoresis of living lymphocytes
NASA Technical Reports Server (NTRS)
Vanoss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.
1974-01-01
Vertical liquid columns containing low molecular weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of 0 gravity conditions. Another method that has been tested at 1 G, is the electrophoresis of lymphocytes in a upward direction in vertical columns. By both methods up to 10 to the 7th power lymphocytes can be separated at one time in a 30 cm glass column of 8 mm inside diameter, at 12 v/cm, in 2 hours. Due to convection and sedimentation problems, the separation at 1 G is less than ideal, but it is expected that at 0 gravity electrophoresis will prove to be a uniquely powerful cell separation tool. The technical feasibility of electrophoresing inert particles at 0 G has been proven earlier, during the flight of Apollo 16.
Leak-off mechanism and pressure prediction for shallow sediments in deepwater drilling
NASA Astrophysics Data System (ADS)
Tan, Qiang; Deng, Jingen; Sun, Jin; Liu, Wei; Yu, Baohua
2018-02-01
Deepwater sediments are prone to loss circulation in drilling due to a low overburden gradient. How to predict the magnitude of leak-off pressure more accurately is an important issue in the protection of drilling safety and the reduction of drilling cost in deep water. Starting from the mechanical properties of a shallow formation and based on the basic theory of rock-soil mechanics, the stress distribution around a borehole was analyzed. It was found that the rock or soil on a borehole is in the plastic yield state before the effective tensile stress is generated, and the effective tangential and vertical stresses increase as the drilling fluid density increases; thus, tensile failure will not occur on the borehole wall. Based on the results of stress calculation, two mechanisms and leak-off pressure prediction models for shallow sediments in deepwater drilling were put forward, and the calculated values of these models were compared with the measured value of shallow leak-off pressure in actual drilling. The results show that the MHPS (minimum horizontal principle stress) model and the FIF (fracturing in formation) model can predict the lower and upper limits of leak-off pressure. The PLC (permeable lost circulation) model can comprehensively analyze the factors influencing permeable leakage and provide a theoretical basis for leak-off prevention and plugging in deepwater drilling.
Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores
NASA Astrophysics Data System (ADS)
Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.
2015-12-01
Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture where, and to what extent, the burrow tubes deviate from the sediment matrix. Future research will correlate changes in variance due to bioturbation to other features indicating ocean temperatures and nutrient flux, such as foraminifera counts and oxygen isotope data.
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Banerdt, W. B.
2000-01-01
We conclude from MOC and MOLA data that the northern plains of Mars were infilled by a sediment-rich, mud ocean. Evidence for subsidence within the north polar basin and reversed channel-floor gradients are consistent with tectonic deformation due to the sediment load.
We present results from a monthly sediment and water quality survey of nine stations along a transect in the Pensacola Bay estuary spanning the salinity gradient from Escambia River to the Gulf of Mexico. We evaluated Benthic Habitat Quality (Nilsson and Rosenberg 1997) derived f...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertetti, F.P.; Birnbaum, S.J.
1992-01-01
Laboratory experiments were employed to determine the effects of microbial growth upon the hydraulic conductivity (K) of unconsolidated sediments at Kelly Air Force Base, Texas. Indigenous microflora were isolated from sediment samples collected at sites contaminated with toxic organic compounds (e.g. dichlorobenzene) by plating on concentrated and dilute media. Plexiglas columns were packed with silica beads or Kelly AFB sediment and used to simulate ground water flow conditions. Grain sizes were selected to yield realistic K values (2.0 [times] 10[sup [minus]1] to 8.0 [times] 10[sup [minus]3] cm/sec) defined by field data from the contaminated sites. Both individual and mixed microbialmore » colonies, selected based on morphological characteristics individual and mixed microbial colonies, selected based on morphological characteristics deemed favorable for porosity obstruction, were injected into sterile, saturated columns. Growth was stimulated by adding sterile liquid nutrient media. Media flow rates were based upon field derived hydraulic conductivity values and water table gradients. Flow rates were controlled using a peristaltic pump. Growth of the microorganisms produced biomass which reduced the column hydraulic conductivity by up to 90% in 11 days. Reduction in K was accomplished via clogging of pore throats by cell attachment and accumulation on bead surfaces, and extracellular biofilm development. Sediment packed columns showed reduction in K values similar to that of bead packed columns of equivalent grain size. Porosity obstruction and corresponding reduction in K persisted in the columns even when subjected to hydraulic gradients significantly exceeding gradients measured in the field thereby demonstrating the robust nature of biological barrier to flow.« less
Waltz, Ronald E.; Bass, Eric M.; Heidbrink, William W.; ...
2015-10-30
Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code, used tomore » validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. Lastly, these results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.« less
NASA Astrophysics Data System (ADS)
Ojha, Maheswar; Maiti, Saumen
2016-03-01
A novel approach based on the concept of Bayesian neural network (BNN) has been implemented for classifying sediment boundaries using downhole log data obtained during Integrated Ocean Drilling Program (IODP) Expedition 323 in the Bering Sea slope region. The Bayesian framework in conjunction with Markov Chain Monte Carlo (MCMC)/hybrid Monte Carlo (HMC) learning paradigm has been applied to constrain the lithology boundaries using density, density porosity, gamma ray, sonic P-wave velocity and electrical resistivity at the Hole U1344A. We have demonstrated the effectiveness of our supervised classification methodology by comparing our findings with a conventional neural network and a Bayesian neural network optimized by scaled conjugate gradient method (SCG), and tested the robustness of the algorithm in the presence of red noise in the data. The Bayesian results based on the HMC algorithm (BNN.HMC) resolve detailed finer structures at certain depths in addition to main lithology such as silty clay, diatom clayey silt and sandy silt. Our method also recovers the lithology information from a depth ranging between 615 and 655 m Wireline log Matched depth below Sea Floor of no core recovery zone. Our analyses demonstrate that the BNN based approach renders robust means for the classification of complex lithology successions at the Hole U1344A, which could be very useful for other studies and understanding the oceanic crustal inhomogeneity and structural discontinuities.
Redox Control and Hydrogen Production in Sediment Caps Using Carbon Cloth Electrodes
Sun, Mei; Yan, Fei; Zhang, Ruiling; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.
2010-01-01
Sediment caps that degrade contaminants can improve their ability to contain contaminants relative to sand and sorbent-amended caps, but few methods to enhance contaminant degradation in sediment caps are available. The objective of this study was to determine if, carbon electrodes emplaced within a sediment cap at poised potential could create a redox gradient and provide electron donor for the potential degradation of contaminants. In a simulated sediment cap overlying sediment from the Anacostia River (Washington, DC), electrochemically induced redox gradients were developed within 3 days and maintained over the period of the test (~100 days). Hydrogen and oxygen were produced by water electrolysis at the electrode surfaces and may serve as electron donor and acceptor for contaminant degradation. Electrochemical and geochemical factors that may influence hydrogen production were studied. Hydrogen production displayed zero order kinetics with ~75% coulombic efficiency and rates were proportional to the applied potential between 2.5V to 5V and not greatly affected by pH. Hydrogen production was promoted by increasing ionic strength and in the presence of natural organic matter. Graphite electrode-stimulated degradation of tetrachlorobenzene in a batch reactor was dependent on applied voltage and production of hydrogen to a concentration above the threshold for biological dechlorination. These findings suggest that electrochemical reactive capping can potentially be used to create “reactive” sediments caps capable of promoting chemical or biological transformations of contaminants within the cap. PMID:20879761
Structure and composition of a watershed-scale sediment information network
Osterkamp, W.R.; Gray, J.R.; Laronne, J.B.; Martin, J.R.
2007-01-01
A 'Watershed-Scale Sediment Information Network' (WaSSIN), designed to complement UNESCO's International Sedimentation Initiative, was endorsed as an initial project by the World Association for Sedimentation and Erosion Research. WaSSIN is to address global fluvial-sediment information needs through a network approach based on consistent protocols for the collection, analysis, and storage of fluvial-sediment and ancillary information at smaller spatial scales than those of the International Sedimentation Initiative. As a second step of implementation, it is proposed herein that the WaSSIN have a general structure of two components, (1) monitoring and data acquisition and (2) research. Monitoring is to be conducted in small watersheds, each of which has an established database for discharge of water and suspended sediment and possibly for bed load, bed material, and bed topography. Ideally, documented protocols have been used for collecting, analyzing, storing, and sharing the derivative data. The research component is to continue the collection and interpretation of data, to compare those data among candidate watersheds, and to determine gradients of fluxes and processes among the selected watersheds. To define gradients and evaluate processes, the initial watersheds will have several common attributes. Watersheds of the first group will be: (1) six to ten in number, (2) less than 1000 km2 in area, (3) generally in mid-latitudes of continents, and (4) of semiarid climate. Potential candidate watersheds presently include the Weany Creek Basin, northeastern Australia, the Zhi Fanggou catchment, northern China, the Eshtemoa Watershed, southern Israel, the Metsemotlhaba River Basin, Botswana, the Aiuaba Experimental Basin, Brazil, and the Walnut Gulch Experimental Watershed, southwestern United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.
1995-12-31
Time-dependent responses to sediment-associated copper were studies at hierarchical levels of biological organization along an extreme concentration gradient (40 to 40,000 mg/kg total Cu). Laboratory and in situ estimates of molecular to tissue-level responses (Na/K-ATPase activity, DNA content, histopathology) were monitored in Corbicula fluminea (Asiatic clam), and compared with laboratory and field based survival of Corbicula and Elimia teres (an indigenous Gastropoda). Mollusc survival was, in turn, compared with effects on macrobenthic community composition along the stream/[Cu] gradient. Relationships between selected sediment characteristics and the bioavailability and toxicity of sediment associated copper were also investigated. Sediment-associated copper depressed Na/K-ATPase activitymore » and led to histopathological damage of renal and gill epithelia (vacuolization, degeneration), indicating that impaired ion regulation was an important mechanism of toxicity. Concurrent reductions in DNA content were believed to be secondary effects due to cell death, not an indication of genotoxicity. Sublethal responses were significantly correlated with survival in both species; however, while survival in situ was indicative of differences in community structure, laboratory-based survival was not. Copper levels in tissues were indicative of exposure, but were not significantly correlated with adverse effects. Copper levels in sediments, interstitial water, and overlying water varied independently of sediment characteristics except pH. Cu/AVS ratios were predictive of Corbicula and Elimia survival, but were not significantly related to differences in community structure. Instead, macrobenthic community structure was influenced by other sediment factors (grain size, Eh, pH).« less
NASA Astrophysics Data System (ADS)
Georgiou, Ioannis Y.; Schindler, Jennifer K.
2009-12-01
Louisiana barrier islands, such as the chain surrounding the southeast region of the state, are experiencing rapid loss of land area, shoreline erosion, and landward migration due to transgression and in-place drowning, and the landfall of several major hurricanes in the last decade. Observations of migration rates and overall impacts to these barrier islands are poorly understood since they do not respond in a traditional way, such as barrier rollover. This paper aims to verify how wave energy and potential longshore sediment transport trends have influenced the recent evolution of the Chandeleur Islands, by direct comparison with recent observations of migration and erosion trends. The Chandeleur Islands are characterized by a bidirectional transport system, with material moving from the central arc to the flanks. The longshore sediment transport along the barrier islands was calculated after propagation and transformation of waves to breaking (generated using observed winds), and through the use of a common longshore sediment transport formula. Seasonal variations in wind climate produced changes in the transport trends and gradients that agree with migration and rotation patterns observed for this barrier island system. Results suggest that wind dominance produces seasonal oscillations that cause an imbalance in the resulting transport gradients that over time are responsible for higher rates of transport in the northward direction. These results and data from other works verify the evolutionary model previously suggested, and qualitatively confirm the recent observations in asymmetric shoreline erosion.
X-ray tomography characterization of density gradient aerogel in laser targets
NASA Astrophysics Data System (ADS)
Borisenko, L.; Orekhov, A.; Musgrave, C.; Nazarov, W.; Merkuliev, Yu; Borisenko, N.
2016-04-01
The low-density solid laser target characterization studies begun with the SkyScan 1074 computer microtomograph (CMT) [1, 2] are now continued with higher resolution of SkyScan 1174. The research is particularly focused on the possibility to obtain, control and measure precisely the gradient density polymers for laser target production. Repeatability of the samples and possibility to obtain stable gradients are analysed. The measurements were performed on the mm-scale divinyl benzene (DVB) rods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutzler, F.W.; Painter, G.S.
1991-03-15
The rapid variation of charge and spin densities in atoms and molecules provides a severe test for local-density-functional theory and for the use of gradient corrections. In the study reported in this paper, we use the Langreth, Mehl, and Hu (LMH) functional and the generalized gradient approximation (GGA) of Perdew and Yue to calculate {ital s}-{ital d} transition energies, 4{ital s} ionization energies, and 3{ital d} ionization energies for the 3{ital d} transition-metal atoms. These calculations are compared with results from the local-density functional of Vosko, Wilk, and Nusair. By comparison with experimental energies, we find that the gradient functionalsmore » are only marginally more successful than the local-density approximation in calculating energy differences between states in transition-metal atoms. The GGA approximation is somewhat better than the LMH functional for most of the atoms studied, although there are several exceptions.« less
NASA Astrophysics Data System (ADS)
Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi
2018-06-01
A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.
Baez-Cazull, S.; McGuire, J.T.; Cozzarelli, I.M.; Raymond, A.; Welsh, L.
2007-01-01
Steep biogeochemical gradients were measured at mixing interfaces in a wetland-aquifer system impacted by landfill leachate in Norman, Oklahoma. The system lies within a reworked alluvial plain and is characterized by layered low hydraulic conductivity wetland sediments interbedded with sandy aquifer material. Using cm-scale passive diffusion samplers, "peepers", water samples were collected in a depth profile to span interfaces between surface water and a sequence of deeper sedimentary layers. Geochemical indicators including electron acceptors, low-molecular-weight organic acids, base cations, and NH4+ were analyzed by capillary electrophoresis (CE) and field techniques to maximize the small sample volumes available from the centimeter-scale peepers. Steep concentration gradients of biogeochemical indicators were observed at various interfaces including those created at sedimentary boundaries and boundaries created by heterogeneities in organic C and available electron acceptors. At the sediment-water interface, chemical profiles with depth suggest that SO42 - and Fe reduction dominate driven by inputs of organic C from the wetland and availability of electron acceptors. Deeper in the sediments (not associated with a lithologic boundary), a steep gradient of organic acids (acetate maximum 8.8 mM) and NH4+ (maximum 36 mM) is observed due to a localized source of organic matter coupled with the lack of electron acceptor inputs. These findings highlight the importance of quantifying the redox reactions occurring in small interface zones and assessing their role on biogeochemical cycling at the system scale. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cooper, Timothy F.; Ulstrup, Karin E.
2009-06-01
Spatial variation in the photophysiology of symbiotic dinoflagellates (zooxanthellae) of the scleractinian coral Pocillopora damicornis was examined along an environmental gradient in the Whitsunday Islands (Great Barrier Reef) at two depths (3 m and 6 m). Chlorophyll a fluorescence of photosystem II (PSII) and PAR-absorptivity measurements were conducted using an Imaging-PAM (pulse-amplitude-modulation) fluorometer. Most photophysiological parameters correlated with changes in environmental conditions quantified by differences in water quality along the gradient. For example, maximum quantum yield ( Fv/ Fm) increased and PAR-absorptivity decreased as water quality improved along the gradient from nearshore reefs (low irradiance, elevated nutrients and sediments) to outer islands (high irradiance, low nutrients and sediments). For apparent photosynthetic rate (PS max) and minimum saturating irradiance ( Ek), the direction of change differed depending on sampling depth, suggesting that different mechanisms of photo-acclimatisation operated between shallow and deep corals. Deep corals conformed to typical patterns of light/shade acclimatisation whereas shallow corals exhibited reduced PS max and Ek with improving water quality coinciding with greater heat dissipation (NPQ 241). Furthermore, deep corals on nearshore reefs exhibited elevated Q241 in comparison to outer islands possibly due to effects of sedimentation and/or pollutants rather than irradiance. These results highlight the importance of mesoscale sampling to obtain useful estimates of the variability of photophysiological parameters, particularly if such measures are to be used as bioindicators of the condition of coral reefs.
NASA Astrophysics Data System (ADS)
Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.
2017-12-01
We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.
Effect of composition gradient on magnetothermal instability modified by shear and rotation
NASA Astrophysics Data System (ADS)
Gupta, Himanshu; Chaudhuri, Anya; Sadhukhan, Shubhadeep; Chakraborty, Sagar
2018-02-01
We model the intracluster medium as a weakly collisional plasma that is a binary mixture of the hydrogen and the helium ions, along with free electrons. When, owing to the helium sedimentation, the gradient of the mean-molecular weight (or equivalently, composition or helium ions' concentration) of the plasma is not negligible, it can have appreciable influence on the stability criteria of the thermal convective instabilities, e.g. the heat-flux-buoyancy instability and the magnetothermal instability (MTI). These instabilities are consequences of the anisotropic heat conduction occurring preferentially along the magnetic field lines. In this paper, without ignoring the magnetic tension, we first present the mathematical criterion for the onset of composition gradient modified MTI. Subsequently, we relax the commonly adopted equilibrium state in which the plasma is at rest, and assume that the plasma is in a sheared state which may be due to differential rotation. We discuss how the concentration gradient affects the coupling between the Kelvin-Helmholtz instability and the MTI in rendering the plasma unstable or stable. We derive exact stability criterion by working with the sharp boundary case in which the physical variables - temperature, mean-molecular weight, density and magnetic field - change discontinuously from one constant value to another on crossing the boundary. Finally, we perform the linear stability analysis for the case of the differentially rotating plasma that is thermally and compositionally stratified as well. By assuming axisymmetric perturbations, we find the corresponding dispersion relation and the explicit mathematical expression determining the onset of the modified MTI.
NASA Astrophysics Data System (ADS)
Oxmann, J. F.; Schwendenmann, L.
2015-02-01
Mechanisms governing phosphorus (P) speciation in coastal sediments remain largely unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation across salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a low P site. Octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite, CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Gradients in sediment pH strongly affected P fractions across ecosystems and independent of the site-specific total P status. We found a pronounced switch from adsorbed Al/Fe-P to mineral Ca-P with decreasing acidity from land to sea. This switch occurred at near-neutral sediment pH and has possibly been enhanced by redox-driven phosphate desorption from iron oxyhydroxides. The seaward decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. Correspondingly, two location-dependent accumulation mechanisms occurred at the high P site due to the switch, leading to elevated Al/Fe-P at pH < 6.6 (landward; adsorption) and elevated Ca-P at pH > 6.6 (seaward; precipitation). Enhanced Ca-P precipitation by increased P loads was also evident from disproportional accumulation of metastable Ca-P (Ca-Pmeta) at the high P site. Here, sediments contained on average 6-fold higher Ca-Pmeta levels compared with the low P site, although these sediments contained only 2-fold more total Ca-P than the low P sediments. Phosphorus species distributions indicated that these elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP in nearshore areas. Formation of CFAP as well as its precursor, OCP, results in P retention in coastal zones and can thus lead to substantial inorganic P accumulation in response to anthropogenic P input.
Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain
NASA Astrophysics Data System (ADS)
Estrany, Joan; Garcia, Celso; Batalla, Ramon J.
2009-05-01
Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its 'flashy' regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km 2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall, creating a minimum of wet conditions in the catchment to activate hydrological pathways and deliver sediment to the drainage network. The BFI is also related to sediment delivery processes, as the loads are higher with lower BFI, corroborating the fact that most sediment movement is caused by stormflow and its related factors. Overall, suspended sediment yields were very low (i.e., < 1 t km - 2 yr - 1 ) at all measuring sites. Such values are the consequence of the limited sediment delivery attributable to soil conservation practices, low surface runoff coefficients and specific geomorphic features of groundwater-dominated rivers, such as low drainage density, low gradient, steep valley walls and flat valley floors.
Density gradients at hydrogel interfaces for enhanced cell penetration.
Simona, B R; Hirt, L; Demkó, L; Zambelli, T; Vörös, J; Ehrbar, M; Milleret, V
2015-04-01
We report that stiffness gradients facilitate infiltration of cells through otherwise cell-impermeable hydrogel interfaces. By enabling the separation of hydrogel manufacturing and cell seeding, and by improving cell colonization of additively manufactured hydrogel elements, interfacial density gradients present a promising strategy to progress in the creation of 3D tissue models.
Webster, Gordon; O'Sullivan, Louise A; Meng, Yiyu; Williams, Angharad S; Sass, Andrea M; Watkins, Andrew J; Parkes, R John; Weightman, Andrew J
2015-02-01
Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2-8 × 10(7) 16S rRNA gene copies cm(-3)) than the high-salinity marine sites from BR and AR (2 × 10(4)-2 × 10(7) and 4 × 10(6)-2 × 10(7) 16S rRNA gene copies cm(-3), respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the 'Bathyarchaeota' (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only 'marine' group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments. © The Author 2014. Published by Oxford University Press on behalf of Federation of European Microbiological Society.
Geremew, Addisie; Stiers, Iris; Sierens, Tim; Kefalew, Alemayehu; Triest, Ludwig
2018-01-01
Land degradation and soil erosion in the upper catchments of tropical lakes fringed by papyrus vegetation can result in a sediment load gradient from land to lakeward. Understanding the dynamics of clonal modules (ramets and genets) and growth strategies of plants on such a gradient in both space and time is critical for exploring a species adaptation and processes regulating population structure and differentiation. We assessed the spatial and temporal dynamics in clonal growth, diversity, and structure of an emergent macrophyte, Cyperus papyrus (papyrus), in response to two contrasting sedimentation regimes by combining morphological traits and genotype data using 20 microsatellite markers. A total of 636 ramets from six permanent plots (18 x 30 m) in three Ethiopian papyrus swamps, each with discrete sedimentation regimes (high vs. low) were sampled for two years. We found that ramets under the high sedimentation regime (HSR) were significantly clumped and denser than the sparse and spreading ramets under the low sedimentation regime (LSR). The HSR resulted in significantly different ramets with short culm height and girth diameter as compared to the LSR. These results indicated that C. papyrus ameliorates the effect of sedimentation by shifting clonal growth strategy from guerrilla (in LSR) to phalanx (in HSR). Clonal richness, size, dominance, and clonal subrange differed significantly between sediment regimes and studied time periods. Each swamp under HSR revealed a significantly high clonal richness (R = 0.80) as compared to the LSR (R = 0.48). Such discrepancy in clonal richness reflected the occurrence of initial and repeated seedling recruitment strategies as a response to different sedimentation regimes. Overall, our spatial and short-term temporal observations highlighted that HSR enhances clonal richness and decreases clonal subrange owing to repeated seedling recruitment and genets turnover.
Stiers, Iris; Sierens, Tim; Kefalew, Alemayehu; Triest, Ludwig
2018-01-01
Land degradation and soil erosion in the upper catchments of tropical lakes fringed by papyrus vegetation can result in a sediment load gradient from land to lakeward. Understanding the dynamics of clonal modules (ramets and genets) and growth strategies of plants on such a gradient in both space and time is critical for exploring a species adaptation and processes regulating population structure and differentiation. We assessed the spatial and temporal dynamics in clonal growth, diversity, and structure of an emergent macrophyte, Cyperus papyrus (papyrus), in response to two contrasting sedimentation regimes by combining morphological traits and genotype data using 20 microsatellite markers. A total of 636 ramets from six permanent plots (18 x 30 m) in three Ethiopian papyrus swamps, each with discrete sedimentation regimes (high vs. low) were sampled for two years. We found that ramets under the high sedimentation regime (HSR) were significantly clumped and denser than the sparse and spreading ramets under the low sedimentation regime (LSR). The HSR resulted in significantly different ramets with short culm height and girth diameter as compared to the LSR. These results indicated that C. papyrus ameliorates the effect of sedimentation by shifting clonal growth strategy from guerrilla (in LSR) to phalanx (in HSR). Clonal richness, size, dominance, and clonal subrange differed significantly between sediment regimes and studied time periods. Each swamp under HSR revealed a significantly high clonal richness (R = 0.80) as compared to the LSR (R = 0.48). Such discrepancy in clonal richness reflected the occurrence of initial and repeated seedling recruitment strategies as a response to different sedimentation regimes. Overall, our spatial and short-term temporal observations highlighted that HSR enhances clonal richness and decreases clonal subrange owing to repeated seedling recruitment and genets turnover. PMID:29338034
Jaiswal, Deepa; Pandey, Jitendra
2018-04-15
We studied the extracellular enzyme activity (EEA) in the riverbed sediment along a 518km gradient of the Ganga River receiving carbon and nutrient load from varied human sources. Also, we tested, together with substrate-driven stimulation, if the heavy metal accumulated in the sediment inhibits enzyme activities. Because pristine values are not available, we considered Dev Prayag, a least polluted site located 624km upstream to main study stretch, as a reference site. There were distinct increases in enzyme activities in the sediment along the study gradient from Dev Prayag, however, between-site differences were in concordance with sediment carbon(C), nitrogen (N) and phosphorus (P). Fluorescein diacetate hydrolysis (FDAase), β-glucosidase (Glu) and protease activities showed positive correlation with C, N and P while alkaline phosphatase was found negatively correlated with P. Enzyme activities were found negatively correlated with heavy metal, although ecological risk index (E R i ) varied with site and metal species. Dynamic fit curves showed significant positive correlation between heavy metal and microbial metabolic quotient (qCO 2 ) indicating a decrease in microbial activity in response to increasing heavy metal concentrations. This study forms the first report linking microbial enzyme activities to regional scale sediment heavy metal accumulation in the Ganga River, suggests that the microbial enzyme activities in the riverbed sediment were well associated with the proportion of C, N and P and appeared to be a sensitive indicator of C, N and P accumulation in the river. Heavy metal accumulated in the sediment inhibits enzyme activities, although C rich sediment showed relatively low toxicity due probably to reduced bioavailability of the metal. The study has relevance from ecotoxicological as well as from biomonitoring perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.
Belnap, J.; Reynolds, R.L.; Reheis, M.C.; Phillips, S.L.; Urban, F.E.; Goldstein, H.L.
2009-01-01
Large sediment fluxes can have significant impacts on ecosystems. We measured incoming and outgoing sediment across a gradient of soil disturbance (livestock grazing, plowing) and annual plant invasion for 9 years. Our sites included two currently ungrazed sites: one never grazed by livestock and dominated by perennial grasses/well-developed biocrusts and one not grazed since 1974 and dominated by annual weeds with little biocrusts. We used two currently grazed sites: one dominated by annual weeds and the other dominated by perennial plants, both with little biocrusts. Precipitation was highly variable, with years of average, above-average, and extremely low precipitation. During years with average and above-average precipitation, the disturbed sites consistently produced 2.8 times more sediment than the currently undisturbed sites. The never grazed site always produced the least sediment of all the sites. During the drought years, we observed a 5600-fold increase in sediment production from the most disturbed site (dominated by annual grasses, plowed about 50 years previously and currently grazed by livestock) relative to the never grazed site dominated by perennial grasses and well-developed biocrusts, indicating a non-linear, synergistic response to increasing disturbance types and levels. Comparing sediment losses among the sites, biocrusts were most important in predicting site stability, followed by perennial plant cover. Incoming sediment was similar among the sites, and while inputs were up to 9-fold higher at the most heavily disturbed site during drought years compared to average years, the change during the drought conditions was small relative to the large change seen in the sediment outputs. ?? 2009 Elsevier B.V. All rights reserved.
Devices, systems, and methods for conducting sandwich assays using sedimentation
Schaff, Ulrich Y; Sommer, Gregory J; Singh, Anup K; Hatch, Anson V
2015-02-03
Embodiments of the present invention are directed toward devices, systems, and method for conducting sandwich assays using sedimentation. In one example, a method includes generating complexes on a plurality of beads in a fluid sample, individual ones of the complexes comprising a capture agent, a target analyte, and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
Permeability structure and its influence on microbial activity at off-Shimokita basin, Japan
NASA Astrophysics Data System (ADS)
Tanikawa, W.; Yamada, Y.; Sanada, Y.; Kubo, Y.; Inagaki, F.
2016-12-01
The microbial populations and the limit of microbial life are probably limited by chemical, physical, and geological conditions, such as temperature, pore water chemistry, pH, and water activity; however, the key parameters affecting growth in deep subseafloor sediments remain unclarified (Hinrichs and Inagaki 2012). IODP expedition 337 was conducted near a continental margin basin off Shimokita Peninsula, Japan to investigate the microbial activity under deep marine coalbed sediments down to 2500 mbsf. Inagaki et al. (2015) discovered that microbial abundance decreased markedly with depth (the lowest cell density of <1 cell/cm3 was recorded below 2000 mbsf), and that the coal bed layers had relatively higher cell densities. In this study, permeability was measured on core samples from IODP Expedition 337 and Expedition CK06-06 in the D/V Chikyu shakedown cruise. Permeability was measured at in-situ effective pressure condition. Permeability was calculated by the steady state flow method by keeping differential pore pressure from 0.1 to 0.8 MPa.Our results show that the permeability for core samples decreases with depth from 10-16 m2 on the seafloor to 10-20 m2 at the bottom of hole. However, permeability is highly scattered within the coal bed unit (1900 to 2000 mbsf). Permeabilities for sandstone and coal is higher than those for siltstone and shale, therefore the scatter of the permeabilities at the same unit is due to the high variation of lithology. The highest permeability was observed in coal samples and this is probably due to formation of micro cracks (cleats). Permeability estimated from the NMR logging using the empirical parameters is around two orders of magnitude higher than permeability of core samples, even though the relative permeability variation at vertical direction is quite similar between core and logging data.The higher cell density is observed in the relatively permeable formation. On the other hand, the correlation between cell density, water activity, and porosity is not clear. On the assumption that pressure gradient is constant through the depth, flow rate can be proportional to permeability of sediments. Flow rate probably restricts the availability of energy and nutrient for microorganism, therefore permeability might have influenced on the microbial activity in the coalbed basin.
Geomorphic response of the Sandy River, Oregon, to removal of Marmot Dam
Major, Jon J.; O'Connor, Jim E.; Podolak, Charles J.; Keith, Mackenzie K.; Grant, Gordon E.; Spicer, Kurt R.; Pittman, Smokey; Bragg, Heather M.; Wallick, J. Rose; Tanner, Dwight Q.; Rhode, Abagail; Wilcock, Peter R.
2012-01-01
The October 2007 breaching of a temporary cofferdam constructed during removal of the 15-meter (m)-tall Marmot Dam on the Sandy River, Oregon, triggered a rapid sequence of fluvial responses as ~730,000 cubic meters (m3) of sand and gravel filling the former reservoir became available to a high-gradient river. Using direct measurements of sediment transport, photogrammetry, airborne light detection and ranging (lidar) surveys, and, between transport events, repeat ground surveys of the reservoir reach and channel downstream, we monitored the erosion, transport, and deposition of this sediment in the hours, days, and months following breaching of the cofferdam. Rapid erosion of reservoir sediment led to exceptional suspended-sediment and bedload-sediment transport rates near the dam site, as well as to elevated transport rates at downstream measurement sites in the weeks and months after breaching. Measurements of sediment transport 0.4 kilometers (km) downstream of the dam site during and following breaching show a spike in the transport of fine suspended sediment within minutes after breaching, followed by high rates of suspended-load and bedload transport of sand. Significant transport of gravel bedload past the measurement site did not begin until 18 to 20 hours after breaching. For at least 7 months after breaching, bedload transport rates just below the dam site during high flows remained as much as 10 times above rates measured upstream of the dam site and farther downstream. The elevated sediment load was derived from eroded reservoir sediment, which began eroding when a meters-tall knickpoint migrated about 200 m upstream in the first hour after breaching. Rapid knickpoint migration triggered vertical incision and bank collapse in unconsolidated sand and gravel, leading to rapid channel widening. Over the following days and months, the knickpoint migrated upstream more slowly, simultaneously decreasing in height and becoming less distinct. Within 7 months, the knickpoint had migrated 2 km upstream from the dam site and became a riffle-like feature approximately 1 m high and a few tens of meters long. Knickpoint migration, vertical incision, and lateral erosion evacuated about 15 percent of the initial reservoir volume (125,000 m3) within 60 hours following breaching, and by the end of the high flows in May 2008, about 50 percent of the volume had been evacuated. Large stormflows in November 2008 and January 2009 eroded another 6 percent of the original volume of impounded sediment. Little additional sediment eroded during the remainder of the second year following breaching. The rapid erosion of sediment by the modest flow that accompanied dam breaching was driven mainly by the steep hydraulic gradient associated with the abrupt change of base level and knickpoint formation and was aided by the unconsolidated and cohesionless character of the reservoir sediment. In the ensuing months, transport competence diminished as channel geometry evolved and the river gradient through the reservoir reach diminished. Changes in profile gradient in conjunction with channel coarsening and widening led to a rapid slowing of the rate of reservoir erosion. Sediment transport and deposition were strongly controlled by channel-gradient discontinuities and valley morphology downstream of the dam site. Those influences led to a strong divergence of sand and gravel transport and to deposition of a sediment wedge, as much as 4 m thick, that tapered to the preremoval channel bed 1.3 km downstream of the dam site. After 2 years, that deposit contained about 25 percent of the total volume of sediment eroded from the reservoir. The balance was distributed among pools within the Sandy River gorge, a narrow bedrock canyon extending 2 to 9 km downstream of the dam site, and along the channel farther downstream. A two-fraction sediment budget for the first year following breaching indicates that most of the gravel eroded from the reservoir reach was deposited within the sediment wedge and within the gorge, whereas eroded sand largely passed through the gorge and was broadly dispersed farther downstream. The sequence of transporting flows affected the specific trajectory of reservoir erosion and downstream sediment transport during the 2 years following breaching. However, because the overall erosion was largely a consequence of knickpoint retreat and channel widening, which in the 2 years after removal had affected most of the reservoir reach, it is unlikely that the specific sequence of flows significantly affected the overall outcome. Because the knickpoint had largely passed through the reservoir within 2 years, and the remaining reservoir sediment is mostly isolated high above armored or bedrock banks, it is unlikely that substantial additional sediment from the reservoir site will enter the system unless very large flows occur. Continued channel evolution downstream of the dam site is probable as deposits formed in the first 2 years are episodically mobilized. Below the Sandy River gorge, detection of effects related to release of reservoir sediment is challenging, especially in areas of sand deposition, because of the high background supply of sand in the river and substantial channel dynamism.
NASA Astrophysics Data System (ADS)
Oryan, B.; Malinverno, A.; Goldberg, D.; Fortin, W.
2017-12-01
Well GC955-H was drilled in the Green Canyon region under the Gulf of Mexico Gas Hydrates Joint Industry Project in 2009. Logging-while-drilling resistivity logs obtained at the well indicate that the saturation of gas hydrate varies between high and low values in an alternating fashion. This trend is observed from 180 to 360mbsf, depths that correspond to the Late Pleistocene. Similar gas hydrate saturation patterns have been observed in other Gulf of Mexico locations (Walker Ridge sites WR313-G and 313-H) in Late Pleistocene sediments. Our hypothesis is that these variations in saturation can be explained by sea level changes through time during glacial-interglacial cycles. A higher amount of organic matter is deposited and buried in the sediment column during glacial intervals when sea level is low. Microbes in the sediment column degrade organic matter and produce methane gas as a byproduct. Higher availability of organic matter in the sediment column can increase the concentration of methane in the sediment pore water and in turn lead to the formation of gas hydrate. We use a time-dependent numerical model of the formation of gas hydrate to test this hypothesis. The model predicts the volume and distribution of gas hydrates using mass balance equations. Model inputs include in situ porosity determined from bulk density logs; local thermal gradient estimated from the depth of the bottom of the gas hydrate stability zone in proximity to the well; and sedimentation rate determined using the biostratigraphy of an industry well in the vicinity of GC955-H. Initial results show a good match between gas hydrate saturation predicted by the model and resistivity logs obtained in the well. We anticipate that this correlation will establish whether a causal link exists between the saturation of gas hydrate in this reservoir and glacioeustatic sea level changes in the Late Pleistocene.
Merging Features and Optical-Near Infrared Color Gradients of Early-type Galaxies
NASA Astrophysics Data System (ADS)
Kim, Duho; Im, M.
2012-01-01
It has been suggested that merging plays an important role in the formation and the evolution of early-type galaxies (ETGs). Optical-NIR color gradients of ETGs in high density environments are found to be less steep than those of ETGs in low density environments, hinting frequent merger activities in ETGs in high density environments. In order to examine if the flat color gradients are the result of dry mergers, we studied the relations between merging features, color gradient, and environments of 198 low redshift ETGs selected from Sloan Digital Sky Survey (SDSS) Stripe82. Near Infrared (NIR) images are taken from UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Color(r-K) gradients of ETGs with tidal features are a little flatter than relaxed ETGs, but not significant. We found that massive (>1011.3 M⊙) relaxed ETGs have 2.5 times less scattered color gradients than less massive ETGs. The less scattered color gradients of massive ETGs could be evidence of dry merger processes in the evolution of massive ETGs. We found no relation between color gradients of ETGs and their environments.
Yeung, Edward S.; Chen, Guoying
1990-05-01
A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.
Small ecosystem engineers as important regulators of lake's sediment respiration.
NASA Astrophysics Data System (ADS)
Baranov, Victor; Lewandowski, Joerg; Krause, Stefan; Romeijn, Paul
2016-04-01
Although shallow lakes are covering only about 1.5% of the land surface of the Earth, they are responsible for sequestration of carbon amounts similar or even larger than those sequestered in all marine sediments. One of the most important drivers of the carbon sequestration in lakes is sediment respiration. Especially in shallow lakes, bioturbation, i.e. the biogenic reworking of the sediment matrix and the transport of fluids within the sediment, severely impacts on sediment respiration. Widespread freshwater bioturbators such as chironomid larvae (Diptera, Chironomidae) are building tubes in the sediment and actively pump water through their burrows (ventilation). In the present work we study how different organism densities and temperatures (5-30°C) impact on respiration rates. In a microcosm experiment the bioreactive resazurin/resorufin smart tracer system was applied for quantifying the impacts of different densities of Chironomidae (Diptera) larvae (0, 1000, 2000 larvae/m2) on sediment respiration. Tracer transformation rates (and sediment respiration) were correlated with larval densities with highest transformation rates occurring in microcosms with highest larval densities. Respiration differences between defaunated sediment and sediment with 1000 and 2000 larvae per m2 was insignificant at 5 °C, and was progressively increasing with rising temperatures. At 30 °C respiration rates of sediment with 2000 larvae per m2 was 4.8 times higher than those of defaunated sediment. We interpret this as an effect of temperature on larval metabolic and locomotory activity. Furthermore, bacterial communities are benefiting from the combination of the high water temperatures and bioirrigation as bacterial community are able to maintain high metabolic rates due to oxygen supplied by bioirrigation. In the context of global climate change that means that chironomid ecosystem engineering activity will have a profound and increasing impact on lake sediment respiration and carbon sequestration due to a warming world.
NASA Astrophysics Data System (ADS)
Guillon, Erwan; Menot, Lénaïck; Decker, Carole; Krylova, Elena; Olu, Karine
2017-02-01
The high biodiversity found at cold seeps, despite elevated concentrations of methane and hydrogen sulfide, is attributed to multiple sources of habitat heterogeneity. In addition to geological and geochemical processes, biogenic habitats formed by large symbiont-bearing taxa, such as bivalves and siboglinid tubeworms, or by microbial mats drive the biodiversity of small-sized fauna. However, because these habitat-forming species also depend on geochemical gradients, the respective influence of abiotic and biotic factors in structuring associated macrofaunal communities is often unresolved. The giant pockmark Regab located at 3200 m depth on the Congo margin is characterized by different fluid-flow regimes, providing a mosaic of the most common biogenic habitats encountered at seeps: microbial mats, mussel beds, and vesicomyid clam beds; the latter being distributed along a gradient of environmental conditions from the center to the periphery of the pockmark. Here, we examined the structure of macrofaunal communities in biogenic habitats formed in soft sediment to (1) determine the influence of the habitats on the associated macrofaunal communities (inter-habitat comparison), (2) describe how macrofaunal communities vary among vesicomyid clam beds (intra-habitat comparison) and (3) assess the inter-annual variation in vesicomyid beds based on repeated sampling at a three-year interval. The highest densities were found in the microbial mat communities in intermediate fluid-flow areas, but they had low diversity - also observed in the sediment close to mussel beds. In contrast, vesicomyid beds harbored the highest diversity. The vesicomyid beds did not show a homogeneous macrofaunal community across sampled areas; instead, density and composition of macrofauna varied according to the location of the beds inside the pockmark. The clam bed sampled in the most active, central part of the pockmark resembled bacterial mat communities by the presence of highly sulfide-tolerant species living at the sediment surface, along with vesicomyid juveniles. This similarity suggests a gradual change in community composition from mats to clam beds. Inter-annual comparisons of the different clam beds highlighted that the most active central site had a more variable community than its peripheral counterparts. Finally, a rapid shift in community structure, particularly in polychaete families, in experimentally reduced oxygen concentrations in the central part of Regab, suggests that high beta-diversity communities can withstand intense variation in geochemical conditions. These community dynamics are likely related to the diversity and to the plasticity of the vesicomyids themselves, because they can cope with high spatial and temporal environmental variability at a very local scale.
Chanton, J.P.; Martens, C.S.; Goldhaber, M.B.
1987-01-01
The sulfur isotopic composition of the sulfur fluxes occurring in the anoxic marine sediments of Cape Lookout Bight, N.C., U.S.A., was determined, and the result of isotopic mass balance was obtained via the differential diffusion model. Seasonal pore water sulfate ??34S measurements yielded a calculated sulfate input of 0.6%.. Sulfate transported into the sediments via diffusion appeared to be enriched in the lighter isotope because its concentration gradient was steeper, due to the increase in the measured isotopic composition of sulfate with depth. Similarly, the back diffusion of dissolved sulfide towards the sediment-water interface appeared enriched in the heavier isotope. The isotopic composition of this flux was calculated from measurements of the ??34S of dissolved sulfide and was determined to be 15.9%.. The isotopic composition of buried sulfide was determined to be -5.2%. and the detrital sulfur input was estimated to be -6.2%.. An isotope mass balance equation based upon the fluxes at the sediment-water interface successfully predicted the isotopic composition of the buried sulfur flux within 0.5%., thus confirming that isotopes diffuse in response to their individual concentration gradients. ?? 1987.
Effects of tidal current phase at the junction of two straits
Warner, J.; Schoellhamer, D.; Burau, J.; Schladow, G.
2002-01-01
Estuaries typically have a monotonic increase in salinity from freshwater at the head of the estuary to ocean water at the mouth, creating a consistent direction for the longitudinal baroclinic pressure gradient. However, Mare Island Strait in San Francisco Bay has a local salinity minimum created by the phasing of the currents at the junction of Mare Island and Carquinez Straits. The salinity minimum creates converging baroclinic pressure gradients in Mare Island Strait. Equipment was deployed at four stations in the straits for 6 months from September 1997 to March 1998 to measure tidal variability of velocity, conductivity, temperature, depth, and suspended sediment concentration. Analysis of the measured time series shows that on a tidal time scale in Mare Island Strait, the landward and seaward baroclinic pressure gradients in the local salinity minimum interact with the barotropic gradient, creating regions of enhanced shear in the water column during the flood and reduced shear during the ebb. On a tidally averaged time scale, baroclinic pressure gradients converge on the tidally averaged salinity minimum and drive a converging near-bed and diverging surface current circulation pattern, forming a "baroclinic convergence zone" in Mare Island Strait. Historically large sedimentation rates in this area are attributed to the convergence zone.
Product suitability of wood...determined by density gradients across growth rings
Robert M. Echols
1972-01-01
The suitability of wood for various uses can be determined by synthesizing single growth-ring density curves from accumulated means of wood density classes. Wood density gradients across growth rings were measured in large increment cores from 46-year-old ponderosa pines (Pinus ponderosa Laws.) by using X-rays. Of the 48 trees analyzed, 36 had been...
Subsurface temperatures and geothermal gradients on the North Slope, Alaska
Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.
1989-01-01
Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).
Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System
NASA Astrophysics Data System (ADS)
Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan
2018-04-01
This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.
Bommakanti, R K; Bokoch, G M; Tolley, J O; Schreiber, R E; Siemsen, D W; Klotz, K N; Jesaitis, A J
1992-04-15
Photoaffinity-labeled N-formyl chemotactic peptide receptors from human neutrophils solubilized in octyl glucoside exhibit two forms upon sucrose density gradient sedimentation, with apparent sedimentation coefficients of approximately 4 and 7 S. The 7 S form can be converted to the 4 S form by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) with an EC50 of approximately 20 nM, suggesting that the 7 S form may represent a physical complex of the receptor with endogenous G protein (Jesaitis, A. J., Tolley, J. O., Bokoch, G. M., and Allen, R. A. (1989) J. Cell Biol. 109, 2783-2790). To probe the nature of the 7 S form, we reconstituted the 7 S form from the 4 S form by adding purified G protein. The 4 S form, obtained by solubilizing GTP gamma S-treated neutrophil plasma membranes, was incubated with purified (greater than 95%) Gi protein from bovine brain (containing both Gi alpha 1 and Gi alpha 2) or with neutrophil G protein (Gn), and formation of the 7 S complex was analyzed on sucrose density gradients. The EC50 of 7 S complex formation induced by the two G proteins was 70 +/- 25 and 170 +/- 40 nM for Gn and Gi, respectively. No complexation was measurable when bovine transducin (Gt) was used up to 30 times the EC50 for Gn. The EC50 for Gi was the same for receptors, obtained from formyl peptide-stimulated or unstimulated cells. The addition of 10 microM GTP gamma S to the reconstituted 7 S complex caused a complete revision of the receptor to the 4 S form, and anti-Gi peptide antisera immunosedimented the 7 S form. ADP-ribosylation of Gi prevented formation of the 7 S form even at 20 times the concentration of unribosylated Gi normally used to attain 50% conversion to the 7 S form. These observations suggest that the 7 S species is a physical complex containing N-formyl chemotactic peptide receptor and G protein.
Estimating sediment yield in the southern Appalachians using WCS-SED
Paul Bolstad; Andrew Jenks; Mark Riedel; James M. Vose
2006-01-01
We measured and modeled sediment yield over two months on five watersheds in the southern Appalachian Mountains of North Carolina. These watersheds contained first and second-order streams and are primarily forested, but span the development gradient common in this region, with up to 10 percent in suburban and transitional development and up to 27% low-intensity...
Sediment cores were imaged using a local hospital CAT scanner. These image data were transferred to a personal computer at our laboratory using specially developed software. Previously, we reported an inverse correlation (r2 = 0.98, P<0.01) between the average sediment x-ray atte...
Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek
2016-10-30
A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
WinXSPRO, a channel cross section analyzer, User's Manual, Version 3.0
Thomas Hardy; Palavi Panja; Dean Mathias
2005-01-01
WinXSPRO is an interactive Windows software package designed to analyze stream channel cross section data for geometric, hydraulic, and sediment transport parameters. WinXSPRO was specifically developed for use in high-gradient streams (gradient > 0.01) and supports four alternative resistance equations for computing boundary roughness and resistance to flow. Cross...
NASA Astrophysics Data System (ADS)
Kinsman-Costello, L. E.; Dick, G.; Sheik, C.; Burton, G. A.; Sheldon, N. D.
2015-12-01
Submerged groundwater seeps in Lake Huron establish ecosystems with distinctive geochemical conditions. In the Middle Island Sinkhole (MIS), a 23-m deep seep, groundwater seepage establishes low O2 (< 4 mg L-1), high sulfate (6 mM) conditions, in which a purple cyanobacteria-dominated mat thrives. The mat is capable of anoxygenic photosynthesis, oxygenic photosynthesis, and chemosynthesis. Within the top 3 cm of the mat-water interface, hydrogen sulfide concentrations increase to 1-7 mM. Little is known about the structure and function of microbes within organic-rich, high-sulfide sediments beneath the mat. Using pore water and sediment geochemical characterization along with microbial community analysis, we elucidated relationships between microbial community structure and ecosystem function along vertical gradients. In sediment pore waters, biologically reactive solutes (SO42-, NH4+, PO43-, and CH4) displayed steep vertical gradients, reflecting biological and geochemical functioning. In contrast, more conservative ions (Ca+2, Mg+2, Na+, and Cl-), did not change significantly with depth in MIS sediments, indicating groundwater influence in the sediment profile. MIS sediments contained more organic matter than typical Lake Huron sediments, and were generally higher in nutrients, metals, and sulfur (acid volatile sulfide). Using the Illumina MiSeq platform we detected 14,127 unique operational taxonomic units across sediment and surface mat samples. Microbial community composition in the MIS was distinctly different from non-groundwater affected areas at similar depth nearby in Lake Huron (ANOSIM, R= 0.74, p=0.002). MIS sediment communities were more diverse that MIS surface mat communities and changed with depth into sediments. MIS sediment community composition was related to several geochemical variables, including organic matter and multiple indicators of phosphorus availability. Elucidating the structure and function of microbial consortia in MIS, a highly unique and environmentally vulnerable ecosystem, provides a rare opportunity to understand relationships between microbial species and their environment and may provide insights into the evolution of life under ancient low-oxygen, high-sulfur conditions.
Amirbahman, Aria; Massey, Delia I; Lotufo, Guilherme; Steenhaut, Nicholas; Brown, Lauren E; Biedenbach, James M; Magar, Victor S
2013-10-01
Mercury-specific diffusive gradient in thin films (DGTs) were used in laboratory microcosms as a biomonitoring tool to assess the lability of mercury (Hg) total and monomethylmercury Hg (MeHg), and to develop a relationship between chemical lability and bioavailability in estuarine sediments. Time-series deployment of DGTs in sediments showed that sediment-bound MeHg is more labile than sediment-bound inorganic Hg. In subsequent experiments, DGTs were deployed simultaneously with three benthic macroinvertebrates (the estuarine amphipod, Leptocheirus plumulosus; the estuarine polychaete, Nereis virens; and the marine clam, Macoma nasuta) in sediments for up to 55 days. All organisms and their co-deployed DGTs exhibited an initial period of rapid Hg uptake followed by slower uptake reaching apparent steady state. Strong correlative relationships were generally observed between paddle-type DGTs and macroinvertebrate tissue data (r(2) between 0.57 and 0.97). Further, %MeHg:Total Hg ratios for M. nasuta and N. virens (38.5 ± 12.2 and 19.2 ± 5.2) were similar to their corresponding ratios for the DGTs (33.1 ± 13.3 and 24.4 ± 11.0), and they were significantly higher than the same ratios for sediment (2.9 ± 0.3) and pore water (8.5 ± 4.9). The %MeHg:Total Hg ratios for L. plumulosus (68.5 ± 6.2) were significantly higher than those for the DGTs. This may be because the tissue and DGT data for this organism were not truly co-located as L. plumulosus burrows close to the sediment surface, and the DGTs sampled the sediment surface. Overall, our results suggest that for benthic macroinvertebrates in estuarine sediments studied here, (a) sediment MeHg is more bioavailable than inorganic Hg, (b) sediment and pore-water concentration measurements are not good predictors for the extent of bioaccumulation of Hg species, and (c) DGTs are an effective biomonitoring tool for the assessment of bioavailability of Hg species.
NASA Astrophysics Data System (ADS)
Coe, D. B.; Wopat, M. A.; Lindsay, D.; Stanish, S.; Boone, M.; Beck, B.; Wyman, A.; Bull, J.
2012-12-01
The potential for water-quality impacts in intensively-managed forested watersheds depends partly upon the frequency of overland flow paths linking logging-related hillslope sediment sources to the channel network, as well as the volume of sediment delivered along these flow paths. In response to public concerns over perceived water-quality impacts from clearcut timber harvesting, the Battle Creek Task Force, composed of subject-matter experts from 4 different state agencies, performed a rapid assessment for visible evidence of sediment delivery pathways from multiple logging-associated features in the upper Battle Creek watershed - an area underlain predominantly by Holocene- and Late Pleistocene-aged volcanic rock types, with highly permeable soils, and relatively few streams. Logging-associated features were selected for assessment based on erosion potential and proximity to stream channels. Identified sediment-delivery pathways were then characterized by dominant erosion process and the relative magnitude of sediment delivery (i.e., low, moderate, and high) was estimated. Approximately 26 km of stream buffers adjacent to 55 clearcut harvest units were assessed, and the single detected instance of sediment delivery was found to be of low magnitude and the result of illegal encroachment by logging equipment into a 5-m wide stream-adjacent equipment-limitation zone. The proportion of sampled sites delivering sediment was found to be highest for tractor-stream crossings, followed by road-stream crossings, stream-adjacent road segments, stream-adjacent landings, and clearcut harvest units, respectively. All 5 tractor-stream crossings delivered sediment, but were generally delivering a low magnitude of sediment derived from sheetwash and rilling. Road-stream crossings (n=39) and stream-adjacent road segments (n=24) delivered observable sediment 69 and 67 percent of the time, respectively. The highest magnitudes of sediment delivery from roads were associated with substandard design or maintenance practices (e.g., poor road drainage) and/or poor location (e.g., roads less than 15 m from a stream), but the magnitude of sediment delivery was generally low or unobservable where Best Management Practices (BMPs) had been implemented. Conceptually, water-quality impacts are limited by the low density of streams in the watershed, relatively low hillslope gradients, relatively high permeability of the soils, and the implementation of BMPs. Assessment results suggest that direct water-quality impacts from overland flow paths in these types of watersheds are best minimized by disconnecting flow paths linking roads to streams, and by implementing BMPs.
Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients
NASA Astrophysics Data System (ADS)
Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.
2012-05-01
We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.
An 500,000 yr record of tropical glaciation recovered during the Lake Junin (Peru) Drilling Project
NASA Astrophysics Data System (ADS)
Rodbell, Donald; Abbott, Mark; Chen, Christine; McGee, David; Hatfield, Robert; Stoner, Joseph; Tapia, Pedro; Valero Garces, Blas; Weidhaas, Nicholas; Woods, Arielle; Hillman, Aubrey; Larsen, Darren; Valencia, Bryan; Bush, Mark
2017-04-01
Lake Junín (11.0°S, 76.2°W) is a shallow (zmax 12 m), intermontane, high-elevation (4080 masl) lake in the inner-tropics of the Southern Hemisphere that spans 300 km2. It is dammed by coalescing alluvial fans that are >250 ka that emanate from glacial valleys. Lake Junín has not been overrun by glacial ice in several hundred thousand years and is ideally located to receive glacigenic sediment. The Junín basin is underlain by carbonate rocks that have provided a source of Ca and HCO3 ions; during the present interglacial period precipitation of CaCO3 in the western margin of the lake has occurred at 1mm yr-1. An airgun seismic survey reveals a strong reflector at 105 meters depth, which marks the base of the lacustrine section. Drilling focused on three sites. Site 1, located near the depocenter and most distal to glacial sources, yielded a composite sediment thickness of 95m; Site 2, proximal to glacial outwash fans, yielded a composite thickness of 28 m; Site 3, located at an intermediate distance yielded a sediment thickness of 55m. The stratigraphy of Site 1 is marked by 8 interstadial units that are characterized by low bulk density and magnetic susceptibility (MS)and high CaCO3. These units are intercalated with glacigenic sediment that has high density and MS, and low CaCO3. The age model for Site 1 is based on numerous AMS radiocarbon dates on terrestrial macrofossils and dozens of U/Th ages on authigenic CaCO3. Comparison of the MS record of glaciation in Junín over the past 700 ka with the global ice volume record reveals many common features and several prominent differences. The high resolution signal of the last 50 ka suggests that glacial pulses are correlative with increases in tropical moisture and steep meridional sea surface temperature gradients in the North Atlantic.
2016-01-01
Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased. PMID:28096736
Bioconvective Plumes and Bacterial Self-Concentration at a Slanting Meniscus
NASA Astrophysics Data System (ADS)
Dombrowski, Christopher; Chatkaew, Sunita; Goldstein, Raymond; Kessler, John
2004-03-01
Aerobic bacteria, e.g. Bacillus subtilis, consume oxygen. For populations of ˜ 10^9 cells/cm^3, volume fraction ˜ 0.001, the resultant oxygen deficit results in the creation of an oxygen concentration gradient due to influx from air/fluid interfaces. The bacteria swim up that gradient. Since the cells are denser than water by ˜ 10%, the mean density of the supension increases proportionally to cell concentration, producing unstable stratification, sinking blobs, plumes and the like. This well known effect is constructively modified when the oxygen-supplying interface is not perpendicular to gravity. In that case, where there is no threshold to collective instability, the organisms near the interface descend along it, usually in the form of plumes. This phenomenon is somewhat analogous to the Boycott Effect in sedimentation, in which tilting the chamber walls results in large-scale flows. Data on such curved interfaces, achieved at corners, and with droplets of suspension, sessile and pendant, will be presented. The practical significance of the phenomenon is self-concentration of bacteria, in nature and in the laboratory. We shall also present insights derived from a mathematical model and computer simulations.
NASA Astrophysics Data System (ADS)
Costa, Patrícia; Dórea, Antônio; Mariano-Neto, Eduardo; Barros, Francisco
2015-12-01
Species distribution and structural patterns of mangrove fringe forests along three tropical estuaries were evaluated in northeast of Brazil. Interstitial water salinity, percentage of fine sediments and organic matter content were investigated as explanatory variables. In all estuaries (Jaguaripe, Paraguaçu and Subaé estuaries), it was observed similar distribution patterns of four mangrove species and these patterns were mostly related with interstitial water salinity. Rhizophora mangle and Avicennia schaueriana tended to dominate sites under greater marine influence (lower estuary), while Avicennia germinans and Laguncularia racemosa dominated areas under greater freshwater influence (upper estuary), although the latter showed a wider distribution over these tropical estuarine gradients. Organic matter best explained canopy height and mean height. At higher salinities, there was practically no correlation between organic matter and density, but at lower salinity, organic matter was related to decreases in abundances. The described patterns can be related to interspecific differences in salt tolerance and competitive abilities and they are likely to be found at other tropical Atlantic estuaries. Future studies should investigate anthropic influences and causal processes in order to further improve the design of monitoring and restoration projects.
NASA Astrophysics Data System (ADS)
Grayson, M.; Zhou, Wang; Yoo, Heun-Mo; Prabhu-Gaunkar, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.
A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients. Results will be shown of various semoconductor systems where this method is applied, from bulk doped semiconductors, to exfoliated 2D materials. McCormick Catalyst Award from Northwestern University, EECS Bridge Funding, and AFOSR FA9550-15-1-0247.
Devices, systems, and methods for detecting nucleic acids using sedimentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory J.
Embodiments of the present invention are directed toward devices, systems, and method for conducting nucleic acid purification and quantification using sedimentation. In one example, a method includes generating complexes which bind to a plurality of beads in a fluid sample, individual ones of the complexes comprising a nucleic acid molecule such as DNA or RNA and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transportingmore » occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.« less
Twining, Brian V.; Hodges, Mary K.V.; Schusler, Kyle; Mudge, Christopher
2017-07-27
Starting in 2014, the U.S. Geological Survey in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 142 and USGS 142A for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 142 initially was cored to collect rock and sediment core, then re-drilled to complete construction as a screened water-level monitoring well. Borehole USGS 142A was drilled and constructed as a monitoring well after construction problems with borehole USGS 142 prevented access to upper 100 feet (ft) of the aquifer. Boreholes USGS 142 and USGS 142A are separated by about 30 ft and have similar geology and hydrologic characteristics. Groundwater was first measured near 530 feet below land surface (ft BLS) at both borehole locations. Water levels measured through piezometers, separated by almost 1,200 ft, in borehole USGS 142 indicate upward hydraulic gradients at this location. Following construction and data collection, screened water-level access lines were placed in boreholes USGS 142 and USGS 142A to allow for recurring water level measurements.Borehole USGS 142 was cored continuously, starting at the first basalt contact (about 4.9 ft BLS) to a depth of 1,880 ft BLS. Excluding surface sediment, recovery of basalt, rhyolite, and sediment core at borehole USGS 142 was approximately 89 percent or 1,666 ft of total core recovered. Based on visual inspection of core and geophysical data, material examined from 4.9 to 1,880 ft BLS in borehole USGS 142 consists of approximately 45 basalt flows, 16 significant sediment and (or) sedimentary rock layers, and rhyolite welded tuff. Rhyolite was encountered at approximately 1,396 ft BLS. Sediment layers comprise a large percentage of the borehole between 739 and 1,396 ft BLS with grain sizes ranging from clay and silt to cobble size. Sedimentary rock layers had calcite cement. Basalt flows ranged in thickness from about 2 to 100 ft and varied from highly fractured to dense, and ranged from massive to diktytaxitic to scoriaceous, in texture.Geophysical logs were collected on completion of drilling at boreholes USGS 142 and USGS 142A. Geophysical logs were examined with available core material to describe basalt, sediment and sedimentary rock layers, and rhyolite. Natural gamma logs were used to confirm sediment layer thickness and location; neutron logs were used to examine basalt flow units and changes in hydrogen content; gamma-gamma density logs were used to describe general changes in rock properties; and temperature logs were used to understand hydraulic gradients for deeper sections of borehole USGS 142. Gyroscopic deviation was measured to record deviation from true vertical at all depths in boreholes USGS 142 and USGS 142A.
Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment
NASA Technical Reports Server (NTRS)
Berg, Robert F.; Moldover, Michael R.
1993-01-01
Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.
Redelstein, Regine; Dinter, Thomas; Hertel, Dietrich; Leuschner, Christoph
2018-01-01
Saltmarsh plants are exposed to multiple stresses including tidal inundation, salinity, wave action and sediment anoxia, which require specific root system adaptations to secure sufficient resource capture and firm anchorage in a temporary toxic environment. It is well known that many saltmarsh species develop large below-ground biomass (roots and rhizomes) but relations between fine roots, in particular, and the abiotic conditions in salt marshes are widely unknown. We studied fine root mass (<2 mm in diameter), fine root depth distribution and fine root morphology in three typical communities (Spartina anglica-dominated pioneer zone, Atriplex portulacoides-dominated lower marsh, Elytrigia atherica-dominated upper marsh) across elevational gradients in two tidal salt marshes of the German North Sea coast [a mostly sandy marsh on a barrier island (Spiekeroog), and a silty-clayey marsh on the mainland coast (Westerhever)]. Fine root mass in the 0–40 cm profile ranged between 750 and 2,500 g m−2 in all plots with maxima at both sites in the lower marsh with intermediate inundation frequency and highest plant species richness indicating an effect of biodiversity on fine root mass. Fine root mass and, even more, total fine root surface area (maximum 340 m2 m−2) were high compared to terrestrial grasslands, and were greater in the nutrient-poorer Spiekeroog marsh. Fine root density showed only a slight or no decrease toward 40 cm depth. We conclude that the standing fine root mass and morphology of these salt marshes is mainly under control of species identity and nutrient availability, but species richness is especially influential. The plants of the pioneer zone and lower marsh possess well adapted fine roots and large standing root masses despite the often water-saturated sediment. PMID:29467778
NASA Astrophysics Data System (ADS)
Yoo, K.; Wang, X.; Mudd, S. M.; Weinman, B.; Gutknecht, J.; Gabet, E. J.
2017-12-01
Eroding uplands not only provide physically mixed soil zones where OC and minerals actively interact but also are the significant sources of suspended sediments and organic carbon (OC) to rivers. Here our goal is to quantify the extents that erosion affects soils' capacities to store OC in different degrees of mineral-association and to facilitate the exports of minerals that might capture OC on their reactive surfaces. We examined a tributary basin to the Middle Folk Feather River in California, where knickpoint migration has created a series of hillslopes with erosion rates varying from 35 to 250 mm kyr-1. Other than erosion rates, the studied hillslopes within the tributary basin shared similar environmental factors. Soil samples were collected from select hillslopes that differ in their relative positions to knikpoints and were subject to size and density fractionation. Despite the substantial difference in erosion rates, concentrations of particulate OC (POC) and mineral-associated OC (MOC) and soil thickness varied little. Instead, considerable increase in coarse rock contents positively associated with erosion rate was responsible for the reduction of soil OC inventories by 37% with increasing erosion rate. In contrast to consistent MOC concentrations across the erosion gradient, clay contents in soils are negatively correlated with erosion rates. This seemingly contradictory result, however, is consistent with BET mineral specific surface area that remains insensitive to erosion rates. OC coverage on mineral surface was found to be less than < 50%, indicating that eroded minerals would have a significant, and currently unknown, capacity to adsorb additional OC during their transport to sediment sinks. This study thus reveals that mineral weathering acts as an important filter through which erosion affects the soil carbon cycle.
Binding in pair potentials of liquid simple metals from nonlocality in electronic kinetic energy
NASA Technical Reports Server (NTRS)
Perrot, F.; March, N. H.
1990-01-01
The paper presents an explicit expression for the pair potential in liquid simple metals from low-order density-gradient theory when the superposition of single-center displaced charges is employed. Numerical results are presented for the gradient expansion pair interaction in liquid Na and Be. The low-order density-gradient equation for the pair potential is presented.
Biomonitoring for deposited sediment using benthic invertebrates: A test on 4 Missouri streams
Zweig, L.D.; Rabeni, Charles F.
2001-01-01
The response of stream benthic invertebrates to surficially deposited fine sediment was investigated in 4 Missouri streams. Twenty to 24 sampling sites in each stream were selected based on similarities of substrate particle-size distributions, depths, and current velocities but for differences in amounts of deposited sediment, which ranged from 0 to 100% surface cover. Deposited sediment was quantified 2 ways: a visual estimate of % surface cover, and a measurement of substrate embeddedness, which were highly correlated with each other and with the amount of sand. Invertebrates were collected using a kicknet for a specified time in a 1-m2 area. Five commonly used biomonitoring metrics (taxa richness, density, Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness, EPT density, and EPT/Chironomidae richness) were consistently significantly correlated across streams to deposited sediment. Shannon diversity index, Chironomidae richness, Chironomidae density, a biotic index, and % dominant taxon did not relate to increasing levels of deposited sediment. Tolerance values representing taxa responses to deposited sediment were developed for 30 taxa. Deposited-sediment tolerance values were not correlated with biotic index tolerance values, indicating a different response by taxa to deposited sediment than to organic enrichment. Deposited-sediment tolerance values were used to develop the Deposited Sediment Biotic Index (DSBI). The DSBI was calculated for all samples (n = 85) to characterize sediment impairment of the sampled streams. DSBI values for each site were highly correlated with measures of deposited sediment. Model validation by a resampling procedure confirmed that the DSBI is a potentially useful tool for assessing ecological effects of deposited sediment.
MEMS cantilever based magnetic field gradient sensor
NASA Astrophysics Data System (ADS)
Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz
2017-05-01
This paper describes major contributions to a MEMS magnetic field gradient sensor. An H-shaped structure supported by four arms with two circuit paths on the surface is designed for measuring two components of the magnetic flux density and one component of the gradient. The structure is produced from silicon wafers by a dry etching process. The gold leads on the surface carry the alternating current which interacts with the magnetic field component perpendicular to the direction of the current. If the excitation frequency is near to a mechanical resonance, vibrations with an amplitude within the range of 1-103 nm are expected. Both theoretical (simulations and analytic calculations) and experimental analysis have been carried out to optimize the structures for different strength of the magnetic gradient. In the same way the impact of the coupling structure on the resonance frequency and of different operating modes to simultaneously measure two components of the flux density were tested. For measuring the local gradient of the flux density the structure was operated at the first symmetrical and the first anti-symmetrical mode. Depending on the design, flux densities of approximately 2.5 µT and gradients starting from 1 µT mm-1 can be measured.
The New Bedford Harbor Superfund site long-term monitoring program (1993-2009).
Nelson, William G; Bergen, Barbara J
2012-12-01
New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. A systematic, probabilistic sampling design was used to select sediment sampling stations. This unbiased design allowed the three segments of the harbor to be compared spatially and temporally to quantify changes resulting from dredging the contaminated sediments. Sediment was collected at each station, and chemical (e.g., PCBs and metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. This paper describes the overall NBH-LTM approach and the results from the five rounds of sample collections. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been maintained since the 1993 baseline collection; however, since the onset of full-scale remediation, PCB concentrations have decreased throughout the site, and one of the benthic community indices has shown significant improvement in the lower and outer harbor areas.
Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes
Janousek, Christopher; Buffington, Kevin J.; Guntenspergen, Glenn R.; Thorne, Karen M.; Dugger, Bruce D.; Takekawa, John Y.
2017-01-01
The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.
Increased sediment load during a large-scale dam removal changes nearshore subtidal communities
Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan A.; McHenry, Michael L.; Stevens, Andrew W.; Eidam, Emily F.; Ogston, Andrea S.; Gelfenbaum, Guy; Pedersen, Rob
2017-01-01
The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities. PMID:29220368
Increased sediment load during a large-scale dam removal changes nearshore subtidal communities.
Rubin, Stephen P; Miller, Ian M; Foley, Melissa M; Berry, Helen D; Duda, Jeffrey J; Hudson, Benjamin; Elder, Nancy E; Beirne, Matthew M; Warrick, Jonathan A; McHenry, Michael L; Stevens, Andrew W; Eidam, Emily F; Ogston, Andrea S; Gelfenbaum, Guy; Pedersen, Rob
2017-01-01
The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.
Increased sediment load during a large-scale dam removal changes nearshore subtidal communities
Rubin, Stephen P.; Miller, Ian M.; Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan; McHenry, Michael L.; Stevens, Andrew; Eidam, Emily; Ogston, Andrea; Gelfenbaum, Guy R.; Pedersen, Rob
2017-01-01
The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.
Yeung, E.S.; Chen, G.
1990-05-01
A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.
Zallocchi, Marisa; Sisson, Joseph H.; Cosgrove, Dominic
2010-01-01
Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells, and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in non-detergent buffer, and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15 and VLGR-1, and a different one at the top of the gradient that included all the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100–200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins co-sediment into the gradient at a sedimentation coefficient of approximately 50S, correlating with a predicted molecular mass of 2 × 106 Daltons. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher proteins complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors. PMID:20058854
Petroleum prospects of Benue trough, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawachukwu, J.I.
1985-04-01
Exploration activities in the Benue trough have been minimal over the years, mainly because of large petroleum deposits found in the adjoining Niger delta and early gas finds in the Anambra basin, south of the Benue trough. The recent increase in exploration activities in the trough has necessitated a reevaluation of the petroleum potentials of the basin. In this study, the time-temperature index (TTI) method was used to evaluate petroleum prospects of the basin. An increase in geothermal gradient resulted in a decrease in depth to the oil window, with the sediments maturing earlier at higher geothermal gradients. At geothermalmore » gradients of 1.5-1.9/sup 0/F/100 ft (2.73.5/sup 0/C/100 m) and maximum TTI values, the Asu River Group and the Eze-Aku Group of sediments are still within the gas-generating stage. The Awgu Shale and the Nkporo Shale are capable of generating gas at geothermal gradients of 2.3-2.7/sup 0/F/100 ft (4.2-4.9/sup 0/C/100 m). The Benue trough is essentially a gas-condensate basin with little oil. Exploration targets in the basin include both the sub-Santonian and superSantonian sediments, with the Eze-Aku Group, Awgu Shale, and Nkporo Shale being more prospective than the stratigraphically lower Asu River Group. In general, the middle Benue trough is considered to be the most prospective area within the trough because depths to the mature zones are moderate (6,600-13,000 ft; 2-4 km). These depths are variable, decreasing northeastward and increasing southwestward toward the Niger delta.« less
NASA Astrophysics Data System (ADS)
Román, Sara; Vanreusel, Ann; Romano, Chiara; Ingels, Jeroen; Puig, Pere; Company, Joan B.; Martin, Daniel
2016-11-01
We investigated the natural and anthropogenic drivers controlling the spatiotemporal distribution of the meiofauna in the submarine Blanes Canyon, and its adjacent western slope (NW Mediterranean margin of the Iberian Peninsula). We analyzed the relationships between the main sedimentary environmental variables (i.e. grain size, Chl-a, Chl-a: phaeopigments, CPE, organic carbon and total nitrogen) and the density and structure of the meiofaunal assemblages along a bathymetric gradient (from 500 to 2000 m depth) in spring and autumn of 2012 and 2013. Twenty-one and 16 major taxa were identified for respectively the canyon and slope, where the assemblages were always dominated by nematodes. The gradual decreasing meiofaunal densities with increasing depth at the slope showed little variability among stations and corresponded with a uniform pattern of food availability. The canyon was environmentally much more variable and sediments contained greater amounts of food resources (Chl-a and CPE) throughout, leading not only to increased meiofaunal densities compared to the slope, but also different assemblages in terms of composition and structure. This variability in the canyon is only partly explained by seasonal food inputs. The high densities found at 900 m and 1200 m depth coincided with significant increases in food availability compared to shallower and deeper stations in the canyon. Our results suggest that the disruption in expected bathymetric decrease in densities at 900-1200 m water depth coincided with noticeable changes in the environmental variables typical for disturbance and deposition events (e.g., higher sand content and CPE), evoking the hypothesis of an anthropogenic effect at these depths in the canyon. The increased downward particle fluxes at 900-1200 m depth caused by bottom trawling along canyon flanks, as reported in previous studies, support our hypothesis and allude to a substantial anthropogenic factor influencing benthic assemblages at these depths. The possible relationships of the observed patterns and some major natural environmental (e.g., surface productivity or dense shelf water cascading) and anthropogenic (e.g. the lateral advection and downward transport of food-enriched sediments resuspended by the daily canyon-flank trawling activities) drivers are discussed.
Evaluation of effects of geometrical parameters on density distribution in compaction of PM gears
NASA Astrophysics Data System (ADS)
Khodaee, Alireza; Melander, Arne
2017-10-01
The usage of powder metallurgy (PM) for manufacturing of transmission components in automotive industries has been studied by many researchers. PM components have become of interest in recent years due to advancements in post processing possibilities such as hot isostatic pressing (HIP). Still in many of the forming process routes for making components from PM materials, the compaction of the powder into green component is the first step. Compaction is required to put the powder into the near net shape of the desired component and it causes a density gradient in the body of the green component. Basically the friction between powder particles and between the powder particles and die walls are the well-known roots for such density gradients in the compacted component. Looking at forming of PM gears, the gradient in density is one of the most important roots of problems in the processing of PM gears as well. That is because making a gear with full density and no pores will be very costly if large density gradients exist in the green component. The purpose of this study is to find the possible relations between the gear geometry and the density gradients in the green component after compaction in addition to the friction effects. For this purpose several gears should be tested. To reduce the research costs, the finite element (FE) method is used. First a FE model of the compaction process is developed and verified. To investigate the relations between the density gradients and the gear parameters such as addendum diameter (da) and the face width (b) several gear geometries have been studied. The compaction of selected gears is simulated using the FE model. The simulations results which are the distribution of density in the green component are evaluated and discussed and conclusion are made based on them.
Sediment basin modeling through GOCE gradients controlled by thermo-isostatic constraints
NASA Astrophysics Data System (ADS)
Pivetta, Tommaso; Braitenberg, Carla
2015-04-01
Exploration of geodynamic and tectonic structures through gravity methods has experienced an increased interest in the recent years thank's to the possibilities offered by satellite gravimetry (e.g. GOCE). The main problem with potential field methods is the non-uniqueness of the underground density distributions that satisfy the observed gravity field. In terrestrial areas with scarce geological and geophysical information, valid constraints to the density model could be obtained from the application of geodynamic models. In this contribution we present the study of the gravity signals associated to the thermo-isostatic McKenzie-model (McKenzie, 1978) that predicts the development of sedimentary basins from the stretching of lithosphere. This model seems to be particularly intriguing for gravity studies as we could obtain estimates of densities and thicknesses of crust and mantle before and after a rifting event and gain important information about the time evolution of the sedimentary basin. The McKenzie-model distinguishes the rifting process into two distinct phases: a syn-rift phase that occurs instantly and is responsible of the basin formation, the thinning of lithosphere and the upwelling of hot asthenosphere. Then a second phase (post-rift), that is time dependent, and predicts further subsidence caused by the cooling of mantle and asthenosphere and subsequently increase in rock density. From the application of the McKenzie-model we have derived density underground distributions for two scenarios: the first scenario involves the lithosphere density distribution immediately after the stretching event; the second refers to the density model when thermal equilibrium between stretched and unstretched lithospheres is achieved. Calculations of gravity anomalies and gravity gradient anomalies are performed at 5km height and at the GOCE mean orbit quota (250km). We have found different gravity signals for syn-rift (gravimetric maximum) and post-rift (gravimetric minimum) scenarios and that satellite measurements are sufficiently precise to discriminate between them. The McKenzie-model is then applied to a real basin in Africa, the Benue Trough, which is an aborted rift that seems to be particularly adapt to be studied with satellite gravity techniques. McKenzie D., 1978, Some remarks on the development of sedimentary basins, Earth and Planetary Science Letters, 40, 25-32
Principles of transverse flow fractionation of microparticles in superhydrophobic channels.
Asmolov, Evgeny S; Dubov, Alexander L; Nizkaya, Tatiana V; Kuehne, Alexander J C; Vinogradova, Olga I
2015-07-07
We propose a concept of fractionation of micron-sized particles in a microfluidic device with a bottom wall decorated by superhydrophobic stripes. The stripes are oriented at an angle α to the direction of a driving force, G, which generally includes an applied pressure gradient and gravity. Separation relies on the initial sedimentation of particles under gravity in the main forward flow, and their subsequent lateral deflection near a superhydrophobic wall due to generation of a secondary flow transverse to G. We provide some theoretical arguments allowing us to quantify the transverse displacement of particles in the microfluidic channel, and confirm the validity of theoretical predictions in test experiments with monodisperse fractions of microparticles. Our results can guide the design of superhydrophobic microfluidic devices for efficient sorting of microparticles with a relatively small difference in size and density.
Egler, M; Buss, D F; Moreira, J C; Baptista, D F
2012-08-01
Land-use alterations and pesticide run-offs are among the main causes for impairment in agricultural areas. We evaluated the influence of different land-uses (forest, pasture and intensive agriculture) on the water quality and on benthic macroinvertebrate assemblages on three occasions: in the dry season, wet season and at the end of the wet season. Macroinvertebrates responded to this gradient of impairment: agricultural sites had significantly lower richness numbers than forested and pasture sites, and all major invertebrate groups were significantly affected. Most taxa found in forested sites were found in pasture sites, but often with lower densities. In this case, the loss of habitats due to sedimentation and the lower complexity of substrates seem to be the disruptive force for the macroinvertebrate fauna.
Magnitude and variability of Holocene sediment accumulation in Santa Monica Bay, California
Sommerfield, C.K.; Lee, H.J.
2003-01-01
The spatial variability of Holocene (past 10,000 years) sediment accumulation in Santa Monica Bay (California) was examined to identify controls sediment trapping in a bathymetrically complex coastal embayment and to provide geologic context for the post-industrial sedimentary record and associated pollution gradients. Sediment chronologies based on downcore AMS 14C dates were used to quantify long-term (millennia) accumulation rates in an effort to elucidate particle-transport pathways and sinks. Sediment accumulation rates for the full range of bayfloor environments (50-630 m water depths) range from 22 to 102 mg/cm2/year (15-88 mm/100 year), have an overall mean of 51??21 mg/cm2/year (1??, n=11), and are comparable to rates reported for adjacent borderland basins. Maximal accumulation rates on the Malibu shelf and within a reentrant to Redondo canyon are interpreted to reflect (1) proximity to sediment sources and (2) localized oceanographic and topographic conditions conducive to sediment trapping and deposition. The 14C-derived accumulation rates are 2-10 times lower than rates determined through 210Pb geochronology for the same sites in a related study, revealing that Holocene sediment accumulation has been non-steady-state. Santa Monica Bay is an important sink for suspended matter; averaged over the past several millennia a mass of sediment equivalent to 10-80% of the modern annual river supply is sequestered yearly. Net influx of suspended matter derived from the adjacent Palos Verdes shelf is evinced by a concentration gradient of p,p???-DDE in bayfloor sediments, whereas the distribution of anthropogenic silver suggests transport from Santa Monica shelf to the southeastern boundary of the bay. The results of this study provide new insight to the long-term fates of particulate matter in Los Angeles coastal waters. ?? 2003 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, J. E., IV; Bentley, S. J.; Courtois, A. J.; Obelcz, J.; Chaytor, J. D.; Maloney, J. M.; Georgiou, I. Y.; Xu, K.; Miner, M. D.
2017-12-01
Recent studies on Mississippi River Delta have documented sub-aerial land loss, driven in part by declining sediment load over the past century. Impacts of changing sediment load on the subaqueous delta are less well known. The subaqueous Mississippi River Delta Front is known to be shaped by extensive submarine mudflows operating at a range of temporal and spatial scales, however impacts of changing sediment delivery on mudflow deposits have not been investigated. To better understand seabed morphology and stratigraphy as impacted by plume sedimentation and mudflows, an integrated geological/geophysical study was undertaken in delta front regions offshore the three main passes of the Mississippi River Delta. This study focuses on stratigraphy and physical properties of 30 piston cores (5-9 m length) collected in June 2017. Coring locations were selected in gully, lobe and prodelta settings based on multibeam bathymetry and seismic profiles collected in mid-May 2017. Cores were analyzed for density, magnetic susceptibility, P-wave speed, and resistivity using a Geotek multi sensor core logger; here, we focus on density data. Core density profiles generally vary systematically across facies. Density profiles of gully cores are nearly invariant with some downward stepwise increases delineating units meters thick, and abundant gaps likely caused by gas expansion. Lobe cores generally have subtle downward increases in density, some stepwise density increases, and fewer gaps. Prodelta cores show more pronounced downward density increases, decimeter-scale peaks and valleys in density profiles, but stepwise increases are less evident. We hypothesize that density profiles in gully and lobe settings (uniform profiles except for stepwise increases) reflect remolding by mudflows, whereas density variations in prodelta settings instead reflect grain size variations (decimeter-scale) and more advanced consolidation (overall downward density increase) consistent with slower sediment deposition. These hypotheses will be evaluated by a more detailed study of seismic stratigraphy and core properties, including geochronology, grain size distribution and X-radiographic imaging, to further relate important sedimentary processes with resulting deposits.
Diviš, Pavel; Kadlecová, Milada; Ouddane, Baghdad
2016-05-01
The distribution of mercury in surface water and in sediment from Deûle River in Northern France was studied by application of conventional sampling methods and by diffusive gradients in thin films technique (DGT). Concentration of total dissolved mercury in surface water was 20.8 ± 0.8 ng l(-1). The particulate mercury concentration was 6.2 ± 0.6 µg g(-1). The particulate mercury was accumulated in sediment (9.9 ± 2.3 mg kg(-1)), and it was transformed by methylating bacteria to methylmercury, mainly in the first 2-cm layer of the sediment. Total dissolved concentration of mercury in sediment pore water obtained by application of centrifugation extraction was 17.6 ± 4.1 ng l(-1), and it was comparable with total dissolved pore water mercury concentration measured by DGT probe containing Duolite GT-73 resin gel (18.2 ± 4.3 ng l(-1)), taking the sediment heterogeneity and different principles of the applied methods into account. By application of two DGT probes with different resin gels specific for mercury, it was found that approximately 30% of total dissolved mercury in sediment pore water was present in labile forms easy available for biota. The resolution of mercury DGT depth profiles was 0.5 cm, which allows, unlike conventional techniques, to study the connection of the geochemical cycle of mercury with geochemical cycles of iron and manganese.
Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...
2015-05-15
Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thomson scattering measurements, we found that the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution includingmore » its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. Moreover, the saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Finally, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.« less
NASA Astrophysics Data System (ADS)
Sutherland, Andrew B.; Culp, Joseph M.; Benoy, Glenn A.
2012-07-01
The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.
Sutherland, Andrew B; Culp, Joseph M; Benoy, Glenn A
2012-07-01
The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.
Development of an electronic seepage chamber for extended use in a river.
Fritz, Brad G; Mendoza, Donaldo P; Gilmore, Tyler J
2009-01-01
Seepage chambers have been used to characterize the flux of water across the water-sediment interface in a variety of settings. In this work, an electronic seepage chamber was developed specifically for long-term use in a large river where hydraulic gradient reversals occur frequently with river-stage variations. A bidirectional electronic flowmeter coupled with a seepage chamber was used to measure temporal changes in the magnitude and direction of water flux across the water-sediment interface over an 8-week period. The specific discharge measured from the seepage chamber compared favorably with measurements of vertical hydraulic gradient and previous specific discharge calculations. This, as well as other supporting data, demonstrates the effectiveness of the electronic seepage chamber to accurately quantify water flux in two directions over a multimonth period in this setting. The ability to conduct multimonth measurements of water flux at a subhourly frequency in a river system is a critical capability for a seepage chamber in a system where hydraulic gradients change on a daily and seasonal basis.
Philip Saksa; Yi Jun Xu; Richard Stich
2013-01-01
Extensive research has been conducted on headwater streams in regions with high topographic variation. However, relatively few studies have examined low-gradient headwater stream systems, such as those existing in much of the southeastern Coastal Plain. The focus of this study is to investigate spatial and temporal variation of headwater stream hydrology in a low-...
Austin, Bradley J; Hardgrave, Natalia; Inlander, Ethan; Gallipeau, Cory; Entrekin, Sally; Evans-White, Michelle A
2015-10-01
Construction of unconventional natural gas (UNG) infrastructure (e.g., well pads, pipelines) is an increasingly common anthropogenic stressor that increases potential sediment erosion. Increased sediment inputs into nearby streams may decrease autotrophic processes through burial and scour, or sediment bound nutrients could have a positive effect through alleviating potential nutrient limitations. Ten streams with varying catchment UNG well densities (0-3.6 wells/km(2)) were sampled during winter and spring of 2010 and 2011 to examine relationships between landscape scale disturbances associated with UNG activity and stream periphyton [chlorophyll a (Chl a)] and gross primary production (GPP). Local scale variables including light availability and water column physicochemical variables were measured for each study site. Correlation analyses examined the relationships of autotrophic processes and local scale variables with the landscape scale variables percent pasture land use and UNG metrics (well density and well pad inverse flow path length). Both GPP and Chl a were primarily positively associated with the UNG activity metrics during most sample periods; however, neither landscape variables nor response variables correlated well with local scale factors. These positive correlations do not confirm causation, but they do suggest that it is possible that UNG development can alleviate one or more limiting factors on autotrophic production within these streams. A secondary manipulative study was used to examine the link between nutrient limitation and algal growth across a gradient of streams impacted by natural gas activity. Nitrogen limitation was common among minimally impacted stream reaches and was alleviated in streams with high UNG activity. These data provide evidence that UNG may stimulate the primary production of Fayetteville shale streams via alleviation of N-limitation. Restricting UNG activities from the riparian zone along with better enforcement of best management practices should help reduce these possible impacts of UNG activities on stream autotrophic processes. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, R.G.; Hill, D.E.; Sharp, R.R. Jr.
1978-05-01
During the summer of 1976, 1336 water and 1251 sediment samples were collected for Los Alamos Scientific Laboratory (LASL) from 1356 streams and small lakes or ponds within Shishmaref, Kotzebue, Selawik, and western portion of Shungnak NTMS quadrangles in western Alaska. Both a water and sediment sample were generally obtained from each location at a nominal location density of 1/23 km/sup 2/. Total uranium was measured in waters by fluorometry and in sediments and a few waters by delayed neutron counting at LASL. Uranium concentrations in waters have a mean of 0.31 ppB and a maximum of 9.23 ppB, andmore » sediments exhibit a mean of 3.44 ppM and a maximum of 37.7 ppM. A large number of high-uranium concentrations occur in both water and sediment samples collected in the Selawik Hills. At least two locations within the Selawik Hills appear favorable for further investigation of possible uranium mineralization. A cluster of high-uranium sediments, seen in the Waring Mountains, are probably derived from a lower Cretaceous conglomerate unit which is assocated with known airborne radiometric anomalies. Apparently less favorable areas for further investigation of possible uranium mineralization are also located in the Waring Mountains and Kiana Hills. Additional samples were collected within the Shungnak quadrange to increase the sampling density used elsewhere in the area to about one location per 11 km/sup 2/ (double-density). Contoured plots of uranium concentrations for both waters and sediments were prepared for all double-density sample locations, and then for the even-numbered and odd-numbered locations separately. These plots indicate that the HSSR sampling density of 1/23 km/sup 2/ used in lowland areas of Alaska provide essentially the same definition of relative areal uranium distributions in waters and sediments as seen when the density is doubled. These plots indicate that regional distribution patterns for uranium are well defined without selective sampling of geologic units.« less
NASA Astrophysics Data System (ADS)
Wakeham, S. G.; Canuel, E. A.
2016-02-01
Rivers are the primary means by which sediments and carbon are transported from the terrestrial biosphere to the oceans but gaps remain in our understanding of carbon associations from source to sink. Bed sediments from the Sacramento-San Joaquin River Delta (CA) were fractionated according to density and analyzed for sediment mass distribution, elemental (C and N) composition, mineral surface area, and stable carbon and radiocarbon isotope compositions of organic carbon (OC) and fatty acids to evaluate the nature of organic carbon in river sediments. OC was unevenly distributed among density fractions. Mass and OC were in general concentrated in mesodensity (1.6-2.0 and 2.0-2.5 g cm-3) fractions, comprising 84.0 ± 1.3 % of total sediment mass and 80.8 ± 13.3 % of total OC (TOC). Low-density (< 1.6 g cm-3) material, although rich in OC (34.0 ± 2.0 % OC) due to woody debris, constituted only 17.3 ± 12.8 % of TOC. High-density (> 2.5 g cm-3) organic-poor, mineral-rich material made-up 13.7 ± 1.4 % of sediment mass and 2.0 ± 0.9 % of TOC. Stable carbon isotope compositions of sedimentary OC were relatively uniform across bulk and density fractions (δ13C -27.4 ± 0.5 ‰). Radiocarbon content varied from Δ14C values of -382 (radiocarbon age 3800 yr BP) to +94 ‰ (modern) indicating a mix of young and old OC. Fatty acids were used to further constrain the origins of sedimentary OC. Short-chain n-C14-n-C18 fatty acids of algal origin were depleted in 13C (δ13C -37.5 to -35.2 ‰) but were enriched in 14C (Δ14C > 0) compared to long-chain n-C24-n-C28 acids of vascular plant origins with higher δ13C (-33.0 to -31.0 ‰) but variable Δ14C values (-180 and 61 ‰). These data demonstrate the potentially complex source and age distributions found within river sediments and provide insights about sediment and organic matter supply to the Delta.
NASA Astrophysics Data System (ADS)
Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo
2017-12-01
Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.
Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA
NASA Astrophysics Data System (ADS)
Levine, Rebekah; Meyer, Grant A.
2014-01-01
Beaver dams in streams are generally considered to increase bed elevation through in-channel sediment storage, thus, reintroductions of beaver are increasingly employed as a restoration tool to repair incised stream channels. Here we consider hydrologic and geomorphic characteristics of the study stream in relation to in-channel sediment storage promoted by beaver dams. We also document the persistence of sediment in the channel following breaching of dams. Nine reaches, containing 46 cross-sections, were investigated on Odell Creek at Red Rock Lakes National Wildlife Refuge, Centennial Valley, Montana. Odell Creek has a snowmelt-dominated hydrograph and peak flows between 2 and 10 m3 s- 1. Odell Creek flows down a fluvial fan with a decreasing gradient (0.018-0.004), but is confined between terraces along most of its length, and displays a mostly single-thread, variably sinuous channel. The study reaches represent the overall downstream decrease in gradient and sediment size, and include three stages of beaver damming: (1) active; (2) built and breached in the last decade; and (3) undammed. In-channel sediment characteristics and storage were investigated using pebble counts, fine-sediment depth measurements, sediment mapping and surveys of dam breaches. Upstream of dams, deposition of fine (≤ 2 mm) sediment is promoted by reduced water surface slope, shear stress and velocity, with volumes ranging from 48 to 182 m3. High flows, however, can readily transport suspended sediment over active dams. Variations in bed-sediment texture and channel morphology associated with active dams create substantial discontinuities in downstream trends and add to overall channel heterogeneity. Observations of abandoned dam sites and dam breaches revealed that most sediment stored above beaver dams is quickly evacuated following a breach. Nonetheless, dam remnants trap some sediment, promote meandering and facilitate floodplain development. Persistence of beaver dam sediment within the main channel on Odell Creek is limited by frequent breaching (< 1-5 years), so in-channel sediment storage because of damming has not caused measurable channel aggradation over the study period. Enhanced overbank flow by dams, however, likely increases fine-grained floodplain sedimentation and riparian habitat. Contrasts between beaver-damming impacts on Odell Creek and other stream systems of different scales suggest a high sensitivity to hydrologic, geomorphic, and environmental controls, complicating predictions of the longer-term effects of beaver restoration.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.
2015-11-01
Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.
Steep, Transient Density Gradients in the Martian Ionosphere Similar to the Ionopause at Venus
NASA Astrophysics Data System (ADS)
Duru, Firdevs; Gurnett, Donald; Frahm, Rudy; Winningham, D. L.; Morgan, David; Howes, Gregory
Using Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft, the electron density can be measured by two methods: from the excitation of local plasma oscillations and from remote sounding. A study of the local electron density versus time for 1664 orbits revealed that in 132 orbits very sharp gradients in the electron density occurred that are similar to the ionopause boundary commonly observed at Venus. In 40 of these cases, remote sounding data have also confirmed identical locations of steep ionopause-like density gradients. Measurements from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) and Ion Mass Analyzer (IMA) instruments (also on Mars Express) verify that these sharp decreases in the electron density occur somewhere between the end of the region where ionospheric photoelectrons are dominant and the magnetosheath. Combined studies of the two experiments reveal that the steep density gradients define a boundary where the magnetic fields change from open to closed. This study shows that, although the individual cases are from a wide range of altitudes, the average altitude of the boundary as a function of solar zenith angle is almost constant. The average altitude is approximately 500 km up to solar zenith angles of 60o, after which it shows a slight increase. The average thickness of the boundary is about 22 km according to remote sounding measurements. The altitude of the steep gradients shows an increase at locations with strong crustal magnetic fields.
Yu, Shan; Zuo, Xingang; Shen, Tao; Duan, Yiyuan; Mao, Zhengwei; Gao, Changyou
2018-05-01
Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides are immobilized in a continuous manner. Selective adhesion and enhanced and directional migration of SMCs over FIBs are achieved by the interplay of cell-repelling layer and gradient SMCs-selective VAPG peptides, paving a new way for the design of novel vascular grafts with enhanced biological performance. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Manjit, E-mail: manjit@ipr.res.in; Bose, Sayak; Chattopadhyay, P. K.
2015-09-15
Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of themore » dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.« less
Bermejo, Marie Kristel; Milenkovic, Marija; Salahpour, Ali; Ramsey, Amy J
2014-09-03
Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960's, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.
Enviromental Effects on Internal Color Gradients of Early-Type Galaxies
NASA Astrophysics Data System (ADS)
La Barbera, F.; de Carvalho, R. R.; Gal, R. R.; Busarello, G.; Haines, C. P.; Mercurio, A.; Merluzzi, P.; Capaccioli, M.; Djorgovski, S. G.
2007-05-01
One of the most debated issues of observational and theoretical cosmology is that of how the environment affects the formation and evolution of galaxies. To gain new insight into this subject, we have derived surface photometry for a sample of 3,000 early-type galaxies belonging to 163 clusters with different richness, spanning a redshift range of 0.05 to 0.25. This large data-set is used to analyze how the color distribution inside galaxies depends on several parameters, such as cluster richness, local galaxy density, galaxy luminosity and redshift. We find that the internal color profile of galaxies strongly depends on the environment where galaxies reside. Galaxies in poor and rich clusters are found to follow two distinct trends in the color gradient vs. redshift diagram, with color gradients beeing less steep in rich rather than in poor clusters. No dependence of color gradients on galaxy luminosity is detected both for poor and rich clusters. We find that color gradients strongly depend on local galaxy density, with more shallow gradients in high density regions. Interestingly, this result holds only for low richness clusters, with color gradients of galaxies in rich clusters showing no dependence on local galaxy density. Our results support a reasonable picture whereby young early-type galaxies form in a dissipative collapse process, and then undergo increased (either major or minor) merging activity in richer rather than in poor clusters.
Sea-floor geology of a part of Mamala Bay, Hawaii
Hampton, Monty A.; Torresan, Michael E.; Barber, John H.
1997-01-01
We surveyed the sea-floor geology within a 200-km2 area of Mamala Bay, off Honolulu, Hawaii by collecting and analyzing sidescan sonar images, 3.5-kHz profiles, video and still visual images, and box-core samples. The study area extends from 20-m water depth on the insular shelf to 600-m water depth in a southeast-trending trough. The sidescan images depict three principal types of sea-floor material: low-backscatter natural sediment, high-backscatter drowned carbonate reef, and intermediate-backscatter dredged-material deposits. Cores indicate that the natural sediment is muddy sand, composed of carbonate reef and microfauna debris with some volcanic grains. Vague areal trends in composition are evident. The dredged material comprises poorly sorted, cobble- to clay-size mixtures of reef, volcanic, and man-made debris, up to 35 cm thick. Dredged-material deposits are not evident in the 3.5-kHz profiles. In the sidescan images they appear as isolated, circular to subcircular imprints, apparently formed by individual drops, around the periphery of their occurrence, but they overlap and coalesce to a nearly continuous, intermediate-backscatter blanket toward the center of three disposal sites investigated. We did not observe significant currents during our camera surveys, but there is abundant evidence of sediment reworking: symmetrical and asymmetrical ripples in the visual images, sand waves in the 3.5-kHz profiles and side-scan images, moats around the reefs in 3.5-kHz profiles, winnowed dredged material in the visual images, and burial of dredged material by natural sediment in cores. Most current indicators imply a westerly to northwesterly transport direction, along contours or up-slope, although there are a few areas of easterly indicators. Internal waves probably drive the transport; their possible existence is implied by measured water-column density gradients.
Sea-floor geology of a part of Mamala Bay, Hawai'i
Hampton, M.A.; Torresan, M.E.; Barber, J.H.
1997-01-01
We surveyed the sea-floor geology within a 200-km2 area of Mamala Bay, off Honolulu, Hawai'i, by collecting and analyzing sidescan sonar images, 3.5kHz profiles, video and still visual images, and box-core samples. The study area extends from 20-m water depth on the insular shelf to 600-m water depth in a southeast-trending trough. The sidescan images depict three principal types of seafloor material: low-backscatter natural sediment, high-backscatter drowned carbonate reef, and intermediate-backscatter dredged-material deposits. Cores indicate that the natural sediment is muddy sand, composed of carbonate reef and microfauna debris with some volcanic grains. Vague areal trends in composition are evident. The dredged material comprises poorly sorted, cobble- to clay-size mixtures of reef, volcanic, and man-made debris, up to 35 cm thick. Dredged-material deposits are not evident in the 3.5-kHz profiles. In the sidescan images they appear as isolated, circular to subcircular imprints, apparently formed by individual drops, around the periphery of their occurrence, but they overlap and coalesce to a nearly continuous, intermediate-backscatter blanket toward the center of three disposal sites investigated. We did not observe noticeable currents during our camera surveys, but there is abundant evidence of sediment reworking: symmetrical and asymmetrical ripples in the visual images, sand waves in the 3.5-kHz profiles and side-scan images, moats around the reefs in 3.5-kHz profiles, winnowed dredged material in the visual images, and burial of dredged material by natural sediment in cores. Most current indicators imply a westerly to northwesterly transport direction, along contours or upslope, although there are a few areas of easterly indicators. Internal waves probably drive the transport; their possible existence is implied by measured water-column density gradients.
NASA Astrophysics Data System (ADS)
Giambastiani, B. M. S.; Colombani, N.; Mastrocicco, M.; Fidelibus, M. D.
2013-09-01
This study delineates the actual hydrogeochemistry and the geological evolution of an unconfined coastal aquifer located in a lowland setting in order to understand the drivers of the groundwater salinization. Physical aquifer parameterization highlights a vertical hydraulic gradient due to the presence of a heavy drainage system, which controls the hydrodynamics of this coastal area, forcing groundwater to flow from the bottom toward the top of the aquifer. As a consequence, relict seawater in stable density stratification, preserved within low permeability sediments in the deepest portion of the aquifer, has been drawn upward. The hydrogeochemical investigations allow identifying the role of seepage and water-sediment interactions in the aquifer salinization process and in the modification of groundwater chemistry. Mixing between freshwater and saltwater occurs; however, it is neither the only nor the dominant process driving groundwater hydrochemistry. In the aquifer several concurring and competing water-sediment interactions - as NaCl solution, ion-exchange, calcite and dolomite dissolution/precipitation, oxidation of organic matter, and sulfate bacterial reduction - are triggered by or overlap freshwater-saltwater mixing The hyper-salinity found in the deepest portion of the aquifer cannot be associated with present seawater intrusion, but suggests the presence of salt water of marine origin, which was trapped in the inter-basin during the Holocene transgression. The results of this study contribute to a better understanding of groundwater dynamics and salinization processes in this lowland coastal aquifer.
Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...
2016-05-10
In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less
Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M
2018-06-02
Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H
2017-11-01
Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Isostatic gravity map of the Point Sur 30 x 60 quadrangle and adjacent areas, California
Watt, J.T.; Morin, R.L.; Langenheim, V.E.
2011-01-01
This isostatic residual gravity map is part of a regional effort to investigate the tectonics and water resources of the central Coast Range. This map serves as a basis for modeling the shape of basins and for determining the location and geometry of faults in the area. Local spatial variations in the Earth's gravity field (after removing variations caused by instrument drift, earth-tides, latitude, elevation, terrain, and deep crustal structure), as expressed by the isostatic anomaly, reflect the distribution of densities in the mid- to upper crust, which in turn can be related to rock type. Steep gradients in the isostatic gravity field often indicate lithologic or structural boundaries. Gravity highs reflect the Mesozoic granitic and Franciscan Complex basement rocks that comprise both the northwest-trending Santa Lucia and Gabilan Ranges, whereas gravity lows in Salinas Valley and the offshore basins reflect the thick accumulations of low-density alluvial and marine sediment. Gravity lows also occur where there are thick deposits of low-density Monterey Formation in the hills southeast of Arroyo Seco (>2 km, Marion, 1986). Within the map area, isostatic residual gravity values range from approximately -60 mGal offshore in the northern part of the Sur basin to approximately 22 mGal in the Santa Lucia Range.
1989-08-01
points on both the photos and base map. Transects placed at 100-m intervals along the waterline, oriented perpendicular to the gradient or slope just...the identifica- tion of major factors influencing bank erosion, independent variables measured included gradient of the land at the intersection of...have a very steep gradient , approaching vertical in some cases, broken only by intermittent minor drainages which have dissected terrace margins. b
The Relationships Between ELM Suppression, Pedestal Profiles, and Lithium Wall Coatings in NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.P. Boyle, R. Maingi, P.B. Snyder, J. Manickam, T.H. Osborne, R.E. Bell, B.P. LeBlanc, and the NSTX Team
2012-08-17
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated to wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, D. P.; Maingi, R.; Snyder, P. B.
2011-01-01
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated with wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX.« less
NASA Astrophysics Data System (ADS)
Houben, Peter
2008-10-01
Agricultural landscapes with a millennial-scale history of cultivation are common in many loess areas of central Europe. Over time, patterns of erosion and sedimentation have been continually modified via the variable imposition of anthropogenic discontinuities and linkages on fragmented hillslope sediment cascades, which eventually caused the complicated soilscape pattern. These field records challenge topographically oriented models of hillslope erosion and simple predictions of longer-term change of spatial soilscape by cultivation activities. A thorough understanding how soilscape patterns form in the long-term, however, is essential to develop spatial concepts of the sediment budget, particularly for the spatial modeling of anthropogenic hillslope sediment flux using GIS. In this study I used extensive datasets of anthropogenic soil truncation and burial in a typical undulating loess watershed in southern Germany (10 km 2, Wetterau Basin, N of Frankfurt a.M.). Spatial soilscape properties and historic sediment flux, as caused by cultivation over seven millennia, were evaluated by these data. The soilscape pattern on the low-gradient hillslopes of the study area was found to be marked by a statistical near-random pattern of varying depth (thickness) of truncation and overthickened burial. Moreover, it was shown that truncation and burial had developed independently from each other and did not correlate with either hillslope gradient or downslope curvature. Hence, in the field any combination of (few) nearly preserved, severely truncated or completely removed soil profiles with either no, some or a thick sediment cover is present, thereby lacking an obvious spatial pattern. Here, I suggest putting long-term change of the soilscape into a contextual anthropogeomorphic systems perspective, that accommodates components of human-induced soil erosion operating at different spatial scales to interpret the longer-term spatial consequences at the hillslope-system level. In the study area, system scale linkages are marked by the spatial intersection of a finer-scaled managed field system with a broader hillslope-scale framework of 'natural' erosion controls. In the low-gradient study area, field borders exert control over the spatial reference of soil erosion and sedimentation sites. Over time, this brought about a growing historical and spatial contingency change to the soilscape, because of arbitrary spatial changes of the field system which are inherent in its socio-agricultural maintenance. Thus, the very low-gradient and low-erosivity setting of the study area have singled out the agency of human-induced spatial and connectivity controls and contingency for long-term spatial hillslope sediment flux. Although these findings may be less true for different settings, they allow for deriving a generic conceptual model of the linkages between 'natural' and anthropogenic subsystems to interpret the effects of long-term human-induced sediment flux. Accordingly, the resulting balance between on-hillslope net storage and net delivery to streams is scaling with basic physiographic properties of erosivity and sedimentation as well as the degree of anthropogenic hillslope fragmentation. For loess areas in Europe variable fields are fundamental anthropogeomorphic units that determine appropriate system scaling for historic sediment flux analysis and constrain retrodiction and prediction of changing fluxes at a point and a time at watershed scales. Methodical implications address adequate sampling strategies to record soilscape change, as a result of which a critical review of the applicability of the catena concept to long-cultivated hillslopes in central Europe was included. Finally, the suggested refined generic model of long-term, human-controlled sediment flux involves a number of research opportunities, particularly for linking modeling approaches to long-term field records of cultivation-related change in the soilscape.
NASA Astrophysics Data System (ADS)
Rapp, J. Z.; Bienhold, C.; Offre, P.; Boetius, A.
2016-02-01
The deep sea covers approximately 70% of the Earth's surface and the majority of its seafloor is composed of fine-grained sediments. Bacteria are the dominant organisms in these sediments, accounting for up to 90% of total benthic biomass. Although benthic bacterial communities are assumed to play a central role in biogeochemical cycling at the seafloor, we still have very limited knowledge of their diversity, activity and ecological functions. We sampled Arctic deep-sea surface sediments from seven stations along a gradient from 1000 m to 5500 m water depth at the long-term ecological research station HAUSGARTEN in Fram Strait. Bacterial cell numbers decreased with depth from 3.8*108 to 1.3*108 cells per ml sediment. Illumina 16S rRNA gene surveys based on DNA and cDNA revealed substantial shifts in the structure of the total and active bacterial community along this gradient, which could be linked to environmental parameters, especially organic matter availability. The functional potential and actual activity of microbial communities was investigated using meta-genomic and -transcriptomic sequencing of four representative samples. Reconstruction of 16S rRNA genes from metagenomic data indicated a stronger contribution of certain groups at 1200-2500 m depth (e.g. OM190, Planctomycetacia, Betaproteobacteria) as compared to 3500-5500 m depth (e.g. SAR202 clade, Subgroup 22, Cytophagia). Analysis of orthologous gene clusters and protein families suggested that the genetic potential of microbial communities at the deepest station varied from that of communities at shallower depth, with higher representation of genes involved in the TCA cycle and in the biosynthesis of fatty acids, amino acids and vitamin biosynthesis at the deepest station. The observed variations may result from the accumulation of organic matter at the deepest station caused by the funnel-like topography at this site. The research contributes to European Research Council Advanced Investigator grant no. 294757.
Purification of white spot syndrome virus by iodixanol density gradient centrifugation.
Dantas-Lima, J J; Corteel, M; Cornelissen, M; Bossier, P; Sorgeloos, P; Nauwynck, H J
2013-10-01
Up to now, only a few brief procedures for purifying white spot syndrome virus (WSSV) have been described. They were mainly based on sucrose, NaBr and CsCl density gradient centrifugation. This work describes for the first time the purification of WSSV through iodixanol density gradients, using virus isolated from infected tissues and haemolymph of Penaeus vannamei (Boone). The purification from tissues included a concentration step by centrifugation (2.5 h at 60,000 g) onto a 50% iodixanol cushion and a purification step by centrifugation (3 h at 80,000 g) through a discontinuous iodixanol gradient (phosphate-buffered saline, 5%, 10%, 15% and 20%). The purification from infected haemolymph enclosed a dialysis step with a membrane of 1,000 kDa (18 h) and a purification step through the earlier iodixanol gradient. The gradients were collected in fractions and analysed. The number of particles, infectivity titre (in vivo), total protein and viral protein content were evaluated. The purification from infected tissues gave WSSV suspensions with a very high infectivity and an acceptable purity, while virus purified from haemolymph had a high infectivity and a very high purity. Additionally, it was observed that WSSV has an unusually low buoyant density and that it is very sensitive to high external pressures. © 2013 John Wiley & Sons Ltd.
Harold S.J. Zald; Thomas A. Spies; Rupert Seidl; Robert J. Pabst; Keith A. Olsen; Ashley Steel
2016-01-01
Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and...
Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; William A. Hoffmann; Frederick C. Meinzer; Augusto C. Franco; Thomas Giambelluca; Fernando Miralles-Wilhelm
2008-01-01
Environmental controls of stand-level tree transpiration (E) and seasonal patterns of soil water utilization were studied in five central Brazilian savanna (Cerrado) sites differing in tree density. Tree density of Cerrado vegetation in the study area consistently changes along topographic gradients from ~1,000 trees ha-1 in open savannas (campo...
River sedimentation and channel bed characteristics in northern Ethiopia
NASA Astrophysics Data System (ADS)
Demissie, Biadgilgn; Billi, Paolo; Frankl, Amaury; Haile, Mitiku; Lanckriet, Sil; Nyssen, Jan
2016-04-01
Excessive sedimentation and flood hazard are common in ephemeral streams which are characterized by flashy floods. The purposes of this study was to investigate the temporal variability of bio-climatic factors in controlling sediment supply to downstream channel reaches and the effect of bridges on local hydro-geomorphic conditions in causing the excess sedimentation and flood hazard in ephemeral rivers of the Raya graben (northern Ethiopia). Normalized Difference Vegetation Index (NDVI) was analyzed for the study area using Landsat imageries of 1972, 1986, 2000, 2005, 2010, and 2012). Middle term, 1993-2011, daily rainfall data of three meteorological stations, namely, Alamata, Korem and Maychew, were considered to analyse the temporal trends and to calculate the return time intervals of rainfall intensity in 24 hours for 2, 5, 10 and 20 years using the log-normal and the Gumbel extreme events method. Streambed gradient and bed material grain size were measured in 22 river reaches (at bridges and upstream). In the study catchments, the maximum NDVI values were recorded in the time interval from 2000 to 2010, i.e. the decade during which the study bridges experienced the most severe excess sedimentation problems. The time series analysis for a few rainfall parameters do not show any evidence of rainfall pattern accountable for an increase in sediment delivery from the headwaters nor for the generation of higher floods with larger bedload transport capacities. Stream bed gradient and bed material grain size data were measured in order to investigate the effect of the marked decrease in width from the wide upstream channels to the narrow recently constructed bridges. The study found the narrowing of the channels due to the bridges as the main cause of the thick sedimentation that has been clogging the study bridges and increasing the frequency of overbank flows during the last 15 years. Key terms: sedimentation, ephemeral streams, sediment size, bridge clogging
Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.
Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E
2017-10-01
Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across intertidal wetland systems. © 2017 John Wiley & Sons Ltd.
Xie, James Y; Wong, Jane C Y; Dumont, Clement P; Goodkin, Nathalie; Qiu, Jian-Wen
2016-07-15
Borehole density on the surface of Porites has been used as an indicator of water quality in the Great Barrier Reef. We assessed the relationship between borehole density on Porites and eight water quality parameters across 26 sites in Hong Kong. We found that total borehole densities on the surface of Porites at 16 of the studied sites were high (>1000individualsm(-2)), with polychaetes being the dominant bioeroders. Sedimentation rate was correlated positively with total borehole density and polychaete borehole density, with the latter relationship having a substantially higher correlation of determination. None of the environmental factors used were significantly correlated with bivalve borehole density. These results provide a baseline for assessing future changes in coral bioerosion in Hong Kong. This present study also indicates that polychaete boreholes can be used as a bioindicator of sedimentation in the South China Sea region where polychaetes are numerically dominant bioeroders. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Kyoung Ho; Zhang, Zhifeng; Kim, Jae Min; Seon, Seung Chun; Shao, Mingyu
2010-03-01
Biological activities of marine benthos such as burrowing and feeding may change sediment characteristics. We conducted three experiments to examine the potential of using juveniles of a spoon worm Urechis unicinctus to improve the quality of organically contaminated coastal sediment. Sediment samples were collected from a site that was heavily contaminated with organic matter (Seonso) and two sites that were clean (Myo-do, Dolsan-do). Urechis juveniles, obtained by artificial fertilization and cultured in the laboratory, were introduced to the sediment (weight 3 kg, depth 10 cm) at a density of 500 individuals per aquarium (length 50 cm, width 35 cm, height 30 cm) (Experiment 1), or at densities ranging from 100 to 900 individuals per beaker (Experiment 2). To examine how sediment contamination can be modified by the effects of Urechis, 500 individuals (per aquarium) were exposed to the Seonso contaminated sediment that had been mixed with 0-100% clean sand (Experiment 3). Each experiment lasted two months and sediment samples were collected every 15 d to determine the several indexes of sediment quality, which included acid volatile sulfide (AVS), chemical oxygen demand (COD) and total ignition loss (TIL). In Experiment 1, the existence of Urechis did not result in significant changes in quality indexes in the sediments collected from Myo-do, Dolsan-do. However, AVS, COD and TIL of the Seonso sediment all decreased significantly after co-incubation with Urechis juveniles for 30 to 45 d. Experiment 2 showed that a density of at least 300 juveniles per beaker was necessary to significantly reduce all three quality indexes, and the magnitude of reduction was positively correlated with juvenile density. Experiment 3 revealed that Urechis juveniles were effective in reducing the AVS, COD and TIL of the Seonso sediment that had been mixed with 60%, 80%, and 80% of clean sand, respectively. The results of the present study therefore indicated that juveniles of this spoon worm have the potential to be used to improve the quality of organically contaminated sediment in coastal waters.
Pereira, W.E.; Hostettler, F.D.; Rapp, J.B.
1996-01-01
The distribution and fate of chlorinated pesticides, biomarkers, and polycyclic aromatic hydrocarbons (PAHs) in surficial sediments along a contamination gradient in the Lauritzen Canal and Richmond Harbor in San Francisco Bay was investigated. Compounds were identified and quantified using gas chromatography-ion trap mass spectrometry. Biomarkers and PAHs were derived primarily from weathered petroleum. DDT was reductively dechlorinated under anoxic conditions to DDD and several minor degradation products, DDMU, DDMS, and DDNU. Under aerobic conditions, DDT was dehydrochlorinated to DDE and DBP. Aerobic degradation of DDT was diminished or inhibited in zones of high concentration, and increased significantly in zones of lower concentration: Other chlorinated pesticides identified in sediment included dieldrin and chlordane isomers. Multivariate analysis of the distributions of the DDTs suggested that there are probably two sources of DDD. In addition, DDE and DDMU are probably formed by similar mechanisms, i.e. dehydrochlorination. A steep concentration gradient existed from the Canal to the Outer Richmond Harbor, but higher levels of DDD than those found in the remainder of the Bay indicated that these contaminants are transported on particulates and colloidal organic matter from this source into San Francisco Bay. Chlorinated pesticides and PAHs may pose a potential problem to biota in San Francisco Bay.
Evaluating the Role of Small Impoundments in Legacy Sediment Storage
NASA Astrophysics Data System (ADS)
Bain, D. J.; Salant, N.; Green, M. B.; Wreschnig, A. J.; Urbanova, T.
2009-12-01
Recent research highlighting the prevalence of dams built for water power in the mid-1800s has led to suggestions that strategies for managing legacy sediment in the Eastern United States should be re-evaluated. However, the link between reach-scale observations of historic dam sites to processes at the catchment scale have not been examined, nor have the role of other, similar historic changes been evaluated. This presentation will compare dam dynamics, including mill density data and synthetic estimates of beaver populations with sedimentation rates recorded in sediment cores. If low-head dams were a dominant mechanism in sediment storage, we expect to see changes in sedimentation rates with the expatriation of the beaver and the rise and decline of water power. Further, we expect to see spatial variation in these changes as beaver and mill densities and potential sediment yield are spatially heterogeneous. Ultimately, dramatic changes in sediment yield due to land use and hydrological alterations likely drove sedimentation rates; the mechanistic importance of storage likely depends on temporal coincidence.
Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale
MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah
2000-01-01
Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.
Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2014-10-01
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
An Improved Experimental Method for Simulating Erosion Processes by Concentrated Channel Flow
Chen, Xiao-Yan; Zhao, Yu; Mo, Bin; Mi, Hong-Xing
2014-01-01
Rill erosion is an important process that occurs on hill slopes, including sloped farmland. Laboratory simulations have been vital to understanding rill erosion. Previous experiments obtained sediment yields using rills of various lengths to get the sedimentation process, which disrupted the continuity of the rill erosion process and was time-consuming. In this study, an improved experimental method was used to measure the rill erosion processes by concentrated channel flow. By using this method, a laboratory platform, 12 m long and 3 m wide, was used to construct rills of 0.1 m wide and 12 m long for experiments under five slope gradients (5, 10, 15, 20, and 25 degrees) and three flow rates (2, 4, and 8 L min−1). Sediment laden water was simultaneously sampled along the rill at locations 0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 10 m, and 12 m from the water inlet to determine the sediment concentration distribution. The rill erosion process measured by the method used in this study and that by previous experimental methods are approximately the same. The experimental data indicated that sediment concentrations increase with slope gradient and flow rate, which highlights the hydraulic impact on rill erosion. Sediment concentration increased rapidly at the initial section of the rill, and the rate of increase in sediment concentration reduced with the rill length. Overall, both experimental methods are feasible and applicable. However, the method proposed in this study is more efficient and easier to operate. This improved method will be useful in related research. PMID:24949621
Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2014-01-01
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. PMID:25063666
Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.
2015-01-01
Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.
NASA Astrophysics Data System (ADS)
Riebe, C. S.; Marshall, J. A.; Sklar, L. S.; Granger, D. E.
2008-12-01
River incision sets the pace of landscape evolution and so is crucial to linkages among climate, tectonics and topography. Theoretical and experimental studies indicate that bedrock river incision should be regulated by both the quantity and caliber of sediment supply, which together affect the availability and persistence of bed-scouring tools in the channel. Rates of sediment supply are now quantified routinely using cosmogenic- radionuclide-based (CRN) measurements of hillslope erosion rates. Although grain-size data are also measured routinely (e.g., as part of state and federal soil surveys), they are not widely available for soils with well-constrained rates of erosion and weathering. As a result, there is much to learn about how weathering and erosion interrelate to regulate grain-size distributions in hillslope soils. Moreover, we lack a strong empirical basis for investigating how the rate and caliber of sediment supply affect bedrock river incision in natural systems. Here we compare new grain-size data with existing CRN-based rates of erosion and weathering for a series of granitic soils at two climatically diverse sites in the Sierra Nevada, California. Our results indicate that the percentage of coarse material---which presumably becomes the bedload that abrades and lowers channels---varies significantly across each site. At the colder, wetter site, differences in grain size and soil depth are substantial, despite little variability in erosion rates; coarse material abundance appears to increase with the density of bedrock outcrops, which increases with hillslope gradients, according to previous work. At the hotter, drier site, where rates of erosion and weathering vary by 10-fold, soil thickness and texture and the abundance of outcrops do not vary systematically across the landscape. We speculate that the differences in soil development across our two sites partly reflect effects of small differences in the ratio of biotite to hornblende in the parent rock. We discuss implications for constraining the rate and caliber of sediment supply to rivers.
Sorting process of nanoparticles and applications of same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, Timothy P.; Henry, Anne-Isabelle; Van Duyne, Richard P.
In one aspect of the present invention, a method for sorting nanoparticles includes preparing a high-viscosity density gradient medium filled in a container, dispersing nanoparticles into an aqueous solution to form a suspension of the nanoparticles, each nanoparticle having one or more cores and a shell encapsulating the one or more cores, layering the suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container, and centrifugating the layered suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container at a predetermined speed for a predetermined period of timemore » to form a gradient of fractions of the nanoparticles along the container, where each fraction comprises nanoparticles in a respective one of aggregation states of the nanoparticles.« less
NASA Astrophysics Data System (ADS)
Jimenez, Joselyn; Goubert, Evelyne; Labeyrie, Laurent; Coynel, Alexandra; Menier, David
2014-05-01
The Morbihan Coast (South Brittany, France) has an intense coastal activity: farming, industry, urban habitation run-off, yachting and transportation. In the past centuries, tin mining industry was also developed. These different factors may introduce metal trace elements (MTE) into the marine environment at toxic concentration levels. This pollution can particularly affect the oyster production, widely developed in the area. Monitoring MTE in surface sediments at high spatial resolution has been programmed to assess pollutants and their sources in two of the major Morbihan coastal systems concerned with oyster farming, and where available information on MTE impact and sediment quality is limited: the Bay of Quiberon, partly protected from the open ocean by the Quiberon Peninsula and several islands, mostly sandy (coarse to fine, with a significant shelly fraction), with water depths shallower that 25 m, and the Gulf of Morbihan, a shallow depth (less than 5 m, apart from the two paleoriver beds), semi-enclosed, estuarine system with very coarse sand to fine mud, mostly distributed by a strong tidal current system. Fifty two surface sediment samples were collected in April 2013 to characterize the MTE spatial distribution through the salinity and pollution gradients, from the small local rivers and harbor areas to the open marine environments. Analyses cover sedimentological and biogeochemical properties (particulate organic carbon using a LECO-CS-230; MTE using ICP-MS or DMA for Hg). Statistical analyses help to discriminate within the spatial variability the natural (e.g. grain-size effect) and anthropogenic factors. MTE concentrations were also compared to local geochemical background as measured at the bottom of three sediment cores collected in representative sites, for calculating the enrichment index of each MTE and evaluating the degree of sediment contamination. The initial interpretation of the results would indicate a clear distinction between the geochemical gradients linked to natural processes: sediment sources and size fractionation (for example, the relationship between Sr and carbonate concentration in the sand fraction), and gradients linked to polluting factors, in particular in the harbors and protected arias, probably associated with boat maintenance (with Cu, Zn and Sn concentrations exceeding 100 ppm, up to 300 ppm in isolated places). More detailed statistical analyses and implications will be presented at the conference.
Fulton, M; Key, P; Wirth, E; Leight, A K; Daugomah, J; Bearden, D; Sivertsen, S; Scott, G
2006-10-01
Toxic contaminants may enter estuarine ecosystems through a variety of pathways. When sediment contaminant levels become sufficiently high, they may impact resident biota. One approach to predict sediment-associated toxicity in estuarine ecosystems involves the use of sediment quality guidelines (ERMs, ERLs) and site-specific contaminant chemistry while a second approach utilizes site-specific ecological sampling to assess impacts at the population or community level. The goal of this study was to utilize an integrated approach including chemical contaminant analysis, sediment quality guidelines and grass shrimp population monitoring to evaluate the impact of contaminants from industrial sources. Three impacted sites and one reference site were selected for study. Grass shrimp populations were sampled using a push-netting approach. Sediment samples were collected at each site and analyzed for metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Contaminant levels were then compared to sediment quality guidelines. In general, grass shrimp population densities at the sites decreased as the ERM quotients increased. Grass shrimp densities were significantly reduced at the impacted site that had an ERM exceedance for chromium and the highest Mean ERM quotient. Regression analysis indicated that sediment chromium concentrations were negatively correlated with grass shrimp density. Grass shrimp size was reduced at two sites with intermediate levels of contamination. These findings support the use of both sediment quality guidelines and site-specific population monitoring to evaluate the impacts of sediment-associated contaminants in estuarine systems.
Acoustic Velocity Of The Sediments Offshore Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Tsai, C.; Liu, C.; Huang, P.
2004-12-01
Along the Manila Trench south of 21øXN, deep-sea sediments are being underthrusted beneath the Taiwan accretionary prism which is composed of the Kaoping Slope and Hengchun Ridge. Offshore southwestern Taiwan, foreland sediments and Late Miocene strata of the Tainan Basin are being accreted onto the fold-and thrust belt of the syn-collision accretionary wedge of the Kaoping Slope. The Kaoping Slope consists of thick Neogene to Recent siliciclastics deformed by fold-and-thrust structures and mud diapers. These Pliocene-Quaternary sediments deposited in the Kaoping Shelf and upper slope area are considered to be paleo-channel deposits confined by NNE-SSW trend mud diapiric structure. Seismic P-wave velocities of the sediment deposited in the Kaoping Shelf and Kaoping Slope area are derived from mutichannel seismic reflection data and wide-angle reflection and refraction profiles collected by sonobuoys. Sediment velocity structures constrained from mutichannel seismic reflection data using velocity spectrum analysis method and that derived from sonobuoy data using tau-sum inversion method are compared, and they both provide consistent velocity structures. Seismic velocities were analyzed along the seismic profile from the surface to maximum depths of about 2.0 km below the seafloor. Our model features a sediment layer1 with 400 ms in thickness and a sediment layer2 with 600 ms in thickness. For the shelf sediments, we observe a linear interval velocity trend of V=1.53+1.91T in layer1, and V=1.86+0.87T in layer2, where T is the one way travel time within the layer. For the slop sediment, the trend of V=1.47+1.93T in layer1, and V=1.70+1.55T in layer2. The layer1¡¦s velocities gradients are similar between the shelf (1.91 km/sec2) and the slope(1.93 km/sec2). It means layer1 distributes over the slope and shelf widely. The result of the sediment velocity gradients in this area are in good agreement with that reported for the south Atlantic continental margins.
NASA Astrophysics Data System (ADS)
Thompson, Diane M.; Conroy, Jessica L.; Collins, Aaron; Hlohowskyj, Stephan R.; Overpeck, Jonathan T.; Riedinger-Whitmore, Melanie; Cole, Julia E.; Bush, Mark B.; Whitney, H.; Corley, Timothy L.; Kannan, Miriam Steinitz
2017-08-01
Finely laminated sediments within Bainbridge Crater Lake, Galápagos, provide a record of El Niño-Southern Oscillation (ENSO) events over the Holocene. Despite the importance of this sediment record, hypotheses for how climate variability is preserved in the lake sediments have not been tested. Here we present results of long-term monitoring of the local climate and limnology and a revised interpretation of the sediment record. Brown-green, organic-rich, siliciclastic laminae reflect warm, wet conditions typical of El Niño events, whereas carbonate and gypsum precipitate during cool, dry La Niña events and persistent dry periods, respectively. Applying this new interpretation, we find that ENSO events of both phases were generally less frequent during the mid-Holocene ( 6100-4000 calendar years B.P.) relative to the last 1500 calendar years. Abundant carbonate laminations between 3500 and 3000 calendar years B.P. imply that conditions in the Galápagos region were cool and dry during this period when the tropical Pacific E-W sea surface temperature (SST) gradient likely strengthened. The frequency of El Niño and La Niña events then intensified dramatically around 1750-2000 calendar years B.P., consistent with a weaker SST gradient and an increased frequency of ENSO events in other regional records. This strong interannual variability persisted until 700 calendar years B.P., when ENSO-related variability at the lake decreased as the SST gradient strengthened. Persistent, dry conditions then dominated between 300 and 50 calendar years B.P. (A.D. 1650-1900, ± 100 years), whereas wetter conditions and frequent El Niño events dominated in the most recent century.
Methylmercury bioaccumulation in an urban estuary: Delaware River USA.
Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia
2017-09-01
Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.
Shortt, Niamh K; Tisch, Catherine; Pearce, Jamie; Mitchell, Richard; Richardson, Elizabeth A; Hill, Sarah; Collin, Jeff
2015-10-05
There is a strong socio-economic gradient in both tobacco-and alcohol-related harm. One possible factor contributing to this social gradient may be greater availability of tobacco and alcohol in more socially-deprived areas. A higher density of tobacco and alcohol outlets is not only likely to increase supply but also to raise awareness of tobacco/alcohol brands, create a competitive local market that reduces product costs, and influence local social norms relating to tobacco and alcohol consumption. This paper examines the association between the density of alcohol and tobacco outlets and neighbourhood-level income deprivation. Using a national tobacco retailer register and alcohol licensing data this paper calculates the density of alcohol and tobacco retail outlets per 10,000 population for small neighbourhoods across the whole of Scotland. Average outlet density was calculated for neighbourhoods grouped by their level of income deprivation. Associations between outlet density and deprivation were analysed using one way analysis of variance. There was a positive linear relationship between neighbourhood deprivation and outlets for both tobacco (p <0.001) and off-sales alcohol (p <0.001); the most deprived quintile of neighbourhoods had the highest densities of both. In contrast, the least deprived quintile had the lowest density of tobacco and both off-sales and on-sales alcohol outlets. The social gradient evident in alcohol and tobacco supply may be a contributing factor to the social gradient in alcohol- and tobacco-related disease. Policymakers should consider such gradients when creating tobacco and alcohol control policies. The potential contribution to public health, and health inequalities, of reducing the physical availability of both alcohol and tobacco products should be examined in developing broader supply-side interventions.
NASA Astrophysics Data System (ADS)
Bauch, H. A.; Zhuravleva, A.
2017-12-01
Meridional gradients in sea surface temperature (SST) control ocean-atmosphere circulation patterns and, thus, regulate the global climate. Here we reconstruct variability of these gradients in the course of the Last Interglacial (MIS5e), by using sediment records from the low and high latitude North Atlantic which are linked via the Gulf Stream.In the Nordic Seas, i.e., at the northern end of the Gulf Stream extension, strong post-Saalian meltwater discharge reduced northward-directed transport of surface oceanic heat until the mid-MIS5e, resulting in a late and rather weak SST peak. To decipher the corresponding climatic changes in the area of the Gulf Stream origin, we employ stable isotopes data, planktic foraminifera assemblages as well as a new alkenone paleotemperature record from core drilled on the upper northern slope of the Little Bahama Bank. In addition, chemical composition of sediments (XRF data) was used to asses past sea level fluctuations and sedimentation regimes on this shallow-water carbonate bank. Significant variations in Sr/Ca ratios point to a two-fold structure of the Last Interglacial. Stabilized Sr/Ca values were reached only during the second phase of MIS5e, possibly representing the interval of maximum bank-top flooding after the northern hemisphere deglaciation terminated. Faunal-based proxies as well as oxygen isotopic gradients between surface and bottom-dwelling foraminifera corroborate existence of the two major climatic phases within the Last Interglacial, in agreement with the respective development in the polar region. This further suggests a strong climatic coupling between the subtropical and high-latitude North Atlantic with important implications for meridional SST gradients during the Last Interglacial.
Röske, Kerstin; Sachse, René; Scheerer, Carola; Röske, Isolde
2012-02-01
Sediments contain a huge number and diversity of microorganisms that are important for the flux of material and are pivotal to all major biogeochemical cycles. Sediments of reservoirs are affected by a wide spectrum of allochthous and autochthonous influences providing versatile environments along the flow of water within the reservoir. Here we report on the microbial diversity in sediments of the mesotrophic drinking water reservoir Saidenbach, Germany, featuring a pronounced longitudinal gradient in sediment composition in the reservoir system. Three sampling sites were selected along the gradient, and the microbial communities in two sediment depths were characterized using catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and a bar-coded pyrosequencing approach. Multivariate statistic was used to reveal relationships between sequence diversity and the environmental conditions. The microbial communities were tremendously diverse with a Shannon index of diversity (H') ranging from 6.7 to 7.1. 18,986 sequences could be classified into 37 phyla including candidate divisions, but the full extent of genetic diversity was not captured. While CARD-FISH gave an overview about the community composition, more detailed information was gained by pyrosequencing. Bacteria were more abundant than Archaea. The dominating phylum in all samples was Proteobacteria, especially Betaproteobacteria and Deltaproteobacteria. Furthermore, sequences of Bacteroidetes, Verrucomicrobia, Acidobacteria, Chlorobi, Nitrospira, Spirochaetes, Gammaproteobacteria, Alphaproteobacteria, Chloroflexi, and Gemmatimonadetes were found. The site ammonium concentration, water content and organic matter content revealed to be strongest environmental predictors explaining the observed significant differences in the community composition between sampling sites. Copyright © 2011 Elsevier GmbH. All rights reserved.
Nunoura, Takuro; Oida, Hanako; Nakaseama, Miwako; Kosaka, Ayako; Ohkubo, Satoru B.; Kikuchi, Toru; Kazama, Hiromi; Hosoi-Tanabe, Shoko; Nakamura, Ko-ichi; Kinoshita, Masataka; Hirayama, Hisako; Inagaki, Fumio; Tsunogai, Urumu; Ishibashi, Jun-ichiro; Takai, Ken
2010-01-01
A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90°C). A moderate temperature gradient extends both horizontally and vertically (5 to 69°C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts. PMID:20023079
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozkaya, Uğur, E-mail: ugur.bozkaya@hacettepe.edu.tr; Department of Chemistry, Atatürk University, Erzurum 25240; Sherrill, C. David
2016-05-07
An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbitalmore » (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C{sub 10}H{sub 22}), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.« less
González-Gamboa, Nancy Karina; Valdés-Lozano, David Sergio; Barahona-Pérez, Luis Felipe; Alzate-Gaviria, Liliana; Domínguez-Maldonado, Jorge Arturo
2017-02-01
Sediment microbial fuel cells (SMFCs) are devices that generate electrical energy through sediments rich in organic matter (OM). The present study assessed the potential of sediments collected at two sites in Yucatan, Mexico, (the swamp of Progreso port and Yucalpetén dock) to be used in these electrochemical devices. Sediments were collected during the rainy and winter seasons and were monitored in the SMFC for 120 days through electrochemical and physicochemical characterization. OM removal in the SMFC ranged from 8.1-18.01%, generating a maximum current density of 232.46 mA/cm 2 and power density of 95.85 mW/cm 2 . SUVA analysis indicated that with a young soil, the ratio E4/E6 presented evidence directly related to the degradation of aromatic and aliphatic compound formation, implying humification and, therefore, sediment enrichment.
Harvesting energy from the marine sediment--water interface.
Reimers, C E; Tender, L M; Fertig, S; Wang, W
2001-01-01
Pairs of platinum mesh or graphite fiber-based electrodes, one embedded in marine sediment (anode), the other in proximal seawater (cathode), have been used to harvest low-level power from natural, microbe established, voltage gradients at marine sediment-seawater interfaces in laboratory aquaria. The sustained power harvested thus far has been on the order of 0.01 W/m2 of electrode geometric area but is dependent on electrode design, sediment composition, and temperature. It is proposed that the sediment/anode-seawater/cathode configuration constitutes a microbial fuel cell in which power results from the net oxidation of sediment organic matter by dissolved seawater oxygen. Considering typical sediment organic carbon contents, typical fluxes of additional reduced carbon by sedimentation to sea floors < 1,000 m deep, and the proven viability of dissolved seawater oxygen as an oxidant for power generation by seawater batteries, it is calculated that optimized power supplies based on the phenomenon demonstrated here could power oceanographic instruments deployed for routine long-term monitoring operations in the coastal ocean.
Riparian Vegetation, Sediment Dynamics and Hydrologic Change in the Minnesota River Basin
NASA Astrophysics Data System (ADS)
Batts, V. A.; Triplett, L.; Gran, K. B.; Lenhart, C. F.
2014-12-01
In the last three decades the Minnesota River Basin (MRB) has experienced increased precipitation and anthropogenic alteration to the drainage network, which contributes to higher flows and increased sediment loading. From field and laboratory approaches, this study investigates the implications of hydrologic change on the colonization of riparian vegetation on pointbars, and of vegetation loss on near-channel sediment storage within the lower Minnesota River. Field surveys consisted of vegetation surveys along pointbars, which were then related to flow records. Surveys revealed a dominance of woody seedlings over older established saplings, and high frequencies of species with alternative forms of propagation that tolerate high flows such as sandbar willow (Salix interior), and beggarticks (Bidens sp.). Surveys also showed in increase in elevation of plant establishment from measurements taken in 1979, resulting in higher area of exposed pointbar and easier mobilization of sediment. Geospatial analysis completed at each sampling location found decreased area of exposed pointbar in association with increases in pointbar vegetation between lower flow years and increased area of exposed pointbar in association with decreased pointbar vegetation between higher flow years. An experimental approach addresses implications of vegetation loss on pointbar sediment storage. In a 1.5m x 6m flume, we are conducting experiments to measure the efficiency of bar vegetation in trapping fine sediment as a function of stem density. Self-formed pointbars are vegetated at varying densities with Medicago sativa (alfalfa) sprouts to represent riparian woody saplings, then flooded with fine sediment-rich water to simulate summer flooding. Sediment deposited at each stem density is then measured to estimate efficiency. While results of these experiments are currently ongoing, we hypothesize that a threshold density exists at which trapping efficiency declines substantially. Preliminary results from this study demonstrate the biogeomorphic relationships between hydrologic regime, vegetation establishment, and sediment storage within the MRB. An understanding of these relationships will aid in development and implication of management actions necessary to address sediment related impairments in the MRB.
NASA Astrophysics Data System (ADS)
Wakeham, S. G.; Canuel, E. A.
2015-10-01
Rivers are the primary means by which sediments and carbon are transported from the terrestrial biosphere to the oceans but gaps remain in our understanding of carbon associations from source to sink. Bed sediments from the Sacramento-San Joaquin River Delta (CA) were fractionated according to density and analyzed for sediment mass distribution, elemental (C and N) composition, mineral surface area, and stable carbon and radiocarbon isotope compositions of organic carbon (OC) and fatty acids to evaluate the nature of organic carbon in river sediments. OC was unevenly distributed among density fractions. Mass and TOC were in general concentrated in mesodensity (1.6-2.0 and 2.0-2.5 g cm-3) fractions, comprising 84.0 ± 1.3 % of total sediment mass and 80.8 ± 13.3 % of total OC (TOC). Low density (< 1.6 g cm-3) material, although rich in OC (34.0 ± 2.0 % OC) due to woody debris, constituted only 17.3 ± 12.8 % of TOC. High density (> 2.5 g cm-3) organic-poor, mineral material made-up 13.7 ± 1.4 % of sediment mass and 2.0 ± 0.9 % of TOC. Stable carbon isotope compositions of sedimentary OC were relatively uniform across bulk and density fractions (δ13C -27.4 ± 0.5 ‰). Radiocarbon content varied from Δ14C values of -382 (radiocarbon age 3800 yr BP) to +94 ‰ (modern) indicating a~mix of young and pre-aged OC. Fatty acids were used to further constrain the origins of sedimentary OC. Short-chain n-C14-n-C18 fatty acids of algal origin were depleted in δ13C (δ13C -37.5 to -35.2 ‰) but were enriched in 14C (Δ14C > 0) compared to long-chain n-C24-n-C28 acids of vascular plant origins with higher δ13C (-33.0 to -31.0 ‰) but variable Δ14C values (-180 and 61 ‰). These data demonstrate the potentially complex source and age distributions found within river sediments and provide insights about sediment and organic matter supply to the Sacramento-San Joaquin River Delta.
Fully kinetic Biermann battery and associated generation of pressure anisotropy
NASA Astrophysics Data System (ADS)
Schoeffler, K. M.; Loureiro, N. F.; Silva, L. O.
2018-03-01
The dynamical evolution of a fully kinetic, collisionless system with imposed background density and temperature gradients is investigated analytically. The temperature gradient leads to the generation of temperature anisotropy, with the temperature along the gradient becoming larger than that in the direction perpendicular to it. This causes the system to become unstable to pressure anisotropy driven instabilities, dominantly to the electron Weibel instability. When both density and temperature gradients are present and nonparallel to each other, we obtain a Biermann-like linear-in-time magnetic field growth. Accompanying particle-in-cell numerical simulations are shown to confirm our analytical results.
NASA Astrophysics Data System (ADS)
Beaud, Flavien; Flowers, Gwenn E.; Venditti, Jeremy G.
2017-04-01
The role of glaciers in landscape evolution is central to the interactions between climate and tectonic forces at high latitudes and in mountainous regions. Sediment yields from glacierized basins are used to quantify contemporary erosion rates on seasonal to decadal timescales, often under the assumption that subglacial water flow is the main contributor to these yields. Two recent studies have furthermore used such sediment fluxes to calibrate a glacial erosion rule, where erosion rate scales with ice sliding speed raised to a power greater than one. Subglacial sediment transport by water flow has however seldom been studied, thus the controls on sediment yield from glacierized basins remain enigmatic. To bridge this gap, we develop a 1-D model of morphodynamics in semi-circular bedrock-floored subglacial channels. We adapt a sediment conservation law from the fluvial literature, developed for both mixed bedrock / alluvial and alluvial conditions, to subglacial channels. Channel evolution is a function of the traditional melt-opening due to viscous heat dissipation from the water flow, and creep closure of the overlying ice, to which we add the closure or enlargement due to sediment deposition or removal, respectively. Using a simple ice geometry representing a land-terminating glacier, we find that the shear stresses produced by the water flow on the bed decrease significantly near the terminus. As the ice thins, creep closure decreases and large hydraulic potential gradients cannot be sustained. The resulting gradients in sediment transport lead to a bottleneck, and sediment accumulates if the sediment supply is adequate. A similar bottleneck occurs if a channel is well established and water discharge drops. Whether such constriction happens in space of time, in the presence of a sufficiently large sediment supply sediment accumulates temporarily near the terminus, followed shortly thereafter by enhanced sediment transport. Reduction in the cross-sectional area of the channel by sediment storage leads to enhanced shear stresses and transport rates. As a result, assuming a constant sediment input and a seasonal water forcing sediment delivery to the proglacial environment undergoes two phases determined by a combination of meltwater discharge and channel development. In the stage of the melt season dominated by channel growth and increasing discharge, the sediment yield is virtually constant and matches the input. In contrast, during the stage dominated by channel closure and decreasing discharge the sediment yield exhibits daily fluctuations caused by temporary sediment storage in the channel. Our findings thus suggest that contemporary sediment yields may be controlled by the dynamics of subglacial water flow in the vicinity of the terminus. This provides a new perspective for the interpretation of proglacial sediment fluxes, fluxes which are central to refining glacial erosion laws utilized in landscape evolution models.
Sedimentation of Free and Attached Cryptosporidium Oocysts and Giardia Cysts in Water
Medema, G. J.; Schets, F. M.; Teunis, P. F. M.; Havelaar, A. H.
1998-01-01
Experimental analysis of the sedimentation velocity of Cryptosporidium parvum oocysts and Giardia lamblia cysts was compared with mathematical description of their sedimentation velocities by using measurements of (oo)cyst size and density and the density and viscosity of the sedimentation medium to determine if the sedimentation kinetics of freely suspended oocysts of C. parvum and cysts of G. lamblia can be described by Stokes’ law. The theoretically calculated sedimentation kinetics showed a good agreement with the experimentally observed kinetics. Both showed a decline in sedimentation velocity over time, caused primarily by variation in (oo)cyst density. The initial apparent sedimentation velocities in Hanks balanced salt solution at 23°C was 0.35 μm · s−1 for oocysts and 1.4 μm · s−1 for cysts. (Oo)cysts that enter the surface water environment by discharges of biologically treated sewage may be attached to sewage particles, and this will affect their sedimentation kinetics. Therefore, (oo)cysts were mixed with settled secondary effluent. (Oo)cysts readily attached to the (biological) particles in effluent; 30% of both cysts and oocysts attached during the first minutes of mixing, and this fraction increased to approximately 75% after 24 h. The sedimentation velocity of (oo)cysts attached to secondary effluent particles increased with particle size and was (already in the smallest size fraction [1 to 40 μm]) determined by the sedimentation kinetics of the effluent particles. The observed sedimentation velocities of freely suspended (oo)cysts are probably too low to cause significant sedimentation in surface water or reservoirs. However, since a significant proportion of both cysts and oocysts attached readily to organic biological particles in secondary effluent, sedimentation of attached (oo)cysts after discharge into surface water will probably be a significant factor in the environmental ecology of C. parvum and G. lamblia. Attachment to particles influences not only sedimentation of (oo)cysts in surface water but also their behavior in drinking water treatment processes. PMID:9797307
Highton, Matthew P; Roosa, Stéphanie; Crawshaw, Josie; Schallenberg, Marc; Morales, Sergio E
2016-01-01
Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries) creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN) and phosphorous gradient (DRP). Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH , nirS , nosZI , and nosZII using qPCR), potential activity (via denitrification enzyme activity), as well as using changes in total community (via 16S rRNA gene amplicon sequencing). Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance) and functional level (proportion of the microbial community carrying nifH and nosZI genes) were most strongly associated with physical gradients (e.g., lake depth, sediment grain size, sediment porosity) and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.
Generation of a wakefield undulator in plasma with transverse density gradient
Stupakov, Gennady V.
2017-11-30
Here, we show that a short relativistic electron beam propagating in a plasma with a density gradient perpendicular to the direction of motion generates a wakefield in which a witness bunch experiences a transverse force. A density gradient oscillating along the beam path would create a periodically varying force$-$an undulator, with an estimated strength of the equivalent magnetic field more than ten Tesla. This opens an avenue for creation of a high-strength, short-period undulators, which eventually may lead to all-plasma, free electron lasers where a plasma wakefield acceleration is naturally combined with a plasma undulator in a unifying, compact setup.
Generation of a wakefield undulator in plasma with transverse density gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stupakov, Gennady V.
Here, we show that a short relativistic electron beam propagating in a plasma with a density gradient perpendicular to the direction of motion generates a wakefield in which a witness bunch experiences a transverse force. A density gradient oscillating along the beam path would create a periodically varying force$-$an undulator, with an estimated strength of the equivalent magnetic field more than ten Tesla. This opens an avenue for creation of a high-strength, short-period undulators, which eventually may lead to all-plasma, free electron lasers where a plasma wakefield acceleration is naturally combined with a plasma undulator in a unifying, compact setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoggins, M.; McClintock, N.L.; Gosselink, L.
2007-12-15
Parking-lot pavement sealants recently have been recognized as a major source of polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments in Austin, Texas. Laboratory and field studies have shown that PAHs in sediments can be toxic to aquatic organisms and can degrade aquatic communities. After identifying increases in concentrations of PAHs in sediments below seal-coated parking lots, we investigated whether the increases had significant effects on stream biota in 5 Austin streams. We sampled sediment chemistry and biological communities above and below the point at which stormwater runoff from the parking lots discharged into the streams, thus providing 5 upstreammore » reference sites and 5 downstream treatment sites. Differences between upstream and downstream concentrations of total PAH ranged from 3.9 to 32 mg/kg. Analysis of the species occurrence data from pool and riffle habitats indicated a significant decrease in community health at the downstream sites, including decreases in richness, intolerant taxa, Diptera taxa, and density. In pool sediments, Chironomidae density was negatively correlated with PAH concentrations, whereas Oligochaeta density responded positively to PAH concentrations. In general, pool taxa responded more strongly than riffle taxa to PAHs, but riffle taxa responded more broadly than pool taxa. Increases in PAH sediment-toxicity units between upstream and downstream sites explained decreases in taxon richness and density in pools between upstream and downstream sites.« less
NASA Astrophysics Data System (ADS)
Joyce, Hannah; Hardy, Richard; Warburton, Jeff
2017-04-01
Hillslope erosion and accelerated lake sedimentation are often viewed as the source and main storage elements in the upland sediment cascade. However, the continuity of sediment transfer through intervening valley systems has rarely been evaluated during extreme events. Storm Desmond (4th - 6th December, 2015) produced record-breaking rainfall maximums in the UK: 341.4 mm rainfall was recorded in a 24 hour period at Honister Pass, Western Lake District, and 405 mm of rainfall was recorded in a 38 hour period at Thirlmere, central Lake District. The storm was the largest in a 150 year local rainfall series, and exceeded previous new records set in the 2005 and 2009 floods. During this exceptional event, rivers over topped flood defences, and caused damage to over 257 bridges, flooded over 5000 homes and businesses, and caused substantial geomorphic change along upland rivers. This research quantifies the geomorphic and sedimentary response to Storm Desmond along a regulated gravel-bed river: St John's Beck. St John's Beck (length 7.8 km) is a channelised low gradient river (0.005) downstream of Thirlmere Reservoir, which joins the River Greta, and flows through Keswick, where major flooding has occurred, before discharging into Bassenthwaite Lake. St John's Beck has a history of chronic sediment aggradation, erosion and reports of historic flooding date back to 1750. During Storm Desmond, riverbanks were eroded, coarse sediment was deposited across valuable farmland and access routes were destroyed, including a bridge and footpaths, disrupting local business. A sediment budget framework has been used to quantify geomorphic change and sedimentary characteristics of the event along St John's Beck. The volume and sediment size distribution of flood deposits, channel bars, tributary deposits, floodplain scour, riverbank erosion and in-channel bars were measured directly in the field and converted to mass using local estimates of coarse and fine sediment bulk densities. During the event 5000 tonnes of sediment was deposited on floodplains surrounding St John's Beck; 65% of this sediment was deposited in the first 3 km of the reach downstream of Thirlmere Reservoir where the channel is unconfined and channel slope and capacity rapidly decrease. Flood sediment deposits were composed of a single layer of sediment of a similar grain size distribution (mean D90 116 mm), with fines generally sparse. The main source of sediment deposited during the event originated from the channel bed and banks; 1500 tonnes of sediment was stored within channel bars. Approximately 2000 tonnes of sediment was eroded from the riverbanks during the event; with local lateral riverbank recession exceeding 12 m. An estimated 500 tonnes of sediment was scoured from the floodplains along the first 3 km of the reach downstream of Thirlmere Reservoir, with local floodplain scour around a bridge estimated at 300 tonnes. Overall, this sediment budget study demonstrates the importance of valley systems as a major source and sink of sediment along the upland sediment cascade during an extreme flood event.
ISTA 14-in-situ accumulation of PAHs in low-density polyethylene membranes in sediment.
Devault, Damien A; Combe, Matthieu; Gourlay-Francé, Catherine
2010-10-01
The use of passive samplers for the assessment of organic contaminants has been extended to solid matrixes for the past decade. Passive sampling is usually applied to sediment in laboratory experiments involving significant upheaval, whereas in-situ experiments remain rare. In this study, low-density polyethylene (LDPE) strips were deployed within the sediments of a small river contaminated with polycyclic aromatic hydrocarbons (PAHs). LDPE strips were deployed in the 3-cm depth sediment layer. Over a period of 36 days, LDPE strips were regularly retrieved and accumulated PAHs in LDPE were extracted and analyzed. Accumulations of hydrophobic contaminants in LDPE directly exposed in the sediment were observed. Accumulations in LDPE were observed for moderately hydrophobic PAHs with the highest concentrations in the sediment. Low accumulations were observed for more hydrophobic compounds, despite their presence in high concentrations in the sediment. This was explained by very low exchange rates and competitive interactions with particles in the sediment. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.
Grundel, R.; Pavlovic, N.B.
2007-01-01
Oak savannas were historically common but are currently rare in the Midwestern United States. We assessed possible associations of bird species with savannas and other threatened habitats in the region by relating fire frequency and vegetation characteristics to seasonal densities of 72 bird species distributed across an open-forest gradient in northwestern Indiana. About one-third of the species did not exhibit statistically significant relationships with any combination of seven vegetation characteristics that included vegetation cover in five vertical strata, dead tree density, and tree height. For 40% of the remaining species, models best predicting species density incorporated tree density. Therefore, management based solely on manipulating tree density may not be an adequate strategy for managing bird populations along this open-forest gradient. Few species exhibited sharp peaks in predicted density under habitat conditions expected in restored savannas, suggesting that few savanna specialists occur among Midwestern bird species. When fire frequency, measured over fifteen years, was added to vegetation characteristics as a predictor of species density, it was incorporated into models for about one-quarter of species, suggesting that fire may modify habitat characteristics in ways that are important for birds but not captured by the structural habitat variables measured. Among those species, similar numbers had peaks in predicted density at low, intermediate, or high fire frequency. For species suggested by previous studies to have a preference for oak savannas along the open-forest gradient, estimated density was maximized at an average fire return interval of about one fire every three years. ?? The Cooper Ornithological Society 2007.
Is the bulk mode conversion important in high density helicon plasma?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro
2016-06-15
In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less
NASA Astrophysics Data System (ADS)
Strachan, Lorna J.; Bostock, Helen C.; Barnes, Philip M.; Neil, Helen L.; Gosling, Matthew
2016-08-01
Silt-rich turbidites are commonly interpreted as distal marine deposits. They are associated with interlaminated clay and silt deposition from the upper and rear portions of turbidity currents. Here, multibeam bathymetry and shallow sediment core data from the intra-slope Secretary Basin, Fiordland, New Zealand, located < 10 km from shore, are used to describe a suite of late Holocene proximal sandy-silt and silty-sand turbidites that contain negligible clay and a wide variety of vertical grading patterns. The steep, rugged catchment to the Secretary Basin is dominated by a complex tributary turbidite channel network that feeds the low gradient Secretary Basin floor intra-slope lobe. Sediment core T49 is located within the lobe and positioned between shallow channels that are prone to deposition from decelerating, silty-sand and sandy-silt turbidity currents. The wide variety of sedimentary structures and vertical grading patterns, dominated by inversely graded beds, implies a range of non-cohesive flow processes, with deposition from multiphase, mixed mode (turbulent and laminar) flows that have undergone a variety of up-dip flow transformations. Most flows were initially erosive followed by deposition of partitioned 2- or 3- phase mixed mode flows that include high-density transitional and laminar flows that can be fore- or after-runners to low-density turbulent flow sections. Turbulence is inferred to have been suppressed in high-density flows by increasing flow concentration of both sands and silts. The very fine and fine sand modal grain sizes of sandy-silt and silty-sand turbidites are significantly coarser than classical abyssal plain silt turbidites and are generally coarser than overbank silt turbidites. While the low percentage of clays within Secretary Basin sandy-silt and silty-sand turbidites represents a fundamental difference between these and other silt and mud turbidites, we suggest these beds represent a previously undescribed suite of proximal continental slope deposits.
NASA Astrophysics Data System (ADS)
Bath Enright, Orla G.; Minter, Nicholas J.; Sumner, Esther J.
2017-06-01
Interpreting how far organisms within fossil assemblages may have been transported and if they all originated from the same location is fundamental to understanding whether they represent true palaeocommunities. In a three-factorial experimental design, we used an annular flume to generate actualistic sandy sediment-density flows that were fast (2 ms-1) and fully turbulent in order to test the effects of flow duration, sediment concentration, and grain angularity on the states of bodily damage experienced by the freshly euthanized polychaete Alitta virens. Results identified statistically significant effects of flow duration and grain angularity. Increasing sediment concentration had a statistically significant effect with angular sediment but not with rounded sediment. Our experiments demonstrate that if soft-bodied organisms such as polychaetes were alive and then killed by a flow then they would have been capable of enduring prolonged transport in fast and turbulent flows with little damage. Dependent upon sediment concentration and grain angularity, specimens were capable of remaining intact over flow durations of between 5 and 180 min, equating to transport distances up to 21.6 km. This result has significant palaeoecological implications for fossil lagerstätten preserved in deposits of sediment-density flows because the organisms present may have been transported over substantial distances and therefore may not represent true palaeocommunities.
A revised velocity-reversal and sediment-sorting model for a high-gradient, pool-riffle stream
Thompson, D.M.; Wohl, E.E.; Jarrett, R.D.
1996-01-01
Sediment-sorting processes related to varying channel-bed morphology were investigated from April to November 1993 along a 1-km pool-riffle and step-pool reach of North Saint Vrain Creek, a small mountain stream in the Rocky Mountains of northern Colorado. Measured cross-sectional areas of flow were used to suggest higher velocities in pools than in riffles at high flow. Three hundred and sixteen tracer particles, ranging in size from 16 mm to 256 mm, were placed in two separate pool-riffle-pool sequences and used to assess sediment-sorting patterns and sediment-transport competence variations. Tracer-particle depositional evidence indicated higher sediment-transport competence in pools than in riffles at high flow. Pool-riffle sediment sorting may be created by velocity reversals, and more localized sorting results from gravitational forces along the upstream sloping portion of the channel bed located at the downstream end of pools.
Isostatic GOCE Moho model for Iran
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Ebadi, Sahar; Tenzer, Robert
2017-05-01
One of the major issues associated with a regional Moho recovery from the gravity or gravity-gradient data is the optimal choice of the mean compensation depth (i.e., the mean Moho depth) for a certain area of study, typically for orogens characterised by large Moho depth variations. In case of selecting a small value of the mean compensation depth, the pattern of deep Moho structure might not be reproduced realistically. Moreover, the definition of the mean compensation depth in existing isostatic models affects only low-degrees of the Moho spectrum. To overcome this problem, in this study we reformulate the Sjöberg and Jeffrey's methods of solving the Vening-Meinesz isostatic problem so that the mean compensation depth contributes to the whole Moho spectrum. Both solutions are then defined for the vertical gravity gradient, allowing estimating the Moho depth from the GOCE satellite gravity-gradiometry data. Moreover, gravimetric solutions provide realistic results only when a priori information on the crust and upper mantle structure is known (usually from seismic surveys) with a relatively good accuracy. To investigate this aspect, we formulate our gravimetric solutions for a variable Moho density contrast to account for variable density of the uppermost mantle below the Moho interface, while taking into consideration also density variations within the sediments and consolidated crust down to the Moho interface. The developed theoretical models are applied to estimate the Moho depth from GOCE data at the regional study area of the Iranian tectonic block, including also parts of surrounding tectonic features. Our results indicate that the regional Moho depth differences between Sjöberg and Jeffrey's solutions, reaching up to about 3 km, are caused by a smoothing effect of Sjöberg's method. The validation of our results further shows a relatively good agreement with regional seismic studies over most of the continental crust, but large discrepancies are detected under the Oman Sea and the Makran subduction zone. We explain these discrepancies by a low quality of seismic data offshore.
Reid, T; VanMensel, D; Droppo, I G; Weisener, C G
2016-09-01
Within the oil sands industry, tailings ponds are used as a means of retaining tailings until a reclamation technology such as end pit lakes (EPLs) can be developed and optimized to remediate such tailings with a water cap (although dry-land strategies for tailing reclamation are also being developed). EPLs have proven successful for other mining ventures (e.g. metal rock mines) in eventually mitigating contaminant loads to receiving waters once biochemical remediation has taken place (although the duration for this to occur may be decades). While the biological interactions at the sediment water interface of tailings ponds or EPLs have been shown to control biogeochemical processes (i.e. chemical fluxes and redox profiles), these have often been limited to static microcosm conditions. Results from such experiments may not tell the whole story given that the sediment water interface often represents a dynamic environment where erosion and deposition may be occurring in association with microbial growth and decay. Mobilization of sediments and associated contaminants may therefore have a profound effect on remediation rates and, as such, may decrease the effectiveness of EPLs as viable reclamation strategies for mining industries. Using a novel core erosion system (U-GEMS), this paper examines how the microbial community can influence sediment water interface stability and how the biofilm community may change with tailings age and after disturbance (biofilm reestablishment). Shear strength, eroded mass measurements, density gradients, high-resolution microscopy, and microbial community analyses were made on 2 different aged tailings (fresh and ∼38 years) under biotic and abiotic conditions. The same experiments were repeated as duplicates with both sets of experiments having consolidation/biostabilization periods of 21 days. Results suggest that the stability of the tailings varies between types and conditions with the fresh biotic tailings experiencing up to 75% more biostabilization than the same abiotic tailings. Further, greater microbial diversity in the aged pond could be a contributing factor to the overall increase in stability of this material over the fresh tailings source. Copyright © 2016 Elsevier Ltd. All rights reserved.
Equilibrium Conditions of Sediment Suspending Flows on Earth, Mars and Titan
NASA Astrophysics Data System (ADS)
Amy, L. A.; Dorrell, R. M.
2016-12-01
Sediment entrainment, erosion and deposition by liquid water on Earth is one of the key processes controlling planetary surface evolution. Similar modification of planetary surfaces by liquids associated with a volatile cycle are also inferred to have occurred on other planets (e.g., water on Mars and methane-ethane on Titan). Here we explore conditions for equilibrium flow - the threshold between net sediment erosion and deposition - on different planets. We use a new theoretical model for particle erosion-suspension-deposition: this model shows a better fit to empirical data than comparative suspension criterions (e.g., Rouse Number) since it takes into account both flow competence and capacity, and particle size distribution effects. Shear stresses required to initially entrain sediment and maintain equilibrium flow vary significantly, being several times lower on Mars and more than ten times lower on Titan resulting principally from lower gravities. On all planets it is harder to maintain equilibrium flow as sediment mixtures become poorer sorted (higher shear stresses are needed as standard deviation increases). In comparison to large differences in critical shear stresses, critical slopes for equilibrium flow are similar for planets. Compared to Earth, equilibrium slopes on Mars should be slightly lower whilst those on Titan will be higher or lower for organic and ice particle systems, respectively. Particle size distribution has a similar, order of magnitude effect, on equilibrium slope on each planet. The results highlight that whilst reduced gravity on Titan and Mars significantly decreases the bed shear stress required for particle transport, it also proportionally effects the bed shear stress of moving fluid, such that similar slope gradients are required for equilibrium flow; minor variations in equilibrium slopes are related to differences in the particle-fluid density contrasts as well as fluid viscosities. These results help explain why planetary surfaces share striking similarities in their present or past landscapes and shows that particle size distribution is critical to sediment transport dynamics. Interestingly, particle distribution may vary between planets depending on the particle compositions and weathering regimes, imposing differences in equilibrium conditions.
Hydrodynamic Model for Density Gradients Instability in Hall Plasmas Thrusters
NASA Astrophysics Data System (ADS)
Singh, Sukhmander
2017-10-01
There is an increasing interest for a correct understanding of purely growing electromagnetic and electrostatic instabilities driven by a plasma gradient in a Hall thruster devices. In Hall thrusters, which are typically operated with xenon, the thrust is provided by the acceleration of ions in the plasma generated in a discharge chamber. The goal of this paper is to study the instabilities due to gradients of plasma density and conditions for the growth rate and real part of the frequency for Hall thruster plasmas. Inhomogeneous plasmas prone a wide class of eigen modes induced by inhomogeneities of plasma density and called drift waves and instabilities. The growth rate of the instability has a dependences on the magnetic field, plasma density, ion temperature and wave numbers and initial drift velocities of the plasma species.
Gamma ray-induced small plaque mutants of western equine encephalitis virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simizu, B.; Yamazaki, S.; Suzuki, K.
1973-12-01
Small plaque mutants of Western equine encephalitis virus were obtained from the surviving fractions of wild-type virus which was irradiated with gamma rays. The frequency with which small plaque mutants appeared in the surviving fraction increased with the radiation dose. These mutants were not more resistant to radiation than wild-type virus. The growth rate of a mutant, S127, was lower than that of wild-type. Clonally purified mutant virions presented two peaks in a velocity sedimentation profile; peak 1 corresponded to the peak of wild type and peak 2 moved faster than peak 1. Virions of both peaks were infectious andmore » consistently formed small plaques in chicken embryo cells. Virions reisolated from either peak and grown in chicken embryo cells also revealed two peaks in sedimentation analysis. In the electron microscope examination peak 2 proved to consist of giant form particles, each of which contained more than one nucleoid surrounded with a common envelope. Despite this remarkable morphological difference, densities of the wild-type and S127 mutant virions were similar in cesium chloride gradients. The RNAs and proteins of mutant virions could not be distinguished from those of wild types on the basis of size or change. (auth)« less
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen; ...
2016-05-06
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang
2018-03-01
During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.
Lü, Changwei; He, Jiang; Wang, Bing
2018-02-01
The chemistry of sedimentary organic phosphorus (OP) and its fraction distribution in sediments are greatly influenced by environmental conditions such as terrestrial inputs and runoffs. The linkage of OP with environmental conditions was analyzed on the basis of OP spatial and historical distributions in lake sediments. The redundancy analysis and OP spatial distribution results suggested that both NaOH-OP (OP extracted by NaOH) and Re-OP (residual OP) in surface sediments from the selected 13 lakes reflected the gradient effects of environmental conditions and the autochthonous and/or allochthonous inputs driven by latitude zonality in China. The lake level and salinity of Lake Hulun and the runoff and precipitation of its drainage basin were reconstructed on the basis of the geochemistry index. This work showed that a gradient in weather conditions presented by the latitude zonality in China impacts the OP accumulation through multiple drivers and in many ways. The drivers are mainly precipitation and temperature, governing organic matter (OM) production, degradation rate and transportation in the watershed. Over a long temporal dimension (4000years), the vertical distributions of Re-OP and NaOH-OP based on a dated sediment profile from HLH were largely regulated by the autochthonous and/or allochthonous inputs, which depended on the environmental and climate conditions and anthropogenic activities in the drainage basin. This work provides useful environmental geochemistry information to understand the inherent linkage of OP fractionation with environmental conditions and lake evolution. Copyright © 2017. Published by Elsevier B.V.
Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.
2016-01-01
Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be augmented further by bioturbation, bioirrigation and episodic sediment resuspension events.
Channel response to sediment release: insights from a paired analysis of dam removal
Collins, Mathias J.; Snyder, Noah P.; Boardman, Graham; Banks, William S.; Andrews, Mary; Baker, Matthew E.; Conlon, Maricate; Gellis, Allen; McClain, Serena; Miller, Andrew; Wilcock, Peter
2017-01-01
Dam removals with unmanaged sediment releases are good opportunities to learn about channel response to abruptly increased bed material supply. Understanding these events is important because they affect aquatic habitats and human uses of floodplains. A longstanding paradigm in geomorphology holds that response rates to landscape disturbance exponentially decay through time. However, a previous study of the Merrimack Village Dam (MVD) removal on the Souhegan River in New Hampshire, USA, showed that an exponential function poorly described the early geomorphic response. Erosion of impounded sediments there was two-phased. We had an opportunity to quantitatively test the two-phase response model proposed for MVD by extending the record there and comparing it with data from the Simkins Dam removal on the Patapsco River in Maryland, USA. The watershed sizes are the same order of magnitude (102 km2), and at both sites low-head dams were removed (~3–4 m) and ~65 000 m3 of sand-sized sediments were discharged to low-gradient reaches. Analyzing four years of repeat morphometry and sediment surveys at the Simkins site, as well as continuous discharge and turbidity data, we observed the two-phase erosion response described for MVD. In the early phase, approximately 50% of the impounded sediment at Simkins was eroded rapidly during modest flows. After incision to base level and widening, a second phase began when further erosion depended on floods large enough to go over bank and access impounded sediments more distant from the newly-formed channel. Fitting functional forms to the data for both sites, we found that two-phase exponential models with changing decay constants fit the erosion data better than single-phase models. Valley width influences the two-phase erosion responses upstream, but downstream responses appear more closely related to local gradient, sediment re-supply from the upstream impoundments, and base flows.
Dam Breach Release of Non-Cohesive Sediments: Channel Response and Recovery Rates
NASA Astrophysics Data System (ADS)
Collins, M. J.; Boardman, G.; Banks, W.; Andrews, M.; Conlon, M.; Dillow, J. J. A.; Gellis, A.; Lowe, S.; McClain, S.; Miller, A. J.; Snyder, N. P.; Wilcock, P. R.
2014-12-01
Dam removals featuring unchecked releases of non-cohesive sediments are excellent opportunities to learn more about stream channel response to abrupt increases in bed material supply that can occur deliberately or by natural processes like landslides and volcanic eruptions. Understanding channel response to sediment pulses, including response rates, is essential because human uses of river channels and floodplains are impacted by these events as are aquatic habitats. We had the opportunity to study a dam removal site at the Simkins Dam in Maryland, USA, that shares many important geophysical attributes of another well-studied dam removal in the humid northeast United States [Merrimack Village Dam, New Hampshire; Pearson et al., 2011]. The watershed sizes are the same order of magnitude (102 km2), and at both sites relatively low head dams were removed (~ 3-4 m) and ~60,000 m3 of dominantly sand-sized sediments discharged to low-gradient reaches immediately downstream. Analyzing four years of repeat morphometry and bed sediment grain size surveys at the Simkins site on the Patapsco River, as well as continuous discharge and suspended sediment gaging data, we clearly document a two-phase response in the upstream reach as described by Pearson et al. [2011] for their New Hampshire site and noted at other dam removals [e.g., Major et al., 2012]. In the early phase, approximately 50% of the impounded sediment mass was eroded rapidly over a period of about three months when flows were very modest (Figure 1). After incision to base level and channel widening in the former impoundment, a second phase began when further erosion depended on floods large enough to access impounded sediments more distant from the newly-formed channel. We also found important differences in the upstream responses at the Maryland and New Hampshire sites that appear to be related to valley type (non-glaciated versus glaciated, respectively). Response variances immediately downstream between the respective sites are potentially related to local gradient and hydraulics.
NASA Astrophysics Data System (ADS)
Dellapenna, T. M.; Carlin, J. A.; Williams, J. R.
2016-02-01
The Brazos River empties into the Gulf of Mexico (GOM) forming a wave-influenced, muddy, subaqueous delta (SAD). Recent research in the estuarine reach of the river and on the SAD, however, found evidence for significant mass wasting of the delta-front and potential evidence of hyperpycnal flow, a processes typically associated with higher gradient and higher sediment yield rivers. The study used high-resolution geophysics on the SAD and water-column profiling in the lower river to investigate the transfer to and fate of fluvial sediment on the shelf. The SAD side scan mosaic combined with core data reveal that the eastern portion was dominated by exposed relict, consolidated sediment; an erosional scarp along the upper shoreface; and a thinning of the Holocene strata immediately downslope of the scarp. Holocene strata thickness increases into deeper water. These features suggest sediment mass wasting on the delta front. After rapidly prograding during the early and mid 20th century, reductions in sediment load due anthropogenic influences, and a shift in the primary depocenter lead to erosion on these abandoned portions of the delta. During an elevated fluvial discharge event, a >1 m thick fluid mud layer was found along a 6 km span of the river 2 km upstream from the mouth. The river's salt wedge was shown to inhibit sediment export from the river to the GOM, and facilitate deposition of mud in the lower river. We believe that the mud layer in the lower river builds during moderate and low discharge periods and remobilized during increased discharge, potentially resulting in hyperpyncnal flow to the shelf. We observed suspended sediment concentrations up to 100 g/l in the fluid mud layer during this event. While our observations did not capture the transition from fluid mud to hyperpycnal flow, we believe that with persistent increased discharge the fluid mud layer could transition to hyperpycnal flow.
2011-01-01
that are attractive as luminescent biolabels, and possibly also for optoelectronic devices and solar cells . The equilibrium nature of such situations...The boundary layers as- sociated with the diffusion and Debye lengths are familiar, while that of LQ defines the layer in which the quantum in...circuits, transmission lines Diffusion -drift, density-gradient Semi-classical electron dynamics, Boltzmann transport Schrödinger, density- matrix, Wigner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio
We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e., the electron density, its gradient, and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for the exchange of any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, andmore » recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredient in exchange-correlation functional development, opening the way to an additional rung in the Jacob’s ladder classification of non-empirical density functionals.« less
Picone, Marco; Bergamin, Martina; Losso, Chiara; Delaney, Eugenia; Arizzi Novelli, Alessandra; Ghirardini, Annamaria Volpi
2016-01-01
Within the framework of a Weight of Evidence (WoE) approach, a set of four toxicity bioassays involving the amphipod Corophium volutator (10 d lethality test on whole sediment), the sea urchin Paracentrotus lividus (fertilization and embryo toxicity tests on elutriate) and the pacific oyster Crassostrea gigas (embryo toxicity test on elutriate) was applied to sediments from 10 sampling sites of the Venice Lagoon (Italy). Sediments were collected during three campaigns carried out in May 2004 (spring campaign), October 2004 (autumn campaign) and February 2005 (winter campaign). Toxicity tests were performed on all sediment samples. Sediment grain-size and chemistry were measured during spring and autumn campaigns. This research investigated (i) the ability of toxicity tests in discriminating among sites with different contamination level, (ii) the occurrence of a gradient of effect among sampling sites, (iii) the possible correlation among toxicity tests, sediment chemistry, grain size and organic carbon, and (iv) the possible occurrence of toxicity seasonal variability. Sediment contamination levels were from low to moderate. No acute toxicity toward amphipods was observed, while sea urchin fertilization was affected only in few sites in just a single campaign. Short-term effects on larval development of sea urchin and oyster evidenced a clear spatial trend among sites, with increasing effects along the axis connecting the sea-inlets with the industrial area. The set of bioassays allowed the identification of a spatial gradient of effect, with decreasing toxicity from the industrial area toward the sea-inlets. Multivariate data analysis showed that the malformations of oyster embryos were significantly correlated to the industrial contamination (metals, polynuclear aromatic hydrocarbons, hexachlorobenzene and polychlorinated biphenyls), while sea urchin development to sediment concentrations of As, Cr and organic carbon. Both embryo toxicity tests were significantly affected by high ammonia concentrations found in the elutriates extracted from some mudflat and industrial sediments. No significant temporal variation of the toxicity was observed within the experimental period. Amendments to the set of bioassays, with inclusion of chronic tests, can certainly provide more reliability and consistency to the characterization of the (possible) toxic effects. Copyright © 2015 Elsevier Inc. All rights reserved.
Isoelectric focusing of red blood cells in a density gradient stabilized column
NASA Technical Reports Server (NTRS)
Smolka, A. J. K.; Miller, T. Y.
1980-01-01
The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.
Grain size controls on sediment supply from debris-mantled dryland hillslopes
NASA Astrophysics Data System (ADS)
Michaelides, K.
2011-12-01
Debris-mantled hillslopes are common in arid and semiarid environments where low rates of chemical weathering give rise to thin, non-cohesive soils mantled with a layer of coarse rock fragments derived from weathered bedrock that can reach boulder size. The grain size distributions (GSDs) on the surface of these hillslopes interact with different magnitudes and frequencies of runoff-producing rainfall events that selectively transport grain sizes of different classes depending on flow, grain position on the slope, and hillslope attributes. Sediment transport over many runoff events determines sediment delivery to the slope base, which ultimately modifies the GSD of valley floors. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the topographic evolution of drainage basins over >104 y timescales, but the specific responses of sediment flux across the hillslope and the corresponding changes in GSDs to individual storm events are poorly understood. Sheetwash erosion of coarse fragments presents a particular set of conditions for sediment transport that is poorly resolved in current models. A particle-based model for sheetwash sediment transport on debris-mantled hillslopes was developed within a rainfall-runoff model. The rainfall-runoff model produces spatial values of flow depth and velocity which are used to drive a particle-by-particle force-balance model derived from first principles for grain sizes > 1 mm. Particles on the hillslope surface are represented explicitly and can be composed of mixed grain sizes of any distribution or of uniform sizes of any diameter. The model resolves all the forces on each particle at each time and space step based on the flow hydraulics acting on them, so no assumptions are made about incipient motion using Shield's criterion. This research examines how the interplay between hillslope GSD, hillslope attributes (gradient and length) and runoff characteristics, determine sediment transport dynamics and net flux, GSD supplied to the slope base and the changes in GSD on the hillslope. The results show a strong control of initial hillslope GSD on flux characteristics: (1) GSD controls the degree of non-linearity in the relationship between sediment flux and hillslope gradient. (2) Grain size uniformity controls the degree and form of non-linearity in the relationship between sediment flux and gradient. (3) Over multiple runoff events, slopes coarsen - steeper slopes become coarser than shallow slopes. For individual events, changes in GSD on the slope depend on the magnitude and duration of the runoff event and can result in variable coarsening and fining on different parts of the slope. (4) The GSD of sediment delivered to the slope base is dependent on the hillslope GSD and the hillslope attributes and runoff characteristics. For most runoff events, the GSD of fluxed sediment is finer than the hillslope GSD except for extreme runoff events on very steep slopes with intermediate GSD (not extremely coarse). These findings provide insights into hillslope responses to climatic forcing and have theoretical implications for modeling hillslope evolution in drylands.
Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment
NASA Astrophysics Data System (ADS)
Ernst, D. R.
2012-10-01
A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W. Hughes, M. Landreman, B. Li, Y. Ma, P. Phillips, M. Porkolab, W. Rowan, S. Wolfe, and S. Wukitch.[4pt] [1] D. R. Ernst et al., Proc. 21st IAEA Fusion Energy Conference, Chengdu, China, paper IAEA-CN-149/TH/1-3 (2006). http://www-pub.iaea.org/MTCD/Meetings/FEC200/th1-3.pdf[0pt] [2] B. Li and D.R. Ernst, Phys. Rev. Lett. 106, 195002 (2011).
Muddy marine sediments are gels
NASA Astrophysics Data System (ADS)
Dorgan, K. M.; Clemo, W. C.; Barry, M. A.; Johnson, B.
2016-02-01
Marine sediments cover 70% of the earth's surface, are important sites of carbon burial and nutrient regeneration, and provide habitat for diverse and abundant infaunal communities. The majority of these sediments are muds, in which bioturbation affects sediment structure and geochemical gradients. How infaunal activites result in particle mixing depends on the mechanical properties of muddy sediments. At the scale of burrowing animals, muds are elastic solids. Animals move through these elastic muds by extending crack-shaped burrows by fracture. The underlying mechanism driving this elasticity, however, has not been explicitly illustrated. Here, we test the hypothesis that the elastic behavior of muddy sediments is disrupted by removal of organic material by measuring fracture toughness and stiffness of manipulated and control sediments. Our results indicate that the mechanical responses of sediments to forces are governed by the muco-polymeric matrix of organic material. Similar effects of organic material oxidation were not observed in sands, indicating a clear mechanical distinction between fine- and coarse-grained sediments. Muddy sediments are gels, not fluids or granular materials, and models of how sediments respond to forces imposed by, e.g., organisms, gases, and ambient water should explicitly consider the role of organic material.
Transport of sediment through a channel network during a post-fire debris flow
NASA Astrophysics Data System (ADS)
Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.
2017-12-01
Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So debris flows are really effective at removing sediment from headwaters, but at some scale (between 3th and 4th order channels) they are equally effective at depositing sediment. In these lower reaches the geomorphic legacy of the post-wildfire debris flow is about how channel sediment is distributed rather than how much volume is stored.
Local relative density modulates failure and strength in vertically aligned carbon nanotubes.
Pathak, Siddhartha; Mohan, Nisha; Decolvenaere, Elizabeth; Needleman, Alan; Bedewy, Mostafa; Hart, A John; Greer, Julia R
2013-10-22
Micromechanical experiments, image analysis, and theoretical modeling revealed that local failure events and compressive stresses of vertically aligned carbon nanotubes (VACNTs) were uniquely linked to relative density gradients. Edge detection analysis of systematically obtained scanning electron micrographs was used to quantify a microstructural figure-of-merit related to relative local density along VACNT heights. Sequential bottom-to-top buckling and hardening in stress-strain response were observed in samples with smaller relative density at the bottom. When density gradient was insubstantial or reversed, bottom regions always buckled last, and a flat stress plateau was obtained. These findings were consistent with predictions of a 2D material model based on a viscoplastic solid with plastic non-normality and a hardening-softening-hardening plastic flow relation. The hardening slope in compression generated by the model was directly related to the stiffness gradient along the sample height, and hence to the local relative density. These results demonstrate that a microstructural figure-of-merit, the effective relative density, can be used to quantify and predict the mechanical response.
3D Imaging of Density Gradients Using Plenoptic BOS
NASA Astrophysics Data System (ADS)
Klemkowsky, Jenna; Clifford, Chris; Fahringer, Timothy; Thurow, Brian
2016-11-01
The combination of background oriented schlieren (BOS) and a plenoptic camera, termed Plenoptic BOS, is explored through two proof-of-concept experiments. The motivation of this work is to provide a 3D technique capable of observing density disturbances. BOS uses the relationship between density and refractive index gradients to observe an apparent shift in a patterned background through image comparison. Conventional BOS systems acquire a single line-of-sight measurement, and require complex configurations to obtain 3D measurements, which are not always conducive to experimental facilities. Plenoptic BOS exploits the plenoptic camera's ability to generate multiple perspective views and refocused images from a single raw plenoptic image during post processing. Using such capabilities, with regards to BOS, provides multiple line-of-sight measurements of density disturbances, which can be collectively used to generate refocused BOS images. Such refocused images allow the position of density disturbances to be qualitatively and quantitatively determined. The image that provides the sharpest density gradient signature corresponds to a specific depth. These results offer motivation to advance Plenoptic BOS with an ultimate goal of reconstructing a 3D density field.
Hydraulic Experiments for Determination of In-situ Hydraulic Conductivity of Submerged Sediments
Lee, Bong-Joo; Lee, Ji-Hoon; Yoon, Heesung; Lee, Eunhee
2015-01-01
A new type of in-situ hydraulic permeameter was developed to determine vertical hydraulic conductivity (VHC) of saturated sediments from hydraulic experiments using Darcy's law. The system allows water to move upward through the porous media filled in the permeameter chamber driven into sediments at water-sediment interface. Darcy flux and hydraulic gradient can be measured using the system, and the VHC can be determined from the relationship between them using Darcy's law. Evaluations in laboratory and in field conditions were performed to see if the proposed permeameter give reliable and valid measures of the VHC even where the vertical flow at water-sediment interface and fluctuation of water stage exist without reducing the accuracy of the derived VHC. Results from the evaluation tests indicate that the permeameter proposed in this study can be used to measure VHC of saturated sandy sediments at water-sediment interface in stream and marine environment with high accuracy. PMID:25604984
Complex response of a midcontinent north America drainage system to late Wisconsinan sedimentation
Bettis, E. Arthur; Autin, W.J.
1997-01-01
The geomorphic evolution of Mud Creek basin in eastern Iowa, U.S.A. serves to illustrate how geomorphic influences such as sediment supply, valley gradient, climate, and vegetation are recorded in the alluvial stratigraphic record. Sediment supply to the fluvial system increased significantly during the late Wisconsinan through a combination of periglacial erosion and loess accumulation. Subsequent evolution of the Holocene alluvial stratigraphic record reflects long-term routing of the late Wisconsinan sediment through the drainage basin in a series of cut-and-fill cycles whose timing was influenced by hydrologic response to change in climate and vegetation. When viewed in a regional context, the alluvial stratigraphic record appears to reflect a long-term complex response of the fluvial system to increased sediment supply during the late Wisconsinan. Hydrologic and sediment-supply changes accompanying the spread of Euroamerican agriculture to the basin in the 180Os dramatically upset trends in sedimentation and channel behavior established during the Holocene. Copyright ?? 1997, SEPM (Society for Sedimentary Geology).
Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China.
Sun, Qiyao; Sheng, Yanqing; Yang, Jian; Di Bonito, Marcello; Mortimer, Robert J G
2016-12-01
The cycling of sulfur (S), iron (Fe) and phosphorus (P) in sediments and pore water can impact the water quality of overlying water. In a heavily polluted river estuary (Yantai, China), vertical profiles of fluxes of dissolved sulfide, Fe 2+ and dissolved reactive phosphorus (DRP) in sediment pore water were investigated by the Diffusive Gradients in Thin films technique (DGT). Vertical fluxes of S, Fe, P in intertidal sediment showed the availability of DRP increased while the sulfide decreased with depth in surface sediment, indicating that sulfide accumulation could enhance P release in anoxic sediment. In sites with contrasting salinity, the relative dominance of iron and sulfate reduction was different, with iron reduction dominant over sulfate reduction in the upper sediment at an intertidal site but the reverse true in a freshwater site, with the other process dominating at depth in each case. Phosphate release was largely controlled by iron reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ayron M. Strauch; Richard A. MacKenzie; Christian P. Giardina; Gregory L. Bruland
2018-01-01
The capacity to forecast climate and land-use driven changes to runoff, soil erosion and sediment transport in the tropics is hindered by a lack of long-term data sets and model study systems. To address these issues we utilized three watersheds characterized by similar shape, geology, soils, vegetation cover, and land use arranged across a 900Â mm gradient in mean...
Automated Processing of Plasma Samples for Lipoprotein Separation by Rate-Zonal Ultracentrifugation.
Peters, Carl N; Evans, Iain E J
2016-12-01
Plasma lipoproteins are the primary means of lipid transport among tissues. Defining alterations in lipid metabolism is critical to our understanding of disease processes. However, lipoprotein measurement is limited to specialized centers. Preparation for ultracentrifugation involves the formation of complex density gradients that is both laborious and subject to handling errors. We created a fully automated device capable of forming the required gradient. The design has been made freely available for download by the authors. It is inexpensive relative to commercial density gradient formers, which generally create linear gradients unsuitable for rate-zonal ultracentrifugation. The design can easily be modified to suit user requirements and any potential future improvements. Evaluation of the device showed reliable peristaltic pump accuracy and precision for fluid delivery. We also demonstrate accurate fluid layering with reduced mixing at the gradient layers when compared to usual practice by experienced laboratory personnel. Reduction in layer mixing is of critical importance, as it is crucial for reliable lipoprotein separation. The automated device significantly reduces laboratory staff input and reduces the likelihood of error. Overall, this device creates a simple and effective solution to formation of complex density gradients. © 2015 Society for Laboratory Automation and Screening.
Snake River Plain Geothermal Play Fairway Analysis - Phase 1 Raster Files
John Shervais
2015-10-09
Snake River Plain Play Fairway Analysis - Phase 1 CRS Raster Files. This dataset contains raster files created in ArcGIS. These raster images depict Common Risk Segment (CRS) maps for HEAT, PERMEABILITY, AND SEAL, as well as selected maps of Evidence Layers. These evidence layers consist of either Bayesian krige functions or kernel density functions, and include: (1) HEAT: Heat flow (Bayesian krige map), Heat flow standard error on the krige function (data confidence), volcanic vent distribution as function of age and size, groundwater temperature (equivalue interval and natural breaks bins), and groundwater T standard error. (2) PERMEABILTY: Fault and lineament maps, both as mapped and as kernel density functions, processed for both dilational tendency (TD) and slip tendency (ST), along with data confidence maps for each data type. Data types include mapped surface faults from USGS and Idaho Geological Survey data bases, as well as unpublished mapping; lineations derived from maximum gradients in magnetic, deep gravity, and intermediate depth gravity anomalies. (3) SEAL: Seal maps based on presence and thickness of lacustrine sediments and base of SRP aquifer. Raster size is 2 km. All files generated in ArcGIS.
Laboratory production in vivo of infectious human papillomavirus type 11.
Kreider, J W; Howett, M K; Leure-Dupree, A E; Zaino, R J; Weber, J A
1987-01-01
Human papillomaviruses (HPV) induce among patients natural lesions which produce small amounts of virus. Infection of human cell cultures does not lead to the multiplication of virus, which also does not replicate in experimental animals. We have developed a unique system for the laboratory production of HPV type 11 (HPV-11). Fragments of human neonatal foreskin were infected with an extract of naturally occurring human vulvar condylomata and grafted beneath the renal capsule of athymic mice. Later (3 to 5 months), condylomatous cysts developed from those grafts. Nuclei of koilocytotic cells contained large amounts of capsid antigen and intranuclear virions. The experimentally induced condylomata were homogenized, and the virions were extracted and used to infect another generation of human foreskin grafts in athymic mice. The HPV-11 DNA content and infectivity of the natural and experimental condylomata were similar. Extracts of experimental condylomata were subjected to differential ultracentrifugation and sedimentation in CsCl density gradients. A single, opalescent band was visible at a density of 1.34 g/ml. It contained HPV virions with HPV-11 DNA. This report is the first demonstration of the laboratory production of an HPV. Images PMID:3027386
Curvature induced by amyloplast magnetophoresis in protonemata of the moss Ceratodon purpureus
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Schwuchow, J.; Sack, F. D.; Hasenstein, K. H.
1999-01-01
After gravistimulation of Ceratodon purpureus (Hedw.) Brid. protonemata in the dark, amyloplast sedimentation was followed by upward curvature in the wild-type (WT) and downward curvature in the wwr mutant (wrong way response). We used ponderomotive forces induced by high-gradient magnetic fields (HGMF) to simulate the effect of gravity and displace the presumptive statoliths. The field was applied by placing protonemata either between two permanent magnets at the edge of the gap, close to the edge of a magnetized ferromagnetic wedge, or close to a small (<1 mm) permanent magnet. Continuous application of an HGMF in all three configurations resulted in plastid displacement and induced curvature in tip cells of WT and wwr protonemata. WT cells curved toward the HGMF, and wwr cells curved away from the HGMF, comparable to gravitropism. Plastids isolated from protonemal cultures had densities ranging from 1.24 to 1.38 g cm-3. Plastid density was similar for both genotypes, but the mutant contained larger plastids than the WT. The size difference might explain the stronger response of the wwr protonemata to the HGMF. Our data support the plastid-based theory of gravitropic sensing and suggest that HGMF-induced ponderomotive forces can substitute for gravity.
NASA Astrophysics Data System (ADS)
Hermidas, Navid; Luthi, Stefan; Eggenhuisen, Joris; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian; de Leeuw, Jan
2016-04-01
Debris flows are driven by gravity, which in the tail region is overcome by the yield strength of the flow, forcing it to freeze. These flows are capable of achieving staggeringly large run-out distances on low gradients. The case in point, described in previous publications, is the flow which resulted in the deposit of Bed 5 of the Agadir megaslide on the north-west African margin. Debrites of this flow have been recorded several hundred kilometres away from the original landslide. Previous studies have attributed such long run-out distances to hydroplaning, low yield strength, and flow transformation. It is known that the net force acting on a volume of fluid in equilibrium is zero. In this work we show that clay-laden flows are capable of approaching equilibrium. The flows which can achieve the maximum run-out distance are cohesive enough to resist some of the surrounding disturbances, that can upset the equilibrium, and reach close to equilibrium conditions, yet are dilute enough to have low viscous stress, and relatively low yield strength and lose little sediment due to deposition. A flow that is not in equilibrium will always seek to approach equilibrium conditions by speeding up or slowing down, depositing sediment, eroding the substrate, contracting in the form of the tail approaching the head, stretching, entraining water and growing in height, or dewatering and collapsing. Here we present a theory that shows that two dimensional (2D) flows in equilibrium do not grow in height. 2D flume experiments were conducted on different mixtures of kaolinite, sand, silt, and water, on varying slopes and a transitionally rough bed (sand glued), and using various discharge rates, in order to map out different stages in the evolution of a density flow from a cohesive plug flow into a turbidity current. The following flow types were observed: high density turbidity currents, plug flows, and no flow. From the velocity profiles, certain runs demonstrated close to equilibrium behaviour. For these flows, very little flow height growth and velocity variation was observed over the length of the flume. In all cases the flow appeared to be laminar within the boundary layer with Kelvin-Helmholtz instabilities at the top which were suppressed to a large extent for higher sediment concentrations. A deposit consisting of thick muddy sand, with approximately uniform thickness, was observed for higher sediment concentrations, indicating relatively higher yield strength values, while a thinner more sandy deposit was observed for more dilute flows. It was concluded that high sediment concentrations on more moderate slopes result in slower moving plug flows which are capable of suppressing turbulence at the top, while lower sediment concentrations on steeper slopes result in faster moving, more turbulent currents. The flows which can achieve the largest run-out distance are located between these two extremes.
List, Jeffrey; Benedet, Lindino; Hanes, Daniel M.; Ruggiero, Peter
2009-01-01
Predictions of alongshore transport gradients are critical for forecasting shoreline change. At the previous ICCE conference, it was demonstrated that alongshore transport gradients predicted by the empirical CERC equation can differ substantially from predictions made by the hydrodynamics-based model Delft3D in the case of a simulated borrow pit on the shoreface. Here we use the Delft3D momentum balance to examine the reason for this difference. Alongshore advective flow accelerations in our Delft3D simulation are mainly driven by pressure gradients resulting from alongshore variations in wave height and setup, and Delft3D transport gradients are controlled by these flow accelerations. The CERC equation does not take this process into account, and for this reason a second empirical transport term is sometimes added when alongshore gradients in wave height are thought to be significant. However, our test case indicates that this second term does not properly predict alongshore transport gradients.
NASA Astrophysics Data System (ADS)
Islabão, C. A.; Mendes, C. R. B.; Detoni, A. M. S.; Odebrecht, C.
2017-12-01
The continental shelf in Southern Brazil is characterized by high biological productivity associated with horizontal and vertical density gradients due to the mixing of distinct water masses. Phytoplankton biomass and composition were evaluated in summer 2013 along an on-offshore transect off the mouth of the Patos Lagoon (Lat. 32°12S). Photosynthetic active radiation, temperature, salinity and fluorescence vertical profiles were carried out and Brünt-Väisäla frequency was estimated. Three water bodies were identified: the Subtropical Shelf Water along the entire transect, the Plata Plume Water on the middle shelf surface and the Tropical Water farther offshore. The water was sampled (N = 40) for the analyses of dissolved inorganic nutrients, phytoplankton cell density and composition. Phytoplankton present in the water was identified and quantified by the classical microscope sedimentation technique, complemented with CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment data. From the results obtained, chlorophyll a concentration was higher at both coastal stations (1.6-2.0 mg m-3) where the water column was homogeneous and diatoms dominated the stations. This group was replaced by dinoflagellates in stratified conditions on the shelf and farther offshore. Along the onshore-offshore gradient, two types of dinoflagellates were found: the peridinin-containing dinoflagellates Prorocentrum and Scrippsiella with a small contribution at the coastal stations, and the fucoxantin-containing small Gymnodiniales cells (< 15 μm) with more than 50% of the total chlorophyll a at the stations on the continental shelf, especially associated with the chlorophyll maximum at the base of the euphotic zone. The positive (negative) relationship between the biomass of dinoflagellates (diatoms) with the Brünt-Väisäla frequency, respectively, support the hypothesis that stratification is the most important environmental factor that determines the biomass of phytoplankton communities and distribution on the shelf and in coastal waters off Southern Brazil in summer. Picoplankton cells (Prochlorococcus and Synechococcus), recorded for the first time in the region under study, were predominant in the nutrient-poor and well-lit surface layers along the transect, indicating the importance of their low sedimentation rates (small size) and photo-adaptive strategies to survive on the upper layers of the water column.
NASA Astrophysics Data System (ADS)
Mutema, M.; Chaplot, V.; Jewitt, G.; Chivenge, P.; Blöschl, G.
2015-11-01
Process controls on water, sediment, nutrient, and organic carbon exports from the landscape through runoff are not fully understood. This paper provides analyses from 446 sites worldwide to evaluate the impact of environmental factors (MAP and MAT: mean annual precipitation and temperature; CLAY and BD: soil clay content and bulk density; S: slope gradient; LU: land use) on annual exports (RC: runoff coefficients; SL: sediment loads; TOCL: organic carbon losses; TNL: nitrogen losses; TPL: phosphorus losses) from different spatial scales. RC was found to increase, on average, from 18% at local scale (in headwaters), 25% at microcatchment and subcatchment scale (midreaches) to 41% at catchment scale (lower reaches of river basins) in response to multiple factors. SL increased from microplots (468 g m-2 yr-1) to plots (901 g m-2 yr-1), accompanied by decreasing TOCL and TNL. Climate was a major control masking the effects of other factors. For example, RC, SL, TOCL, TNL, and TPL tended to increase with MAP at all spatial scales. These variables, however, decreased with MAT. The impact of CLAY, BD, LU, and S on erosion variables was largely confined to the hillslope scale, where RC, SL, and TOCL decreased with CLAY, while TNL and TPL increased. The results contribute to better understanding of water, nutrient, and carbon cycles in terrestrial ecosystems and should inform river basin modeling and ecosystem management. The important role of spatial climate variability points to a need for comparative research in specific environments at nested spatiotemporal scales.
DNA stable-isotope probing (DNA-SIP).
Dunford, Eric A; Neufeld, Josh D
2010-08-02
DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.
A small-scale, portable method for extracting microplastics from marine sediments.
Coppock, Rachel L; Cole, Matthew; Lindeque, Penelope K; Queirós, Ana M; Galloway, Tamara S
2017-11-01
Microplastics (plastic particles, 0.1 μm-5 mm in size) are widespread marine pollutants, accumulating in benthic sediments and shorelines the world over. To gain a clearer understanding of microplastic availability to marine life, and the risks they pose to the health of benthic communities, ecological processes and food security, it is important to obtain accurate measures of microplastic abundance in marine sediments. To date, methods for extracting microplastics from marine sediments have been disadvantaged by complexity, expense, low extraction efficiencies and incompatibility with very fine sediments. Here we present a new, portable method to separate microplastics from sediments of differing types, using the principle of density floatation. The Sediment-Microplastic Isolation (SMI) unit is a custom-built apparatus which consistently extracted microplastics from sediments in a single step, with a mean efficiency of 95.8% (±SE 1.6%; min 70%, max 100%). Zinc chloride, at a density of 1.5 g cm -3 , was deemed an effective and relatively inexpensive floatation media, allowing fine sediment to settle whilst simultaneously enabling floatation of dense polymers. The method was validated by artificially spiking sediment with low and high density microplastics, and its environmental relevance was further tested by extracting plastics present in natural sediment samples from sites ranging in sediment type; fine silt/clay (mean size 10.25 ± SD 3.02 μm) to coarse sand (mean size 149.3 ± SD 49.9 μm). The method presented here is cheap, reproducible and is easily portable, lending itself for use in the laboratory and in the field, eg. on board research vessels. By employing this method, accurate estimates of microplastic type, distribution and abundance in natural sediments can be achieved, with the potential to further our understanding of the availability of microplastics to benthic organisms. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Mestdagh, Sebastiaan; Bagaço, Leila; Braeckman, Ulrike; Ysebaert, Tom; De Smet, Bart; Moens, Tom; Van Colen, Carl
2018-05-01
Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna controls sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC). An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands). The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater-bromide mixture, served as tracers for bioturbation and bio-irrigation, respectively. After incubation, the macrofauna was extracted, identified, and counted and then classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motility animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bio-irrigation and bioturbation activity showed increases in the lower sediment deposition regimes but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motility, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our understanding of the regulation of ecosystem functioning and the impact of habitat alterations such as sediment deposition.
Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment
NASA Astrophysics Data System (ADS)
Prahl, Fredrick G.; Carpenter, Roy
1983-06-01
Polycyclic aromatic (PAH) and aliphatic hydrocarbon compositions, organic carbon, nitrogen and lignin contents were determined in whole, unfractionated sediment from the Washington continental shelf and in discrete sediment fractions separated by particle size and density. At least 20 to 25% of perylene and PAH derived from pyrolytic processes and 50% of the retene measured in whole sediment are contained within organic C- and lignin-rich panicles of density ≤ 1.9 g/cc. These particles, which include primarily vascular plant remains and bits of charcoal, comprise less than 1% of the total sediment weight. In contrast, a series of methylated phenanthrene homologs, possibly of fossil origin, are concentrated in some component of the more dense, lithic matrix of the sediment. Equilibrium models of PAH sorption/desorption from aqueous phase onto small particles of high surface area do not appear applicable to the behavior of the major PAH types identified in this aquatic environment.
Oziolor, Elias M; Apell, Jennifer N; Winfield, Zach C; Back, Jeffrey A; Usenko, Sascha; Matson, Cole W
2018-05-01
The industrialized portion of the Houston Ship Channel (HSC) is heavily contaminated with anthropogenic contaminants, most prominent of which are the polychlorinated biphenyls (PCBs). This contamination has driven adaptive evolution in a keystone species for Galveston Bay, the Gulf killifish (Fundulus grandis). We investigated the geographical extent of PCB impacts by sampling 12 sites, ranging from the heavily industrialized upper portion of the HSC to Galveston Island. At each site, PCB concentrations and profiles were determined in three environmental compartments: sediment, water (polyethylene passive samplers), and fish tissue (resident Gulf killifish). We observed a steep gradient of PCB contamination, ranging from 4.00 to 100,000 ng/g organic carbon in sediment, 290-110,000 ng/g lipid in fish, and 4.5-2300 ng/g polyethylene in passive samplers. The PCB congener profiles in Gulf killifish at the most heavily contaminated sites were shifted toward the higher chlorinated PCBs and were highly similar to the sediment contamination profiles. In addition, while magnitude of total PCB concentrations in sediment and total fish contamination levels were highly correlated between sites, the relative PCB congener profiles in fish and passive samplers were more alike. This strong correlation, along with a lack of dependency of biota-sediment accumulation factors with total contamination rates, confirm the likely non-migratory nature of Gulf killifish and suggest their contamination levels are a good site-specific indicator of contamination in the Galveston Bay area. The spatial gradient of PCB contamination in Galveston Bay was evident in all three matrices studied and was observed effectively using Gulf killifish contamination as an environmentally relevant bioindicator of localized contamination in this environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pätsch, Johannes; Kühn, Wilfried; Dorothea Six, Katharina
2018-06-01
For the sediments of the central and southern North Sea different sources of alkalinity generation are quantified by a regional modelling system for the period 2000-2014. For this purpose a formerly global ocean sediment model coupled with a pelagic ecosystem model is adapted to shelf sea dynamics, where much larger turnover rates than in the open and deep ocean occur. To track alkalinity changes due to different nitrogen-related processes, the open ocean sediment model was extended by the state variables particulate organic nitrogen (PON) and ammonium. Directly measured alkalinity fluxes and those derived from Ra isotope flux observation from the sediment into the pelagic are reproduced by the model system, but calcite building and calcite dissolution are underestimated. Both fluxes cancel out in terms of alkalinity generation and consumption. Other simulated processes altering alkalinity in the sediment, like net sulfate reduction, denitrification, nitrification, and aerobic degradation, are quantified and compare well with corresponding fluxes derived from observations. Most of these fluxes exhibit a strong positive gradient from the open North Sea to the coast, where large rivers drain nutrients and organic matter. Atmospheric nitrogen deposition also shows a positive gradient from the open sea towards land and supports alkalinity generation in the sediments. An additional source of spatial variability is introduced by the use of a 3-D heterogenous porosity field. Due to realistic porosity variations (0.3-0.5) the alkalinity fluxes vary by about 4 %. The strongest impact on interannual variations of alkalinity fluxes is exhibited by the temporal varying nitrogen inputs from large rivers directly governing the nitrate concentrations in the coastal bottom water, thus providing nitrate necessary for benthic denitrification. Over the time investigated the alkalinity effluxes decrease due to the decrease in the nitrogen supply by the rivers.