Sample records for density high stiffness

  1. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    PubMed

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  2. Stiffness of the microenvironment upregulates ERBB2 expression in 3D cultures of MCF10A within the range of mammographic density.

    PubMed

    Cheng, Qingsu; Bilgin, Cemal Cagatay; Fontenay, Gerald; Chang, Hang; Henderson, Matthew; Han, Ju; Parvin, Bahram

    2016-07-07

    The effects of the stiffness of the microenvironment on the molecular response of 3D colony organization, at the maximum level of mammographic density (MD), are investigated. Phenotypic profiling reveals that 3D colony formation is heterogeneous and increased stiffness of the microenvironment, within the range of the MD, correlates with the increased frequency of aberrant 3D colony formation. Further integrative analysis of the genome-wide transcriptome and phenotypic profiling hypothesizes overexpression of ERBB2 in the premalignant MCF10A cell lines at a stiffness value that corresponds to the collagen component at high mammographic density. Subsequently, ERBB2 overexpression has been validated in the same cell line. Similar experiments with a more genetically stable cell line of 184A1 also revealed an increased frequency of aberrant colony formation with the increased stiffness; however, 184A1 did not demonstrate overexpression of ERBB2 at the same stiffness value of the high MD. These results suggest that stiffness exacerbates premalignant cell line of MCF10A.

  3. Ultra-stiff metallic glasses through bond energy density design.

    PubMed

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  4. The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy

    NASA Astrophysics Data System (ADS)

    Weber, Isabell P.; Yun, Seok Hyun; Scarcelli, Giuliano; Franze, Kristian

    2017-12-01

    Cells in the central nervous system (CNS) respond to the stiffness of their environment. CNS tissue is mechanically highly heterogeneous, thus providing motile cells with region-specific mechanical signals. While CNS mechanics has been measured with a variety of techniques, reported values of tissue stiffness vary greatly, and the morphological structures underlying spatial changes in tissue stiffness remain poorly understood. We here exploited two complementary techniques, contact-based atomic force microscopy and contact-free Brillouin microscopy, to determine the mechanical properties of ruminant retinae, which are built up by different tissue layers. As in all vertebrate retinae, layers of high cell body densities (‘nuclear layers’) alternate with layers of low cell body densities (‘plexiform layers’). Different tissue layers varied significantly in their mechanical properties, with the photoreceptor layer being the stiffest region of the retina, and the inner plexiform layer belonging to the softest regions. As both techniques yielded similar results, our measurements allowed us to calibrate the Brillouin microscopy measurements and convert the Brillouin shift into a quantitative assessment of elastic tissue stiffness with optical resolution. Similar as in the mouse spinal cord and the developing Xenopus brain, we found a strong correlation between nuclear densities and tissue stiffness. Hence, the cellular composition of retinae appears to strongly contribute to local tissue stiffness, and Brillouin microscopy shows a great potential for the application in vivo to measure the mechanical properties of transparent tissues.

  5. Triglyceride to HDL-C ratio and increased arterial stiffness in children, adolescents, and young adults.

    PubMed

    Urbina, Elaine M; Khoury, Philip R; McCoy, Connie E; Dolan, Lawrence M; Daniels, Stephen R; Kimball, Thomas R

    2013-04-01

    Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases.

  6. Triglyceride to HDL-C Ratio and Increased Arterial Stiffness in Children, Adolescents, and Young Adults

    PubMed Central

    Khoury, Philip R.; McCoy, Connie E.; Dolan, Lawrence M.; Daniels, Stephen R.; Kimball, Thomas R.

    2013-01-01

    BACKGROUND AND OBJECTIVE: Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. METHODS: Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). RESULTS: There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. CONCLUSIONS: TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases. PMID:23460684

  7. A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides

    NASA Astrophysics Data System (ADS)

    Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng

    2016-09-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  8. High-definition micropatterning method for hard, stiff and brittle polymers.

    PubMed

    Zhao, Yiping; Truckenmuller, Roman; Levers, Marloes; Hua, Wei-Shu; de Boer, Jan; Papenburg, Bernke

    2017-02-01

    Polystyrene (PS) is the most commonly used material in cell culture devices, such as Petri dishes, culture flasks and well plates. Micropatterning of cell culture substrates can significantly affect cell-material interactions leading to an increasing interest in the fabrication of topographically micro-structured PS surfaces. However, the high stiffness combined with brittleness of PS (elastic modulus 3-3.5GPa) makes high-quality patterning into PS difficult when standard hard molds, e.g. silicon and nickel, are used as templates. A new and robust scheme for easy processing of large-area high-density micro-patterning into PS film is established using nanoimprinting lithography and standard hot embossing techniques. Including an extra step through an intermediate PDMS mold alone does not result in faithful replication of the large area, high-density micropattern into PS. Here, we developed an approach using an additional intermediate mold out of OrmoStamp, which allows for high-quality and large-area micro-patterning into PS. OrmoStamp was originally developed for UV nanoimprint applications; this work demonstrates for the first time that OrmoStamp is a highly adequate material for micro-patterning of PS through hot embossing. Our proposed processing method achieves high-quality replication of micropatterns in PS, incorporating features with high aspect ratio (4:1, height:width), high density, and over a large pattern area. The proposed scheme can easily be adapted for other large-area and high-density micropatterns of PS, as well as other stiff and brittle polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The influence of removing sizing on strength and stiffness of conventional and high modulus E-glass fibres

    NASA Astrophysics Data System (ADS)

    Nørgaard Petersen, Helga; Kusano, Yukihiro; Brøndsted, Povl; Almdal, Kristoffer

    2016-07-01

    Two types of E-glass fibres, a conventional and a high modulus where the last one in the following will be denoted as ECR-glass fibre, were investigated regarding density, diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal treatments. The sizing was removed by either burning at 565°C or soxhlet extraction with acetone. It was found that the density and the stiffness increased after removing the sizing by the two removal treatments whereas the diameter did not change significantly. The strength of the fibres decreased after burning as the sizing, protecting against water and fibre-fibre damage, had been removed. The strength of the fibres after extraction was not significantly different from the strength of the pristine fibres despite removing the sizing. This indicates that the bonded part of sizing is still protecting the glass fibre surface.

  10. Relationship between neck circumference, insulin resistance and arterial stiffness in overweight and obese subjects.

    PubMed

    Fantin, Francesco; Comellato, Gabriele; Rossi, Andrea P; Grison, Elisa; Zoico, Elena; Mazzali, Gloria; Zamboni, Mauro

    2017-09-01

    Background Only a few studies have investigated the relationship between neck circumference and cardiometabolic risk. The aim of this study was to assess the relationships between neck circumference, waist circumference, metabolic variables and arterial stiffness in a group of overweight and obese subjects evaluating a possible independent role of neck circumference in determining arterial stiffness. Methods and results We studied 95 subjects (53 women) with an age range of 20-77 years and body mass index range from 25.69 to 47.04 kg/m 2 . In each subject we evaluated body mass index, waist, hip and neck circumference, systolic and diastolic blood pressure, insulin, fasting glucose, cholesterol, low-density lipoprotein and high-density lipoprotein cholesterol and triglycerides. Arterial stiffness was assessed by carotid-femoral pulse wave velocity (PWVcf) and carotid-radial pulse wave velocity (PWVcr). Both PWVcf and PWVcr were higher in subjects with high values of neck circumference compared with subjects with normal values of neck circumference. Subjects with high values of neck circumference and abdominal obesity presented higher values of mean arterial pressure, PWVcr and homeostasis model assessment (HOMA) index and lower values of high-density lipoprotein than subjects with only abdominal obesity. Two models of stepwise multiple regression were performed in order to evaluate the combined effect of independent variables on arterial stiffness. In the first model PWVcf was considered a dependent variable, and age, gender, systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, waist circumference, neck circumference, HOMA index and the use of anti-hypertensive medications were considered independent variables. Age, systolic blood pressure, triglycerides and waist circumference were significant predictors of PWVcf, explaining 65% of its variance. In the second model, in which PWVcr was considered a dependent variable, neck circumference and gender were significant predictors of PWVcr, explaining 24% of its variance. Conclusions These findings emphasise the need to measure not only waist but even neck circumference to better stratify and identify individuals at increased cardiometabolic risk, as upper-body subcutaneous fat is a novel, easily measured fat depot.

  11. Accelerated weathering of natural fiber-thermoplastic composites : effects of ultraviolet exposure on bending strength and stiffness

    Treesearch

    Thomas Lundin; Robert H. Falk; Colin Felton

    2002-01-01

    Mechanical properties of bending stiffness and yield stress were used to evaluate the effects of ultraviolet exposure on natural fiber-thermoplastic composites. Four different specimen formulations were evaluated. Injection molded high density polyethylene (HDPE) served as the polymer base for all formulations. Two lignocellulosic fillers, wood flour and kenaf fiber,...

  12. Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment.

    PubMed

    Read, Jennifer; Evans, Robert; Sanson, Gordon D; Kerr, Stuart; Jaffré, Tanguy

    2011-11-01

    New Caledonia commonly experiences cyclones, so trees there are expected to have enhanced wood traits and trunk allometry that confer resistance to wind damage. We ask whether there is evidence of a trade-off between these traits and growth rate among species. Wood traits, including density, microfibril angle (MFA), and modulus of elasticity (MOE), ratio of tree height to stem diameter, and growth rate were investigated in mature trees of 15 co-occurring canopy species in a New Caledonian rainforest. In contrast to some studies, wood density did not correlate negatively with growth increment. Among angiosperms, wood density and MOE correlated positively with diameter-adjusted tree height, and MOE correlated positively with stem-diameter growth increment. Tall slender trees achieved high stiffness with high efficiency with respect to wood density, in part by low MFA, and with a higher diameter growth increment but a lower buckling safety factor. However, some tree species of a similar niche differed in whole-tree resistance to wind damage and achieved wood stiffness in different ways. There was no evidence of a growth-safety trade-off in these trees. In forests that regularly experience cyclones, there may be stronger selection for high wood density and/or stiffness in fast-growing trees of the upper canopy, with the potential growth trade-off amortized by access to the upper canopy and by other plant traits. Furthermore, decreasing wood density does not necessarily decrease resistance to wind damage, resistance being influenced by other characteristics including cell-level traits (e.g., MFA) and whole-plant architecture.

  13. Elastin density: Link between histological and biomechanical properties of vaginal tissue in women with pelvic organ prolapse?

    PubMed

    de Landsheere, Laurent; Brieu, Mathias; Blacher, Silvia; Munaut, Carine; Nusgens, Betty; Rubod, Chrystèle; Noel, Agnès; Foidart, Jean-Michel; Nisolle, Michelle; Cosson, Michel

    2016-04-01

    The aim of the study was to correlate histological and biomechanical characteristics of the vaginal wall in women with pelvic organ prolapse (POP). Tissue samples were collected from the anterior [point Ba; POP Questionnaire (POP-Q)] and/or posterior (point Bp; POP-Q) vaginal wall of 15 women who underwent vaginal surgery for POP. Both histological and biomechanical assessments were performed from the same tissue samples in 14 of 15 patients. For histological assessment, the density of collagen and elastin fibers was determined by combining high-resolution virtual imaging and computer-assisted digital image analysis. For biomechanical testing, uniaxial tension tests were performed to evaluate vaginal tissue stiffness at low (C0) and high (C1) deformation rates. Biomechanical testing highlights the hyperelastic behavior of the vaginal wall. At low strains (C0), vaginal tissue appeared stiffer when elastin density was low. We found a statistically significant inverse relationship between C0 and the elastin/collagen ratio (p = 0.048) in the lamina propria. However, at large strain levels (C1), no clear relationship was observed between elastin density or elastin/collagen ratio and stiffness, likely reflecting the large dispersion of the mechanical behavior of the tissue samples. Histological and biomechanical properties of the vaginal wall vary from patient to patient. This study suggests that elastin density deserves consideration as a relevant factor of vaginal stiffness in women with POP.

  14. Architected cellular ceramics with tailored stiffness via direct foam writing

    NASA Astrophysics Data System (ADS)

    Muth, Joseph T.; Dixon, Patrick G.; Woish, Logan; Gibson, Lorna J.; Lewis, Jennifer A.

    2017-02-01

    Hierarchical cellular structures are ubiquitous in nature because of their low-density, high-specific properties, and multifunctionality. Inspired by these systems, we created lightweight ceramic architectures composed of closed-cell porous struts patterned in the form of hexagonal and triangular honeycombs by direct foam writing. The foam ink contains bubbles stabilized by attractive colloidal particles suspended in an aqueous solution. The printed and sintered ceramic foam honeycombs possess low relative density (˜6%). By tailoring their microstructure and geometry, we created honeycombs with different modes of deformation, exceptional specific stiffness, and stiffness values that span over an order of magnitude. This capability represents an important step toward the scalable fabrication of hierarchical porous materials for applications, including lightweight structures, thermal insulation, tissue scaffolds, catalyst supports, and electrodes.

  15. Architected cellular ceramics with tailored stiffness via direct foam writing

    PubMed Central

    Muth, Joseph T.; Dixon, Patrick G.; Woish, Logan; Gibson, Lorna J.; Lewis, Jennifer A.

    2017-01-01

    Hierarchical cellular structures are ubiquitous in nature because of their low-density, high-specific properties, and multifunctionality. Inspired by these systems, we created lightweight ceramic architectures composed of closed-cell porous struts patterned in the form of hexagonal and triangular honeycombs by direct foam writing. The foam ink contains bubbles stabilized by attractive colloidal particles suspended in an aqueous solution. The printed and sintered ceramic foam honeycombs possess low relative density (∼6%). By tailoring their microstructure and geometry, we created honeycombs with different modes of deformation, exceptional specific stiffness, and stiffness values that span over an order of magnitude. This capability represents an important step toward the scalable fabrication of hierarchical porous materials for applications, including lightweight structures, thermal insulation, tissue scaffolds, catalyst supports, and electrodes. PMID:28179570

  16. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    NASA Astrophysics Data System (ADS)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple design can be manufactured using origami-like sheet folding and bonding methods.

  17. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness.

    PubMed

    Berger, J B; Wadley, H N G; McMeeking, R M

    2017-03-23

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple design can be manufactured using origami-like sheet folding and bonding methods.

  18. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2015-08-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain initiation. Calculation of bone elastic moduli from image data is a basic step when constructing finite element models. However, different relationships between elastic moduli and imaged density (known as density-modulus relationships) have been reported in the literature. The objective of this study was to apply seven different trabecular-specific and two cortical-specific density-modulus relationships from the literature to finite element models of proximal tibia subchondral bone, and identify the relationship(s) that best predicted experimentally measured local subchondral structural stiffness with highest explained variance and least error. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using published density-modulus relationships and mapped to corresponding finite element models. Proximal tibial structural stiffness values were compared to experimentally measured stiffness values from in-situ macro-indentation testing directly on the subchondral bone surface (47 indentation points). Regression lines between experimentally measured and finite element calculated stiffness had R(2) values ranging from 0.56 to 0.77. Normalized root mean squared error varied from 16.6% to 337.6%. Of the 21 evaluated density-modulus relationships in this study, Goulet combined with Snyder and Schneider or Rho appeared most appropriate for finite element modeling of local subchondral bone structural stiffness. Though, further studies are needed to optimize density-modulus relationships and improve finite element estimates of local subchondral bone structural stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Clinical application of a color map pattern on shear-wave elastography for invasive breast cancer.

    PubMed

    Lee, Seokwon; Jung, Younglae; Bae, Youngtae

    2016-03-01

    The aim of this study was to classify the color map pattern on shear-wave elastography (SWE) and to determine its association with clinicopathological factors for clinical application in invasive breast cancer. From June to December 2014, 103 invasive breast cancers were imaged by B-mode ultrasonography (US) and SWE just before surgery. The color map pattern identified on the SWE could be classified into three main categories: type 1 (diffuse pattern), increased stiffness in the surrounding stroma and the interior lesion itself; type 2 (lateral pattern), marked peri-tumoral stiffness at the anterior and lateral portions with no or minor stiffness at the posterior portion; and type 3 (rim-off pattern), marked peri-tumoral stiffness at the anterior and posterior portion with no or minor stiffness at both lateral portions. High-grade density on mammography (grade 3-4) was more frequent in the type 1 pattern than the other pattern types (80.5% in high-grade density vs. 19.5% in low-grade density). For type 1 tumors, the extent of synchronous non-invasive cancers (pT0), ductal carcinoma in situ (DCIS), was 1.8-2.0 times wider than that measured by US or magnetic resonance imaging (MRI). For type 2 tumors, the invasive tumor components (pT size) size was 1.3 times greater than measured by MRI (p = 0.049). On the other hand, the pT size and pT0 extent of type 3 tumors were almost equal to the preoperative US and MRI measurements. In terms of immunohistochemical (IHC) profiles, type 3 tumors showed a high histologic grade (p = 0.021), poor differentiation (p = 0.009), presence of necrosis (p = 0.018), and high Ki-67 (p = 0.002). The percentage of HER2-positive cancers was relatively high within the type 2 group, and the percentage of triple negative breast cancer was relatively high in the type 3 group (p = 0.011). We expect that assessments of the SWE color map pattern will prove useful for surgical or therapeutic plan decisions and to predict prognosis in invasive breast cancer patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Time Dependent Predictive Modeling of DIII-D ITER Baseline Scenario using Predictive TRANSP

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Andre, R. G.; Budny, R. V.; Solomon, W. M.; Yuan, X.; Candy, J.; Pinsker, R. I.; Staebler, G. M.; Holland, C.; Rafiq, T.

    2015-11-01

    ITER baseline scenario discharges on DIII-D are modeled with TGLF and MMM transitioning from combined ECH (3.3MW) +NBI(2.8MW) heating to NBI only (3.0 MW) heating maintaining βN = 2.0 on DIII-D predicting temperature, density and rotation for comparison to experimental measurements. These models capture the reduction of confinement associated with direct electron heating H98y2 = 0.89 vs. 1.0) consistent with stiff electron transport. Reasonable agreement between experimental and modeled temperature profiles is achieved for both heating methods, whereas density and momentum predictions differ significantly. Transport fluxes from TGLF indicate that on DIII-D the electron energy flux has reached a transition from low-k to high-k turbulence with more stiff high-k transport that inhibits an increase in core electron stored energy with additional electron heating. Projections to ITER also indicate high electron stiffness. Supported by US DOE DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-92-ER54141.

  1. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-01-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm 3 density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Experimental Investigation of Stiffness Characteristics and Damping Properties of a Metallic Rubber Material

    NASA Astrophysics Data System (ADS)

    Lu, Ch. Zh.; Li, Jingyuan; Zhou, Bangyang; Li, Shuang

    2017-09-01

    The static stiffness and dynamic damping properties of a metallic rubber material (MR) were investigated, which exhibited a nonlinear deformation behavior. Its static stiffness is analyzed and discussed. The effects of structural parameters of MR and experimental conditions on its shock absorption capacity were examined by dynamic tests. Results revealed excellent elastic and damping properties of the material. Its stiffness increased with density, but decreased with thickness. The damping property of MR varied with its density, thickness, loading frequency, and amplitude.

  3. A Multiwell Platform for Studying Stiffness-Dependent Cell Biology

    PubMed Central

    Mih, Justin D.; Sharif, Asma S.; Liu, Fei; Marinkovic, Aleksandar; Symer, Matthew M.; Tschumperlin, Daniel J.

    2011-01-01

    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes. PMID:21637769

  4. A multiwell platform for studying stiffness-dependent cell biology.

    PubMed

    Mih, Justin D; Sharif, Asma S; Liu, Fei; Marinkovic, Aleksandar; Symer, Matthew M; Tschumperlin, Daniel J

    2011-01-01

    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.

  5. Comparison of Effective Medium Schemes For Seismic Velocities in Cracked Anisotropic Rock

    NASA Astrophysics Data System (ADS)

    Morshed, S.; Chesnokov, E.

    2017-12-01

    Understanding of elastic properties of reservoir rock is necessary for meaningful interpretation and analysis of seismic measurements. The elastic properties of a rock are controlled by the microstructural properties such as mineralogical composition, pore and crack distribution, texture and pore connectivity. However, seismic scale is much larger than microstructure scale. Understanding of macroscopic properties at relevant seismic scale (e.g. borehole sonic data) comes from effective medium theory (EMT). However, most of the effective medium theories fail at high crack density as the interactions of strain fields of the cracks can't be ignored. We compare major EMT schemes from low to high crack density. While at low crack density all method gives similar results, at high crack density they differ significantly. Then, we focus on generalized singular approximation (GSA) and effective field (EF) method as they allow cracks beyond the limit of dilute concentrations. Additionally, we use grain contact (GC) method to examine the stiffness constants of the rock matrix. We prepare simple models of a multiphase media containing low to high concentrations of isolated pores. Randomly oriented spherical pores and horizontally oriented ellipsoidal (aspect ratio =0.1) pores have been considered. For isolated spherical pores, all the three methods show exactly same or similar results. However, inclusion interactions are different in different directions in case of horizontal ellipsoidal pores and individual stiffness constants differ greatly from one method to another at different crack density. Stiffness constants remain consistent in GSA method whereas some components become unusual in EF method at a higher crack density (>0.15). Finally, we applied GSA method to interpret ultrasonic velocities of core samples. Mineralogical composition from X-ray diffraction (XRD) data and lab measured porosity data have been utilized. Both compressional and shear wave velocities from GSA method show good fit with the lab measured velocities.

  6. Establishing a design procedure for buried steel-reinforced high density polyethylene (SRHDPE) pipes.

    DOT National Transportation Integrated Search

    2013-11-01

    Metal and plastic pipes have been used extensively as storm sewers and buried drainage structures in transportation projects. Metal pipes have : high strength and stiffness but are susceptible to corrosion from wastewaters containing acid, and from a...

  7. Relationships of density, microfibril angle, and sound velocity with stiffness and strength in mature wood of Douglas-fir

    Treesearch

    B. Lachenbruch; G.R. Johnson; G.M. Downes; R. Evans

    2010-01-01

    The relative importance of density, acoustic velocity, and microfibril angle (MFA) for the prediction of stiffness (MOE) and strength (MOR) has not been well established for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). MOE and MOR of small clear specimens of mature wood were better predicted by density and velocity than by either variable...

  8. Phenomenological QCD equation of state for massive neutron stars

    DOE PAGES

    Kojo, Toru; Powell, Philip D.; Song, Yifan; ...

    2015-02-03

    Here, we construct an equation of state for massive neutron stars based on quantum chromodynamics phenomenology. Our primary purpose is to delineate the relevant ingredients of equations of state that simultaneously have the required stiffness and satisfy constraints from thermodynamics and causality. These ingredients are (i) a repulsive density-density interaction, universal for all flavors, (ii) the color-magnetic interaction active from low to high densities, (iii) confining effects, which become increasingly important as the baryon density decreases, and (iv) nonperturbative gluons, which are not very sensitive to changes of the quark density. We use the following “3-window” description: At baryon densitiesmore » below about twice normal nuclear density, 2n 0, we use the Akmal-Pandharipande-Ravenhall (APR) equation of state, and at high densities, ≥(4–7)n 0, we use the three-flavor Nambu-Jona-Lasinio (NJL) model supplemented by vector and diquark interactions. In the transition density region, we smoothly interpolate the hadronic and quark equations of state in the chemical potential-pressure plane. Requiring that the equation of state approach APR at low densities, we find that the quark pressure in nonconfining models can be larger than the hadronic pressure, unlike in conventional equations of state. We show that consistent equations of state of stiffness sufficient to allow massive neutron stars are reasonably tightly constrained, suggesting that gluon dynamics remains nonperturbative even at baryon densities ~10n 0.« less

  9. Establishing a design procedure for buried steel-reinforced high density polyethylene (SRHDPE) pipes : [technical summary].

    DOT National Transportation Integrated Search

    2013-11-01

    Metal and plastic pipes have been used extensively as storm sewers and buried drainage structures in transportation projects. Metal pipes have high strength and stiffness but are susceptible to corrosion from wastewaters containing acid, and from agg...

  10. Trabecular Bone Score (TBS)—A Novel Method to Evaluate Bone Microarchitectural Texture in Patients With Primary Hyperparathyroidism

    PubMed Central

    Boutroy, Stephanie; Zhang, Chiyuan; McMahon, Donald Jay; Zhou, Bin; Wang, Ji; Udesky, Julia; Cremers, Serge; Sarquis, Marta; Guo, Xiang-Dong Edward; Hans, Didier

    2013-01-01

    Context: In the milder form of primary hyperparathyroidism (PHPT), cancellous bone, represented by areal bone mineral density at the lumbar spine by dual-energy x-ray absorptiometry (DXA), is preserved. This finding is in contrast to high-resolution peripheral quantitative computed tomography (HRpQCT) results of abnormal trabecular microstructure and epidemiological evidence for increased overall fracture risk in PHPT. Because DXA does not directly measure trabecular bone and HRpQCT is not widely available, we used trabecular bone score (TBS), a novel gray-level textural analysis applied to spine DXA images, to estimate indirectly trabecular microarchitecture. Objective: The purpose of this study was to assess TBS from spine DXA images in relation to HRpQCT indices and bone stiffness in radius and tibia in PHPT. Design and Setting: This was a cross-sectional study conducted in a referral center. Patients: Participants were 22 postmenopausal women with PHPT. Main Outcome Measures: Outcomes measured were areal bone mineral density by DXA, TBS indices derived from DXA images, HRpQCT standard measures, and bone stiffness assessed by finite element analysis at distal radius and tibia. Results: TBS in PHPT was low at 1.24, representing abnormal trabecular microstructure (normal ≥1.35). TBS was correlated with whole bone stiffness and all HRpQCT indices, except for trabecular thickness and trabecular stiffness at the radius. At the tibia, correlations were observed between TBS and volumetric densities, cortical thickness, trabecular bone volume, and whole bone stiffness. TBS correlated with all indices of trabecular microarchitecture, except trabecular thickness, after adjustment for body weight. Conclusion: TBS, a measurement technology readily available by DXA, shows promise in the clinical assessment of trabecular microstructure in PHPT. PMID:23526463

  11. Interlocking-induced stiffness in stochastically microcracked materials beyond the transport percolation threshold

    NASA Astrophysics Data System (ADS)

    Picu, R. C.; Pal, A.; Lupulescu, M. V.

    2016-04-01

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above, the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.

  12. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors.

    PubMed

    Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.

  13. Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin.

    PubMed

    Kim, Haseog; Park, Sangki; Lee, Seahyun

    2016-07-19

    There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance.

  14. Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin

    PubMed Central

    Kim, Haseog; Park, Sangki; Lee, Seahyun

    2016-01-01

    There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance. PMID:28773711

  15. Potential applications of MMC and aluminum-lithium alloys in cameras for CRAF spacecraft. [Comet Rendezvous Asteroid Flyby Mission

    NASA Technical Reports Server (NTRS)

    Lane, Marc; Hsieh, Cheng; Adams, Lloyd

    1989-01-01

    In undertaking the design of a 2000-mm focal length camera for the Mariner Mark II series of spacecraft, JPL sought novel materials with the requisite dimensional and thermal stability, outgassing and corrosion resistance, low mass, high stiffness, and moderate cost. Metal-matrix composites and Al-Li alloys have, in addition to excellent mechanical properties and low density, a suitably low coefficient of thermal expansion, high specific stiffness, and good electrical conductivity. The greatest single obstacle to application of these materials to camera structure design is noted to have been the lack of information regarding long-term dimensional stability.

  16. Effects of substitution on the exchange stiffness and magnetization of Co films

    NASA Astrophysics Data System (ADS)

    Eyrich, C.; Zamani, A.; Huttema, W.; Arora, M.; Harrison, D.; Rashidi, F.; Broun, D.; Heinrich, B.; Mryasov, O.; Ahlberg, M.; Karis, O.; Jönsson, P. E.; From, M.; Zhu, X.; Girt, E.

    2014-12-01

    An antiferromagnetically coupled FM/NM/FM (FM = ferromagnet, NM = normal metal) trilayer structure responds to an external magnetic field by the formation of a magnetic-moment spring within the FM layers. We show that the exchange stiffness (Aex) of an FM layer can be determined by fitting the field-dependent magnetization, M (H ) , of the FM/NM/FM trilayer to a micromagnetic model. Using this method, we have measured the exchange stiffness of thin-film Co alloyed with Cr, Fe, Ni, Pd, Pt, and Ru. The results show that the rate at which a substituent element reduces the exchange stiffness is not directly related to its effect on the magnetization of the alloy. The observed trends have been understood by material-specific modeling based on density functional theory within the local density approximation. The stiffness measurements are in agreement with Brillouin light scattering carried out on thicker Co films.

  17. Arterial function of carotid and brachial arteries in postmenopausal vegetarians.

    PubMed

    Su, Ta-Chen; Torng, Pao-Ling; Jeng, Jiann-Shing; Chen, Ming-Fong; Liau, Chiau-Suong

    2011-01-01

    Vegetarianism is associated with a lower risk of cardiovascular disease. However, studies of arterial function in vegetarians are limited. This study investigated arterial function in vegetarianism by comparing 49 healthy postmenopausal vegetarians with 41 age-matched omnivores. The arterial function of the common carotid artery was assessed by carotid duplex, while the pulse dynamics method was used to measure brachial artery distensibility (BAD), compliance (BAC), and resistance (BAR). Fasting blood levels of glucose, lipids, lipoprotein (a), high-sensitivity C-reactive protein, homocysteine, and vitamin B12 were also measured. Vegetarians had significantly lower serum cholesterol, high-density and low-density lipoprotein, and glucose compared with omnivores. They also had lower vitamin B12 but higher homocysteine levels. Serum levels of lipoprotein (a) and high-sensitivity C-reactive protein were no different between the two groups. There were no significant differences in carotid beta stiffness index, BAC, and BAD between the two groups even after adjustment for associated covariates. However, BAR was significantly lower in vegetarians than in omnivores. Multiple linear regression analysis revealed that age and pulse pressure were two important determinants of carotid beta stiffness index and BAD. Vegetarianism is not associated with better arterial elasticity. Apparently healthy postmenopausal vegetarians are not significantly better in terms of carotid beta stiffness index, BAC, and BAD, but have significantly decreased BAR than omnivores. Prevention of vitamin B12 deficiency might be beneficial for cardiovascular health in vegetarians.

  18. Maps and models of density and stiffness within individual Douglas-fir trees

    Treesearch

    Christine L. Todoroki; Eini C. Lowell; Dennis P. Dykstra; David G. Briggs

    2012-01-01

    Spatial maps of density and stiffness patterns within individual trees were developed using two methods: (1) measured wood properties of veneer sheets; and (2) mixed effects models, to test the hypothesis that within-tree patterns could be predicted from easily measurable tree variables (height, taper, breast-height diameter, and acoustic velocity). Sample trees...

  19. Topological interlocking provides stiffness to stochastically micro-cracked materials beyond the transport percolation limit

    NASA Astrophysics Data System (ADS)

    Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.

  20. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu; Freed, Karl F., E-mail: freed@uchicago.edu; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chainmore » stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.« less

  1. Idiopathic toe-walking in children, adolescents and young adults: a matter of local or generalised stiffness?

    PubMed Central

    2011-01-01

    Background Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. Methods In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. Results A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. Conclusion ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered. PMID:21418634

  2. Idiopathic toe-walking in children, adolescents and young adults: a matter of local or generalised stiffness?

    PubMed

    Engelbert, Raoul; Gorter, Jan Willem; Uiterwaal, Cuno; van de Putte, Elise; Helders, Paul

    2011-03-21

    Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered.

  3. Penetration Resistance of Armor Ceramics: Dimensional Analysis and Property Correlations

    DTIC Science & Technology

    2015-08-01

    been reported in experimental studies. Particular ceramics analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon...analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon carbide, and titanium diboride. Data for penetration depth...include high hardness, high elastic stiffness, high strengths (static/dynamic compressive, shear, and bending), and low density relative to armor steels

  4. Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments

    DOE PAGES

    Waltz, Ronald E.; Bass, Eric M.; Heidbrink, William W.; ...

    2015-10-30

    Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code, used tomore » validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. Lastly, these results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.« less

  5. Stiffness control of a nylon twisted coiled actuator for use in mechatronic rehabilitation devices.

    PubMed

    Edmonds, Brandon P R; Trejos, Ana Luisa

    2017-07-01

    Mechatronic rehabilitation devices, especially wearables, have been researched extensively and proven to be promising additions to physical therapy, but most designs utilize traditional actuators providing unnatural, robot-like movements. Therefore, many researchers have focused on the development of actuators that mimic biological properties to provide patients with improved results, safety, and comfort. Recently, a twisted-coiled actuator (TCA) made from nylon thread has been found to possess many of these important properties when heated, such as variable stiffness, flexibility, and high power density. So far, TCAs have been characterized in controlled environments to define their fundamental properties under simple loading configurations. However, for an actuator like this to be implemented in a biomimetic design such as an exoskeleton, it needs to be characterized and controlled as a biological muscle. One major control law that natural muscles exhibit is stiffness control, allowing humans to passively avoid injury from external forces, or move the limbs in a controlled or high impact motion. This type of control is created by the antagonistic muscle arrangement. In this paper, an antagonistic apparatus was developed to model the TCAs from a biological standpoint, the stiffness was characterized with respect to the TCA temperature, and a fully functional stiffness and position controller was implemented with an incorporated TCA thermal model. The stiffness was found to have a linear relationship to the TCA temperatures (R 2 =0.95). The controller performed with a stiffness accuracy of 98.95% and a position accuracy of 92.7%. A final trial with varying continuous position input and varying stepped stiffness input exhibited position control with R 2 =0.9638.

  6. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data.

    PubMed

    Martin, Daniel E; Severns, Anne E; Kabo, J M J Michael

    2004-08-01

    Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.

  7. Exchange Stiffness in Thin-Film Cobalt Alloys

    NASA Astrophysics Data System (ADS)

    Eyrich, Charles

    The exchange stiffness, Aex, is one of the key parameters controlling magnetization reversal in magnetic materials but is very difficult to measure, especially in thin films. We developed a new technique for measuring the exchange stiffness of a magnetic material based on the formation of a spin spiral within two antiferromagnetically coupled ferromagnetic films [1]. Using this method, I was able to measure the exchange stiffness of thin film Co alloyed with Cr, Fe, Ni, Pd, Pt and Ru. The results of this work showed that the rate at which a substituent element reduces the exchange stiffness is not directly related to its effect on the magnetization of the alloy. These measured trends have been understood by combining measurements of element specific magnetic moments obtained using X-ray magnetic circular dichroism (XMCD) and material specific modeling based on density functional theory (DFT) within the local density approximation (LDA). The experimental results also hint at significant reduction of the exchange stiffness at the interface that can account for the difference between our results and those obtained on bulk materials.

  8. Development of a new generation of high-temperature composite materials

    NASA Technical Reports Server (NTRS)

    Brindley, Pamela K.

    1987-01-01

    There are ever-increasing demands to develop low-density materials that maintain high strength and stiffness properties at elevated temperatures. Such materials are essential if the requirements for advanced aircraft, space power generation, and space station plans are to be realized. Metal matrix composites and intermetallic matrix composites are currently being investigated at NASA Lewis for such applications because they offer potential increases in strength, stiffness, and use temperature at a lower density than the most advanced single-crystal superalloys presently available. Today's discussion centers around the intermetallic matrix composites proposed by Lewis for meeting advanced aeropropulsion requirements. The fabrication process currently being used at Lewis to produce intermetallic matrix composites will be reviewed, and the properties of one such composite, SiC/Ti3Al+Nb, will be presented. In addition, the direction of future research will be outlined, including plans for enhanced fabrication of aluminide composites by the arc spray technique and fiber development by the floating-zone process.

  9. Strength and Stiffness Properties of Sweetgum and Yellow-poplar Structural Lumber

    Treesearch

    Timothy D. Faust; Robert H. McAlister; Stanley J. Zarnoch

    1990-01-01

    The forest resource base in the Southeast is rapidly changing. Dwindling reserves of high quality pine sawlogs will provide incentives to utilize low-density hardwoods such as yellow-poplar and sweetgum for structural lumber. Inventories of sweetgum (Liriodendron tulipifera L.) are currently high and growth is exceeding removals. The mechanical propertiees of dimension...

  10. Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks

    NASA Astrophysics Data System (ADS)

    Hatami-Marbini, H.

    2018-02-01

    Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.

  11. Correlation of cervical endplate strength with CT measured subchondral bone density

    PubMed Central

    Ordway, Nathaniel R.; Lu, Yen-Mou; Zhang, Xingkai; Cheng, Chin-Chang; Fang, Huang

    2007-01-01

    Cervical interbody device subsidence can result in screw breakage, plate dislodgement, and/or kyphosis. Preoperative bone density measurement may be helpful in predicting the complications associated with anterior cervical surgery. This is especially important when a motion preserving device is implanted given the detrimental effect of subsidence on the postoperative segmental motion following disc replacement. To evaluate the structural properties of the cervical endplate and examine the correlation with CT measured trabecular bone density. Eight fresh human cadaver cervical spines (C2–T1) were CT scanned and the average trabecular bone densities of the vertebral bodies (C3–C7) were measured. Each endplate surface was biomechanically tested for regional yield load and stiffness using an indentation test method. Overall average density of the cervical vertebral body trabecular bone was 270 ± 74 mg/cm3. There was no significant difference between levels. The yield load and stiffness from the indentation test of the endplate averaged 139 ± 99 N and 156 ± 52 N/mm across all cervical levels, endplate surfaces, and regional locations. The posterior aspect of the endplate had significantly higher yield load and stiffness in comparison to the anterior aspect and the lateral aspect had significantly higher yield load in comparison to the midline aspect. There was a significant correlation between the average yield load and stiffness of the cervical endplate and the trabecular bone density on regression analysis. Although there are significant regional variations in the endplate structural properties, the average of the endplate yield loads and stiffnesses correlated with the trabecular bone density. Given the morbidity associated with subsidence of interbody devices, a reliable and predictive method of measuring endplate strength in the cervical spine is required. Bone density measures may be used preoperatively to assist in the prediction of the strength of the vertebral endplate. A threshold density measure has yet to be established where the probability of endplate fracture outweighs the benefit of anterior cervical procedure. PMID:17712574

  12. Small dense low density lipoprotein-cholesterol and cholesterol ratios to predict arterial stiffness progression in normotensive subjects over a 5-year period.

    PubMed

    Li, Gang; Wu, Hui-Kun; Wu, Xiao-Wei; Cao, Zhe; Tu, Yuan-Chao; Ma, Yi; Wang, Wei-Qing; Cheng, Jian; Zhou, Zi-Hua

    2018-02-12

    Small dense low density lipoprotein-cholesterol (sdLDL-C), cholesterol ratios and carotid-femoral pulse wave velocity (cf-PWV) impart risk for all-cause morbidity and mortality independently of conventional cardiovascular disease (CVD) risk factors. This study was designed to identify feasible indicators for predicting arterial stiffness progression. We followed up 816 normotensive participants without diabetes or CVD for nearly 5.0 years. Cholesterol parameters, ratios and other clinical and laboratory data were collected at baseline. cf-PWV were measured at baseline and the end of follow-up. PWV progression subjects had higher levels of PWV parameters, sdLDL-C and TG/HDL-C ratio. sdLDL-C and TG/HDL-C were significantly correlated with all PWV parameters. Multiple regression models showed that sdLDL-C was closely associated with follow-up PWV (β = 0.222, p < 0.001) and △PWV (β = 0.275, p < 0.001). TG/HDL-C was only one cholesterol ratios that associated with all PWV parameters. sdLDL-C (OR = 2.070, 95%CI: 1.162 to 3.688, p = 0.014) and TG/HDL-C (OR = 1.355, 95%CI: 1.136 to 1.617, p = 0.001) could significantly determine the progression of PWV after correction for covariates. High sd-LDL-C quantiles subjects were more likely to develop arterial stiffness progression than low quantiles (Tertiles 3 vs Tertiles1, RR = 2.867, 95%CI: 1.106 to 7.434, p = 0.03). We founded that sdLDL-C and TG/HDL-C ratio can independently predict arterial stiffness progression in normotensive subjects, and high level sdLDL-C and TG/HDL-C ratio were associated with a higher risk of arterial stiffness.

  13. Vanishing spin stiffness in the spin-1/2 Heisenberg chain for any nonzero temperature

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Prosen, T.; Campbell, D. K.

    2015-10-01

    Whether at the zero spin density m =0 and finite temperatures T >0 the spin stiffness of the spin-1 /2 X X X chain is finite or vanishes remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we explicitly compute the stiffness at m =0 and find strong evidence that it vanishes. In particular, we derive an upper bound on the stiffness within a canonical ensemble at any fixed value of spin density m that is proportional to m2L in the thermodynamic limit of chain length L →∞ , for any finite, nonzero temperature, which implies the absence of ballistic transport for T >0 for m =0 . Although our method relies in part on the thermodynamic Bethe ansatz (TBA), it does not evaluate the stiffness through the second derivative of the TBA energy eigenvalues relative to a uniform vector potential. Moreover, we provide strong evidence that in the thermodynamic limit the upper bounds on the spin current and stiffness used in our derivation remain valid under string deviations. Our results also provide strong evidence that in the thermodynamic limit the TBA method used by X. Zotos [Phys. Rev. Lett. 82, 1764 (1999), 10.1103/PhysRevLett.82.1764] leads to the exact stiffness values at finite temperature T >0 for models whose stiffness is finite at T =0 , similar to the spin stiffness of the spin-1 /2 Heisenberg chain but unlike the charge stiffness of the half-filled 1D Hubbard model.

  14. Multifunctional Stiff Carbon Foam Derived from Bread.

    PubMed

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  15. Convergent Aeronautics Solutions (CAS) Showcase Presentation on Mission Adaptive Digital Composite Aerostructure Technologies (MADCAT)

    NASA Technical Reports Server (NTRS)

    Swei, Sean; Cheung, Kenneth

    2016-01-01

    This project is to develop a novel aerostructure concept that takes advantage of emerging digital composite materials and manufacturing methods to build high stiffness-to-density ratio, ultra-light structures that can provide mission adaptive and aerodynamically efficient future N+3N+4 air vehicles.

  16. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior.

    PubMed

    Mason, Brooke N; Starchenko, Alina; Williams, Rebecca M; Bonassar, Lawrence J; Reinhart-King, Cynthia A

    2013-01-01

    Numerous studies have described the effects of matrix stiffening on cell behavior using two-dimensional synthetic surfaces; however, less is known about the effects of matrix stiffening on cells embedded in three-dimensional in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in three dimensions is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a threefold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation end products is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. In vivo tibial stiffness is maintained by whole bone morphology and cross-sectional geometry in growing female mice

    PubMed Central

    Main, Russell P.; Lynch, Maureen E.; van der Meulen, Marjolein C.H.

    2010-01-01

    Whole bone morphology, cortical geometry, and tissue material properties modulate skeletal stresses and strains that in turn influence skeletal physiology and remodeling. Understanding how bone stiffness, the relationship between applied load and tissue strain, is regulated by developmental changes in bone structure and tissue material properties is important in implementing biophysical strategies for promoting healthy bone growth and preventing bone loss. The goal of this study was to relate developmental patterns of in vivo whole bone stiffness to whole bone morphology, cross-sectional geometry, and tissue properties using a mouse axial loading model. We measured in vivo tibial stiffness in three age groups (6wks, 10wks, 16wks old) of female C57Bl/6 mice during cyclic tibial compression. Tibial stiffness was then related to cortical geometry, longitudinal bone curvature, and tissue mineral density using microcomputed tomography (microCT). Tibial stiffness and the stresses induced by axial compression were generally maintained from 6 to 16wks of age. Growth-related increases in cortical cross-sectional geometry and longitudinal bone curvature had counteracting effects on induced bone stresses and, therefore, maintained tibial stiffness similarly with growth. Tissue mineral density increased slightly from 6 to 16wks of age, and although the effects of this increase on tibial stiffness were not directly measured, its role in the modulation of whole bone stiffness was likely minor over the age range examined. Thus, whole bone morphology, as characterized by longitudinal curvature, along with cortical geometry, plays an important role in modulating bone stiffness during development and should be considered when evaluating and designing in vivo loading studies and biophysical skeletal therapies. PMID:20673665

  18. Evidence that breast tissue stiffness is associated with risk of breast cancer.

    PubMed

    Boyd, Norman F; Li, Qing; Melnichouk, Olga; Huszti, Ella; Martin, Lisa J; Gunasekara, Anoma; Mawdsley, Gord; Yaffe, Martin J; Minkin, Salomon

    2014-01-01

    Evidence from animal models shows that tissue stiffness increases the invasion and progression of cancers, including mammary cancer. We here use measurements of the volume and the projected area of the compressed breast during mammography to derive estimates of breast tissue stiffness and examine the relationship of stiffness to risk of breast cancer. Mammograms were used to measure the volume and projected areas of total and radiologically dense breast tissue in the unaffected breasts of 362 women with newly diagnosed breast cancer (cases) and 656 women of the same age who did not have breast cancer (controls). Measures of breast tissue volume and the projected area of the compressed breast during mammography were used to calculate the deformation of the breast during compression and, with the recorded compression force, to estimate the stiffness of breast tissue. Stiffness was compared in cases and controls, and associations with breast cancer risk examined after adjustment for other risk factors. After adjustment for percent mammographic density by area measurements, and other risk factors, our estimate of breast tissue stiffness was significantly associated with breast cancer (odds ratio = 1.21, 95% confidence interval = 1.03, 1.43, p = 0.02) and improved breast cancer risk prediction in models with percent mammographic density, by both area and volume measurements. An estimate of breast tissue stiffness was associated with breast cancer risk and improved risk prediction based on mammographic measures and other risk factors. Stiffness may provide an additional mechanism by which breast tissue composition is associated with risk of breast cancer and merits examination using more direct methods of measurement.

  19. Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure

    PubMed Central

    ROSNER, SABINE; KLEIN, ANDREA; MÜLLER, ULRICH; KARLSSON, BO

    2011-01-01

    Summary Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (ks100), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Ψ12, Ψ50) and the percent loss of conductivity at 4 MPa applied air pressure (PLC4MPa). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure–function relationships. High ks100 was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between ks100 and PLC4MPa, and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff. PMID:17472942

  20. Overview and Summary of the Advanced Mirror Technology Development Project

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness. This presentation will introduce the goals and objectives of the AMTD project and summarize its recent accomplishments.

  1. Practical Application of Sheet Lead for Sound Barriers.

    ERIC Educational Resources Information Center

    Lead Industries Association, New York, NY.

    Techniques for improving sound barriers through the use of lead sheeting are described. To achieve an ideal sound barrier a material should consist of the following properties--(1) high density, (2) freedom from stiffness, (3) good damping capacity, and (4) integrity as a non-permeable membrane. Lead combines these desired properties to a greater…

  2. Use of Guided Acoustic Waves to Assess the Effects of Thermal-Mechanical Cycling on Composite Stiffness

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Madaras, Eric I.

    2000-01-01

    The introduction of new, advanced composite materials into aviation systems requires it thorough understanding of the long-term effects of combined thermal and mechanical loading. As part of a study to evaluate the effects of thermal-mechanical cycling, it guided acoustic (Lamb) wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the velocity dispersion curve. A series of 16 and 32-ply composite laminates were subjected to it thermal-mechanical loading profile in load frames equipped with special environmental chambers. The composite systems studied were it graphite fiber reinforced amorphous thermoplastic polyimide and it graphite fiber reinforced bismaleimide thermoset. The samples were exposed to both high and low temperature extremes its well as high and low strain profiles. The bending and out-of-plane stiffnesses for composite sample that have undergone over 6,000 cycles of thermal-mechanical loading are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 20% at 4,936 loading cycles for the graphite/thermoplastic samples and up to 64% at 4,706 loading cycles for the graphite/thermoset samples.

  3. Alterations of bone microstructure and strength in end-stage renal failure.

    PubMed

    Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R

    2013-05-01

    End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p < 0.04). BMI correlated positively with trabecular number (r = 0.4, p < 0.02) and negatively with trabecular spacing (r = -0.37, p < 0.03) and trabecular network heterogeneity (r = -0.4, p < 0.02). Biomechanics positively correlated with BMI and negatively with BALP. Cortical and trabecular bone microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.

  4. Cosmology with a stiff matter era

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2015-11-01

    We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of state P =K ρ2 , where ρ is the rest-mass density and K is a constant. The energy density ɛ =ρ c2+K ρ2 is the sum of two terms: a rest-mass term ρ c2 that mimics "dark matter" (P =0 ) and an internal energy term u =K ρ2=P that mimics a "stiff fluid" (P =ɛ ) in which the speed of sound is equal to the speed of light. In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ˜ɛ , ɛ ∝a-6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃0 , ɛ ∝a-3). We provide a simple analytical solution of the Friedmann equations for a universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological constant. This analytical solution generalizes the Einstein-de Sitter solution describing the dark matter era, and the Λ CDM model describing the dark matter era and the dark energy era. Historically, the possibility of a primordial stiff matter era first appeared in the cosmological model of Zel'dovich where the primordial universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This happens, for example, when the BECs have an attractive self-interaction with a negative scattering length. In that case, the primordial universe is nonsingular and bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.

  5. Evidence That Breast Tissue Stiffness Is Associated with Risk of Breast Cancer

    PubMed Central

    Boyd, Norman F.; Li, Qing; Melnichouk, Olga; Huszti, Ella; Martin, Lisa J.; Gunasekara, Anoma; Mawdsley, Gord; Yaffe, Martin J.; Minkin, Salomon

    2014-01-01

    Background Evidence from animal models shows that tissue stiffness increases the invasion and progression of cancers, including mammary cancer. We here use measurements of the volume and the projected area of the compressed breast during mammography to derive estimates of breast tissue stiffness and examine the relationship of stiffness to risk of breast cancer. Methods Mammograms were used to measure the volume and projected areas of total and radiologically dense breast tissue in the unaffected breasts of 362 women with newly diagnosed breast cancer (cases) and 656 women of the same age who did not have breast cancer (controls). Measures of breast tissue volume and the projected area of the compressed breast during mammography were used to calculate the deformation of the breast during compression and, with the recorded compression force, to estimate the stiffness of breast tissue. Stiffness was compared in cases and controls, and associations with breast cancer risk examined after adjustment for other risk factors. Results After adjustment for percent mammographic density by area measurements, and other risk factors, our estimate of breast tissue stiffness was significantly associated with breast cancer (odds ratio = 1.21, 95% confidence interval = 1.03, 1.43, p = 0.02) and improved breast cancer risk prediction in models with percent mammographic density, by both area and volume measurements. Conclusion An estimate of breast tissue stiffness was associated with breast cancer risk and improved risk prediction based on mammographic measures and other risk factors. Stiffness may provide an additional mechanism by which breast tissue composition is associated with risk of breast cancer and merits examination using more direct methods of measurement. PMID:25010427

  6. Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility

    PubMed Central

    Hu, Bin; Tommasini, Steven M.; Courtland, Hayden-William; Price, Christopher; Terranova, Carl J.; Nadeau, Joseph H.

    2007-01-01

    We examined femora from adult AXB/BXA recombinant inbred (RI) mouse strains to identify skeletal traits that are functionally related and to determine how functional interactions among these traits contribute to genetic variability in whole-bone stiffness, strength, and toughness. Randomization of A/J and C57BL/6J genomic regions resulted in each adult male and female RI strain building mechanically functional femora by assembling unique sets of morphologic and tissue-quality traits. A correlation analysis was conducted using the mean trait values for each RI strain. A third of the 66 correlations examined were significant, indicating that many bone traits covaried or were functionally related. Path analysis revealed important functional interactions among bone slenderness, cortical thickness, and tissue mineral density. The path coefficients describing these functional relations were similar for both sexes. The causal relationship among these three traits suggested that cellular processes during growth simultaneously regulate bone slenderness, cortical thickness, and tissue mineral density so that the combination of traits is sufficiently stiff and strong to satisfy daily loading demands. A disadvantage of these functional interactions was that increases in tissue mineral density also deleteriously affected tissue ductility. Consequently, slender bones with high mineral density may be stiff and strong but they are also brittle. Thus, genetically randomized mouse strains revealed a basic biological paradigm that allows for flexibility in building bones that are functional for daily activities but that creates preferred sets of traits under extreme loading conditions. Genetic or environmental perturbations that alter these functional interactions during growth would be expected to lead to loss of function and suboptimal adult bone quality. PMID:17557179

  7. Chondrogenesis of Human Bone Marrow Mesenchymal Stem Cells in 3-Dimensional, Photocrosslinked Hydrogel Constructs: Effect of Cell Seeding Density and Material Stiffness

    PubMed Central

    Sun, Aaron X.; Lin, Hang; Fritch, Madalyn R.; Shen, He; Alexander, Pete G.; DeHart, Michael; Tuan, Rocky S.

    2018-01-01

    Three-dimensional hydrogel constructs incorporated with live stem cells that support chondrogenic differentiation and maintenance offer a promising regenerative route towards addressing the limited self-repair capabilities of articular cartilage. In particular, hydrogel scaffolds that augment chondrogenesis and recapitulate the native physical properties of cartilage, such as compressive strength, can potentially be applied in point-of-care procedures. We report here the synthesis of two new materials, [poly-L-lactic acid/polyethylene glycol/poly-L-lactic acid] (PLLA-PEG 1000) and [poly-D,L-lactic acid/polyethylene glycol/poly-D,L-lactic acid] (PDLLA-PEG 1000), that are biodegradable, biocompatible (>80% viability post fabrication), and possess high, physiologically relevant mechanical strength (~1,500 to 1,800 kPa). This study examined the effects of physiologically relevant cell densities (4, 8, 20, and 50 × 106/mL) and hydrogel stiffnesses (~150kPa to ~1,500 kPa Young’s moduli) on chondrogenesis of human bone marrow stem cells incorporated in hydrogel constructs fabricated with these materials and a previously characterized PDLLA-PEG 4000. Results showed that 20 × 106 cells/mL, under a static culture condition, was the most efficient cell seeding density for extracellular matrix (ECM) production on the basis of hydroxyproline and glycosaminoglycan content. Interestingly, material stiffness did not significantly affect chondrogenesis, but rather material concentration was correlated to chondrogenesis with increasing levels at lower concentrations based on ECM production, chondrogenic gene expression, and histological analysis. These findings establish optimal cell densities for chondrogenesis within three-dimensional cell-incorporated hydrogels, inform hydrogel material development for cartilage tissue engineering, and demonstrate the efficacy and potential utility of PDLLA-PEG 1000 for point-of-care treatment of cartilage defects. PMID:28611002

  8. Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.

    2015-11-01

    Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a  <  0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.

  9. Multiscale Mathematical Modeling in Dental Tissue Engineering: Toward Computer-Aided Design of a Regenerative System Based on Hydroxyapatite Granules, Focussing on Early and Mid-Term Stiffness Recovery

    PubMed Central

    Scheiner, Stefan; Komlev, Vladimir S.; Gurin, Alexey N.; Hellmich, Christian

    2016-01-01

    We here explore for the very first time how an advanced multiscale mathematical modeling approach may support the design of a provenly successful tissue engineering concept for mandibular bone. The latter employs double-porous, potentially cracked, single millimeter-sized granules packed into an overall conglomerate-type scaffold material, which is then gradually penetrated and partially replaced by newly grown bone tissue. During this process, the newly developing scaffold-bone compound needs to attain the stiffness of mandibular bone under normal physiological conditions. In this context, the question arises how the compound stiffness is driven by the key design parameters of the tissue engineering system: macroporosity, crack density, as well as scaffold resorption/bone formation rates. We here tackle this question by combining the latest state-of-the-art mathematical modeling techniques in the field of multiscale micromechanics, into an unprecedented suite of highly efficient, semi-analytically defined computation steps resolving several levels of hierarchical organization, from the millimeter- down to the nanometer-scale. This includes several types of homogenization schemes, namely such for porous polycrystals with elongated solid elements, for cracked matrix-inclusion composites, as well as for assemblies of coated spherical compounds. Together with the experimentally known stiffnesses of hydroxyapatite crystals and mandibular bone tissue, the new mathematical model suggests that early stiffness recovery (i.e., within several weeks) requires total avoidance of microcracks in the hydroxyapatite scaffolds, while mid-term stiffness recovery (i.e., within several months) is additionally promoted by provision of small granule sizes, in combination with high bone formation and low scaffold resorption rates. PMID:27708584

  10. Metabolic risk factors and arterial stiffness in Indian children of parents with metabolic syndrome.

    PubMed

    Khadilkar, Anuradha V; Chiplonkar, Shashi A; Pandit, Deepa S; Kinare, Arun S; Khadilkar, Vaman V

    2012-02-01

    To investigate the possible association between metabolic syndrome (MS) and arterial stiffness in Indian children with parental MS status. A cross-sectional study was conducted in 140 overweight/obese and 60 normal-weight Indian children (mean age, 11.4 ± 2.8 years) along with one of their parents during 2008-2009. Data on weight, height, blood pressure, serum lipids, zinc, insulin, and glucose were collected. Intima media thickness (CIMT) and stiffness parameters were assessed in the right carotid artery. Physical activity and diet were assessed using structured questionnaires. Body composition was measured using dual-energy x-ray absorptiometry. A gradual increase in the percentage of MS children with an increasing number of MS components in parents was observed. Mean values for arterial stiffness, pulse wave velocity, and elastic modulus were significantly higher in MS children of MS parents than in MS children of normal parents (p < 0.05). A significant correlation was observed for lifestyle, metabolic, and arterial parameters among child-parent pairs (p < 0.05). Multiple logistic regression revealed that children's CIMT and arterial stiffness were significantly associated (p < 0.01) with their serum levels of triglycerides, high-density lipoprotein, and zinc, as well as with parental MS-CIMT. Parental MS status and lifestyle factors increase the risk of MS and arterial abnormalities in children.

  11. Superfluid phase stiffness in electron doped superconducting Gd-123

    NASA Astrophysics Data System (ADS)

    Das, P.; Ghosh, Ajay Kumar

    2018-05-01

    Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.

  12. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.

    PubMed

    Shah, Furqan A; Omar, Omar; Suska, Felicia; Snis, Anders; Matic, Aleksandar; Emanuelsson, Lena; Norlindh, Birgitta; Lausmaa, Jukka; Thomsen, Peter; Palmquist, Anders

    2016-05-01

    In orthopaedic surgery, cobalt chromium (CoCr) based alloys are used extensively for their high strength and wear properties, but with concerns over stress shielding and bone resorption due to the high stiffness of CoCr. The structural stiffness, principally related to the bulk and the elastic modulus of the material, may be lowered by appropriate design modifications, to reduce the stiffness mismatch between metal/alloy implants and the adjacent bone. Here, 3D printed CoCr and Ti6Al4V implants of similar macro-geometry and interconnected open-pore architecture prepared by electron beam melting (EBM) were evaluated following 26week implantation in adult sheep femora. Despite higher total bone-implant contact for Ti6Al4V (39±4%) than CoCr (27±4%), bone formation patterns were similar, e.g., densification around the implant, and gradual ingrowth into the porous network, with more bone in the outer half (periphery) than the inner half (centre). Raman spectroscopy revealed no major differences in mineral crystallinity, the apatite-to-collagen ratio, or the carbonate-to-phosphate ratio. Energy dispersive X-ray spectroscopy showed similar Ca/P ratio of the interfacial tissue adjacent to both materials. Osteocytes made direct contact with CoCr and Ti6Al4V. While osteocyte density and distribution in the new-formed bone were largely similar for the two alloys, higher osteocyte density was observed at the periphery of the porous network for CoCr, attributable to slower remodelling and a different biomechanical environment. The results demonstrate the possibility to achieve bone ingrowth into open-pore CoCr constructs, and attest to the potential for fabricating customised osseointegrated CoCr implants for load-bearing applications. Although cobalt chromium (CoCr) based alloys are used extensively in orthopaedic surgery, stress shielding due to the high stiffness of CoCr is of concern. To reduce the stiffness mismatch between CoCr and bone, CoCr and Ti6Al4V implants having an interconnected open-pore architecture were prepared by electron beam melting (EBM). After six months of submerged healing in sheep, both alloys showed similar patterns of bone formation, with densification around the implant and gradual ingrowth into the porous network. The molecular and elemental composition of the interfacial tissue was similar for both alloys. Osteocytes made direct contact with both alloys, with similar overall osteocyte density and distribution. The work attests to the potential for achieving osseointegration of EBM manufactured porous CoCr implants. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. 3D Porous Graphene by Low-Temperature Plasma Welding for Bone Implants.

    PubMed

    Chakravarty, Dibyendu; Tiwary, Chandra Sekhar; Woellner, Cristano F; Radhakrishnan, Sruthi; Vinod, Soumya; Ozden, Sehmus; da Silva Autreto, Pedro Alves; Bhowmick, Sanjit; Asif, Syed; Mani, Sendurai A; Galvao, Douglas S; Ajayan, Pulickel M

    2016-10-01

    3D scaffolds of graphene, possessing ultra-low density, macroporous microstructure, and high yield strength and stiffness can be developed by a novel plasma welding process. The bonding between adjacent graphene sheets is investigated by molecular dynamics simulations. The high degree of biocompatibility along with high porosity and good mechanical properties makes graphene an ideal material for use as body implants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bone density and the lightweight skeletons of birds.

    PubMed

    Dumont, Elizabeth R

    2010-07-22

    The skeletons of birds are universally described as lightweight as a result of selection for minimizing the energy required for flight. From a functional perspective, the weight (mass) of an animal relative to its lift-generating surfaces is a key determinant of the metabolic cost of flight. The evolution of birds has been characterized by many weight-saving adaptations that are reflected in bone shape, many of which strengthen and stiffen the skeleton. Although largely unstudied in birds, the material properties of bone tissue can also contribute to bone strength and stiffness. In this study, I calculated the density of the cranium, humerus and femur in passerine birds, rodents and bats by measuring bone mass and volume using helium displacement. I found that, on average, these bones are densest in birds, followed closely by bats. As bone density increases, so do bone stiffness and strength. Both of these optimization criteria are used in the design of strong and stiff, but lightweight, manmade airframes. By analogy, increased bone density in birds and bats may reflect adaptations for maximizing bone strength and stiffness while minimizing bone mass and volume. These data suggest that both bone shape and the material properties of bone tissue have played important roles in the evolution of flight. They also reconcile the conundrum of how bird skeletons can appear to be thin and delicate, yet contribute just as much to total body mass as do the skeletons of terrestrial mammals.

  15. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    PubMed

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Effect of High Impact or Non-impact Loading Activity on Bone Bending Stiffness and Mineral Density

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.; Arnnud, Sara B.; Steele, Charles R.; Moreno, Alexjandro

    2003-01-01

    Material properties of conical bone, including mineral density (BMD) and its geometry is closely related to its load-carrying capacity. These two primary components determine the strength of conical bone. High impact loading involving acceleration and deceleration movements used in gymnastics induce higher BMD of the affected bone compared to the non-impact acceleration and deceleration movements used in swimming. Study of these two groups of athletes on bone bending stiffness has not been reported. The purpose of this study was to compare differences in bone bending stiffness and BMD between competitive female synchronized swimmers and female gymnasts. Thirteen world class female synchronized swimmers (SYN) and 8 female gymnasts (GYM), mean age 21 +/- 2.9 yr. were recruited for this study. We used a mechanical response tissue analyzer (Gaitscan, NJ) to calculate EI, where E is Young's modulus of elasticity and I is the cross-sectional moment of inertia. EI was obtained from tissue response to a vibration probe placed directly on the skin of the mid-region of tibia and ulna. BMD of the heel and wrist were measured with a probe densitometer (PIXI, Lunor, WI). The SYN were taller than (p < 0.05) the GYM but weighed the same as the GYM. EI obtained from tibia and ulna of the SYN (291 +/- 159 and 41 +/- 19.4, respectively) were not significantly different from thc GYM (285 +/- 140 and 44 +/- 18.3, respectively). BMD of the heel and wrist in GYM were higher than in SYN (p < 0.001). High impact weight-bearing activities promote similar bone strength but greater BMD response than non-impact activities performed in a buoyant environment.

  17. Multimarker Analysis for New Biomarkers in Relation to Central Arterial Stiffness and Hemodynamics in a Chinese Community-Dwelling Population.

    PubMed

    Fu, Shihui; Luo, Leiming; Ye, Ping; Xiao, Wenkai

    2015-11-01

    Central arterial stiffness and hemodynamics independently reflect the risk of cardiovascular events. This Chinese community-based analysis was performed to evaluate the relationships of new biomarkers with central arterial stiffness and hemodynamics by a multimarker method. This analysis consisted of 1540 participants who were fully tested for the new biomarkers including N-terminal prohormone of brain natriuretic peptide, lipid accumulation product, triglyceride-high-density lipoprotein cholesterol (TG-HDL-c) ratio, uric acid, high-sensitivity C-reactive protein, and homocysteine. Carotid-femoral pulse wave velocity (cfPWV), central pulse pressure (cPP), and central augmentation index (cAIx) were measured. The median (range) age of entire cohort was 62 years (21-96 years), and 40.5% were males. The median (interquartile range) of cfPWV, cPP, and cAIx was 11.0 m/s (9.6-13.0 m/s), 42 mm Hg (35-52 mm Hg), and 28% (21%-33%), respectively. In multivariate analysis, participants with higher cfPWV had significantly higher age, peripheral pulse pressure, TG, TG-HDL-c ratio, and homocysteine levels compared with others (P < .05 for all). Multimarker analysis in a Chinese community-dwelling population reinforced the potential clinical value of plasma TG-HDL-c ratio and homocysteine levels as the biomarkers of increased arterial stiffness. © The Author(s) 2015.

  18. Three Days of Intermittent Fasting: Repeated-Sprint Performance Decreased by Vertical-Stiffness Impairment.

    PubMed

    Cherif, Anissa; Meeusen, Romain; Farooq, Abdulaziz; Ryu, Joong; Fenneni, Mohamed Amine; Nikolovski, Zoran; Elshafie, Sittana; Chamari, Karim; Roelands, Bart

    2017-03-01

    To examine the effects of 3 d of intermittent fasting (3d-IF: abstaining from eating/drinking from dawn to sunset) on physical performance and metabolic responses to repeated sprints (RSs). Twenty-one active males performed an RS test (2 sets: 5 × 5-s maximal sprints with 25 s of recovery between and 3 min of recovery between sets on an instrumented treadmill) in 2 conditions: counterbalanced fed/control session (CS) and fasting session (FS). Biomechanical and biochemical markers were assessed preexercise and postexercise. Significant main effects of IF were observed for sprints: maximal speed (P = .016), mean speed (P = .015), maximal power (P = .035), mean power (P = .049), vertical stiffness (P = .032), and vertical center-of-mass displacement (P = .047). Sprint speed and vertical stiffness decreased during the 1st (P = .003 and P = .005) and 2nd sprints (P = .046 and P = .048) of set 2, respectively. Postexercise insulin decreased in CS (P = .023) but not in FS (P = .230). Free-fatty-acid levels were higher in FS than in CS at preexercise (P < .001) and at postexercise (P = .009). High-density lipoprotein cholesterol (HDL-C) was higher at postexercise in FS (1.32 ± 0.22 mmol/L) than in CS (1.26 ± 0.21 mmol/L, P = .039). The triglyceride (TG) concentration was decreased in FS (P < .05) compared with CS. 3d-IF impaired speed and power through a decrease in vertical stiffness during the initial runs of the 2nd set of RS. The findings of the current study confirmed the benefits of 3d-IF: improved HDL-C and TG profiles while maintaining total cholesterol and low-density lipoprotein cholesterol levels. Moreover, improving muscle power might be a key factor to retain a higher vertical stiffness and to partly counteract the negative effects of intermittent fasting.

  19. Mechanical properties and fibrin characteristics of endovascular coil–clot complexes: relevance to endovascular cerebral aneurysm repair paradigms

    PubMed Central

    Haworth, Kevin J; Weidner, Christopher R; Abruzzo, Todd A; Shearn, Jason T; Holland, Christy K

    2015-01-01

    Background Although coil embolization is known to prevent rebleeding from acutely ruptured cerebral aneurysms, the underlying biological and mechanical mechanisms have not been characterized. We sought to determine if microcoil-dependent interactions with thrombus induce structural and mechanical changes in the adjacent fibrin network. Such changes could play an important role in the prevention of aneurysm rebleeding. Methods The stiffness of in vitro human blood clots and coil–clot complexes implanted into aneurysm phantoms were measured immediately after formation and after retraction for 3 days using unconfined uniaxial compression assays. Scanning electron microscopy of the coil–clot complexes showed the effect of coiling on clot structure. Results The coil packing densities achieved were in the range of clinical practice. Bare platinum coils increased clot stiffness relative to clot alone (Young’s modulus 6.9 kPa and 0.83 kPa, respectively) but did not affect fibrin structure. Hydrogel-coated coils prevented formation of a clot and had no significant effect on clot stiffness (Young’s modulus 2 kPa) relative to clot alone. Clot age decreased fiber density by 0.2 fibers/µm2 but not the stiffness of the bare platinum coil–clot complex. Conclusions The stiffness of coil–clot complexes is related to the summative stiffness of the fibrin network and associated microcoils. Hydrogel-coated coils exhibit significantly less stiffness due to the mechanical properties of the hydrogel and the inhibition of fibrin network formation by the hydrogel. These findings have important implications for the design and engineering of aneurysm occlusion devices. PMID:24668257

  20. Microstructural Design for Stress Wave Energy Management

    DTIC Science & Technology

    2013-04-01

    Polyurea based foam 7 4) Controlling transmission and reflection of pressure and shear waves in a multilayered anisotropic structure 10 5... Polyurea based foam consists of several factors including high energy absorption, light weight, higher elastic modulus to density ratio (compared with... Polyurea ), and collapsible voids under extreme loading. Pure Polyurea offers unique properties such as increased shear stiffness under large pressure

  1. Morphology and properties of wood-fiber reinforced blends of recycled polystyrene and polyethylene

    Treesearch

    John Simonsen; Timothy G. Rials

    1996-01-01

    Material properties of composites produced from recycled plastics and recycled wood fiber were compared. A blend of high-density polyethylene and polystyrene was used as a simulated mixed plastic. Stiffness was generally improved by the addition of fiber, as expected, but brittleness also increased. Pre-treatment of the wood filler with phenol-formaldehyde resins did...

  2. Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.

  3. Lamb wave characterization of the effects of long-term thermal-mechanical aging on composite stiffness

    NASA Technical Reports Server (NTRS)

    Seale, M. D.; Madaras, E. I.

    1999-01-01

    Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.

  4. Lamb wave characterization of the effects of long-term thermal-mechanical aging on composite stiffness.

    PubMed

    Seale, M D; Madaras, E I

    1999-09-01

    Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.

  5. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica) Wing and Tail Feathers

    PubMed Central

    Pap, Péter L.; Osváth, Gergely; Aparicio, José Miguel; Bărbos, Lőrinc; Matyjasiak, Piotr; Rubolini, Diego; Saino, Nicola; Vágási, Csongor I.; Vincze, Orsolya; Møller, Anders Pape

    2015-01-01

    Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW) and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the result of these changes can be contrasting. PMID:26110255

  6. Experimental transonic steady state and unsteady pressure measurements on a supercritical wing during flutter and forced discrete frequency oscillations

    NASA Technical Reports Server (NTRS)

    Piette, Douglas S.; Cazier, Frank W., Jr.

    1989-01-01

    Present flutter analysis methods do not accurately predict the flutter speeds in the transonic flow region for wings with supercritical airfoils. Aerodynamic programs using computational fluid dynamic (CFD) methods are being developed, but these programs need to be verified before they can be used with confidence. A wind tunnel test was performed to obtain all types of data necessary for correlating with CFD programs to validate them for use on high aspect ratio wings. The data include steady state and unsteady aerodynamic measurements on a nominal stiffness wing and a wing four times that stiffness. There is data during forced oscillations and during flutter at several angles of attack, Mach numbers, and tunnel densities.

  7. Stiff and tough: a comparative study on the tensile properties of shark skin.

    PubMed

    Creager, Shelby B; Porter, Marianne E

    2018-02-01

    In sharks, the skin is a biological composite with mineralized denticles embedded within a collagenous matrix. Swimming performance is enhanced by the dermal denticles on the skin, which have drag reducing properties produced by regional morphological variations and changes in density along the body. We used mechanical testing to quantify the effect of embedded mineralized denticles on the quasi-static tensile properties of shark skin to failure in four coastal species. We investigated regional differences in denticle density and skin properties by dissecting skin from the underlying fascia and muscle at 10 anatomical landmarks. Hourglass-shaped skin samples were extracted in the cranial to caudal orientation. Denticle density was quantified and varied significantly among both regions and species. We observed the greatest denticle densities in the cranial region of the body for the bonnethead, scalloped hammerhead, and bull sharks. Skin samples were then tested in tension until failure, stress strain curves were generated, and mechanical properties calculated. We found significant species and region effects for all three tensile mechanical properties. We report the greatest ultimate tensile strength, stiffness, and toughness near the cranial and lateral regions of the body for all 4 of the coastal species. We also report that denticle density increases with skin stiffness but decreases with toughness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Upper limit set by causality on the tidal deformability of a neutron star

    NASA Astrophysics Data System (ADS)

    Van Oeveren, Eric D.; Friedman, John L.

    2017-04-01

    A principal goal of gravitational-wave astronomy is to constrain the neutron star equation of state (EOS) by measuring the tidal deformability of neutron stars. The tidally induced departure of the waveform from that of a point particle [or a spinless binary black hole (BBH)] increases with the stiffness of the EOS. We show that causality (the requirement that the speed of sound be less than the speed of light for a perfect fluid satisfying a one-parameter equation of state) places an upper bound on tidal deformability as a function of mass. Like the upper mass limit, the limit on deformability is obtained by using an EOS with vsound=c for high densities and matching to a low density (candidate) EOS at a matching density of order nuclear saturation density. We use these results and those of Lackey et al. [Phys. Rev. D 89, 043009 (2014), 10.1103/PhysRevD.89.043009] to estimate the resulting upper limit on the gravitational-wave phase shift of a black hole-neutron star (BHNS) binary relative to a BBH. Even for assumptions weak enough to allow a maximum mass of 4 M⊙ (a match at nuclear saturation density to an unusually stiff low-density candidate EOS), the upper limit on dimensionless tidal deformability is stringent. It leads to a still more stringent estimated upper limit on the maximum tidally induced phase shift prior to merger. We comment in an appendix on the relation among causality, the condition vsound

  9. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Tagawa, H.; Wang, N.; Narishige, T.; Ingber, D. E.; Zile, M. R.; Cooper, G. 4th

    1997-01-01

    We have shown that the cellular contractile dysfunction characteristic of pressure-overload cardiac hypertrophy results not from an abnormality intrinsic to the myofilament portion of the cardiocyte cytoskeleton but rather from an increased density of the microtubule component of the extramyofilament portion of the cardiocyte cytoskeleton. To determine how, in physical terms, this increased microtubule density mechanically overloads the contractile apparatus at the cellular level, we measured cytoskeletal stiffness and apparent viscosity in isolated cardiocytes via magnetic twisting cytometry, a technique by which magnetically induced force is applied directly to the cytoskeleton through integrin-coupled ferromagnetic beads coated with Arg-Gly-Asp (RGD) peptide. Measurements were made in two groups of cardiocytes from cats with right ventricular (RV) hypertrophy induced by pulmonary artery banding: (1) those from the pressure-overloaded RV and (2) those from the normally loaded same-animal control left ventricle (LV). Cytoskeletal stiffness increased almost twofold, from 8.53 +/- 0.77 dyne/cm2 in the normally loaded LV cardiocytes to 16.46 +/- 1.32 dyne/cm2 in the hypertrophied RV cardiocytes. Cytoskeletal apparent viscosity increased almost fourfold, from 20.97 +/- 1.92 poise in the normally loaded LV cardiocytes to 87.85 +/- 6.95 poise in the hypertrophied RV cardiocytes. In addition to these baseline data showing differing stiffness and, especially, apparent viscosity in the two groups of cardiocytes, microtubule depolymerization by colchicine was found to return both the stiffness and the apparent viscosity of the pressure overload-hypertrophied RV cells fully to normal. Conversely, microtubule hyperpolymerization by taxol increased the stiffness and apparent viscosity values of normally loaded LV cardiocytes to the abnormal values given above for pressure-hypertrophied RV cardiocytes. Thus, increased microtubule density constitutes primarily a viscous load on the cardiocyte contractile apparatus in pressure-overload cardiac hypertrophy.

  10. Evaluation of foaming polypropylene modified with ramified polymer

    NASA Astrophysics Data System (ADS)

    Demori, Renan; de Azeredo, Ana Paula; Liberman, Susana A.; Mauler, Raquel S.

    2015-05-01

    Polypropylene foams have great industrial interest because of balanced physical and mechanical properties, recyclability as well as low material cost. During the foaming process, the elongational forces applied to produce the expanded polymer are strong enough to rupture cell walls. As a result, final foam has a high amount of coalesced as well as opened cells which decreases mechanical and also physical properties. To increase melt strength and also avoid the coalescence effect, one of the current solution is blend PP with ramified polymers as well as branched polypropylene (LCBPP) or ethylene-octene copolymer (POE). In this research to provide extensional properties and achieve uniform cellular structures of expanded PP, 20 phr of LCBPP or POE was added into PP matrix. The blend of PP with ramified polymers was prepared by twin-screw extrusion. Injection molding process was used to produce PP foams using azodicarbonamide (ACA) as chemical blowing agent. The morphological results of the expanded PP displayed a non-uniform geometrical cell, apparent density of 0.48 g/cm3 and cell density of 13.9.104 cell/cm3. Otherwise, the expanded PP blended with LCBPP or POE displayed a homogeneous cell structure and increased the amount of smaller cells (50-100 μm of size). The apparent density slightly increased with addition of LCBPP or POE, 0.64 and 0.57 g/cm3, respectively. Thus, the cell density reduced to 65% in PP/LCBPP 100/20 and 75% in the sample PP/POE 100/20 compared to expanded PP. The thermo-mechanical properties (DMTA) of PP showed specific stiffness of 159 MPa.cm-3.g-1, while the sample PP/LCBPP 100/20 increased the stiffness values of 10%. Otherwise, the expanded PP/POE 100/20 decreased the specific stiffness values at -30%, in relation to expanded PP. In summary, blending PP with ramified polymers showed increasing of the homogenous cellular structure as well as the amount of smaller cells in the expanded material.

  11. Diversity of maize kernels from a breeding program for protein quality III: Ionome profiling

    USDA-ARS?s Scientific Manuscript database

    Densities of single and multiple macro- and micronutrients have been estimated in mature kernels of 1,348 accessions in 13 maize genotypes. The germplasm belonged to stiff stalk (SS) and non-stiff stalk (NS) heterotic groups (HG) with one (S1) to four (S4) years of inbreeding (IB), or open pollinati...

  12. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions

    NASA Astrophysics Data System (ADS)

    Fraley, Stephanie I.; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D.; Wirtz, Denis

    2015-10-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.

  13. Impaired baroreflex sensitivity, carotid stiffness, and exaggerated exercise blood pressure: a community-based analysis from the Paris Prospective Study III.

    PubMed

    Sharman, James E; Boutouyrie, Pierre; Perier, Marie-Cécile; Thomas, Frédérique; Guibout, Catherine; Khettab, Hakim; Pannier, Bruno; Laurent, Stéphane; Jouven, Xavier; Empana, Jean-Philippe

    2018-02-14

    People with exaggerated exercise blood pressure (BP) have adverse cardiovascular outcomes. Mechanisms are unknown but could be explained through impaired neural baroreflex sensitivity (BRS) and/or large artery stiffness. This study aimed to determine the associations of carotid BRS and carotid stiffness with exaggerated exercise BP. Blood pressure was recorded at rest and following an exercise step-test among 8976 adults aged 50 to 75 years from the Paris Prospective Study III. Resting carotid BRS (low frequency gain, from carotid distension rate, and heart rate) and stiffness were measured by high-precision echotracking. A systolic BP threshold of ≥ 150 mmHg defined exaggerated exercise BP and ≥140/90 mmHg defined resting hypertension (±antihypertensive treatment). Participants with exaggerated exercise BP had significantly lower BRS [median (Q1; Q3) 0.10 (0.06; 0.16) vs. 0.12 (0.08; 0.19) (ms2/mm) 2×108; P < 0.001] but higher stiffness [mean ± standard deviation (SD); 7.34 ± 1.37 vs. 6.76 ± 1.25 m/s; P < 0.001) compared to those with non-exaggerated exercise BP. However, only lower BRS (per 1SD decrement) was associated with exaggerated exercise BP among people without hypertension at rest {specifically among those with optimal BP; odds ratio (OR) 1.16 [95% confidence intervals (95% CI) 1.01; 1.33], P = 0.04 and high-normal BP; OR, 1.19 (95% CI 1.07; 1.32), P = 0.001} after adjustment for age, sex, body mass index, smoking, alcohol, total cholesterol, high-density lipoprotein cholesterol, resting heart rate, and antihypertensive medications. Impaired BRS, but not carotid stiffness, is independently associated with exaggerated exercise BP even among those with well controlled resting BP. This indicates a potential pathway from depressed neural baroreflex function to abnormal exercise BP and clinical outcomes. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  14. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography.

    PubMed

    Hegyi, A; Péter, A; Finni, T; Cronin, N J

    2018-03-01

    Recent studies suggest region-specific metabolic activity in hamstring muscles during injury prevention exercises, but the neural representation of this phenomenon is unknown. The aim of this study was to examine whether regional differences are evident in the activity of biceps femoris long head (BFlh) and semitendinosus (ST) muscles during two common injury prevention exercises. Twelve male participants without a history of hamstring injury performed the Nordic hamstring exercise (NHE) and stiff-leg deadlift (SDL) while BFlh and ST activities were recorded with high-density electromyography (HD-EMG). Normalized activity was calculated from the distal, middle, and proximal regions in the eccentric phase of each exercise. In NHE, ST overall activity was substantially higher than in BFlh (d = 1.06 ± 0.45), compared to trivial differences between muscles in SDL (d = 0.19 ± 0.34). Regional differences were found in NHE for both muscles, with different proximal-distal patterns: The distal region showed the lowest activity level in ST (regional differences, d range = 0.55-1.41) but the highest activity level in BFlh (regional differences, d range = 0.38-1.25). In SDL, regional differences were smaller in both muscles (d range = 0.29-0.67 and 0.16-0.63 in ST and BFlh, respectively) than in NHE. The use of HD-EMG in hamstrings revealed heterogeneous hamstrings activity during typical injury prevention exercises. High-density EMG might be useful in future studies to provide a comprehensive overview of hamstring muscle activity in other exercises and high-injury risk tasks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Communication: Stiff and soft nano-environments and the "Octopus Effect" are the crux of ionic liquid structural and dynamical heterogeneity

    NASA Astrophysics Data System (ADS)

    Daly, Ryan P.; Araque, Juan C.; Margulis, Claudio J.

    2017-08-01

    In a recent set of articles [J. C. Araque et al., J. Phys. Chem. B 119(23), 7015-7029 (2015) and J. C. Araque et al., J. Chem. Phys. 144, 204504 (2016)], we proposed the idea that for small neutral and charged solutes dissolved in ionic liquids, deviation from simple hydrodynamic predictions in translational and rotational dynamics can be explained in terms of diffusion through nano-environments that are stiff (high electrostriction, charge density, and number density) and others that are soft (charge depleted). The current article takes a purely solvent-centric approach in trying to provide molecular detail and intuitive visual understanding of time-dependent local mobility focusing on the most common case of an ionic liquid with well defined polar and apolar nano-domains. We find that at intermediate time scales, apolar regions are fluid, whereas the charge network is much less mobile. Because apolar domains and cationic heads must diffuse as single species, at long time the difference in mobility also necessarily dissipates.

  16. Arterial stiffness evaluation by cardio-ankle vascular index in hypertension and diabetes mellitus subjects.

    PubMed

    Wang, Hongyu; Liu, Jinbo; Zhao, Hongwei; Fu, Xiaobao; Shang, Guangyun; Zhou, Yingyan; Yu, Xiaolan; Zhao, Xujing; Wang, Guang; Shi, Hongyan

    2013-01-01

    Arterial stiffness is an independent predictor for vascular diseases. Cardio-ankle vascular index (CAVI) is a new index of arterial stiffness. In the present study, we investigated the possible risk factors involving CAVI in hypertension and diabetes mellitus (DM) subjects. One thousand sixty-three subjects (M/F 533/530) from Shougang Corporation Examination Center were divided into four groups: healthy group (n = 639); hypertension group (n = 312); DM group (n = 58); and hypertension with DM group (n = 54). CAVI was measured by VS-1000 apparatus. Our results showed that CAVI was significantly higher in hypertension subjects with DM than in healthy and hypertension group, respectively (8.59 ± 1.08 vs 7.23 ± 1.10; 8.59 ± 1.08 vs 7.94 ± 1.33; both P < .05). CAVI was positively correlated with age, systolic blood pressure, diastolic blood pressure, pulse pressure, fasting plasma glucose, HbA1c, uric acid, total cholesterol, triglycerides in the entire group (r = 0.633, 0.280, 0.172, 0.269, 0.209, 0.254, 0.176, 0.129, 0.175; all P < .05, respectively). There was negatively correlation between CAVI and high-density lipoprotein cholesterol in the entire group (r = -0.167; P < .05). Multivariate analysis showed that age, body mass index, HbA1c, and high-density lipoprotein cholesterol were independent associating factors of CAVI in all subjects (β = 0.699; P < .001, β = -0.189; P = .001, β = 0.144; P = .015, β = -0.136; P = .019, respectively). Our present study suggested that CAVI was significantly higher in hypertension subjects with DM compared with healthy and hypertension groups. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  17. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice

    PubMed Central

    Smith, Lucas R.

    2014-01-01

    Many skeletal muscle diseases are associated with progressive fibrosis leading to impaired muscle function. Collagen within the extracellular matrix is the primary structural protein providing a mechanical scaffold for cells within tissues. During fibrosis collagen not only increases in amount but also undergoes posttranslational changes that alter its organization that is thought to contribute to tissue stiffness. Little, however, is known about collagen organization in fibrotic muscle and its consequences for function. To investigate the relationship between collagen content and organization with muscle mechanical properties, we studied mdx mice, a model for Duchenne muscular dystrophy (DMD) that undergoes skeletal muscle fibrosis, and age-matched control mice. We determined collagen content both histologically, with picosirius red staining, and biochemically, with hydroxyproline quantification. Collagen content increased in the mdx soleus and diaphragm muscles, which was exacerbated by age in the diaphragm. Collagen packing density, a parameter of collagen organization, was determined using circularly polarized light microscopy of picosirius red-stained sections. Extensor digitorum longus (EDL) and soleus muscle had proportionally less dense collagen in mdx muscle, while the diaphragm did not change packing density. The mdx muscles had compromised strength as expected, yet only the EDL had a significantly increased elastic stiffness. The EDL and diaphragm had increased dynamic stiffness and a change in relative viscosity. Unexpectedly, passive stiffness did not correlate with collagen content and only weakly correlated with collagen organization. We conclude that muscle fibrosis does not lead to increased passive stiffness and that collagen content is not predictive of muscle stiffness. PMID:24598364

  18. Mechanical properties of fullerite of various composition

    NASA Astrophysics Data System (ADS)

    Rysaeva, L. Kh.

    2017-12-01

    Molecular dynamics simulation is used to study the structures of fullerite of various composition as well as their mechanical properties. Fullerites based on fullerene C60 with simple cubic and face-centered packing, fullerene-like molecule C48 and fullerene C240 with simple cubic packing are studied. Compliance and stiffness coefficients are calculated for fullerites C60 and C48. For fullerite C240, C60, and C48, deformation behavior under the effect of hydrostatic compression is also investigated. It is shown that the fullerenes in the fullerite remain almost spherical up to high values of compressive strain, as a result of which the fullerite is an elastic medium up to densities of 2.5 g/cm3. The increasing stiffness and strength under an applied compression is found for all the considered fullerites.

  19. Arterial stiffness and cardiovascular events: the Framingham Heart Study.

    PubMed

    Mitchell, Gary F; Hwang, Shih-Jen; Vasan, Ramachandran S; Larson, Martin G; Pencina, Michael J; Hamburg, Naomi M; Vita, Joseph A; Levy, Daniel; Benjamin, Emelia J

    2010-02-02

    Various measures of arterial stiffness and wave reflection have been proposed as cardiovascular risk markers. Prior studies have not assessed relations of a comprehensive panel of stiffness measures to prognosis in the community. We used proportional hazards models to analyze first-onset major cardiovascular disease events (myocardial infarction, unstable angina, heart failure, or stroke) in relation to arterial stiffness (pulse wave velocity [PWV]), wave reflection (augmentation index, carotid-brachial pressure amplification), and central pulse pressure in 2232 participants (mean age, 63 years; 58% women) in the Framingham Heart Study. During median follow-up of 7.8 (range, 0.2 to 8.9) years, 151 of 2232 participants (6.8%) experienced an event. In multivariable models adjusted for age, sex, systolic blood pressure, use of antihypertensive therapy, total and high-density lipoprotein cholesterol concentrations, smoking, and presence of diabetes mellitus, higher aortic PWV was associated with a 48% increase in cardiovascular disease risk (95% confidence interval, 1.16 to 1.91 per SD; P=0.002). After PWV was added to a standard risk factor model, integrated discrimination improvement was 0.7% (95% confidence interval, 0.05% to 1.3%; P<0.05). In contrast, augmentation index, central pulse pressure, and pulse pressure amplification were not related to cardiovascular disease outcomes in multivariable models. Higher aortic stiffness assessed by PWV is associated with increased risk for a first cardiovascular event. Aortic PWV improves risk prediction when added to standard risk factors and may represent a valuable biomarker of cardiovascular disease risk in the community.

  20. Development of a bending stiffness model for wet process fiberboard

    Treesearch

    Chris Turk; John F. Hunt

    2007-01-01

    In traditional mechanics of materials, the stiffness of a beam or plate in bending is described by its cross-sectional shape as well as its material properties, primarily the modulus of elasticity. Previous work at the USDA Forest Products Laboratory, Madison, Wisconsin, has shown that modulus of elasticity has a strong correlation to the density of the fiberboard....

  1. Probabilistic homogenization of random composite with ellipsoidal particle reinforcement by the iterative stochastic finite element method

    NASA Astrophysics Data System (ADS)

    Sokołowski, Damian; Kamiński, Marcin

    2018-01-01

    This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).

  2. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

    NASA Astrophysics Data System (ADS)

    Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.

    2015-12-01

    To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.

  3. Finding trap stiffness of optical tweezers using digital filters.

    PubMed

    Almendarez-Rangel, Pedro; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G

    2018-02-01

    Obtaining trap stiffness and calibration of the position detection system is the basis of a force measurement using optical tweezers. Both calibration quantities can be calculated using several experimental methods available in the literature. In most cases, stiffness determination and detection system calibration are performed separately, often requiring procedures in very different conditions, and thus confidence of calibration methods is not assured due to possible changes in the environment. In this work, a new method to simultaneously obtain both the detection system calibration and trap stiffness is presented. The method is based on the calculation of the power spectral density of positions through digital filters to obtain the harmonic contributions of the position signal. This method has the advantage of calculating both trap stiffness and photodetector calibration factor from the same dataset in situ. It also provides a direct method to avoid unwanted frequencies that could greatly affect calibration procedure, such as electric noise, for example.

  4. Architecture engineering of supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Li, Gong; Xue, Dongfeng

    2016-02-01

    The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.

  5. Determination of the elastic and stiffness characteristics of cross-laminated timber plates from flexural wave velocity measurements

    NASA Astrophysics Data System (ADS)

    Santoni, Andrea; Schoenwald, Stefan; Van Damme, Bart; Fausti, Patrizio

    2017-07-01

    Cross-laminated timber (CLT) is an engineered wood with good structural properties and it is also economically competitive with the traditional building construction materials. However, due to its low volume density combined with its high stiffness, it does not provide sufficient sound insulation, thus it is necessary to develop specific acoustic treatments in order to increase the noise reduction performance. The material's mechanical properties are required as input data to perform the vibro-acoustic analyses necessary during the design process. In this paper the elastic constants of a CLT plate are derived by fitting the real component of the experimental flexural wave velocity with Mindlin's dispersion relation for thick plates, neglecting the influence of the plate's size and boundary conditions. Furthermore, its apparent elastic and stiffness properties are derived from the same set of experimental data, for the plate considered to be thin. Under this latter assumption the orthotropic behaviour of an equivalent thin CLT plate is described by using an elliptic model and verified with experimental results.

  6. Energy Confinement Recovery in Low Collisionality ITER Shape Plasmas with Applied Resonant Magnetic Perturbations (RMPs)

    NASA Astrophysics Data System (ADS)

    Cui, L.; Grierson, B.; Logan, N.; Nazikian, R.

    2016-10-01

    Application of RMPs to low collisionality (ν*e < 0.4) ITER shape plasmas on DIII-D leads to a rapid reduction in stored energy due to density pumpout that is sometimes followed by a gradual recovery in the plasma stored energy. Understanding this confinement recovery is essential to optimize the confinement of RMP plasmas in present and future devices such as ITER. Transport modeling using TRANSP+TGLF indicates that the core a/LTi is stiff in these plasmas while the ion temperature gradient is much less stiff in the pedestal region. The reduction in the edge density during pumpout leads to an increase in the core ion temperature predicted by TGLF based on experimental data. This is correlated to the increase in the normalized ion heat flux. Transport stiffness in the core combined with an increase in the edge a/LTi results in an increase of the plasma stored energy, consistent with experimental observations. For plasmas where the edge density is controlled using deuterium gas puffs, the effect of the RMP on ion thermal confinement is significantly reduced. Work supported by US DOE Grant DE-FC02-04ER54698 and DE-AC02-09CH11466.

  7. Circulating Adipokines and Vascular Function: Cross-Sectional Associations in a Community-Based Cohort.

    PubMed

    Zachariah, Justin P; Hwang, Susan; Hamburg, Naomi M; Benjamin, Emelia J; Larson, Martin G; Levy, Daniel; Vita, Joseph A; Sullivan, Lisa M; Mitchell, Gary F; Vasan, Ramachandran S

    2016-02-01

    Adipokines may be potential mediators of the association between excess adiposity and vascular dysfunction. We assessed the cross-sectional associations of circulating adipokines with vascular stiffness in a community-based cohort of younger adults. We related circulating concentrations of leptin and leptin receptor, adiponectin, retinol-binding protein 4, and fatty acid-binding protein 4 to vascular stiffness measured by arterial tonometry in 3505 Framingham Third Generation cohort participants free of cardiovascular disease (mean age 40 years, 53% women). Separate regression models estimated the relations of each adipokine to mean arterial pressure and aortic stiffness, as carotid femoral pulse wave velocity, adjusting for age, sex, smoking, heart rate, height, antihypertensive treatment, total and high-density lipoprotein cholesterol, diabetes mellitus, alcohol consumption, estimated glomerular filtration rate, glucose, and C-reactive protein. Models evaluating aortic stiffness also were adjusted for mean arterial pressure. Mean arterial pressure was positively associated with blood retinol-binding protein 4, fatty acid-binding protein 4, and leptin concentrations (all P<0.001) and inversely with adiponectin (P=0.002). In fully adjusted models, mean arterial pressure was positively associated with retinol-binding protein 4 and leptin receptor levels (P<0.002 both). In fully adjusted models, aortic stiffness was positively associated with fatty acid-binding protein 4 concentrations (P=0.02), but inversely with leptin and leptin receptor levels (P≤0.03 both). In our large community-based sample, circulating concentrations of select adipokines were associated with vascular stiffness measures, consistent with the hypothesis that adipokines may influence vascular function and may contribute to the relation between obesity and hypertension. © 2015 American Heart Association, Inc.

  8. Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood

    PubMed Central

    2011-01-01

    The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies. PMID:22058609

  9. Conformational statistics of stiff macromolecules as solutions to partial differential equations on the rotation and motion groups

    PubMed

    Chirikjian; Wang

    2000-07-01

    Partial differential equations (PDE's) for the probability density function (PDF) of the position and orientation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-Siggia models are examples of stiffness models to which the present formulation is applied. The solution technique uses harmonic analysis on the rotation and motion groups to convert PDE's governing the PDF's of interest into linear algebraic equations which have mathematically elegant solutions.

  10. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus simultaneously, over a wide range of relative densities, greatly expanding the property space of available materials with a pragmatic manufacturable structure. A variety of other novel and previously studied ordered foam topologies are also presented that are largely representative of the spectrum of performance of such materials, shedding insight into the behavior of all cellular materials.

  11. Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.

    PubMed

    Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo

    2008-08-01

    We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.

  12. Does peripheral quantitative computed tomography ignore tissue density of cancellous bone?

    PubMed

    Banse, X; Devogelaer, J P

    2002-01-01

    The purpose of this work was to determine the capacity of peripheral quantitative computed tomography (pQCT) to accurately measure the true physical properties of vertebral cancellous bone samples and to predict their stiffness. pQCT bone mineral density (BMD) was first measured in ideal conditions. Ten cubic specimens of vertebral cancellous bone (10 x 10 x 10 mm) were washed with a water jet, defatted, and scanned in saline after elimination of air bubbles; thirteen slices were obtained. Seventy-one unprepared cylindrical samples were scanned in more realistic conditions, which allow further biomechanical testing. After extraction from the vertebral body, the samples were pushed into a plastic tube (no effort was made to remove the marrow or air bubbles), and only four slices were obtained to reduce the duration of scan. For the 81 samples, the true bone volume fraction (BV/TV, %), true apparent density (rho(app), g/cm(3)), and tissue density (rho(tiss), g/cm(3)) (an indicator of the degree of mineralization of the matrix) were then measured using Archimedes principle. rho(app) was closely correlated to BV/TV (r(2) = 0.97). rho(tiss) (1.58 +/- 0.08 g/cm(2)) was almost constant but had some influence on rho(app) (r(2) = 0.03, p < 0.001). The pQCT BMD predicted accurately rho(app) (r(2) = 0.96) and BV/TV (r(2) = 0.93) for the cylinders. For the cubes, in ideal conditions, the same correlations were even better (r(2) > 0.99, both). Analysis of covariance indicated no difference (p > 0.05) in the regressions due to preparation of the samples. The stiffness was better predicted by the true rho(app) (r(2) = 0.87) than by BV/TV (r(2) = 0.83), indicating that stiffness was influenced by small differences in the tissue density. Consequently, the correlation between pQCT BMD and stiffness was excellent (r(2) = 0.84). The fact that pQCT did not ignore this tissue density information compensated for the inaccuracies linked to realistic scanning conditions of the cylinder.

  13. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E., E-mail: whitea@mit.edu; Howard, N. T.; Creely, A. J.

    2015-05-15

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and comparemore » with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.« less

  14. Modeling molecular mechanisms in the axon

    NASA Astrophysics Data System (ADS)

    de Rooij, R.; Miller, K. E.; Kuhl, E.

    2017-03-01

    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.

  15. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce the number of transported reactive species and remove numerical stiffness. This paper briefly introduces the SFMDF model (highlighting key benefits and challenges), and discusses particle tracking for flows with shocks, the hybrid coupled RAS/PDF and LES/FDF model, flamelet generated manifolds (FGM) model, and the Irregularly Portioned Lagrangian Monte Carlo Finite Difference (IPLMCFD) methodology for scalable simulation of high-speed reacting compressible flows.

  16. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.

  17. Dependence of the critical temperature in overdoped copper oxides on superfluid density

    NASA Astrophysics Data System (ADS)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2016-08-01

    The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2-xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen-Cooper-Schrieffer description.

  18. Custom 3D Printable Silicones with Tunable Stiffness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durban, Matthew M.; Lenhardt, Jeremy M.; Wu, Amanda S.

    Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. Furthermore, a series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Here, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performancemore » is demonstrated.« less

  19. Custom 3D Printable Silicones with Tunable Stiffness

    DOE PAGES

    Durban, Matthew M.; Lenhardt, Jeremy M.; Wu, Amanda S.; ...

    2017-12-06

    Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. Furthermore, a series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Here, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performancemore » is demonstrated.« less

  20. Direct Push Optical Screening Tool for High-Resolution, Real-Time Mapping of Chlorinated Solvent DNAPL Architecture

    DTIC Science & Technology

    2016-04-01

    due to higher densities, lower viscosities , and increased weathering (mass depletion) of residual chlorinated solvent DNAPL compared to those other...demonstration area can be generally classified as stratified layers of fine sand and silt with few clay layers. A silt layer was penetrated consistently at...toxic and carcinogenic. Another potential issue evaluated was that in plastic soils (stiff clays for example) there is potential for the thickness of

  1. Direct Push Optical Screening Tool for High Resolution, Real-Time Mapping of Chlorinated Solvent DNAPL Architecture

    DTIC Science & Technology

    2016-07-01

    petroleum hydrocarbon fuels due to higher densities, lower viscosities , and increased weathering (mass depletion) of residual chlorinated solvent DNAPL...generally classified as stratified layers of fine sand and silt with few clay layers. A silt layer was penetrated consistently at a depth of about 45...e.g., stiff clays ) there is potential for the thickness of the dye interaction zone to increase to approximately 1-2 mm. Intuition suggests that this

  2. Rheological characterization of the nucleus pulposus and dense collagen scaffolds intended for functional replacement.

    PubMed

    Bron, J L; Koenderink, G H; Everts, V; Smit, T H

    2009-05-01

    Lumbar discectomy is an effective therapy for neurological decompression in patients suffering from sciatica due to a herniated nucleus pulposus (NP). However, high numbers of patients suffering from persisting postoperative low back pain have resulted in many strategies targeting the regeneration of the NP. For successful regeneration, the stiffness of scaffolds is increasingly recognized as a potent mechanical cue for the differentiation and biosynthetic response of (stem) cells. The aim of the current study is to characterize the viscoelastic properties of the NP and to develop dense collagen scaffolds with similar properties. The scaffolds consisted of highly dense (0.5%-12%) type I collagen matrices, prepared by plastic compression. The complex modulus of the NP was 22 kPa (at 10 rad s(-1)), which should agree with a scaffold with a collagen concentration of 23%. The loss tangent, indicative of energy dissipation, is higher for the NP (0.28) than for the scaffolds (0.12) and was not dependent of the collagen density. Gamma sterilization of the scaffolds increased the shear moduli but also resulted in more brittle behavior and a reduced swelling capacity. In conclusion, by tuning the collagen density, we can approach the stiffness of the NP. Therefore, dense collagen is a promising candidate for tissue engineering of the NP that deserves further study, such as the addition of other proteins.

  3. Changes in hydraulic conductivity, mechanical properties, and density reflecting the fall in strain along the lateral roots of two species of tropical trees.

    PubMed

    Christensen-Dalsgaard, Karen K; Ennos, Anthony R; Fournier, Meriem

    2007-01-01

    Roots have been described as having larger vessels and so greater hydraulic efficiency than the stem. Differences in the strength and stiffness of the tissue within the root system itself are thought to be an adaptation to the loading conditions experienced by the roots and to be related to differences in density. It is not known how potential mechanical adaptations may affect the hydraulic properties of the roots. The change in strength, stiffness, conductivity, density, sapwood area, and second moment of area distally along the lateral roots of two tropical tree species in which the strain is known to decrease rapidly was studied and the values were compared with those of the trunk. It was found that as the strain fell distally along the roots, so did the strength and stiffness of the tissue, whereas the conductivity increased exponentially. These changes appeared to be related to differences in density. In contrast to the distal-most roots, the tissue of the proximal roots had a lower conductivity and higher strength than that of the trunk. This suggests that mechanical requirements on the structure rather than the water potential gradient from roots to branches are responsible for the general pattern that roots have larger vessels than the stem. In spite of their increased transectional area, the buttressed proximal roots were subjected to higher levels of stress and had a lower total conductivity than the rest of the root system.

  4. Observational constraints on neutron star crust-core coupling during glitches

    NASA Astrophysics Data System (ADS)

    Newton, W. G.; Berger, S.; Haskell, B.

    2015-12-01

    We demonstrate that observations of glitches in the Vela pulsar can be used to investigate the strength of the crust-core coupling in a neutron star and provide a powerful probe of the internal structure of neutron stars. We assume that glitch recovery is dominated by the torque exerted by the mutual friction-mediated recoupling of superfluid components of the core that were decoupled from the crust during the glitch. Then we use the observations of the recoveries from two recent glitches in the Vela pulsar to infer the fraction of the core that is coupled to the crust during the glitch. We then analyse whether crustal neutrons alone are sufficient to drive glitches in the Vela pulsar, taking into account crustal entrainment. We use two sets of neutron star equations of state (EOSs) which span crust and core consistently and cover a conservative range of the slope of the symmetry energy at saturation density 30 < L < 120 MeV. The two sets differ in the stiffness of the high density EOS. We find that for medium to stiff EOSs, observations imply >70 per cent of the moment of inertia of the core is coupled to the crust during the glitch, though for softer EOSs L ≈ 30 MeV as little as 5 per cent could be coupled. We find that only by extending the region where superfluid vortices are strongly pinned into the core by densities at least 0.016 fm-3 above the crust-core transition density does any EOS reproduce the observed glitch activity.

  5. Jumbo squid beaks: inspiration for design of robust organic composites.

    PubMed

    Miserez, Ali; Li, Youli; Waite, J Herbert; Zok, Frank

    2007-01-01

    The hard tissues found in some invertebrate marine organisms represent intriguing paradigms for robust, lightweight materials. The present study focuses on one such tissue: that comprising the beak of the jumbo squid (Dosidicus gigas). Its main constituents are chitin fibers (15-20wt.%) and histidine- and glycine-rich proteins (40-45%). Notably absent are mineral phases, metals and halogens. Despite being fully organic, beak hardness and stiffness are at least twice those of the most competitive synthetic organic materials (notably engineering polymers) and comparable to those of Glycera and Nereis jaws. Furthermore, the combination of hardness and stiffness makes the beaks more resistant to plastic deformation when in contact with blunt abrasives than virtually all metals and polymers. The 3,4-dihydroxy-l-phenylalanine and abundant histidine content in the beak proteins as well as the pigmented hydrolysis-resistant residue are suggestive of aromatic cross-linking. A high cross-linking density between the proteins and chitin may be the single most important determinant of hardness and stiffness in the beak. Beak microstructure is characterized by a lamellar arrangement of the constituents, with a weak interface that promotes crack deflection and endows the structure with high fracture toughness. The susceptibility of this microstructure to cracking along these interfaces from contact stresses at the external surface is mitigated by the presence of a protective coating.

  6. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less

  7. Helping Aircraft Engines Lighten Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    High-temperature polyimide/carbon fiber matrix composites are developed by the Polymers Branch at NASA's Glenn Research Center. These materials can withstand high temperatures and have good processing properties, which make them particularly useful for jet and rocket engines and for components such as fan blades, bushings, and duct segments. Applying polyimide composites as components for aerospace structures can lead to substantial vehicle weight reductions. A typical polyimide composite is made up of layers of carbon or glass fibers glued together by a high-temperature polymer to make the material strong, stiff, and lightweight. Organic molecules containing carbon, nitrogen, oxygen, and hydrogen within the polyimide keep the material s density low, resulting in the light weight. The strength of a component or part made from a polyimide comes mainly from the reinforcing high-strength fibers. The strength of the carbon fibers coupled with the stiffness of polyimides allows engineers to make a very rigid structure without it being massive. Another benefit of a polyimide s suitability for aerospace applications is its reduced need for machining. When polyimide parts are removed from a mold, they are nearly in their final shape. Usually, very little machining is needed before a part is ready for use.

  8. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA

    PubMed Central

    Cheng, Shanbao; Olles, Mark W.; Burger, Aaron F.; Day, Steven W.

    2011-01-01

    In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers’ initial assumption about the function of this HMB. PMID:22065892

  9. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA.

    PubMed

    Cheng, Shanbao; Olles, Mark W; Burger, Aaron F; Day, Steven W

    2011-10-01

    In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers' initial assumption about the function of this HMB.

  10. Mechanical properties of novel forms of graphyne under strain: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2017-06-01

    The mechanical properties of two forms of graphyne sheets named α-graphyne and α2-graphyne under uniaxial and biaxial strains were studied. In-plane stiffness, bulk modulus, and shear modulus were calculated based on density functional theory. The in-plane stiffness, bulk modulus, and shear modulus of α2-graphyne were found to be larger than that of α-graphyne. The maximum values of supported uniaxial and biaxial strains before failure were determined. The α-graphyne was entered into the plastic region with the higher magnitude of tension in comparison to α2-graphyne. The mechanical properties of α-graphyne family revealed that these forms of graphyne are proper materials for use in nanomechanical applications.

  11. Advanced Class of FML on the Base Al-Li Alloy 1441 with Lower Density

    NASA Astrophysics Data System (ADS)

    Antipov, V. V.; Senatorova, O. G.; Lukina, N. F.

    Structure, composition, properties combination of specimens and components, a number of technological parameters for production of advanced FML based on high-modulus Al-Li 1441 alloy (E 79 GPa) with reduced density (d 2.6 g/m3) and optimized adhesive prepreg reinforced with high-strength high-modulus VMP glass fibres are described. Service life 1441 alloy provides the possibility of manufacture of thin sheets (up to 0.3 mm), clad and unclad. Moreover, some experience on the usage of 1441 T1, T11 sheets and shapes in Be 200 and Be 103 aircraft was accumulated. The class of FML materials based on Al-Li alloy provide an 5% improvement in weight efficiency and stiffness of skin structures as compared with those made from FML with conventional Al-Cu-Mg (2024T3 a.o.) and Al-Zn-Mg-Cu (7475T76 a.o.) alloys.

  12. Custom 3D Printable Silicones with Tunable Stiffness.

    PubMed

    Durban, Matthew M; Lenhardt, Jeremy M; Wu, Amanda S; Small, Ward; Bryson, Taylor M; Perez-Perez, Lemuel; Nguyen, Du T; Gammon, Stuart; Smay, James E; Duoss, Eric B; Lewicki, James P; Wilson, Thomas S

    2018-02-01

    Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. A series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Herein, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performance is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Influence of "J"-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion.

    PubMed

    Wang, Runxiao; Zhao, Wentao; Li, Shujun; Zhang, Shunqi

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of "J"-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with "J"-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with "J"-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s -1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with "J"-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  14. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    PubMed Central

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness. PMID:28018127

  15. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  16. Viral eradication reduces both liver stiffness and steatosis in patients with chronic hepatitis C virus infection who received direct-acting anti-viral therapy.

    PubMed

    Tada, T; Kumada, T; Toyoda, H; Sone, Y; Takeshima, K; Ogawa, S; Goto, T; Wakahata, A; Nakashima, M; Nakamuta, M; Tanaka, J

    2018-04-01

    Whether direct-acting anti-viral therapy can reduce liver fibrosis and steatosis in patients with chronic hepatitis C virus (HCV) infection is unclear. To evaluate changes in liver stiffness and steatosis in patients with HCV who received direct-acting anti-viral therapy and achieved sustained virological response (SVR). A total of 198 patients infected with HCV genotype 1 or 2 who achieved SVR after direct-acting anti-viral therapy were analysed. Liver stiffness as evaluated by magnetic resonance elastography, steatosis as evaluated by magnetic resonance imaging-determined proton density fat fraction (PDFF), insulin resistance, and laboratory data were assessed before treatment (baseline) and at 24 weeks after the end of treatment (SVR24). Alanine aminotransferase and homeostatic model assessment-insulin resistance levels decreased significantly from baseline to SVR24. Conversely, platelet count, which is inversely associated with liver fibrosis, increased significantly from baseline to SVR24. In patients with high triglyceride levels (≥150 mg/dL), triglyceride levels significantly decreased from baseline to SVR24 (P = 0.004). The median (interquartile range) liver stiffness values at baseline and SVR24 were 3.10 (2.70-4.18) kPa and 2.80 (2.40-3.77) kPa respectively (P < 0.001). The PDFF values at baseline and SVR 24 were 2.4 (1.7-3.4)% and 1.9 (1.3-2.8)% respectively (P < 0.001). In addition, 68% (19/28) of patients with fatty liver at baseline (PDFF ≥5.2%; n = 28) no longer had fatty liver (PDFF <5.2%) at SVR24. Viral eradication reduces both liver stiffness and steatosis in patients with chronic HCV who received direct-acting anti-viral therapy (UMIN000017020). © 2018 John Wiley & Sons Ltd.

  17. Carotid arterial wall characteristics are associated with incident ischemic stroke but not coronary heart disease in the ARIC Study

    PubMed Central

    Yang, Eric Y.; Chambless, Lloyd; Sharrett, A. Richey; Virani, Salim S.; Liu, Xiaoxi; Tang, Zhengzheng; Boerwinkle, Eric; Ballantyne, Christie M.; Nambi, Vijay

    2011-01-01

    Background and Purpose Ultrasound measurements of arterial stiffness are associated with atherosclerosis risk factors, but limited data exist on their association with incident cardiovascular events. We evaluated the association of carotid ultrasound derived arterial stiffness measures with incident coronary heart disease (CHD) and ischemic stroke in the ARIC study. Methods Carotid arterial strain (CAS) and compliance (AC), distensibility (AD) and stiffness indices (SI), pressure-strain (Ep) and Young’s elastic moduli (YEM) were measured in 10,407 individuals using ultrasound. Hazard ratios for incident CHD (myocardial infarction [MI], fatal CHD, coronary revascularization) and stroke in minimally adjusted (age, sex, center, race) and fully adjusted models (minimally adjusted model + diabetes, height, weight, total cholesterol, high-density lipoprotein cholesterol, tobacco use, systolic blood pressure, antihypertensive medication use, and carotid intima-media thickness (CIMT) were calculated. Results The mean age was 55.3 years. Over a mean follow up of 13.8 years, 1,267 incident CHD and 383 ischemic stroke events occurred. After full adjustment for risk factors and CIMT, all arterial stiffness parameters [CAS HR (95% confidence interval [CI]) =1.14 (1.02, 1.28); AD HR=1.19 (1.02, 1.39); SI HR=1.14 (1.04, 1.25); Ep HR=1.17 (1.06, 1.28); YEM HR=1.13 (1.03, 1.24)], except arterial compliance HR=1.02 (0.90, 1.16), were significantly associated with incident stroke but not with CHD. Conclusions After adjusting for cardiovascular risk factors, ultrasound measures of carotid arterial stiffness are associated with incident ischemic stroke but not incident CHD events, despite that the 2 outcomes sharing similar risk factors. PMID:22033999

  18. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    PubMed

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  20. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.

    PubMed

    Nazemi, S Majid; Kalajahi, S Mehrdad Hosseini; Cooper, David M L; Kontulainen, Saija A; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-07-05

    Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R 2 =0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin's fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R 2 and RMSE%. The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%. Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin's fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel.

    PubMed

    Hogrebe, Nathaniel J; Gooch, Keith J

    2016-09-01

    Much is unknown about the effects of culture dimensionality on cell behavior due to the lack of biomimetic substrates that are suitable for directly comparing cells grown on two-dimensional (2D) and encapsulated within three-dimensional (3D) matrices of the same stiffness and biochemistry. To overcome this limitation, we used a self-assembling peptide hydrogel system that has tunable stiffness and cell-binding site density as well as a fibrous microarchitecture resembling the structure of collagen. We investigated the effect of culture dimensionality on human mesenchymal stem cell differentiation at different values of matrix stiffness (G' = 0.25, 1.25, 5, and 10 kPa) and a constant RGD (Arg-Gly-Asp) binding site concentration. In the presence of the same soluble induction factors, culture on top of stiff gels facilitated the most efficient osteogenesis, while encapsulation within the same stiff gels resulted in a switch to predominantly terminal chondrogenesis. Adipogenesis dominated at soft conditions, and 3D culture induced better adipogenic differentiation than 2D culture at a given stiffness. Interestingly, initial matrix-induced cell morphology was predictive of these end phenotypes. Furthermore, optimal culture conditions corresponded to each cell type's natural niche within the body, highlighting the importance of incorporating native matrix dimensionality and stiffness into tissue engineering strategies. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2356-2368, 2016. © 2016 Wiley Periodicals, Inc.

  2. Density gradients at hydrogel interfaces for enhanced cell penetration.

    PubMed

    Simona, B R; Hirt, L; Demkó, L; Zambelli, T; Vörös, J; Ehrbar, M; Milleret, V

    2015-04-01

    We report that stiffness gradients facilitate infiltration of cells through otherwise cell-impermeable hydrogel interfaces. By enabling the separation of hydrogel manufacturing and cell seeding, and by improving cell colonization of additively manufactured hydrogel elements, interfacial density gradients present a promising strategy to progress in the creation of 3D tissue models.

  3. Effects of phyllotaxy on biomechanical properties of stems of Cercis occidentalis (Fabaceae).

    PubMed

    Caringella, Marissa A; Bergman, Brett A; Stanfield, Ryan C; Ewers, Madeleine M; Bobich, Edward G; Ewers, Frank W

    2014-01-01

    Phyllotaxy, the arrangement of leaves on a stem, may impact the mechanical properties of woody stems several years after the leaves have been shed. We explored mechanical properties of a plant with alternate distichous phyllotaxy, with a row of leaves produced on each side of the stem, to determine whether the nodes behave as spring-like joints. Flexural stiffness of 1 cm diameter woody stems was measured in four directions with an Instron mechanical testing system; the xylem of the stems was then cut into node (former leaf junction) and nonnode segments for measurement of xylem density. Stems had 20% greater flexural stiffness in the plane perpendicular to the original leaf placement than in the parallel plane. The xylem in the node region was more flexible, but it had significantly greater tissue density than adjacent regions, contradicting the usual correlation between wood density and stiffness. Nodes can behave as spring-like joints in woody plants. For plagiotropic shoots, distichous phyllotaxy results in stems that resist up-and-down bending more than lateral back-and-forth movement. Thus, they may more effectively absorb applied loads from fruits, animals, wind, rain, and snow and resist stresses due to gravity without cracking and breaking. Under windy conditions, nodes may improve damping by absorbing vibrational energy and thus reducing oscillation damage. The effect of plant nodes also has biomimetic design implications for architects and material engineers.

  4. Lattice model calculation of the strain energy density and other properties of crystalline LiCoO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, F.X.; Bates, J.B.

    1998-06-01

    The strain energy densities for various crystalline planes of LiCoO{sub 2} were calculated from the stiffness tensors obtained from lattice model calculations using the program GULP. In addition to Coulomb and Buckingham potentials, it was necessary to include shell models for the oxygen and cobalt ions in order to obtain acceptable agreement between the observed and calculated structural parameters and high frequency dielectric constant. The strain energy densities u due to differential thermal expansion were calculated using the theoretical stiffness tensors and estimated values for the thermal expansion coefficients of LiCoO{sub 2}. For a temperature change of 675thinsp{degree}C, these rangedmore » from 0.5 to 1.3{times}10{sup 8}thinsperg/cm{sup 3} or 5 to 13thinspJ/m{sup 2} for 1-{mu}m-thick films on alumina substrates. In particular, the energies for the (003), (101), and (104) planes were ordered as u(003){gt}u(104){gt}u(101). This suggests that the strong (101) preferred orientation of LiCoO{sub 2} films ({ge}1thinsp{mu}m thick) is due to the tendency to minimize volume strain energy that arises from differential thermal expansion between the film and the substrate. Additional properties obtained from the GULP calculations include the free energy, heat capacity, and the k=0 vibrational modes. thinsp« less

  5. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers

    PubMed Central

    Sarshar, Mohammad; Wong, Winson T.; Anvari, Bahman

    2014-01-01

    Abstract. Optical tweezers have become an important instrument in force measurements associated with various physical, biological, and biophysical phenomena. Quantitative use of optical tweezers relies on accurate calibration of the stiffness of the optical trap. Using the same optical tweezers platform operating at 1064 nm and beads with two different diameters, we present a comparative study of viscous drag force, equipartition theorem, Boltzmann statistics, and power spectral density (PSD) as methods in calibrating the stiffness of a single beam gradient force optical trap at trapping laser powers in the range of 0.05 to 1.38 W at the focal plane. The equipartition theorem and Boltzmann statistic methods demonstrate a linear stiffness with trapping laser powers up to 355 mW, when used in conjunction with video position sensing means. The PSD of a trapped particle’s Brownian motion or measurements of the particle displacement against known viscous drag forces can be reliably used for stiffness calibration of an optical trap over a greater range of trapping laser powers. Viscous drag stiffness calibration method produces results relevant to applications where trapped particle undergoes large displacements, and at a given position sensing resolution, can be used for stiffness calibration at higher trapping laser powers than the PSD method. PMID:25375348

  6. Effect of static foot posture on the dynamic stiffness of foot joints during walking.

    PubMed

    Sanchis-Sales, E; Sancho-Bru, J L; Roda-Sales, A; Pascual-Huerta, J

    2018-05-01

    The static foot posture has been related to the development of lower limb injuries. This study aimed to investigate the dynamic stiffness of foot joints during gait in the sagittal plane to understand the role of the static foot posture in the development of injuries. Seventy healthy adult male subjects with different static postures, assessed by the Foot Posture Index (FPI) (30 normal, 20 highly pronated and 20 highly supinated), were recruited. Kinematic and kinetic data were recorded using an optical motion capture system and a pressure platform, and dynamic stiffness at the different stages of the stance was calculated from the slopes of the linear regression on the flexion moment-angle curves. The effect of foot type on dynamic stiffness and on ranges of motion and moments was analysed using ANOVAs and post-hoc tests, and linear correlation between dynamic stiffness and FPI was also tested. Highly pronated feet showed a significantly smaller range of motion at the ankle and metatarsophalangeal joints and also a larger range of moments at the metatarsophalangeal joint than highly supinated feet. Dynamic stiffness during propulsion was significantly greater at all foot joints for highly pronated feet, with positive significant correlations with the squared FPI. Highly supinated feet showed greater dynamic stiffness than normal feet, although to a lesser extent. Highly pronated feet during normal gait experienced the greatest decrease in the dorsiflexor moments during propulsion, normal feet being the most balanced regarding work generated and absorbed. Extreme static foot postures show greater dynamic stiffness during propulsion and greater absorbed work, which increases the risk of developing injuries. The data presented may be used when designing orthotics or prostheses, and also when planning surgery that modifies joint stiffness. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Augmentation of failed human vertebrae with critical un-contained lytic defect restores their structural competence under functional loading: An experimental study.

    PubMed

    Alkalay, Ron N; von Stechow, Dietrich; Hackney, David B

    2015-07-01

    Lytic spinal lesions reduce vertebral strength and may result in their fracture. Vertebral augmentation is employed clinically to provide mechanical stability and pain relief for vertebrae with lytic lesions. However, little is known about its efficacy in strengthening fractured vertebrae containing lytic metastasis. Eighteen unembalmed human lumbar vertebrae, having simulated uncontained lytic defects and tested to failure in a prior study, were augmented using a transpedicular approach and re-tested to failure using a wedge fracture model. Axial and moment based strength and stiffness parameters were used to quantify the effect of augmentation on the structural response of the failed vertebrae. Effects of cement volume, bone mineral density and vertebral geometry on the change in structural response were investigated. Augmentation increased the failed lytic vertebral strength [compression: 85% (P<0.001), flexion: 80% (P<0.001), anterior-posterior shear: 95%, P<0.001)] and stiffness [(40% (P<0.05), 53% (P<0.05), 45% (P<0.05)]. Cement volume correlated with the compressive strength (r(2)=0.47, P<0.05) and anterior-posterior shear strength (r(2)=0.52, P<0.05) and stiffness (r(2)=0.45, P<0.05). Neither the geometry of the failed vertebrae nor its pre-fracture bone mineral density correlated with the volume of cement. Vertebral augmentation is effective in bolstering the failed lytic vertebrae compressive and axial structural competence, showing strength estimates up to 50-90% of historical values of osteoporotic vertebrae without lytic defects. This modest increase suggests that lytic vertebrae undergo a high degree of structural damage at failure, with strength only partially restored by vertebral augmentation. The positive effect of cement volume is self-limiting due to extravasation. Copyright © 2015. Published by Elsevier Ltd.

  8. Concept and development of an orthotropic FE model of the proximal femur.

    PubMed

    Wirtz, Dieter Christian; Pandorf, Thomas; Portheine, Frank; Radermacher, Klaus; Schiffers, Norbert; Prescher, Andreas; Weichert, Dieter; Niethard, Fritz Uwe

    2003-02-01

    In contrast to many isotropic finite-element (FE) models of the femur in literature, it was the object of our study to develop an orthotropic FE "model femur" to realistically simulate three-dimensional bone remodelling. The three-dimensional geometry of the proximal femur was reconstructed by CT scans of a pair of cadaveric femurs at equal distances of 2mm. These three-dimensional CT models were implemented into an FE simulation tool. Well-known "density-determined" bony material properties (Young's modulus; Poisson's ratio; ultimate strength in pressure, tension and torsion; shear modulus) were assigned to each FE of the same "CT-density-characterized" volumetric group. In order to fix the principal directions of stiffness in FE areas with the same "density characterization", the cadaveric femurs were cut in 2mm slices in frontal (left femur) and sagittal plane (right femur). Each femoral slice was scanned into a computer-based image processing system. On these images, the principal directions of stiffness of cancellous and cortical bone were determined manually using the orientation of the trabecular structures and the Haversian system. Finally, these geometric data were matched with the "CT-density characterized" three-dimensional femur model. In addition, the time and density-dependent adaptive behaviour of bone remodelling was taken into account by implementation of Carter's criterion. In the constructed "model femur", each FE is characterized by the principal directions of the stiffness and the "CT-density-determined" material properties of cortical and cancellous bone. Thus, on the basis of anatomic data a three-dimensional FE simulation reference model of the proximal femur was realized considering orthotropic conditions of bone behaviour. With the orthotropic "model femur", the fundamental basis has been formed to realize realistic simulations of the dynamical processes of bone remodelling under different loading conditions or operative procedures (osteotomies, total hip replacements, etc).

  9. Data files for ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes

    DOE PAGES

    Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.

    2016-11-29

    Here, we present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of BCC Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT). All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP). The data is stored in the NIST dSpace repository.

  10. Designing optimized ultra-lightweighted mirror structures made of Cesic for space and ground based applications

    NASA Astrophysics Data System (ADS)

    Hofbauer, Peter; Krödel, Matthias R.

    2010-07-01

    Today's space applications increasingly utilize lightweighted construction concepts, motivated by the demands of manufacturing and functionality, and by economics. Particularly for space optics, mirror stability and stiffness need to be maximized, while mass needs to be minimized. Therefore, mirror materials must possess, besides high material strength and manufacturing versatility, high thermal conductivity combined with low heat capacity and long-term stability against varying thermal loads. Additionally, optical surfaces need to be compatible with reflective coating materials. In order to achieve these requirements, the interplay between material properties and mirror design on one hand, and budgetary constraints on the other must be considered. In this paper, we address these issues by presenting an FEM design study of open and closed-back mirror structures with extremely thin reinforcing ribs, with the goal of obtaining optimal physical and optical characteristics. Furthermore, we show that ECM's carbon-fiber reinforced SiC composite, Cesic®, and its newly developed, HB-Cesic® , with their low CTE, low density, and high stiffness, are not only excellent mirror materials, but allow the rapid manufacturing of complex monolithic optical structures at reasonable cost.

  11. Electron temperature response to ECRH on FTU tokamak in transient conditions.

    NASA Astrophysics Data System (ADS)

    Jacchia, A.; Bruschi, A.; Cirant, S.; Granucci, G.; Sozzi, C.; de Luca, F.; Amadeo, P.; Bracco, G.; Tudisco, O.

    2001-10-01

    Steady-state electron heat transport analysis of FTU high density plasmas under Electron Cyclotron Heating (ECRH) shows "stiff" electron temperature profiles [1,2,3]. Plasma response to off-axis EC heating, in fact, exibits a lower limit to electron temperature gradient length, Lc , below which electron thermal conductivity switches to higher values. Stiffness, however, is attenuated in the plasma core of saw-tooth free discharges with flat-hollow temperature profile and during current ramp-up [3,4,5], in which cases the temperature gradient length can be brought to very low values by means of on-axis ECH. Steady and current ramp-up discharges probed by steady and modulated ECH are analyzed in terms of stiffnes. Critical gradient length dependence on local features of computed current density profile is discussed. [1] Sozzi, C. et al., Paper EXP5/13, Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000. [2] Jacchia, A. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [3] Cirant, S. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [4] Sozzi, C. et al., EPS, Madeira 2001. [5] Bracco, G. et al.,Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000.

  12. Triglyceride to HDL-C ratio and increased arterial stiffness in apparently healthy individuals.

    PubMed

    Wen, Jiang-Hua; Zhong, Yu-Yu; Wen, Zhi-Gang; Kuang, Chao-Qun; Liao, Jie-Rong; Chen, Li-Hua; Wang, Pei-Shen; Wu, Yue-Xia; Ouyang, Chu-Jun; Chen, Zhi-Jin

    2015-01-01

    High triglycerides and low high density lipoprotein cholesterol are important cardiovascular risk factors. Triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) has been reported to be useful in predicting cardiovascular disease. Brachial-ankle pulse wave velocity (baPWV) is a valid and reproducible measurement by which to assess arterial stiffness and a surrogate marker of atherosclerosis. However, there is limited evidence about the relationship between them. Therefore, we tested the hypotheses that TG/HDL-C is associated with baPWV in healthy individuals. Fasting lipid profiles, baPWV and clinical data were measured in 1498 apparently healthy, medication-free subjects (926 men, 572 women) who participated in a routine health screening from 2011 to 2013. Participants were stratified into quartiles of TG/HDL-C ratio. BaPWV > 1400 cm/s was defined as abnormal baPWV, Multivariable logistic regression was used to identify associations of TG/HDL-C quartiles and baPWV, after adjusting for the presence of conventional cardiovascular risk factors. In both genders, we observed positive relationships between TG/HDL-C quartiles and BMI, systolic BP, diastolic BP, fasting glucose, total cholesterol, LDL-C, triglycerides, uric acid, and percentages of high baPWV. Multivariable logistic regression revealed that baPWV abnormality OR value of the highest TG/HDL-C quartiles was 1.91 (95% CI: 1.11-3.30, P < 0.05) and 2.91 (95% CI: 1.02-8.30, P < 0.05) in male and female after adjusting for age, systolic BP, diastolic BP, BMI, fasting plasma glucose, LDL-C, uric acid and estimated glomerular filtration rate when compared with the lowest TG/HDL-C quartiles. Increased TG/HDL-C was independently associated with baPWV abnormality in apparently healthy individuals.

  13. Triglyceride to HDL-C ratio and increased arterial stiffness in apparently healthy individuals

    PubMed Central

    Wen, Jiang-Hua; Zhong, Yu-Yu; Wen, Zhi-Gang; Kuang, Chao-Qun; Liao, Jie-Rong; Chen, Li-Hua; Wang, Pei-Shen; Wu, Yue-Xia; Ouyang, Chu-Jun; Chen, Zhi-Jin

    2015-01-01

    Objectives: High triglycerides and low high density lipoprotein cholesterol are important cardiovascular risk factors. Triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) has been reported to be useful in predicting cardiovascular disease. Brachial-ankle pulse wave velocity (baPWV) is a valid and reproducible measurement by which to assess arterial stiffness and a surrogate marker of atherosclerosis. However, there is limited evidence about the relationship between them. Therefore, we tested the hypotheses that TG/HDL-C is associated with baPWV in healthy individuals. Methods: Fasting lipid profiles, baPWV and clinical data were measured in 1498 apparently healthy, medication-free subjects (926 men, 572 women) who participated in a routine health screening from 2011 to 2013. Participants were stratified into quartiles of TG/HDL-C ratio. BaPWV > 1400 cm/s was defined as abnormal baPWV, Multivariable logistic regression was used to identify associations of TG/HDL-C quartiles and baPWV, after adjusting for the presence of conventional cardiovascular risk factors. Results: In both genders, we observed positive relationships between TG/HDL-C quartiles and BMI, systolic BP, diastolic BP, fasting glucose, total cholesterol, LDL-C, triglycerides, uric acid, and percentages of high baPWV. Multivariable logistic regression revealed that baPWV abnormality OR value of the highest TG/HDL-C quartiles was 1.91 (95% CI: 1.11-3.30, P < 0.05) and 2.91 (95% CI: 1.02-8.30, P < 0.05) in male and female after adjusting for age, systolic BP, diastolic BP, BMI, fasting plasma glucose, LDL-C, uric acid and estimated glomerular filtration rate when compared with the lowest TG/HDL-C quartiles. Conclusion: Increased TG/HDL-C was independently associated with baPWV abnormality in apparently healthy individuals. PMID:26064351

  14. Transverse cracking and stiffness reduction in composite laminates

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.; Selek, M. C.

    1993-01-01

    A study of transverse cracking mechanism in composite laminates is presented using a singular hybrid finite element model. The model provides the global structural response as well as the precise local crack-tip stress fields. An elasticity basis for the problem is established by employing Lekhnitskii's complex variable potentials and method of eigenfunction expansion. Stress singularities associated with the transverse crack are obtained by decomposing the deformation into the symmetric and antisymmetric modes and proper boundary conditions. A singular hybrid element is thereby formulated based on the variational principle of a modified hybrid functional to incorporate local crack singularities. Axial stiffness reduction due to transverse cracking is studied. The results are shown to be in very good agreement with the existing experimental data. Comparison with simple shear lag analysis is also given. The effects of stress intensity factors and strain energy density on the increase of crack density are analyzed. The results reveal that the parameters approach definite limits when crack densities are saturated, an evidence of the existence of characteristic damage state.

  15. Programmable Self-Locking Origami Mechanical Metamaterials.

    PubMed

    Fang, Hongbin; Chu, Shih-Cheng A; Xia, Yutong; Wang, Kon-Well

    2018-04-01

    Developing mechanical metamaterials with programmable properties is an emerging topic receiving wide attention. While the programmability mainly originates from structural multistability in previously designed metamaterials, here it is shown that nonflat-foldable origami provides a new platform to achieve programmability via its intrinsic self-locking and reconfiguration capabilities. Working with the single-collinear degree-4 vertex origami tessellation, it is found that each unit cell can self-lock at a nonflat configuration and, therefore, possesses wide design space to program its foldability and relative density. Experiments and numerical analyses are combined to demonstrate that by switching the deformation modes of the constituent cell from prelocking folding to postlocking pressing, its stiffness experiences a sudden jump, implying a limiting-stopper effect. Such a stiffness jump is generalized to a multisegment piecewise stiffness profile in a multilayer model. Furthermore, it is revealed that via strategically switching the constituent cells' deformation modes through passive or active means, the n-layer metamaterial's stiffness is controllable among 2 n target stiffness values. Additionally, the piecewise stiffness can also trigger bistable responses dynamically under harmonic excitations, highlighting the metamaterial's rich dynamic performance. These unique characteristics of self-locking origami present new paths for creating programmable mechanical metamaterials with in situ controllable mechanical properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.

    PubMed

    Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M

    2018-02-01

    Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and mechanical strength (R 2 =0.747 and 0.736 respectively). When respective structural parameters were incorporated to BV/TV, multiple regression analysis indicated that none of the μCT histomorphometric parameters could improve the prediction of mechanical stiffness and strength, while for UTTS, adding TTMP to BV/TV increased the prediction of mechanical stiffness to R 2 =0.711 and strength to R 2 =0.827. It is therefore envisaged that UTTS may have the ability to estimate BV/TV along with providing an improved prediction of osteoporotic fracture risk, within routine clinical practice in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Association between resting heart rate and arterial stiffness in Korean adults.

    PubMed

    Park, Byoung-Jin; Lee, Hye-Ree; Shim, Jae-Yong; Lee, Jung-Hyun; Jung, Dong-Hyuk; Lee, Yong-Jae

    2010-04-01

    Higher resting heart rate, a simple and useful indicator of autonomic balance and metabolic rate, has emerged as an independent predictor for atherosclerotic cardiovascular disease. To determine the association between resting heart rate and arterial stiffness measured by brachial-ankle pulse wave velocity (baPWV). We examined the association between resting heart rate and baPWV in 641 Korean adults (366 men, 275 women) in a health examination program. A high baPWV was defined as greater than 1450 cm/s (>75th percentile). The odds ratios for high baPWVs were calculated using multivariable logistic regression analysis after adjusting for confounding variables across heart rate quartiles (Q1or=69 beats/min). Age-adjusted baPWV mean values increased gradually with heart rate quartile (Q1=1281, Q2=1285, Q3=1354, Q4=1416 cm/s). The odds ratios (95% confidence intervals) for high baPWVs in each heart rate quartile were 1.00, 1.28 (0.57-2.86), 2.63 (1.20-5.79) and 3.66 (1.66-8.05), respectively, after adjusting for age, sex, smoking status, alcohol intake, exercise, body mass index, hypertension medication, diabetes medication, hyperlipidaemia medication, mean arterial blood pressure, fasting plasma glucose, total cholesterol, triglycerides, high-density lipoprotein cholesterol, white blood cell count, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase and uric acid. These findings indicate that a higher resting heart rate is independently associated with arterial stiffness. Accordingly, early detection of increased resting heart rate is important for preservation of arterial function and assessment of cardiovascular risk. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  18. Characterization of a hydro-pneumatic suspension strut with gas-oil emulsion

    NASA Astrophysics Data System (ADS)

    Yin, Yuming; Rakheja, Subhash; Yang, Jue; Boileau, Paul-Emile

    2018-06-01

    The nonlinear stiffness and damping properties of a simple and low-cost design of a hydro-pneumatic suspension (HPS) strut that permits entrapment of gas into the hydraulic oil are characterized experimentally and analytically. The formulation of gas-oil emulsion is studied in the laboratory, and the variations in the bulk modulus and mass density of the emulsion are formulated as a function of the gas volume fraction. An analytical model of the HPS is formulated considering polytropic change in the gas state, seal friction, and the gas-oil emulsion flows through orifices and valves. The model is formulated considering one and two bleed orifices configurations of the strut. The measured data acquired under a nearly constant temperature are used to identify gas volume fraction of the emulsion, and friction and flow discharge coefficients as functions of the strut velocity and fluid pressure. The results suggested that single orifice configuration, owing to high fluid pressure, causes greater gas entrapment within the oil and thus significantly higher compressibility of the gas-oil emulsion. The model results obtained under different excitations in the 0.1-8 Hz frequency range showed reasonably good agreements with the measured stiffness and damping properties of the HPS strut. The results show that the variations in fluid compressibility and free gas volume cause increase in effective stiffness but considerable reduction in the damping in a highly nonlinear manner. Increasing the gas volume fraction resulted in substantial hysteresis in the force-deflection and force-velocity characteristics of the strut.

  19. Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks

    PubMed Central

    Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben

    2015-01-01

    When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839

  20. Individual Trabecula Segmentation (ITS)-Based Morphological Analyses and Micro Finite Element Analysis of HR-pQCT Images Discriminate Postmenopausal Fragility Fractures Independent of DXA Measurements

    PubMed Central

    Liu, X. Sherry; Stein, Emily M.; Zhou, Bin; Zhang, Chiyuan A.; Nickolas, Thomas L.; Cohen, Adi; Thomas, Valerie; McMahon, Donald J.; Cosman, Felicia; Nieves, Jeri; Shane, Elizabeth; Guo, X. Edward

    2011-01-01

    Osteoporosis is typically diagnosed by dual energy x-ray absorptiometry (DXA) measurements of areal bone mineral density (aBMD). Emerging technologies, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), may increase the diagnostic accuracy of DXA and enhance our mechanistic understanding of decreased bone strength in osteoporosis. Women with (n=68) and without (n=101) a history of postmenopausal fragility fracture had aBMD measured by DXA, trabecular plate and rod microarchitecture measured by HR-pQCT image-based individual trabeculae segmentation (ITS) analysis, and whole bone and trabecular bone stiffness by micro finite element analysis (μFEA) of HR-pQCT images at the radius and tibia. DXA T-scores were similar in women with and without fractures at the spine, hip and 1/3 radius, but lower in fracture subjects at the ultradistal radius. Trabecular microarchitecture of fracture subjects was characterized by preferential reductions in trabecular plate bone volume, number, and connectivity over rod trabecular parameters, loss of axially aligned trabeculae, and a more rod-like trabecular network. In addition, decreased thickness and size of trabecular plates were observed at the tibia. The differences between groups were greater at the radius than the tibia for plate number, rod bone volume fraction and number and plate-rod and rod-rod junction densities. Most differences between groups remained after adjustment for T-score by DXA. At a fixed bone volume fraction, trabecular plate volume, number and connectivity were directly associated with bone stiffness. In contrast, rod volume, number and connectivity were inversely associated with bone stiffness. In summary, HR-pQCT-based ITS and μFEA measurements discriminate fracture status in postmenopausal women independent of DXA measurements. Moreover, these results suggest that preferential loss of plate-like trabeculae contribute to lower trabecular bone and whole bone stiffness in women with fractures. We conclude that HR-pQCT-based ITS and μFEA measurements increase our understanding of the microstructural pathogenesis of fragility fracture in postmenopausal women. PMID:22072446

  1. 3D printable highly conductive and mechanically strong thermoplastic-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Tabiai, Ilyass; Therriault, Daniel

    Highly conductive 3D printable inks can be used to design electrical devices with various functionalities and geometries. We use the solvent evaporation assisted 3D-printing method to create high resolution structures made of poly(lactid) acid (PLA) reinforced with multi-walled carbon nanotube (MWCNTs). We characterize fibers with diameters ranging between 100 μm to 330 μm and reinforced with MWCNTs from 0.5 up to 40wt% here. Tensile test, shrinkage ratio, density and electrical conductivity measurements of the printed nanocomposite are presented. The material's electrical conductivity is strongly improved by adding MWCNTs (up to 3000S/m), this value was found to be higher than any 3D-printable carbon based material available in the literature. It is observed that MWCNTs significantly increase the material's strength and stiffness while reducing its ductility. The ink's density was also higher while still being in the range of polymers' densities. The presented nanocomposite is light weight, highly conductive, has good mechanical properties and can be printed in a freeform fashion at the micro scale. A myriad of low power consumption with less resistive heating sensors and devices can potentially be designed using it and integrated into other 3D printable products.

  2. Modulation of hematopoietic progenitor cell fate in vitro by varying collagen oligomer matrix stiffness in the presence or absence of osteoblasts.

    PubMed

    Chitteti, Brahmananda Reddy; Kacena, Melissa A; Voytik-Harbin, Sherry L; Srour, Edward F

    2015-10-01

    To recreate the in vivo hematopoietic cell microenvironment or niche and to study the impact of extracellular matrix (ECM) biophysical properties on hematopoietic progenitor cell (HPC) proliferation and function, mouse bone-marrow derived HPC (Lin-Sca1+cKit+/(LSK) were cultured within three-dimensional (3D) type I collagen oligomer matrices. To generate a more physiologic milieu, 3D cultures were established in both the presence and absence of calvariae-derived osteoblasts (OB). Collagen oligomers were polymerized at varying concentration to give rise to matrices of different fibril densities and therefore matrix stiffness (shear storage modulus, 50-800 Pa). Decreased proliferation and increased clonogenicity of LSK cells was associated with increase of matrix stiffness regardless of whether OB were present or absent from the 3D culture system. Also, regardless of whether OB were or were not added to the 3D co-culture system, LSK within 800 Pa collagen oligomer matrices maintained the highest percentage of Lin-Sca1+ cells as well as higher percentage of cells in quiescent state (G0/G1) compared to 50 Pa or 200Pa matrices. Collectively, these data illustrate that biophysical features of collagen oligomer matrices, specifically fibril density-induced modulation of matrix stiffness, provide important guidance cues in terms of LSK expansion and differentiation and therefore maintenance of progenitor cell function. Copyright © 2015. Published by Elsevier B.V.

  3. Key Insights into Hand Biomechanics: Human Grip Stiffness Can Be Decoupled from Force by Cocontraction and Predicted from Electromyography

    PubMed Central

    Höppner, Hannes; Große-Dunker, Maximilian; Stillfried, Georg; Bayer, Justin; van der Smagt, Patrick

    2017-01-01

    We investigate the relation between grip force and grip stiffness for the human hand with and without voluntary cocontraction. Apart from gaining biomechanical insight, this issue is particularly relevant for variable-stiffness robotic systems, which can independently control the two parameters, but for which no clear methods exist to design or efficiently exploit them. Subjects were asked in one task to produce different levels of force, and stiffness was measured. As expected, this task reveals a linear coupling between force and stiffness. In a second task, subjects were then asked to additionally decouple stiffness from force at these force levels by using cocontraction. We measured the electromyogram from relevant groups of muscles and analyzed the possibility to predict stiffness and force. Optical tracking was used for avoiding wrist movements. We found that subjects were able to decouple grip stiffness from force when using cocontraction on average by about 20% of the maximum measured stiffness over all force levels, while this ability increased with the applied force. This result contradicts the force–stiffness behavior of most variable-stiffness actuators. Moreover, we found the thumb to be on average twice as stiff as the index finger and discovered that intrinsic hand muscles predominate our prediction of stiffness, but not of force. EMG activity and grip force allowed to explain 72 ± 12% of the measured variance in stiffness by simple linear regression, while only 33 ± 18% variance in force. Conclusively the high signal-to-noise ratio and the high correlation to stiffness of these muscles allow for a robust and reliable regression of stiffness, which can be used to continuously teleoperate compliance of modern robotic hands. PMID:28588472

  4. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells.

    PubMed

    Watanabe, Tatsuro; Kuramochi, Hiromi; Takahashi, Atsushi; Imai, Kazue; Katsuta, Naoko; Nakayama, Tomonobu; Fujiki, Hirota; Suganuma, Masami

    2012-05-01

    To understand how nanomechanical stiffness affects metastatic potential, we studied the relationship between cell migration, a characteristic of metastasis, and cell stiffness using atomic force microscopy (AFM), which can measure stiffness (elasticity) of individual living cells. Migration and cell stiffness of three metastatic B16 melanoma variants (B16-F10, B16-BL6, and B16-F1 cells), and also effects of (-)-epigallocatechin gallate (EGCG), were studied using Transwell assay and AFM. Migration of B16-F10 and B16-BL6 cells was 3 and 2 times higher than that of B16-F1 cells in Transwell assay, and cell stiffness determined by AFM was also different among the three variants, although they have similar morphologies and the same growth rates: Means of Young's modulus were 350.8 ± 4.8 Pa for B16-F10 cells, 661.9 ± 16.5 Pa for B16-BL6 cells, and 727.2 ± 13.0 Pa for B16-F1 cells. AFM measurements revealed that highly motile B16-F10 cells have low cell stiffness, and low motile and metastatic B16-F1 cells have high cell stiffness: Nanomechanical stiffness is inversely correlated with migration potential. Treatment of highly motile B16-F10 cells with EGCG increased cell stiffness 2-fold and inhibited migration of the cells. Our study with AFM clearly demonstrates that cell stiffness is a reliable quantitative indicator of migration potential, and very likely metastatic potential, even in morphologically similar cells. And increased cell stiffness may be a key nanomechanical feature in inhibition of metastasis.

  5. Ethnic Differences in Bending Stiffness of the Ulna and Tibia

    NASA Technical Reports Server (NTRS)

    Arnaud, S. B.; Liang, M. T. C.; Bassin, S.; Braun, W.; Dutto, D.; Plesums, K.; Huvnh, H. T.; Cooper, D.; Wong, N.

    2004-01-01

    There is considerable information about the variations in bone mass associated with different opportunity to compare a mechanical property of bone in young college women of Caucasian, Hispanic and Asian descent who gave informed consent to participate in an exercise study. The subjects were sedentary, in good health, eumenorrheic, non-smokers and had body mass indices (BMI) less than 30. Measurements acquired were body weight, kg, and height, cm, calcaneal and wrist bone density, g/square cm (PIXI, Lunar GE) and bending stiffness (EI, Nm(exp 2)) in the ulna and tibia. E1 was determined non-invasively with an instrument called the Mechanical Response Tissue Analyzer (MRTA) that delivers a vibratory stimulus to the center of the ulna or tibia and analyzes the response curve based on the equation E1 = k(sub b) L(exp 3)/48 where k, is lateral bending stiffness, L is the length of the bone, E is Young's modulus of elasticity and I, the bending moment of inertia. The error of the test (CV) based on measurements of an aluminum rod with a known E1 was 4.8%, of calcaneal BMD, 0.54%, and of wrist bone density, 3.45%.

  6. The Exomet Project: EU/ESA Research on High-Performance Light-Metal Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sillekens, W. H.

    The performance of structural materials is commonly associated with such design parameters as strength and stiffness relative to their density; a recognized means to further enhance the weight-saving potential of low-density materials is thus to improve on their mechanical attributes. The European Community research project ExoMet that started in mid-2012 targets such high-performance aluminum- and magnesium-based materials by exploring novel grain-refining and nanoparticle additions in conjunction with melt treatment by means of external fields (electromagnetic, ultrasonic, mechanical). These external fields are to provide for an effective and efficient dispersion of the additions in the melt and their uniform distribution in the as-cast material. The consortium of 27 companies, universities and research organizations from eleven countries integrates various scientific and technological disciplines as well as application areas — including automotive and (aero)-space.

  7. Metallic borophene polytypes as lightweight anode materials for non-lithium-ion batteries.

    PubMed

    Xiang, Pan; Chen, Xianfei; Zhang, Wentao; Li, Junfeng; Xiao, Beibei; Li, Longshan; Deng, Kuisen

    2017-09-20

    Applications of rechargeable non-lithium-ion batteries (Na + , K + , Ca 2+ , Mg 2+ , and Al 3+ NLIBs) are significantly hampered by the deficiency of suitable electrode materials. Searching for anode materials with desirable electrochemical performance is urgent for the large-scale energy storage demands of next generation renewable energy technologies. In this study, three types of recently synthesized borophenes are predicted to serve as high-performing anodes for NLIBs based on density functional theory. All the borophenes considered here are metallic with favorable in-plane stiffness. Dirac fermions were identified in two types of borophenes, guaranteeing their high electron mobility. Moreover, borophene configuration-dependent metal-ion migration, theoretical capacities, and open-circuit voltages were demonstrated with respect to the different adsorption behaviors and atom mass densities of anode materials. Our results provide insights into the configuration-dependent electrode performance of borophene and the corresponding metal-ion storage mechanism.

  8. Study on Finite Element Model Updating in Highway Bridge Static Loading Test Using Spatially-Distributed Optical Fiber Sensors

    PubMed Central

    Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng

    2017-01-01

    A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model. PMID:28753912

  9. Study on Finite Element Model Updating in Highway Bridge Static Loading Test Using Spatially-Distributed Optical Fiber Sensors.

    PubMed

    Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng

    2017-07-19

    A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model.

  10. Experimental measure of arm stiffness during single reaching movements with a time-frequency analysis

    PubMed Central

    Pierobon, Alberto; DiZio, Paul; Lackner, James R.

    2013-01-01

    We tested an innovative method to estimate joint stiffness and damping during multijoint unfettered arm movements. The technique employs impulsive perturbations and a time-frequency analysis to estimate the arm's mechanical properties along a reaching trajectory. Each single impulsive perturbation provides a continuous estimation on a single-reach basis, making our method ideal to investigate motor adaptation in the presence of force fields and to study the control of movement in impaired individuals with limited kinematic repeatability. In contrast with previous dynamic stiffness studies, we found that stiffness varies during movement, achieving levels higher than during static postural control. High stiffness was associated with elevated reflexive activity. We observed a decrease in stiffness and a marked reduction in long-latency reflexes around the reaching movement velocity peak. This pattern could partly explain the difference between the high stiffness reported in postural studies and the low stiffness measured in dynamic estimation studies, where perturbations are typically applied near the peak velocity point. PMID:23945781

  11. Hamstrings Stiffness and Landing Biomechanics Linked to Anterior Cruciate Ligament Loading

    PubMed Central

    Blackburn, J. Troy; Norcross, Marc F.; Cannon, Lindsey N.; Zinder, Steven M.

    2013-01-01

    Context: Greater hamstrings stiffness is associated with less anterior tibial translation during controlled perturbations. However, it is unclear how hamstrings stiffness influences anterior cruciate ligament (ACL) loading mechanisms during dynamic tasks. Objective: To evaluate the influence of hamstrings stiffness on landing biomechanics related to ACL injury. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: A total of 36 healthy, physically active volunteers (18 men, 18 women; age = 23 ± 3 years, height = 1.8 ± 0.1 m, mass = 73.1 ± 16.6 kg). Intervention(s): Hamstrings stiffness was quantified via the damped oscillatory technique. Three-dimensional lower extremity kinematics and kinetics were captured during a double-legged jump-landing task via a 3-dimensional motion-capture system interfaced with a force plate. Landing biomechanics were compared between groups displaying high and low hamstrings stiffness via independent-samples t tests. Main Outcome Measure(s): Hamstrings stiffness was normalized to body mass (N/m·kg−1). Peak knee-flexion and -valgus angles, vertical and posterior ground reaction forces, anterior tibial shear force, internal knee-extension and -varus moments, and knee-flexion angles at the instants of each peak kinetic variable were identified during the landing task. Forces were normalized to body weight, whereas moments were normalized to the product of weight and height. Results: Internal knee-varus moment was 3.6 times smaller in the high-stiffness group (t22 = 2.221, P = .02). A trend in the data also indicated that peak anterior tibial shear force was 1.1 times smaller in the high-stiffness group (t22 = 1.537, P = .07). The high-stiffness group also demonstrated greater knee flexion at the instants of peak anterior tibial shear force and internal knee-extension and -varus moments (t22 range = 1.729–2.224, P < .05). Conclusions: Greater hamstrings stiffness was associated with landing biomechanics consistent with less ACL loading and injury risk. Musculotendinous stiffness is a modifiable characteristic; thus exercises that enhance hamstrings stiffness may be important additions to ACL injury-prevention programs. PMID:24303987

  12. Poco Graphite Inc. SuperSiC 0.25m Mirror Cryogenic Test Result

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Stahl, Phil; Hogue, Bill; Hadaway, James

    2004-01-01

    SuperSiC, a low areal density material, developed by POCO Graphite, have been used as mirror substrate for high energy lasers, laser radar systems, surveillance, telescopes, scan mirrors and satellites. SuperSiC has excellent thermal properties and cryogenic stability. It exhibits exceptional polishability for reflective optics with high strength, stiffness, and excellent thermal conductivity. A lightweighted 0.2-diameter polished SuperSic mirror was tested at cryogenic temperature at NASMSFC. Optical test results showed 6nm cry0 deformation from ambient to 30 degrees Kelvin and little to no change in its surface figure due to cry0 cycling.

  13. A parameter identification method for the rotordynamic coefficients of a high Reynolds number hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    Rouvas, C.; Childs, D. W.

    1993-01-01

    In identifying the rotordynamic coefficients of a high-Reynolds-number hydrostatic bearing, fluid-flow induced forces present a unique problem, in that they provide an unmeasureable and uncontrollable excitation to the bearing. An analysis method is developed that effectively eliminates the effects of fluid-flow induced excitation on the estimation of the bearing rotordynamic coefficients, by using power spectral densities. In addition to the theoretical development, the method is verified experimentally by single-frequency testing, and repeatability tests. Results obtained for a bearing are the twelve rotordynamic coefficients (stiffness, damping, and inertia coefficients) as functions of eccentricity ratio, speed, and supply pressure.

  14. Rheological Properties of Cross-Linked Hyaluronan–Gelatin Hydrogels for Tissue Engineering

    PubMed Central

    Vanderhooft, Janssen L.; Alcoutlabi, Mataz; Magda, Jules J.; Prestwich, Glenn D.

    2009-01-01

    Hydrogels that mimic the natural extracellular matrix (ECM) are used in three-dimensional cell culture, cell therapy, and tissue engineering. A semi-synthetic ECM based on cross-linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross-linking density were the main determinants of gel stiffness. Increase in the ratio of thiol-modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component. PMID:18839402

  15. Single molecular force across single integrins dictates cell spreading.

    PubMed

    Chowdhury, Farhan; Li, Isaac T S; Leslie, Benjamin J; Doğanay, Sultan; Singh, Rishi; Wang, Xuefeng; Seong, Jihye; Lee, Sang-Hak; Park, Seongjin; Wang, Ning; Ha, Taekjip

    2015-10-01

    Cells' ability to sense and interpret mechanical signals from the extracellular milieu modulates the degree of cell spreading. Yet how cells detect such signals and activate downstream signaling at the molecular level remain elusive. Herein, we utilize tension gauge tether (TGT) platform to investigate the underlying molecular mechanism of cell spreading. Our data from both differentiated cells of cancerous and non-cancerous origin show that for the same stiff underlying glass substrates and for same ligand density it is the molecular forces across single integrins that ultimately determine cell spreading responses. Furthermore, by decoupling molecular stiffness and molecular tension we demonstrate that molecular stiffness has little influence on cell spreading. Our data provide strong evidence that links molecular forces at the cell-substrate interface to the degree of cell spreading.

  16. Effects of fiber density and plasma modification of nanofibrous membranes on the adhesion and growth of HaCaT keratinocytes.

    PubMed

    Bacakova, Marketa; Lopot, Frantisek; Hadraba, Daniel; Varga, Marian; Zaloudkova, Margit; Stranska, Denisa; Suchy, Tomas; Bacakova, Lucie

    2015-01-01

    It may be possible to regulate the cell colonization of biodegradable polymer nanofibrous membranes by plasma treatment and by the density of the fibers. To test this hypothesis, nanofibrous membranes of different fiber densities were treated by oxygen plasma with a range of plasma power and exposure times. Scanning electron microscopy and mechanical tests showed significant modification of nanofibers after plasma treatment. The intensity of the fiber modification increased with plasma power and exposure time. The exposure time seemed to have a stronger effect on modifying the fiber. The mechanical behavior of the membranes was influenced by the plasma treatment, the fiber density, and their dry or wet state. Plasma treatment increased the membrane stiffness; however, the membranes became more brittle. Wet membranes displayed significantly lower stiffness than dry membranes. X-ray photoelectron spectroscopy (XPS) analysis showed a slight increase in oxygen-containing groups on the membrane surface after plasma treatment. Plasma treatment enhanced the adhesion and growth of HaCaT keratinocytes on nanofibrous membranes. The cells adhered and grew preferentially on membranes of lower fiber densities, probably due to the larger area of void spaces between the fibers. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Crystallization in melts of short, semiflexible hard polymer chains: An interplay of entropies and dimensions

    NASA Astrophysics Data System (ADS)

    Shakirov, T.; Paul, W.

    2018-04-01

    What is the thermodynamic driving force for the crystallization of melts of semiflexible polymers? We try to answer this question by employing stochastic approximation Monte Carlo simulations to obtain the complete thermodynamic equilibrium information for a melt of short, semiflexible polymer chains with purely repulsive nonbonded interactions. The thermodynamics is obtained based on the density of states of our coarse-grained model, which varies by up to 5600 orders of magnitude. We show that our polymer melt undergoes a first-order crystallization transition upon increasing the chain stiffness at fixed density. This crystallization can be understood by the interplay of the maximization of different entropy contributions in different spatial dimensions. At sufficient stiffness and density, the three-dimensional orientational interactions drive the orientational ordering transition, which is accompanied by a two-dimensional translational ordering transition in the plane perpendicular to the chains resulting in a hexagonal crystal structure. While the three-dimensional ordering can be understood in terms of Onsager theory, the two-dimensional transition can be understood in terms of the liquid-hexatic transition of hard disks. Due to the domination of lateral two-dimensional translational entropy over the one-dimensional translational entropy connected with columnar displacements, the chains form a lamellar phase. Based on this physical understanding, orientational ordering and translational ordering should be separable for polymer melts. A phenomenological theory based on this understanding predicts a qualitative phase diagram as a function of volume fraction and stiffness in good agreement with results from the literature.

  18. Materials and structures for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Lisagor, W. Barry; Dixon, Sidney C.

    1988-01-01

    Hypersonic vehicles are envisioned to require, in addition to carbon-carbon and ceramic-matrix composities for leading edges heated to above 2000 F, such 600 to 1800 F operating temperature materials as advanced Ti alloys, nickel aluminides, and metal-matrix composited; These possess the necessary low density and high strength and stiffness. The primary design drivers are maximum vehicle heating rate, total heat load, flight envelope, propulsion system type, mission life requirements and liquid hydrogen containment systems. Attention is presently given to aspects of these materials and structures requiring more intensive development.

  19. Metal- matrix composite processing technologies for aircraft engine applications

    NASA Astrophysics Data System (ADS)

    Pank, D. R.; Jackson, J. J.

    1993-06-01

    Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications be-cause of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechani-cal properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR & D program.

  20. Quark matter at high density based on an extended confined isospin-density-dependent mass model

    NASA Astrophysics Data System (ADS)

    Qauli, A. I.; Sulaksono, A.

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.

  1. Musculotendinous Stiffness of Triceps Surae, Maximal Rate of Force Development, and Vertical Jump Performance

    PubMed Central

    Driss, Tarak; Rouis, Majdi; Jaafar, Hamdi; Vandewalle, Henry

    2015-01-01

    The relationships between ankle plantar flexor musculotendinous stiffness (MTS) and performance in a countermovement vertical jump (CMJ) and maximal rate of torque development (MRTD) were studied in 27 active men. MTS was studied by means of quick releases at 20 (S 0.2), 40 (S 0.4), 60 (S 0.6), and 80% (S 0.8) of maximal voluntary torque (T MVC). CMJ was not correlated with strength indices but was positively correlated with MRTD/BM, S 0.4/BM. The slope α 2 and intercept β 2 of the torque-stiffness relationships from 40 to 80% T MVC were correlated negatively (α 2) and positively (β 2) with CMJ. The different stiffness indices were not correlated with MRTD. The prediction of CMJ was improved by the introduction of MRTD in multiple regressions between CMJ and stiffness. CMJ was also negatively correlated with indices of curvature of the torque-stiffness relationship. The subjects were subdivided in 3 groups in function of CMJ (groups H, M, and L for high, medium, and low performers, resp.). There was a downward curvature of the torque-stiffness relationship at high torques in group H or M and the torque-stiffness regression was linear in group L only. These results suggested that torque-stiffness relationships with a plateau at high torques are more frequent in the best jumpers. PMID:25710026

  2. Mechanical properties in crumple-formed paper derived materials subjected to compression.

    PubMed

    Hanaor, D A H; Flores Johnson, E A; Wang, S; Quach, S; Dela-Torre, K N; Gan, Y; Shen, L

    2017-06-01

    The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8-1.3 g cm -3 , and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications.

  3. Influence of board density, mat construction, and chip type on performance of particleboard made from eastern redcedar

    Treesearch

    Zhiyong Cai; Qinglin Wu; Jong N. Lee; Salim Hiziroglu

    2004-01-01

    The purpose of this study was to investigate mechanical and physical performances of particleboard made from low-value eastern redcedar trees. The properties evaluated included bending strength and stiffness, swelling, surface hardness, and screw holding capacity as a function of processing variables (i.e., density, chip type, and board construction). Two types of...

  4. Aortic root dimension and arterial stiffness in arterial hypertension: the Campania Salute Network.

    PubMed

    Lønnebakken, Mai Tone; Izzo, Raffaele; Mancusi, Costantino; Losi, Maria Angela; Stabile, Eugenio; Rozza, Francesco; Gerdts, Eva; Trimarco, Bruno; de Luca, Nicola; de Simone, Giovanni

    2016-06-01

    The relation between aortic root dimension (ARD) and measures of arterial stiffness is uncertain. Accordingly, we studied the relation between ARD and an estimate of arterial stiffness in 12 392 hypertensive patients (age 53 ± 12 years, 43% women) free of prevalent cardiovascular disease and with ejection fraction at least 50%, from the Campania Salute Network Registry. Echocardiographic ARD was measured and compared with the value predicted by age, sex and height by using a z-score. Arterial stiffness was assessed by the pulse pressure/stroke index. The highest population tertile of pulse pressure/stroke index was considered 'high arterial stiffness'. High arterial stiffness was more common in women than in men (P < 0.001) and associated with older age, diabetes, longer duration of hypertension and less frequent smoking habit (all P less than 0.01). Patients with high arterial stiffness had smaller ARD, higher carotid intima-media thickness and plasma cholesterol, and lower BMI and glomerular filtration rate (all P less than 0.01). In multivariable logistic analysis, high arterial stiffness was associated with both lower ARD z-score [OR 0.83 (95% confidence interval 0.79-0.88)] and higher carotid intima-media thickness [OR 1.36 (95% confidence interval 1.26-1.47); both P less than 0.0001], independent of significant associations with age, female sex, body size, DBP, heart rate, duration of hypertension, diabetes and smoking habit. Small ARD, together with atherosclerotic modifications of conduit arteries, is associated with increased 2-element Windkessel model of arterial stiffness in hypertension, independently of the significant effect of confounders.

  5. Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers

    PubMed Central

    Kriegel, Franziska; Ermann, Niklas; Forbes, Ruaridh; Dulin, David; Dekker, Nynke H.

    2017-01-01

    Abstract The mechanical properties of DNA fundamentally constrain and enable the storage and transmission of genetic information and its use in DNA nanotechnology. Many properties of DNA depend on the ionic environment due to its highly charged backbone. In particular, both theoretical analyses and direct single-molecule experiments have shown its bending stiffness to depend on salt concentration. In contrast, the salt-dependence of the twist stiffness of DNA is much less explored. Here, we employ optimized multiplexed magnetic torque tweezers to study the torsional stiffness of DNA under varying salt conditions as a function of stretching force. At low forces (<3 pN), the effective torsional stiffness is ∼10% smaller for high salt conditions (500 mM NaCl or 10 mM MgCl2) compared to lower salt concentrations (20 mM NaCl and 100 mM NaCl). These differences, however, can be accounted for by taking into account the known salt dependence of the bending stiffness. In addition, the measured high-force (6.5 pN) torsional stiffness values of C = 103 ± 4 nm are identical, within experimental errors, for all tested salt concentration, suggesting that the intrinsic torsional stiffness of DNA does not depend on salt. PMID:28460037

  6. Ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes

    DOE PAGES

    Fellinger, Michael R.; Hector, Louis G.; Trinkle, Dallas R.

    2016-10-28

    Here, we present an efficient methodology for computing solute-induced changes in lattice parameters and elastic stiffness coefficients Cij of single crystals using density functional theory. We also introduce a solute strain misfit tensor that quantifies how solutes change lattice parameters due to the stress they induce in the host crystal. Solutes modify the elastic stiffness coefficients through volumetric changes and by altering chemical bonds. We compute each of these contributions to the elastic stiffness coefficients separately, and verify that their sum agrees with changes in the elastic stiffness coefficients computed directly using fully optimized supercells containing solutes. Computing the twomore » elastic stiffness contributions separately is more computationally efficient and provides more information on solute effects than the direct calculations. We compute the solute dependence of polycrystalline averaged shear and Young's moduli from the solute dependence of the single-crystal Cij. We then apply this methodology to substitutional Al, B, Cu, Mn, Si solutes and octahedral interstitial C and N solutes in bcc Fe. Comparison with experimental data indicates that our approach accurately predicts solute-induced changes in the lattice parameter and elastic coefficients. The computed data can be used to quantify solute-induced changes in mechanical properties such as strength and ductility, and can be incorporated into mesoscale models to improve their predictive capabilities.« less

  7. Textural and sensory properties of trifoliate yam (Dioscorea dumetorum) flour and stiff dough 'amala'.

    PubMed

    Abiodun, O A; Akinoso, R

    2015-05-01

    The use of trifoliate yam (Dioscorea dumetorum) flour for stiff dough 'amala' production is one of the ways to curb under-utilization of the tuber. The study evaluates the textural and sensory properties of trifoliate yam flour and stiff dough. Freshly harvested trifoliate yam tubers were peeled, washed, sliced and blanched (60 (°)C for 10 min). The sliced yam were soaked in water for 12 h, dried and milled into flour. Pasting viscosities, functional properties, brown index and sensory attributes of the flour and stiff dough were analyzed. Peak, holding strength and final viscosities ranged from 84.09 to 213.33 RVU, 81.25 to 157.00 RVU and 127.58 to 236.17 RVU respectively. White raw flour had higher viscosity than the yellow flours. The swelling index, water absorption capacity and bulk density ranged from 1.46 to 2.28, 2.11 to 2.92 ml H2O/g and 0.71 to 0.88 g/cm(3) respectively. Blanching method employed improved the swelling index and water absorption capacity of flour. The brown index values of flour and stiff dough ranged from 6.73 to 18.36 and 14.63-46.72 respectively. Sensory evaluation revealed significant differences in the colour, odour and general acceptability of the product when compared with the stiff dough from white yam.

  8. Fitness as a determinant of arterial stiffness in healthy adult men: a cross-sectional study.

    PubMed

    Chung, Jinwook; Kim, Milyang; Jin, Youngsoo; Kim, Yonghwan; Hong, Jeeyoung

    2018-01-01

    Fitness is known to influence arterial stiffness. This study aimed to assess differences in cardiorespiratory endurance, muscular strength, and flexibility according to arterial stiffness, based on sex and age. We enrolled 1590 healthy adults (men: 1242, women: 348) who were free of metabolic syndrome. We measured cardiorespiratory endurance in an exercise stress test on a treadmill, muscular strength by a grip test, and flexibility by upper body forward-bends from a standing position. The brachial-ankle pulse wave velocity test was performed to measure arterial stiffness before the fitness test. Cluster analysis was performed to divide the patients into groups with low (Cluster 1) and high (Cluster 2) arterial stiffness. According to the k-cluster analysis results, Cluster 1 included 624 men and 180 women, and Cluster 2 included 618 men and 168 women. Men in the middle-aged group with low arterial stiffness demonstrated higher cardiorespiratory endurance, muscular strength, and flexibility than those with high arterial stiffness. Similarly, among men in the old-aged group, the cardiorespiratory endurance and muscular strength, but not flexibility, differed significantly according to arterial stiffness. Women in both clusters showed similar cardiorespiratory endurance, muscular strength, and flexibility regardless of their arterial stiffness. Among healthy adults, arterial stiffness was inversely associated with fitness in men but not in women. Therefore, fitness seems to be a determinant for arterial stiffness in men. Additionally, regular exercise should be recommended for middle-aged men to prevent arterial stiffness.

  9. Magnetic resonance elastography of the lung parenchyma in an in situ porcine model with a noninvasive mechanical driver: correlation of shear stiffness with trans-respiratory system pressures.

    PubMed

    Mariappan, Yogesh K; Kolipaka, Arunark; Manduca, Armando; Hubmayr, Rolf D; Ehman, Richard L; Araoz, Philip; McGee, Kiaran P

    2012-01-01

    Quantification of the mechanical properties of lung parenchyma is an active field of research due to the association of this metric with normal function, disease initiation and progression. A phase contrast MRI-based elasticity imaging technique known as magnetic resonance elastography is being investigated as a method for measuring the shear stiffness of lung parenchyma. Previous experiments performed with small animals using invasive drivers in direct contact with the lungs have indicated that the quantification of lung shear modulus with (1) H based magnetic resonance elastography is feasible. This technique has been extended to an in situ porcine model with a noninvasive mechanical driver placed on the chest wall. This approach was tested to measure the change in parenchymal stiffness as a function of airway opening pressure (P(ao) ) in 10 adult pigs. In all animals, shear stiffness was successfully quantified at four different P(ao) values. Mean (±STD error of mean) pulmonary parenchyma density corrected stiffness values were calculated to be 1.48 (±0.09), 1.68 (±0.10), 2.05 (±0.13), and 2.23 (±0.17) kPa for P(ao) values of 5, 10, 15, and 20 cm H2O, respectively. Shear stiffness increased with increasing P(ao) , in agreement with the literature. It is concluded that in an in situ porcine lung shear stiffness can be quantitated with (1) H magnetic resonance elastography using a noninvasive mechanical driver and that it is feasible to measure the change in shear stiffness due to change in P(ao) . Copyright © 2011 Wiley-Liss, Inc.

  10. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    PubMed

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  11. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures

    PubMed Central

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean

    2017-01-01

    Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574

  12. Collar height and heel counter-stiffness for ankle stability and athletic performance in basketball.

    PubMed

    Liu, Hui; Wu, Zitian; Lam, Wing-Kai

    2017-01-01

    This study examined the effects of collar height and heel counter-stiffness of basketball shoes on ankle stability during sidestep cutting and athletic performance. 15 university basketball players wore customized shoes with different collar heights (high and low) and heel counter-stiffness (regular, stiffer and stiffest) for this study. Ankle stability was evaluated in sidestep cutting while athletic performance evaluated in jumping and agility tasks. All variables were analysed using two-way repeated ANOVA. Results showed shorter time to peak ankle inversion for both high collar and stiff heel counter conditions (P < 0.05), while smaller initial ankle inversion angle, peak inversion velocity and total range of inversion for wearing high collar shoes (P < 0.05). No shoe differences were found for performance variables. These findings imply that the collar height might play a larger role in lateral stability than heel counter-stiffness, while both collar height and counter-stiffness have no effect on athletic performance.

  13. Lattice cluster theory for dense, thin polymer films.

    PubMed

    Freed, Karl F

    2015-04-07

    While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L - 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential "transport" constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends.

  14. Gender-specific association of metabolic syndrome and its components with arterial stiffness in the general Chinese population

    PubMed Central

    Liu, Hongjian; He, Minfu; Wu, Fangyuan; Li, Xuanxuan; Pang, Yingxin; Yang, Xiaodi; Zhou, Ge; Ma, Juan; Liu, Meitian; Gong, Ping; Li, Jinghua; Zhang, Xiumin

    2017-01-01

    Objectives Metabolic syndrome (MS) is considered to be a cluster of interrelated risk factors for metabolism, which may increase arterial stiffness and cardiovascular morbidity. The cardio-ankle vascular index (CAVI) is a reliable indicator of arterial stiffness and early arteriosclerosis. The main objective of this study is to evaluate the gender-specific relationship between MS and CAVI in the general Chinese population. Methods A total of 1,301 subjects aged 20 to 60 years participated in this study. CAVI was measured noninvasively using a Vasera VS-1000 device. Blood samples and waist circumference were examined to identify metabolic syndrome according to the criteria set forth in the 2009 Joint Scientific Statement. Results The prevalence of MS in the study subjects was 17.4% (30.7% in males and 7.0% in females, P < 0.001). CAVI values were significantly higher in MS subjects than in non-MS subjects and increased linearly as the number of MS components increased in females, but not in males. Using multiple regression analysis, we found that BMI was correlated with CAVI in the overall population and in both genders, and that high-density lipoprotein cholesterol (HDL-C) was associated with CAVI in males, while the number of MS components was related to CAVI in females. CAVI values increased linearly with age in both genders (P-trend < 0.001 for both), and this correlation was stronger in males than in females. Conclusions There are gender-specific differences in the association of MS and CAVI. First, the effects of the number of MS components on CAVI are stronger in females than in males. Second, the effect of each MS component on arterial stiffness may differ in relation to gender. In addition, aging affects arterial stiffness more severely in males, and the increase in arterial stiffness tends to occur at a younger age in males than in females. Larger samples and longitudinal studies are needed to further confirm our results in the future. PMID:29073198

  15. Serum lipid level and lifestyles are associated with carotid femoral pulse wave velocity among adults: 4.4-year prospectively longitudinal follow-up of a clinical trial.

    PubMed

    Zhao, XiaoXiao; Wang, Hongyu; Bo, LiuJin; Zhao, Hongwei; Li, Lihong; Zhou, Yingyan

    2018-01-01

    Lifestyle modifications are recommended as the initial treatment for high blood pressure. The influence of dyslipidemia might be via moderate arterial stiffness, which results in hypertension and cardiovascular disease. We used data from a subgroup of the lifestyle, level of serum lipids/carotid femoral-pulse wave velocity (CF-PWV) Susceptibility BEST Study, a population-based study of community-dwelling adults aged 45-75 years. The serum lipid level and CF-PWV were measured at baseline, and lifestyle such as smoking status, sleeping habits, and the level of oil or salt intake was determined with the use of a validated questionnaire during follow-up. Arterial stiffness was determined as CF-PWV using an electrocardiogram after a mean follow-up of 4.4 years. Regression coefficients (95% CIs), adjusted for demographics, risk factors, cholesterol, and triglycerides (TGs), were calculated by linear regression. Logistic regression analysis was used to identify the association between the variables with CF-PWV independently. In the results, glucose and total cholesterol (TC) were associated with higher CF-PWV (p = 0.000) and lower-destiny lipoprotein was associated with lower CF-PWV (p = 0.001) after adjustments for age, sex, mean arterial pressure, and heart rate. There were significant associations observed for current salt intake in relation to CF-PWV (p-trend = 0.038) without adjustment. This association was retained after adjustments for covariates and had statistical significance (p-trend = 0.048) in model 3, which adjusted age, sex, baseline CF-PWV, mean arterial pressure, heart rate waist circumference, education, smoking status, physical activity, diabetes mellitus (DM), heart disease, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, TGs, antihypertensive medicine, nitrate medicine, and antiplatelet medicine. Linear regression showed statistically significant associations between LDL and CF-PWV in the fully adjusted models (model 1 p = 0.010, model 2 p = 0.020, model 3 p = 0.017). Logistic regression analysis showed that CF-PWV was independently associated with age (p = 0.000), TC (p = 0.000), TGs (p = 0.000), and homo-cysteine (p = 0.000), and their odds ratios were 0.781, 3.424, 0.075, and 1.046, respectively. Our results showed a positive association between LDL and arterial stiffness, and suggested that less smoking status, sleeping disorder, and salt intake were associated with less arterial stiffness.

  16. Elastic deformation and energy loss of flapping fly wings.

    PubMed

    Lehmann, Fritz-Olaf; Gorb, Stanislav; Nasir, Nazri; Schützner, Peter

    2011-09-01

    During flight, the wings of many insects undergo considerable shape changes in spanwise and chordwise directions. We determined the origin of spanwise wing deformation by combining measurements on segmental wing stiffness of the blowfly Calliphora vicina in the ventral and dorsal directions with numerical modelling of instantaneous aerodynamic and inertial forces within the stroke cycle using a two-dimensional unsteady blade elementary approach. We completed this approach by an experimental study on the wing's rotational axis during stroke reversal. The wing's local flexural stiffness ranges from 30 to 40 nN m(2) near the root, whereas the distal wing parts are highly compliant (0.6 to 2.2 nN m(2)). Local bending moments during wing flapping peak near the wing root at the beginning of each half stroke due to both aerodynamic and inertial forces, producing a maximum wing tip deflection of up to 46 deg. Blowfly wings store up to 2.30 μJ elastic potential energy that converts into a mean wing deformation power of 27.3 μW. This value equates to approximately 5.9 and 2.3% of the inertial and aerodynamic power requirements for flight in this animal, respectively. Wing elasticity measurements suggest that approximately 20% or 0.46 μJ of elastic potential energy cannot be recovered within each half stroke. Local strain energy increases from tip to root, matching the distribution of the wing's elastic protein resilin, whereas local strain energy density varies little in the spanwise direction. This study demonstrates a source of mechanical energy loss in fly flight owing to spanwise wing bending at the stroke reversals, even in cases in which aerodynamic power exceeds inertial power. Despite lower stiffness estimates, our findings are widely consistent with previous stiffness measurements on insect wings but highlight the relationship between local flexural stiffness, wing deformation power and energy expenditure in flapping insect wings.

  17. Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy.

    PubMed

    Cartagena, Alexander; Hernando-Pérez, Mercedes; Carrascosa, José L; de Pablo, Pedro J; Raman, Arvind

    2013-06-07

    Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the study of structure-property-function relationships. We present an in vitro dynamic AFM technique operating in the intermittent contact regime which synthesizes anharmonic Lorentz-force excited AFM cantilevers to map quantitatively at nanometer resolution the local electro-mechanical force gradient, adhesion, and hydration layer viscosity within individual φ29 virions. Furthermore, the changes in material properties over the entire φ29 virion provoked by the local disruption of its shell are studied, providing evidence of bacteriophage depressurization. The technique significantly generalizes recent multi-harmonic theory (A. Raman, et al., Nat. Nanotechnol., 2011, 6, 809-814) and enables high-resolution in vitro quantitative mapping of multiple material properties within weakly bonded viruses and nanoparticles with complex structure that otherwise cannot be observed using standard AFM techniques.

  18. Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting

    PubMed Central

    Murr, Lawrence E.; Gaytan, Sara M.; Martinez, Edwin; Medina, Frank; Wicker, Ryan B.

    2012-01-01

    This paper presents some examples of knee and hip implant components containing porous structures and fabricated in monolithic forms utilizing electron beam melting (EBM). In addition, utilizing stiffness or relative stiffness versus relative density design plots for open-cellular structures (mesh and foam components) of Ti-6Al-4V and Co-29Cr-6Mo alloy fabricated by EBM, it is demonstrated that stiffness-compatible implants can be fabricated for optimal stress shielding for bone regimes as well as bone cell ingrowth. Implications for the fabrication of patient-specific, monolithic, multifunctional orthopaedic implants using EBM are described along with microstructures and mechanical properties characteristic of both Ti-6Al-4V and Co-29Cr-6Mo alloy prototypes, including both solid and open-cellular prototypes manufactured by additive manufacturing (AM) using EBM. PMID:22956957

  19. In situ imaging during compression of plastic bonded explosives for damage modeling

    DOE PAGES

    Manner, Virginia Warren; Yeager, John David; Patterson, Brian M.; ...

    2017-06-10

    Here, the microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowingmore » for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.« less

  20. In situ imaging during compression of plastic bonded explosives for damage modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manner, Virginia Warren; Yeager, John David; Patterson, Brian M.

    Here, the microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowingmore » for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.« less

  1. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling.

    PubMed

    Manner, Virginia W; Yeager, John D; Patterson, Brian M; Walters, David J; Stull, Jamie A; Cordes, Nikolaus L; Luscher, Darby J; Henderson, Kevin C; Schmalzer, Andrew M; Tappan, Bryce C

    2017-06-10

    The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.

  2. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling

    PubMed Central

    Manner, Virginia W.; Yeager, John D.; Patterson, Brian M.; Walters, David J.; Stull, Jamie A.; Cordes, Nikolaus L.; Luscher, Darby J.; Henderson, Kevin C.; Schmalzer, Andrew M.; Tappan, Bryce C.

    2017-01-01

    The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination. PMID:28772998

  3. Embedded-monolith armor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  4. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  5. Optimum 3D Matrix Stiffness for Maintenance of Cancer Stem Cells Is Dependent on Tissue Origin of Cancer Cells

    PubMed Central

    Jabbari, Esmaiel; Sarvestani, Samaneh K.; Daneshian, Leily; Moeinzadeh, Seyedsina

    2015-01-01

    Introduction The growth and expression of cancer stem cells (CSCs) depend on many factors in the tumor microenvironment. The objective of this work was to investigate the effect of cancer cells’ tissue origin on the optimum matrix stiffness for CSC growth and marker expression in a model polyethylene glycol diacrylate (PEGDA) hydrogel without the interference of other factors in the microenvironment. Methods Human MCF7 and MDA-MB-231 breast carcinoma, HCT116 colorectal and AGS gastric carcinoma, and U2OS osteosarcoma cells were used. The cells were encapsulated in PEGDA gels with compressive moduli in the 2-70 kPa range and optimized cell seeding density of 0.6x106 cells/mL. Micropatterning was used to optimize the growth of encapsulated cells with respect to average tumorsphere size. The CSC sub-population of the encapsulated cells was characterized by cell number, tumorsphere size and number density, and mRNA expression of CSC markers. Results The optimum matrix stiffness for growth and marker expression of CSC sub-population of cancer cells was 5 kPa for breast MCF7 and MDA231, 25 kPa for colorectal HCT116 and gastric AGS, and 50 kPa for bone U2OS cells. Conjugation of a CD44 binding peptide to the gel stopped tumorsphere formation by cancer cells from different tissue origin. The expression of YAP/TAZ transcription factors by the encapsulated cancer cells was highest at the optimum stiffness indicating a link between the Hippo transducers and CSC growth. The optimum average tumorsphere size for CSC growth and marker expression was 50 μm. Conclusion The marker expression results suggest that the CSC sub-population of cancer cells resides within a niche with optimum stiffness which depends on the cancer cells’ tissue origin. PMID:26168187

  6. Relation of the aortic stiffness with the GRACE risk score in patients with the non ST-segment elevation myocardial infarction

    PubMed Central

    Omer, Gedikli; Gokhan, Aksan; Adem, Uzun; Sabri, Demircan; Korhan, Soylu

    2014-01-01

    Background: Current guidelines recommend clinical risk scoring systems for the patients diagnosed and determinated treatment strategy with in Non-ST-elevation elevation myocardial infarction (NSTEMI). Previous studies demonstrated association between aortic elasticity properties, stiffness and severity CAD. However, the associations between Aortic stiffness, elasticity properties and clinical risk scores have not been investigated. In the present study we have evaluated the relation between the Global Registry of Acute Coronary Events (GRACE) risk score and aortic stiffness in patients with NSTEMI. Method: We prospectively analyzed 87 consecutive patients with NSTEMI. Aortic elastic parameter and stiffness parameter were calculated from the echocardiographically derived thoracic aortic diameters (mm/m2), and the measurement of pulse pressure obtained by cuff sphygmomanometry. We have categorized the patients in to two groups as low ((n = 45) (GRACE risk score ≤ 140)) and high ((n = 42) (GRACE risk score > 140)) risk group according to GRACE risk score and compare the both groups. Results: Table 1 shows baseline characteristics of patients. Our study showed that Aortic strain was significantly low (3.5 ± 1.4, 7.9 ± 2.3 respectively, p < 0.001) and aortic stiffness index was significantly high (3.9 ± 0.38; 3 ± 0.35, respectively, p < 0.001) in the high risk group values compared to those with low risk group. The aortic stiffness index was the only independent predictor of GRACE risk score (OR: 119.390; 95% CI: 2.925-4872.8; p = 0.011) in multivariate analysis. Conclusion: We found a significant correlation between aortic stiffness, impaired elasticity and GRACE risk score. Aortic stiffness index was the only independent variable of the high GRACE risk score. The inclusion of aortic stiffness into the GRACE risk score could allow improved risk classification of patients with ACS at admission and this may be important in the diagnosis, follow up and treatment of the patients. PMID:25356178

  7. Relation of the aortic stiffness with the GRACE risk score in patients with the non ST-segment elevation myocardial infarction.

    PubMed

    Omer, Gedikli; Gokhan, Aksan; Adem, Uzun; Sabri, Demircan; Korhan, Soylu

    2014-01-01

    Current guidelines recommend clinical risk scoring systems for the patients diagnosed and determinated treatment strategy with in Non-ST-elevation elevation myocardial infarction (NSTEMI). Previous studies demonstrated association between aortic elasticity properties, stiffness and severity CAD. However, the associations between Aortic stiffness, elasticity properties and clinical risk scores have not been investigated. In the present study we have evaluated the relation between the Global Registry of Acute Coronary Events (GRACE) risk score and aortic stiffness in patients with NSTEMI. We prospectively analyzed 87 consecutive patients with NSTEMI. Aortic elastic parameter and stiffness parameter were calculated from the echocardiographically derived thoracic aortic diameters (mm/m(2)), and the measurement of pulse pressure obtained by cuff sphygmomanometry. We have categorized the patients in to two groups as low ((n = 45) (GRACE risk score ≤ 140)) and high ((n = 42) (GRACE risk score > 140)) risk group according to GRACE risk score and compare the both groups. Table 1 shows baseline characteristics of patients. Our study showed that Aortic strain was significantly low (3.5 ± 1.4, 7.9 ± 2.3 respectively, p < 0.001) and aortic stiffness index was significantly high (3.9 ± 0.38; 3 ± 0.35, respectively, p < 0.001) in the high risk group values compared to those with low risk group. The aortic stiffness index was the only independent predictor of GRACE risk score (OR: 119.390; 95% CI: 2.925-4872.8; p = 0.011) in multivariate analysis. We found a significant correlation between aortic stiffness, impaired elasticity and GRACE risk score. Aortic stiffness index was the only independent variable of the high GRACE risk score. The inclusion of aortic stiffness into the GRACE risk score could allow improved risk classification of patients with ACS at admission and this may be important in the diagnosis, follow up and treatment of the patients.

  8. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.

    PubMed

    Kohn, Julie C; Azar, Julian; Seta, Francesca; Reinhart-King, Cynthia A

    2018-03-01

    Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.

  9. Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers.

    PubMed

    Kriegel, Franziska; Ermann, Niklas; Forbes, Ruaridh; Dulin, David; Dekker, Nynke H; Lipfert, Jan

    2017-06-02

    The mechanical properties of DNA fundamentally constrain and enable the storage and transmission of genetic information and its use in DNA nanotechnology. Many properties of DNA depend on the ionic environment due to its highly charged backbone. In particular, both theoretical analyses and direct single-molecule experiments have shown its bending stiffness to depend on salt concentration. In contrast, the salt-dependence of the twist stiffness of DNA is much less explored. Here, we employ optimized multiplexed magnetic torque tweezers to study the torsional stiffness of DNA under varying salt conditions as a function of stretching force. At low forces (<3 pN), the effective torsional stiffness is ∼10% smaller for high salt conditions (500 mM NaCl or 10 mM MgCl2) compared to lower salt concentrations (20 mM NaCl and 100 mM NaCl). These differences, however, can be accounted for by taking into account the known salt dependence of the bending stiffness. In addition, the measured high-force (6.5 pN) torsional stiffness values of C = 103 ± 4 nm are identical, within experimental errors, for all tested salt concentration, suggesting that the intrinsic torsional stiffness of DNA does not depend on salt. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Association of metabolic syndrome and its components with arterial stiffness in Caucasian subjects of the MARK study: a cross-sectional trial.

    PubMed

    Gomez-Sanchez, Leticia; Garcia-Ortiz, Luis; Patino-Alonso, M Carmen; Recio-Rodriguez, Jose I; Fernando, Rigo; Marti, Ruth; Agudo-Conde, Cristina; Rodriguez-Sanchez, Emiliano; Maderuelo-Fernandez, Jose A; Ramos, Rafel; Gomez-Marcos, Manuel A

    2016-10-24

    The cardio-ankle vascular index (CAVI) and brachial-ankle pulse wave velocity (baPWV) can reflect both central and peripheral arterial stiffness. Metabolic syndrome (MetS) and its components may increase arterial stiffness and the risk of cardiovascular diseases. However, the correlation of MetS and its components with arterial stiffness is still not clear. The primary aim of this study is thus the relationship using baPWV and CAVI in Caucasian adults with intermediate cardiovascular risk. The secondary aim is to analyze sex differences. This study analyzed 2351 subjects aged 35-74 years (mean, 61.4 ± 7.7 years) comprising 61.7 % males and enrolled in the improving interMediAte Risk management (MARK) study. CAVI was measured using a VaSera VS-1500 ® device, and baPWV was calculated using a validated equation. MetS was defined based on the Joint Scientific Statement National Cholesterol Education Program III. Waist circumference, blood pressure, fasting plasma glucose, and lipid profile were measured. MetS was found in 51.9 % of the subjects. All MetS components except reduced HDL-cholesterol (p = 0.578) were associated with CAVI. High density lipoprotein cholesterol (p = 0.075) and waist circumference (p = 0.315) were associated with baPWV. The different MetS components that assess dyslipidemia using the stiffness measures show different associations according to patient sex. The high blood pressure component had a greater odds ratio (OR) for both baPWV ≥ 17.5 m/sec (OR = 6.90, 95 % CI 3.52-13.519) and CAVI ≥ 9 (OR = 2.20, 95 % CI 1.63-1.90). MetS and all its components (except HDL-cholesterol with baPWV and CAVI and WC with baPWV) were associated with baPWV and CAVI. However, there were sex differences in the association of MetS and its components with baPWV and CAVI. Data from this study suggest a greater association of CAVI and baPWV values with MetS components in males than in females and indicate greater arterial stiffness in the event of simultaneously elevated blood pressure, fasting plasma glucose, and waist circumference. Trial Registration Clinical Trials.gov Identifier: https://clinicaltrials.gov/ct2/show/ NCT01428934. Registered 2 September 2011. Last updated September 8, 2016.

  11. Finite element analysis of the axial stiffness of a ball screw

    NASA Astrophysics Data System (ADS)

    Zhou, L.-X.; Li, P.-Y.

    2018-06-01

    The ball screw was developed for high speed and high precision operation; therefore, increasingly greater demands have been placed on the stiffness of the ball screw. Firstly, ANSYS software was used to compare the axial stiffness of a single-nut and single-arc ball screw and a single-nut and double-arc ball screw when the spiral angle is not considered. On this basis, the model of a single-nut ball screw was established taking into consideration the spiral lead angle, and then the variations in displacement and stiffness when the ball screw pair was subjected to an axial force were determined. The axial contact stiffness of the double-nut ball screw pair, subject to a pre-tightening force, was analyzed, according to the above-mentioned steps. The simulation results demonstrated that under the same working conditions, the stiffness of the double-arc ball screw was larger by between 5∼100 N/um than that of the single-arc ball screw. The spiral lead angle increased the axial stiffness of the ball screw pair, and the axial stiffness of the double-nut ball screw pair subject to a pre-tightening force was larger by between 790∼1360 N/um than that of the axial stiffness of the single-nut ball screw pair.

  12. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density.

    PubMed

    Feng, Yiyu; Qin, Mengmeng; Guo, Haiqiang; Yoshino, Katsumi; Feng, Wei

    2013-11-13

    Optically actuated shape recovery materials receive much interest because of their great ability to control the creation of mechanical motion remotely and precisely. An infrared (IR) triggered actuator based on shape recovery was fabricated using polyurethane (TPU) incorporated by sulfonated reduced graphene oxide (SRGO)/sulfonated carbon nanotube (SCNT) hybrid nanofillers. Interconnected SRGO/SCNT hybrid nanofillers at a low weight loading of 1% dispersed in TPU showed good IR absorption and improved the crystallization of soft segments for a large shape deformation. The output force, energy density and recovery time of IR-triggered actuators were dependent on weight ratios of SRGO to SCNT (SRGO:SCNT). TPU nanocomposites filled by a hybrid nanofiller with SRGO:SCNT of 3:1 showed the maximum IR-actuated stress recovery of lifting a 107.6 g weight up 4.7 cm in 18 s. The stress recovery delivered a high energy density of 0.63 J/g and shape recovery force up to 1.2 MPa due to high thermal conductivity (1.473 W/mK) and Young's modulus of 23.4 MPa. Results indicate that a trade-off between the stiffness and efficient heat transfer controlled by synergistic effect between SRGO and SCNT is critical for high mechanical power output of IR-triggered actuators. IR-actuated shape recovery of SRGO/SCNT/TPU nanocomposites combining high energy density and output forces can be further developed for advanced optomechanical systems.

  13. Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip

    PubMed Central

    Dragomir-Daescu, Dan; Buijs, Jorn Op Den; McEligot, Sean; Dai, Yifei; Entwistle, Rachel C.; Salas, Christina; Melton, L. Joseph; Bennet, Kevin E.; Khosla, Sundeep; Amin, Shreyasee

    2013-01-01

    Clinical implementation of quantitative computed tomography-based finite element analysis (QCT/FEA) of proximal femur stiffness and strength to assess the likelihood of proximal femur (hip) fractures requires a unified modeling procedure, consistency in predicting bone mechanical properties, and validation with realistic test data that represent typical hip fractures, specifically, a sideways fall on the hip. We, therefore, used two sets (n = 9, each) of cadaveric femora with bone densities varying from normal to osteoporotic to build, refine, and validate a new class of QCT/FEA models for hip fracture under loading conditions that simulate a sideways fall on the hip. Convergence requirements of finite element models of the first set of femora led to the creation of a new meshing strategy and a robust process to model proximal femur geometry and material properties from QCT images. We used a second set of femora to cross-validate the model parameters derived from the first set. Refined models were validated experimentally by fracturing femora using specially designed fixtures, load cells, and high speed video capture. CT image reconstructions of fractured femora were created to classify the fractures. The predicted stiffness (cross-validation R2 = 0.87), fracture load (cross-validation R2 = 0.85), and fracture patterns (83% agreement) correlated well with experimental data. PMID:21052839

  14. β -B i2O3 under compression: Optical and elastic properties and electron density topology analysis

    NASA Astrophysics Data System (ADS)

    Pereira, A. L. J.; Gomis, O.; Sans, J. A.; Contreras-García, J.; Manjón, F. J.; Rodríguez-Hernández, P.; Muñoz, A.; Beltrán, A.

    2016-06-01

    We report a joint experimental and theoretical study of the optical properties of tetragonal bismuth oxide (β -B i2O3 ) at high pressure by means of optical absorption measurements combined with ab initio electronic band structure calculations. Our results are consistent with previous results that show the presence of a second-order isostructural phase transition in B i2O3 (from β to β') around 2 GPa and a phase transition above 15 GPa combined with a pressure-induced amorphization above 17-20 GPa. In order to further understand the pressure-induced phase transitions and amorphization occurring in β -B i2O3 , we theoretically studied the mechanical and dynamical stability of the tetragonal structures of β - and β'-B i2O3 at high pressure through calculations of their elastic constants, elastic stiffness coefficients, and phonon dispersion curves. The pressure dependence of the elastic stiffness coefficients and phonon dispersion curves confirms that the isostructural phase transition near 2 GPa is of ferroelastic nature. Furthermore, a topological study of the electron density shows that the ferroelastic transition is not caused by a change in number of critical points (cusp catastrophe), but by the equalization of the electron densities of both independent O atoms in the unit cell due to a local rise in symmetry. Finally, from theoretical simulations, β'-B i2O3 is found to be mechanically and dynamically stable at least up to 26.7 GPa under hydrostatic conditions; thus, the pressure-induced amorphization reported above 17-20 GPa in powder β'-B i2O3 using methanol-ethanol-water as pressure-transmitting medium could be related to the frustration of a reconstructive phase transition at room temperature and the presence of mechanical or dynamical instabilities under nonhydrostatic conditions.

  15. Pressure sensor for high-temperature liquids

    DOEpatents

    Forster, George A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

  16. Reduced mechanical load decreases the density, stiffness, and strength of cancellous bone of the mandibular condyle.

    PubMed

    Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J

    2003-05-01

    To investigate the influence of decreased mechanical loading on the density and mechanical properties of the cancellous bone of the human mandibular condyle. Destructive compressive mechanical tests were performed on cancellous bone specimens.Background. Reduced masticatory function in edentate people leads to a reduction of forces acting on the mandible. As bone reacts to its mechanical environment a change in its material properties can be expected. Cylindrical bone specimens were obtained from dentate and edentate embalmed cadavers. Mechanical parameters were determined in the axial and in the transverse directions. Subsequently, density parameters were determined according to a method based on Archimedes' principle. The apparent density and volume fraction of the bone were about 18% lower in the edentate group; no age-related effect on density was found. The decrease of bone in the edentate group was associated with a lower stiffness and strength (about 22% and 28%, respectively). The ultimate strain, however, did not differ between the two groups. Both groups had similar mechanical anisotropy; in axial loading the bone was stiffer and stronger than in transverse loading. Reduced mechanical load had affected the density and herewith the mechanical properties of condylar cancellous bone, but not its anisotropy. The change in material properties of the cancellous bone after loss of teeth indicate that the mandibular condyle is sensitive for changes in its mechanical environment. Therefore, changes in mechanical loading of the condyle have to be accounted for in surgical procedures of the mandible.

  17. Open-Cellular Co-Base and Ni-Base Superalloys Fabricated by Electron Beam Melting

    PubMed Central

    Murr, Lawrence; Li, Shujun; Tian, Yuxing; Amato, Krista; Martinez, Edwin; Medina, Frank

    2011-01-01

    Reticulated mesh samples of Co-29Cr-6Mo alloy and Ni-21Cr-9Mo-4Nb alloy (625) and stochastic foam samples of Co-29Cr-6Mo alloy fabricated by electron beam melting were characterized by optical metallography, and the dynamic stiffness (Young’s modulus) was measured by resonant frequency analysis. The relative stiffness (E/Es) versus relative density (ρ/ρs) plotted on a log-log basis resulted in a fitted straight line with a slope n ≅ 2, consistent with that for ideal open cellular materials. PMID:28879949

  18. Tuning micropillar tapering for optimal friction performance of thermoplastic gecko-inspired adhesive.

    PubMed

    Kim, Yongkwan; Chung, Yunsie; Tsao, Angela; Maboudian, Roya

    2014-05-14

    We present a fabrication method and friction testing of a gecko-inspired thermoplastic micropillar array with control over the tapering angle of the pillar sidewall. A combination of deep reactive ion etching of vertical silicon pillars and subsequent maskless chemical etching produces templates with various widths and degrees of taper, which are then replicated with low-density polyethylene. As the silicon pillars on the template are chemically etched in a bath consisting of hydrofluoric acid, nitric acid, and acetic acid (HNA), the pillars are progressively thinned, then shortened. The replicated polyethylene pillar arrays exhibit a corresponding increase in friction as the stiffness is reduced with thinning and then a decrease in friction as the stiffness is again increased. The dilution of the HNA bath in water influences the tapering angle of the silicon pillars. The friction of the replicated pillars is maximized for the taper angle that maximizes the contact area at the tip which in turn is influenced by the stiffness of the tapered pillars. To provide insights on how changes in microscale geometry and contact behavior may affect friction of the pillar array, the pillars are imaged by scanning electron microscopy after friction testing, and the observed deformation behavior from shearing is related to the magnitude of the macroscale friction values. It is shown that the tapering angle critically changes the pillar compliance and the available contact area. Simple finite element modeling calculations are performed to support that the observed deformation is consistent with what is expected from a mechanical analysis. We conclude that friction can be maximized via proper pillar tapering with low stiffness that still maintains enough contact area to ensure high adhesion.

  19. Metabolic Predictors of Change in Vascular Function: Prospective Associations From a Community-Based Cohort.

    PubMed

    Zachariah, Justin P; Rong, Jian; Larson, Martin G; Hamburg, Naomi M; Benjamin, Emelia J; Vasan, Ramachandran S; Mitchell, Gary F

    2018-02-01

    Vascular function varies with age because of physiological and pathological factors. We examined relations of longitudinal change in vascular function with change in metabolic traits. Longitudinal changes in vascular function and metabolic traits were examined in 5779 participants (mean age, 49.8±14.5 years; 54% women) who attended sequential examinations of the Framingham Offspring, Third Generation, and Omni-1 and Omni-2 cohorts. Multivariable regression analysis related changes in vascular measures (dependent variables), including carotid-femoral pulse wave velocity (CFPWV), forward pressure wave amplitude, characteristic impedance, central pulse pressure, and mean arterial pressure (MAP), with change in body mass index, fasting total:high-density lipoprotein cholesterol ratio, serum triglycerides, and blood glucose. Analyses accounted for baseline value of each vascular and metabolic measure, MAP change, and multiple comparisons. On follow-up (mean, 5.9±0.6 years), aortic stiffness (CFPWV, 0.2±1.6 m/s), and pressure pulsatility (forward pressure wave, 1.2±12.4 mm Hg; characteristic impedance, 23±73 dyne×sec/cm 5 ; central pulse pressure, 2.6±14.7 mm Hg; all P <0.0001) increased, whereas MAP fell (-3±10 mm Hg; P <0.0001). Worsening of each metabolic trait was associated with increases in CFPWV and MAP ( P <0.0001 for all associations) and an increase in MAP was associated with an increase in CFPWV. Overall, worsening metabolic traits were associated with worsening aortic stiffness and MAP. Opposite net change in aortic stiffness and MAP suggests that factors other than distending pressure contributed to the observed increase in aortic stiffness. Change in metabolic traits explained a greater proportion of the change in CFPWV and MAP than baseline metabolic values. © 2017 American Heart Association, Inc.

  20. An infinitely-stiff elastic system via a tuned negative-stiffness component stabilized by rotation-produced gyroscopic forces

    NASA Astrophysics Data System (ADS)

    Kochmann, D. M.; Drugan, W. J.

    2016-06-01

    An elastic system containing a negative-stiffness element tuned to produce positive-infinite system stiffness, although statically unstable as is any such elastic system if unconstrained, is proved to be stabilized by rotation-produced gyroscopic forces at sufficiently high rotation rates. This is accomplished in possibly the simplest model of a composite structure (or solid) containing a negative-stiffness component that exhibits all these features, facilitating a conceptually and mathematically transparent, completely closed-form analysis.

  1. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology

    PubMed Central

    Choi, Se Woon; Kim, Ill Soo; Park, Jae Hwan; Kim, Yousok; Sohn, Hong Gyoo; Park, Hyo Seon

    2013-01-01

    The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS). To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements. PMID:24233025

  2. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  3. Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

    PubMed Central

    Sakanaka, Tania E.; Lakie, Martin

    2016-01-01

    Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (<0.6 deg; 140 ms) at the same time as the resulting torque response was recorded. The results show that increasing sway reduces ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0.1 vs. 0.6 deg). Furthermore, torque responses exhibited a biphasic pattern, consisting of an initial steep rise followed by a shallower increase. This transition occurred earlier during increased levels of ankle sway. These results are consistent with a movement‐dependent change in passive ankle stiffness caused by thixotropic properties of the calf muscle. The consequence is to place increased reliance upon active neural control during times when increased sway renders ankle stiffness low. PMID:26607292

  4. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  5. Determination of Oriented Strandboard properties from a three-dimensional density distribution using the finite element method

    NASA Astrophysics Data System (ADS)

    Tackie, Alan Derek Nii

    Computer modeling of Oriented Strand Board (OSB) properties has gained widespread attention with numerous models created to better understand OBS behavior. Recent models allow researchers to observe multiple variables such as changes in moisture content, density and resin effects on panel performance. Thickness-swell variation influences panel durability and often has adverse effects on a structural panel's bending stiffness. The prediction of out-of-plane swell under changing moisture conditions was, therefore, the essence for developing a model in this research. The finite element model accounted for both vertical and horizontal density variations, the three-dimensional (3D) density variation of the board. The density variation, resulting from manufacturing processes, affects the uniformity of thickness-swell in OSB and is often exacerbated by continuous sorption of moisture that leads to potentially damaging internal stresses in the panel. The overall thickness-swell (the cumulative swell from non-uniform horizontal density profile, panel swell from free water, and spring-back from panel compression) was addressed through the finite element model in this research. The pursued goals in this study were, first and foremost, the development of a robust and comprehensive finite element model which integrated several component studies to investigate the effects of moisture variation on the out-of-plane thickness-swell of OSB panels, and second, the extension of the developed model to predict panel stiffness. It is hoped that this paper will encourage researchers to adopt the 3D density distribution approach as a viable approach to analyzing the physical and mechanical properties of OSB.

  6. Primary Hyperparathyroidism is Associated with Abnormal Cortical and Trabecular Microstructure and Reduced Bone Stiffness in Postmenopausal Women

    PubMed Central

    Stein, Emily M; Silva, Barbara C; Boutroy, Stephanie; Zhou, Bin; Wang, Ji; Udesky, Julia; Zhang, Chiyuan; McMahon, Donald J; Romano, Megan; Dworakowski, Elzbieta; Costa, Aline G.; Cusano, Natalie; Irani, Dinaz; Cremers, Serge; Shane, Elizabeth; Guo, X Edward; Bilezikian, John P

    2013-01-01

    Typically, in the milder form of primary hyperparathyroidism (PHPT), seen in most countries now, bone density by DXA and detailed analyses of iliac crest bone biopsies by histomorphometry and µCT show detrimental effects in cortical bone, whereas the trabecular site (lumbar spine by DXA) and the trabecular compartment (by bone biopsy) appear to be relatively well preserved. Despite these findings, fracture risk at both vertebral and non-vertebral sites is increased in PHPT. Emerging technologies, such as high-resolution peripheral quantitative computed tomography (HRpQCT), may provide additional insight into microstructural features at sites such as the forearm and tibia that have heretofore not been easily accessible. Using HRpQCT, we determined cortical and trabecular microstructure at the radius and tibia in 51 postmenopausal women with PHPT and 120 controls. Individual trabecula segmentation (ITS) and micro finite element (µFE) analyses of the HRpQCT images were also performed to further understand how the abnormalities seen by HRpQCT might translate into effects on bone strength. Women with PHPT showed, at both sites, decreased volumetric densities at trabecular and cortical compartments, thinner cortices, and more widely spaced and heterogeneously distributed trabeculae. At the radius, trabeculae were thinner and fewer in PHPT. The radius was affected to a greater extent in the trabecular compartment than the tibia. ITS analyses revealed, at both sites, that plate-like trabeculae were depleted, with a resultant reduction in the plate/rod ratio. Microarchitectural abnormalities were evident by decreased plate-rod and plate-plate junctions at the radius and tibia, and rod-rod junctions at the radius. These trabecular and cortical abnormalities resulted in decreased whole bone stiffness and trabecular stiffness. These results provide evidence that in PHPT, microstructural abnormalities are pervasive and not limited to the cortical compartment. They may help to account for increased global fracture risk in PHPT. PMID:23225022

  7. Contributions to Leg Stiffness in High- Compared with Low-Arched Athletes.

    PubMed

    Powell, Douglas W; Paquette, Max R; Williams, D S Blaise

    2017-08-01

    High-arched (HA) athletes exhibit greater lower extremity stiffness during functional tasks than low-arched (LA) athletes. The contributions of skeletal and muscular structures to stiffness may underlie the distinct injury patterns observed in these athletes. The purpose of this study was to compare skeletal and muscular contributions to leg stiffness in HA and LA athletes during running and landing tasks. Ten HA and 10 LA female athletes performed five overground running trials at a self-selected pace and five step off bilateral landing trials from a height of 30 cm. Three-dimensional kinematics and kinetics were collected using a motion capture system and a force platform. Leg stiffness and its skeletal and muscular contributions were calculated. Independent t-tests were used to compare variable means between arch type groups and Cohen's d were computed to assess effect sizes of mean differences. In running, HA athletes had greater leg stiffness (P = 0.010, d = 1.03) and skeletal stiffness (P = 0.016, d = 0.81), although there are no differences in muscular stiffness (P = 0.134). During landing, HA had greater leg stiffness (P = 0.015, d = 1.06) and skeletal stiffness (P < 0.001, d = 1.84), whereas LA athletes had greater muscular stiffness (P = 0.025, d = 0.96). These findings demonstrate that HA athletes place a greater reliance on skeletal structures for load attenuation during running and landing, whereas LA athletes rely more greatly on muscle contributions during landing only. These findings may provide insight into the distinct injury patterns observed in HA and LA athletes.

  8. Analysis of strategies to increase external fixator stiffness: is double stacking worth the cost?

    PubMed

    Strebe, Sara; Kim, Hyunchul; Russell, Joseph P; Hsieh, Adam H; Nascone, Jason; O'Toole, Robert V

    2014-07-01

    We compared the mechanical benefits and costs of 3 strategies that are commonly used to increase knee-spanning external fixator stiffness (resistance to deformation): double stacking, cross-linking, and use of an oblique pin. At our academic trauma centre and biomechanical testing laboratory, we used ultra-high-molecular-weight polyethylene bone models and commercially available external fixator components to simulate knee-spanning external fixation. The models were tested in anterior-posterior bending, medial-lateral bending, axial compression, and torsion. We recorded the construct stiffness for each strategy in all loading modes and assessed a secondary outcome of cost per 10% increase in stiffness. Double stacking significantly increased construct stiffness under anterior-posterior bending (109%), medial-lateral bending (22%), axial compression (150%), and torsion (41%) (p<0.05). Use of an oblique pin significantly increased stiffness under torsion (25%) (p<0.006). Cross-linking significantly increased stiffness only under torsion (29%) (p<0.002). Double stacking increased costs by 84%, cross-linking by 28%, and use of an oblique pin by 15% relative to a standard fixator. All 3 strategies increased stiffness under torsion to varying degrees, but only double stacking increased stiffness in all 4 testing modalities (p<0.05). Double stacking is most effective in increasing resistance to bending, particularly under anterior-posterior bending and axial compression, but requires a relatively high cost increase. Clinicians can use these data to help guide the most cost-effective strategy to increase construct stiffness based on the plane in which stiffness is needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing.

    PubMed

    Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin

    2014-07-01

    For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Performance of monolayer graphene nanomechanical resonators with electrical readout.

    PubMed

    Chen, Changyao; Rosenblatt, Sami; Bolotin, Kirill I; Kalb, William; Kim, Philip; Kymissis, Ioannis; Stormer, Horst L; Heinz, Tony F; Hone, James

    2009-12-01

    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical applications. Here, we demonstrate the fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the megahertz range, and the strong dependence of resonant frequency on applied gate voltage can be fitted to a membrane model to yield the mass density and built-in strain of the graphene. Following the removal and addition of mass, changes in both density and strain are observed, indicating that adsorbates impart tension to the graphene. On cooling, the frequency increases, and the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching approximately 1 x 10(4) at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, the groundwork for applications of these devices, including high-sensitivity mass detectors, is put in place.

  11. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels

    NASA Astrophysics Data System (ADS)

    Das, Rajat K.; Gocheva, Veronika; Hammink, Roel; Zouani, Omar F.; Rowan, Alan E.

    2016-03-01

    Bulk matrix stiffness has emerged as a key mechanical cue in stem cell differentiation. Here, we show that the commitment and differentiation of human mesenchymal stem cells encapsulated in physiologically soft (~0.2-0.4 kPa), fully synthetic polyisocyanopeptide-based three-dimensional (3D) matrices that mimic the stiffness of adult stem cell niches and show biopolymer-like stress stiffening, can be readily switched from adipogenesis to osteogenesis by changing only the onset of stress stiffening. This mechanical behaviour can be tuned by simply altering the material’s polymer length whilst maintaining stiffness and ligand density. Our findings introduce stress stiffening as an important parameter that governs stem cell fate in a 3D microenvironment, and reveal a correlation between the onset of stiffening and the expression of the microtubule-associated protein DCAMKL1, thus implicating DCAMKL1 in a stress-stiffening-mediated, mechanotransduction pathway that involves microtubule dynamics in stem cell osteogenesis.

  12. Particle numbers of lipoprotein subclasses and arterial stiffness among middle-aged men from the ERA JUMP study.

    PubMed

    Vishnu, A; Choo, J; Masaki, K H; Mackey, R H; Barinas-Mitchell, E; Shin, C; Willcox, B J; El-Saed, A; Seto, T B; Fujiyoshi, A; Miura, K; Lee, S; Sutton-Tyrrell, K; Kuller, L H; Ueshima, H; Sekikawa, A

    2014-02-01

    We examined the association between serum lipoprotein subclasses and the three measures of arterial stiffness, that is, (i) carotid-femoral pulse wave velocity (cfPWV), which is a gold standard measure of central arterial stiffness, (ii) brachial-ankle PWV (baPWV), which is emerging as a combined measure of central and peripheral arterial stiffness and (iii) femoral-ankle PWV (faPWV), which is a measure of peripheral arterial stiffness. Among a population-based sample of 701 apparently healthy Caucasian, Japanese American and Korean men aged 40-49 years, concentrations of lipoprotein particles were assessed by nuclear magnetic resonance (NMR) spectroscopy, and the PWV was assessed with an automated waveform analyzer (VP2000, Omron, Japan). Multiple linear regressions were performed to analyse the association between each NMR lipoprotein subclasses and PWV measures, after adjusting for cardiovascular risk factors and other confounders. A cutoff of P<0.01 was used for determining significance. All PWV measures had significant correlations with total and small low-density lipoprotein particle number (LDL-P) (all P<0.0001) but not LDL cholesterol (LDL-C) (all P>0.1), independent of race and age. In multivariate regression analysis, no NMR lipoprotein subclass was significantly associated with cfPWV (all P>0.01). However, most NMR lipoprotein subclasses had significant associations with both baPWV and faPWV (P<0.01). In this study of healthy middle-aged men, as compared with cfPWV, both baPWV and faPWV had stronger associations with particle numbers of lipoprotein subclasses. Our results may suggest that both baPWV and faPWV are related to arterial stiffness and atherosclerosis, whereas cfPWV may represent arterial stiffness alone.

  13. Temporary ipsilateral stiff shoulder after operative fixation of distal radial fractures.

    PubMed

    Cha, Soo Min; Shin, Hyun Dae; Hwang, Sung Jin

    2017-06-01

    This study was conducted to identify variables affecting the development of temporary stiff shoulder after operative fixation for distal radial fractures (DRF). The study retrospectively analyzed 167 patients who had undergone internal fixation using volar locking plate for DRF between 2010 and 2013. Group 1 was denoted as the "normal group," and group 2 was denoted as the "stiff shoulder group." Basic demographic factors evaluated included age, sex, bone mineral density (BMD), and the dominancy. Also investigated were radiologic variables, including concurrent fractures of the styloid process, positive ulnar variances, classification of DRF, and morphologic type of the distal radioulnar joint. Finally, the type of plate, methods used for postoperative protection, and time of union were analyzed. Group 1 consisted of 114 patients, and group 2 consisted of 53 patients. On overall univariate analysis, BMD, hand dominancy, and the protective methods after plating were significantly different between the 2 groups. On multivariate analysis, a lower BMD and injury on the nondominant side were significant factors for shoulder stiffness. Stiffness was significantly higher in patients with a mean BMD < -2.6 than in patients with a mean BMD ≥ -2.6. At the final follow-up, all of the 53 patients in group 2 were relieved of the symptoms of a stiff shoulder. A lower BMD and injury on the nondominant distal radius were distinct factors for the development of a stiff shoulder after operative fixation in DRF. Fortunately, nonoperative treatments, such as stretching exercises/injections, were useful for the relief of these symptoms in the short-term follow-up. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Functionally graded biomimetic energy absorption concept development for transportation systems.

    DOT National Transportation Integrated Search

    2014-02-01

    Mechanics of a functionally graded cylinder subject to static or dynamic axial loading is considered, including a potential application as energy absorber. The mass density and stiffness are power functions of the radial coordinate as may be the case...

  15. Surface density mapping of natural tissue by a scanning haptic microscope (SHM).

    PubMed

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Nakayama, Yasuhide

    2013-02-01

    To expand the performance capacity of the scanning haptic microscope (SHM) beyond surface mapping microscopy of elastic modulus or topography, surface density mapping of a natural tissue was performed by applying a measurement theory of SHM, in which a frequency change occurs upon contact of the sample surface with the SHM sensor - a microtactile sensor (MTS) that vibrates at a pre-determined constant oscillation frequency. This change was mainly stiffness-dependent at a low oscillation frequency and density-dependent at a high oscillation frequency. Two paragon examples with extremely different densities but similar macroscopic elastic moduli in the range of natural soft tissues were selected: one was agar hydrogels and the other silicon organogels with extremely low (less than 25 mg/cm(3)) and high densities (ca. 1300 mg/cm(3)), respectively. Measurements were performed in saline solution near the second-order resonance frequency, which led to the elastic modulus, and near the third-order resonance frequency. There was little difference in the frequency changes between the two resonance frequencies in agar gels. In contrast, in silicone gels, a large frequency change by MTS contact was observed near the third-order resonance frequency, indicating that the frequency change near the third-order resonance frequency reflected changes in both density and elastic modulus. Therefore, a density image of the canine aortic wall was subsequently obtained by subtracting the image observed near the second-order resonance frequency from that near the third-order resonance frequency. The elastin-rich region had a higher density than the collagen-rich region.

  16. Magnesium Technology and Manufacturing for Ultra Lightweight Armored Ground Vehicles

    DTIC Science & Technology

    2009-02-01

    different metals and equal areal densities. Metal Plate Thickness, in Plate Stiffness, E6 lb/in RHA (Steel Armor) 0.245 0.08 Ti- 6Al - 4V 0.434 0.28...metal at a density of 1.74 g/cm3 that is approximately 1/5, 2/5, and 2/3 the weight of iron, titanium , and aluminum, respectively (Emley, 1966...al iz ed D en si ty Figure 1. Normalized densities comparison of magnesium alloys with 4340 steel and titanium alloy. Both Elektron WE43 and

  17. A Fundamental Investigation of Crack and Surrounding Damage in Stiff Clays

    DTIC Science & Technology

    1988-09-01

    equation of state is written in terms of entropy production. A generalized flux is identified as the centroidal movement of the damage zone, and the...on the following governing equation. I I a14 ( 1.1] Ti = z ’_Xc + "_.wXrOt + a.’X ef = 0 where Si is the global entropy production, 1, , and a are...convenient to express the internal energy density u in terms of i Gibb’s potential density and the entropy density s [6.3] u = g + Ts +’ijciji Here

  18. Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix.

    PubMed

    Qu, Tiejun; Jing, Junjun; Ren, Yinshi; Ma, Chi; Feng, Jian Q; Yu, Qing; Liu, Xiaohua

    2015-04-01

    Dental caries is one of the most prevalent chronic diseases in all populations. The regeneration of dentin-pulp tissues (pulpodentin) using a scaffold-based tissue engineering strategy is a promising approach to replacing damaged dental structures and restoring their biological functions. However, the current scaffolding design for pulpodentin regeneration does not take into account the distinct difference between pulp and dentin, therefore, is incapable of regenerating a complete tooth-like pulpodentin complex. In this study, we determined that scaffolding stiffness is a crucial biophysical cue to modulate dental pulp stem cell (DPSC) differentiation. The DPSCs on a high-stiffness three-dimensional (3D) nanofibrous gelatin (NF-gelatin) scaffold had more organized cytoskeletons and a larger spreading area than on a low-stiffness NF-gelatin scaffold. In the same differentiation medium, a high-stiffness NF-gelatin facilitated DPSC differentiation to form a mineralized tissue, while a low-stiffness NF-gelatin promoted a soft pulp-like tissue formation from the DPSCs. A facile method was then developed to integrate the low- and high-stiffness gelatin matrices into a single scaffold (S-scaffold) for pulpodentin complex regeneration. A 4-week in vitro experiment showed that biomineralization took place only in the high-stiffness peripheral area and formed a ring-like structure surrounding the non-mineralized central area of the DPSC/S-scaffold construct. A complete pulpodentin complex similar to natural pulpodentin was successfully regenerated after subcutaneous implantation of the DPSC/S-scaffold in nude mice for 4weeks. Histological staining showed a significant amount of extracellular matrix (ECM) formation in the newly formed pulpodentin complex, and a number of blood vessels were observed in the pulp tissue. Taken together, this work shows that modulating the stiffness of the NF-gelatin scaffold is a successful approach to regenerating a complete tooth-like pulpodentin complex. Published by Elsevier Ltd.

  19. The Relationship between Serum Vitamin D Levels and Spinal Fusion Success: A Quantitative Analysis

    PubMed Central

    Metzger, Melodie F.; Kanim, Linda E.; Zhao, Li; Robinson, Samuel T.; Delamarter, Rick B.

    2015-01-01

    Study Design An in vivo dosing study of vitamin D in a rat posterolateral spinal fusion model with autogenous bone grafting. Rats randomized to four levels of Vitamin D adjusted rat chow, longitudinal serum validation, surgeons/observers blinded to dietary conditions, and rats followed prospectively for fusion endpoint. Objective To assess the impact of dietary and serum levels of Vitamin D on fusion success, consolidation of fusion mass, and biomechanical stiffness after posterolateral spinal fusion procedure. Summary of Background Data Metabolic risk factors, including vitamin D insufficiency, are often overlooked by spine surgeons. Currently there are no published data on the causal effect of insufficient or deficient vitamin D levels on the success of establishing solid bony union after a spinal fusion procedure. Methods 50 rats were randomized to four experimentally controlled rat chow diets: normal control, vitamin D-deficient, vitamin-D insufficient, and a non-toxic high dose of vitamin D, four weeks prior to surgery and maintained post-surgery until sacrifice. Serum levels of 25(OH)D were determined at surgery and sacrifice using radioimmunoassay. Posterolateral fusion surgery with tail autograft was performed. Rats were sacrificed 12 weeks post-operatively and fusion was evaluated via manual palpation, high resolution radiographs, μCT, and biomechanical testing. Results Serum 25(OH)D and calcium levels were significantly correlated with vitamin-D adjusted chow (p<0.001). There was a dose dependent relationship between vitamin D adjusted chow and manual palpation fusion with greatest differences found in measures of radiographic density between high and deficient vitamin D (p<0.05). Adequate levels of vitamin D (high and normal control) yielded stiffer fusion than inadequate levels (insufficient and deficient) (p<0.05). Conclusions Manual palpation fusion rates increased with supplementation of dietary vitamin D. Biomechanical stiffness, bone volume and density were also positively-related to vitamin D, and calcium. PMID:25627287

  20. Relationship between uric acid and arterial stiffness in the elderly with metabolic syndrome components.

    PubMed

    Sun, Ning; Zhang, Yun; Tian, Jian-li; Wang, Hui

    2013-08-01

    High uric acid (UA) levels and metabolic syndrome (MS) are risk factors for atherosclerotic diseases. Brachial-ankle pulse wave velocity (baPWV) is a valid and reproducible measurement by which to assess arterial stiffness and a surrogate marker of atherosclerosis. However, little is known about the relationship between them, especially in elderly Chinese with MS components who are at high risk for atherosclerotic diseases. One thousand and twenty Chinese subjects (159 women) older than 60 years of age (mean age (70.6 ± 5.7) years) with at least one MS component underwent routine laboratory tests, and baPWV measurements were analyzed. Participants were divided into four groups by MS components. The mean age did not significantly differ among the MS component groups. We found that not only the diagnostic factors (blood pressure, body mass index (BMI), lipids, glucose) of MS but also baPWV, UA, insulin, homeostasis model of assessment for insulin resistence index (HOMAIR) levels increased, and high density lipoprotein (HDL)-C decreased with an increased number of MS components (test for trend P < 0.05). The association between UA and baPWV was observed after adjustment for gender, age, blood pressure, BMI, serum creatinine and high density lipoprotein, and insulin resistance (r = 0.186, P < 0.0001). There were increases in the odds ratios for the association between the number of components of MS, UA and baPWV, even after adjustment for traditional risk factors. However, after adjustment for insulin or HOMA-IR, there were no significant differences in the multivariate odds ratios among the number of MS components for UA. The UA level is positively associated with baPWV and MS, but the association between UA and MS is dependent on insulin resistance. Furthermore, baPWV is independently associated with MS in our study population.

  1. Associations between lower extremity muscle mass and multiplanar knee laxity and stiffness: a potential explanation for sex differences in frontal and transverse plane knee laxity.

    PubMed

    Shultz, Sandra J; Pye, Michele L; Montgomery, Melissa M; Schmitz, Randy J

    2012-12-01

    Compared with men, women have disproportionally greater frontal (varus-valgus) and transverse (internal-external) plane laxity and lower stiffness, despite having similar sagittal (anterior-posterior) plane laxity and stiffness. While the underlying cause is unclear, the amount of lower extremity lean mass (LELM) may be a contributing factor. Lower extremity lean mass would be a stronger predictor of frontal and transverse plane laxity and incremental stiffness than the sagittal plane. Associations between LELM and stiffness would be stronger at lower force increments. Descriptive laboratory study. Sixty-three women and 30 men with no history of ligament injury were measured for knee laxity and incremental stiffness in the sagittal (-90- to 130-N posterior-to-anterior directed loads), frontal (±10-N·m varus-valgus torques), and transverse (±5-N·m internal-external rotation torques) planes and underwent dual-energy X-ray absorptiometry scans to measure LELM. Linear regressions examined the extent to which LELM predicted each laxity and stiffness value, while also accounting for a person's sex. Females (vs males) had greater laxity and less stiffness in the frontal and transverse planes but not the sagittal plane. Lower extremity lean mass was a poor predictor of sagittal laxity and stiffness (R (2) range = .021-.081; P > .06) but was a stronger predictor of frontal (R (2) range = .215-.567; P < .01) and transverse (R (2) range = .224-.356; P < .01) plane laxity and stiffness. Associations were stronger for low (R (2) = .495-.504) versus high (R (2) = .215-.435) frontal plane stiffness but were similar for low (R (2) = .233-.293) versus high (R (2) = .224-.356) transverse plane stiffness. Once we accounted for a person's LELM, sex had little effect on laxity and stiffness (change in R (2) after removal = .01-.08; P = .027-.797). Less LELM was associated with greater laxity and less stiffness in frontal and transverse planes, which may contribute to the disproportionally higher laxities and reduced stiffnesses observed in females in these planes. Frontal and transverse plane laxity and stiffness may be modifiable through strength training interventions that promote changes in muscle characteristics (eg, muscle cross-sectional area, stiffness) that may contribute to static knee joint stability, thus dynamic joint stability during sport activity.

  2. Biomechanical measurements of stiffness and strength for five types of whole human and artificial humeri.

    PubMed

    Aziz, Mina S R; Nicayenzi, Bruce; Crookshank, Meghan C; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan

    2014-05-01

    The human humerus is the third largest longbone and experiences 2-3% of all fractures. Yet, almost no data exist on its intact biomechanical properties, thus preventing researchers from obtaining a full understanding of humerus behavior during injury and after being repaired with fracture plates and nails. The aim of this experimental study was to compare the biomechanical stiffness and strength of "gold standard" fresh-frozen humeri to a variety of humerus models. A series of five types of intact whole humeri were obtained: human fresh-frozen (n = 19); human embalmed (n = 18); human dried (n = 15); artificial "normal" (n = 12); and artificial "osteoporotic" (n = 12). Humeri were tested under "real world" clinical loading modes for shear stiffness, torsional stiffness, cantilever bending stiffness, and cantilever bending strength. After removing geometric effects, fresh-frozen results were 585.8 ± 181.5 N/mm2 (normalized shear stiffness); 3.1 ± 1.1 N/(mm2 deg) (normalized torsional stiffness); 850.8 ± 347.9 N/mm2 (normalized cantilever stiffness); and 8.3 ± 2.7 N/mm2 (normalized cantilever strength). Compared to fresh-frozen values, statistical equivalence (p ≥ 0.05) was obtained for all four test modes (embalmed humeri), 1 of 4 test modes (dried humeri), 1 of 4 test modes (artificial "normal" humeri), and 1 of 4 test modes (artificial "osteoporotic" humeri). Age and bone mineral density versus experimental results had Pearson linear correlations ranging from R = -0.57 to 0.80. About 77% of human humeri failed via a transverse or oblique distal shaft fracture, whilst 88% of artificial humeri failed with a mixed transverse + oblique fracture. To date, this is the most comprehensive study on the biomechanics of intact human and artificial humeri and can assist researchers to choose an alternate humerus model that can substitute for fresh-frozen humeri.

  3. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs

    NASA Astrophysics Data System (ADS)

    Zheng, Yisheng; Li, Qingpin; Yan, Bo; Luo, Yajun; Zhang, Xinong

    2018-05-01

    In order to improve the isolation performance of passive Stewart platforms, the negative stiffness magnetic spring (NSMS) is employed to construct high static low dynamic stiffness (HSLDS) struts. With the NSMS, the resonance frequencies of the platform can be reduced effectively without deteriorating its load bearing capacity. The model of the Stewart isolation platform with HSLDS struts is presented and the stiffness characteristic of its struts is studied firstly. Then the nonlinear dynamic model of the platform including both geometry nonlinearity and stiffness nonlinearity is established; and its simplified dynamic model is derived under the condition of small vibration. The effect of nonlinearity on the isolation performance is also evaluated. Finally, a prototype is built and the isolation performance is tested. Both simulated and experimental results demonstrate that, by using the NSMS, the resonance frequencies of the Stewart isolator are reduced and the isolation performance in all six directions is improved: the isolation frequency band is increased and extended to a lower-frequency level.

  4. Assessing the Strength Enhancement of Heterogeneous Networks of Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Giller, Carl; Roland, Mike

    2013-03-01

    At the typical crosslink densities of elastomers, the failure properties vary inversely with mechanical stiffness, so that compounding entails a compromise between stiffness and strength. Our approach to circumvent this conventional limitation is by forming networks of two polymers that: (i) are thermodynamically miscible, whereby the chemical composition is uniform on the segmental level; and (ii) have markedly different reactivities for network formation. The resulting elastomer consists of one highly crosslinked component and one that is lightly or uncrosslinked. This disparity in crosslinking causes their respective contributions to the network mechanical response to differ diametrically. Earlier results showed some success with this approach for thermally crosslinked blends of 1,2-polybutadiene (PVE) and polyisoprene (PI), as well as ethylene-propylene copolymer (EPM) and ethylene-propylene-diene random terpolymer (EPDM), taking advantage of their differing reactivities to sulfur. In this work we demonstrate the miscibility of polyisobutylene (PIB) with butyl rubber (BR) (a copolymer of PIB and polyisoprene) and show that networks in which only the BR is crosslinked possess greater tensile strengths than neat BR over the same range of moduli. Office of Naval Research

  5. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  6. Multivariate modeling of acoustomechanical response of 14-year-old suppressed loblolly pine (Pinus taeda) to variation in wood chemistry, microfibril angle and density

    Treesearch

    Charles Essien; Brian K. Via; Qingzheng Cheng; Thomas Gallagher; Timothy McDonald; Xiping Wang; Lori G. Eckhardt

    2017-01-01

    The polymeric angle and concentration within the S2 layer of the softwood fiber cell wall are very critical for molecular and microscopic properties that influence strength, stiffness and acoustic velocity of wood at the macroscopic level. The main objective of this study was to elucidate the effect of cellulose, hemicellulose, lignin, microfibril angle and density on...

  7. Influence of Pro-Oxidant on Photodegradation of a Low-Density Polyethylene-Nanosilica Composite

    EPA Science Inventory

    Use of polymer nanocomposites is burgeoning and they represent one of the fastest growing components of the manufactured nanomaterials market. Incorporation of nanoscale fillers in these plastics significantly improves their stiffness and other key mechanical properties. Although...

  8. Randomized clinical trial: benefits of aerobic physical activity for 24 weeks in postmenopausal women with nonalcoholic fatty liver disease.

    PubMed

    Rezende, Rosamar E F; Duarte, Sebastião M B; Stefano, Jose T; Roschel, Hamilton; Gualano, Bruno; de Sá Pinto, Ana L; Vezozzo, Denise C P; Carrilho, Flair J; Oliveira, Claudia P

    2016-08-01

    The aim of the study was to evaluate the effectiveness of aerobic physical activity in reducing the frequency of hepatic steatosis and metabolic and cardiovascular risk in postmenopausal women with nonalcoholic fatty liver disease (NAFLD). Forty sedentary postmenopausal women (mean age 55.3 ± 8.0 y) with biopsy-proven NAFLD were randomly divided into two groups: an exercising group (19 participants) and a control group (nonexercising, 21 participants). The exercise group underwent a supervised aerobic physical activity program of 120 min/wk for 24 weeks. The anthropometric parameters; body composition; hepatic, lipid, and glycemic profiles; homeostasis model assessment of insulin resistance index; cytokines; transient elastography (FibroScan; liver stiffness/controlled attenuation parameter); and cardiopulmonary exercise test were evaluated at baseline and after 24 weeks of protocol. At baseline there were no significant differences in anthropometric, metabolic, and inflammatory parameters-stiffness and liver fat content by FibroScan between the groups. After 24 weeks, we observed a decrease of waist circumference, an increase of high-density lipoprotein cholesterol levels (P < 0.05), and improved cardiopulmonary functional capacity in the exercise group. In addition, the controlled attenuation parameter analysis showed no significant decrease of hepatic steatosis in the exercise group. With regard to the systemic inflammation, there were, however, no significant differences in the cytokines between the groups. An aerobic physical activity program of 24 weeks in NAFLD postmenopausal women showed improvement in some variables such as waist circumference, high-density lipoprotein cholesterol, and cardiopulmonary performance that may be beneficial in improving cardiovascular risk factors in this population.

  9. Lentil consumption reduces resistance artery remodeling and restores arterial compliance in the spontaneously hypertensive rats.

    PubMed

    Hanson, Matthew G; Taylor, Carla G; Wu, Yinghong; Anderson, Hope D; Zahradka, Peter

    2016-11-01

    We previously established that lentils were able to significantly attenuate the development of hypertension in spontaneously hypertensive rats (SHRs), but the mechanism was not investigated. The current study was therefore designed to examine the effect of lentils on arterial function in relation to arterial stiffness, lipid biochemistry and activation of select aortic proteins. Seventeen-week-old male SHRs were randomly assigned to groups (n=10/group) fed (a) 30% w/w green lentils, (b) 30% red lentils, (c) 30% mixed lentils (red and green) or (d) no lentils for 8 weeks. Normotensive Wistar Kyoto (WKY) groups (n=10/group) received either the mixed lentil or no lentil diet. Blood pressure, pulse wave velocity and serum lipids were measured at baseline and 8 weeks, while pressure myography, arterial morphology and aortic proteins were measured after termination. There were no dietary-related changes in pulse wave velocity or blood pressure for any SHR or WKY group. Low-density lipoprotein cholesterol and high-density lipoprotein cholesterol were significantly lower in only SHR red lentil and WKY mixed lentil groups compared to their controls. The lentil diets reduced the media:lumen ratio of SHRs relative to control-fed SHRs but had no effect on WKYs. Both red and green lentils reduced arterial stiffness of SHRs but not WKYs. SHR lentil groups showed lower aortic p38 mitogen-activated protein kinase (p38MAPK) phosphorylation, thus implying that p38MAPK activation is suppressed with lentil feeding. Lentil-based diets suppress pathological vascular remodeling in SHRs, while green lentils maintain the vascular function of SHRs similar to normotensive WKYs despite the presence of high blood pressure. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars

    NASA Astrophysics Data System (ADS)

    Narayanan Nampy, Sreenivas

    Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an existing state-of-the-art and newly developed model to predict the torsion, bending, and axial stiffness of grid and grid-stiffened structures with various stiffening configurations. These predictions were compared to results generated using finite element analysis (FEA) to observe excellent correlation (within 6%) for a range of parameters for grid and grid-stiffened structures such as grid density, stiffener angle, and aspect ratio of the stiffener cross-section. Experimental results from cylindrical grid specimen testing were compared with analytical prediction using the new analysis. The new analysis predicted stiffness coefficients with nearly 7% error compared to FEA results. From the parametric studies conducted, it was observed that the previous state-of-the-art analysis on the other hand exhibited errors of the order of 39% for certain designs. Stability evaluations were also conducted by integrating the new analysis with established stability formulations. A design study was conducted to evaluate the potential weight savings of a simple grid-stiffened rotor blade spar structure compared to a baseline monocoque design. Various design constraints such as stiffness, strength, and stability were imposed. A manual search was conducted for design parameters such as stiffener density, stiffener angle, shell laminate, and stiffener aspect ratio that provide lightweight grid-stiffened designs compared to the baseline. It was found that a weight saving of 9.1% compared to the baseline is possible without violating any of the design constraints.

  11. Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer.

    PubMed

    Glugla, David J; Alim, Marvin D; Byars, Keaton D; Nair, Devatha P; Bowman, Christopher N; Maute, Kurt K; McLeod, Robert R

    2016-11-02

    We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.

  12. Modeling and Simulation of Linear and Nonlinear MEMS Scale Electromagnetic Energy Harvesters for Random Vibration Environments

    PubMed Central

    Sassani, Farrokh

    2014-01-01

    The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063

  13. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction

    PubMed Central

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yang, Fan

    2018-01-01

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future. PMID:29385745

  14. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction.

    PubMed

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yi, Yong; Yang, Fan

    2018-01-30

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  15. Prediction of bone strength at the distal tibia by HR-pQCT and DXA.

    PubMed

    Popp, Albrecht W; Windolf, Markus; Senn, Christoph; Tami, Andrea; Richards, R Geoff; Brianza, Stefano; Schiuma, Damiano

    2012-01-01

    Areal bone mineral density (aBMD) at the distal tibia, measured at the epiphysis (T-EPI) and diaphysis (T-DIA), is predictive for fracture risk. Structural bone parameters evaluated at the distal tibia by high resolution peripheral quantitative computed tomography (HR-pQCT) displayed differences between healthy and fracture patients. With its simple geometry, T-DIA may allow investigating the correlation between bone structural parameter and bone strength. Anatomical tibiae were examined ex vivo by DXA (aBMD) and HR-pQCT (volumetric BMD (vBMD) and bone microstructural parameters). Cortical thickness (CTh) and polar moment of inertia (pMOI) were derived from DXA measurements. Finally, an index combining material (BMD) and mechanical property (polar moment of inertia, pMOI) was defined and analyzed for correlation with torque at failure and stiffness values obtained by biomechanical testing. Areal BMD predicted the vBMD at T-EPI and T-DIA. A high correlation was found between aBMD and microstructural parameters at T-EPIas well as between aBMD and CTh at T-DIA. Finally, at T-DIA both indexes combining BMD and pMOI were strongly and comparably correlated with torque at failure and bone stiffness. Ex vivo, at the distal tibial diaphysis, a novel index combining BMD and pMOI, which can be calculated directly from a single DXA measurement, predicted bone strength and stiffness better than either parameter alone and with an order of magnitude comparable to that of HR-pQCT. Whether this index is suitable for better prediction of fracture risk in vivo deserves further investigation. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Apolipoprotein B as an independent predictor of arterial stiffness in systemic lupus erythematosus patients.

    PubMed

    Kwankaew, Jirateep; Leelawattana, Rattana; Saignam, Anchalee; Siripaitoon, Boonjing; Uea-Areewongsa, Parichat; Juthong, Siriporn

    2015-05-01

    To determine the relationship of apolipoprotein B (Apo-B) and arterial stiffness determined by brachial-ankle pulse wave velocity (baPWV) in systemic lupus erythematosus (SLE) subjects. Eighty-seven Thai SLE subjects with inactive disease activity were studied. Fasting blood was collected for creatinine, glucose, lipid profiles, Apo-B and Apo-A1. Pearson correlation and stepwise-linear regression were used for the analysis. The mean age of the subjects was 36.69 ± 10.85 years; 6.90% of them had stage 3 or more severe chronic kidney disease, 49.40% took anti-hypertensive drugs and 4.60% had abnormal glucose metabolism. The mean value for baPWV was 1332 ± 274.12 cm/s. Thirty-six percent of the subjects had increased arterial stiffness with mean Apo-B levels of 1.05 ± 0.31 g/L compared to 0.94 ± 0.24 in normal arterial stiffness. There were correlations of baPWV with age, systolic blood pressure (BP), diastolic BP and creatinine clearance. Apo-B tended to be associated with baPWV (P = 0.06) whereas low-density lipoprotein cholesterol did not (P = 0.2). By multiple regression analysis, systolic BP, age and Apo-B were the significant predictors of baPWV. Apo-B was independently associated with arterial stiffness in SLE subjects. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  17. Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel.

    PubMed

    Hogrebe, Nathaniel J; Reinhardt, James W; Tram, Nguyen K; Debski, Anna C; Agarwal, Gunjan; Reilly, Matthew A; Gooch, Keith J

    2018-04-01

    A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Soil depth mapping using seismic surface waves: Evaluation on eroded loess covered hillslopes

    NASA Astrophysics Data System (ADS)

    Bernardie, Severine; Samyn, Kevin; Cerdan, Olivier; Grandjean, Gilles

    2010-05-01

    The purposes of the multidisciplinary DIGISOIL project are the integration and improvement of in situ and proximal technologies for the assessment of soil properties and soil degradation indicators. Foreseen developments concern sensor technologies, data processing and their integration to applications of (digital) soil mapping (DSM). Among available techniques, the seismic one is, in this study, particularly tested for characterising soil vulnerability to erosion. The spectral analysis of surface waves (SASW) method is an in situ seismic technique used for evaluation of the stiffnesses (G) and associated depth in layered systems. A profile of Rayleigh wave velocity versus frequency, i.e., the dispersion curve, is calculated from each recorded seismogram before to be inverted to obtain the vertical profile of shear wave velocity Vs. Then, the soil stiffness can easily be calculated from the shear velocity if the material density is estimated, and the soil stiffness as a function of depth can be obtained. This last information can be a good indicator to identify the soil bedrock limit. SASW measurements adapted to soil characterisation is proposed in the DIGISOIL project, as it produces in an easy and quick way a 2D map of the soil. This system was tested for the digital mapping of the depth of loamy material in a catchment of the European loess belt. The validation of this methodology has been performed with the realisation of several acquisitions along the seismic profiles: - Several boreholes were drilled until the bedrock, permitting to get the geological features of the soil and the depth of the bedrock; - Several laboratory measurements of various parameters were done on samples taken from the boreholes at various depths, such as dry density, solid density, and water content; - Dynamic penetration tests were also conducted along the seismic profile, until the bedrock is attained. Some empirical correlations between the parameters measured with laboratory tests, the qc obtained from the dynamic penetration tests and the Vs acquired from the SASW measurements permit to assess the accuracy of the procedure and to evaluate its limitations. The depth to bedrock determined by this procedure can then be combined with the soil erosion susceptibility to produce a risk map. This methodology will help to target measures within areas that show a reduced soil depth associated with a high soil erosion susceptibility.

  19. The design of and chronic tissue response to a composite nerve electrode with patterned stiffness.

    PubMed

    Freeberg, M J; Stone, M A; Triolo, R J; Tyler, D J

    2017-06-01

    As neural interfaces demonstrate success in chronic applications, a novel class of reshaping electrodes with patterned regions of stiffness will enable application to a widening range of anatomical locations. Patterning stiff regions and flexible regions of the electrode enables nerve reshaping while accommodating anatomical constraints of various implant locations ranging from peripheral nerves to spinal and autonomic plexi. Introduced is a new composite electrode enabling patterning of regions of various electrode mechanical properties. The initial demonstration of the composite's capability is the composite flat interface nerve electrode (C-FINE). The C-FINE is constructed from a sandwich of patterned PEEK within layers of pliable silicone. The shape of the PEEK provides a desired pattern of stiffness: stiff across the width of the nerve to reshape the nerve, but flexible along its length to allow for bending with the nerve. This is particularly important in anatomical locations near joints or organs, and in constrained compartments. We tested pressure and volume design constraints in vitro to verify that the C-FINE can attain a safe cuff-to-nerve ratio (CNR) without impeding intraneural blood flow. We measured nerve function as well as nerve and axonal morphology following 3 month implantation of the C-FINE without wires on feline peripheral nerves in anatomically constrained areas near mobile joints and major blood vessels in both the hind and fore limbs. In vitro inflation tests showed effective CNRs (1.93  ±  0.06) that exceeded the industry safety standard of 1.5 at an internal pressure of 20 mmHg. This is less than the 30 mmHg shown to induce loss of conduction or compromise blood flow. Implanted cats showed no changes in physiology or electrophysiology. Behavioral signs were normal suggesting healthy nerves. Motor nerve conduction velocity and compound motor action potential did not change significantly between implant and explant (p  >  0.15 for all measures). Axonal density and myelin sheath thickness was not significantly different within the electrode compared to sections greater than 2 cm proximal to implanted cuffs (p  >  0.14 for all measures). We present the design and verification of a novel nerve cuff electrode, the C-FINE. Laminar manufacturing processes allow C-FINE stiffness to be configured for specific applications. Here, the central region in the configuration tested is stiff to reshape or conform to the target nerve, while edges are highly flexible to bend along its length. The C-FINE occupies less volume than other NCEs, making it suitable for implantation in highly mobile locations near joints. Design constraints during simulated transient swelling were verified in vitro. Maintenance of nerve health in various challenging anatomical locations (sciatic and median/ulnar nerves) was verified in a chronic feline model in vivo.

  20. The design of and chronic tissue response to a composite nerve electrode with patterned stiffness

    NASA Astrophysics Data System (ADS)

    Freeberg, M. J.; Stone, M. A.; Triolo, R. J.; Tyler, D. J.

    2017-06-01

    Objective. As neural interfaces demonstrate success in chronic applications, a novel class of reshaping electrodes with patterned regions of stiffness will enable application to a widening range of anatomical locations. Patterning stiff regions and flexible regions of the electrode enables nerve reshaping while accommodating anatomical constraints of various implant locations ranging from peripheral nerves to spinal and autonomic plexi. Approach. Introduced is a new composite electrode enabling patterning of regions of various electrode mechanical properties. The initial demonstration of the composite’s capability is the composite flat interface nerve electrode (C-FINE). The C-FINE is constructed from a sandwich of patterned PEEK within layers of pliable silicone. The shape of the PEEK provides a desired pattern of stiffness: stiff across the width of the nerve to reshape the nerve, but flexible along its length to allow for bending with the nerve. This is particularly important in anatomical locations near joints or organs, and in constrained compartments. We tested pressure and volume design constraints in vitro to verify that the C-FINE can attain a safe cuff-to-nerve ratio (CNR) without impeding intraneural blood flow. We measured nerve function as well as nerve and axonal morphology following 3 month implantation of the C-FINE without wires on feline peripheral nerves in anatomically constrained areas near mobile joints and major blood vessels in both the hind and fore limbs. Main Results. In vitro inflation tests showed effective CNRs (1.93  ±  0.06) that exceeded the industry safety standard of 1.5 at an internal pressure of 20 mmHg. This is less than the 30 mmHg shown to induce loss of conduction or compromise blood flow. Implanted cats showed no changes in physiology or electrophysiology. Behavioral signs were normal suggesting healthy nerves. Motor nerve conduction velocity and compound motor action potential did not change significantly between implant and explant (p  >  0.15 for all measures). Axonal density and myelin sheath thickness was not significantly different within the electrode compared to sections greater than 2 cm proximal to implanted cuffs (p  >  0.14 for all measures). Significance. We present the design and verification of a novel nerve cuff electrode, the C-FINE. Laminar manufacturing processes allow C-FINE stiffness to be configured for specific applications. Here, the central region in the configuration tested is stiff to reshape or conform to the target nerve, while edges are highly flexible to bend along its length. The C-FINE occupies less volume than other NCEs, making it suitable for implantation in highly mobile locations near joints. Design constraints during simulated transient swelling were verified in vitro. Maintenance of nerve health in various challenging anatomical locations (sciatic and median/ulnar nerves) was verified in a chronic feline model in vivo.

  1. Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels.

    PubMed

    Nagasaka, Arata; Shinoda, Tomoyasu; Kawaue, Takumi; Suzuki, Makoto; Nagayama, Kazuaki; Matsumoto, Takeo; Ueno, Naoto; Kawaguchi, Ayano; Miyata, Takaki

    2016-01-01

    Cell-producing events in developing tissues are mechanically dynamic throughout the cell cycle. In many epithelial systems, cells are apicobasally tall, with nuclei and somata that adopt different apicobasal positions because nuclei and somata move in a cell cycle-dependent manner. This movement is apical during G2 phase and basal during G1 phase, whereas mitosis occurs at the apical surface. These movements are collectively referred to as interkinetic nuclear migration, and such epithelia are called "pseudostratified." The embryonic mammalian cerebral cortical neuroepithelium is a good model for highly pseudostratified epithelia, and we previously found differences between mice and ferrets in both horizontal cellular density (greater in ferrets) and nuclear/somal movements (slower during G2 and faster during G1 in ferrets). These differences suggest that neuroepithelial cells alter their nucleokinetic behavior in response to physical factors that they encounter, which may form the basis for evolutionary transitions toward more abundant brain-cell production from mice to ferrets and primates. To address how mouse and ferret neuroepithelia may differ physically in a quantitative manner, we used atomic force microscopy to determine that the vertical stiffness of their apical surface is greater in ferrets (Young's modulus = 1700 Pa) than in mice (1400 Pa). We systematically analyzed factors underlying the apical-surface stiffness through experiments to pharmacologically inhibit actomyosin or microtubules and to examine recoiling behaviors of the apical surface upon laser ablation and also through electron microscopy to observe adherens junction. We found that although both actomyosin and microtubules are partly responsible for the apical-surface stiffness, the mouse

  2. Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels

    PubMed Central

    Nagasaka, Arata; Shinoda, Tomoyasu; Kawaue, Takumi; Suzuki, Makoto; Nagayama, Kazuaki; Matsumoto, Takeo; Ueno, Naoto; Kawaguchi, Ayano; Miyata, Takaki

    2016-01-01

    Cell-producing events in developing tissues are mechanically dynamic throughout the cell cycle. In many epithelial systems, cells are apicobasally tall, with nuclei and somata that adopt different apicobasal positions because nuclei and somata move in a cell cycle–dependent manner. This movement is apical during G2 phase and basal during G1 phase, whereas mitosis occurs at the apical surface. These movements are collectively referred to as interkinetic nuclear migration, and such epithelia are called “pseudostratified.” The embryonic mammalian cerebral cortical neuroepithelium is a good model for highly pseudostratified epithelia, and we previously found differences between mice and ferrets in both horizontal cellular density (greater in ferrets) and nuclear/somal movements (slower during G2 and faster during G1 in ferrets). These differences suggest that neuroepithelial cells alter their nucleokinetic behavior in response to physical factors that they encounter, which may form the basis for evolutionary transitions toward more abundant brain-cell production from mice to ferrets and primates. To address how mouse and ferret neuroepithelia may differ physically in a quantitative manner, we used atomic force microscopy to determine that the vertical stiffness of their apical surface is greater in ferrets (Young's modulus = 1700 Pa) than in mice (1400 Pa). We systematically analyzed factors underlying the apical-surface stiffness through experiments to pharmacologically inhibit actomyosin or microtubules and to examine recoiling behaviors of the apical surface upon laser ablation and also through electron microscopy to observe adherens junction. We found that although both actomyosin and microtubules are partly responsible for the apical-surface stiffness, the mouse

  3. Lower Body Stiffness Modulation Strategies in Well Trained Female Athletes.

    PubMed

    Millett, Emma L; Moresi, Mark P; Watsford, Mark L; Taylor, Paul G; Greene, David A

    2016-10-01

    Millett, EL, Moresi, MP, Watsford, ML, Taylor, PG, and Greene, DA. Lower body stiffness modulation strategies in well trained female athletes. J Strength Cond Res 30(10): 2845-2856, 2016-Lower extremity stiffness quantifies the relationship between the amount of leg compression and the external load to which the limb are subjected. This study aimed to assess differences in leg and joint stiffness and the subsequent kinematic and kinetic control mechanisms between athletes from various training backgrounds. Forty-seven female participants (20 nationally identified netballers, 13 high level endurance athletes and 14 age and gender matched controls) completed a maximal unilateral countermovement jump, drop jump and horizontal jump to assess stiffness. Leg stiffness, joint stiffness and associated mechanical parameters were assessed with a 10 camera motion analysis system and force plate. No significant differences were evident for leg stiffness measures between athletic groups for any of the tasks (p = 0.321-0.849). However, differences in joint stiffness and its contribution to leg stiffness, jump performance outcome measures and stiffness control mechanisms were evident between all groups. Practitioners should consider the appropriateness of the task utilised in leg stiffness screening. Inclusion of mechanistic and/or more sports specific tasks may be more appropriate for athletic groups.

  4. Parameter design and experimental study of a bifunctional isolator for optical payload protection and stabilization

    NASA Astrophysics Data System (ADS)

    Wang, Guang-yuan; Guan, Xin; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie

    2017-11-01

    With the raise of resolution, optical payloads are becoming increasingly sensitive to satellite jitter. An approach where the entire spacecraft is pointed with great accuracy requires sophisticated and expensive bus design. In an effort to lower the overall cost of space missions that require highly stable line-of-sight pointing, a method of separating the bus and the payload with low frequency isolators is proposed. This isolation system can block the transmission of disturbance and allow relatively large bus motion. However, if the isolator is linear then there is a trade-off between isolation and static deflection as the launch and the on-orbit stage have difference requirements on the isolation frequency. Otherwise, an extra locking system should be appended to protect the payload before getting into orbit, as the STABLE isolation system[1] and the MIM isolation system[2] did. To overcome this limitation, an alternative approach is to design a nonlinear isolator with high-static stiffness during launch and low dynamic stiffness on orbit. Several specially designed nonlinear isolators have achieved low dynamic stiffness with large static load capacity. Virgin[3] considered a structure made from a highly deformed elastic element to achieve a softening spring. Platus[4] exploited the buckling of beams under axial load in a specific configuration to achieve a negative stiffness in combination with a positive stiffness, and hence low-dynamic stiffness. Others have achieved the same by connecting linear springs with positive stiffness in parallel with elements of negative stiffness[5] [7]. In the present study, a bifunctional isolator has been developed for optical payloads. The isolator have good performance both during launch and on orbit because of its specially designed nonlinear stiffness and damping. The isolator works in a linear part with low stiffness and small damping ratio under the micro-vibration and microgravity on orbit. The transmissibility requirement and the displacement restriction during launch are satisfied by tuning the nonlinear stiffness and damping parameters. A group of sample isolators are designed tested both statically and dynamically.

  5. Analysis of Dynamic Stiffness Effect of Primary Suspension Helical Springs on Railway Vehicle Vibration

    NASA Astrophysics Data System (ADS)

    Sun, W.; Thompson, D. J.; Zhou, J.; Gong, D.

    2016-09-01

    Helical springs within the primary suspension are critical components for isolating the whole vehicle system from vibration generated at the wheel/rail contact. As train speeds increase, the frequency region of excitation becomes larger, and a simplified static stiffness can no longer represent the real stiffness property in a vehicle dynamic model. Coil springs in particular exhibit strong internal resonances, which lead to high vibration amplitudes within the spring itself as well as degradation of the vibration isolation. In this paper, the dynamic stiffness matrix method is used to determine the dynamic stiffness of a helical spring from a vehicle primary suspension. Results are confirmed with a finite element analysis. Then the spring dynamic stiffness is included within a vehicle-track coupled dynamic model of a high speed train and the effect of the dynamic stiffening of the spring on the vehicle vibration is investigated. It is shown that, for frequencies above about 50 Hz, the dynamic stiffness of the helical spring changes sharply. Due to this effect, the vibration transmissibility increases considerably which results in poor vibration isolation of the primary suspension. Introducing a rubber layer in series with the coil spring can attenuate this effect.

  6. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions.

    PubMed

    He, Xiao-Tao; Wu, Rui-Xin; Xu, Xin-Yue; Wang, Jia; Yin, Yuan; Chen, Fa-Ming

    2018-04-15

    Accumulating evidence indicates that the physicochemical properties of biomaterials exert profound influences on stem cell fate decisions. However, matrix-based regulation selected through in vitro analyses based on a given cell population do not genuinely reflect the in vivo conditions, in which multiple cell types are involved and interact dynamically. This study constitutes the first investigation of how macrophages (Mφs) in stiffness-tunable transglutaminase cross-linked gelatin (TG-gel) affect the osteogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). When a single cell type was cultured, low-stiffness TG-gels promoted BMMSC proliferation, whereas high-stiffness TG-gels supported cell osteogenic differentiation. However, Mφs in high-stiffness TG-gels were more likely to polarize toward the pro-inflammatory M1 phenotype. Using either conditioned medium (CM)-based incubation or Transwell-based co-culture, we found that Mφs encapsulated in the low-stiffness matrix exerted a positive effect on the osteogenesis of co-cultured BMMSCs. Conversely, Mφs in high-stiffness TG-gels negatively affected cell osteogenic differentiation. When both cell types were cultured in the same TG-gel type and placed into the Transwell system, the stiffness-related influences of Mφs on BMMSCs were significantly altered; both the low- and high-stiffness matrix induced similar levels of BMMSC osteogenesis. Although the best material parameter for synergistically affecting Mφs and BMMSCs remains unknown, our data suggest that Mφ involvement in the co-culture system alters previously identified material-related influences on BMMSCs, such as matrix stiffness-related effects, which were identified based on a culture system involving a single cell type. Such Mφ-stem cell interactions should be considered when establishing proper matrix parameter-associated cell regulation in the development of biomimetic biomaterials for regenerative applications. The substrate stiffness of a scaffold plays critical roles in modulating both reparative cells, such as mesenchymal stem cells (MSCs), and immune cells, such as macrophages (Mφs). Although the influences of material stiffness on either Mφs or MSCs, have been extensively described, how the two cell types respond to matrix cues to dynamically affect each other in a three-dimensional (3D) biosystem remains largely unknown. Here, we report our findings that, in a platform wherein Mφs and bone marrow-derived MSCs coexist, matrix stiffness can influence stem cell fate through both direct matrix-associated regulation and indirect Mφ-based modulation. Our data support future studies of the MSC-Mφ-matrix interplay in the 3D context to optimize matrix parameters for the development of the next biomaterial. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Experimental and numerical study on vibration of the full-revolving propulsion ship stern

    NASA Astrophysics Data System (ADS)

    Liu, Chang-qing; Che, Chi-dong; Shen, Xiao-han

    2015-03-01

    In order to solve the severe vibration problems of an ocean engineering ship with a full-revolving propulsion system, the navigation tests, including forced vibration response test and modal test, are carried out in its stern. It is concluded from the comparison of the time-domain waveform and spectrum from different measurement points that three main factors lead to a high-level stern vibration. Firstly, the specific dynamic stiffness of a water tank is relatively small compared with its neighbor hold, which makes it act like a vibration isolator preventing vibrational energy transmitting to the main hold. Secondly, there exists high-density local modes in the working frequency range of the main engine and thus the local resonance occurs. Thirdly, the abnormal engagement of gears caused by the large deflection of the shaft bearing due to its low mounting rigidity leads to violent extra impulse excitations at high speeds. Then the modification against the dynamic defects is given by simply improving the specific stiffness of the water tanks. And the effect is validated by the FEM calculation. Some important experience is obtained with the problems being solved, which is useful in the design of ships with the same propulsion system. It is also believed that the dynamic consideration is as important as the static analysis for the ships, and that most of the vibration problems may be avoided with a proper acoustic design.

  8. SESAME 7363: A new Li(6)D equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, Daniel Glen; Kress, Joel David; Crockett, Scott

    2015-09-21

    A new Equation of State (EOS) for Lithium 6 Deuteride ( 6LiD) was created, sesame 7363. This EOS was released to the user community under “eos-developmental” as sesame 97363. The construction of this new EOS is a modification of a previously released EOS, sesame 7360 1. Sesame 7360 is too stiff (5-10% excess pressure) at high compressions and high temperatures (ρ = 4-110g/cm 3, T = 30-10,000 eV) compared to orbital-free density-functional theory. Sesame 7363 is softer and gives a better representation of the physics over this range without compromising the agreement with the experimental and simulation data that sesamemore » 7360 was based on.« less

  9. Survey Analysis of Materials Processing Experiments Aboard STS-47: Spacelab J

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum (TM) is a survey outline of materials processing experiments aboard Space Shuttle Mission STS-47: Spacelab J, a joint venture between NASA and the National Space Development Agency of Japan. The mission explored materials processing experiments including electronics and crystal growth materials, metals and alloys, glasses and ceramics, and fluids. Experiments covered include Growth of Silicone Spherical Crystals and Surface Oxidation, Growth Experiment of Narrow Band-Gap Semiconductor Lead-Tin-Tellurium Crystals in Space, Study on Solidification of Immiscible Alloys, Fabrication of Very-Low-Density, High-Stiffness Carbon Fiber/Aluminum Hybridized Composites, High Temperature Behavior of Glass, and Study of Bubble Behavior. The TM underscores the historical significance of these experiments in the context of materials processing in space.

  10. Assessment of in-situ test technology for construction control of base courses and embankments.

    DOT National Transportation Integrated Search

    2004-05-01

    With the coming move from an empirical to mechanistic-empirical pavement design, it is essential to improve the quality control/quality assurance (QC/QA) procedures of compacted materials from a density-based criterion to a stiffness/strength-based c...

  11. Theoretical and experimental investigation of architected core materials incorporating negative stiffness elements

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Keefe, Andrew; Carter, William B.; Henry, Christopher P.; McKnight, Geoff P.

    2014-04-01

    Structural assemblies incorporating negative stiffness elements have been shown to provide both tunable damping properties and simultaneous high stiffness and damping over prescribed displacement regions. In this paper we explore the design space for negative stiffness based assemblies using analytical modeling combined with finite element analysis. A simplified spring model demonstrates the effects of element stiffness, geometry, and preloads on the damping and stiffness performance. Simplified analytical models were validated for realistic structural implementations through finite element analysis. A series of complementary experiments was conducted to compare with modeling and determine the effects of each element on the system response. The measured damping performance follows the theoretical predictions obtained by analytical modeling. We applied these concepts to a novel sandwich core structure that exhibited combined stiffness and damping properties 8 times greater than existing foam core technologies.

  12. Chronic administration of anticonvulsants but not antidepressants impairs bone strength: clinical implications.

    PubMed

    Gold, P W; Pavlatou, M G; Michelson, D; Mouro, C M; Kling, M A; Wong, M-L; Licinio, J; Goldstein, S A

    2015-06-02

    Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age.

  13. Evaluation of patient-rated stiffness associated with fibromyalgia: a post-hoc analysis of 4 pooled, randomized clinical trials of duloxetine.

    PubMed

    Bennett, Robert; Russell, I Jon; Choy, Ernest; Spaeth, Michael; Mease, Philip; Kajdasz, Daniel; Walker, Daniel; Wang, Fujun; Chappell, Amy

    2012-04-01

    Patients with fibromyalgia (FM) rate stiffness as one of the most troublesome symptoms of the disorder. However, there are few published studies that have focused on better understanding the nature of stiffness in FM. The primary objectives of these analyses were to characterize the distribution of stiffness severity in patients at baseline, evaluate changes in stiffness after 12 weeks of treatment with duloxetine, and determine which outcomes were correlated with stiffness. These were post-hoc analyses of 3-month data from 4 randomized, double-blind, placebo-controlled studies that assessed efficacy of duloxetine in adults with FM. Severity of stiffness was assessed by using the Fibromyalgia Impact Questionnaire (FIQ) on a scale from 0 (no stiffness) to 10 (most severe stiffness). The association between changes in stiffness and other measures was evaluated by using Pearson's correlation coefficient. The FIQ total score and items, the Brief Pain Inventory (BPI-modified short form), the Clinical Global Impression-Severity scale, the Multidimensional Fatigue Inventory, the 17-item Hamilton Depression Rating Scale, the Sheehan Disability Scale, the 36-item Short-Form Health Survey, and the EuroQoL Questionnaire-5 Dimensions were evaluated in the correlation analyses. Stepwise linear regression was used to identify the variables that were most highly predictive of the changes in FIQ stiffness. The analysis included 1332 patients (mean age, 50.2 years; 94.7% female; and 87.8% white). The mean (SD) baseline FIQ stiffness score was 7.7 (2.0), and this score correlated with baseline BPI pain score and FIQ function. Duloxetine significantly improved the FIQ stiffness score compared with placebo (P < 0.001) and provided a moderate effect size (0.23 for the 60-mg dose and 0.38 for the 120-mg dose). Changes in stiffness were best correlated (range, 0.52-0.75; all, P < 0.001) with changes in BPI/FIQ pain and interference scores, FIQ nonrefreshing sleep, FIQ anxiety, 36-item Short-Form Health Survey bodily pain, and Sheehan Disability Scale total score. Variables related to severity of pain, pain interfering with daily activities, and physical functioning were predictors of change in stiffness. Stiffness scores were high in this population with FM and best correlated at baseline with BPI pain score and FIQ function. Not unexpectedly, improvement in stiffness with duloxetine correlated with many of the other markers of FM severity, presumably a result of amelioration in FM comorbidities. Copyright © 2012. Published by EM Inc USA.

  14. [Biomechanical study on effects of bone mineral density on fixation strength of expansive pedicle screw].

    PubMed

    Gao, Mingxuan; Li, Xusheng; Zhen, Ping; Wu, Zhigang; Zhou, Shenghu; Tian, Qi; Lei, Wei

    2013-08-01

    To evaluate the fixation strength of expansive pedicle screw (EPS) at different bone mineral density (BMD) levels, further to provide theoretical evidence for the clinical application of the EPS in patients with osteoporosis. Fresh human cadaver spines (T12-L5 spines) were divided into 4 levels: normal BMD, osteopenia, osteoporosis, and severe osteoporosis according to the value of BMD, 12 vertebra in each level. Conventional pedicle screw (CPS) or EPS was implanted into the bilateral vertebra in CPS group and EPS group, respectively, 12 screws in each group per BMD level. Screw pullout tests were conducted. The maximum pullout strength, stiffness, and energy absorption were determined by an AG-IS material testing machine with constant rate of loading in a speed of 5 mm/min. With the decline of BMD from normal to severe osteoporosis level, the maximum pullout strength and the stiffness correspondingly declined (P < 0.05). In CPS group, the energy absorption gradually decreased (P < 0.05); in EPS group, significant difference was found between other different BMD levels (P < 0.05) except between normal BMD and osteopenia and between osteoporosis and severe osteoporosis (P > 0.05). At the same BMD level, the maximum pullout strength of EPS group was significantly larger than that of CPS group (P < 0.05); the stiffness of EPS group was significantly higher than that of CPS group (P < 0.05) except one at normal BMD level; and no significant difference was found in the energy absorption between 2 groups (P > 0.05) except one at osteopenia level. No significant difference was found in maximum pullout strength, stiffness, and energy absorption between EPS group at osteoporosis level and CPS group at osteopenia level (P > 0.05); however, the maximum pullout strength, stiffness, and energy absorption of EPS group at severe osteoporosis level were significantly lower than those of CPS group at osteopenia level (P < 0.05). Compared with CPS, the EPS can significantly improve the fixation strength, especially in patients with osteopenia or osteoporosis.

  15. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation

    PubMed Central

    Swift, Joe; Ivanovska, Irena L.; Buxboim, Amnon; Harada, Takamasa; Dingal, P. C. Dave P.; Pinter, Joel; Pajerowski, J. David; Spinler, Kyle R.; Shin, Jae-Won; Tewari, Manorama; Rehfeldt, Florian; Speicher, David W.; Discher, Dennis E.

    2014-01-01

    Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination. PMID:23990565

  16. Localized tissue mineralization regulated by bone remodelling: A computational approach

    PubMed Central

    Decco, Oscar; Adams, George; Cook, Richard B.; García Aznar, José Manuel

    2017-01-01

    Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent–material density curve. Numerical results are discussed pointing to potential clinical applications. PMID:28306746

  17. Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits.

    PubMed

    Jepsen, Karl J; Evans, Rachel; Negus, Charles H; Gagnier, Joel J; Centi, Amanda; Erlich, Tomer; Hadid, Amir; Yanovich, Ran; Moran, Daniel S

    2013-06-01

    Physiological systems like bone respond to many genetic and environmental factors by adjusting traits in a highly coordinated, compensatory manner to establish organ-level function. To be mechanically functional, a bone should be sufficiently stiff and strong to support physiological loads. Factors impairing this process are expected to compromise strength and increase fracture risk. We tested the hypotheses that individuals with reduced stiffness relative to body size will show an increased risk of fracturing and that reduced strength arises from the acquisition of biologically distinct sets of traits (ie, different combinations of morphological and tissue-level mechanical properties). We assessed tibial functionality retrospectively for 336 young adult women and men engaged in military training, and calculated robustness (total area/bone length), cortical area (Ct.Ar), and tissue-mineral density (TMD). These three traits explained 69% to 72% of the variation in tibial stiffness (p < 0.0001). Having reduced stiffness relative to body size (body weight × bone length) was associated with odds ratios of 1.5 (95% confidence interval [CI], 0.5-4.3) and 7.0 (95% CI, 2.0-25.1) for women and men, respectively, for developing a stress fracture based on radiography and scintigraphy. K-means cluster analysis was used to segregate men and women into subgroups based on robustness, Ct.Ar, and TMD adjusted for body size. Stiffness varied 37% to 42% among the clusters (p < 0.0001, ANOVA). For men, 78% of stress fracture cases segregated to three clusters (p < 0.03, chi-square). Clusters showing reduced function exhibited either slender tibias with the expected Ct.Ar and TMD relative to body size and robustness (ie, well-adapted bones) or robust tibias with reduced residuals for Ct.Ar or TMD relative to body size and robustness (ie, poorly adapted bones). Thus, we show there are multiple biomechanical and thus biological pathways leading to reduced function and increased fracture risk. Our results have important implications for developing personalized preventative diagnostics and treatments. Copyright © 2013 American Society for Bone and Mineral Research.

  18. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.

    PubMed

    Xia, Tingting; Liu, Wanqian; Yang, Li

    2017-06-01

    Substrate stiffness is known to impact characteristics including cell differentiation, proliferation, migration and apoptosis. Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. Gradient stiffness hydrogels are designed by the need to develop biologically friendly materials as extracellular matrix (ECM) alternatives to replace the separated and narrow-ranged hydrogel substrates. Important new discoveries in cell behaviors have been realized with model gradient stiffness hydrogel systems from the two-dimensional (2D) to three-dimensional (3D) scale. Basic and clinical applications for gradient stiffness hydrogels in tissue engineering and regenerative medicine continue to drive the development of stiffness and structure varied hydrogels. Given the importance of gradient stiffness hydrogels in basic research and biomedical applications, there is a clear need for systems for gradient stiffness hydrogel design strategies and their applications. This review will highlight past work in the field of gradient stiffness hydrogels fabrication methods, mechanical property test, applications as well as areas for future study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1799-1812, 2017. © 2017 Wiley Periodicals, Inc.

  19. The role of elastic energy in activities with high force and power requirements: a brief review.

    PubMed

    Wilson, Jacob M; Flanagan, Eamonn P

    2008-09-01

    The purpose of this article is to provide strength and conditioning practitioners with an understanding of the role of elastic energy in activities with high force and power requirements. Specifically, the article covers 1) the nature of elasticity and its application to human participants, 2) the role of elastic energy in activities requiring a stretch-shorten cycle such as the vertical jump, 3) the role of muscular stiffness in athletic performance, 4) the control of muscular stiffness through feedforward and feedback mechanisms, and 5) factors affecting muscular stiffness. Finally, practical applications are provided. In this section, it is suggested that the storage and reuse of elastic energy is optimized at relatively higher levels of stiffness. Because stiffness decreases as fatigue ensues as well as with stretching before an event, the article emphasizes the need for proper preparation phases in a periodized cycle and the avoidance of long static stretches before high-force activities. The importance of teaching athletes to transition from eccentric to concentric movements with minimal time delays is also proposed due to the finding that time delays appear to decrease the reuse of elastic energy. In addition to teaching within the criterion tasks, evidence is provided that minimizing transitions in plyometric training, a technique demonstrated to increase musculotendinous stiffness, can optimize power output in explosive movements. Finally, evidence is provided that training and teaching programs designed to optimize muscular stiffness may protect athletes against sports-related injuries.

  20. Design of Tailored Non-Crimp Fabrics Based on Stitching Geometry

    NASA Astrophysics Data System (ADS)

    Krieger, Helga; Gries, Thomas; Stapleton, Scott E.

    2018-02-01

    Automation of the preforming process brings up two opposing requirements for the used engineering fabric. On the one hand, the fabric requires a sufficient drapeability, or low shear stiffness, for forming into double-curved geometries; but on the other hand, the fabric requires a high form stability, or high shear stiffness, for automated handling. To meet both requirements tailored non-crimp fabrics (TNCFs) are proposed. While the stitching has little structural influence on the final part, it virtually dictates the TNCFs local capability to shear and drape over a mold during preforming. The shear stiffness of TNCFs is designed by defining the local stitching geometry. NCFs with chain stitch have a comparatively high shear stiffness and NCFs with a stitch angle close to the symmetry stitch angle have a very low shear stiffness. A method to design the component specific local stitching parameters of TNCFs is discussed. For validation of the method, NCFs with designed tailored stitching parameters were manufactured and compared to benchmark NCFs with uniform stitching parameters. The designed TNCFs showed both, generally a high form stability and in locally required zones a good drapeability, in drape experiments over an elongated hemisphere.

  1. Architected Lattices with High Stiffness and Toughness via Multicore-Shell 3D Printing.

    PubMed

    Mueller, Jochen; Raney, Jordan R; Shea, Kristina; Lewis, Jennifer A

    2018-03-01

    The ability to create architected materials that possess both high stiffness and toughness remains an elusive goal, since these properties are often mutually exclusive. Natural materials, such as bone, overcome such limitations by combining different toughening mechanisms across multiple length scales. Here, a new method for creating architected lattices composed of core-shell struts that are both stiff and tough is reported. Specifically, these lattices contain orthotropic struts with flexible epoxy core-brittle epoxy shell motifs in the absence and presence of an elastomeric silicone interfacial layer, which are fabricated by a multicore-shell, 3D printing technique. It is found that architected lattices produced with a flexible core-elastomeric interface-brittle shell motif exhibit both high stiffness and toughness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The modal density of composite beams incorporating the effects of shear deformation and rotary inertia

    NASA Astrophysics Data System (ADS)

    Bachoo, Richard; Bridge, Jacqueline

    2018-06-01

    Engineers and designers are often faced with the task of selecting materials that minimizes structural weight whilst meeting the required strength and stiffness. In many cases fibre reinforced composites (FRCs) are the materials of choice since they possess a combination of high strength and low density. Depending on the application, composites are frequently constructed to form long slender beam-like structures or flat thin plate-like structures. Such structures when subjected to random excitation have the potential to excite higher order vibratory modes which can contribute significantly to structure-borne sound. Statistical Energy Analysis (SEA) is a framework for modeling the high frequency vibration of structures. The modal density, which is typically defined as the number of modes per unit Hertz in a frequency band, is a fundamental parameter when applying SEA. This study derives formulas for the modal density of a fibre reinforced composite beam coupled in bending and torsion. The effects of shear deformation and rotary inertia are accounted for in the formulation. The modal density is shown to be insensitive to boundary conditions. Numerical analyses were carried out to investigate the variation of modal density with fibre orientation including and excluding the effects of shear deformation and rotary inertia. It was observed that neglecting such effects leads to underestimating the mode count in a particular frequency band. In each frequency band there exists a fibre orientation for which the modal density is minimized. This angular orientation is shown to be dependent on the shear rigidity as well as the bending, torsional and coupling rigidities. The foregoing observation becomes more pronounced with increasing frequency. The paper also addresses the modal density beyond the wave-mode transition frequency where the beam supports three propagating waves.

  3. A Novel Concept for Safe, Stiffness-Controllable Robot Links.

    PubMed

    Stilli, Agostino; Wurdemann, Helge A; Althoefer, Kaspar

    2017-03-01

    The recent decade has seen an astounding increase of interest and advancement in a new field of robotics, aimed at creating structures specifically for the safe interaction with humans. Softness, flexibility, and variable stiffness in robotics have been recognized as highly desirable characteristics for many applications. A number of solutions were proposed ranging from entirely soft robots (such as those composed mainly from soft materials such as silicone), via flexible continuum and snake-like robots, to rigid-link robots enhanced by joints that exhibit an elastic behavior either implemented in hardware or achieved purely by means of intelligent control. Although these are very good solutions paving the path to safe human-robot interaction, we propose here a new approach that focuses on creating stiffness controllability for the linkages between the robot joints. This article proposes a replacement for the traditionally rigid robot link-the new link is equipped with an additional capability of stiffness controllability. With this added feature, a robot can accurately carry out manipulation tasks (high stiffness), but can virtually instantaneously reduce its stiffness when a human is nearby or in contact with the robot. The key point of the invention described here is a robot link made of an airtight chamber formed by a soft and flexible, but high-strain resistant combination of a plastic mesh and silicone wall. Inflated with air to a high pressure, the mesh silicone chamber behaves like a rigid link; reducing the air pressure, softens the link and rendering the robot structure safe. This article investigates a number of link prototypes and shows the feasibility of the new concept. Stiffness tests have been performed, showing that a significant level of stiffness can be achieved-up to 40 N reaction force along the axial direction, for a 25-mm-diameter sample at 60 kPa, at an axial deformation of 5 mm. The results confirm that this novel concept to linkages for robot manipulators exhibits the beam-like behavior of traditional rigid links when fully pressurized and significantly reduced stiffness at low pressure. The proposed concept has the potential to easily create safe robots, augmenting traditional robot designs.

  4. Increased tea consumption is associated with decreased arterial stiffness in a Chinese population.

    PubMed

    Li, Chung-Hao; Yang, Yi-Ching; Wu, Jin-Shang; Huang, Ying-Hsiang; Lee, Chih-Ting; Lu, Feng-Hwa; Chang, Chih-Jen

    2014-01-01

    Tea has attracted considerable attention for its potential cardioprotective effects. The primary chemical components of tea are thought to have a beneficial effect by reducing arterial stiffness. The objective of this study was to assess the association between tea consumption and brachial-ankle pulse wave velocity (baPWV) in a relatively healthy Chinese population. We enrolled 3,135 apparently healthy subjects from October 2006 to August 2009. Subjects taking medication for diabetes, hypertension, or hyperlipidemia, or with a history of cardiovascular disease, were excluded from the study. The subjects were categorized into three groups according to their tea-drinking habits: (1) none to low (n = 1615), defined as non-habitual tea drinkers, or drinking for <1 year, or drinking ≤150 mL per day for ≥1 year ; (2) moderate tea consumption, defined as drinking for ≥1 year and consumption between 151 and 450 mL per day; and (3) heavy tea consumption, defined as a drinking for ≥1 year and consumption >450 mL per day. Multiple logistic regression was used to determine whether different levels of consumption were independently associated with the highest quartile of baPWV values, defined as ≥1428.5 cm/s. Of the 3,135 subjects, 48.5% had drunk >150 mL of tea per day for at least 1 year. In multivariate regression analysis with adjustment for co-variables, including, age, sex, current smoking, alcohol use, habitual exercise, total cholesterol/high-density lipoprotein cholesterol (TC/HDL-C) ratio >5, obesity, newly diagnosed hypertension and diabetes, subjects with high tea consumption had a decreased risk of highest quartile of baPWV by 22% (odds ratio = 0.78, 95% confidence interval = 0.62-0.98, p = 0.032), while subjects with moderate tea consumption did not (p = 0.742), as compared subjects with none to low tea consumption. High, but not moderate, habitual tea consumption may decrease arterial stiffness.

  5. Increased Tea Consumption Is Associated with Decreased Arterial Stiffness in a Chinese Population

    PubMed Central

    Li, Chung-Hao; Yang, Yi-Ching; Huang, Ying-Hsiang; Lee, Chih-Ting; Lu, Feng-Hwa

    2014-01-01

    Background Tea has attracted considerable attention for its potential cardioprotective effects. The primary chemical components of tea are thought to have a beneficial effect by reducing arterial stiffness. The objective of this study was to assess the association between tea consumption and brachial–ankle pulse wave velocity (baPWV) in a relatively healthy Chinese population. Methods We enrolled 3,135 apparently healthy subjects from October 2006 to August 2009. Subjects taking medication for diabetes, hypertension, or hyperlipidemia, or with a history of cardiovascular disease, were excluded from the study. The subjects were categorized into three groups according to their tea-drinking habits: (1) none to low (n = 1615), defined as non-habitual tea drinkers, or drinking for <1 year, or drinking ≤150 mL per day for ≥1 year ; (2) moderate tea consumption, defined as drinking for ≥1 year and consumption between 151 and 450 mL per day; and (3) heavy tea consumption, defined as a drinking for ≥1 year and consumption >450 mL per day. Multiple logistic regression was used to determine whether different levels of consumption were independently associated with the highest quartile of baPWV values, defined as ≥1428.5 cm/s. Results Of the 3,135 subjects, 48.5% had drunk >150 mL of tea per day for at least 1 year. In multivariate regression analysis with adjustment for co-variables, including, age, sex, current smoking, alcohol use, habitual exercise, total cholesterol/high-density lipoprotein cholesterol (TC/HDL-C) ratio >5, obesity, newly diagnosed hypertension and diabetes, subjects with high tea consumption had a decreased risk of highest quartile of baPWV by 22% (odds ratio = 0.78, 95% confidence interval = 0.62–0.98, p = 0.032), while subjects with moderate tea consumption did not (p = 0.742), as compared subjects with none to low tea consumption. Conclusions High, but not moderate, habitual tea consumption may decrease arterial stiffness. PMID:24465848

  6. Higher Matrix Stiffness Upregulates Osteopontin Expression in Hepatocellular Carcinoma Cells Mediated by Integrin β1/GSK3β/β-Catenin Signaling Pathway.

    PubMed

    You, Yang; Zheng, Qiongdan; Dong, Yinying; Wang, Yaohui; Zhang, Lan; Xue, Tongchun; Xie, Xiaoying; Hu, Chao; Wang, Zhiming; Chen, Rongxin; Wang, Yanhong; Cui, Jiefeng; Ren, Zhenggang

    2015-01-01

    Increased stromal stiffness is associated with hepatocellular carcinoma (HCC) development and progression. However, the molecular mechanism by which matrix stiffness stimuli modulate HCC progress is largely unknown. In this study, we explored whether matrix stiffness-mediated effects on osteopontin (OPN) expression occur in HCC cells. We used a previously reported in vitro culture system with tunable matrix stiffness and found that OPN expression was remarkably upregulated in HCC cells with increasing matrix stiffness. Furthermore, the phosphorylation level of GSK3β and the expression of nuclear β-catenin were also elevated, indicating that GSK3β/β-catenin pathway might be involved in OPN regulation. Knock-down analysis of integrin β1 showed that OPN expression and p-GSK3β level were downregulated in HCC cells grown on high stiffness substrate compared with controls. Simultaneously, inhibition of GSK-3β led to accumulation of β-catenin in the cytoplasm and its enhanced nuclear translocation, further triggered the rescue of OPN expression, suggesting that the integrin β1/GSK-3β/β-catenin pathway is specifically activated for matrix stiffness-mediated OPN upregulation in HCC cells. Tissue microarray analysis confirmed that OPN expression was positively correlated with the expression of LOX and COL1. Taken together, high matrix stiffness upregulated OPN expression in HCC cells via the integrin β1/GSK-3β/β-catenin signaling pathway. It highlights a new insight into a pathway involving physical mechanical signal and biochemical signal molecules which contributes to OPN expression in HCC cells.

  7. Composite sizing and ply orientation for stiffness requirements using a large finite element structural model

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.; Gentile, D. P.

    1989-01-01

    A NASTRAN bulk dataset preprocessor was developed to facilitate the integration of filamentary composite laminate properties into composite structural resizing for stiffness requirements. The NASCOMP system generates delta stiffness and delta mass matrices for input to the flutter derivative program. The flutter baseline analysis, derivative calculations, and stiffness and mass matrix updates are controlled by engineer defined processes under an operating system called CBUS. A multi-layered design variable grid system permits high fidelity resizing without excessive computer cost. The NASCOMP system uses ply layup drawings for basic input. The aeroelastic resizing for stiffness capability was used during an actual design exercise.

  8. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Cazzolato, Benjamin; Robertson, William S. P.; Zander, Anthony

    2015-12-01

    In laboratories and high-tech manufacturing applications, passive vibration isolators are often used to isolate vibration sensitive equipment from ground-borne vibrations. However, in traditional passive isolation devices, where the payload weight is supported by elastic structures with finite stiffness, a design trade-off between the load capacity and the vibration isolation performance is unavoidable. Low stiffness springs are often required to achieve vibration isolation, whilst high stiffness is desired for supporting payload weight. In this paper, a novel design of a six degree of freedom (six-dof) vibration isolator is presented, as well as the control algorithms necessary for stabilising the passively unstable maglev system. The system applies magnetic levitation as the payload support mechanism, which realises inherent quasi-zero stiffness levitation in the vertical direction, and zero stiffness in the other five dofs. While providing near zero stiffness in multiple dofs, the design is also able to generate static magnetic forces to support the payload weight. This negates the trade-off between load capacity and vibration isolation that often exists in traditional isolator designs. The paper firstly presents the novel design concept of the isolator and associated theories, followed by the mechanical and control system designs. Experimental results are then presented to demonstrate the vibration isolation performance of the proposed system in all six directions.

  9. Measuring the Characteristic Topography of Brain Stiffness with Magnetic Resonance Elastography

    PubMed Central

    Murphy, Matthew C.; Huston, John; Jack, Clifford R.; Glaser, Kevin J.; Senjem, Matthew L.; Chen, Jun; Manduca, Armando; Felmlee, Joel P.; Ehman, Richard L.

    2013-01-01

    Purpose To develop a reliable magnetic resonance elastography (MRE)-based method for measuring regional brain stiffness. Methods First, simulation studies were used to demonstrate how stiffness measurements can be biased by changes in brain morphometry, such as those due to atrophy. Adaptive postprocessing methods were created that significantly reduce the spatial extent of edge artifacts and eliminate atrophy-related bias. Second, a pipeline for regional brain stiffness measurement was developed and evaluated for test-retest reliability in 10 healthy control subjects. Results This technique indicates high test-retest repeatability with a typical coefficient of variation of less than 1% for global brain stiffness and less than 2% for the lobes of the brain and the cerebellum. Furthermore, this study reveals that the brain possesses a characteristic topography of mechanical properties, and also that lobar stiffness measurements tend to correlate with one another within an individual. Conclusion The methods presented in this work are resistant to noise- and edge-related biases that are common in the field of brain MRE, demonstrate high test-retest reliability, and provide independent regional stiffness measurements. This pipeline will allow future investigations to measure changes to the brain’s mechanical properties and how they relate to the characteristic topographies that are typical of many neurologic diseases. PMID:24312570

  10. Substructure Versus Property-Level Dispersed Modes Calculation

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.; Peck, Jeff A.; Bush, T. Jason; Fulcher, Clay W.

    2016-01-01

    This paper calculates the effect of perturbed finite element mass and stiffness values on the eigenvectors and eigenvalues of the finite element model. The structure is perturbed in two ways: at the "subelement" level and at the material property level. In the subelement eigenvalue uncertainty analysis the mass and stiffness of each subelement is perturbed by a factor before being assembled into the global matrices. In the property-level eigenvalue uncertainty analysis all material density and stiffness parameters of the structure are perturbed modified prior to the eigenvalue analysis. The eigenvalue and eigenvector dispersions of each analysis (subelement and property-level) are also calculated using an analytical sensitivity approximation. Two structural models are used to compare these methods: a cantilevered beam model, and a model of the Space Launch System. For each structural model it is shown how well the analytical sensitivity modes approximate the exact modes when the uncertainties are applied at the subelement level and at the property level.

  11. Concurrent design of composite materials and structures considering thermal conductivity constraints

    NASA Astrophysics Data System (ADS)

    Jia, J.; Cheng, W.; Long, K.

    2017-08-01

    This article introduces thermal conductivity constraints into concurrent design. The influence of thermal conductivity on macrostructure and orthotropic composite material is extensively investigated using the minimum mean compliance as the objective function. To simultaneously control the amounts of different phase materials, a given mass fraction is applied in the optimization algorithm. Two phase materials are assumed to compete with each other to be distributed during the process of maximizing stiffness and thermal conductivity when the mass fraction constraint is small, where phase 1 has superior stiffness and thermal conductivity whereas phase 2 has a superior ratio of stiffness to density. The effective properties of the material microstructure are computed by a numerical homogenization technique, in which the effective elasticity matrix is applied to macrostructural analyses and the effective thermal conductivity matrix is applied to the thermal conductivity constraint. To validate the effectiveness of the proposed optimization algorithm, several three-dimensional illustrative examples are provided and the features under different boundary conditions are analysed.

  12. Ritz method for transient response in systems having unsymmetric stiffness

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1989-01-01

    The DMAP coding was automated to such an extent by using the device of bubble vectors, that it is useable for analyses in its present form. This feasibility study demonstrates that the Ritz Method is so compelling as to warrant coding its modules in FORTRAN and organizing the resulting coding into a new Rigid Format. Even though this Ritz technique was developed for unsymmetric stiffness matrices, it offers advantages to problems with symmetric stiffnesses. If used for the symmetric case the solution would be simplified to one set of modes, because the adjoint would be the same as the primary. Its advantage in either type of symmetry over a classical eigenvalue modal expansion is that information density per Ritz mode is far richer than per eigenvalue mode; thus far fewer modes would be needed for the same accuracy and every mode would actively participate in the response. Considerable economy can be realized in adapting Ritz vectors for modal solutions. This new Ritz capability now makes NASTRAN even more powerful than before.

  13. Unusual twig "twistiness" in pawpaw (Asimina triloba) provides biomechanical protection for distal foliage in high winds.

    PubMed

    Goodrich, Katherine R; Ortiz, Luis A; Coughlin, David J

    2016-11-01

    Deciduous woody species invest considerable resources in the growth of new foliage and distal stems. This new growth is at risk for mechanical damage from high winds and storms. Pawpaw has large leaves borne distally on thin twigs. Following a storm, pawpaw branches sometimes exhibit a persistent "flipped" orientation, slowly returning upright over 24 h. We investigated biomechanical properties of pawpaw twigs, comparing them to co-occurring species with similarly high leaf areas and loads, which do not exhibit this "flipping". Our goal was to determine biomechanical and structural properties in these species and how variation in form might relate to functional differences. We measured flexural stiffness, torsional stiffness, and viscoelastic creep in pawpaw and co-occurring trees Liriodendron tulipifera and Carya cordiformis. We also recorded twig/foliage reconfiguration in high winds. We stained thin cross sections of distal twigs and recorded images using fluorescent light microscopy. Flexural and torsional stiffness increased with twig radius in pawpaw and tulip tree, although torsional stiffness increased more slowly in pawpaw. Pawpaw had a high ratio of flexural to torsional stiffness (EI/GJ) across a range of twig radii and significant viscoelastic creep compared with the other species. Biomechanical data showed that pawpaw twigs were "twistier" than the comparison species, which were shown previously to alleviate drag-induced damage by reorienting petioles and leaves. Pawpaw has an unusual strategy of low torsional stiffness in twigs, allowing for reorientation of the entire distal appendage, likely minimizing drag-induced damage in storms. © 2016 Botanical Society of America.

  14. Bose-Einstein-condensed scalar field dark matter and the gravitational wave background from inflation: New cosmological constraints and its detectability by LIGO

    NASA Astrophysics Data System (ADS)

    Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja

    2017-09-01

    We consider an alternative to weakly interacting massive particle (WIMP) cold dark matter (CDM)—ultralight bosonic dark matter (m ≳10-22 eV /c2) described by a complex scalar field (SFDM) with a global U (1 ) symmetry—for which the comoving particle number density or charge density is conserved after particle production during standard reheating. We allow for a repulsive self-interaction. In a Λ SFDM universe, SFDM starts out relativistic, evolving from stiff (w =1 ) to radiation-like (w =1 /3 ), before becoming nonrelativistic at late times (w =0 ). Thus, before the familiar radiation-dominated era, there is an earlier era of stiff-SFDM domination. During both the stiff-SFDM-dominated and radiation-dominated eras, the expansion rate is higher than in Λ CDM . The SFDM particle mass m and quartic self-interaction coupling strength λ are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during big bang nucleosynthesis, and zeq, the redshift of matter-radiation equality. Furthermore, since the stochastic gravitational-wave background (SGWB) from inflation is amplified during the stiff-SFDM-dominated era, it can contribute a radiation-like component large enough to affect these observables by further boosting the expansion rate after the stiff era ends. Remarkably, this same amplification makes detection of the SGWB possible at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo and LISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by LIGO for a broad range of reheat temperatures Treheat, for values of the tensor-to-scalar ratio r currently allowed by cosmic microwave background polarization measurements. For a given r and λ /(m c2)2, the marginally allowed Λ SFDM model for each Treheat has the smallest m that satisfies the cosmological constraints, and maximizes the present SGWB energy density for that Treheat. This SGWB is then maximally detectable for values of Treheat for which modes that reenter the horizon when reheating ended have frequencies today that lie within the LIGO sensitive band. For example, for the family of marginally allowed models with r =0.01 and λ /(m c2)2=10-18 eV-1 cm3 , the maximally detectable Λ SFDM model has Treheat≃2 ×104 GeV and m ≃1.6 ×10-19 eV /c2, for which we predict an aLIGO O1 run detection with signal-to-noise ratio of ˜10 . We show that the null detection of the SGWB recently reported by the aLIGO O1 run excludes the parameter range 8.75 ×103≲Treheat(GeV )≲1.7 ×105 for this illustrative family at 95% confidence, thereby demonstrating that GW detection experiments can already place a new kind of cosmological constraint on SFDM. A wider range of SFDM parameters and reheat temperatures should be accessible to aLIGO/Virgo O5, with the potential to detect this unique signature of the Λ SFDM model. For this same illustrative family, for example, a 3 σ detection is predicted for 600 ≲Treheat(GeV )≲107.

  15. Mapping the natural variation in whole bone stiffness and strength across skeletal sites.

    PubMed

    Schlecht, Stephen H; Bigelow, Erin M R; Jepsen, Karl J

    2014-10-01

    Traits of the skeletal system are coordinately adjusted to establish mechanical homeostasis in response to genetic and environmental factors. Prior work demonstrated that this 'complex adaptive' process is not perfect, revealing a two-fold difference in whole bone stiffness of the tibia across a population. Robustness (specifically, total cross-sectional area relative to length) varies widely across skeletal sites and between sexes. However, it is unknown whether the natural variation in whole bone stiffness and strength also varies across skeletal sites and between men and women. We tested the hypotheses that: 1) all major long bones of the appendicular skeleton demonstrate inherent, systemic constraints in the degree to which morphological and compositional traits can be adjusted for a given robustness; and 2) these traits covary in a predictable manner independent of body size and robustness. We assessed the functional relationships among robustness, cortical area (Ct.Ar), cortical tissue mineral density (Ct.TMD), and bone strength index (BSI) across the long bones of the upper and lower limbs of 115 adult men and women. All bones showed a significant (p<0.001) positive regression between BSI and robustness after adjusting for body size, with slender bones being 1.7-2.3 times less stiff and strong in men and 1.3-2.8 times less stiff and strong in women compared to robust bones. Our findings are the first to document the natural inter-individual variation in whole bone stiffness and strength that exist within populations and that is predictable based on skeletal robustness for all major long bones. Documenting and further understanding this natural variation in strength may be critical for differentially diagnosing and treating skeletal fragility. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Anagliptin, A Dipeptidyl Peptidase-4 Inhibitor Ameliorates Arterial Stiffness in Association with Reduction of Remnant-Like Particle Cholesterol and Alanine Transaminase Levels in Type 2 Diabetic Patients.

    PubMed

    Tahara, Nobuhiro; Yamagishi, Sho-Ichi; Bekki, Munehisa; Kodama, Norihiro; Nakamura, Tomohisa; Sugiyama, Yoichi; Oshige, Tamami; Kumashiro, Yuki; Honda, Akihiro; Tahara, Atsuko; Igata, Sachiyo; Fukumoto, Yoshihiro

    2016-01-01

    Inhibition of dipeptidyl peptidase-4 (DPP-4) has been proposed as a therapeutic target for type 2 diabetes (T2DM). Arterial stiffness, a predictor of future cardiovascular events and all-cause mortality, is augmented in these patients. However, effects of DPP-4 inhibitors on arterial stiffness remain unknown. In this study, we compared effects of anagliptin, an inhibitor of DPP-4 on arterial stiffness evaluated by cardio-ankle vascular index (CAVI) with those of an equipotent glucose-lowering agent, glimepiride in patients with T2DM. The study involved 50 consecutive outpatients (33 males and 17 females; mean age of 72.5±9.5 years) who visited our hospitals for a risk-screening test or treatment for T2DM. They underwent complete history and physical examination, and determination of blood chemistry and anthropometric variables, and then were randomized to receive either anagliptin (n=26) or glimepiride (n=24) for 6 months. After 6-months treatment, fasting plasma glucose and HbA1c values were comparably reduced in both groups. Anagliptin, but not glimepiride treatment significantly decreased low-density lipoprotein cholesterol, malondialdehyde-modified LDL, remnant-like particle (RLP) cholesterol, CAVI, alanine transaminase (ALT), γ-glutamyl transferase and visceral fat volume. In multiple regression analysis, absolute changes from baseline of RLP cholesterol and ALT after anagliptin treatment for 6 months (ΔRLP cholesterol and ΔALT) were independently correlated with ΔCAVI (R2=0.445). The present study suggests that anagliptin may exert a beneficial effect on arterial stiffness in patients with T2DM, which is independent of its blood glucose-lowering property. Anagliptin may ameliorate arterial stiffness partly via reduction of RLP cholesterol and improvement of liver function.

  17. Mapping the natural variation in whole bone stiffness and strength across skeletal sites

    PubMed Central

    Schlecht, Stephen H.; Bigelow, Erin M.R.; Jepsen, Karl J.

    2016-01-01

    Traits of the skeletal system are coordinately adjusted to establish mechanical homeostasis in response to genetic and environmental factors. Prior work demonstrated that this `complex adaptive' process is not perfect, revealing a two-fold difference in whole bone stiffness of the tibia across a population. Robustness (specifically, total cross-sectional area relative to length) varies widely across skeletal sites and between sexes. However, it is unknown whether the natural variation in whole bone stiffness and strength also varies across skeletal sites and between men and women. We tested the hypotheses that: 1) all major long bones of the appendicular skeleton demonstrate inherent, systemic constraints in the degree to which morphological and compositional traits can be adjusted for a given robustness; and 2) these traits covary in a predictable manner independent of body size and robustness. We assessed the functional relationships among robustness, cortical area (Ct.Ar), cortical tissue mineral density (Ct.TMD), and bone strength index (BSI) across the long bones of the upper and lower limbs of 115 adult men and women. All bones showed a significant (p < 0.001) positive regression between BSI and robustness after adjusting for body size, with slender bones being 1.7–2.3 times less stiff and strong in men and 1.3–2.8 times less stiff and strong in women compared to robust bones. Our findings are the first to document the natural inter-individual variation in whole bone stiffness and strength that exist within populations and that is predictable based on skeletal robustness for all major long bones. Documenting and further understanding this natural variation in strength may be critical for differentially diagnosing and treating skeletal fragility. PMID:24999223

  18. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  19. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  20. Needleboards--An exploratory study

    Treesearch

    E.T. Howard

    1974-01-01

    Medium-density hot-pressed boards were prepared from slash pine needles that had been: 1) flattened, 2) benzenesoaked, 3) flattened and then benzene-soaked, 4) mercerized, or 5) given no treatment. None of the boards had satisfactory properties for conventional uses. Mercerization improved bending strength and internal bond of the boards, but stiffness and dimensional...

  1. Dietary Habits Prone to Lifestyle-Related Disease

    ERIC Educational Resources Information Center

    Nagai, M.; Uyama, O.; Kaji, H.

    2013-01-01

    Objective: To evaluate relations among dietary habits, bone mineral density (BMD), visceral fat area (VFA), and arterial stiffness and recommend better dietary habits. Methods: One hundred and six men and 381 women (aged 18-84) received a health checkup and answered questionnaires, with subsequent measurements of BMD (speed of sound), VFA…

  2. First-principles study of crystal structure, elastic stiffness constants, piezoelectric constants, and spontaneous polarization of orthorhombic Pna21-M2O3 (M = Al, Ga, In, Sc, Y)

    NASA Astrophysics Data System (ADS)

    Shimada, Kazuhiro

    2018-03-01

    We perform first-principles calculations to investigate the crystal structure, elastic and piezoelectric properties, and spontaneous polarization of orthorhombic M2O3 (M = Al, Ga, In, Sc, Y) with Pna21 space group based on density functional theory. The lattice parameters, full elastic stiffness constants, piezoelectric stress and strain constants, and spontaneous polarization are successfully predicted. Comparison with available experimental and computational results indicates the validity of our computational results. Detailed analysis of the results clarifies the difference in the bonding character and the origin of the strong piezoelectric response and large spontaneous polarization.

  3. A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype.

    PubMed

    Cassereau, Luke; Miroshnikova, Yekaterina A; Ou, Guanqing; Lakins, Johnathon; Weaver, Valerie M

    2015-01-10

    Extracellular matrix (ECM) structure, composition, and stiffness have profound effects on tissue development and pathologies such as cardiovascular disease and cancer. Accordingly, a variety of synthetic hydrogel systems have been designed to study the impact of ECM composition, density, mechanics, and topography on cell and tissue phenotype. However, these synthetic systems fail to accurately recapitulate the biological properties and structure of the native tissue ECM. Natural three dimensional (3D) ECM hydrogels, such as collagen or hyaluronic acid, feature many of the chemical and physical properties of tissue, yet, these systems have limitations including the inability to independently control biophysical properties such as stiffness and pore size. Here, we present a 3D tension bioreactor system that permits precise mechanical tuning of collagen hydrogel stiffness, while maintaining consistent composition and pore size. We achieve this by mechanically loading collagen hydrogels covalently-conjugated to a polydimethylsiloxane (PDMS) membrane to induce hydrogel stiffening. We validated the biological application of this system with oncogenically transformed mammary epithelial cell organoids embedded in a 3D collagen I hydrogel, either uniformly stiffened or calibrated to create a gradient of ECM stiffening, to visually demonstrate the impact of ECM stiffening on transformation and tumor cell invasion. As such, this bioreactor presents the first tunable 3D natural hydrogel system that is capable of independently assessing the role of ECM stiffness on tissue phenotype. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  5. Lamb Wave Stiffness Characterization of Composites Undergoing Thermal-Mechanical Aging

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Madaras, Eric I.

    2004-01-01

    The introduction of new, advanced composite materials into aviation systems requires a thorough understanding of the long term effects of combined thermal and mechanical loading upon those materials. Analytical methods investigating the effects of intense thermal heating combined with mechanical loading have been investigated. The damage mechanisms and fatigue lives were dependent on test parameters as well as stress levels. Castelli, et al. identified matrix dominated failure modes for out-of-phase cycling and fiber dominated damage modes for in-phase cycling. In recent years, ultrasonic methods have been developed that can measure the mechanical stiffness of composites. To help evaluate the effect of aging, a suitably designed Lamb wave measurement system is being used to obtain bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system works by exciting an antisymmetric Lamb wave and calculating the velocity at each frequency from the known transducer separation and the measured time-of-flight. The same peak in the waveforms received at various distances is used to measure the time difference between the signals. The velocity measurements are accurate and repeatable to within 1% resulting in reconstructed stiffness values repeatable to within 4%. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. A mechanical scanner is used to move the sensors over the surface to map the time-of-flight, velocity, or stiffnesses of the entire specimen. Access to only one side of the material is required and no immersion or couplants are required because the sensors are dry coupled to the surface of the plate. In this study, the elastic stiffnesses D(sub 11), D(sub 22), A(sub 44), and A(sub 55) as well as time-of-flight measurements for composite samples that have undergone combined thermal and mechanical aging for a duration of 10,000 hours are reported.

  6. I-Love-Q to the extreme

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Yunes, Nicolás

    2018-01-01

    Certain bulk properties of neutron stars, in particular their moment of inertia, rotational quadrupole moment and tidal Love number, when properly normalized, are related to one another in a nearly equation of state independent way. The goal of this paper is to test these relations with extreme equations of state at supranuclear densities constrained to satisfy only a handful of generic, physically sensible conditions. By requiring that the equation of state be (i) barotropic and (ii) its associated speed of sound be real, we construct a piecewise function that matches a tabulated equation of state at low densities, while matching a stiff equation of state parametrized by its sound speed in the high-density region. We show that the I-Love-Q relations hold to 1 percent with this class of equations of state, even in the extreme case where the speed of sound becomes superluminal and independently of the transition density. We also find further support for the interpretation of the I-Love-Q relations as an emergent symmetry due to the nearly constant eccentricity of isodensity contours inside the star. These results reinforce the robustness of the I-Love-Q relations against our current incomplete picture of physics at supranuclear densities, while strengthening our confidence in the applicability of these relations in neutron star astrophysics.

  7. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

    PubMed

    Wu, Yiming; Peng, Jun; Campbell, Kenneth B; Labeit, Siegfried; Granzier, Henk

    2007-01-01

    Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin expression was determined by transcript analysis, gel electrophoresis and immunoelectron microscopy. Diastolic function was measured at the isolated heart, skinned muscle, and cardiac myocyte levels. We found that hypothyroidism resulted in expression of a large titin isoform, the abundance of which gradually increased with time to become the most dominant isoform in long-term hypothyroid rats. This isoform co-migrates on high-resolution gels with fetal cardiac titin. Transcript analysis on myocardium of long-term PTU rats, provided evidence for expression of additional PEVK and Ig domain exons, similar to what has been described in fetal myocardium. Consistent with the expression of a large titin isoform, titin-based restoring and passive forces were significantly reduced in single cardiac myocytes and muscle strips of long-term hypothyroid rats. Overall muscle stiffness and LV diastolic wall stiffness were increased, however, due to increased collagen-based stiffness. We conclude that long term hypothyroidism triggers expression of a large cardiac titin isoform and that the ensuing reduction in titin-based passive stiffness functions as a compensatory mechanism to reduce LV wall stiffness.

  8. Process combinations for the manufacturing of metal-plastic hybrid parts

    NASA Astrophysics Data System (ADS)

    Drossel, W.-G.; Lies, C.; Albert, A.; Haase, R.; Müller, R.; Scholz, P.

    2016-03-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts.

  9. A flexible cruciform journal bearing mount

    NASA Technical Reports Server (NTRS)

    Frost, A. E.; Geiger, W. A.

    1973-01-01

    Flexible mount achieves low roll, pitch and yaw stiffnesses while maintaining high radial stiffness by holding bearing pad in fixed relationship to deep web cruciform member and holding this member in fixed relationship to bearing support. This mount has particular application in small, high performance gas turbines.

  10. Biomechanical response to ankle-foot orthosis stiffness during running.

    PubMed

    Russell Esposito, Elizabeth; Choi, Harmony S; Owens, Johnny G; Blanck, Ryan V; Wilken, Jason M

    2015-12-01

    The Intrepid Dynamic Exoskeletal Orthosis (IDEO) is an ankle-foot orthosis developed to address the high rates of delayed amputation in the military. Its use has enabled many wounded Service Members to run again. During running, stiffness is thought to influence an orthosis' energy storage and return mechanical properties. This study examined the effect of orthosis stiffness on running biomechanics in patients with lower limb impairments who had undergone unilateral limb salvage. Ten patients with lower limb impairments underwent gait analysis at a self-selected running velocity. 1. Nominal (clinically-prescribed), 2. Stiff (20% stiffer than nominal), and 3. Compliant (20% less stiff than nominal) ankle-foot orthosis stiffnesses were tested. Ankle joint stiffness was greatest in the stiffest strut and lowest in the compliant strut, however ankle mechanical work remained unchanged. Speed, stride length, cycle time, joint angles, moments, powers, and ground reaction forces were not significantly different among stiffness conditions. Ankle joint kinematics and ankle, knee and hip kinetics were different between limbs. Ankle power, in particular, was lower in the injured limb. Ankle-foot orthosis stiffness affected ankle joint stiffness but did not influence other biomechanical parameters of running in individuals with unilateral limb salvage. Foot strike asymmetries may have influenced the kinetics of running. Therefore, a range of stiffness may be clinically appropriate when prescribing ankle-foot orthoses for active individuals with limb salvage. Published by Elsevier Ltd.

  11. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    This paper presents a computational study of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magnetomechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.25; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping.

  12. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  13. Numerical investigation of the relationship between magnetic stiffness and minor loop size in the HTS levitation system

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Chengshan

    2017-10-01

    The effect of minor loop size on the magnetic stiffness has not been paid attention to by most researchers in experimental and theoretical studies about the high temperature superconductor (HTS) magnetic levitation system. In this work, we numerically investigate the average magnetic stiffness obtained by the minor loop traverses Δz (or Δx) varying from 0.1 mm to 2 mm in zero field cooling and field cooling regimes, respectively. The approximate values of the magnetic stiffness with zero traverse are obtained using the method of linear extrapolation. Compared with the average magnetic stiffness gained by any minor loop traverse, these approximate values are Not always close to the average magnetic stiffness produced by the smallest size of minor loops. The relative deviation ranges of average magnetic stiffness gained by the usually minor loop traverse (1 or 2 mm) are presented by the ratios of approximate values to average stiffness for different moving processes and two typical cooling conditions. The results show that most of average magnetic stiffness are remarkably influenced by the sizes of minor loop, which indicates that the magnetic stiffness obtained by a single minor loop traverse Δ z or Δ x, for example, 1 or 2 mm, can be generally caused a large deviation.

  14. External rotation elastic bands at the lower limb decrease rearfoot eversion during walking: a preliminary proof of concept

    PubMed Central

    Souza, Thales R.; Araújo, Vanessa L.; Silva, Paula L.; Carvalhais, Viviane O. C.; Resende, Renan A.; Fonseca, Sérgio T.

    2016-01-01

    ABSTRACT Background Reducing rearfoot eversion is a commonly desired effect in clinical practice to prevent or treat musculoskeletal dysfunction. Interventions that pull the lower limb into external rotation may reduce rearfoot eversion. Objective This study investigated whether the use of external rotation elastic bands, of different levels of stiffness, will decrease rearfoot eversion during walking. We hypothesized that the use of elastic bands would decrease rearfoot eversion and that the greater the band stiffness, the greater the eversion reduction. Method Seventeen healthy participants underwent three-dimensional kinematic analysis of the rearfoot and shank. The participants walked on a treadmill with and without high- and low-stiffness bands. Frontal-plane kinematics of the rearfoot-shank joint complex was obtained during the stance phase of walking. Repeated-measures ANOVAs were used to compare discrete variables that described rearfoot eversion-inversion: mean eversion-inversion; eversion peak; and eversion-inversion range of motion. Results The low-stiffness and high-stiffness bands significantly decreased eversion and increased mean eversion-inversion (p≤0.037) and eversion peak (p≤0.006) compared with the control condition. Both bands also decreased eversion-inversion range of motion (p≤0.047) compared with control by reducing eversion. The high-stiffness band condition was not significantly different from the low-stiffness band condition for any variables (p≥0.479). Conclusion The results indicated that the external rotation bands decreased rearfoot eversion during walking. This constitutes preliminary experimental evidence suggesting that increasing external rotation moments at the lower limb may reduce rearfoot eversion, which needs further testing. PMID:27849289

  15. Thermo-mechanical characterization of silicone foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangaswamy, Partha; Smith, Nickolaus A.; Cady, Carl M.

    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compressionmore » for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures« less

  16. A novel cell-stiffness-fingerprinting analysis by scanning atomic force microscopy: Comparison of fibroblasts and diverse cancer cell lines

    PubMed Central

    Zoellner, Hans; Paknejad, Navid; Manova, Katia; Moore, Malcolm

    2016-01-01

    Differing stimuli affect cell-stiffness while cancer metastasis further relates to cell-stiffness. Cell-stiffness determined by atomic Force Microscopy (AFM) has been limited by measurement over nuclei to avoid spurious substratum effects in thin cytoplasmic domains, and we sought to develop a more complete approach including cytoplasmic areas. 90 μm square fields were recorded from 10 sites of cultured Human Dermal Fibroblasts (HDF), and 3 sites each for melanoma (MM39, WM175, MeIRMu), osteosarcoma (SAOS-2, U2OS), and ovarian carcinoma (COLO316, PEO4) cell lines, each site providing 1,024 measurements as 32x32 square grids. Stiffness recorded below 0.8 μm height was occasionally influenced by substratum, so only stiffness recorded above 0.8 μm was analyzed, but all sites were included for height and volume analysis. COLO316 had the lowest cell height and volume, followed by HDF (p<0.0001), and then PEO4, SAOS-2, MeIRMu, WM175, U2OS, and MM39. HDF were more stiff than all other cells (p < 0.0001), while in descending order of stiffness were PEO4, COLO316, WM175, SAOS-2, U2OS, MM39, and MeIRMu (p < 0.02). Stiffness-fingerprints comprised scattergrams of stiffness values plotted against the height at which each stiffness value was recorded, and appeared unique for each cell type studied, although in most cases the overall form of fingerprints was similar, with maximum stiffness at low height measurements and a second lower peak occurring at high height levels. We suggest our stiffness-fingerprint analytical method provides a more nuanced description than previously reported, and will facilitate study of the stiffness response to cell stimulation. PMID:26357955

  17. Self-interaction corrected LDA + U investigations of BiFeO3 properties: plane-wave pseudopotential method

    NASA Astrophysics Data System (ADS)

    Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.

    2015-11-01

    The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.

  18. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    PubMed Central

    Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.

    2013-01-01

    The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175

  19. Bending stiffness of catheters and guide wires.

    PubMed

    Wünsche, P; Werner, C; Bloss, P

    2002-01-01

    An important property of catheters and guide wires to assess their pushability behavior is their bending stiffness. To measure bending stiffness, a new bending module with a new clamping device was developed. This module can easily be mounted in commercially available tensile testing equipment, where bending force and deflection due to the bending force can be measured. To achieve high accuracy for the bending stiffness, the bending distance has to be measured with even higher accuracy by using a laser-scan micrometer. Measurement results of angiographic catheters and guide wires were presented and discussed. The bending stiffness shows a significant dependence on the angle of the test specimen's rotation around its length axis.

  20. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy

    PubMed Central

    2013-01-01

    Background Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity” vs. “contracture”). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Methods Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. Results In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Conclusions Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy. PMID:23880287

  1. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy.

    PubMed

    de Gooijer-van de Groep, Karin L; de Vlugt, Erwin; de Groot, Jurriaan H; van der Heijden-Maessen, Hélène C M; Wielheesen, Dennis H M; van Wijlen-Hempel, Rietje M S; Arendzen, J Hans; Meskers, Carel G M

    2013-07-23

    Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: "spasticity" vs. "contracture"). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy.

  2. Performance variation due to stiffness in a tuna-inspired flexible foil model.

    PubMed

    Rosic, Mariel-Luisa N; Thornycroft, Patrick J M; Feilich, Kara L; Lucas, Kelsey N; Lauder, George V

    2017-01-17

    Tuna are fast, economical swimmers in part due to their stiff, high aspect ratio caudal fins and streamlined bodies. Previous studies using passive caudal fin models have suggested that while high aspect ratio tail shapes such as a tuna's generally perform well, tail performance cannot be determined from shape alone. In this study, we analyzed the swimming performance of tuna-tail-shaped hydrofoils of a wide range of stiffnesses, heave amplitudes, and frequencies to determine how stiffness and kinematics affect multiple swimming performance parameters for a single foil shape. We then compared the foil models' kinematics with published data from a live swimming tuna to determine how well the hydrofoil models could mimic fish kinematics. Foil kinematics over a wide range of motion programs generally showed a minimum lateral displacement at the narrowest part of the foil, and, immediately anterior to that, a local area of large lateral body displacement. These two kinematic patterns may enhance thrust in foils of intermediate stiffness. Stiffness and kinematics exhibited subtle interacting effects on hydrodynamic efficiency, with no one stiffness maximizing both thrust and efficiency. Foils of intermediate stiffnesses typically had the greatest coefficients of thrust at the highest heave amplitudes and frequencies. The comparison of foil kinematics with tuna kinematics showed that tuna motion is better approximated by a zero angle of attack foil motion program than by programs that do not incorporate pitch. These results indicate that open questions in biomechanics may be well served by foil models, given appropriate choice of model characteristics and control programs. Accurate replication of biological movements will require refinement of motion control programs and physical models, including the creation of models of variable stiffness.

  3. Reverse Dynamization

    PubMed Central

    Glatt, Vaida; Bartnikowski, Nicole; Quirk, Nicholas; Schuetz, Michael; Evans, Christopher

    2016-01-01

    Background: Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. Methods: Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. Results: In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. Conclusions: These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. Clinical Relevance: Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation. PMID:27098327

  4. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band

    NASA Astrophysics Data System (ADS)

    Sun, Xiuting; Jing, Xingjian

    2016-12-01

    This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.

  5. Reliability of Leg and Vertical Stiffness During High Speed Treadmill Running.

    PubMed

    Pappas, Panagiotis; Dallas, Giorgos; Paradisis, Giorgos

    2017-04-01

    In research, the accurate and reliable measurement of leg and vertical stiffness could contribute to valid interpretations. The current study aimed at determining the intraparticipant variability (ie, intraday and interday reliabilities) of leg and vertical stiffness, as well as related parameters, during high speed treadmill running, using the "sine-wave" method. Thirty-one males ran on a treadmill at 6.67 m∙s -1 , and the contact and flight times were measured. To determine the intraday reliability, three 10-s running bouts with 10-min recovery were performed. In addition, to examine the interday reliability, three 10-s running bouts on 3 separate days with 48-h interbout intervals were performed. The reliability statistics included repeated-measure analysis of variance, average intertrial correlations, intraclass correlation coefficients (ICCs), Cronbach's α reliability coefficient, and the coefficient of variation (CV%). Both intraday and interday reliabilities were high for leg and vertical stiffness (ICC > 0.939 and CV < 4.3%), as well as related variables (ICC > 0.934 and CV < 3.9%). It was thus inferred that the measurements of leg and vertical stiffness, as well as the related parameters obtained using the "sine-wave" method during treadmill running at 6.67 m∙s -1 , were highly reliable, both within and across days.

  6. Escaping the Ashby limit for mechanical damping/stiffness trade-off using a constrained high internal friction interfacial layer.

    PubMed

    Unwin, A P; Hine, P J; Ward, I M; Fujita, M; Tanaka, E; Gusev, A A

    2018-02-06

    The development of new materials with reduced noise and vibration levels is an active area of research due to concerns in various aspects of environmental noise pollution and its effects on health. Excessive vibrations also reduce the service live of the structures and limit the fields of their utilization. In oscillations, the viscoelastic moduli of a material are complex and it is their loss part - the product of the stiffness part and loss tangent - that is commonly viewed as a figure of merit in noise and vibration damping applications. The stiffness modulus and loss tangent are usually mutually exclusive properties so it is a technological challenge to develop materials that simultaneously combine high stiffness and high loss. Here we achieve this rare balance of properties by filling a solid polymer matrix with rigid inorganic spheres coated by a sub-micron layer of a viscoelastic material with a high level of internal friction. We demonstrate that this combination can be experimentally realised and that the analytically predicted behaviour is closely reproduced, thereby escaping the often termed 'Ashby' limit for mechanical stiffness/damping trade-off and offering a new route for manufacturing advanced composite structures with markedly reduced noise and vibration levels.

  7. Enhancing Post-Expansion Chondrogenic Potential of Costochondral Cells in Self-Assembled Neocartilage

    PubMed Central

    Murphy, Meghan K.; Huey, Daniel J.; Reimer, Andrew J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2013-01-01

    The insufficient healing capacity of articular cartilage necessitates mechanically functional biologic tissue replacements. Using cells to form biomimetic cartilage implants is met with the challenges of cell scarcity and donor site morbidity, requiring expanded cells that possess the ability to generate robust neocartilage. To address this, this study assesses the effects of expansion medium supplementation (bFGF, TFP, FBS) and self-assembled construct seeding density (2, 3, 4 million cells/5 mm dia. construct) on the ability of costochondral cells to generate biochemically and biomechanically robust neocartilage. Results show TFP (1 ng/mL TGF-β1, 5 ng/mL bFGF, 10 ng/mL PDGF) supplementation of serum-free chondrogenic expansion medium enhances the post-expansion chondrogenic potential of costochondral cells, evidenced by increased glycosaminoglycan content, decreased type I/II collagen ratio, and enhanced compressive properties. Low density (2 million cells/construct) enhances matrix synthesis and tensile and compressive mechanical properties. Combined, TFP and Low density interact to further enhance construct properties. That is, with TFP, Low density increases type II collagen content by over 100%, tensile stiffness by over 300%, and compressive moduli by over 140%, compared with High density. In conclusion, the interaction of TFP and Low density seeding enhances construct material properties, allowing for a mechanically functional, biomimetic cartilage to be formed using clinically relevant costochondral cells. PMID:23437288

  8. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smietana, Michael J.; Arruda, Ellen M.; Mechanical Engineering, University of Michigan, 2250 GG Brown, 2350 Hayward, Ann Arbor, MI 48109

    Research highlights: {yields} Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. {yields} Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. {yields} Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Micemore » deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1{sup -/-} mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1{sup -/-} mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm{sup 2}) and strength (MPa) is diminished in Sod1{sup -/-} compared to WT mice. Femurs were obtained from male and female WT and Sod1{sup -/-} mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1{sup -/-} mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1{sup -/-} mice compared to WT as well as between genders. These data indicate that increased oxidative stress, due to the deficiency of Sod1 is associated with decreased bone stiffness and strength and Sod1{sup -/-} mice may represent an appropriate model for studying disease processes in aging bone.« less

  9. Analytical modeling, finite-difference simulation and experimental validation of air-coupled ultrasound beam refraction and damping through timber laminates, with application to non-destructive testing.

    PubMed

    Sanabria, Sergio J; Furrer, Roman; Neuenschwander, Jürg; Niemz, Peter; Schütz, Philipp

    2015-12-01

    Reliable non-destructive testing (NDT) ultrasound systems for timber composite structures require quantitative understanding of the propagation of ultrasound beams in wood. A finite-difference time-domain (FDTD) model is described, which incorporates local anisotropy variations of stiffness, damping and density in timber elements. The propagation of pulsed air-coupled ultrasound (ACU) beams in normal and slanted incidence configurations is reproduced by direct definition of material properties (gas, solid) at each model pixel. First, the model was quantitatively validated against analytical derivations. Time-varying wavefronts in unbounded timber with curved growth rings were accurately reproduced, as well as the acoustic properties (velocity, attenuation, beam skewing) of ACU beams transmitted through timber lamellas. An experimental sound field imaging (SFI) setup was implemented at NDT frequencies (120 kHz), which for specific beam incidence positions allows spatially resolved ACU field characterization at the receiver side. The good agreement of experimental and modeled beam shifts across timber laminates allowed extrapolation of the inner propagation paths. The modeling base is an orthotropic stiffness dataset for the desired wood species. In cross-grain planes, beam skewing leads to position-dependent wave paths. They are well-described in terms of the growth ring curvature, which is obtained by visual observation of the laminate. Extraordinary refraction phenomena were observed, which lead to well-collimated quasi-shear wave coupling at grazing beam incidence angles. The anisotropic damping in cross-grain planes is satisfactorily explained in terms of the known anisotropic stiffness dataset and a constant loss tangent. The incorporation of high-resolution density maps (X-ray computed tomography) provided insight into ultrasound scattering effects in the layered growth ring structure. Finally, the combined potential of the FDTD model and the SFI setup for material property and defect inversion in anisotropic materials was demonstrated. A portable SFI demonstrator was implemented with a multi-sensor MEMs receiver array that captures and compensates for variable wave propagation paths in glued laminated timber, and improves the imaging of lamination defects. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Skeletal structure in postmenopausal women with osteopenia and fractures is characterized by abnormal trabecular plates and cortical thinning.

    PubMed

    Stein, Emily M; Kepley, Anna; Walker, Marcella; Nickolas, Thomas L; Nishiyama, Kyle; Zhou, Bin; Liu, X Sherry; McMahon, Donald J; Zhang, Chiyuan; Boutroy, Stephanie; Cosman, Felicia; Nieves, Jeri; Guo, X Edward; Shane, Elizabeth

    2014-01-01

    The majority of fragility fractures occur in women with osteopenia rather than osteoporosis as determined by dual‐energy X‐ray absorptiometry (DXA). However, it is difficult to identify which women with osteopenia are at greatest risk. We performed this study to determine whether osteopenic women with and without fractures had differences in trabecular morphology and biomechanical properties of bone. We hypothesized that women with fractures would have fewer trabecular plates, less trabecular connectivity, and lower stiffness. We enrolled 117 postmenopausal women with osteopenia by DXA (mean age 66 years; 58 with fragility fractures and 59 nonfractured controls). All had areal bone mineral density (aBMD) measured by DXA. Trabecular and cortical volumetric bone mineral density (vBMD), trabecular microarchitecture, and cortical porosity were measured by high‐resolution peripheral computed tomography (HR‐pQCT) of the distal radius and tibia. HR‐pQCT scans were subjected to finite element analysis to estimate whole bone stiffness and individual trabecula segmentation (ITS) to evaluate trabecular type (as plate or rod), orientation, and connectivity.Groups had similar age, race, body mass index (BMI), and mean T‐scores. Fracture subjects had lower cortical and trabecular vBMD, thinner cortices, and thinner, more widely separated trabeculae. By ITS, fracture subjects had fewer trabecular plates, less axially aligned trabeculae, and less trabecular connectivity. Whole bone stiffness was lower in women with fractures. Cortical porosity did not differ. Differences in cortical bone were found at both sites, whereas trabecular differences were more pronounced at the radius.In summary, postmenopausal women with osteopenia and fractures had lower cortical and trabecular vBMD; thinner, more widely separated and rodlike trabecular structure; less trabecular connectivity; and lower whole bone stiffness compared with controls,despite similar aBMD by DXA. Our results suggest that in addition to trabecular and cortical bone loss, changes in plate and rod structure may be important mechanisms of fracture in postmenopausal women with osteopenia.

  11. Stiffness mapping prostate biopsy samples using a tactile sensor.

    PubMed

    Peng, Qiyu; Omata, Sadao; Peehl, Donna M; Constantinou, Chris E

    2011-01-01

    Previous studies have demonstrated that the stiffness of cancerous cells reflects their pathological stage and progression rates, with increased cancerous cell stiffness associated with increased aggressiveness. Therefore, the elasticity of the cancerous cells has the potential to be used as an indicator of the cancer's aggressiveness. However, the sensitivity and resolution of current palpation and imaging techniques are not sufficient to detect small cancerous tissues. In previous studies, we developed a tactile-based device to map with high resolution the stiffness of a tissue section. The purpose of this study is to evaluate this device using different tissues (BPH, Cancer and PZ) collected from human prostates. The preliminary results show that the tactile device is sensitive enough to tell the differences of the stiffness of different tissues. The results also disclosed the factors (humidity, temperature and tissue degradation) which could dramatically affect the results of stiffness mapping. The tactile technology described in this paper has the potential to help disclose the underlying mechanical mechanisms that lead to increased stiffness in prostate tumors.

  12. Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry

    DOE PAGES

    Veytskin, Yuriy B.; Tammina, Vamsi K.; Bobko, Christopher P.; ...

    2017-03-01

    Shales are heterogeneous sedimentary rocks which typically comprise a variable mineralogy (including compacted clay particles sub-micrometer in size), silt grains, and nanometer sized pores collectively arranged with transversely isotropic symmetry. Moreover, a detailed understanding of the micro- and sub-microscale geomechanics of these minerals is required to improve models of shale strength and stiffness properties. In this paper, we propose a linked experimental–computational approach and validate a combination of grid nanoindentation and Scanning Electron Microscopy (SEM) with Energy and Wavelength Dispersive X-ray Spectrometry (EDS/WDS) at the same spatial locations to identify both the nano-mechanical morphology and local mineralogy of these nanocomposites.more » The experimental parameters of each method are chosen to assess a similar volume of material. By considering three different shales of varying mineralogy and mechanical diversity, we show through the EMMIX statistical iterative technique that the constituent phases, including highly compacted plate- or sheet-like clay particles, carbonates, silicates, and sulfides, have distinct nano-mechanical morphologies and associated indentation moduli and hardness. Nanoindentation-based strength homogenization analysis determines an average clay packing density, friction coefficient, and solid cohesion for each tested shale sample. Comparison of bulk to microscale geomechanical properties, through bulk porosimetry measurements, reveals a close correspondence between bulk and microscale clay packing densities. Determining the mechanical microstructure and material properties is useful for predictive microporomechanical models of the stiffness and strength properties of shale. Furthermore, the experimental and computational approaches presented here also apply to other chemically and mechanically complex materials exhibiting nanogranular, composite behavior.« less

  13. Stress fluctuations in fracture networks from theoretical and numerical models

    NASA Astrophysics Data System (ADS)

    Davy, P.; Darcel, C.; Mas Ivars, D.; Le Goc, R.

    2017-12-01

    We analyze the spatial fluctuations of stress in a simple tridimensional model constituted by a population of disc-shaped fractures embedded in an elastic matrix with uniform and isotropic properties. The fluctuations arise from the classical stress enhancement at fracture tips and stress shadowing around fracture centers that are amplified or decreased by the interactions between close-by fractures. The distribution of local stresses is calculated at the elementary mesh scale with the 3DEC numerical program based on the distinct element method. As expected, the stress distributions vary with fracture density, the larger is the density, the wider is the distribution. For freely slipping fractures, it is mainly controlled by the percolation parameter p (i.e., the total volume of spheres surrounding fractures). For stresses smaller than the remote deviatoric stress, the distribution depends only on for the range of density that has been studied. For large stresses, the distribution decreases exponentially when increasing stress, with a characteristic stress that increases with entailing a widening of the stress distribution. We extend the analysis to fractures with plane resistance defined by an elastic shear stiffness ks and a slip Coulomb threshold. A consequence of the fracture plane resistance is to lower the stress perturbation in the surrounding matrix by a factor that depends on the ratio between ks and a fracture-matrix stiffness km mainly dependent on the ratio between Young modulus and fracture size. km is also the ratio between the remote shear stress and the displacement across the fracture plane in the case of freely slipping fractures. A complete analytical derivation of the expressions of the stress perturbations and of the fracture displacements is obtained and checked with numerical simulations. In the limit ks >> km, the stress perturbation tends to 0 and the stress state is spatially uniform. The analysis allows us to quantify the intensity of the stress fluctuations in fractured rocks as a function of both the fracture network characteristics (density and size distribution), and the mechanical properties (fracture shear stiffness vs matrix elastic properties).

  14. Synthesis and electromechanical characterization of a new acrylic dielectric elastomer with high actuation strain and dielectric strength

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Xiaofan; Yang, Xinguo; Zhang, Naifang; Pei, Qibing

    2013-04-01

    Dielectric Elastomers (DEs) can be actuated under high electric field to produce large strains. Most high-performing DE materials such as the 3M™ VHB™ membranes are commercial products designed for industrial pressure-sensitive adhesives. The limited knowledge of the exact chemical structures of these commercial materials has made it difficult to understand the relationship between molecular structures and electromechanical properties. In this work, new acrylic elastomers based on n-butyl acrylate and acrylic acid were synthesized from monomer solutions by UV-initiated bulk polymerization. The new acrylic copolymers have a potential to obtain high dielectric constant, actuation strain, dielectric strength, and a high energy density. Silicone and ester oligomer diacrylates were also added onto the copolymer structures to suppress crystallization and to crosslink the polymer chains. Four acrylic formulations were developed with different amounts of acrylic acid. This gives a tunable stiffness, while the dielectric constant is varied from 4.3 to 7.1. The figure-of-merit performance of the best formulation is 186 % area strain, 222 MV/m of dielectric strength, and 2.7 MJ/m3 of energy density. To overcome electromechanical instability, different prestrain ratios were investigated, and under the optimized prestrain, the material has a lifetime of thousands of cycles at 120 % area strain.

  15. FFATA: Mechine Augmented Composites for Structures with High Damping with High Stiffness

    DTIC Science & Technology

    2012-12-05

    applied , the inner channel will be the same width. The best LHG machines have the Z...Instron5567 screw controlled machine is suited to experiments up to 0.2Hz and a bit higher if operators are careful. These experiments applied ...REPORT FFATA: MACHINE AUGMENTED COMPOSITES FOR STRUCTURES WITH HIGH DAMPING WITH HIGH STIFFNESS 14. ABSTRACT 16. SECURITY CLASSIFICATION OF:

  16. Reverse Dynamization: Influence of Fixator Stiffness on the Mode and Efficiency of Large-Bone-Defect Healing at Different Doses of rhBMP-2.

    PubMed

    Glatt, Vaida; Bartnikowski, Nicole; Quirk, Nicholas; Schuetz, Michael; Evans, Christopher

    2016-04-20

    Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  17. Effects of Body Mass Index on Mechanical Properties of the Plantar Fascia and Heel Pad in Asymptomatic Participants.

    PubMed

    Taş, Serkan; Bek, Nilgün; Ruhi Onur, Mehmet; Korkusuz, Feza

    2017-07-01

    Musculoskeletal foot disorders have a high incidence among overweight and obese individuals. One of the important factors causing this high incidence may be plantar fascia and heel pad (HP)-related mechanical changes occurring in these individuals. The aim of the present study was to investigate the plantar fascia and HP stiffness and thickness parameters in overweight and obese individuals and compare these values with those of normal-weight individuals. This study was carried out in 87 (52 female, 35 male) healthy sedentary individuals between the ages of 19 and 58 years (34 ± 11 years). Participants were subsequently categorized according to body mass index (BMI) as normal weight (18.5 kg/m 2 < BMI < 25 kg/m 2 ) or overweight and obese (BMI ≥25 kg/m 2 ). Plantar fascia and HP thickness and stiffness were measured with an ultrasonography device using a linear ultrasonography probe. Overweight and obese individuals had higher HP thickness ( P < .001), plantar fascia thickness ( P = .001), heel pad microchamber layer (MIC) stiffness ( P < .001), and heel pad macrochamber layer (MAC) stiffness ( P < .001), whereas they had lower plantar fascia stiffness ( P < .001) compared with the individuals with normal weight. BMI had a moderate correlation with HP thickness ( P < .001, r = 0.500), plantar fascia thickness ( P = .001, r = 0.536), MIC stiffness ( P < .001, r = 0.496), and MAC stiffness ( P < .001, r = 0.425). A negative and moderate correlation was found between BMI and plantar fascia stiffness ( P < .001, r = -0.439). Increased BMI causes a decrease in the stiffness of plantar fascia and an increase in the thickness of the plantar fascia as well as the thickness and stiffness of HP. Increased body mass could cause changes in the mechanical properties of HP and plantar fascia. Level 3, comparative study.

  18. Liver stiffness and platelet count for identifying patients with compensated liver disease at low risk of variceal bleeding.

    PubMed

    Marot, Astrid; Trépo, Eric; Doerig, Christopher; Schoepfer, Alain; Moreno, Christophe; Deltenre, Pierre

    2017-05-01

    The 2015 Baveno VI guidelines recommend against performing upper gastrointestinal endoscopy in patients with compensated cirrhosis who have a liver stiffness <20 kPa and a platelet count >150 000/mm³ because of a low prevalence of varices at risk of bleeding in this population. The aim was to synthesize the available evidence on the usefulness of the combined use of liver stiffness and platelet count to identify patients without oesophageal varices. Meta-analysis of trials evaluating the usefulness of a given cut-off for liver stiffness and platelet count to rule out the presence of oesophageal varices. Fifteen studies were included. All studies excepting five used the Baveno VI criteria. Compared to patients with either high liver stiffness or low platelet count, those with low liver stiffness and normal platelet count had a lower risk of varices at risk of bleeding (OR=0.22, 95% CI=0.13-0.39, P<.001) with low heterogeneity between studies (I 2 =21%). They also had a lower risk of varices (OR=0.23, 95% CI=0.17-0.32, P<.001) with moderate heterogeneity between studies (I 2 =28%). In patients with low liver stiffness and normal platelet count, the pooled estimate rates for varices at risk of bleeding was 0.040 (95% CI=0.027-0.059) with low heterogeneity between studies (I 2 =3%). Patients with low liver stiffness and normal platelet count have a lower risk of varices than those with either high liver stiffness or low platelet count. Varices at risk of bleeding are found in no more than 4% of patients when liver stiffness is <20 kPa and platelet count is normal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Stuart S; Samulski, Edward; Lopez, Renee

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less

  20. Experimental and theoretical investigation of an impact vibration harvester with triboelectric transduction

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alwathiqbellah; Ramini, Abdallah; Towfighian, Shahrzad

    2018-03-01

    There has been remarkable interest in triboelectric mechanisms because of their high efficiency, wide availability, and low-cost generation of sustainable power. Using impact vibrations, we introduce piece-wise stiffness to the system to enlarge frequency bandwidth. The triboelectric layers consist of Aluminum, which also serves as an electrode, and Polydimethylsiloxane (PDMS) with micro semi-cylindrical patterns. At the bottom of the PDMS layer, there is another Al electrode. The layers are sandwiched between the center mass of a clamped-clamped beam and its base. The center mass enhances the impact force on the triboelectric layers subjected to external vibrations. Upon impact, alternating current, caused by the contact electrification and electrostatic induction, flows between the Al electrodes. Because of the impact, the equivalent stiffness of the structure increases and as a result, the frequency bandwidth gets wider. The output voltage and power reach as large as 5.5 V, 15 μW, respectively at 0.8 g vibrational amplitude. In addition, we report how the surface charge density increases with the excitation levels. The analysis delineates the interactions between impact vibrations and triboelectric transductions. The ability of the system to achieve wider bandwidth paves the way for efficient triboelectric vibrational energy harvesters.

  1. Determination of plate wave velocities and diffuse field decay rates with braod-band acousto-ultrasonic signals

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1993-01-01

    Lowest symmetric and lowest antisymmetric plate wave modes were excited and identified in broad-band acousto-ultrasonic (AU) signals collected from various high temperature composite materials. Group velocities have been determined for these nearly nondispersive modes. An algorithm has been developed and applied to determine phase velocities and hence dispersion curves for the frequency ranges of the broad-band pulses. It is demonstrated that these data are sensitive to changes in the various stiffness moduli of the materials, in agreement by analogy, with the theoretical and experimental results of Tang and Henneke on fiber reinforced polymers. Diffuse field decay rates have been determined in the same specimen geometries and AU configuration as for the plate wave measurements. These decay rates are of value in assessing degradation such as matrix cracking in ceramic matrix composites. In addition, we verify that diffuse field decay rates respond to fiber/matrix interfacial shear strength and density in ceramic matrix composites. This work shows that velocity/stiffness and decay rate measurements can be obtained in the same set of AU experiments for characterizing materials and in specimens with geometries useful for mechanical measurements.

  2. Chronic administration of anticonvulsants but not antidepressants impairs bone strength: clinical implications

    PubMed Central

    Gold, P W; Pavlatou, M G; Michelson, D; Mouro, C M; Kling, M A; Wong, M-L; Licinio, J; Goldstein, S A

    2015-01-01

    Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age. PMID:26035060

  3. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion.

    PubMed

    Oh, Keonyoung; Park, Sukyung

    2017-02-28

    A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    NASA Astrophysics Data System (ADS)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  5. Radial stiffness characteristics of the overlap regions of sarcomeres in isolated skeletal myofibrils in pre-force generating state.

    PubMed

    Miyashiro, Daisuke; Ohtsuki, Misato; Shimamoto, Yuta; Wakayama, Jun'ichi; Kunioka, Yuki; Kobayashi, Takakazu; Ishiwata, Shin'ichi; Yamada, Takenori

    2017-01-01

    We have studied the stiffness of myofilament lattice in sarcomeres in the pre-force generating state, which was realized by a relaxing reagent, BDM (butane dione monoxime). First, the radial stiffness for the overlap regions of sarcomeres of isolated single myofibrils was estimated from the resulting decreases in diameter by osmotic pressure applied with the addition of Dextran. Then, the radial stiffness was also estimated from force-distance curve measurements with AFM technology. The radial stiffness for the overlap regions thus obtained was composed of a soft and a rigid component. The soft component visco-elastically changed in a characteristic fashion depending on the physiological conditions of myofibrils, suggesting that it comes from cross-bridge structures. BDM treatments significantly affected the soft radial component of contracting myofibrils depending on the approach velocity of cantilever: It was nearly equal to that in the contracting state at high approach velocity, whereas as low as that in the relaxing state at low approach velocity. However, comparable BDM treatments greatly suppressed the force production and the axial stiffness in contracting glycerinated muscle fibers and also the sliding velocity of actin filaments in the in vitro motility assay. Considering that BDM shifts the cross-bridge population from force generating to pre-force generating states in contracting muscle, the obtained results strongly suggest that cross-bridges in the pre-force generating state are visco-elastically attached to the thin filaments in such a binding manner that the axial stiffness is low but the radial stiffness significantly high similar to that in force generating state.

  6. Evaluating the Ergonomic Benefit of a Wrist Brace on Wrist Posture, Muscle Activity, Rotational Stiffness, and Peak Shovel-Ground Impact Force During a Simulated Tree-Planting Task.

    PubMed

    Sheahan, Peter J; Cashaback, Joshua G A; Fischer, Steven L

    2017-09-01

    Background Tree planters are at a high risk for wrist injury due to awkward postures and high wrist loads experienced during each planting cycle, specifically at shovel-ground impact. Wrist joint stiffness provides a measure that integrates postural and loading information. Objective The purpose of this study was to evaluate wrist joint stiffness requirements at the instant of shovel-ground impact during tree planting and determine if a wrist brace could alter muscular contributions to wrist joint stiffness. Method Planters simulated tree planting with and without wearing a brace on their planting arm. Surface electromyography (sEMG) from six forearm muscles and wrist kinematics were collected and used to calculate muscular contributions to joint rotational stiffness about the wrist. Results Wrist joint stiffness increased with brace use, an unanticipated and negative consequence of wearing a brace. As a potential benefit, planters achieved a more neutrally oriented wrist angle about the flexion/extension axis, although a less neutral wrist angle about the ulnar/radial axis was observed. Muscle activity did not change between conditions. Conclusion The joint stiffness analysis, combining kinematic and sEMG information in a biologically relevant manner, revealed clear limitations with the interface between the brace grip and shovel handle that jeopardized the prophylactic benefits of the current brace design. This limitation was not as evident when considering kinematics and sEMG data independently. Application A neuromechanical model (joint rotational stiffness) enhanced our ability to evaluate the brace design relative to kinematic and sEMG parameter-based metrics alone.

  7. Numerical Simulation of Callus Healing for Optimization of Fracture Fixation Stiffness

    PubMed Central

    Steiner, Malte; Claes, Lutz; Ignatius, Anita; Simon, Ulrich; Wehner, Tim

    2014-01-01

    The stiffness of fracture fixation devices together with musculoskeletal loading defines the mechanical environment within a long bone fracture, and can be quantified by the interfragmentary movement. In vivo results suggested that this can have acceleratory or inhibitory influences, depending on direction and magnitude of motion, indicating that some complications in fracture treatment could be avoided by optimizing the fixation stiffness. However, general statements are difficult to make due to the limited number of experimental findings. The aim of this study was therefore to numerically investigate healing outcomes under various combinations of shear and axial fixation stiffness, and to detect the optimal configuration. A calibrated and established numerical model was used to predict fracture healing for numerous combinations of axial and shear fixation stiffness under physiological, superimposed, axial compressive and translational shear loading in sheep. Characteristic maps of healing outcome versus fixation stiffness (axial and shear) were created. The results suggest that delayed healing of 3 mm transversal fracture gaps will occur for highly flexible or very rigid axial fixation, which was corroborated by in vivo findings. The optimal fixation stiffness for ovine long bone fractures was predicted to be 1000–2500 N/mm in the axial and >300 N/mm in the shear direction. In summary, an optimized, moderate axial stiffness together with certain shear stiffness enhances fracture healing processes. The negative influence of one improper stiffness can be compensated by adjustment of the stiffness in the other direction. PMID:24991809

  8. Numerical simulation of callus healing for optimization of fracture fixation stiffness.

    PubMed

    Steiner, Malte; Claes, Lutz; Ignatius, Anita; Simon, Ulrich; Wehner, Tim

    2014-01-01

    The stiffness of fracture fixation devices together with musculoskeletal loading defines the mechanical environment within a long bone fracture, and can be quantified by the interfragmentary movement. In vivo results suggested that this can have acceleratory or inhibitory influences, depending on direction and magnitude of motion, indicating that some complications in fracture treatment could be avoided by optimizing the fixation stiffness. However, general statements are difficult to make due to the limited number of experimental findings. The aim of this study was therefore to numerically investigate healing outcomes under various combinations of shear and axial fixation stiffness, and to detect the optimal configuration. A calibrated and established numerical model was used to predict fracture healing for numerous combinations of axial and shear fixation stiffness under physiological, superimposed, axial compressive and translational shear loading in sheep. Characteristic maps of healing outcome versus fixation stiffness (axial and shear) were created. The results suggest that delayed healing of 3 mm transversal fracture gaps will occur for highly flexible or very rigid axial fixation, which was corroborated by in vivo findings. The optimal fixation stiffness for ovine long bone fractures was predicted to be 1000-2500 N/mm in the axial and >300 N/mm in the shear direction. In summary, an optimized, moderate axial stiffness together with certain shear stiffness enhances fracture healing processes. The negative influence of one improper stiffness can be compensated by adjustment of the stiffness in the other direction.

  9. Mechanics of Nanostructured Porous Silica Aerogel Resulting from Molecular Dynamics Simulations.

    PubMed

    Patil, Sandeep P; Rege, Ameya; Sagardas; Itskov, Mikhail; Markert, Bernd

    2017-06-08

    Silica aerogels are nanostructured, highly porous solids which have, compared to other soft materials, special mechanical properties, such as extremely low densities. In the present work, the mechanical properties of silica aerogels have been studied with molecular dynamics (MD) simulations. The aerogel model of 192 000 atoms was created with different densities by direct expansion of β-cristobalite and subjected to series of thermal treatments. Because of the high number of atoms and improved modeling procedure, the proposed model was more stable and showed significant improvement in the smoothness of the resulting stress-strain curves in comparison to previous models. Resulting Poisson's ratio values for silica aerogels lie between 0.18 and 0.21. The elasticity moduli display a power law dependence on the density, with the exponent estimated to be 3.25 ± 0.1. These results are in excellent agreement with reported experimental as well as computational values. Two different deformation scenarios have been discussed. Under tension, the low-density aerogels were more ductile while the denser ones behaved rather brittle. In the compression simulations of low-density aerogels, deformation occurred without significant increase in stress. However, for high densities, atoms offer a higher resistance to the deformation, resulting in a more stiff response and an early densification. The relationship between different mechanical parameters has been found in the cyclic loading simulations of silica aerogels with different densities. The residual strain grows linearly with the applied strain (≥0.16) and can be approximated by a phenomenological relation ϵ p = 1.09ϵ max - 0.12. The dissipation energy also varies with the compressive strain according to a power law with an exponent of 2.31 ± 0.07. Moreover, the tangent modulus under cyclic loading varies exponentially with the compressive strain. The results of the study pave the way toward multiscale modeling of silica as well as reinforced silica aerogels.

  10. Sex-specific genetic determinants for arterial stiffness in Dahl salt-sensitive hypertensive rats.

    PubMed

    Decano, Julius L; Pasion, Khristine A; Black, Nicole; Giordano, Nicholas J; Herrera, Victoria L; Ruiz-Opazo, Nelson

    2016-01-11

    Arterial stiffness is an independent predictor of cardiovascular outcomes in hypertensive patients including myocardial infarction, fatal stroke, cerebral micro-bleeds which predicts cerebral hemorrhage in hypertensive patients, as well as progression to hypertension in non-hypertensive subjects. The association between arterial stiffness and various cardiovascular outcomes (coronary heart disease, stroke) remains after adjusting for age, sex, blood pressure, body mass index and other known predictors of cardiovascular disease, suggesting that arterial stiffness, measured via carotid-femoral pulse wave velocity, has a better predictive value than each of these factors. Recent evidence shows that arterial stiffening precedes the onset of high blood pressure; however their molecular genetic relationship (s) and sex-specific determinants remain uncertain. We investigated whether distinct or shared genetic determinants might underlie susceptibility to arterial stiffening in male and female Dahl salt-sensitive rats. Thus, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting arterial stiffness in six-week old F2 (Dahl S x R)-intercross male and female rats characterized for abdominal aortic pulse wave velocity and aortic strain by high-resolution ultrasonography. We detected five highly significant QTLs affecting aortic stiffness: two interacting QTLs (AS-m1 on chromosome 4 and AS-m2 on chromosome16, LOD 8.8) in males and two distinct interacting QTLs (AS-f1 on chromosome 9 and AS-f2 on chromosome11, LOD 8.9) in females affecting pulse wave velocity. One QTL (AS-1 on chromosome 3, LOD 4.3) was found to influence aortic strain in a sex-independent manner. None of these arterial stiffness QTLs co-localized with previously reported blood pressure QTLs detected in equivalent genetic intercrosses. These data reveal sex-specific genetic determinants for aortic pulse wave velocity and suggest distinct polygenic susceptibility for arterial stiffness and salt-sensitive hypertension in Dahl rats based upon reported blood pressure QTLs in equivalent (Dahl S x R)-intercrosses.

  11. Ni-Ti Next Generation Bearings for Space Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2018-01-01

    NASA applications challenge traditional bearing materials. The rigors of launch often include heavy shock loads and exposure to corrosive environments (e.g., salt spray). Unfortunately, ball and roller bearings made from hardened steels are vulnerable to Brinell denting and rust which can limit performance and life. Ceramic materials can eliminate corrosion concerns but their high stiffness and extreme hardness actually makes denting problems worse. In this presentation, an emerging superelastic alloy, NiTi, is introduced for rolling element bearing applications. Through a decade of RD, NiTi alloy bearings have been put through a comprehensive series of life and performance tests. Hardness, corrosion, strength, stiffness, and rolling contact fatigue tests have been conducted and reported. Ball bearings ranging in size from 12 to 50mm bore have been successfully engineered and operated over a wide range of speeds and test conditions including being submerged in water. The combination of high hardness, moderate elastic modulus, low density, and intrinsic corrosion immunity provide new possibilities for mechanisms that operate under extreme conditions. Recent preliminary tests indicate that bearings can be made from NiTi alloys that are easily lubricated by conventional oils and greases and exhibit acceptable rolling contact fatigue resistance. This presentation introduces the NiTi materials systems and shows how NASA is using it to alleviate several specific problems encountered in advanced space applications.

  12. Modeling the Flexural Rigidity of Rod Photoreceptors

    PubMed Central

    Haeri, Mohammad; Knox, Barry E.; Ahmadi, Aphrodite

    2013-01-01

    In vertebrate eyes, the rod photoreceptor has a modified cilium with an extended cylindrical structure specialized for phototransduction called the outer segment (OS). The OS has numerous stacked membrane disks and can bend or break when subjected to mechanical forces. The OS exhibits axial structural variation, with extended bands composed of a few hundred membrane disks whose thickness is diurnally modulated. Using high-resolution confocal microscopy, we have observed OS flexing and disruption in live transgenic Xenopus rods. Based on the experimental observations, we introduce a coarse-grained model of OS mechanical rigidity using elasticity theory, representing the axial OS banding explicitly via a spring-bead model. We calculate a bending stiffness of ∼105 nN⋅μm2, which is seven orders-of-magnitude larger than that of typical cilia and flagella. This bending stiffness has a quadratic relation to OS radius, so that thinner OS have lower fragility. Furthermore, we find that increasing the spatial frequency of axial OS banding decreases OS rigidity, reducing its fragility. Moreover, the model predicts a tendency for OS to break in bands with higher spring number density, analogous to the experimental observation that transgenic rods tended to break preferentially in bands of high fluorescence. We discuss how pathological alterations of disk membrane properties by mutant proteins may lead to increased OS rigidity and thus increased breakage, ultimately contributing to retinal degeneration. PMID:23442852

  13. An experimental nonlinear low dynamic stiffness device for shock isolation

    NASA Astrophysics Data System (ADS)

    Francisco Ledezma-Ramirez, Diego; Ferguson, Neil S.; Brennan, Michael J.; Tang, Bin

    2015-07-01

    The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements.

  14. Experimental study on vertical static stiffnesses of polycal wire rope isolators

    NASA Astrophysics Data System (ADS)

    Balaji, P. S.; Moussa, Leblouba; Khandoker, Noman; Yuk Shyh, Ting; Rahman, M. E.; Hieng Ho, Lau

    2017-07-01

    Wire rope isolator is one of the most effective isolation system that can be used to attenuate the vibration disturbances and shocks during the operation of machineries. This paper presents the results of investigation on static elastic stiffnesses (both in tension and in compression) of Polycal Wire Rope Isolator (PWRI) under quasi-static monotonic loading conditions. It also studied effect of variations in height and width of PWRI on its static stiffnesses. Suitable experimental setup was designed and manufactured to meet the test conditions. The results show that their elastic stiffnesses for both tension and compression loading conditions are highly influenced by their geometric dimensions. It is found that their compressive stiffness reduced by 55% for an increment of 20% in their height to width ratio. Therefore, the stiffness of PWRI can be fine-tuned by controlling their dimensions according to the requirements of the application.

  15. Pacifier Stiffness Alters the Dynamics of the Suck Central Pattern Generator.

    PubMed

    Zimmerman, Emily; Barlow, Steven M

    2008-06-01

    Variation in pacifier stiffness on non-nutritive suck (NNS) dynamics was examined among infants born prematurely with a history of respiratory distress syndrome. Three types of silicone pacifiers used in the NICU were tested for stiffness, revealing the Super Soothie™ nipple is 7 times stiffer than the Wee™ or Soothie™ pacifiers even though shape and displaced volume are identical. Suck dynamics among 20 preterm infants were subsequently sampled using the Soothie™ and Super Soothie™ pacifiers during follow-up at approximately 3 months of age. ANOVA revealed significant differences in NNS cycles/min, NNS amplitude, NNS cycles/burst, and NNS cycle periods as a function of pacifier stiffness. Infants modify the spatiotemporal output of their suck central pattern generator when presented with pacifiers with significantly different mechanical properties. Infants show a non-preference to suck due to high stiffness in the selected pacifier. Therefore, excessive pacifier stiffness may decrease ororhythmic patterning and impact feeding outcomes.

  16. Pacifier Stiffness Alters the Dynamics of the Suck Central Pattern Generator

    PubMed Central

    Zimmerman, Emily; Barlow, Steven M.

    2008-01-01

    Variation in pacifier stiffness on non-nutritive suck (NNS) dynamics was examined among infants born prematurely with a history of respiratory distress syndrome. Three types of silicone pacifiers used in the NICU were tested for stiffness, revealing the Super Soothie™ nipple is 7 times stiffer than the Wee™ or Soothie™ pacifiers even though shape and displaced volume are identical. Suck dynamics among 20 preterm infants were subsequently sampled using the Soothie™ and Super Soothie™ pacifiers during follow-up at approximately 3 months of age. ANOVA revealed significant differences in NNS cycles/min, NNS amplitude, NNS cycles/burst, and NNS cycle periods as a function of pacifier stiffness. Infants modify the spatiotemporal output of their suck central pattern generator when presented with pacifiers with significantly different mechanical properties. Infants show a non-preference to suck due to high stiffness in the selected pacifier. Therefore, excessive pacifier stiffness may decrease ororhythmic patterning and impact feeding outcomes. PMID:19492006

  17. Comparison of stiffness and interface pressure during rest and exercise among various arm sleeves.

    PubMed

    Hirai, M; Niimi, K; Iwata, H; Sugimoto, I; Ishibashi, H; Ota, T; Nakamura, H

    2010-08-01

    To compare the interface pressure during rest and exercise among various kinds of arm sleeves. The interface pressure underneath nine different arm sleeves was measured during 10 maximal opening and closing movements of fingers using a pressure transducer (Air Pack Type Analyser) in 16 healthy volunteers. Furthermore, in order to evaluate the characteristics of each arm sleeve, the extensibility, stiffness and thickness were determined in vitro by several apparatuses. There was a significant correlation between stiffness and extensibility. The stiffness was significantly correlated with the pressure difference between muscle contraction and relaxation during exercise. The higher the value of stiffness, the greater the pressure amplitude during exercise. Short-stretch arm sleeves characterized with a high level stiffness, including thick round- and flat-knitted arm sleeves, are more beneficial for the augmentation of muscle pumping than long-stretch arm sleeves, in the same way as short-stretch bandages or stockings applied to the leg.

  18. Uncovering a reconstructive solid-solid phase transition in a metal-organic framework.

    PubMed

    Longley, L; Li, N; Wei, F; Bennett, T D

    2017-11-01

    A nanoporous three-dimensional metal-organic framework (MOF), ZnPurBr undergoes a transition to a previously unreported high-temperature phase, ZnPurBr-ht. The transition, which proceeds without mass loss, is uncovered through the use of differential scanning calorimetry (DSC). The new crystal structure was solved using single-crystal X-ray diffraction, and the mechanical properties of both phases investigated by nanoindentation and density functional theory. The anisotropy of the calculated Young's moduli showed good agreement with the crystallographic alignment of the stiff purinate organic linker. The results provide a prototypical example of the importance of the use of DSC in the MOF field, where its use is not currently standard in characterization.

  19. A planar shock isolation system with high-static-low-dynamic-stiffness characteristic based on cables

    NASA Astrophysics Data System (ADS)

    Ma, Yanhui; He, Minghua; Shen, Wenhou; Ren, Gexue

    2015-12-01

    In this paper, a simple and designable shock isolation system with ideal high-static-low-dynamic-stiffness (HSLDS) is proposed, which is intended for the horizontal plane shock isolation application. In this system, the isolated object is suspended by several bearing cables and constrained by a number of uniformly distributed pretensioned cables in the horizontal plane, where the low dynamic stiffness of the system is main controlled by the pretension of the planar cables, whilst the high static stiffness is determined by the axial stiffness of the planar cables and their geometric settings. To obtain the HSLDS characteristic of the system, a brief theoretical description of the relationship between the restoring force and displacement is derived. By obtaining the three-order Taylor expansion with sufficient accuracy of the restoring force, influence of planar cable parameters on the low dynamic and high static stiffness is thus given, therefore, the required HSLDS isolator can be easily designed by adjusting the planar cable length, pretension and tensile stiffness. Finally, the isotropy characteristic of the restoring force of the system with different numbers of planar cables is investigated. To evaluate the performance of the system, a rigid isolated object and flexible cables coupling simulation model considering the contacts of the system is established by using multibody dynamics approach. In this model, flexible cables are simulated by 3-node cable element based on the absolute nodal coordinate formulation; the contact between cable and isolated object is simulated based on Hertz contact theory. Finally, the time-domain shock excitation is converted from the design shock spectrum on the basis of BV043/85 criterion. The design procedure of this isolator and some useful guidelines for choosing cable parameters are presented. In addition, a summary about the performance of the isolators with different numbers of cables shocking in an arbitrary direction is given in the conclusion.

  20. Theory of nanoscale friction on chemically modified graphene

    NASA Astrophysics Data System (ADS)

    Ko, Jae-Hyeon; Kim, Yong-Hyun

    2013-03-01

    Recently, it is known from FFM experiments that friction force on graphene is significantly increased by chemical modification such as hydrogenation, oxidization, and fluorination, whereas adhesion properties are altered marginally. A novel nanotribological theory on two-dimensional materials is proposed on the basis of experimental results and first-principles density-functional theory (DFT) calculations. The proposed theory indicates that the total lateral stiffness that is the proportional constant of friction force is mostly associated with the out-of-plane bending stiffness of two-dimensional materials. This contrasts to the case of three-dimensional materials, in which the shear strength of materials determines nanoscale friction. We will discuss details of DFT calculations and how to generalize the current theory to three dimensional materials.

  1. Composite isogrid structures for parabolic surfaces

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M. (Inventor); Boyd, Jr., William E. (Inventor); Rhodes, Marvin D. (Inventor); Dyer, Jack E. (Inventor)

    2000-01-01

    The invention relates to high stiffness parabolic structures utilizing integral reinforced grids. The parabolic structures implement the use of isogrid structures which incorporate unique and efficient orthotropic patterns for efficient stiffness and structural stability.

  2. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension

    NASA Technical Reports Server (NTRS)

    Wang, N.; Ingber, D. E.

    1994-01-01

    We have investigated how extracellular matrix (ECM) alters the mechanical properties of the cytoskeleton (CSK). Mechanical stresses were applied to integrin receptors on the apical surfaces of adherent endothelial cells using RGD-coated ferromagnetic microbeads (5.5-microns diameter) in conjunction with a magnetic twisting device. Increasing the number of basal cell-ECM contacts by raising the fibronectin (FN) coating density from 10 to 500 ng/cm2 promoted cell spreading by fivefold and increased CSK stiffness, apparent viscosity, and permanent deformation all by more than twofold, as measured in response to maximal stress (40 dyne/cm2). When the applied stress was increased from 7 to 40 dyne/cm2, the stiffness and apparent viscosity of the CSK increased in parallel, although cell shape, ECM contacts, nor permanent deformation was altered. Application of the same stresses over a lower number ECM contacts using smaller beads (1.4-microns diameter) resulted in decreased CSK stiffness and apparent viscosity, confirming that this technique probes into the depth of the CSK and not just the cortical membrane. When magnetic measurements were carried out using cells whose membranes were disrupted and ATP stores depleted using saponin, CSK stiffness and apparent viscosity were found to rise by approximately 20%, whereas permanent deformation decreased by more than half. Addition of ATP (250 microM) under conditions that promote CSK tension generation in membrane-permeabilized cells resulted in decreases in CSK stiffness and apparent viscosity that could be detected within 2 min after ATP addition, before any measurable change in cell size.(ABSTRACT TRUNCATED AT 250 WORDS).

  3. Importance of tread inertia and damping on the tyre/road contact stiffness

    NASA Astrophysics Data System (ADS)

    Winroth, J.; Andersson, P. B. U.; Kropp, W.

    2014-10-01

    Predicting tyre/road interaction processes like roughness excitation, stick-slip, stick-snap, wear and traction requires detailed information about the road surface, the tyre dynamics and the local deformation of the tread at the interface. Aspects of inertia and damping when the tread is locally deformed are often neglected in many existing tyre/road interaction models. The objective of this paper is to study how the dynamic features of the tread affect contact forces and contact stiffness during local deformation. This is done by simulating the detailed contact between an elastic layer and a rough road surface using a previously developed numerical time domain contact model. Road roughness on length scales smaller than the discretisation scale is included by the addition of nonlinear contact springs between each pair of contact elements. The dynamic case, with an elastic layer impulse response extending in time, is compared with the case where the corresponding quasi-static response is used. Results highlight the difficulty of estimating a constant contact stiffness as it increases during the indentation process between the elastic layer and the rough road surface. The stiffness-indentation relation additionally depends on how rapidly the contact develops; a faster process gives a stiffer contact. Material properties like loss factor and density also alter the contact development. This work implies that dynamic properties of the local tread deformation may be of importance when simulating contact details during normal tyre/road interaction conditions. There are however indications that the significant effect of damping could approximately be included as an increased stiffness in a quasi-static tread model.

  4. Strong, tough and stiff bioinspired ceramics from brittle constituents

    NASA Astrophysics Data System (ADS)

    Bouville, Florian; Maire, Eric; Meille, Sylvain; van de Moortèle, Bertrand; Stevenson, Adam J.; Deville, Sylvain

    2014-05-01

    High strength and high toughness are usually mutually exclusive in engineering materials. In ceramics, improving toughness usually relies on the introduction of a metallic or polymeric ductile phase, but this decreases the material’s strength and stiffness as well as its high-temperature stability. Although natural materials that are both strong and tough rely on a combination of mechanisms operating at different length scales, the relevant structures have been extremely difficult to replicate. Here, we report a bioinspired approach based on widespread ceramic processing techniques for the fabrication of bulk ceramics without a ductile phase and with a unique combination of high strength (470 MPa), high toughness (22 MPa m1/2), and high stiffness (290 GPa). Because only mineral constituents are needed, these ceramics retain their mechanical properties at high temperatures (600 °C). Our bioinspired, material-independent approach should find uses in the design and processing of materials for structural, transportation and energy-related applications.

  5. Beneficial use of off-specification fly ashes to increase the shear strength and stiffness of expansive soil-rubber (ESR) mixtures.

    DOT National Transportation Integrated Search

    2011-07-01

    The use of off-specification fly ashes to increase the shear strength and stiffness of an expansive soil-rubber (ESR) mixture is investigated systematically in this study. The off-specification fly ashes used include a high-sulfur content and a high-...

  6. Electrostatic persistence length.

    PubMed

    Fixman, Marshall

    2010-03-11

    The persistence length is calculated for polyelectrolyte chains with fixed bond lengths and bond angles (pi-theta), and a potential energy consisting of the screened Coulomb interaction between beads, potential wells alpha phi(i)2 for the dihedral angles phi(i), and coupling terms beta phi(i) phi(i+/-1). This model defines a librating chain that reduces in appropriate limits to the freely rotating or wormlike chains, it can accommodate local crumpling or extreme stiffness, and it is easy to simulate. A planar-quadratic (pq), analytic approximation is based on an expansion of the electrostatic energy in eigenfunctions of the quadratic form that describes the backbone energy, and on the assumption that the quadratic form not only is positive but also adequately confines the chain in an infinite phase space of dihedral angles to the physically unique part with all |phi(i)| < pi. The pq approximation is available under these weak constraints, but the simulations confirm its quantitative accuracy only under the expected condition that alpha is large, that is, for very stiff chains. Stiff chains can also be simulated with small alpha and small theta and compared to an OSF approximation suitably generalized to chains with finite rather than vanishing theta, and increasing agreement with OSF is found the smaller is theta. The two approximations, one becoming exact as alpha --> infinity with fixed theta, the other as theta --> 0 with fixed alpha, are quantitatively similar in behavior, both giving a persistence length P = P0 + aD2 for stiff chains, where D is the Debye length. However, the coefficient apq is about twice the value of aOSF. Under other conditions the simulations show that P may or not be linear in D2 at small or moderate D, depending on the magnitudes of alpha, beta, theta, and the charge density but always becomes linear at large D. Even at a moderately low charge density, corresponding to fewer than 20% of the beads being charged, and with strong crumpling induced by large beta, increasing D dissolves blobs and recovers a linear dependence of P on D2, although a lower power of D gives an adequate fit at moderate D. For the class of models considered, it is concluded that the only universal feature is the asymptotic linearity of P in D2, regardless of flexibility or stiffness.

  7. Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing–Structure–Performance Relationship

    PubMed Central

    Song, Kenan; Zhang, Yiying; Meng, Jiangsha; Green, Emily C.; Tajaddod, Navid; Li, Heng; Minus, Marilyn L.

    2013-01-01

    Among the many potential applications of carbon nanotubes (CNT), its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler–matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers’ superior properties. For this reason, fabrication methods play an important role in determining the composite fibers’ microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing–structure–performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed. PMID:28809290

  8. The effect of metal density in thoracic adolescent idiopathic scoliosis.

    PubMed

    Rushton, Paul R P; Elmalky, Mahmoud; Tikoo, Agnivesh; Basu, Saumyajit; Cole, Ashley A; Grevitt, Michael P

    2016-10-01

    Determine impact of metal density on curve correction and costs in thoracic adolescent idiopathic scoliosis (AIS). Ascertain if increased metal density is required for larger or stiffer curves. Multicentre retrospective case series of patients with Lenke 1-2 AIS treated with single-stage posterior only surgery using a standardized surgical technique; constructs using >80 % screws with variable metal density. All cases had >2-year follow up. Outcomes measures included coronal and sagittal radiographic outcomes, metal density (number of instrumented pedicles vs total available), fusion length and cost. 106 cases included 94 female. 78 Lenke 1. Mean age 14 years (9-26). Mean main thoracic (MT) Cobb angle 63° corrected to 22° (66 %). No significant correlations were present between metal density and: (a) coronal curve correction rates of the MT (r = 0.13, p = 0.19); (b) lumbar curve frontal correction (r = -0.15, p = 0.12); (c) correction index in MT curve (r = -0.10, p = 0.32); and (d) correction index in lumbar curve (r = 0.11, p = 0.28). Metal density was not correlated with change in thoracic kyphosis (r = 0.22, p = 0.04) or lumbosacral lordosis (r = 0.27, p = 0.01). Longer fusions were associated with greater loss of thoracic kyphosis (r = -0.31, p = 0.003). Groups differing by preoperative curve size and stiffness had comparable corrections with similar metal density. The pedicle screw cost represented 21-29 % of overall cost of inpatient treatment depending on metal density. Metal density affects cost but not the coronal and sagittal correction of thoracic AIS. Neither larger nor stiffer curves necessitate high metal density.

  9. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy

    NASA Astrophysics Data System (ADS)

    Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.

    2000-05-01

    Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.

  10. Inflammation and Arterial Stiffness in Chronic Kidney Disease: Findings From the CRIC Study.

    PubMed

    Peyster, Eliot; Chen, Jing; Feldman, Harold I; Go, Alan S; Gupta, Jayanta; Mitra, Nandita; Pan, Qiang; Porter, Anna; Rahman, Mahboob; Raj, Dominic; Reilly, Muredach; Wing, Maria R; Yang, Wei; Townsend, Raymond R

    2017-04-01

    Chronic kidney disease (CKD) and arterial stiffness are associated with increased cardiovascular morbidity and mortality. Inflammation is proposed to have a role in the development of arterial stiffness, and CKD is recognized as a proinflammatory state. Arterial stiffness is increased in CKD, and cross-sectional data has suggested a link between increased inflammatory markers in CKD and higher measures of arterial stiffness. However, no large scale investigations have examined the impact of inflammation on the progression of arterial stiffness in CKD. We performed baseline assessments of 5 inflammatory markers in 3,939 participants from the chronic renal insufficiency cohort (CRIC), along with serial measurements of arterial stiffness at 0, 2, and 4 years of follow-up. A total of 2,933 participants completed each of the follow-up stiffness measures. In cross-sectional analysis at enrollment, significant associations with at least 2 measures of stiffness were observed for fibrinogen, interleukin-6, high-sensitivity C-reactive protein, proteinuria, and composite inflammation score after adjustment for confounders. In longitudinal analyses, there were few meaningful correlations between baseline levels of inflammation and changes in metrics of arterial stiffness over time. In a large cohort of CKD participants, we observed multiple significant correlations between initial markers of inflammation and metrics of arterial stiffness, but baseline inflammation did not predict changes in arterial stiffness over time. While well-described biologic mechanisms provide the basis for our understanding of the cross-sectional results, continued efforts to design longitudinal studies are necessary to fully elucidate the relationship between chronic inflammation and arterial stiffening. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Brachial artery stiffness estimation using ARTSENS.

    PubMed

    Kiran, V Raj; Nabeel, P M; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2017-07-01

    Central and peripheral arteries stiffening prominently affect hemodynamics thus increasing the risk of coronary heart disease, chronic kidney disease and end stage renal disease. There are several commercially available non-invasive measurement technologies for the evaluation of stiffness that are expensive, demand dedicated expertise and fall short for mass screening. Considering this, we have developed ARTSENS ® , a highly compact and portable image-free ultrasound device for evaluation of arterial stiffness. The capability of the device to perform accurate measurements of carotid artery stiffness has been validated through extensive in-vivo studies. In this paper we demonstrate the feasibility of using ARTSENS ® for measuring brachial artery stiffness. An inter-operator repeatability study was done based on in-vivo experiments on 9 young healthy subjects. The study included measurement of distension, end diastolic lumen diameter, arterial compliance and stiffness index performed both on carotid artery and brachial artery by two operators successively. The degree of agreement between the measurements made by operators has been investigated based on Bland-Altman plots and paired t-test. The measurements were populated within the limits of agreement. No statistically significant difference (p-values from paired t-test for end-diastolic diameter, distension, stiffness index, arterial compliance were 0.36, 0.24, 0.47 and 0.11 respectively) was seen for the brachial artery measurements performed by the two operators. The correlation between the measurement made by the operators was highly significant (r=0.86, p-value=0.003).

  12. Mechanical Properties of Steel Encapsulated Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Fudger, Sean; Klier, Eric; Karandikar, Prashant; McWilliams, Brandon; Ni, Chaoying

    This research evaluates a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress approach as a means of improving the ductility of metal matrix composites (MMCs). MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient strength and ductility for many structural applications. By combining MMCs with high strength steels in a hybridized, macro composite materials system that exploits the CTE mismatch, materials systems with improved strength, damage tolerance, and structural efficiency can be obtained. Macro hybridized systems consisting of steel encapsulated light metal MMCs were produced with the goal of creating a system which takes advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Aluminum and magnesium based particulate reinforced MMCs combine many of the desirable characteristic of metals and ceramics, particularly the unique ability to tailor their CTE. This work aims to compare the performance of macro hybridized material systems consisting of aluminum or magnesium MMCs reinforced with Al2O3, SiC, or B4C particles and encapsulated by A36 steel, 304 stainless steel, or cold worked Nitronic® 50 stainless steels.

  13. NT-SiC (new-technology silicon carbide) : Φ 650mm optical space mirror substrate of high-strength reaction-sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Suyama, Shoko; Itoh, Yoshiyasu; Tsuno, Katsuhiko; Ohno, Kazuhiko

    2005-08-01

    Silicon carbide (SiC) is the most advantageous as the material of various telescope mirrors, because of high stiffness, low density, low coefficient of thermal expansion, high thermal conductivity and thermal stability. Newly developed high-strength reaction-sintered silicon carbide (NTSIC), which has two times higher strength than sintered SiC, is one of the most promising candidates for lightweight optical mirror substrate, because of fully dense, lightweight, small sintering shrinkage (+/-1 %), good shape capability and low processing temperature. In this study, 650mm in diameter mirror substrate of NTSIC was developed for space telescope applications. Three developed points describe below. The first point was to realize the lightweight to thin the thickness of green bodies. Ribs down to 3mm thickness can be obtained by strengthen the green body. The second point was to enlarge the mirror size. 650mm in diameter of mirror substrate can be fabricated with enlarging the diameter in order. The final point was to realize the homogeneity of mirror substrate. Some properties, such as density, bending strength, coefficient of thermal expansion, Young's modulus, Poisson's ratio, fracture toughness, were measured by the test pieces cutting from the fabricated mirror substrates.

  14. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea.

    PubMed

    Dewey, James B; Xia, Anping; Müller, Ulrich; Belyantseva, Inna A; Applegate, Brian E; Oghalai, John S

    2018-06-05

    The stereociliary bundles of cochlear hair cells convert mechanical vibrations into the electrical signals required for auditory sensation. While the stiffness of the bundles strongly influences mechanotransduction, its influence on the vibratory response of the cochlear partition is unclear. To assess this, we measured cochlear vibrations in mutant mice with reduced bundle stiffness or with a tectorial membrane (TM) that is detached from the sensory epithelium. We found that reducing bundle stiffness decreased the high-frequency extent and sharpened the tuning of vibratory responses obtained postmortem. Detaching the TM further reduced the high-frequency extent of the vibrations but also lowered the partition's resonant frequency. Together, these results demonstrate that the bundle's stiffness and attachment to the TM contribute to passive longitudinal coupling in the cochlea. We conclude that the stereociliary bundles and TM interact to facilitate passive-wave propagation to more apical locations, possibly enhancing active-wave amplification in vivo. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Influence of Passive Joint Stiffness on Proprioceptive Acuity in Individuals With Functional Instability of the Ankle.

    PubMed

    Marinho, Hellen Veloso Rocha; Amaral, Giovanna Mendes; de Souza Moreira, Bruno; Araújo, Vanessa Lara; Souza, Thales Rezende; Ocarino, Juliana Melo; da Fonseca, Sérgio Teixeira

    2017-12-01

    Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.

  16. Biophysics of cancer progression and high-throughput mechanical characterization of biomaterials

    NASA Astrophysics Data System (ADS)

    Osborne, Lukas Dylan

    Cancer metastasis involves a series of events known as the metastatic cascade. In this complex progression, cancer cells detach from the primary tumor, invade the surrounding stromal space, transmigrate the vascular system, and establish secondary tumors at distal sites. Specific mechanical phenotypes are likely adopted to enable cells to successfully navigate the mechanical environments encountered during metastasis. To examine the role of cell mechanics in cancer progression, I employed force-consistent biophysical and biochemical assays to characterize the mechanistic links between stiffness, stiffness response and cell invasion during the epithelial to mesenchymal transition (EMT). EMT is an essential physiological process, whose abnormal reactivation has been implicated in the detachment of cancer cells from epithelial tissue and their subsequent invasion into stromal tissue. I demonstrate that epithelial-state cells respond to force by evoking a stiffening response, and that after EMT, mesenchymal-state cells have reduced stiffness but also lose the ability to increase their stiffness in response to force. Using loss and gain of function studies, two proteins are established as functional connections between attenuated stiffness and stiffness response and the increased invasion capacity acquired after EMT. To enable larger scale assays to more fully explore the connection between biomechanics and cancer, I discuss the development of an automated array high throughput (AHT) microscope. The AHT system is shown to implement passive microbead rheology to accurately characterize the mechanical properties of biomaterials. Compared to manually performed mechanical characterizations, the AHT system executes experiments in two orders of magnitude less time. Finally, I use the AHT microscope to study the effect of gain of function oncogenic molecules on cell stiffness. I find evidence that our assay can identify alterations in cell stiffness due to constitutive activation of cancer pathways.

  17. Configurational phases in elastic foams under lengthscale-free punching

    NASA Astrophysics Data System (ADS)

    Sabuwala, Tapan; Dai, Xiangyu; Gioia, Gustavo

    2016-08-01

    We carry out experiments with brick-like specimens of elastic open-cell (EOC) foams of three relative densities. Individual specimens may be "tall" (height = width = depth) or "short" (2 height = width = depth). We place each specimen on a supporting plate and use a lengthscale-free (wedge-shaped or conical) punch to apply forces downward along the specimen's height. Regardless of the type of specimen, the force-penetration curves remain linear, for the wedge-shaped punch, or quadratic, for the conical punch, up to a sizable penetration commensurate with the smallest lengthscale of the specimen. After that there is an abrupt, all-but-discontinuous change in stiffness: if the specimen is tall, the stiffness drops; if the specimen is short, the stiffness shoots up. To analyze these curious experimental results, we posit that EOC foams can be found in either of two configurational phases, here termed the low-strain phase and the high-strain phase, which share a two-dimensional interface (a surface of strain discontinuity). The analysis may be outlined as follows. In the first part of an experiment, there obtains a "similarity regime" in which the penetration of the punch and the radius of the interface are the only prevailing lengthscales (because the punch is lengthscale free). In this case, it is possible to show that the force-penetration curve must be linear, or quadratic, depending on whether the punch be wedge-shaped or conical, respectively. This prediction of the analysis is consistent with the experiments. In time, the similarity regime breaks down when the interface reaches one of the specimen's boundaries distal to the tip of the punch. If the specimen is tall, the soft, stress-free lateral boundary is reached first, and the stiffness must drop; if the specimen is short, the hard boundary in contact with the supporting plate is reached first, and the stiffness must shoot up. These predictions too are consistent with the experiments. To provide direct empirical evidence of the interface, we use a digital-image correlation method. Lastly, we run computational simulations of all the experiments, using finite elements and the skeleton-and-bubble model of EOC foams. The computational results are in good accord with the experimental ones, and they allow us to carry out a detailed validation of the analysis. Our findings evince the cardinal role of configurational phases in the mechanics of EOC foams.

  18. Attenuation of Lipopolysaccharide-Induced Lung Vascular Stiffening by Lipoxin Reduces Lung Inflammation

    PubMed Central

    Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.

    2015-01-01

    Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633

  19. Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans.

    PubMed

    Geremia, Jeam Marcel; Baroni, Bruno Manfredini; Bobbert, Maarten Frank; Bini, Rodrigo Rico; Lanferdini, Fabio Juner; Vaz, Marco Aurélio

    2018-06-01

    To document the magnitude and time course of human Achilles tendon adaptations (i.e. changes in tendon morphological and mechanical properties) during a 12-week high-load plantar flexion training program. Ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a function of plantar flexion torque during voluntary plantar flexion. Tendon force-elongation and stress-strain relationships were determined before the start of training (pre-training) and after 4 (post-4), 8 (post-8) and 12 (post-12) training weeks. At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young's modulus, by 86%. Significant changes were first detected at post-4 in stiffness (51% increase) and Young's modulus (87% increase), and at post-8 in CSA (15% increase). Achilles tendon material properties already improved after 4 weeks of high-load training: stiffness increased while CSA remained unchanged. Tendon hypertrophy (increased CSA) was observed after 8 training weeks and contributed to a further increase in Achilles tendon stiffness, but tendon stiffness increases were mostly caused by adaptations in tissue properties.

  20. A numerical simulation of the effect of using porous superelastic Nitinol and stiff Titanium fixation hardware on the bone remodeling

    NASA Astrophysics Data System (ADS)

    Raad, Bahram; Shayesteh Moghaddam, Narges; Elahinia, Mohammad

    2016-04-01

    The aim of this article is to investigate the effect of two different fixation hardware materials on bone remodeling after a mandibular reconstruction surgery and to restore the mandible's function, healthy appearance, mastication, swallowing, breathing, and speech. The hypothesis is that using fixation hardware with stiffness close to that of the surrounding bone will result in a more successful healing process in the mandible bone. The finite element model includes the material properties and forces of the cancellous bone, cortical bone, ligaments, muscles, and teeth. The reconstruction surgery is modeled by including the fixation hardware and the grafted bone. In the sectioned mandible, to best mimic the geometry of the mandible, two single barrel grafts are placed at the top of each other to form a double barrel graft set. Two different materials were used as the mandibular fixation parts, stiff Ti-6Al-4V, and porous superelastic Nickel-Titanium (NiTi) alloys. A comparison of these two alloys demonstrates that using porous NiTi alloy as the fixation part results in a faster healing pace. Furthermore, the density distribution in the mandibular bone after the healing process is more similar to the normal mandible density distribution. The simulations results indicate that the porous superelastic NiTi fixation hardware transfers and distributes the existing forces on the mandible bone more favorably. The probability of stress shielding and/or stress concentration decrease. This type of fixation hardware, therefore, is more appropriate for mandible bone reconstruction surgery. These predictions are in agreement with the clinical observations.

  1. Elasticity of phase-Pi (Al3Si2O7(OH)3) - A hydrous aluminosilicate phase

    NASA Astrophysics Data System (ADS)

    Peng, Ye; Mookherjee, Mainak; Hermann, Andreas; Bajgain, Suraj; Liu, Songlin; Wunder, Bernd

    2017-08-01

    Phase-Pi (Al3Si2O7(OH)3) is an aluminosilicate hydrous mineral and is likely to be stable in hydrated sedimentary layers of subducting slabs. Phase-Pi is likely to be stable between the depths of 60 and 200 km and is likely to transport water into the Earth's interior. Here, we use first principles simulations based on density functional theory to explore the crystal structure at high-pressure, equation of state, and full elastic stiffness tensor as a function of pressure. We find that the pressure volume results could be described by a finite strain fit with V0 , K0 , and K0‧ being 310.3 Å3, 133 GPa, and 3.6 respectively. At zero pressure, the full elastic stiffness tensor shows significant anisotropy with the diagonal principal components C11 , C22 , and C33 being 235, 292, 266 GPa respectively, the diagonal shear C44 , C55 , and C66 being 86, 92, and 87 GPa respectively, and the off-diagonal stiffness C12 , C13 , C14 ,C15 , C16 , C23 , C24 , C25 , C26 , C34 , C35 , C36 , C45 , C46 , and C56 being 73, 78, 6, -30, 15, 61, 17, 2, 1, -13, -15, 6, 3, 1, and 3 GPa respectively. The zero pressure, shear modulus, G0 and its pressure derivative, G0 ‧ are 90 GPa and 1.9 respectively. Upon compression, hydrogen bonding in phase-Pi shows distinct behavior, with some hydrogen bonds weakening and others strengthening. The latter eventually undergo symmetrization, at pressure greater (>40 GPa) than the thermodynamic stability of phase-Pi. Full elastic constant tensors indicate that phase-Pi is very anisotropic with AVP ∼22.4% and AVS ∼23.7% at 0 GPa. Our results also indicate that the bulk sound velocity of phase-Pi is slower than that of the high-pressure hydrous aluminosilicate phase, topaz-OH.

  2. Crosslink Density and Molecular Weight Effects on the Viscoelastic Response of a Glassy High-Performance Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.

  3. Use of Advanced Spectroscopic Techniques for Predicting the Mechanical Properties of Wood Composites

    Treesearch

    Timothy G. Rials; Stephen S. Kelley; Chi-Leung So

    2002-01-01

    Near infrared (NIR) spectroscopy was used to characterize a set of medium-density fiberboard (MDF) samples. This spectroscopic technique, in combination with projection to latent structures (PLS) modeling, effectively predicted the mechanical strength of MDF samples with a wide range of physical properties. The stiffness, strength, and internal bond properties of the...

  4. Modeling the effect of initial planting density on within tree variation of stiffness in loblolly pine

    Treesearch

    Finto Antony; Laurence R. Schimleck; Lewis Jordan; Richard F. Daniels; Alex Clark

    2012-01-01

    Context Modulus of elasticity (MOE) is an important mechanical property determining the end-use and value of loblolly pine (Pinus taeda L.) lumber. Aim In this study, a model was developed to predict the within tree variation of MOE, from pith-to-bark and stumpto- tip, using data collected...

  5. Uniformly rotating, axisymmetric, and triaxial quark stars in general relativity

    NASA Astrophysics Data System (ADS)

    Zhou, Enping; Tsokaros, Antonios; Rezzolla, Luciano; Xu, Renxin; Uryū, Kōji

    2018-01-01

    Quasiequilibrium models of uniformly rotating axisymmetric and triaxial quark stars are computed in a general-relativistic gravity scenario. The Isenberg-Wilson-Mathews (IWM) formulation is employed and the Compact Object Calculator (cocal) code is extended to treat rotating stars with finite surface density and new equations of state (EOSs). Besides the MIT bag model for quark matter which is composed of deconfined quarks, we examine a new EOS proposed by Lai and Xu that is based on quark clustering and results in a stiff EOS that can support masses up to 3.3 M⊙ in the case we considered. We perform convergence tests for our new code to evaluate the effect of finite surface density in the accuracy of our solutions and construct sequences of solutions for both small and high compactness. The onset of secular instability due to viscous dissipation is identified and possible implications are discussed. An estimate of the gravitational wave amplitude and luminosity based on quadrupole formulas is presented and comparison with neutron stars is discussed.

  6. Light weight high-stiffness stage platen

    DOEpatents

    Spence, Paul A.

    2001-01-01

    An improved light weight, stiff stage platen for photolithography is provided. The high stiffness of the stage platen is exemplified by a relatively high first resonant vibrational mode as determined, for instance, by finite element modal analysis. The stage platen can be employed to support a chuck that is designed to secure a mask or wafer. The stage platen includes a frame that has interior walls that define an interior region and that has exterior walls wherein the outer surfaces of at least two adjacent walls are reflective mirror surfaces; and a matrix of ribs within the interior region that is connected to the interior walls wherein the stage platen exhibits a first vibrational mode at a frequency of greater than about 1000 Hz.

  7. Elastomeric load sharing device

    NASA Technical Reports Server (NTRS)

    Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)

    1992-01-01

    An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.

  8. Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang

    2001-01-01

    Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.

  9. Whole breast tissue characterization with ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steve; Seamans, John; Wallen, Andrea; Bey-Knight, Lisa

    2015-03-01

    A number of clinical trials have shown that screening ultrasound, supplemental to mammography, detects additional cancers in women with dense breasts. However, labor intensity, operator dependence and high recall rates have limited adoption. This paper describes the use of ultrasound tomography for whole-breast tissue stiffness measurements as a first step toward addressing the issue of high recall rates. The validation of the technique using an anthropomorphic phantom is described. In-vivo applications are demonstrated on 13 breast masses, indicating that lesion stiffness correlates with lesion type as expected. Comparison of lesion stiffness measurements with standard elastography was available for 11 masses and showed a strong correlation between the 2 measures. It is concluded that ultrasound tomography can map out the 3 dimensional distribution of tissue stiffness over the whole breast. Such a capability is well suited for screening where additional characterization may improve the specificity of screening ultrasound, thereby lowering barriers to acceptance.

  10. Anisotropic Poroelasticity in a Rock With Cracks

    NASA Astrophysics Data System (ADS)

    Wong, Teng-Fong

    2017-10-01

    Deformation of a saturated rock in the field and laboratory may occur in a broad range of conditions, ranging from undrained to drained. The poromechanical response is often anisotropic, and in a brittle rock, closely related to preexisting and stress-induced cracks. This can be modeled as a rock matrix embedded with an anisotropic system of cracks. Assuming microisotropy, expressions for three of the poroelastic coefficients of a transversely isotropic rock were derived in terms of the crack density tensor. Together with published results for the five effective elastic moduli, this provides a complete micromechanical description of the eight independent poroelastic coefficients of such a cracked rock. Relatively simple expressions were obtained for the Skempton pore pressure tensor, which allow one to infer the crack density tensor from undrained measurement in the laboratory, and also to infer the Biot-Willis effective stress coefficients. The model assumes a dilute concentration of noninteractive penny-shaped cracks, and it shows good agreement with experimental data for Berea sandstone, with crack density values up to 0.6. Whereas predictions on the storage coefficient and normal components of the elastic stiffness tensor also seem reasonable, significant discrepancy between model and measurement was observed regarding the off-diagonal and shear components of the stiffness. A plausible model had been proposed for development of very strong anisotropy in the undrained response of a fault zone, and the model here placed geometric constraints on the associated fracture system.

  11. The study of stiffness modulus values for AC-WC pavement

    NASA Astrophysics Data System (ADS)

    Lubis, AS; Muis, Z. A.; Iskandar, T. D.

    2018-02-01

    One of the parameters of the asphalt mixture in order for the strength and durability to be achieved as required is the stress-and-strain showing the stiffness of a material. Stiffness modulus is a very necessary factor that will affect the performance of asphalt pavements. If the stiffness modulus value decreases there will be a cause of aging asphalt pavement crack easily when receiving a heavy load. The high stiffness modulus asphalt concrete causes more stiff and resistant to bending. The stiffness modulus value of an asphalt mixture material can be obtained from the theoretical (indirect methods) and laboratory test results (direct methods). For the indirect methods used Brown & Brunton method, and Shell Bitumen method; while for the direct methods used the UMATTA tool. This study aims to determine stiffness modulus values for AC-WC pavement. The tests were conducted in laboratory that used 3 methods, i.e. Brown & Brunton Method, Shell Bitumen Method and Marshall Test as a substitute tool for the UMATTA tool. Hotmix asphalt made from type AC-WC with pen 60/70 using a mixture of optimum bitumen content was 5.84% with a standard temperature variation was 60°C and several variations of temperature that were 30, 40, 50, 70 and 80°C. The stiffness modulus value results obtained from Brown & Brunton Method, Shell Bitumen Method and Marshall Test which were 1374,93 Mpa, 235,45 Mpa dan 254,96 Mpa. The stiffness modulus value decreases with increasing temperature of the concrete asphalt. The stiffness modulus value from the Bitumen Shell method and the Marshall Test has a relatively similar value.The stiffness modulus value from the Brown & Brunton method is greater than the Bitumen Shell method and the Marshall Test, but can not measure the stiffness modulus value at temperature above 80°C.

  12. Development of optimal grinding and polishing tools for aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Burge, James H.; Anderson, Bill; Benjamin, Scott; Cho, Myung K.; Smith, Koby Z.; Valente, Martin J.

    2001-12-01

    The ability to grind and polish steep aspheric surfaces to high quality is limited by the tools used for working the surface. The optician prefers to use large, stiff tools to get good natural smoothing, avoiding small scale surface errors. This is difficult for steep aspheres because the tools must have sufficient compliance to fit the aspheric surface, yet we wish the tools to be stiff so they wear down high regions on the surface. This paper presents a toolkit for designing optimal tools that provide large scale compliance to fit the aspheric surface, yet maintain small scale stiffness for efficient polishing.

  13. A variable stiffness dielectric elastomer actuator based on electrostatic chucking.

    PubMed

    Imamura, Hiroya; Kadooka, Kevin; Taya, Minoru

    2017-05-14

    Dielectric elastomer actuators (DEA) are one type of promising artificial muscle; however, applications of bending-type DEA for robotic end-effectors may be limited by their low stiffness and ability to resist external loads without buckling. Unimorph DEA can produce large out-of-plane deformation suitable for use as robotic end effectors; however, design of such actuators for large displacement comes at the cost of low stiffness and blocking force. This work proposes and demonstrates a variable stiffness dielectric elastomer actuator (VSDEA) consisting of a plurality of unimorph DEA units operating in parallel, which can exhibit variable electrostatic chucking to modulate the structure's bending stiffness. The unimorph DEA units are additively manufactured using a high-resolution pneumatic dispenser, and VSDEA comprising various numbers of units are assembled. The performance of the DEA units and VSDEA are compared to model predictions, exhibiting a maximum stiffness change of 39.2×. A claw actuator comprising two VSDEA and weighing 0.6 grams is demonstrated grasping and lifting a 10 gram object.

  14. Variable stiffness sandwich panels using electrostatic interlocking core

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-04-01

    Structural topology has a large impact on the flexural stiffness of a beam structure. Reversible attachment between discrete substructures allows for control of shear stress transfer between structural elements, thus stiffness modulation. Electrostatic adhesion has shown promise for providing a reversible latching mechanism for controllable internal connectivity. Building on previous research, a thin film copper polyimide laminate has been used to incorporate high voltage electrodes to Fibre Reinforced Polymer (FRP) sandwich structures. The level of electrostatic holding force across the electrode interface is key to the achievable level of stiffness modulation. The use of non-flat interlocking core structures can allow for a significant increase in electrode contact area for a given core geometry, thus a greater electrostatic holding force. Interlocking core geometries based on cosine waves can be Computer Numerical Control (CNC) machined from Rohacell IGF 110 Foam core. These Interlocking Core structures could allow for enhanced variable stiffness functionality compared to basic planar electrodes. This novel concept could open up potential new applications for electrostatically induced variable stiffness structures.

  15. Influence of pregnancy on bone density: a risk factor for osteoporosis? Measurements of the calcaneus by ultrasonometry.

    PubMed

    Kraemer, Bernhard; Schneider, Silke; Rothmund, Ralf; Fehm, Tanja; Wallwiener, Diethelm; Solomayer, Erich-Franz

    2012-04-01

    There are conflicting opinions in the literature about whether pregnancy influences maternal bone density or osteoporosis development. The study aim was to investigate whether there is a significant alteration in maternal bone density during normal pregnancy. Bone mass of 200 pregnant women aged 22-42 years was measured twice with quantitative ultrasonometry (QUS) of the heel (Os calcaneum). The first measurement was performed between the 10th and 22nd week of pregnancy, follow-up of 149 women took place 0-9 days postpartum. A questionnaire focusing on data affecting bone metabolism and bone turnover was handed out at the first visit. Median reduction in speed of sound (SOS) was 11 m/s at follow-up indicating a decline of the stiffness during pregnancy. No significant correlation was found between lactation period and the obtained values for stiffness, SOS, T score and Z score. For broadband ultrasonographic attenuation, there was a statistically significant difference (p < 0.05) between women who had and had not breastfed. Parameters from patients with a family history of osteoporosis (n = 30) compared to patients without did not reveal statistical significance during pregnancy. Glucocorticoid therapy, nicotine consumption, physical exercise and nutrition was not statistically significant (p > 0.05). SOS value of women with a twin pregnancy was different over the study period (p < 0.05). A reduction in bone mass is possible during pregnancy. Routine evaluation of the bone density in all pregnant women does not seem to be justified; however, it is reasonable in women who present with risk factors. These women could be screened with QUS.

  16. Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness.

    PubMed

    Mathewson, Margie A; Chambers, Henry G; Girard, Paul J; Tenenhaus, Mayer; Schwartz, Alexandra K; Lieber, Richard L

    2014-12-01

    Cerebral palsy (CP), caused by an injury to the developing brain, can lead to alterations in muscle function. Subsequently, increased muscle stiffness and decreased joint range of motion are often seen in patients with CP. We examined mechanical and biochemical properties of the gastrocnemius and soleus muscles, which are involved in equinus muscle contracture. Passive mechanical testing of single muscle fibers from gastrocnemius and soleus muscle of patients with CP undergoing surgery for equinus deformity showed a significant increase in fiber stiffness (p<0.01). Bundles of fibers that included their surrounding connective tissues showed no stiffness difference (p=0.28).). When in vivo sarcomere lengths were measured and fiber and bundle stiffness compared at these lengths, both fibers and bundles of patients with CP were predicted to be much stiffer in vivo compared to typically developing (TD) individuals. Interestingly, differences in fiber and bundle stiffness were not explained by typical biochemical measures such as titin molecular weight (a giant protein thought to impact fiber stiffness) or collagen content (a proxy for extracellular matrix amount). We suggest that the passive mechanical properties of fibers and bundles are thus poorly understood. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Micro-finite element analysis applied to high-resolution MRI reveals improved bone mechanical competence in the distal femur of female pre-professional dancers

    PubMed Central

    Rajapakse, C. S.; Diamond, M.; Honig, S.; Recht, M. P.; Weiss, D. S.; Regatte, R. R.

    2013-01-01

    Summary Micro-finite element analysis applied to high-resolution (0.234-mm length scale) MRI reveals greater whole and cancellous bone stiffness, but not greater cortical bone stiffness, in the distal femur of female dancers compared to controls. Greater whole bone stiffness appears to be mediated by cancellous, rather than cortical bone adaptation. Introduction The purpose of this study was to compare bone mechanical competence (stiffness) in the distal femur of female dancers compared to healthy, relatively inactive female controls. Methods This study had institutional review board approval. We recruited nine female modern dancers (25.7± 5.8 years, 1.63±0.06 m, 57.1±4.6 kg) and ten relatively inactive, healthy female controls matched for age, height, and weight (32.1±4.8 years, 1.6±0.04 m, 55.8±5.9 kg). We scanned the distal femur using a 7-T MRI scanner and a three-dimensional fast low-angle shot sequence (TR/TE= 31 ms/5.1 ms, 0.234 mm×0.234 mm×1 mm, 80 slices). We applied micro-finite element analysis to 10-mm-thick volumes of interest at the distal femoral diaphysis, metaphysis, and epiphysis to compute stiffness and cross-sectional area of whole, cortical, and cancellous bone, as well as cortical thickness. We applied two-tailed t-tests and ANCOVA to compare groups. Results Dancers demonstrated greater whole and cancellous bone stiffness and cross-sectional area at all locations (p< 0.05). Cortical bone stiffness, cross-sectional area, and thickness did not differ between groups (>0.08). At all locations, the percent of intact whole bone stiffness for cortical bone alone was lower in dancers (p<0.05). Adjustment for cancellous bone cross-sectional area eliminated significant differences in whole bone stiffness between groups (p>0.07), but adjustment for cortical bone cross-sectional area did not (p<0.03). Conclusions Modern dancers have greater whole and cancellous bone stiffness in the distal femur compared to controls. Elevated whole bone stiffness in dancers may be mediated via cancellous, rather than cortical bone adaptation. PMID:22893356

  18. Arterial Stiffness and Pharmacological Interventions – The TRanscend Arterial stiffNess Substudy (TRANS study)

    PubMed Central

    Topouchian, Jirar; El Feghali, Ramzi; Pannier, Bruno; Wang, Shuyu; Zhao, Feng; Smetana, Karel; Teo, Koon; Asmar, Roland

    2007-01-01

    The degree of arterial stiffness is correlated with the risk of cardiovascular diseases and it is a powerful predictor for morbidity and mortality. Studies have shown that arterial stiffness reduction is associated with an improvement in survival. Reduction of arterial stiffness by pharmacological drugs varies according to the drugs and doses used and duration of treatment. This effect on the arteries differs among the various classes of drugs and among individual drugs in the same class. Quantification of the stiffness and other properties of the arterial wall can be used to monitor the responses to therapy in individuals with hypertension and other cardiovascular diseases. These measures can then be used as surrogate markers for the risk of clinical events. Inhibition of the renin-angiotensin system (RAS) is associated with an important decrease in cardiovascular risk. Findings from clinical trials support the hypothesis that the protective effects of RAS inhibition are partly independent from blood pressure reduction and related to several mechanisms including vascular protective effects. The aim of the TRanscend Arterial stiffNess Substudy (TRANS) is to assess the effect of an angiotensin II receptor blocker (ARB), telmisartan, on the arterial stiffness in a subgroup of patients from the Telmisartan Randomized Assessment Study in aCE iNtolerant subjects with cardiovascular Disease (TRANSCEND) trial. The TRANSCEND trial is an international, multicenter, randomized double blind placebo controlled trial of telmisartan that enrolled patients at high risk for cardiovascular events. Some clinical baseline data of the TRANS substudy are reported. When completed, the results of the TRANS substudy will show whether the beneficial effects of treatment with telmisartan on cardiovascular outcome may be related to an improvement in arterial stiffness. PMID:17969367

  19. Reference values of one-point carotid stiffness parameters determined by carotid echo-tracking and brachial pulse pressure in a large population of healthy subjects.

    PubMed

    Vriz, Olga; Aboyans, Victor; Minisini, Rosalba; Magne, Julien; Bertin, Nicole; Pirisi, Mario; Bossone, Eduardo

    2017-07-01

    Arterial stiffness can predict cardiovascular events, and the aim of this study was to produce age- and sex-specific reference values for echo-tracking carotid stiffness in healthy subjects. A total of 900 subjects (500 males, mean age 45.8±19 years) were enrolled. Common carotid artery stiffness and compliance, using a high-definition echo-tracking ultrasound system, were evaluated. To compare stiffness parameters across the different age groups, individual scores were transformed into T-scores, indicating how many standard deviation (s.d.) units an individual's score was above or below the mean that was observed in the group including same-sex individuals aged 36 to 44 years. Carotid stiffness was similar among genders, except compliance, which was lower in women (P<0.0001). These characteristics were also maintained when the studied population was divided into seven age groups. Stiffness parameters increased significantly with age, but the opposite occurred for compliance. The T-score was found to increase significantly across all age groups, with a steeper increase in stiffness around the age of 60 years in women. For each T-score s.d., the corresponding carotid absolute values for arterial stiffness and compliance were obtained. In a multivariate model, carotid stiffness parameters were constantly and independently associated with age, mean arterial pressure, pulse pressure, heart rate and body mass index. Our study provides a normogram of carotid arterial stiffness and compliance indices obtained with the echo-tracking method in a large population of healthy subjects stratified by gender and age that can be used in clinical practice.

  20. An Automatic Orthonormalization Method for Solving Stiff Boundary-Value Problems

    NASA Astrophysics Data System (ADS)

    Davey, A.

    1983-08-01

    A new initial-value method is described, based on a remark by Drury, for solving stiff linear differential two-point cigenvalue and boundary-value problems. The method is extremely reliable, it is especially suitable for high-order differential systems, and it is capable of accommodating realms of stiffness which other methods cannot reach. The key idea behind the method is to decompose the stiff differential operator into two non-stiff operators, one of which is nonlinear. The nonlinear one is specially chosen so that it advances an orthonormal frame, indeed the method is essentially a kind of automatic orthonormalization; the second is auxiliary but it is needed to determine the required function. The usefulness of the method is demonstrated by calculating some eigenfunctions for an Orr-Sommerfeld problem when the Reynolds number is as large as 10°.

  1. A gradual update method for simulating the steady-state solution of stiff differential equations in metabolic circuits.

    PubMed

    Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki

    2009-02-01

    Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.

  2. Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes.

    PubMed

    Nowroozi, Bryan N; Brainerd, Elizabeth L

    2014-02-01

    Whole-body stiffness in fishes has important consequences for swimming mode, speed and efficiency, but the contribution of vertebral column stiffness to whole-body stiffness is unclear. In our opinion, this lack of clarity is due in part to the lack of studies that have measured both in vitro mechanical properties of the vertebral column as well as in vivo vertebral kinematics in the same species. Some lack of clarity may also come from real variation in the mechanical role of the vertebral column across species. Previous studies, based on either mechanics or kinematics alone, suggest species-specific variation in vertebral column locomotor function that ranges from highly stiff regimes that contribute greatly to whole-body stiffness, and potentially act as a spring, to highly compliant regimes that only prohibit excessive flexion of the intervertebral joints. We review data collected in combined investigations of both mechanics and kinematics of three species, Myxine glutinosa, Acipenser transmontanus, and Morone saxatilis, to illustrate how mechanical testing within the context of the in vivo kinematics more clearly distinguishes the role of the vertebral column in each species. In addition, we identify species for which kinematic data are available, but mechanical data are lacking. We encourage further investigation of these species to fill these mechanical data gaps. Finally, we hope these future combined analyses will identify certain morphological, mechanical, or kinematic parameters that might be associated with certain vertebral column functional regimes with respect to body stiffness. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Evaluation of composite materials providing improved acoustic transmission loss for UAVs

    NASA Astrophysics Data System (ADS)

    Callicoat, Jeffrey R.

    With the proliferation of Unmanned Aerial Vehicles (UAVs) in civilian airspace in the near future, community noise will be a major issue of concern. Numerous studies have shown a direct link between community noise pollution (i.e., road traffic noise and airport noise) and serious health problems. There exists, therefore, a pressing need to create quiet UAVs, and this drives the need for noise-attenuating materials and structures suitable for UAV airframe fabrication. By shrouding predominant noise sources such as the engine, exhaust, and even the propeller (in the case of a ducted fan) with the airframe structure, the airframe can serve as a noise transmission barrier and substantially reduce UAV noise profiles. The present research effort is an experimental investigation of light-weight fiber-reinforced composite materials to provide high acoustic transmission loss (TL) for use in fabricating UAV airframes. A transmission loss tube acoustic test system was designed, fabricated, and validated, and extensive testing was done on numerous composite layups of interest for UAV fabrication. Composites under study included carbon fiber, fiberglass, and Kevlar fabrics as skin materials along with vinyl foam, Nomex honeycomb, and balsawood as core materials. Results from testing small 3"x3" samples in the TL tube led to the selection of four composite sandwich panels of interest for further study. Larger 36"x36" test samples of these selected layups were then fabricated and tested using a 2-room methodology. Whereas the TL tube yielded results in the stiffness-controlled region of acoustic behavior, the 2-room tests produced results in the mass-controlled region for these materials, enabling relative performance comparisons over both acoustic regimes. Recognizing that a good material for airframe fabrication should possess not only high TL, but also low weight and high stiffness, load-deflection tests were conducted and overall material performance was compared in terms of the parameter [(TL * stiffness) / surface density]. A sandwich panel layup of 5.7 oz carbon fiber skins with a vinyl foam core emerged as the preferable material choice, and a UAV fuselage of this construction was evaluated in the OSU anechoic chamber and shown to substantially reduce sound propagation from enclosed noise sources.

  4. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.

    PubMed

    Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B

    2016-03-04

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  5. On Spurious Numerics in Solving Reactive Equations

    NASA Technical Reports Server (NTRS)

    Kotov, D. V; Yee, H. C.; Wang, W.; Shu, C.-W.

    2013-01-01

    The objective of this study is to gain a deeper understanding of the behavior of high order shock-capturing schemes for problems with stiff source terms and discontinuities and on corresponding numerical prediction strategies. The studies by Yee et al. (2012) and Wang et al. (2012) focus only on solving the reactive system by the fractional step method using the Strang splitting (Strang 1968). It is a common practice by developers in computational physics and engineering simulations to include a cut off safeguard if densities are outside the permissible range. Here we compare the spurious behavior of the same schemes by solving the fully coupled reactive system without the Strang splitting vs. using the Strang splitting. Comparison between the two procedures and the effects of a cut off safeguard is the focus the present study. The comparison of the performance of these schemes is largely based on the degree to which each method captures the correct location of the reaction front for coarse grids. Here "coarse grids" means standard mesh density requirement for accurate simulation of typical non-reacting flows of similar problem setup. It is remarked that, in order to resolve the sharp reaction front, local refinement beyond standard mesh density is still needed.

  6. Stiffness is more than just duration and severity: a qualitative exploration in people with rheumatoid arthritis

    PubMed Central

    Dures, Emma; Kirwan, John; Pollock, Jon; Baker, Gill; Edmunds, Avis; Hewlett, Sarah

    2015-01-01

    Objective. Stiffness is internationally recognized as an important indicator of inflammatory activity in RA but is poorly understood and difficult to measure. The aim of this study was to explore the experience of stiffness from the patient perspective. Methods. Semi-structured interviews conducted with 16 RA patients were analysed independently by researchers and pat.ient partners using inductive thematic analysis. Results. Six themes were identified. Part of having RA identified stiffness as a normal consequence of RA, perceived as associated with disease-related aspects such as fluctuating disease activity, other RA symptoms and disease duration. Local and widespread highlighted stiffness occurring not only in joints, but also over the whole body, being more widespread during the morning or flare. Linked to behaviour and environment illustrated factors that influence stiffness, including movement, medications and weather. Highly variable captured the fluctuating nature of stiffness within and between patients and in relation to temporality, duration and intensity. Impacts on daily life emphasized the effect of stiffness on a range of domains, including physical function, quality of life, psychological well-being, activities of daily living and participation in work and leisure activities. Requires self-management detailed self-management strategies targeting both the symptom and its consequences. Conclusion. Patients’ experiences of stiffness were varied, complex and not exclusive to the morning period. Importantly, stiffness was reported in terms of impact rather than the traditional measurement concepts of severity or duration. Based on these findings, further research is needed to develop a patient-centred measure that adequately reflects inflammatory activity. PMID:25231178

  7. Magnetic resonance elastography of the pancreas: Measurement reproducibility and relationship with age.

    PubMed

    Kolipaka, Arunark; Schroeder, Samuel; Mo, Xiaokui; Shah, Zarine; Hart, Phil A; Conwell, Darwin L

    2017-10-01

    To determine magnetic resonance elastography (MRE)-derived stiffness of pancreas in healthy volunteers with emphasis on: 1) short term and midterm repeatability; and 2) variance as a function of age. Pancreatic MRE was performed on 22 healthy volunteers (age range:20-64years) in a 3T-scanner. For evaluation of reproducibility of stiffness estimates, the scans were repeated per volunteer on the same day (short term) and one month apart (midterm). MRE wave images were analyzed using 3D inversion to estimate the stiffness of overall pancreas and different anatomic regions (i.e., head, neck, body, and tail). Concordance and Spearman correlation tests were performed to determine reproducibility of stiffness measurements and relationship to age. A strong concordance correlation (ρ c =0.99; p-value<0.001) was found between short term and midterm repeatability pancreatic stiffness measurements. Additionally, the pancreatic stiffness significantly increased with age with good Spearman correlation coefficient (all ρ>0.81; p<0.001). The older age group (>45yrs) had significantly higher stiffness compared to the younger group (≤45yrs) (p<0.001). No significant difference (p>0.05) in stiffness measurements was observed between different anatomical regions of pancreas, except neck stiffness was slightly lower (p<0.012) compared to head and overall pancreas at month 1. MRE-derived pancreatic stiffness measurements are highly reproducible in the short and midterm and increase linearly with age in healthy volunteers. Further studies are needed to examine these effects in patients with various pancreatic diseases to understand potential clinical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Biomechanical Factors in the Etiology of Tibial Stress Fractures

    DTIC Science & Technology

    2002-08-01

    structures will control the kinematics of the runner. A "stiff runner will spend less time in contact with the ground (Farley and Gonzalez, 1996 ) and will...a SF are in agreement with Farley and Gonzalez ( 1996 ) and suggest that lower extremity stiffness and knee kinematics are highly correlated and may...stressfracture in male runners. Med Sei Sports Exercise 31(8), 1088-1093. Farley CT, Gonzalez O. ( 1996 ) Leg stiffness and stride frequency in human running. J

  9. Absence of ballistic charge transport in the half-filled 1D Hubbard model

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Nemati, S.; Prosen, T.

    2018-05-01

    Whether in the thermodynamic limit of lattice length L → ∞, hole concentration mηz = - 2 Sηz/L = 1 -ne → 0, nonzero temperature T > 0, and U / t > 0 the charge stiffness of the 1D Hubbard model with first neighbor transfer integral t and on-site repulsion U is finite or vanishes and thus whether there is or there is no ballistic charge transport, respectively, remains an unsolved and controversial issue, as different approaches yield contradictory results. (Here Sηz = - (L -Ne) / 2 is the η-spin projection and ne =Ne / L the electronic density.) In this paper we provide an upper bound on the charge stiffness and show that (similarly as at zero temperature), for T > 0 and U / t > 0 it vanishes for mηz → 0 within the canonical ensemble in the thermodynamic limit L → ∞. Moreover, we show that at high temperature T → ∞ the charge stiffness vanishes as well within the grand-canonical ensemble for L → ∞ and chemical potential μ →μu where (μ -μu) ≥ 0 and 2μu is the Mott-Hubbard gap. The lack of charge ballistic transport indicates that charge transport at finite temperatures is dominated by a diffusive contribution. Our scheme uses a suitable exact representation of the electrons in terms of rotated electrons for which the numbers of singly occupied and doubly occupied lattice sites are good quantum numbers for U / t > 0. In contrast to often less controllable numerical studies, the use of such a representation reveals the carriers that couple to the charge probes and provides useful physical information on the microscopic processes behind the exotic charge transport properties of the 1D electronic correlated system under study.

  10. Correlates of Segmental Pulse Wave Velocity in Older Adults: The Atherosclerosis Risk in Communities (ARIC) Study.

    PubMed

    Meyer, Michelle L; Tanaka, Hirofumi; Palta, Priya; Cheng, Susan; Gouskova, Natalia; Aguilar, David; Heiss, Gerardo

    2016-01-01

    Carotid-femoral PWV (cfPWV) is a well-established measure of central arterial stiffness, while brachial-ankle PWV (baPWV) is being used more frequently in East Asian countries. Few studies have simultaneously characterized the distributions and correlates of segment-specific PWV measures and their associations with cardiovascular risk factors. We evaluated segment-specific PWV (cfPWV, baPWV, and femoral-ankle (faPWV)) in 4,974 older-aged African American and Caucasian adults in the community-based Atherosclerosis Risk in Communities (ARIC) Study using a standardized protocol and the OMRON VP-1000 Plus system. We examined the distribution and multivariable-adjusted correlates of PWV measures by race and sex. Mean age ranged from 74 ± 5 to 76 ± 5 years across race-sex groups. In all race-sex groups, cfPWV correlated with baPWV but not with faPWV, and cfPWV and baPWV were higher with age, whereas faPWV was not. Heart rate and systolic blood pressure (SBP) were positively associated and weight was negatively associated with all PWV measures; however, the associations with age, glycated hemoglobin, triglycerides, and high-density lipoprotein (HDL) cholesterol varied by segment and race-sex group. Our findings indicate that cfPWV and faPWV reflect distinct aspects of segment-specific vascular stiffness and their associated profile of cardiovascular risk factors. Even among older adults, age is associated with higher cfPWV and baPWV, but not with faPWV. Understanding factors that ostensibly play a role in increasing arterial stiffness in different arterial territories can inform opportunities for cardiovascular disease (CVD) prevention and risk management. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Fourier Transform Infrared Imaging Microspectroscopy and Tissue-Level Mechanical Testing Reveal Intraspecies Variation in Mouse Bone Mineral and Matrix Composition

    PubMed Central

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B.; Spevak, Lyudmila; Boskey, Adele L.; Jepsen, Karl J.

    2009-01-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways. PMID:18855037

  12. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    PubMed

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

  13. Aortic-Brachial Arterial Stiffness Gradient and Cardiovascular Risk in the Community: The Framingham Heart Study.

    PubMed

    Niiranen, Teemu J; Kalesan, Bindu; Larson, Martin G; Hamburg, Naomi M; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S

    2017-06-01

    A recent study reported that the aortic-brachial arterial stiffness gradient, defined as carotid-radial/carotid-femoral pulse wave velocity (PWV ratio), predicts all-cause mortality better than carotid-femoral pulse wave velocity (CFPWV) alone in dialysis patients. However, the prognostic significance of PWV ratio for cardiovascular disease (CVD) in the community remains unclear. Accordingly, we assessed the correlates and prognostic value of the PWV ratio in 2114 Framingham Heart Study participants (60±10 years; 56% women) free of overt CVD. Mean PWV ratio decreased from 1.36±0.19 in participants aged <40 years to 0.73±0.21 in those aged ≥80 years. In multivariable linear regression, older age, male sex, higher body mass index, diabetes mellitus, lower high-density lipoprotein cholesterol, higher mean arterial pressure, and higher heart rate were associated with lower PWV ratio ( P <0.001 for all). During a median follow-up of 12.6 years, 248 first CVD events occurred. In Cox regression models adjusted for standard CVD risk factors, 1-SD changes in CFPWV (hazard ratio, 1.33; 95% confidence interval, 1.10-1.61) and PWV ratio (hazard ratio, 1.32; 95% confidence interval, 1.09-1.59) were associated with similar CVD risks. Models that included conventional CVD risk factors plus CFPWV or PWV ratio gave the same C statistics (C=0.783). Although PWV ratio has been reported to provide incremental predictive value over CFPWV in dialysis patients, we could not replicate these findings in our community-based sample. Our findings suggest that the prognostic significance of PWV ratio may vary based on baseline CVD risk, and CFPWV should remain the criterion standard for assessing vascular stiffness in the community. © 2017 American Heart Association, Inc.

  14. Quality evaluation of stiff porridges prepared from Irish potato (Solanum tuberosum) and pigeon pea (Cajanus cajan) starch blends.

    PubMed

    Abu, Joseph Oneh; Enyinnaya, Chinma Chiemela; James, Samaila; Okeleke, Ezinne

    2012-06-01

    Quality attributes of stiff porridges prepared from Irish potato and pigeon pea starch blends were studied. Starches were extracted from Irish potato and pigeon pea using a wet extraction method. Various ratios of the starches were mixed and analyzed for chemical, functional and pasting properties. The starch blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of Irish potato starch with pigeon pea starch led to increases in protein (0.15 to 1.2%), fat (0.26 to 0.56%) and ash (0.30 to 0.69%) while the amylose content of the starch blends decreased (from 23.8 to 18.4%) respectively. Functional properties such as bulk density (0.75 to 0.60 g/cm(3)), water absorption capacity (3.1 to 2.6 g water/ g sample) and dispersibility (58.6 to 42.7%) decreased significantly (P < 0.05) at the highest concentration (50%) of pigeon pea starch respectively. Pasting properties such as peak, breakdown, final and setback viscosities increased with increasing levels of pigeon pea starch while peak time and pasting temperature decreased. The sensory attributes of stiff porridges were not adversely affected by pigeon pea starch inclusion. Therefore it should be possible to incorporate up to 50% of low digestible pigeon pea starch into Irish potato starch from legumes such as pigeon pea as alternatives to cassava starch in the preparation of stiff porridges. Such porridges made from Irish potato and legume starches could provide additional incentive for individuals requiring decreased and or slow starch digestibility such as diabetics.

  15. Nanographene reinforced carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic dispersions compared to VGCNF/phenolic dispersions. In nanocomposites, at low concentration (≤ 1.5 wt%), NGP were effective in increasing the flexure strength, char content and lowering the porosity and coefficient of thermal expansion of neat phenolic resin. At higher concentration (>1.5wt%), NGP had a tendency to agglomerate and lost their effectiveness. The behavior observed in nanocomposites continued in manufactured CCC. The highest Inter Laminar Shear Strength (ILSS), flexure strength/modulus, stiffness and density was observed at 1.5 wt% NGP. In CCC at concentrations > 1.5 wt%, the properties (ILSS, flexure, stiffness, density) decreased due to agglomeration but they were still higher compared to that of neat CCC (without NGP).

  16. Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive notch filter

    NASA Astrophysics Data System (ADS)

    Zheng, Shiqiang; Feng, Rui

    2016-03-01

    This paper introduces a feedforward control strategy combined with a novel adaptive notch filter to solve the problem of rotor imbalance in high-speed Magnetically Suspended Centrifugal Compressors (MSCCs). Unbalance vibration force of rotor in MSCC is mainly composed of current stiffness force and displacement stiffness force. In this paper, the mathematical model of the unbalance vibration with the proportional-integral-derivative (PID) control laws is presented. In order to reduce the unbalance vibration, a novel adaptive notch filter is proposed to identify the synchronous frequency displacement of the rotor as a compensation signal to eliminate the current stiffness force. In addition, a feedforward channel from position component to control output is introduced to compensate displacement stiffness force to achieve a better performance. A simplified inverse model of power amplifier is included in the feedforward channel to reject the degrade performance caused by its low-pass characteristic. Simulation and experimental results on a MSCC demonstrate a significant effect on the synchronous vibration suppression of the magnetically suspended rotor at a high speed.

  17. PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient

    NASA Astrophysics Data System (ADS)

    Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.

    2018-02-01

    Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.

  18. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.

    PubMed

    Williams, Jarrod C; Nguyen, Baochau N; McCorkle, Linda; Scheiman, Daniel; Griffin, Justin S; Steiner, Stephen A; Meador, Mary Ann B

    2017-01-18

    We report here the fabrication of polyamide aerogels composed of poly-p-phenylene-terephthalamide, the same backbone chemistry as DuPont's Kevlar. The all-para-substituted polymers gel without the use of cross-linker and maintain their shape during processing-an improvement over the meta-substituted cross-linked polyamide aerogels reported previously. Solutions containing calcium chloride (CaCl 2 ) and para-phenylenediamine (pPDA) in N-methylpyrrolidinone (NMP) at low temperature are reacted with terephthaloyl chloride (TPC). Polymerization proceeds over the course of 5 min resulting in gelation. Removal of the reaction solvent via solvent exchange followed by extraction with supercritical carbon dioxide provides aerogels with densities ranging from 0.1 to 0.3 g/cm 3 , depending on the concentration of calcium chloride, the formulated number of repeat units, n, and the concentration of polymer in the reaction mixture. These variables were assessed in a statistical experimental study to understand their effects on the properties of the aerogels. Aerogels made using at least 30 wt % CaCl 2 had the best strength when compared to aerogels of similar density. Furthermore, aerogels made using 30 wt % CaCl 2 exhibited the lowest shrinkage when aged at elevated temperatures. Notably, whereas most aerogel materials are highly insulating (thermal conductivities of 10-30 mW/m K), the polyamide aerogels produced here exhibit remarkably high thermal conductivities (50-80 mW/(m K)) at the same densities as other inorganic and polymer aerogels. These high thermal conductivities are attributed to efficient phonon transport by the rigid-rod polymer backbone. In conjunction with their low cost, ease of fabrication with respect to other polymer aerogels, low densities, and high mass-normalized strength and stiffness properties, these aerogels are uniquely valuable for applications such as lightweighting in consumer electronics, automobiles, and aerospace where weight reduction is desirable but trapping of heat may be undesirable-applications where other polymer aerogels have to date otherwise been unsuitable-creating new opportunities for commercialization of aerogels.

  19. Human arm stiffness and equilibrium-point trajectory during multi-joint movement.

    PubMed

    Gomi, H; Kawato, M

    1997-03-01

    By using a newly designed high-performance manipulandum and a new estimation algorithm, we measured human multi-joint arm stiffness parameters during multi-joint point-to-point movements on a horizontal plane. This manipulandum allows us to apply a sufficient perturbation to subject's arm within a brief period during movement. Arm stiffness parameters were reliably estimated using a new algorithm, in which all unknown structural parameters could be estimated independent of arm posture (i.e., constant values under any arm posture). Arm stiffness during transverse movement was considerably greater than that during corresponding posture, but not during a longitudinal movement. Although the ratios of elbow, shoulder, and double-joint stiffness were varied in time, the orientation of stiffness ellipses during the movement did not change much. Equilibrium-point trajectories that were predicted from measured stiffness parameters and actual trajectories were slightly sinusoidally curved in Cartesian space and their velocity profiles were quite different from the velocity profiles of actual hand trajectories. This result contradicts the hypothesis that the brain does not take the dynamics into account in movement control depending on the neuromuscular servo mechanism; rather, it implies that the brain needs to acquire some internal models of controlled objects.

  20. Evaluation of fatty liver fibrosis in rabbits using real-time shear wave elastography

    PubMed Central

    LU, YONGPING; WEI, JIA; TANG, YUEYUE; YUAN, YUAN; HUANG, YANLING; ZHANG, YONG; LI, YUNYAN

    2014-01-01

    The aim of the present study was to detect the elastic modulus (stiffness) of the livers of rabbits with non-alcoholic and alcoholic fatty liver disease using real-time shear wave elastography (SWE), and to investigate the fibrosis development process in the formation of fatty liver. The stiffness of the fatty livers in rabbit models prepared via feeding with alcohol or a high-fat diet were measured using a real-time SWE ultrasound system and a 4–15-MHz linear array probe, and the liver stiffness was compared with the pathological staging of the disease. The stiffness of the liver was positively correlated with the degree of pathological change in fatty liver disease (P<0.01). The stiffness of the liver in the alcoholic fatty liver group was higher compared with that in the non-alcoholic fatty liver and control groups, and the stiffness in the non-alcoholic fatty liver group was higher than that in the control group (P<0.01). Real-time SWE objectively identified the trend in the changing stiffness of the liver and noninvasively detected the development of fibrosis in the progression of non-alcoholic and alcoholic fatty liver disease. PMID:25009583

  1. Ultrasound shear wave elastography in the assessment of passive biceps brachii muscle stiffness: influences of sex and elbow position.

    PubMed

    Chen, Johnson; O'Dell, Michael; He, Wen; Du, Li-Juan; Li, Pai-Chi; Gao, Jing

    To assess differences in biceps brachii muscle (BBM) stiffness as evaluated by ultrasound shear wave elastography (SWE). The passive stiffness of the BBM was quantified with shear wave velocity (SWV) measurements obtained from 10 healthy volunteers (5 men and 5 women, mean age 50years, age range 42-63 years) with the elbow at full extension and 30° flexion in this IRB-approved study. Potential differences between two depths within the muscle, two elbow positions, the two arms, and sexes were assessed by using two-tailed t-test. The reproducibility of SWV measurements was tested by using intraclass correlation coefficient (ICC). Significantly higher passive BBM stiffness was found at full elbow extension compared to 30° of flexion (p≤0.00006 for both arms). Significantly higher passive stiffness in women was seen for the right arm (p=0.04 for both elbow positions). Good correlation of shear wave velocity measured at the different depths. The ICC for interobserver and intraobserver variation was high. SWE is a reliable quantitative tool for assessing BBM stiffness, with differences in stiffness based on elbow position demonstrated and based on sex suggested. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX.

    PubMed

    Yuh, H Y; Kaye, S M; Levinton, F M; Mazzucato, E; Mikkelsen, D R; Smith, D R; Bell, R E; Hosea, J C; LeBlanc, B P; Peterson, J L; Park, H K; Lee, W

    2011-02-04

    Negative magnetic shear is found to suppress electron turbulence and improve electron thermal transport for plasmas in the National Spherical Torus Experiment (NSTX). Sufficiently negative magnetic shear results in a transition out of a stiff profile regime. Density fluctuation measurements from high-k microwave scattering are verified to be the electron temperature gradient (ETG) mode by matching measured rest frequency and linear growth rate to gyrokinetic calculations. Fluctuation suppression under negligible E×B shear conditions confirm that negative magnetic shear alone is sufficient for ETG suppression. Measured electron temperature gradients can significantly exceed ETG critical gradients with ETG mode activity reduced to intermittent bursts, while electron thermal diffusivity improves to below 0.1 electron gyro-Bohms.

  3. Fear of Movement Is Related to Trunk Stiffness in Low Back Pain

    PubMed Central

    Karayannis, Nicholas V.; Smeets, Rob J. E. M.; van den Hoorn, Wolbert; Hodges, Paul W.

    2013-01-01

    Background Psychological features have been related to trunk muscle activation patterns in low back pain (LBP). We hypothesised higher pain-related fear would relate to changes in trunk mechanical properties, such as higher trunk stiffness. Objectives To evaluate the relationship between trunk mechanical properties and psychological features in people with recurrent LBP. Methods The relationship between pain-related fear (Tampa Scale for Kinesiophobia, TSK; Photograph Series of Daily Activities, PHODA-SeV; Fear Avoidance Beliefs Questionnaire, FABQ; Pain Catastrophizing Scale, PCS) and trunk mechanical properties (estimated from the response of the trunk to a sudden sagittal plane forwards or backwards perturbation by unpredictable release of a load) was explored in a case-controlled study of 14 LBP participants. Regression analysis (r 2) tested the linear relationships between pain-related fear and trunk mechanical properties (trunk stiffness and damping). Mechanical properties were also compared with t-tests between groups based on stratification according to high/low scores based on median values for each psychological measure. Results Fear of movement (TSK) was positively associated with trunk stiffness (but not damping) in response to a forward perturbation (r2 = 0.33, P = 0.03), but not backward perturbation (r2 = 0.22, P = 0.09). Other pain-related fear constructs (PHODA-SeV, FABQ, PCS) were not associated with trunk stiffness or damping. Trunk stiffness was greater for individuals with high kinesiophobia (TSK) for forward (P = 0.03) perturbations, and greater with forward perturbation for those with high fear avoidance scores (FABQ-W, P = 0.01). Conclusions Fear of movement is positively (but weakly) associated with trunk stiffness. This provides preliminary support an interaction between biological and psychological features of LBP, suggesting this condition may be best understood if these domains are not considered in isolation. PMID:23826339

  4. Structure and Function in the Lunge Feeding Apparatus: Mechanical Properties of the Fin Whale Mandible.

    PubMed

    Shadwick, Robert E; Goldbogen, Jeremy A; Pyenson, Nicholas D; Whale, James C A

    2017-11-01

    The mandibles of rorqual whales are highly modified to support loads associated with lunge-feeding, a dynamic filter feeding mechanism that is characterized by rapid changes in gape angle and acceleration. Although these structures are the largest ossified elements in animals and an important part of the rorqual engulfment apparatus, details of internal structure are limited and no direct measurements of mechanical properties exist. Likewise, the forces that are sustained by the mandibles are unknown. Here we report on the structure and mechanical behavior of the mandible of an adult fin whale. A series of transverse sections were cut at locations along the entire length of a 3.6-m left mandible recovered post-mortem from a 16-m fin whale, and CT scanned to make density maps. Cored samples 6-8 mm in diameter were tested in compression to determine the Young's modulus and strength. In addition, wet density, dry density and mineral density were measured. Dense cortical bone occupies only a relatively narrow peripheral layer while much less dense and oil-filled trabecular bone occupies the rest. Mineral density of both types is strongly correlated with dry density and CT Hounsfield units. Compressive strength is strongly correlated with Young's modulus, while strength and stiffness are both correlated with mineral density. It appears that the superficial compact layer is the main load bearing element, and that the mandible is reinforced against dorso-vental flexion that would occur during the peak loads while feeding. Anat Rec, 300:1953-1962, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy.

    PubMed

    Bian, Liming; Hou, Chieh; Tous, Elena; Rai, Reena; Mauck, Robert L; Burdick, Jason A

    2013-01-01

    Hyaluronic acid (HA) hydrogels formed via photocrosslinking provide stable 3D hydrogel environments that support the chondrogenesis of mesenchymal stem cells (MSCs). Crosslinking density has a significant impact on the physical properties of hydrogels, including their mechanical stiffness and macromolecular diffusivity. Variations in the HA hydrogel crosslinking density can be obtained by either changes in the HA macromer concentration (1, 3, or 5% w/v at 15 min exposure) or the extent of reaction through light exposure time (5% w/v at 5, 10, or 15 min). In this work, increased crosslinking by either method resulted in an overall decrease in cartilage matrix content and more restricted matrix distribution. Increased crosslinking also promoted hypertrophic differentiation of the chondrogenically induced MSCs, resulting in more matrix calcification in vitro. For example, type X collagen expression in the high crosslinking density 5% 15 min group was ~156 and 285% higher when compared to the low crosslinking density 1% 15 min and 5% 5 min groups on day 42, respectively. Supplementation with inhibitors of the small GTPase pathway involved in cytoskeletal tension or myosin II had no effect on hypertrophic differentiation and matrix calcification, indicating that the differential response is unlikely to be related to force-sensing mechanotransduction mechanisms. When implanted subcutaneously in nude mice, higher crosslinking density again resulted in reduced cartilage matrix content, restricted matrix distribution, and increased matrix calcification. This study demonstrates that hydrogel properties mediated through alterations in crosslinking density must be considered in the context of the hypertrophic differentiation of chondrogenically induced MSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effects of tooth profile modification on dynamic responses of a high speed gear-rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Hu, Zehua; Tang, Jinyuan; Zhong, Jue; Chen, Siyu; Yan, Haiyan

    2016-08-01

    A finite element node dynamic model of a high speed gear-rotor-bearing system considering the time-varying mesh stiffness, backlash, gyroscopic effect and transmission error excitation is developed. Different tooth profile modifications are introduced into the gear pair and corresponding time-varying mesh stiffness curves are obtained. Effects of the tooth profile modification on mesh stiffness are analyzed, and the natural frequencies and mode shapes of the gear-rotor-bearing transmission system are given. The dynamic responses with respect to a wide input speed region including dynamic factor, vibration amplitude near the bearing and dynamic transmission error are obtained by introducing the time-varying mesh stiffness in different tooth profile modification cases into the gear-rotor-bearing dynamic system. Effects of the tooth profile modification on the dynamic responses are studied in detail. The numerical simulation results show that both the short profile modification and the long profile modification can affect the mutation of the mesh stiffness when the number of engaging tooth pairs changes. A short profile modification with an appropriate modification amount can improve the dynamic property of the system in certain work condition.

  7. Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping.

    PubMed

    Wang, Wei; Ahn, Sung-Hoon

    2017-12-01

    Soft pneumatic actuators and motor-based mechanisms being concomitant with the cumbersome appendages have many challenges to making the independent robotic system with compact and lightweight configuration. Meanwhile, shape memory actuators have shown a promising alternative solution in many engineering applications ranging from artificial muscle to aerospace industry. However, one of the main limitations of such systems is their inherent softness resulting in a small actuation force, which prevents them from more effective applications. This issue can be solved by combining shape memory actuators and the mechanism of stiffness modulation. As a first, this study describes a shape memory alloy-based soft gripper composed of three identical fingers with variable stiffness for adaptive grasping in low stiffness state and effective holding in high stiffness state. Each finger with two hinges is fabricated through integrating soft composite actuator with stiffness changeable material where each hinge can approximately achieve a 55-fold changeable stiffness independently. Besides, each finger with two hinges can actively achieve multiple postures by both selectively changing the stiffness of hinges and actuating the relevant SMA wire. Based on these principles, the gripper is applicable for grasping objects with deformable shapes and varying shapes with a large range of weight where its maximum grasping force is increased to ∼10 times through integrating with the stiffness changeable mechanism. The final demonstration shows that the finger with desired shape-retained configurations enables the gripper to successfully pick up a frustum-shaped object.

  8. Effect of cholesterol lowering on stiffness of aortic and femoral arterial walls in rabbits on a high fat diet.

    PubMed

    Xue, Li; Xu, Wan-Hai; Xu, Jin-Zhi; Zhang, Tong; Bi, Hong-Yuan; Shen, Bao-Zhong

    2009-06-20

    Researches in arterial elasticity have increased over the past few years. We investigated the effects of simvastatin on vascular stiffness in fat fed rabbits by ultrasonography. Thirty rabbits were assigned randomly to 3 groups: normal control group (A), the cholesterol group (B), simvastatin group (C: high fat diet for 4 weeks and high fat diet + simvastatin for further 4 weeks). Stiffness coefficient, pressure strain elastic modulus and velocity of pulse waves in abdominal aorta and femoral artery were measured by ultrasonographic echo tracking at the end of the 4th and the 8th weeks. At the end of the 4th week, stiffness coefficient, pressure strain elastic modulus and pulse wave velocity of femoral artery were significantly increased in group B compared with those in group A. Similarly, at the end of the 8th week, the same parameters of abdominal aorta were significantly increased in group B compared with those in group A. In contrast, stiffness coefficient, pressure strain elastic modulus and pulse wave velocity of femoral artery were significantly decreased in group C compared with those in group B, however, there was no significant difference in parameters of abdominal aorta between groups B and C. Short term administration of simvastatin can improve the elasticity of femoral artery but not abdominal aorta.

  9. Combining Dynamic Stretch and Tunable Stiffness to Probe Cell Mechanobiology In Vitro

    PubMed Central

    Throm Quinlan, Angela M.; Sierad, Leslie N.; Capulli, Andrew K.; Firstenberg, Laura E.; Billiar, Kristen L.

    2011-01-01

    Cells have the ability to actively sense their mechanical environment and respond to both substrate stiffness and stretch by altering their adhesion, proliferation, locomotion, morphology, and synthetic profile. In order to elucidate the interrelated effects of different mechanical stimuli on cell phenotype in vitro, we have developed a method for culturing mammalian cells in a two-dimensional environment at a wide range of combined levels of substrate stiffness and dynamic stretch. Polyacrylamide gels were covalently bonded to flexible silicone culture plates and coated with monomeric collagen for cell adhesion. Substrate stiffness was adjusted from relatively soft (G′ = 0.3 kPa) to stiff (G′ = 50 kPa) by altering the ratio of acrylamide to bis-acrylamide, and the silicone membranes were stretched over circular loading posts by applying vacuum pressure to impart near-uniform stretch, as confirmed by strain field analysis. As a demonstration of the system, porcine aortic valve interstitial cells (VIC) and human mesenchymal stem cells (hMSC) were plated on soft and stiff substrates either statically cultured or exposed to 10% equibiaxial or pure uniaxial stretch at 1Hz for 6 hours. In all cases, cell attachment and cell viability were high. On soft substrates, VICs cultured statically exhibit a small rounded morphology, significantly smaller than on stiff substrates (p<0.05). Following equibiaxial cyclic stretch, VICs spread to the extent of cells cultured on stiff substrates, but did not reorient in response to uniaxial stretch to the extent of cells stretched on stiff substrates. hMSCs exhibited a less pronounced response than VICs, likely due to a lower stiffness threshold for spreading on static gels. These preliminary data demonstrate that inhibition of spreading due to a lack of matrix stiffness surrounding a cell may be overcome by externally applied stretch suggesting similar mechanotransduction mechanisms for sensing stiffness and stretch. PMID:21858051

  10. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.

    PubMed

    El Gowini, Mohamed M; Moussa, Walied A

    2010-01-01

    Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  11. Indentability of conventional and negative Poisson's ratio foams

    NASA Technical Reports Server (NTRS)

    Lakes, R. S.; Elms, K.

    1992-01-01

    The indentation resistance of foams, both of conventional structure and of reentrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, reentrant foams had higher yield strength and lower stiffness than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for reentrant foam than conventional foam.

  12. Chicken feather fiber as an additive in MDF composites

    Treesearch

    Jerrold E. Winandy; James H. Muehl; Jessie A. Glaeser; Walter Schmidt

    2007-01-01

    Medium density fiberboard (MDF) panels were made with aspen fiber and 0-95% chicken feather fiber (CFF) in 2.5%, 5%, or 25% increments, using 5% phenol formaldehyde resin as the adhesive. Panels were tested for mechanical and physical properties as well as decay. The addition of CFF decreased strength and stiffness of MDF-CFF composites compared with that of all-wood...

  13. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.

  14. Detectability of primordial gravitational waves produced in bouncing models

    NASA Astrophysics Data System (ADS)

    Pinto-Neto, Nelson; Scardua, Arthur

    2017-06-01

    It is widely known that bouncing models with a dust hydrodynamical fluid satisfying cs2=pd/ρd≈0 , where cs , pd , ρd are the sound velocity, pressure, and energy density of the dust fluid, respectively, have almost scale invariant spectrum of scalar perturbations and negligible primordial gravitational waves. We investigate whether adding another fluid with 1 /3

  15. In vivo bone remodeling rates determination and compressive stiffness variations before, during 60 days bed rest and two years follow up: A micro-FE-analysis from HR-pQCT measurements of the berlin Bed Rest Study-2

    NASA Astrophysics Data System (ADS)

    Ritter, Zully; Belavy, Daniel; Baumann, Wolfgang W.; Felsenberg, Dieter

    2017-03-01

    Bed rest studies are used for simulation and study of physiological changes as observed in unloading/non-gravity environments. Amongst others, bone mass reduction, similar as occurring due to aging osteoporosis, combined with bio-fluids redistribution and muscle atrophy have been observed and analyzed. Advanced radiological methods of high resolution such as HR-pQCT (XtremeCT) allow 3D-visualizing in vivo bone remodeling processes occurring during absence/reduction of mechanical stimuli (0 to <1 g) as simulated by bed rest. Induced bone micro-structure (e.g. trabecular number, cortical thickness, porosity) and density variations can be quantified. However, these parameters are average values of each sample and important information regarding bone mass distribution and within bone mechanical behaviour is lost. Finite element models with hexa-elements of identical size as the HR-pQCT measurements (0.082 mm×0.082 mm×0.082 mm, ca. 7E6 elements/sample) can be used for subject-specific in vivo stiffness calculation. This technique also allows quantifying if bone microstructural changes represent a risk of mechanical bone collapse (fracture).

  16. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  17. Pulse wave velocity and cognitive function in older adults.

    PubMed

    Zhong, Wenjun; Cruickshanks, Karen J; Schubert, Carla R; Carlsson, Cynthia M; Chappell, Richard J; Klein, Barbara E K; Klein, Ronald; Acher, Charles W

    2014-01-01

    Arterial stiffness may be associated with cognitive function. In this study, pulse wave velocity (PWV) was measured from the carotid to femoral (CF-PWV) and from the carotid to radial (CR-PWV) with the Complior SP System. Cognitive function was measured by 6 tests of executive function, psychomotor speed, memory, and language fluency. A total of 1433 participants were included (mean age 75 y, 43% men). Adjusting for age, sex, education, pulse rate, hemoglobin A1C, high-density lipoprotein cholesterol, hypertension, cardiovascular disease history, smoking, drinking, and depression symptoms, a CF-PWV>12 m/s was associated with a lower Mini-Mental State Examination score (coefficient: -0.31, SE: 0.11, P=0.005), fewer words recalled on Auditory Verbal Learning Test (coefficient: -1.10, SE: 0.43, P=0.01), and lower score on the composite cognition score (coefficient: -0.10, SE: 0.05, P=0.04) and marginally significantly associated with longer time to complete Trail Making Test-part B (coefficient: 6.30, SE: 3.41, P=0.06), CF-PWV was not associated with Trail Making Test-part A, Digit Symbol Substation Test, or Verbal Fluency Test. No associations were found between CR-PWV and cognitive performance measures. Higher large artery stiffness was associated with worse cognitive function, and longitudinal studies are needed to confirm these associations.

  18. A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair.

    PubMed

    Ryan, Alan J; Lackington, William A; Hibbitts, Alan J; Matheson, Austyn; Alekseeva, Tijna; Stejskalova, Anna; Roche, Phoebe; O'Brien, Fergal J

    2017-12-01

    Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates. Freeze-drying is used to seamlessly integrate the luminal filler into the conduit, creating a longitudinally aligned pore microarchitecture. The luminal stiffness is modulated to support Schwann cells, with laminin incorporation further enhancing bioactivity by improving cell attachment and metabolic activity. Additionally, this biphasic NGC is shown to support neurogenesis and gliogenesis of neural progenitor cells and axonal outgrowth from dorsal root ganglia. These findings highlight the paradigm that a successful NGC requires the concerted optimization of both a mechanical support phase capable of bridging a nerve defect and a neuroconductive phase with an architecture capable of supporting both Schwann cells and neurons in order to achieve functional regenerative outcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Flexural support member having a high ratio of lateral-to-axial stiffness

    DOEpatents

    Haas, W.M.B.

    1983-06-23

    A convoluted flexible support structure is provided which is capable of supplying a lateral to axial spring rate in excess of 1000 to 1. A support member in the form of a steel disc having a specified number of rather large radius, concentric convolutions and a thickness in the range of from about 0.01 to 0.02 inch has an axial stiffness of about 50 pounds/inch while the lateral stiffness is about 100,000 pounds/inch. The support member may be used to support a vibration device where the lateral motion of the vibrator must be highly restricted while providing relatively free axial displacement of about +-0.25 inch.

  20. Constrained hierarchical least square nonlinear equation solvers. [for indefinite stiffness and large structural deformations

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Lackney, J.

    1986-01-01

    The current paper develops a constrained hierarchical least square nonlinear equation solver. The procedure can handle the response behavior of systems which possess indefinite tangent stiffness characteristics. Due to the generality of the scheme, this can be achieved at various hierarchical application levels. For instance, in the case of finite element simulations, various combinations of either degree of freedom, nodal, elemental, substructural, and global level iterations are possible. Overall, this enables a solution methodology which is highly stable and storage efficient. To demonstrate the capability of the constrained hierarchical least square methodology, benchmarking examples are presented which treat structure exhibiting highly nonlinear pre- and postbuckling behavior wherein several indefinite stiffness transitions occur.

  1. Flexural support member having a high ratio of lateral-to-axial stiffness

    DOEpatents

    Haas, Wendall M. B.

    1985-01-01

    A convoluted flexible support structure is provided which is capable of supplying a lateral to axial spring rate in excess of 1,000 to 1. A support member in the form of a steel disc having a specified number of rather large radius, concentric convolutions and a thickness in the range of from about 0.01 to 0.02 inch has an axial stiffness of about 50 pounds/inch while the lateral stiffness is about 100,000 pounds/inch. The support member may be used to support a vibration device where the lateral motion of the vibrator must be highly restricted while providing relatively free axial displacement of about .+-.0.25 inch.

  2. An investigation of angular stiffness and damping coefficients of an axial spline coupling in high-speed rotating machinery

    NASA Technical Reports Server (NTRS)

    Ku, C.-P. Roger; Walton, James F., Jr.; Lund, Jorgen W.

    1994-01-01

    This paper provided an opportunity to quantify the angular stiffness and equivalent viscous damping coefficients of an axial spline coupling used in high-speed turbomachinery. A unique test methodology and data reduction procedures were developed. The bending moments and angular deflections transmitted across an axial spline coupling were measured while a nonrotating shaft was excited by an external shaker. A rotor dynamics computer program was used to simulate the test conditions and to correlate the angular stiffness and damping coefficients. In addition, sensitivity analyses were performed to show that the accuracy of the dynamic coefficients do not rely on the accuracy of the data reduction procedures.

  3. Nonequilibrium optical conductivity: General theory and application to transient phases

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; Wilner, E. Y.; Reichman, D. R.; Millis, A. J.

    2017-08-01

    A nonequilibrium theory of optical conductivity of dirty-limit superconductors and commensurate charge density wave is presented. We discuss the current response to different experimentally relevant light-field probe pulses and show that a single frequency definition of the optical conductivity σ (ω )≡j (ω )/E (ω ) is difficult to interpret out of the adiabatic limit. We identify characteristic time-domain signatures distinguishing between superconducting, normal-metal, and charge density wave states. We also suggest a route to directly address the instantaneous superfluid stiffness of a superconductor by shaping the probe light field.

  4. Coupling of HDPE/hydroxyapatite composites by silane-based methodologies.

    PubMed

    Sousa, R A; Reis, R L; Cunha, A M; Bevis, M J

    2003-06-01

    Several coupling treatments based on silane chemicals were investigated for the development of high density (HDPE)/hydroxyapatite (HA) composites. Two HA powders, sintered HA (HAs) and non sintered HA (HAns), were studied in combination with five silanes, namely y-methacryloxy propyltrimethoxy silane (MEMO), 3-(2-aminoethyl)aminopropyltrimethoxy silane (DAMO), vinyltrimethoxy silane (VTMO), 3-aminopropyltriethoxy silane (AMEO) and trimethoxypropyl silane (PTMO). The HA particles were treated by a dipping in method or by spraying with silane solutions. After drying, the treated powders were compounded with HDPE or HDPE with acrylic acid and/or organic peroxide and subsequently compression molded. The tensile test specimens obtained from the molded plates were tensile tested and their fracture surfaces were observed by scanning electron microscopy (SEM). For the sintered HA (HAs) composites, the most effective coupling treatments concerning stiffness are those based on MEMO and AMEO. The low influence of these coupling procedures on strength is believed to be associated to the low volume fraction and the relatively smooth surface of the used HA particles. For the non-sintered HA (HAns) composites, it was possible to improve significantly both the stiffness and the strength. Amino silanes demonstrated to be highly efficient concerning strength enhancement. The higher effectiveness of the coupling treatments for HAns filled composites is attributed to their higher particle surface area, smaller particle size distribution and expected higher chemical reactivity. For both cases, the improvement in mechanical performance after the coupling treatment is consistent with the enhancement in interfacial adhesion observed by SEM.

  5. Compressor discharge film riding face seals

    NASA Technical Reports Server (NTRS)

    Munson, John

    1994-01-01

    Seals examined were the eight-pad Rayleigh step, the tapered spiral groove, and two hydrostatic seals. The spiral groove configuration is the preferred choice because of superior stiffness. Second choice is Rayleigh step because of combined higher operating film thickness and good stiffness at low clearance. Recess hydrostatic has reasonable performance, but stiffness falls off at low clearance. Also, pneumatic hammer characteristics must be investigated. Experience at high pressure ratios is limited. An advantage is that it would have good low speed performance.

  6. Dynamic stiffness characteristics of high eccentricity ratio bearings and seals by perturbation testing

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1984-01-01

    The complex behavior of cylindrical bearings and seals that are statically loaded to eccentricities in excess of 0.7 are examined. The stiffness algorithms as a function of static load are developed from perturbation methodology by empirical modeling.

  7. The effect of external forces on discrete motion within holographic optical tweezers.

    PubMed

    Eriksson, E; Keen, S; Leach, J; Goksör, M; Padgett, M J

    2007-12-24

    Holographic optical tweezers is a widely used technique to manipulate the individual positions of optically trapped micron-sized particles in a sample. The trap positions are changed by updating the holographic image displayed on a spatial light modulator. The updating process takes a finite time, resulting in a temporary decrease of the intensity, and thus the stiffness, of the optical trap. We have investigated this change in trap stiffness during the updating process by studying the motion of an optically trapped particle in a fluid flow. We found a highly nonlinear behavior of the change in trap stiffness vs. changes in step size. For step sizes up to approximately 300 nm the trap stiffness is decreasing. Above 300 nm the change in trap stiffness remains constant for all step sizes up to one particle radius. This information is crucial for optical force measurements using holographic optical tweezers.

  8. Evaluation of the thermal and structural performance of straw bale construction

    NASA Astrophysics Data System (ADS)

    Beaudry, Kyle R.

    This thesis is primarily divided into two distinct experimental programs evaluating: 1) the thermal performance and, 2) the structural performance of straw bale construction. The thermal performance chapter describes hot-box testing (based on ASTM C1363-11) of seven straw bale wall panels to obtain their apparent thermal conductivity values. All panels were constructed with stacked bales and cement-lime plaster skins on each side of the bales. Four panels were made with traditional, 2-string field bales of densities ranging from 89.5 kg/m3 - 131 kg/m3 and with the bales on-edge (fibres perpendicular to the heat flow). Three panels were made with manufactured high-density bales (291 kg/m3 - 372 kg/m3). The fibres of the manufactured bales were randomly oriented. The key conclusion of this work is that within the experimental error, there is no difference in the apparent thermal conductivity value for panels using normal density bales and manufactured high-density bales up to a density of 333 kg/m3. The structural performance chapter describes gravity and transverse load testing (based on ASTM E72-15) of non-plastered modular straw bale wall (DBW) panels to evaluate their strength capacity and failure modes. The out-of-plane flexural (OPF) tests exhibited a mean ultimate bending moment of 49.7 kNm. The axial compression (AC) tests exhibited a mean ultimate line load of 161.0 kN/m. The local flexural header beam (HP) tests exhibited an ultimate line load of 31.6 kN/m. The OPF and AC capacities of the DBW exceeded the capacities exhibited by a conventional 38 mm x 140 mm stud wall. However, the DBW's header beam strength and stiffness was inferior to conventional stud wall.

  9. DETERIORATION IN BIOMECHANICAL PROPERTIES OF THE VAGINA FOLLOWING IMPLANTATION OF A HIGH STIFFNESS PROLAPSE MESH

    PubMed Central

    Feola, Andrew; Abramowitch, Steven; Jallah, Zegbeh; Stein, Suzan; Barone, William; Palcsey, Stacy; Moalli, Pamela

    2012-01-01

    Objective Define the impact of prolapse mesh on the biomechanical properties of the vagina by comparing the prototype Gynemesh PS (Ethicon, Somerville, NJ) to 2 new generation lower stiffness meshes, SmartMesh (Coloplast, Minneapolis, MN) and UltraPro (Ethicon). Design A study employing a non-human primate model Setting University of Pittsburgh Population 45 parous rhesus macaques Methods Meshes were implanted via sacrocolpexy after hysterectomy and compared to Sham. Because its stiffness is highly directional UltraPro was implanted in two directions: UltraPro Perpendicular (less stiff) and UltraPro Parallel (more stiff), with the indicated direction referring to the blue orientation lines. The mesh-vaginal complex (MVC) was excised en toto after 3 months. Main Outcome Measures Active mechanical properties were quantified as contractile force generated in the presence of 120 mM KCl. Passive mechanical properties (a tissues ability to resist an applied force) were measured using a multi-axial protocol. Results Vaginal contractility decreased 80% following implantation with the Gynemesh PS (p=0.001), 48% after SmartMesh (p=0.001), 68% after UltraPro parallel (p=0.001) and was highly variable after UltraPro perpendicular (p =0.16). The tissue contribution to the passive mechanical behavior of the MVC was drastically reduced for Gynemesh PS (p=0.003) but not SmartMesh (p=0.9) or UltraPro independent of the direction of implantation (p=0.68 and p=0.66, respectively). Conclusions Deterioration of the mechanical properties of the vagina was highest following implantation with the stiffest mesh, Gynemesh PS. Such a decrease associated with implantation of a device of increased stiffness is consistent with findings from other systems employing prostheses for support. PMID:23240801

  10. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh.

    PubMed

    Feola, A; Abramowitch, S; Jallah, Z; Stein, S; Barone, W; Palcsey, S; Moalli, P

    2013-01-01

    To define the impact of prolapse mesh on the biomechanical properties of the vagina by comparing the prototype Gynemesh PS (Ethicon) to two new-generation lower stiffness meshes, SmartMesh (Coloplast) and UltraPro (Ethicon). A study employing a nonhuman primate model. University of Pittsburgh, PA, USA. Forty-five parous rhesus macaques. Meshes were implanted via sacrocolpopexy after hysterectomy and compared with sham. Because its stiffness is highly directional, UltraPro was implanted in two directions: UltraPro Perpendicular (less stiff) and UltraPro Parallel (more stiff), with the indicated direction referring to the position of the blue orientation lines relative to the longitudinal axis of the vagina. The mesh-vaginal complex (MVC) was excised in toto after 3 months. Active mechanical properties were quantified as the contractile force generated in the presence of 120 mmol/l KCl. Passive mechanical properties (a tissue's ability to resist an applied force) were measured using a multiaxial protocol. Vaginal contractility decreased by 80% following implantation with the Gynemesh PS (P = 0.001), 48% after SmartMesh (P = 0.001), 68% after UltraPro Parallel (P = 0.001) and was highly variable after UltraPro Perpendicular (P = 0.16). The tissue contribution to the passive mechanical behaviour of the MVC was drastically reduced for Gynemesh PS (P = 0.003), but not for SmartMesh (P = 0.9) or UltraPro independent of the direction of implantation (P = 0.68 and P = 0.66, respectively). Deterioration of the mechanical properties of the vagina was highest following implantation with the stiffest mesh, Gynemesh PS. Such a decrease associated with implantation of a device of increased stiffness is consistent with findings from other systems employing prostheses for support. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.

  11. Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias.

    PubMed

    Shin, Jae-Won; Mooney, David J

    2016-10-25

    Extracellular matrix stiffness influences biological functions of some tumors. However, it remains unclear how cancer subtypes with different oncogenic mutations respond to matrix stiffness. In addition, the relevance of matrix stiffness to in vivo tumor growth kinetics and drug efficacy remains elusive. Here, we designed 3D hydrogels with physical parameters relevant to hematopoietic tissues and adapted them to a quantitative high-throughput screening format to facilitate mechanistic investigations into the role of matrix stiffness on myeloid leukemias. Matrix stiffness regulates proliferation of some acute myeloid leukemia types, including MLL-AF9 + MOLM-14 cells, in a biphasic manner by autocrine regulation, whereas it decreases that of chronic myeloid leukemia BCR-ABL + K-562 cells. Although Arg-Gly-Asp (RGD) integrin ligand and matrix softening confer resistance to a number of drugs, cells become sensitive to drugs against protein kinase B (PKB or AKT) and rapidly accelerated fibrosarcoma (RAF) proteins regardless of matrix stiffness when MLL-AF9 and BCR-ABL are overexpressed in K-562 and MOLM-14 cells, respectively. By adapting the same hydrogels to a xenograft model of extramedullary leukemias, we confirm the pathological relevance of matrix stiffness in growth kinetics and drug sensitivity against standard chemotherapy in vivo. The results thus demonstrate the importance of incorporating 3D mechanical cues into screening for anticancer drugs.

  12. Subspace methods for identification of human ankle joint stiffness.

    PubMed

    Zhao, Y; Westwick, D T; Kearney, R E

    2011-11-01

    Joint stiffness, the dynamic relationship between the angular position of a joint and the torque acting about it, describes the dynamic, mechanical behavior of a joint during posture and movement. Joint stiffness arises from both intrinsic and reflex mechanisms, but the torques due to these mechanisms cannot be measured separately experimentally, since they appear and change together. Therefore, the direct estimation of the intrinsic and reflex stiffnesses is difficult. In this paper, we present a new, two-step procedure to estimate the intrinsic and reflex components of ankle stiffness. In the first step, a discrete-time, subspace-based method is used to estimate a state-space model for overall stiffness from the measured overall torque and then predict the intrinsic and reflex torques. In the second step, continuous-time models for the intrinsic and reflex stiffnesses are estimated from the predicted intrinsic and reflex torques. Simulations and experimental results demonstrate that the algorithm estimates the intrinsic and reflex stiffnesses accurately. The new subspace-based algorithm has three advantages over previous algorithms: 1) It does not require iteration, and therefore, will always converge to an optimal solution; 2) it provides better estimates for data with high noise or short sample lengths; and 3) it provides much more accurate results for data acquired under the closed-loop conditions, that prevail when subjects interact with compliant loads.

  13. Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children.

    PubMed

    Farpour-Lambert, Nathalie J; Aggoun, Yacine; Marchand, Laetitia M; Martin, Xavier E; Herrmann, François R; Beghetti, Maurice

    2009-12-15

    The aim of this study was to determine the effects of physical activity on systemic blood pressure (BP) and early markers of atherosclerosis in pre-pubertal obese children. Hypertension and endothelial dysfunction are premature complications of obesity. We performed a 3-month randomized controlled trial with a modified crossover design: 44 pre-pubertal obese children (age 8.9 + or - 1.5 years) were randomly assigned (1:1) to an exercise (n = 22) or a control group (n = 22). We recruited 22 lean children (age 8.5 + or - 1.5 years) for baseline comparison. The exercise group trained 60 min 3 times/week during 3 months, whereas control subjects remained relatively inactive. Then, both groups trained twice/week during 3 months. We assessed changes at 3 and 6 months in office and 24-h BP, arterial intima-media thickness (IMT) and stiffness, endothelial function (flow-mediated dilation), body mass index (BMI), body fat, cardiorespiratory fitness (maximal oxygen consumption [VO(2)max]), physical activity, and biological markers. Obese children had higher BP, arterial stiffness, body weight, BMI, abdominal fat, insulin resistance indexes, and C-reactive protein levels, and lower flow-mediated dilation, VO(2)max, physical activity, and high-density lipoprotein cholesterol levels than lean subjects. At 3 months, we observed significant changes in 24-h systolic BP (exercise -6.9 + or - 13.5 mm Hg vs. control 3.8 + or - 7.9 mm Hg, -0.8 + or - 1.5 standard deviation score [SDS] vs. 0.4 + or - 0.8 SDS), diastolic BP (-0.5 + or - 1.0 SDS vs. 0 + or - 1.4 SDS), hypertension rate (-12% vs. -1%), office BP, BMI z-score, abdominal fat, and VO(2)max. At 6 months, change differences in arterial stiffness and IMT were significant. A regular physical activity program reduces BP, arterial stiffness, and abdominal fat; increases cardiorespiratory fitness; and delays arterial wall remodeling in pre-pubertal obese children. (Effects of Aerobic Exercise Training on Arterial Function and Insulin Resistance Syndrome in Obese Children: A Randomized Controlled Trial; NCT00801645).

  14. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    PubMed

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing.

  15. Load to Failure and Stiffness

    PubMed Central

    Esquivel, Amanda O.; Duncan, Douglas D.; Dobrasevic, Nikola; Marsh, Stephanie M.; Lemos, Stephen E.

    2015-01-01

    Background: Rotator cuff tendinopathy is a frequent cause of shoulder pain that can lead to decreased strength and range of motion. Failures after using the single-row technique of rotator cuff repair have led to the development of the double-row technique, which is said to allow for more anatomical restoration of the footprint. Purpose: To compare 5 different types of suture patterns while maintaining equality in number of anchors. The hypothesis was that the Mason-Allen–crossed cruciform transosseous-equivalent technique is superior to other suture configurations while maintaining equality in suture limbs and anchors. Study Design: Controlled laboratory study. Methods: A total of 25 fresh-frozen cadaveric shoulders were randomized into 5 suture configuration groups: single-row repair with simple stitch technique; single-row repair with modified Mason-Allen technique; double-row Mason-Allen technique; double-row cross-bridge technique; and double-row suture bridge technique. Load and displacement were recorded at 100 Hz until failure. Stiffness and bone mineral density were also measured. Results: There was no significant difference in peak load at failure, stiffness, maximum displacement at failure, or mean bone mineral density among the 5 suture configuration groups (P < .05). Conclusion: According to study results, when choosing a repair technique, other factors such as number of sutures in the repair should be considered to judge the strength of the repair. Clinical Relevance: Previous in vitro studies have shown the double-row rotator cuff repair to be superior to the single-row repair; however, clinical research does not necessarily support this. This study found no difference when comparing 5 different repair methods, supporting research that suggests the number of sutures and not the pattern can affect biomechanical properties. PMID:26665053

  16. Skeletal maturation substantially affects elastic tissue properties in the endosteal and periosteal regions of loaded mice tibiae.

    PubMed

    Checa, Sara; Hesse, Bernhard; Roschger, Paul; Aido, Marta; Duda, Georg N; Raum, Kay; Willie, Bettina M

    2015-07-01

    Although it is well known that the bone adapts to changes in the mechanical environment by forming and resorbing the bone matrix, little is known about the influence of mechanical loading on tissue material properties of the pre-existing and newly formed bone. In this study, we analyzed the newly formed and pre-existing tissue after two weeks of controlled in vivo axial compressive loading in tibia of young (10 week-old) and adult (26 week-old) female mice and compared to the control contralateral limb, by means of scanning acoustic microscopy. Additionally, we used quantitative backscattered electron imaging to determine the bone mineral density distribution within the newly formed and pre-existing bone of young mice. No significant differences were found in tissue stiffness or mineral density in the pre-existing bone tissue as a result of external loading. In the endosteal region, 10 and 26 week loaded animals showed a 9% reduction in bone tissue stiffness compared to control animals. An increase of 200% in the mineral apposition rate in this region was observed in both age groups. In the periosteal region, the reduction in bone tissue stiffness and the increase in bone mineral apposition rate as a result of loading were two times higher in the 10 compared to the 26 week old animals. These data suggest that, during growth and skeletal maturation, the response of bone to mechanical loading is a deposition of new bone matrix, where the tissue amount but not its mineral or elastic properties are influenced by animal age. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Wave propagation in elastic and damped structures with stabilized negative-stiffness components

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.

    2017-09-01

    Effects on wave propagation achievable by introduction of a negative-stiffness component are investigated via perhaps the simplest discrete repeating element that can remain stable in the component's presence. When the system is elastic, appropriate tuning of the stabilized component's negative stiffness introduces a no-pass zone theoretically extending from zero to an arbitrarily high frequency, tunable by a mass ratio adjustment. When the negative-stiffness component is tuned to the system's stability limit and a mass ratio is sufficiently small, the system restricts propagation to waves of approximately a single arbitrary frequency, adjustable by tuning the stiffness ratio of the positive-stiffness components. The elastic system's general solutions are closed-form and transparent. When damping is added, the general solutions are still closed-form, but so complex that they do not clearly display how the negative stiffness component affects the system's response and how it should best be tuned to achieve desired effects. Approximate solutions having these features are obtained via four perturbation analyses: one for long wavelengths; one for small damping; and two for small mass ratios. The long-wavelengths solution shows that appropriate tuning of the negative-stiffness component can prevent propagation of long-wavelength waves. The small damping solution shows that the zero-damping low-frequency no-pass zone remains, while waves that do propagate are highly damped when a mass ratio is made small. Finally, very interesting effects are achievable at the full system's stability limit. For small mass ratios, the wavelength range of waves prohibited from propagation can be adjusted, from all to none, by tuning the system's damping: When one mass ratio is small, all waves with wavelengths larger than an arbitrary damping-adjusted value can be prohibited from propagation, while when the inverse of this mass ratio is small, all waves with wavelengths outside an arbitrary single adjustable value or range of values can be prohibited from propagation. All of the approximate solutions' analytically-transparent predictions are confirmed by the exact solution. The conclusions are that a stabilized tuned negative-stiffness component greatly enhances control of wave propagation in a purely elastic system, and when adjustable damping is added, even further control is facilitated.

  18. Gender Difference in Arterial Stiffness in a Multicenter Cross-Sectional Study: The Korean Arterial Aging Study (KAAS)

    PubMed Central

    Kim, Jang-Young; Park, Jeong Bae; Kim, Dong Soo; Kim, Kee Sik; Jeong, Jin Won; Park, Jong Chun; Oh, Byung Hee; Chung, Namsik

    2014-01-01

    Elevated arterial stiffness has emerged as an important risk factor for future cardiovascular (CV) events in men and women. However, gender-related differences in arterial stiffness have not been clearly demonstrated. We thus determine whether gender affects arterial stiffness in subjects with and without CV risk factors. We consecutively enrolled 1,588 subjects aged 17-87 years (mean age: 46.5; 51% women) from the Korean Arterial Aging Study (KAAS), which is a multicenter registry from 13 university hospitals in Korea for the evaluation of arterial stiffness. We compared markers of arterial stiffness – central augmentation index (AIx), aortic pulse wave velocity (PWV), and pulse pressure (PP) amplification – in apparently healthy men and women without risk factors with those in high-risk subjects with a smoking habit, hypertension, diabetes, and dyslipidemia but without drug treatment. Aortic PWV and PP amplification were significantly higher in men than in women (7.78 ± 1.16 vs. 7.64 ± 1.15 m/s, p = 0.015, and 1.39 ± 0.22 vs. 1.30 ± 0.18, p < 0.001, respectively). However, women had a significantly higher central AIx than men (23.5 ± 11.9 vs. 16.1 ± 12.6%, p < 0.001). The central AIx and aortic PWV values were significantly higher in the high-risk group than in the healthy group for both men and women. In men, central AIx and aortic PWV were associated positively with age and blood pressure, and negatively with body mass index. In women, central AIx was positively related to age, diastolic blood pressure, and serum cholesterol levels. Aortic PWV was positively related to age, systolic blood pressure, fasting glucose, and heart rate. PP amplification was associated negatively with age and blood pressure and positively with heart rate in both men and women. In conclusion, arterial stiffness is mainly determined by sex, age, and blood pressure. Markers of arterial stiffness differ between men and women. Dyslipidemia and glucose contribute to a modest increase in arterial stiffness only in women. Therefore, the arteries of women may be more vulnerable to CV risk factors than those of men. PMID:26587439

  19. Application of shape memory alloy (SMA) spars for aircraft maneuver enhancement

    NASA Astrophysics Data System (ADS)

    Nam, Changho; Chattopadhyay, Aditi; Kim, Youdan

    2002-07-01

    Modern combat aircraft are required to achieve aggressive maneuverability and high agility performance, while maintaining handling qualities over a wide range of flight conditions. Recently, a new adaptive-structural concept called variable stiffness spar is proposed in order to increase the maneuverability of the flexible aircraft. The variable stiffness spar controls wing torsional stiffness to enhance roll performance in the complete flight envelope. However, variable stiffness spar requires the mechanical actuation system in order to rotate the Variable stiffness spar during flight. The mechanical actuation system to rotate variable stiffness spar may cause an additional weight increase. In this paper, we will apply Shape Memory Alloy (SMA) spars for aeroelastic performance enhancement. In order to explore the potential of SMA spar design, roll performance of the composite smart wings will be investigated using ASTROS. Parametric study will be conducted to investigate the SMA spar effects by changing the spar locations and geometry. The results show that with activation of the SMA spar, the roll effectiveness can be increased up to 61% compared with the baseline model.

  20. Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning.

    PubMed

    Giannaccini, Maria Elena; Xiang, Chaoqun; Atyabi, Adham; Theodoridis, Theo; Nefti-Meziani, Samia; Davis, Steve

    2018-02-01

    Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally.

  1. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Xu, Wenwei; Mezencev, Roman; Kim, Byungkyu; Wang, Lijuan; McDonald, John; Sulchek, Todd; Sulchek Team; McDonald Team

    2013-03-01

    The metastatic potential of cells is an important parameter in the design of optimal strategies for the personalized treatment of cancer. Using atomic force microscopy (AFM), we show that ovarian cancer cells are generally softer and display lower intrinsic variability in cell stiffness than non-malignant ovarian epithelial cells. A detailed study of highly invasive ovarian cancer cells (HEY A8) and their less invasive parental cells (HEY), demonstrates that deformability can serve as an accurate biomarker of metastatic potential. Comparative gene expression profiling indicate that the reduced stiffness of highly metastatic HEY A8 cells is associated with actin cytoskeleton remodeling, microscopic examination of actin fiber structure in these cell lines is consistent with this prediction. Our results indicate that cell stiffness not only distinguishes ovarian cancer cells from non-malignant cells, but may also be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells.

  2. Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning

    PubMed Central

    Xiang, Chaoqun; Atyabi, Adham; Theodoridis, Theo; Nefti-Meziani, Samia; Davis, Steve

    2018-01-01

    Abstract Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally. PMID:29412080

  3. Low and High Frequency Models of Response Statistics of a Cylindrical Orthogrid Vehicle Panel to Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Teague, David; Gardner, Bryce; Cotoni, Vincent

    2010-01-01

    This presentation further develops the orthogrid vehicle panel work. Employed Hybrid Module capabilities to assess both low/mid frequency and high frequency models in the VA One simulation environment. The response estimates from three modeling approaches are compared to ground test measurements. Detailed Finite Element Model of the Test Article -Expect to capture both the global panel modes and the local pocket mode response, but at a considerable analysis expense (time & resources). A Composite Layered Construction equivalent global stiffness approximation using SEA -Expect to capture response of the global panel modes only. An SEA approximation using the Periodic Subsystem Formulation. A finite element model of a single periodic cell is used to derive the vibroacoustic properties of the entire periodic structure (modal density, radiation efficiency, etc. Expect to capture response at various locations on the panel (on the skin and on the ribs) with less analysis expense

  4. High Central Aortic Rather than Brachial Blood Pressure is Associated with Carotid Wall Remodeling and Increased Arterial Stiffness in Childhood.

    PubMed

    Peluso, Gonzalo; García-Espinosa, Victoria; Curcio, Santiago; Marota, Marco; Castro, Juan; Chiesa, Pedro; Giachetto, Gustavo; Bia, Daniel; Zócalo, Yanina

    2017-03-01

    In adults, central blood pressure (cBP) is reported to associate target organ damages (TODs) rather than peripheral blood pressure (pBP). However, data regarding the association of pre-clinical TODs with cBP and pBP in pediatric populations are scarce. To evaluate in children and adolescents the importance of cBP and pBP levels, in terms of their association with hemodynamic and vascular changes. 315 subjects [age (mean/range) 12/8-18 years] were included. pBP (oscillometry, Omron-HEM433INT and Mobil-O-Graph), cBP levels and waveforms (oscillometry, Mobil-O-Graph; applanation tonometry, SphygmoCor), aortic wave reflection-related parameters, carotid intima-media thickness (CIMT) and carotid (elastic modulus, stiffness-index) and aortic stiffness (carotid-femoral pulse wave velocity, PWV). Four groups were defined considering pBP and cBP percentiles (th): cBP ≥90th, cBP <90th, pBP ≥90th, pBP <90th. In each group, haemodynamic and vascular parameters were compared for subgroups defined considering the level of the remaining blood pressure (cBP or pBP). Subgroups were matched for anthropometric and cardiovascular risk factors (propensity matching-score). Subjects with high cBP showed a worse cardiovascular risk profile in addition to worse peripheral hemodynamic conditions. The CIMT, carotid and aortic stiffness levels were also higher in those subjects. CIMT and carotid stiffness remained statistically higher when subjects were matched for pBP and other cardiovascular risk factors. There were no differences in arterial properties when subjects were analyzed (compared) considering similar pBP levels, during normal and high cBP conditions. Compared with pBP, the cBP levels show a greater association with vascular alterations (high CIMT and arterial stiffness), in children and adolescents.

  5. Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications.

    PubMed

    Soumya, S S; Gupta, Animesh; Cugno, Andrea; Deseri, Luca; Dayal, Kaushik; Das, Dibyendu; Sen, Shamik; Inamdar, Mandar M

    2015-12-01

    Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.

  6. Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications

    PubMed Central

    Soumya, S S; Gupta, Animesh; Cugno, Andrea; Deseri, Luca; Dayal, Kaushik; Das, Dibyendu; Sen, Shamik; Inamdar, Mandar M.

    2015-01-01

    Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements. PMID:26691341

  7. Friction on the Bond and the Vibrational Relaxation in Simple Liquids.

    NASA Astrophysics Data System (ADS)

    Mishra, Bimalendu Kumar

    In chapter 1, the energy relaxation of a stiff Morse oscillator dissolved in a simple LJ fluid is calculated using a reversible integrator (r-RESPA) in molecular dynamics generated from the Trotter factorization of the classical propagator. We compare the "real" relaxation from full MD simulations with that predicted by the Generalized Langevin Equation (GLE) with memory friction determined from the full Molecular Dynamics for a series of fluid densities. It is found that the GLE gives very good agreement with MD for the vibrational energy relaxation for this nonlinear oscillator far from equilibrium only for high density fluids, but reduced densities rho < 0.5 the energy relaxation from the MD simulation becomes considered slower than that from the GLE. An analysis of the statistical properties of the random force shows that as the density is lowered the non-Gaussian behavior of the random force becomes more prominent. This behavior is consistent with a simple model in which the oscillator undergoes generalized Langevin dynamics between strong binary collisions with solvent atoms. In chapter 2, molecular hydrodynamics is used to calculate the memory friction on the intramolecular vibrational coordinate of a homonuclear diatomic molecule dissolved in a simple liquid. The predicted memory friction is then compared to recent computer experiments. Agreement with the experimental memory functions is obtained when the linearized hydrodynamics is modified to include gaussian viscoelasticity and compressibility. The hydrodynamic friction on the bond appears to agree qualitatively very well, although quantitative agreement is not found at high frequencies. Various limits of the hydrodynamic friction are discussed.

  8. Biomechanics and functional morphology of a climbing monocot

    PubMed Central

    Hesse, Linnea; Wagner, Sarah T.; Neinhuis, Christoph

    2016-01-01

    Plants with a climbing growth habit possess unique biomechanical properties arising from adaptations to changing loading conditions connected with close attachment to mechanical supports. In monocot climbers, mechanical adaptation is restricted by the absence of a bifacial vascular cambium. Flagellaria indica was used to investigate the mechanical properties and adaptations of a monocot climber that, uniquely, attaches to the surrounding vegetation via leaf tendrils. Biomechanical methods such as three-point bending and torsion tests were used together with anatomical studies on tissue development, modification and distribution. In general, the torsional modulus was lower than the bending modulus; hence, torsional stiffness was less than flexural stiffness. Basal parts of mature stems showed the greatest stiffness while that of more apical stem segments levelled off. Mechanical properties were modulated via tissue maturation processes mainly affecting the peripheral region of the stem. Peripheral vascular bundles showed a reduction in the amount of conducting tissue while the proportion and density of the bundle sheath increased. Furthermore, adjacent bundle sheaths merged resulting in a dense ring of fibrous tissue. Although F. indica lacks secondary cambial growth, the climbing habit is facilitated by a complex interaction of tissue maturation and attachment. PMID:26819259

  9. The elastic stability, bifurcation and ideal strength of gold under hydrostatic stress: an ab initio calculation.

    PubMed

    Wang, Hao; Li, Mo

    2009-11-11

    In this paper, we employ an ab initio density functional theory calculation to investigate the elastic stability of face-centered cubic Au under hydrostatic deformation. We identify the elastic stiffness constant B(ijkl) as the coefficient in the stress-strain relation for an arbitrary deformed state, and use it to test the stability condition. We show that this criterion bears the same physics as that proposed earlier by Frenkel and Orowan and agrees with the Born-Hill criterion. The results from those two approaches agree well with each other. We show that the stability limit, or instability, of the perfect Au crystal under hydrostatic expansion is not associated with the bulk stiffness modulus as predicted in the previous work; rather it is caused by a shear instability associated with the vanishing rhombohedral shear stiffness modulus. The deviation of the deformation mode from the primary hydrostatic loading path signals a bifurcation or symmetry breaking in the ideal crystal. The corresponding ideal hydrostatic strength for Au is 19.2 GPa at the Lagrangian expansion strain of ∼0.06. In the case of compression, Au remains stable over the entire pressure range in our calculation.

  10. The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack.

    PubMed

    Plotkin, Marian; Vaibavi, Srirangam Ramanujam; Rufaihah, Abdul Jalil; Nithya, Venkateswaran; Wang, Jing; Shachaf, Yonatan; Kofidis, Theo; Seliktar, Dror

    2014-02-01

    This study compares the effect of four injectable hydrogels with different mechanical properties on the post-myocardial infarction left ventricle (LV) remodeling process. The bioactive hydrogels were synthesized from Tetronic-fibrinogen (TF) and PEG-fibrinogen (PF) conjugates; each hydrogel was supplemented with two levels of additional cross-linker to increase the matrix stiffness as measured by the shear storage modulus (G'). Infarcts created by ligating the left anterior descending coronary artery in a rodent model were treated with the hydrogels, and all four treatment groups showed an increase in wall thickness, arterial density, and viable cardiac tissue in the peri-infarct areas of the LV. Echocardiography and hemodynamics data of the PF/TF treated groups showed significant improvement of heart function associated with the attenuated effects of the remodeling process. Multi-factorial regression analysis indicated that the group with the highest modulus exhibited the best rescue of heart function and highest neovascularization. The results of this study demonstrate that multiple properties of an injectable bioactive biomaterial, and notably the matrix stiffness, provide the multifaceted stimulation necessary to preserve cardiac function and prevent adverse remodeling following a heart attack. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Magnitude and Kinetics of Decrease in Liver Stiffness After Antiviral Therapy in Patients With Chronic Hepatitis C: A Systematic Review and Meta-analysis.

    PubMed

    Singh, Siddharth; Facciorusso, Antonio; Loomba, Rohit; Falck-Ytter, Yngve T

    2018-01-01

    We performed a systematic review and meta-analysis to estimate the decrease in liver stiffness, measured by vibration-controlled transient elastrography (VCTE), in patients with hepatitis C virus infection who achieved a sustained virologic response (SVR). We searched the literature through October 2016 for observational studies or randomized controlled trials of adults with hepatitis C virus infection who received antiviral therapy (either direct-acting antiviral agents or interferon-based therapies), underwent liver stiffness measurement using VCTE before starting therapy, and had at least 1 follow-up VCTE after completion of therapy; studies also provided data on mean or median liver stiffness measurements for patients who did and did not achieve an SVR. We identified 24 studies, and estimated weighted mean difference (and 95% confidence interval) in liver stiffness in patients with versus without SVR using random-effects meta-analysis. In patients who achieved SVR, liver stiffness decreased by 2.4 kPa at the end of therapy (95% CI, -1.7 to -3.0), by 3.1 kPa 1-6 months after therapy (95% CI, -1.6 to -4.7), by 3.2 kPa 6-12 months after therapy (90% CI, -2.6 to -3.9), and 4.1 kPa 12 months or more after therapy (95% CI, -3.3 to -4.9) (median decrease, 28.2%; interquartile range, 21.8-34.8). In contrast, there was no significant change in liver stiffness in patients who did not achieve an SVR (at 6-12 months after therapy, decrease of 0.6 kPa; 95% CI, -1.7 to 0.5). Decreases in liver stiffness were significantly greater in patients treated with direct-acting antiviral agents than with interferon-based therapy (decrease of 4.5 kPa vs decrease of 2.6 kPa; P = .03), cirrhosis at baseline (decrease of 5.1 kPa vs decrease of 2.8 kPa in patients with no cirrhosis; P = .02), or high pretreatment levels of alanine aminotransferase (P < .01). Among patients with baseline liver stiffness >9.5 kPa, 47% (95% CI, 27%-68%) achieved posttreatment liver stiffness of <9.5 kPa. In a systematic review and meta-analysis, we associated eradication of hepatitis C virus infection (SVR) with significant decreases in liver stiffness, particularly in patients with high baseline level of inflammation or patients who received direct-acting antiviral agents. Almost half the patients considered to have advanced fibrosis, based on VCTE, before therapy achieved posttreatment liver stiffness levels <9.5 kPa. Clinical Trial Registration no: CRD42016051034. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Experimental Challenges to Stiffness as a Transport Paradigm

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2017-10-01

    Transport in plasmas is treated experimentally as a relationship between gradients and fluxes in analogy to the random-walk problem. Gyrokinetic models often predict strong increases in local flux for small increases in local gradient when above a threshold, holding all other parameters fixed. This has been named `stiffness'. The radial scalelength is then expected to vary little with source strength as a result of high stiffness. To probe the role of ExB shearing on stiffness in the DIII-D tokamak, two neutral beam injection power scans in H-mode plasmas were specially crafted-one with constant, low torque and one with increasing torque. The ion heat, electron heat, and ion toroidal momentum transport do not show expected signatures of stiffness, while the ion particle transport does. The ion heat transport shows the clearest discrepancy; the normalized heat flux drops with increasing inverse ion temperature scalelength. ExB shearing affects the transport magnitude, but not the scalelength dependence. Linear gyrofluid (TGLF) and nonlinear gyrokinetic (GYRO) predictions show stiff ion heat transport around the experimental profiles. The ion temperature gradient required to match the ion heat flux with increasing auxiliary power is not correctly described by TGLF, even when parameters are varied within the experimental uncertainties. TGLF also underpredicts transport at smaller radii, but overpredicts transport at larger radii. Independent of the theory/experiment comparison, it is not clear that the theoretical definition of stiffness yields any prediction about parameter scans such as the power scans here, because the quantities that must be held fixed to quantify stiffness are varied. A survey of recent literature indicated that profile resilience is routinely attributed to stiffness, but simple model calculations show profile resilience does not imply stiffness. Taken together, these observations challenge the use of local stiffness as a paradigm for explaining global transport behavior. Work supported by US DOE under DE-FC02-04ER54698.

  13. Diastolic Function in Normal Sinus Rhythm vs. Chronic Atrial Fibrillation: Comparison by Fractionation of E-wave Deceleration Time into Stiffness and Relaxation Components.

    PubMed

    Mossahebi, Sina; Kovács, Sándor J

    2014-01-01

    Although the electrophysiologic derangement responsible for atrial fibrillation (AF) has been elucidated, how AF remodels the ventricular chamber and affects diastolic function (DF) has not been fully characterized. The previously validated Parametrized Diastolic Filling (PDF) formalism models suction-initiated filling kinematically and generates error-minimized fits to E-wave contours using unique load (x o ), relaxation (c), and stiffness (k) parameters. It predicts that E-wave deceleration time (DT) is a function of both stiffness and relaxation. Ascribing DT s to stiffness and DTr to relaxation such that DT=DT s +DT r is legitimate because of causality and their predicted and observed high correlation (r=0.82 and r=0.94) with simultaneous (diastatic) chamber stiffness (dP/dV) and isovolumic relaxation (tau), respectively. We analyzed simultaneous echocardiography-cardiac catheterization data and compared 16 age matched, chronic AF subjects to 16, normal sinus rhythm (NSR) subjects (650 beats). All subjects had diastatic intervals. Conventional DF parameters (DT, AT, E peak , E dur , E-VTI, E/E') and E-wave derived PDF parameters (c, k, DT s , DT r ) were compared. Total DT and DT s , DT r in AF were shorter than in NSR (p<0.005), chamber stiffness, (k) in AF was higher than in NSR (p<0.001). For NSR, 75% of DT was due to stiffness and 25% was due to relaxation whereas for AF 81% of DT was due to stiffness and 19% was due to relaxation (p<0.005). We conclude that compared to NSR, increased chamber stiffness is one measurable consequence of chamber remodeling in chronic, rate controlled AF. A larger fraction of E-wave DT in AF is due to stiffness compared to NSR. By trending individual subjects, this method can elucidate and characterize the beneficial or adverse long-term effects on chamber remodeling due to alternative therapies in terms of chamber stiffness and relaxation.

  14. Measurements of the magnetic-field-tuned conductivity of disordered two-dimensional Mo43Ge57 and InOx superconducting films: evidence for a universal minimum superfluid response.

    PubMed

    Misra, S; Urban, L; Kim, M; Sambandamurthy, G; Yazdani, A

    2013-01-18

    Our measurements of the low frequency ac conductivity in strongly disordered two-dimensional films near the magnetic-field-tuned superconductor-to-insulator transition show a sudden drop in the phase stiffness of superconducting order with either increased temperature or magnetic field. Surprisingly, for two different material systems, the abrupt drop in the superfluid density in a magnetic field has the same universal value as that expected for a Berezinskii-Kosterlitz-Thouless transition in a zero magnetic field. The characteristic temperature at which phase stiffness is suddenly lost can be tuned to zero at a critical magnetic field, following a power-law behavior with a critical exponent consistent with that obtained in previous dc transport studies on the dissipative side of the transition.

  15. Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply

    NASA Technical Reports Server (NTRS)

    VanDerMeer, Frans P.; Davila, Carlos G.

    2013-01-01

    This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks

  16. Longitudinal spread of mechanical excitation through tectorial membrane traveling waves

    PubMed Central

    Sellon, Jonathan B.; Farrahi, Shirin; Ghaffari, Roozbeh; Freeman, Dennis M.

    2015-01-01

    The mammalian inner ear separates sounds by their frequency content, and this separation underlies important properties of human hearing, including our ability to understand speech in noisy environments. Studies of genetic disorders of hearing have demonstrated a link between frequency selectivity and wave properties of the tectorial membrane (TM). To understand these wave properties better, we developed chemical manipulations that systematically and reversibly alter TM stiffness and viscosity. Using microfabricated shear probes, we show that (i) reducing pH reduces TM stiffness with little change in TM viscosity and (ii) adding PEG increases TM viscosity with little change in TM stiffness. By applying these manipulations in measurements of TM waves, we show that TM wave speed is determined primarily by stiffness at low frequencies and by viscosity at high frequencies. Both TM viscosity and stiffness affect the longitudinal spread of mechanical excitation through the TM over a broad range of frequencies. Increasing TM viscosity or decreasing stiffness reduces longitudinal spread of mechanical excitation, thereby coupling a smaller range of best frequencies and sharpening tuning. In contrast, increasing viscous loss or decreasing stiffness would tend to broaden tuning in resonance-based TM models. Thus, TM wave and resonance mechanisms are fundamentally different in the way they control frequency selectivity. PMID:26438861

  17. Neuromorphic Vibrotactile Stimulation of Fingertips for Encoding Object Stiffness in Telepresence Sensory Substitution and Augmentation Applications

    PubMed Central

    Sorgini, Francesca; Massari, Luca; D’Abbraccio, Jessica; Petrovic, Petar B.; Carrozza, Maria Chiara; Newell, Fiona N.

    2018-01-01

    We present a tactile telepresence system for real-time transmission of information about object stiffness to the human fingertips. Experimental tests were performed across two laboratories (Italy and Ireland). In the Italian laboratory, a mechatronic sensing platform indented different rubber samples. Information about rubber stiffness was converted into on-off events using a neuronal spiking model and sent to a vibrotactile glove in the Irish laboratory. Participants discriminated the variation of the stiffness of stimuli according to a two-alternative forced choice protocol. Stiffness discrimination was based on the variation of the temporal pattern of spikes generated during the indentation of the rubber samples. The results suggest that vibrotactile stimulation can effectively simulate surface stiffness when using neuronal spiking models to trigger vibrations in the haptic interface. Specifically, fractional variations of stiffness down to 0.67 were significantly discriminated with the developed neuromorphic haptic interface. This is a performance comparable, though slightly worse, to the threshold obtained in a benchmark experiment evaluating the same set of stimuli naturally with the own hand. Our paper presents a bioinspired method for delivering sensory feedback about object properties to human skin based on contingency–mimetic neuronal models, and can be useful for the design of high performance haptic devices. PMID:29342076

  18. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.

    PubMed

    Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L

    2007-02-01

    The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.

  19. Multi-Plane High Speed Balancing Techniques and the Use of a High Specific Stiffness Ti-Borsic Material for Vibration Control.

    DTIC Science & Technology

    1980-02-01

    maneuver conditions, and transmit the net axial thrust force between the turbine and fan sections due to pressure and aero dynamic gas loads . 49 Lm...stiffness composite material shaft. Both~~ balancing demonstration and the composite shaft design ad as their objective the management of small turbofan ...CONFIGURATIONS 99 LIST OF ILLUSTRATIONS Figure Title Page 1 High Speed Balancing Program Schedule 4 2 Teledyne CAE Model 471-11DX Turbofan Engine

  20. Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms

    NASA Astrophysics Data System (ADS)

    Huang, Juntao; Shu, Chi-Wang

    2018-05-01

    In this paper, we develop bound-preserving modified exponential Runge-Kutta (RK) discontinuous Galerkin (DG) schemes to solve scalar hyperbolic equations with stiff source terms by extending the idea in Zhang and Shu [43]. Exponential strong stability preserving (SSP) high order time discretizations are constructed and then modified to overcome the stiffness and preserve the bound of the numerical solutions. It is also straightforward to extend the method to two dimensions on rectangular and triangular meshes. Even though we only discuss the bound-preserving limiter for DG schemes, it can also be applied to high order finite volume schemes, such as weighted essentially non-oscillatory (WENO) finite volume schemes as well.

  1. Effect of fiber surface and mechanical properties on the stiffness and strength of medium-density fiberboard

    Treesearch

    Leslie H. Groom; Laurence Mott; Stephen M. Shaler; Tom Pesacreta

    1999-01-01

    The mechanical properties of wood-based composites are dependent upon the properties of the wood components (e.g., wood fibers, wood strands) and the manner in which they are combined. The relationship between fiber mechanical properties and fiber-based composites has been discussed in several publications. This paper will focus primarily on the influence of fiber...

  2. Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position

    Treesearch

    B. K. Via; C. L. So; T. F. Shupe; L. H. Groom; J. Wikaira

    2009-01-01

    The composite structure of the S2 layer in the wood cell wall is defined by the angle of the cellulose microfibrils and concentration of polymers and this structure impacts strength and stiffness. The objective of this study was to use near infrared spectroscopy and X-ray diffraction to determine the effect of lignin and cellulose associated wavelengths,...

  3. Effects of circumferential ankle pressure on ankle proprioception, stiffness, and postural stability: a preliminary investigation.

    PubMed

    You, Sung H; Granata, Kevin P; Bunker, Linda K

    2004-08-01

    Cross-sectional repeated-measures design. Determine the effects of circumferential ankle pressure (CAP) intervention on proprioceptive acuity, ankle stiffness, and postural stability. The application of CAP using braces, taping, and adaptive shoes or military boots is widely used to address chronic ankle instability (CAI). An underlying assumption is that the CAP intervention might improve ankle stability through increased proprioceptive acuity and stiffness in the ankle. METHOD AND MEASURES: A convenience sample of 10 subjects was recruited from the local university community and categorized according to proprioceptive acuity (high, low) and ankle stability (normal, CAI). Proprioceptive acuity was measured when blindfolded subjects were asked to accurately reproduce a self-selected target ankle position before and after the application of CAP. Proprioceptive acuity was determined in 5 different ankle joint position sense tests: neutral, inversion, eversion, plantar flexion, and dorsiflexion. Joint position angles were recorded electromechanically using a potentiometer. Passive ankle stiffness was computed from the ratio of applied static moment versus angular displacement. Active ankle stiffness was determined from biomechanical analyses of ankle motion following a mediolateral perturbation. Postural stability was quantified from the center of pressure displacement in the mediolateral and the anteroposterior directions in unipedal stance. All measurements were recorded with and without CAP applied by a pediatric blood pressure cuff. Data were analyzed using a separate mixed-model analysis of variance (ANOVA) for each dependent variable. Post hoc comparison using Tukey's honestly significant difference (HSD) test was performed if significant interactions were obtained. Significance level was set at P<.05 for all analyses. Significant group (high versus low proprioceptive acuity) x CAP interactions were identified for postural stability. Passive ankle stiffness was not increased by an application of CAP. Active ankle stiffness was significantly different between the high and low proprioceptive acuity groups and was not affected by an application of CAP. Significant group (normal versus CAI) x CAP interactions were observed for mediolateral center-of-pressure displacement with a main effect of group on neutral joint position sense. Application of CAP increased proprioceptive acuity and demonstrated trends toward increased active stiffness in the ankle, hence improved postural stability. The effects tend to be limited to individuals with low proprioceptive acuity.

  4. Dynamic stability of stacked disk type flywheels

    NASA Astrophysics Data System (ADS)

    Younger, F. C.

    1981-04-01

    A flywheel assembly formed from adhesively bonded stacked fiber composite disks was analyzed. The stiffness and rigidity of the assembly required to prevent uncontrolled growth in the deformations due to centrifugal force was determined. It is shown that stacked disk type flywheels become unstable when the speed exceeds a critical value. This critical value of speed depends upon the stiffness of the bonded attachments between the disks. It is found that elastomeric bonds do not provide adequate stiffness to insure dynamic stability for high speed stacked disk type flywheels.

  5. The effect of process parameters in Aluminum Metal Matrix Composites with Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Vani, Vemula Vijaya; Chak, Sanjay Kumar

    2018-06-01

    Metal Matrix Composites are developed in recent years as an alternative over conventional engineering materials due to their improved properties. Among all, Aluminium Matrix Composites (AMCs) are increasing their demand due to low density, high strength-to-weight ratio, high toughness, corrosion resistance, higher stiffness, improved wear resistance, increased creep resistance, low co-efficient of thermal expansion, improved high temperature properties. Major applications of these materials have been in aerospace, automobile, military. There are different processing techniques for the fabrication of AMCs. Powder metallurgy is a one of the most promising and versatile routes for fabrication of particle reinforced AMCs as compared to other manufacturing methods. This method ensures the good wettability between matrix and reinforcement, homogeneous microstructure of the fabricated MMC, and prevents the formation of any undesirable phases. This article addresses mainly on the effect of process parameters like sintering time, temperature and particle size on the microstructure of aluminum metal matrix composites.

  6. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearingmore » compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.« less

  7. Using the attitude response of aerostable spacecraft to measure thermospheric wind

    NASA Astrophysics Data System (ADS)

    Virgili-Llop, Josep; Roberts, Peter C. E.; Hao, Zhou

    2018-03-01

    In situ measurements of the thermospheric wind can be obtained by observing the attitude response of an aerostable spacecraft. In the proposed method, the aerostable spacecraft is left uncontrolled, freely reacting to the aerodynamic torques, and oscillating around its equilibrium attitude. The wind's magnitude and direction is determined by combining the attitude observations with estimates of the other perturbing torques, atmospheric density, and spacecraft's aerodynamic properties. The spatial resolution of the measurements is proportional to the natural frequency of the attitude's oscillation. Spacecraft with high aerodynamic stiffness to inertia ratios operating at low altitudes exhibit higher natural frequencies, making them particularly suited for this method. A one degree-of-freedom case is used to present and illustrate the proposed method as well as to analyze its performance.

  8. Synergistic role of ADP and Ca2+ in diastolic myocardial stiffness

    PubMed Central

    Sequeira, Vasco; Najafi, Aref; McConnell, Mark; Fowler, Ewan D; Bollen, Ilse A E; Wüst, Rob C I; dos Remedios, Cris; Helmes, Michiel; White, Ed; Stienen, Ger J M; Tardiff, Jil; Kuster, Diederik W D; van der Velden, Jolanda

    2015-01-01

    Abstract Heart failure (HF) with diastolic dysfunction has been attributed to increased myocardial stiffness that limits proper filling of the ventricle. Altered cross-bridge interaction may significantly contribute to high diastolic stiffness, but this has not been shown thus far. Cross-bridge interactions are dependent on cytosolic [Ca2+] and the regeneration of ATP from ADP. Depletion of myocardial energy reserve is a hallmark of HF leading to ADP accumulation and disturbed Ca2+ handling. Here, we investigated if ADP elevation in concert with increased diastolic [Ca2+] promotes diastolic cross-bridge formation and force generation and thereby increases diastolic stiffness. ADP dose-dependently increased force production in the absence of Ca2+ in membrane-permeabilized cardiomyocytes from human hearts. Moreover, physiological levels of ADP increased actomyosin force generation in the presence of Ca2+ both in human and rat membrane-permeabilized cardiomyocytes. Diastolic stress measured at physiological lattice spacing and 37°C in the presence of pathological levels of ADP and diastolic [Ca2+] revealed a 76 ± 1% contribution of cross-bridge interaction to total diastolic stress in rat membrane-permeabilized cardiomyocytes. Inhibition of creatine kinase (CK), which increases cytosolic ADP, in enzyme-isolated intact rat cardiomyocytes impaired diastolic re-lengthening associated with diastolic Ca2+ overload. In isolated Langendorff-perfused rat hearts, CK inhibition increased ventricular stiffness only in the presence of diastolic [Ca2+]. We propose that elevations of intracellular ADP in specific types of cardiac disease, including those where myocardial energy reserve is limited, contribute to diastolic dysfunction by recruiting cross-bridges, even at low Ca2+, and thereby increase myocardial stiffness. Key points Diastolic dysfunction in heart failure patients is evident from stiffening of the passive properties of the ventricular wall. Increased actomyosin interactions may significantly limit diastolic capacity, however, direct evidence is absent. From experiments at the cellular and whole organ level, in humans and rats, we show that actomyosin-related force development contributes significantly to high diastolic stiffness in environments where high ADP and increased diastolic [Ca2+] are present, such as the failing myocardium. Our basal study provides a mechanical mechanism which may partly underlie diastolic dysfunction. PMID:26096258

  9. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.

    PubMed

    Mietke, Alexander; Otto, Oliver; Girardo, Salvatore; Rosendahl, Philipp; Taubenberger, Anna; Golfier, Stefan; Ulbricht, Elke; Aland, Sebastian; Guck, Jochen; Fischer-Friedrich, Elisabeth

    2015-11-17

    Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment

    PubMed Central

    Mietke, Alexander; Otto, Oliver; Girardo, Salvatore; Rosendahl, Philipp; Taubenberger, Anna; Golfier, Stefan; Ulbricht, Elke; Aland, Sebastian; Guck, Jochen; Fischer-Friedrich, Elisabeth

    2015-01-01

    Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible. PMID:26588562

  11. Development and validation of an improved mechanical thorax for simulating cardiopulmonary resuscitation with adjustable chest stiffness and simulated blood flow.

    PubMed

    Eichhorn, Stefan; Spindler, Johannes; Polski, Marcin; Mendoza, Alejandro; Schreiber, Ulrich; Heller, Michael; Deutsch, Marcus Andre; Braun, Christian; Lange, Rüdiger; Krane, Markus

    2017-05-01

    Investigations of compressive frequency, duty cycle, or waveform during CPR are typically rooted in animal research or computer simulations. Our goal was to generate a mechanical model incorporating alternate stiffness settings and an integrated blood flow system, enabling defined, reproducible comparisons of CPR efficacy. Based on thoracic stiffness data measured in human cadavers, such a model was constructed using valve-controlled pneumatic pistons and an artificial heart. This model offers two realistic levels of chest elasticity, with a blood flow apparatus that reflects compressive depth and waveform changes. We conducted CPR at opposing levels of physiologic stiffness, using a LUCAS device, a motor-driven plunger, and a group of volunteers. In high-stiffness mode, blood flow generated by volunteers was significantly less after just 2min of CPR, whereas flow generated by LUCAS device was superior by comparison. Optimal blood flow was obtained via motor-driven plunger, with trapezoidal waveform. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Arterial Stiffening Precedes Systolic Hypertension in Diet-induced Obesity

    PubMed Central

    Weisbrod, Robert M.; Shiang, Tina; Sayah, Leona Al; Fry, Jessica L.; Bajpai, Saumendra; Reinhart-King, Cynthia A.; Lob, Heinrich E.; Santhanam, Lakshmi; Mitchell, Gary; Cohen, Richard A.; Seta, Francesca

    2014-01-01

    Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs such as the heart, brain and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension, although the mechanisms contributing to hypertension are unknown. Here we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within one month of the initiation of the diet and precedes the development of hypertension by five months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss returned arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause, rather than a consequence of hypertension. PMID:24060894

  13. Arterial stiffening precedes systolic hypertension in diet-induced obesity.

    PubMed

    Weisbrod, Robert M; Shiang, Tina; Al Sayah, Leona; Fry, Jessica L; Bajpai, Saumendra; Reinhart-King, Cynthia A; Lob, Heinrich E; Santhanam, Lakshmi; Mitchell, Gary; Cohen, Richard A; Seta, Francesca

    2013-12-01

    Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs, such as the heart, brain, and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension although the mechanisms underlying hypertension are unknown. Here, we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within 1 month of the initiation of the diet and precedes the development of hypertension by 5 months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss resulted in return of arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause rather than a consequence of hypertension.

  14. Tunable particles alter macrophage uptake based on combinatorial effects of physical properties

    PubMed Central

    Garapaty, Anusha

    2017-01-01

    Abstract The ability to tune phagocytosis of particle‐based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non‐phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer‐by‐layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod‐shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc‐functionalized particles with macrophages during phagocytosis. PMID:29313025

  15. Active vibration control of a single-stage spur gearbox

    NASA Astrophysics Data System (ADS)

    Dogruer, C. U.; Pirsoltan, Abbas K.

    2017-02-01

    The dynamic transmission error between driving and driven gears of a gear mechanism with torsional mode is induced by periodic time-varying mesh stiffness. In this study, to minimize the adverse effect of this time-varying mesh stiffness, a nonlinear controller which adjusts the torque acting on the driving gear is proposed. The basic approach is to modulate the input torque such that it compensates the periodic change in mesh stiffness. It is assumed that gears are assembled with high precision and gearbox is analyzed by a finite element software to calculate the mesh stiffness curve. Thus, change in the mesh stiffness, which is inherently nonlinear, can be predicted and canceled by a feed-forward loop. Then, remaining linear dynamics is controlled by pole placement techniques. Under these premises, it is claimed that any acceleration and velocity profile of the input shaft can be tracked accurately. Thereby, dynamic transmission error is kept to a minimum possible value and a spur gearbox, which does not emit much noise and vibration, is designed.

  16. Relationship between increased carotid artery stiffness and idiopathic subjective tinnitus.

    PubMed

    Bayraktar, C; Taşolar, S

    2017-05-01

    Tinnitus is defined as perception of sound with no external stimulus, and can separate into pulsatile and non-pulsatile types. Arterial stiffness is a parameter that can predict the cardiovascular event and associated with incidence of stroke. It has been shown that increased arterial stiffness may lead to microvascular damage in brain. Our aim was to assess the arterial stiffness of the carotid system in the development and severity of idiopathic subjective tinnitus. Forty subjective tinnitus patients and 40 age- and sex-matched controls were enrolled in the study. The parameters obtained from the participants included pure tone hearing (dB), serum lipid profile (mg/dl), fasting glucose (mg/dl), blood pressure (mmHg), and body mass index (BMI, kg/m 2 ). The common carotid artery (CCA) stiffness index, Young's elastic modulus (YEM), common carotid intima-media thickness (CIMT), peak systolic velocity (PSV), end-diastolic velocity (EDV), resistive index (RI), pulsatility index (PI), vessel diameter, mean velocity (MV), and volume flow (VF) were measured in both the right and left common carotid arteries in both groups. The CCA stiffness index, YEM measurements, right CIMT, and left PI were found to be significantly higher in the patients than those in the control group (p < 0.05). With regard to the severity of the tinnitus and the patient characteristics, there was a significant positive correlation with the CCA stiffness index, YEM measurements, left CIMT, and neutrophil-to-lymphocyte ratio (NLR). However, only the right and left CCA stiffness parameters were found to be statistically significant in the multivariate analysis as independent predictors of a moderate to high degree of tinnitus. The increased stiffness index of the common carotid arteries was significantly associated with the formation and severity of tinnitus. Therefore, an assessment of the carotideal system may be helpful in these patients.

  17. Estimating Human Trabecular Meshwork Stiffness by Numerical Modeling and Advanced OCT Imaging.

    PubMed

    Wang, Ke; Johnstone, Murray A; Xin, Chen; Song, Shaozhen; Padilla, Steven; Vranka, Janice A; Acott, Ted S; Zhou, Kai; Schwaner, Stephen A; Wang, Ruikang K; Sulchek, Todd; Ethier, C Ross

    2017-09-01

    The purpose of this study was to estimate human trabecular meshwork (hTM) stiffness, thought to be elevated in glaucoma, using a novel indirect approach, and to compare results with direct en face atomic force microscopy (AFM) measurements. Postmortem human eyes were perfused to measure outflow facility and identify high- and low-flow regions (HF, LF) by tracer. Optical coherence tomography (OCT) images were obtained as Schlemm's canal luminal pressure was directly manipulated. TM stiffness was deduced by an inverse finite element modeling (FEM) approach. A series of AFM forcemaps was acquired along a line traversing the anterior angle on a radially cut flat-mount corneoscleral wedge with TM facing upward. The elastic modulus of normal hTM estimated by inverse FEM was 70 ± 20 kPa (mean ± SD), whereas glaucomatous hTM was slightly stiffer (98 ± 19 kPa). This trend was consistent with TM stiffnesses measured by AFM: normal hTM stiffness = 1.37 ± 0.56 kPa, which was lower than glaucomatous hTM stiffness (2.75 ± 1.19 kPa). None of these differences were statistically significant. TM in HF wedges was softer than that in LF wedges for both normal and glaucomatous eyes based on the inverse FEM approach but not by AFM. Outflow facility was significantly correlated with TM stiffness estimated by FEM in six human eyes (P = 0.018). TM stiffness is higher, but only modestly so, in glaucomatous patients. Outflow facility in both normal and glaucomatous human eyes appears to associate with TM stiffness. This evidence motivates further studies to investigate factors underlying TM biomechanical property regulation.

  18. Control of paraplegic ankle joint stiffness using FES while standing.

    PubMed

    Hunt, K J; Gollee, H; Jaime, R P

    2001-10-01

    The goal of this work was to investigate the feasibility of ankle stiffness control using functional electrical stimulation (FES) while standing, as relevant to the development of feedback systems for balance control in paraplegia. The work was carried out using apparatus in which the subject stands with all joints above the ankles braced, and where ankle moment is provided via FES of the ankle flexor and extensor muscles. A feedback control strategy for ankle stiffness control is proposed in which the ankle moment is controlled to a reference value equal to the product of the desired stiffness and the measured ankle angle. Two subjects participated in the study: one neurologically-intact person, and one paraplegic person with a complete thoracic spinal cord lesion. The results show that during forward-leaning postures, when the plantarflexor muscles are stimulated, relatively high ankle moments of up to 60 Nm can be generated and accurate moment tracking is achieved. As a consequence, ankle stiffness is close to the desired value. During backward lean, on the other hand, the dorsiflexor muscles are stimulated. These muscles are relatively weak and only modest ankle moments of up to around 15 Nm can be produced. As a result, dorsiflexor stimulation readily saturates giving poor stiffness control. It was further observed that when the desired stiffness is higher more external force has to be applied to perturb the body away from the neutral (upright) position. We conclude that: (i) accurate ankle stiffness control, up to the fundamental strength limits of the muscles, can be achieved with controlled FES; (ii) ankle stiffness control using FES in paraplegia has the potential to ease the task of stabilising upright posture by application of additional upper-body forces.

  19. Extended analytical solutions for effective elastic moduli of cracked porous media

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy-Tuan; To, Quy Dong; Vu, Minh Ngoc

    2017-05-01

    Extended solutions are derived, on the basis of the micromechanical methods, for the effective elastic moduli of porous media containing stiff pores and both open and closed cracks. Analytical formulas of the overall bulk and shear moduli are obtained as functions of the elastic moduli of the solid skeleton, porosity and the densities of open and closed cracks families. We show that the obtained results are extensions of the classical widely used Walsh's (JGR, 1965) and Budiansky-O‧Connell's (JGR, 1974) solutions. Parametric sensitivity analysis clarifies the impact of the model parameters on the effective elastic properties. An inverse analysis, using sonic and density data, is considered to quantify the density of both open and closed cracks. It is observed that the density of closed cracks depends strongly on stress condition while the dependence of open cracks on the confining stress is negligible.

  20. Local relative density modulates failure and strength in vertically aligned carbon nanotubes.

    PubMed

    Pathak, Siddhartha; Mohan, Nisha; Decolvenaere, Elizabeth; Needleman, Alan; Bedewy, Mostafa; Hart, A John; Greer, Julia R

    2013-10-22

    Micromechanical experiments, image analysis, and theoretical modeling revealed that local failure events and compressive stresses of vertically aligned carbon nanotubes (VACNTs) were uniquely linked to relative density gradients. Edge detection analysis of systematically obtained scanning electron micrographs was used to quantify a microstructural figure-of-merit related to relative local density along VACNT heights. Sequential bottom-to-top buckling and hardening in stress-strain response were observed in samples with smaller relative density at the bottom. When density gradient was insubstantial or reversed, bottom regions always buckled last, and a flat stress plateau was obtained. These findings were consistent with predictions of a 2D material model based on a viscoplastic solid with plastic non-normality and a hardening-softening-hardening plastic flow relation. The hardening slope in compression generated by the model was directly related to the stiffness gradient along the sample height, and hence to the local relative density. These results demonstrate that a microstructural figure-of-merit, the effective relative density, can be used to quantify and predict the mechanical response.

Top