Sample records for density icf plasmas

  1. High-Energy-Density-Physics Studies for Inertial Confinement Fusion Applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2017-10-01

    Accurate knowledge of the static, transport, and optical properties of high-energy-density (HED) plasmas is essential for reliably designing and understanding inertial confinement fusion (ICF) implosions. In the warm-dense-matter regime routinely accessed by low-adiabat ICF implosions, many-body strong-coupling and quantum electron degeneracy effects play an important role in determining plasma properties. The past several years have witnessed intense efforts to assess the importance of the microphysics of ICF targets, both theoretically and experimentally. On the theory side, first-principles methods based on quantum mechanics have been applied to investigate the properties of warm, dense plasmas. Specifically, self-consistent investigations have recently been performed on the equation of state, thermal conductivity, and opacity of a variety of ICF ablators such as polystyrene (CH), beryllium, carbon, and silicon over a wide range of densities and temperatures. In this talk, we will focus on the most-recent progress on these ab initio HED physics studies, which generally result in favorable comparisons with experiments. Upon incorporation into hydrocodes for ICF simulations, these first-principles ablator-plasma properties have produced significant differences over traditional models in predicting 1-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. *In collaboration with L. A. Collins, T. R. Boehly, G. W. Collins, J. D. Kress, and V. N. Goncharov.

  2. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.

    PubMed

    Hu, S X; Collins, L A; Boehly, T R; Kress, J D; Goncharov, V N; Skupsky, S

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ∼20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the inside ablation process during the hot-spot formation of an ICF implosion.

  3. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Kress, J. D.; Goncharov, V. N.; Skupsky, S.

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ˜20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the inside ablation process during the hot-spot formation of an ICF implosion.

  4. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  5. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, Stephanie

    2017-10-01

    The burning core of an inertial confinement fusion (ICF) plasma at stagnation is surrounded by a shell of warm, dense matter whose properties are difficult both to model (due to a complex interplay of thermal, degeneracy, and strong coupling effects) and to diagnose (due to low emissivity and high opacity). We demonstrate a promising technique to study the warm dense shells of ICF plasmas based on the fluorescence emission of dopants or impurities in the shell material. This emission, which is driven by x-rays produced in the hot core, exhibits signature changes in response to compression and heating. High-resolution measurements of absorption and fluorescence features can refine our understanding of the electronic structure of material under high compression, improve our models of density-driven phenomena such as ionization potential depression and plasma polarization shifts, and help diagnose shell density, temperature, mass distribution, and residual motion in ICF plasmas at stagnation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office of Fusion Energy Sciences under FWP-14-017426.

  6. Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions.

    PubMed

    Michel, P; Divol, L; Dewald, E L; Milovich, J L; Hohenberger, M; Jones, O S; Hopkins, L Berzak; Berger, R L; Kruer, W L; Moody, J D

    2015-07-31

    Stimulated Raman scattering from multiple laser beams arranged in a cone sharing a common daughter wave is investigated for inertial confinement fusion (ICF) conditions in a inhomogeneous plasma. It is found that the shared electron plasma wave (EPW) process, where the lasers collectively drive the same EPW, can lead to an absolute instability when the electron density reaches a matching condition dependent on the cone angle of the laser beams. This mechanism could explain recent experimental observations of hot electrons at early times in ICF experiments, at densities well below quarter critical when two plasmon decay is not expected to occur.

  7. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designsa)

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-01

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium-tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF "path" to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ˜2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP-based properties of DT are essential for designing ICF ignition targets. Future work on first-principles studies of ICF ablator materials is also discussed.

  8. Investigating inertial confinement fusion target fuel conditions through x-ray spectroscopya)

    NASA Astrophysics Data System (ADS)

    Hansen, Stephanie B.

    2012-05-01

    Inertial confinement fusion (ICF) targets are designed to produce hot, dense fuel in a neutron-producing core that is surrounded by a shell of compressing material. The x-rays emitted from ICF plasmas can be analyzed to reveal details of the temperatures, densities, gradients, velocities, and mix characteristics of ICF targets. Such diagnostics are critical to understand the target performance and to improve the predictive power of simulation codes.

  9. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    DOE PAGES

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...

    2018-03-07

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  10. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; Boehly, T. R.

    2015-05-15

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into accountmore » in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κ{sub QMD}), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ∼2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP-based properties of DT are essential for designing ICF ignition targets. Future work on first-principles studies of ICF ablator materials is also discussed.« less

  11. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE PAGES

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; ...

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (K QMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP-based properties of DT are essential for designing ICF ignition targets. Future work on first-principles studies of ICF ablator materials is also discussed.« less

  12. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.

    2018-05-01

    Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.

  13. Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas.

    PubMed

    Koch, Jeffrey A; Landen, Otto L; Suter, Laurence J; Masse, Laurent P; Clark, Daniel S; Ross, James S; Mackinnon, Andrew J; Meezan, Nathan B; Thomas, Cliff A; Ping, Yuan

    2013-05-20

    X-ray backlit radiographs of dense plasma shells can be significantly altered by refraction of x rays that would otherwise travel straight-ray paths, and this effect can be a powerful tool for diagnosing the spatial structure of the plasma being radiographed. We explore the conditions under which refraction effects may be observed, and we use analytical and numerical approaches to quantify these effects for one-dimensional radial opacity and density profiles characteristic of inertial-confinement fusion (ICF) implosions. We also show how analytical and numerical approaches allow approximate radial plasma opacity and density profiles to be inferred from point-projection refraction-enhanced radiography data. This imaging technique can provide unique data on electron density profiles in ICF plasmas that cannot be obtained using other techniques, and the uniform illumination provided by point-like x-ray backlighters eliminates a significant source of uncertainty in inferences of plasma opacity profiles from area-backlit pinhole imaging data when the backlight spatial profile cannot be independently characterized. The technique is particularly suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen ice, because refraction is sensitive to the electron density of the hydrogen plasma even when it is invisible to absorption radiography. It may also provide an alternative approach to timing shockwaves created by the implosion drive, that are currently invisible to absorption radiography.

  14. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L. A.; Boehly, T. R.; Ding, Y. H.

    Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less

  15. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    DOE PAGES

    Collins, L. A.; Boehly, T. R.; Ding, Y. H.; ...

    2018-03-23

    Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less

  16. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.

    Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ~1 mg/cc -1), high-temperature (T i ~keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers (N K ≡ λ ii/R). Anomalous trends in nuclear yields and burn-averaged ion temperatures in implosions with N K > 0.5, which have been interpreted as signaturesmore » of ion species separation and ion thermal decoupling, are found not to be consistent with single-species ion kinetic effects alone. Experimentally inferred Knudsen numbers predict an opposite yield trend to those observed, confirming the dominance of multi-species physics in these experiments. In contrast, implosions with N K ~ 0.01 follow the expected yield trend, suggesting single-species kinetic effects are dominant. In conclusion, the impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.« less

  17. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF

    DOE PAGES

    Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.; ...

    2017-04-20

    Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ~1 mg/cc -1), high-temperature (T i ~keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers (N K ≡ λ ii/R). Anomalous trends in nuclear yields and burn-averaged ion temperatures in implosions with N K > 0.5, which have been interpreted as signaturesmore » of ion species separation and ion thermal decoupling, are found not to be consistent with single-species ion kinetic effects alone. Experimentally inferred Knudsen numbers predict an opposite yield trend to those observed, confirming the dominance of multi-species physics in these experiments. In contrast, implosions with N K ~ 0.01 follow the expected yield trend, suggesting single-species kinetic effects are dominant. In conclusion, the impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.« less

  18. First quantitative measurements of charged-particle stopping and its dependence on electron temperature and density in Inertial-Confinement-Fusion plasmas

    NASA Astrophysics Data System (ADS)

    Frenje, J.; Li, C. K.; Séguin, F.; Zylstra, A.; Rinderknecht, H.; Petrasso, R.; Delettrez, J.; Glebov, V.; Sangster, T.

    2013-10-01

    We report on the first quantitative measurements of charged-particle stopping in Inertial-Confinement-Fusion (ICF) plasmas at various conditions. In these experiments, four charged fusion products from the DD and D3He reactions in D3He gas-filled filled implosions were used to determine the stopping power of ICF plasmas at electron temperatures (Te) , ion temperatures (Ti) , and areal densities (ρR) in the range of 0.6-4.0 keV, 3-14 keV and 2-10 mg/cm2, respectively. The resulting data, in the form of measured energy downshift of the charged fusion products, clearly indicate that the stopping-power function depends strongly on Te. It was also observed that the stopping-power function change in characteristics for higher-density implosions in which ions and electrons equilibrate faster, resulting in higher Te relative to Ti and higher ρR s. These results will be modelled by Landau-Spitzer theory and contrasted to different stopping-power models. This work was partially supported by the US DOE, NLUF, LLE, and GA.

  19. Development of optics for x-ray phase-contrast imaging of high energy density plasmas.

    PubMed

    Stutman, D; Finkenthal, M; Moldovan, N

    2010-10-01

    Phase-contrast or refraction-enhanced x-ray radiography can be useful for the diagnostic of low-Z high energy density plasmas, such as imploding inertial confinement fusion (ICF) pellets, due to its sensitivity to density gradients. To separate and quantify the absorption and refraction contributions to x-ray images, methods based on microperiodic optics, such as shearing interferometry, can be used. To enable applying such methods with the energetic x rays needed for ICF radiography, we investigate a new type of optics consisting of grazing incidence microperiodic mirrors. Using such mirrors, efficient phase-contrast imaging systems could be built for energies up to ∼100 keV. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors based on the difference in the total reflection between a low-Z substrate and a high-Z film. Prototype mirrors fabricated with this method show promising characteristics in laboratory tests.

  20. Progress in Direct-Drive Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, R.L.; Meyerhofer, D.D.; Betti, R.

    Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ UV OMEGA Laser System [T. R. Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of ~200 mg/cm^2 in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm^3 and are in good agreement with hydrodynamic simulations. The implosions were performed using anmore » 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts—fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)]—have the potential to significantly reduce ignition driver energies and/or provide higher target gain.« less

  1. Progress in direct-drive inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, R. L.; Meyerhofer, D. D.; Betti, R.

    Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ{sub UV} OMEGA Laser System [Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of {approx}200 mg/cm{sup 2} in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm{sup 3} and are in good agreement with hydrodynamic simulations. The implosions were performed using anmore » 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts - fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] - have the potential to significantly reduce ignition driver energies and/or provide higher target gain.« less

  2. Kinetic physics in ICF: present understanding and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less

  3. Kinetic physics in ICF: present understanding and future directions

    DOE PAGES

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; ...

    2018-03-19

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less

  4. Kinetic physics in ICF: present understanding and future directions

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; Collins, G.

    2018-06-01

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (〈Ti 〉) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred 〈Ti 〉. Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior; the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.

  5. A Computational Study of a Circular Interface Richtmyer-Meshkov Instability in MHD

    NASA Astrophysics Data System (ADS)

    Maxon, William; Black, Wolfgang; Denissen, Nicholas; McFarland, Jacob; Los Alamos National Laboratory Collaboration; University of Missouri Shock Tube Laboratory Team

    2017-11-01

    The Richtmyer-Meshkov instability (RMI) is a hydrodynamic instability that appears in several high energy density applications such as inertial confinement fusion (ICF). In ICF, as the thermonuclear fuel is being compressed it begins to mix due to fluid instabilities including the RMI. This mixing greatly decreases the energy output. The RMI occurs when two fluids of different densities are impulsively accelerated and the pressure and density gradients are misaligned. In magnetohydrodynamics (MHD), the RMI may be suppressed by introducing a magnetic field in an electrically conducting fluid, such as a plasma. This suppression has been studied as a possible mechanism for improving confinement in ICF targets. In this study,ideal MHD simulations are performed with a circular interface impulsively accelerated by a shock wave in the presence of a magnetic field. These simulations are executed with the research code FLAG, a multiphysics, arbitrary Lagrangian/Eulerian, hydrocode developed and utilized at Los Alamos National Laboratory. The simulation results will be assessed both quantitatively and qualitatively to examine the stabilization mechanism. These simulations will guide ongoing MHD experiments at the University of Missouri Shock Tube Facility.

  6. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  7. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    PubMed

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  8. The first experiments on the national ignition facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S.; Froula, D.; Dewald, E.; Suter, L. J.; Schneider, M.; Hinkel, D.; Fernandez, J.; Kline, J.; Goldman, S.; Braun, D.; Celliers, P.; Moon, S.; Robey, H.; Lanier, N.; Glendinning, G.; Blue, B.; Wilde, B.; Jones, O.; Schein, J.; Divol, L.; Kalantar, D.; Campbell, K.; Holder, J.; McDonald, J.; Niemann, C.; MacKinnon, A.; Collins, R.; Bradley, D.; Eggert, J.; Hicks, D.; Gregori, G.; Kirkwood, R.; Niemann, C.; Young, B.; Foster, J.; Hansen, F.; Perry, T.; Munro, D.; Baldis, H.; Grim, G.; Heeter, R.; Hegelich, B.; Montgomery, D.; Rochau, G.; Olson, R.; Turner, R.; Workman, J.; Berger, R.; Cohen, B.; Kruer, W.; Langdon, B.; Langer, S.; Meezan, N.; Rose, H.; Still, B.; Williams, E.; Dodd, E.; Edwards, J.; Monteil, M.-C.; Stevenson, M.; Thomas, B.; Coker, R.; Magelssen, G.; Rosen, P.; Stry, P.; Woods, D.; Weber, S.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S.; Erbert, G.; Eder, D.; Ehrlich, B.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C.; Heestand, G.; Henesian, M.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B.; Vidal, R.; Wegner, P.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B.; Eckart, M.; Hsing, W.; Springer, P.; Hammel, B.; Moses, E.; Miller, G.

    2006-06-01

    A first set of shock propagation, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  10. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  11. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimatedmore » to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.« less

  12. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  13. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE PAGES

    Swadling, G. F.; Ross, J. S.; Datte, P.; ...

    2016-07-21

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  14. Energy loss of α-particle moving in warm dense deuterium plasma: Role of local field corrections

    NASA Astrophysics Data System (ADS)

    Fu, Zhen-Guo; Wang, Zhigang; Zhang, Ping

    2017-11-01

    We theoretically study the energy loss of α-particles traveling in the warm dense plasma (WDP) of deuterium (D) with temperatures from 10 to 100 eV and electron number densities from 1023 to 1024 cm-3. Beyond the random phase approximation (RPA) model, the extended Mermin dielectric function (MDF) model including the static and dynamic local field corrections (LFC) is employed in the calculations. Compared with the static LFC, the dynamic LFC introduced in the extended MDF model gives rise to a more significant departure from the RPA result. For the plasma conditions focused in this work, the departure induced by dynamic LFC reaches almost ˜ 30 % , which may be detected in the inertial confinement fusion (ICF) related experiment. Moreover, we find that the effect of static e-e collision may be of importance (unimportance) for the WDP of D with a temperature of tens (hundreds) of eV. Our findings may be important for ICF ignition since the uncertainty induced by the correlation effects between plasma component particles is crucial for the prediction of α-particle heating in fusion plasmas.

  15. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E. L.; Molvig, K.; Joglekar, A. S.

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  16. Laser Hole Boring into Overdense Plasma and Relativistic Electron Currents for Fast Ignition of ICF Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pukhov, A.; Meyer-ter-Vehn, J.

    Laser hole boring and relativistic electron transport into plasma of 10 times critical density is studied by means of 2D particle-in-cell simulation. At intensities of I{sub 0}{lambda}{sup 2}=10{sup 20} W(cm){sup {minus}2} {mu}m{sup 2}, a channel 12{lambda} deep and 3{lambda} in diameter has formed after 200 laser cycles. The laser driven electron current carries up to 40{percent} of the incident laser power. When penetrating the overdense region, it breaks up into several filaments at early times, but is channeled into a single magnetized jet later on. These features are essential for fast ignition of targets for inertial confinement fusion (ICF). {copyright}more » {ital 1997} {ital The American Physical Society}« less

  17. First-principles studies on the equation-of-state, thermal-conductivity, and opacity of deuterium-tritium and polystyrene (CH) for inertial confinement fusion applications

    DOE PAGES

    Hu, Suxing; Collins, Lee A.; Goncharov, V. N.; ...

    2016-05-26

    Using first-principles (FP) methods, we have performed ab initio compute for the equation of state (EOS), thermal conductivity, and opacity of deuterium-tritium (DT) in a wide range of densities and temperatures for inertial confinement fusion (ICF) applications. These systematic investigations have recently been expanded to accurately compute the plasma properties of CH ablators under extreme conditions. In particular, the first-principles EOS and thermal-conductivity tables of CH are self-consistently built from such FP calculations, which are benchmarked by experimental measurements. When compared with the traditional models used for these plasma properties in hydrocodes, significant differences have been identified in the warmmore » dense plasma regime. When these FP-calculated properties of DT and CH were used in our hydrodynamic simulations of ICF implosions, we found that the target performance in terms of neutron yield and energy gain can vary by a factor of 2 to 3, relative to traditional model simulations.« less

  18. Measurements of ion species separation in strong plasma shocks

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans

    2017-10-01

    Shocks are important dynamic phenomena in inertial confinement fusion (ICF) and astrophysical plasmas. While the relationship between upstream and downstream plasmas far from the shock front is fully determined by conservation equations, the structure of shock fronts is determined by dynamic kinetic processes. Kinetic theory and simulations predict that the width of a strong (M >2) collisional plasma shock front is on the order of tens of ion mean-free-paths. The shock front structure plays an important role for overall dynamics when the shock front width approaches plasma scale lengths, as in the spherically converging shock in the DT-vapor in an ICF implosion. However, there has been no experimental data benchmarking shock front structure in the plasma phase. The structure of a shock front in a plasma with multiple ion species has been directly measured for the first time using a combination of Thomson scattering and proton radiography in experiments on the OMEGA laser. Thomson scattering of a 263.25 nm probe beam is used to diagnose electron density, electron and ion temperature, ion species concentration, and flow velocity in strong shocks (M 5) propagating through low-density (ρ 0.1 mg/cc) plasmas composed of H(98%) +Ne(2%). Within the shock front, velocity separation of the ion species is observed for the first time: the light species (H) accelerates to of order the shocked fluid velocity (450 microns/ns) before the heavy species (Ne) begins to move. This velocity-space separation implies that the separation of ion species occurs at the shock front, a predicted feature of shocks in multi-species plasmas but never observed experimentally until now. Comparison of experimental data with PIC, Vlasov-Fokker-Planck, and multi-component hydrodynamic simulations will be presented.

  19. PALS laser-driven radiative jets for astrophysical and ICF applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisarczyk, T.; Kasperczuk, A.; Stenz, Ch.

    2008-03-19

    High speed, well-collimated plasma jets were generated in the interaction of defocused single laser beam with planar, massive Cu target. The experiment was carried out at the iodine laser facility (Prague Asterix Laser System--PALS) using the third harmonic beam (0.438 {mu}m) with a pulse duration of 250 ps (FWHM) and an energy of 100 J. The information about geometry of plasma expansion, plasma dynamics and electron density were obtained by means of a 3-frame interferometric system. The plasma jet parameters reach the following values: the velocity up to 7x10{sup 7} cm/s, the internal Mach number greater than 10 and themore » electron density above 10{sup 19} cm{sup -3}. The jet characteristics are appropriate for the astrophysical and ICF applications. To ensure the interaction of this jet with gas or plasma as an ambient medium, a high-pressure supersonic gas nozzle was used, which created a cylindrical column of Ar or He. The results of first experiments dedicated to studies of collision of such a jet with a gas cloud are also presented. They clearly show the effect of shocks formation in ambient gases (He and Ar) due to the jet action. In the case of He the shock waves have usually a conical shape with a thickness of 1-1.5 mm, whereas in the case of Ar, the shock wave configuration is more complex and its thickness is less than 1 mm.« less

  20. Some Thoughts on the Role of non-LTE Physics in ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, J. D.

    An effort to develop sub-critical-density high-Z metal-doped and pure metal foams as laser-driven x-ray sources is described. The main idea is that the laser beams preferentially heat the electrons, and if the plasma is sufficiently low density so that the heating rate is greater than the equilibration rate via electron-ion collisions, then the electron temperature in the plasma is much greater than the ion temperature as long as the laser is on. In such a situation the plasma is not in local thermal equilibrium (LTE), it heats supersonically and volumetrically, and the conversion efficiency of laser beam energy to multi-keVmore » L-shell and K-shell radiation is much higher than what it would be in LTE plasma.« less

  1. Stopping and Coulomb explosion of energetic carbon clusters in a plasma irradiated by an intense laser field

    NASA Astrophysics Data System (ADS)

    Wang, Guiqiu; Wang, Younian

    2015-09-01

    The interaction of a charged particle beam with a plasma is a very important subject of relevance for many fields of physics, such as inertial confinement fusion (ICF) driven by ion or electron beams, high energy density physics, and related astrophysical problems. Recently, a promising ICF scheme has been proposed, in which the plasma target is irradiated simultaneously by intense laser and ion beams. For molecular ion or cluster, slowing down process will company the Coulomb explosion phenomenon. In this paper, we present a study of the effects of intense radiation field (RF) on the interaction of energetic carbon clusters in a plasma. The emphasis is laid on the dynamic polarization and correlation effects of the constituent ions within the cluster in order to disclose the role of the vicinage effects on the Coulomb explosion and energy deposition of the clusters in plasma. On the other hand, affecting of a strong laser field on the cluster propagating in plasma is considered, the influence of a large range of laser parameters and plasma parameters on the Coulomb explosion and stopping power are discussed. This work is supported by the National Natural Science Foundation of China (11375034), and the Fundamental Research Funds for the Central Universities of China (3132015144, 3132014337).

  2. X-ray Spectroscopic Characterization of Plasma for a Charged-Particle Energy-Loss Experiment

    NASA Astrophysics Data System (ADS)

    Hoffman, Nm; Lee, Cl; Wilson, Dc; Barnes, Cris W.; Petrasso, Rd; Li, C.; Hicks, D.

    2000-10-01

    We are pursuing an approach to a charged-particle energy-loss experiment in which charged fusion products from an imploded ICF capsule travel through a well characterized, spatially separate plasma. For this purpose, a fully ionized, uniform, nearly steady-state carbon-hydrogen plasma will be created by laser irradiation of a plastic foil. The temperature and density structure of this plasma must be determined accurately in order to relate observed energy losses to predictions of theory. Various methods for diagnosing the plasma are possible, including Thomson scattering. Alternatively, if a small admixture of higher-Z material such as chlorine is included in the plastic, x-ray spectroscopic techniques will allow the plasma's temperature and density to be determined. Electron temperature is inferred from the ratios of line strengths of various chlorine ion stages, while electron density is determined from the spectra of lithium-like satellite lines near the He beta line of helium-like chlorine. We present results from detailed-configuration accounting (DCA) models of line emission from C+H+Cl plasmas, and estimate the accuracy with which such plasmas can be characterized.

  3. Plasma photonics in ICF & HED conditions

    NASA Astrophysics Data System (ADS)

    Michel, Pierre; Turnbull, David; Divol, Laurent; Pollock, Bradley; Chen, Cecilia Y.; Tubman, Eleanor; Goyon, Clement S.; Moody, John D.

    2015-11-01

    Interactions between multiple high-energy laser beams and plasma can be used to imprint refractive micro-structures in plasmas via the lasers' ponderomotive force. For example, Inertial confinement fusion (ICF) experiments at the National Ignition Facility already rely on the use of plasma gratings to redirect laser light inside an ICF target and tune the symmetry of the imploded core. More recently, we proposed new concepts of plasma polarizer and waveplate, based on two-wave mixing schemes and laser-induced plasma birefringence. In this talk, we will present new experimental results showing the first demonstration of a fully tunable plasma waveplate, which achieved near-perfect circular laser polarization. We will discuss further prospects for novel ``plasma photonics'' concepts based on two- and four-wave mixing, such as optical switches, bandpass filters, anti-reflection blockers etc. These might find applications in ICF and HED experiments by allowing to manipulate the lasers directly in-situ (i.e. inside the targets), as well as for the design of high power laser systems. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Effects of inhomogeneity at stagnation in 3D simulations of ICF implosions

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian

    2016-10-01

    The stagnation phase of an ICF implosion is characterized by a hotspot and dense fuel layer that are spatially and temporally inhomogeneous. Perturbation growth during the implosion results in significant asymmetry at stagnation while the hotspot size, density and temperature change rapidly, even in non-igniting capsules. Diagnosing these inhomogeneities is necessary to increase yield in ICF experiments. In this work, 3D radiation hydrodynamic simulations of perturbed indirect drive ICF capsules are carried out using the CHIMERA code. During the stagnation phase a suite of novel and computationally efficient simulation tools are used to produce synthetic time-resolved neutron spectra and images. These tools allow a detailed study of the effects of hotspot inhomogeneities on diagnostic signals. Results show that the burn-averaged ion temperature drops rapidly during thermonuclear burn as the hotspot evolves from a localised, shock-heated region to a more massive, non-uniform plasma. Primary DD and DT neutron spectra show that there is significant residual bulk fluid motion at stagnation, complicating the measurement of ion temperature. Different perturbation modes cause different levels of anisotropic spectra shifts and broadening. However, in all cases the discrepancies between the DD and DT spectra are a reliable indicator of residual motion at stagnation. The simulations are used to examine the relationship between neutron scattering and areal density (ρR). Three measures of areal density are simulated: downscattered neutron ratio, attenuated primary neutron yield and nT backscatter edge. Each of these diagnoses the magnitude and anisotropy of the ρR with varying success, with accuracy decreasing for higher mode perturbations. Contributions to the neutron energy spectra from T +T reactions, secondary DT reactions and deuteron break-up are also evaluated.

  5. Hotspot ignition using a Z-pinch precursor plasma in a magneto-inertial ICF scheme

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Vincent, P.; Jennings, C. A.; Ciardi, A.

    2006-01-01

    Precursor plasma flow is a common feature of wire array Z-pinches. The precursor flow represents a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the Z-pinch then compresses this precursor to substantially higher density. We show that if the same system can be generated with a Deuterium-Tritium plasma then the precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the pR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  6. Measurements of shock-front structure in multi-species plasmas on OMEGA

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Wilks, S. C.; Amendt, P. A.; Heeter, R. F.; Katz, J.; Hoffman, N. M.; Vold, E.; Taitano, W.; Simakov, A.; Chacon, L.

    2016-10-01

    The structure of a shock front in a plasma with multiple ion species is measured for the first time in experiments on the OMEGA laser. Thomson scattering of a 263.25 nm probe beam is used to diagnose electron density, electron and ion temperature, ion species concentration, and flow velocity in strong shocks (M 5) propagating through low-density (ρ 0.1 mg/cc) plasmas composed of H(98%)+Ne(2%) and H(98%)+C(2%). Separation of the ion species within the shock front is inferred. Although shocks play an important role in ICF and astrophysical plasmas, the intrinsically kinetic nature of the shock front indicates the need for experiments to benchmark hydrodynamic models. Comparison with PIC, Vlasov-Fokker-Planck, and multi-component hydrodynamic simulations will be presented. This work performed under auspices of U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in ICF-relevant plasmas.

    PubMed

    Dutra, E C; Koch, J A; Presura, R; Angermeier, W A; Darling, T; Haque, S; Mancini, R C; Covington, A M

    2016-11-01

    Spectroscopic techniques in the visible range are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch and Dense Plasma Focus (DPF) accelerators. The line emission is used to calculate the electron densities, temperatures, and B-fields. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. This manuscript presents the details of the experimental setup and line shape code, along with the results obtained from an Al iii doublet at the University of Nevada, Reno at Nevada Terawatt Facility. Future tests are planned to further evaluate the technique and modeling on other material wire array, gas puff, and DPF platforms.

  8. ICF Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less

  9. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    PubMed

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  10. Hydrodynamic Instabilities in High-Energy-Density Settings

    NASA Astrophysics Data System (ADS)

    Smalyuk, Vladimir

    2016-10-01

    Our understanding of hydrodynamic instabilities, such as the Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities, in high-energy-density (HED) settings over past two decades has progressed enormously. The range of conditions where hydrodynamic instabilities are experimentally observed now includes direct and indirect drive inertial confinement fusion (ICF) where surprises continue to emerge, linear and nonlinear regimes, classical interfaces vs. stabilized ablation fronts, tenuous ideal plasmas vs. high density Fermi degenerate plasmas, bulk fluid interpenetration vs. mixing down to the atomic level, in the presence of magnetic fields and/or intense radiation, and in solid state plastic flow at high pressures and strain rates. Regimes in ICF can involve extreme conditions of matter with temperatures up to kilovolts, densities of a thousand times solid densities, and time scales of nanoseconds. On the other hand, scaled conditions can be generated that map to exploding stars (supernovae) with length and time scales of millions of kilometers and hours to days or even years of instability evolution, planetary formation dynamics involving solid-state plastic flow which severely modifies the RT growth and continues to challenge reliable theoretical descriptions. This review will look broadly at progress in probing and understanding hydrodynamic instabilities in these very diverse HED settings, and then will examine a few cases in more depth to illustrate the detailed science involved. Experimental results on large-scale HED facilities such as the Omega, Nike, Gekko, and Shenguang lasers will be reviewed and the latest developments at the National Ignition Facility (NIF) and Z machine will be covered. Finally, current overarching questions and challenges will be summarized to motivate research directions for future. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  11. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE PAGES

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; ...

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightlymore » oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.« less

  12. Compact torus accelerator as a driver for ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, M.T.; Meier, W.R.; Morse, E.C.

    1986-01-01

    The authors have carried out further investigations of the technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically confined, torus-shaped plasma is compressed, accelerated, and focused by two concentric electrodes. After its initial formation, the torus shape is maintained for lifetimes exceeding 1 ms by inherent poloidal and toroidal currents. Hartman suggests acceleration and focusing of such a plasma ring will not cause dissolution within certain constraints. In this study, we evaluated a point design based on an available capacitor bank energy of 9.2 MJ.more » This accelerator, which was modeled by a zero-dimensional code, produces a xenon plasma ring with a 0.73-cm radius, a velocity of 4.14 x 10/sup 9/ cm/s, and a mass of 4.42 ..mu..g. The energy of the plasma ring as it leaves the accelerator is 3.8 MJ, or 41% of the capacitor bank energy. Our studies confirm the feasibility of producing a plasma ring with the characteristics required to induce fusion in an ICF target with a gain greater than 50. The low cost and high efficiency of the CT accelerator are particularly attractive. Uncertainties concerning propagation, accelerator lifetime, and power supply must be resolved to establish the viability of the accelerator as an ICF driver.« less

  13. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less

  14. Using a Z-pinch precursor plasma to produce a cylindrical, hotspot ignition, ICF

    NASA Astrophysics Data System (ADS)

    Chittenden, Jeremy

    2005-10-01

    We show that if the same precursor plasma that exists in metal wire arrays can be generated with a Deuterium-Tritium plasma then this precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The precursor is generated from a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the ρR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  15. Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas

    DOE PAGES

    Fein, J. R.; Holloway, J. P.; Trantham, M. R.; ...

    2017-03-20

    Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less

  16. Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fein, J. R.; Holloway, J. P.; Trantham, M. R.

    Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less

  17. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  18. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE PAGES

    Vold, Erik Lehman; Joglekar, Archis S.; Ortega, Mario I.; ...

    2015-11-20

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  19. The design of the optical Thomson scattering diagnostic for the National Ignition Facility.

    PubMed

    Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0 -210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3 . We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  20. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Weilacher, F.; Radha, P. B.; Forrest, C.

    2018-04-01

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium-tritium (D-T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. It is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D-D and D-T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D-D reaction, whereas they insignificantly influence the inferred D-T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. This code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.

  1. Hard X-ray Imaging for Measuring Laser Absorption Spatial Profiles on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewald, E L; Jones, O S; Landen, O L

    2006-04-25

    Hard x-ray (''Thin wall'') imaging will be employed on the National Ignition Facility (NIF) to spatially locate laser beam energy deposition regions on the hohlraum walls in indirect drive Inertial Confinement Fusion (ICF) experiments, relevant for ICF symmetry tuning. Based on time resolved imaging of the hard x-ray emission of the laser spots, this method will be used to infer hohlraum wall motion due to x-ray and laser ablation and any beam refraction caused by plasma density gradients. In optimizing this measurement, issues that have to be addressed are hard x-ray visibility during the entire ignition laser pulse with intensitiesmore » ranging from 10{sup 13} to 10{sup 15} W/cm{sup 2}, as well as simultaneous visibility of the inner and the outer laser drive cones. In this work we will compare the hard x-ray emission calculated by LASNEX and analytical modeling with thin wall imaging data recorded previously on Omega and during the first hohlraum experiments on NIF. Based on these calculations and comparisons the thin wall imaging will be optimized for ICF/NIF experiments.« less

  2. Ignition threshold for non-Maxwellian plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Michael J., E-mail: hay@princeton.edu; Fisch, Nathaniel J.; Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543

    2015-11-15

    An optically thin p-{sup 11}B plasma loses more energy to bremsstrahlung than it gains from fusion reactions, unless the ion temperature can be elevated above the electron temperature. In thermal plasmas, the temperature differences required are possible in small Coulomb logarithm regimes, characterized by high density and low temperature. Ignition could be reached more easily if the fusion reactivity can be improved with nonthermal ion distributions. To establish an upper bound for the potential utility of a nonthermal distribution, we consider a monoenergetic beam with particle energy selected to maximize the beam-thermal reactivity. Comparing deuterium-tritium (DT) and p-{sup 11}B, themore » minimum Lawson criteria and minimum ρR required for inertial confinement fusion (ICF) volume ignition are calculated with and without the nonthermal feature. It turns out that channeling fusion alpha energy to maintain such a beam facilitates ignition at lower densities and ρR, improves reactivity at constant pressure, and could be used to remove helium ash. On the other hand, the reactivity gains that could be realized in DT plasmas are significant, the excess electron density in p-{sup 11}B plasmas increases the recirculated power cost to maintain a nonthermal feature and thereby constrains its utility to ash removal.« less

  3. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N. B., E-mail: meezan1@llnl.gov; Hopkins, L. F. Berzak; Pape, S. Le

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape.more » Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.« less

  4. Effects of magnetization on fusion product trapping and secondary neutron spectraa)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.

    2015-05-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  5. Molecular systems under shock compression into the dense plasma regime: carbon dioxide and hydrocarbon polymers

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.

    2013-10-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. A final report to the Laboratory Directed Research and Development committee on Project 93-ERP-075: ``X-ray laser propagation and coherence: Diagnosing fast-evolving, high-density laser plasmas using X-ray lasers``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, A.S.; Cauble, R.; Da Silva, L.B.

    1996-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ``X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,`` tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 {angstrom} as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate andmore » benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas.« less

  7. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  8. The effect of dopants on laser imprint mitigation

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Gardner, John H.; Bodner, Stephen E.; Colombant, Denis; Dahlburg, Jill

    1999-11-01

    An intact implosion of a pellet for direct-drive ICF requires that the perturbations imprinted by the laser be kept below some threshold. We report on simulations of targets that incorporate very small concentrations of a high-Z dopant in the ablator, to increase the electron density in the ablating plasma, causing the laser to be absorbed far enough from the solid ablator to achieve a substantial degree of thermal smoothing. These calculations were performed using NRL's FAST radiation hydrodynamics code(J.H. Gardner, A.J. Schmitt, et al., Phys. Plasmas) 5, 1935 (1998), incorporating the flux-corrected transport algorithm and opacities generated by an STA code, with non-LTE radiation transport based on the Busquet method.

  9. Stability of stagnation via an expanding accretion shock wave

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  10. Monte Carlo Modeling of Non-Local Electron Conduction in High Energy Density Plasmas

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey John

    The implicit SNB (iSNB) non-local multigroup thermal electron conduction method of Schurtz et. al. [Phys. Plasmas 7, 4238 (2000)] and Cao et. al. [Phys. Plasmas 22, 082308 (2015)] is adapted into an electron thermal transport Monte Carlo (ETTMC) transport method to better model higher order angular and long mean free path non-local effects. The ETTMC model is used to simulate the electron thermal transport within inertial confinement fusion (ICF) type problems. The new model aims to improve upon the currently used iSNB, in particular by using finite particle ranges in comparison to the exponential solution of a diffusion method and by improved higher order angular modeling. The new method has been implemented in the 1D LILAC and 2D DRACO multiphysics production codes developed by the University of Rochester Laboratory for Laser Energetics. The ETTMC model is compared to iSNB for several direct drive ICF type simulations: Omega shot 60303 a shock timing experiment, Omega shot 59529 a shock timing experiment, Omega shot 68951 a cryogenic target implosion and a NIF polar direct drive phase plate design. Overall, the ETTMC method performs at least as well as the iSNB method and predicts lower preheating ahead of the shock fronts. This research was supported by University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories and the University of Wisconsin-Madison Foundation.

  11. Stability of stagnation via an expanding accretion shock wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Giuliani, J. L.; Murakami, M.

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never beenmore » studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.« less

  12. Classical and Ablative Richtmyer-Meshkov Instability and Other ICF-Relevant Plasma Flows Diagnosed With Monochromatic X-Ray Imaging

    DTIC Science & Technology

    2007-08-01

    5] Our experiments on the 3 kJ Nike KrF laser at NRL [6] seek detailed understanding of laser plasma interactions and the physical processes...Research Laboratory (NRL). It has been first used in our ICF-related hydrodynamic experiments on the NRL’s Nike KrF laser [17], and later implemented...as implemented on Nike . In Section 3 we present some results of our hydrodynamic experiments, which have been made possible by this diagnostics. In

  13. Resolving Controversies Concerning the Kinetic Structure of Multi-Ion Plasma Shocks

    NASA Astrophysics Data System (ADS)

    Keenan, Brett; Simakov, Andrei; Chacon, Luis; Taitano, William

    2017-10-01

    Strong collisional shocks in multi-ion plasmas are featured in several high-energy-density environments, including Inertial Confinement Fusion (ICF) implosions. Yet, basic structural features of these shocks remain poorly understood (e.g., the shock width's dependence on the Mach number and the plasma ion composition, and temperature decoupling between ion species), causing controversies in the literature; even for stationary shocks in planar geometry [cf., Ref. and Ref.]. Using a LANL-developed, high-fidelity, 1D-2V Vlasov-Fokker-Planck code (iFP), as well as direct comparisons to multi-ion hydrodynamic simulations and semi-analytic predictions, we critically examine steady-state, planar shocks in two-ion species plasmas and put forward resolutions to these controversies. This work was supported by the Los Alamos National Laboratory LDRD Program, Metropolis Postdoctoral Fellowship for W.T.T., and used resources provided by the Los Alamos National Laboratory Institutional Computing Program.

  14. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.

    PubMed

    Hu, S X; Collins, L A; Goncharov, V N; Boehly, T R; Epstein, R; McCrory, R L; Skupsky, S

    2014-09-01

    Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρ(D)=0.5 to 673.518g/cm(3) and temperatures from T=5000K up to the Fermi temperature T(F) for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ∼10% up to a factor of ∼2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.

  15. Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.

    PubMed

    Li, Yongqiang; Liu, Xue; Li, Xinyi; Liu, Yiyang; Zheng, Yi; Wang, Min; Shen, Hao

    2013-08-01

    Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh-Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes.

  16. Influence of radiative processes on the ignition of deuterium–tritium plasma containing inactive impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Sherman, V. E.

    2016-08-15

    The degree of influence of radiative processes on the ignition of deuterium–tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result ofmore » using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.« less

  17. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  18. Effects of magnetization on fusion product trapping and secondary neutron spectra

    DOE PAGES

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; ...

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less

  19. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilacher, F.; Radha, P. B.; Forrest, C.

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.« less

  20. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    DOE PAGES

    Weilacher, F.; Radha, P. B.; Forrest, C.

    2018-04-26

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.« less

  1. Viscosity Control Experiment Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Heidi E.; Bradley, Paul Andrew

    Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modifymore » viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.« less

  2. The design of the optical Thomson scattering diagnostic for the National Ignition Facility [The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    DOE PAGES

    Datte, P. S.; Ross, J. S.; Froula, D. H.; ...

    2016-09-21

    Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less

  3. The design of the optical Thomson scattering diagnostic for the National Ignition Facility [The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datte, P. S.; Ross, J. S.; Froula, D. H.

    Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less

  4. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    DOE PAGES

    Millot, M.; Celliers, P. M.; Sterne, P. A.; ...

    2018-04-18

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here in this paper, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shockmore » velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.« less

  5. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Millot, M.; Celliers, P. M.; Sterne, P. A.; Benedict, L. X.; Correa, A. A.; Hamel, S.; Ali, S. J.; Baker, K. L.; Berzak Hopkins, L. F.; Biener, J.; Collins, G. W.; Coppari, F.; Divol, L.; Fernandez-Panella, A.; Fratanduono, D. E.; Haan, S. W.; Le Pape, S.; Meezan, N. B.; Moore, A. S.; Moody, J. D.; Ralph, J. E.; Ross, J. S.; Rygg, J. R.; Thomas, C.; Turnbull, D. P.; Wild, C.; Eggert, J. H.

    2018-04-01

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shock velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.

  6. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millot, M.; Celliers, P. M.; Sterne, P. A.

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here in this paper, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shockmore » velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.« less

  7. Mitigate the tent-induced perturbation in ignition capsules by supersonic radiation propagation

    NASA Astrophysics Data System (ADS)

    Dai, Zhensheng; Gu, Jianfa; Zheng, Wudi

    2017-10-01

    In the inertial confinement fusion (ICF) scheme, to trap the alpha particle products of the D-T reaction, the capsules needs to be imploded and compressed with high symmetry In the laser indirect drive scheme, the capsules are held at the center of high-Z hohlraums by thin membranes (tents). However, the tents are recognized as one of the most important contributors to hot spot asymmetries, areal density perturbations and reduced performance. To improve the capsule implosion performance, various alternatives such as the micro-scale rods, a larger fill-tube and a low-density foam layer around the capsule have been presented. Our simulations show that the radiation propagates supersonically in the low-density foam layer and starts to ablate the capsule before the perturbations induced by the tents reach the ablating fronts. The tent induced perturbations are remarkably weakened when they are propagating in the blow-off plasma.

  8. The study of hard x-ray emission and electron beam generation in wire array Z-pinch and X-pinch plasmas at university-scale generators

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor Kumar

    The studies of hard x-ray (HXR) emission and electron beam generation in Z-pinch plasmas are very important for Inertial Confinement Fusion (ICF) research and HXR emission application for sources of K-shell and L-shell radiation. Energetic electron beams from Z-pinch plasmas are potentially a problem in the development of ICF. The electron beams and the accompanying HXR emission can preheat the fuel of a thermonuclear target, thereby preventing the fuel compression from reaching densities required for the ignition of a fusion reaction. The photons above 3-4 keV radiated from a Z pinch can provide detailed information about the high energy density plasmas produced at stagnation. Hence, the investigation of characteristics of hard x-rays and electron beams produced during implosions of wire array loads on university scale-generators may provide important data for future ICF, sources of K-shell and L-shell radiations and basic plasma research. This dissertation presents the results of experimental studies of HXR and electron beam generation in wire-array and X-pinch on the 1.7 MA, 100-ns current rise time Zebra generator at University of Nevada, Reno and 1-MA 100-ns current rise-time Cornell Beam Research Accelerator (COBRA) at Cornell University. The experimental study of characteristics of HXR produced by multi-planar wire arrays, compact cylindrical wire array (CCWA) and nested cylindrical wire array (NCWA) made from Al, Cu, Mo, Ag, W and Au were analyzed. The dependence of the HXR yield and power on geometry of the load, the wire material, and load mass was observed. The presence of aluminum wires in the load with the main material such as stainless steel, Cu, Mo, Ag, W or Au in combined wire array decreases HXR yield. The comparison of emission characteristics of HXR and generation of electron beams in CCWA and NCWA on both the high impedance Zebra generator and low impedance COBRA generator were investigated. Some of the "cold" K- shell spectral lines (0.7-2.3Á) and cold L-shell spectral lines (1-1.54Á) in the HXR region were observed only during the interaction of electron beam with load material and anode surface. These observations suggest that the mechanism of HXR emission should be associated with non-thermal mechanisms such as the interaction of the electron beam with the load material. In order to estimate the characteristics of the high-energetic electron beam in Z-pinch plasmas, a hard x-ray polarimeter (HXP) has been developed and used in experiments on the Zebra generator. The electron beams (energy more than 30keV) have been investigated with measurements of the polarization state of the emitted bremsstrahlung radiation from plasma. We also analyzed characteristics of energetic electron beams produced by implosions of multi-planar wire arrays, compact cylindrical and nested wire arrays as well as X-pinches. Direct indications of electron beams (electron cutoff energy EB from 42-250 keV) were obtained by using the measured current of a Faraday cup placed above the anode or mechanical damage observed in the anode surface. A comparison of total electron beam energy and the spatial and spectral analysis of the parameters of plasmas were investigated for different wire materials. The dependences of the total electron beam energy (E b) on the wire material and the geometry of the wire array load were studied.

  9. Slowing down of alpha particles in ICF DT plasmas

    NASA Astrophysics Data System (ADS)

    He, Bin; Wang, Zhi-Gang; Wang, Jian-Guo

    2018-01-01

    With the effects of the projectile recoil and plasma polarization considered, the slowing down of 3.54 MeV alpha particles is studied in inertial confinement fusion DT plasmas within the plasma density range from 1024 to 1026 cm-3 and the temperature range from 100 eV to 200 keV. It includes the rate of the energy change and range of the projectile, and the partition fraction of its energy deposition to the deuteron and triton. The comparison with other models is made and the reason for their difference is explored. It is found that the plasmas will not be heated by the alpha particle in its slowing down the process once the projectile energy becomes close to or less than the temperature of the electron or the deuteron and triton in the plasmas. This leads to less energy deposition to the deuteron and triton than that if the recoil of the projectile is neglected when the temperature is close to or higher than 100 keV. Our model is found to be able to provide relevant, reliable data in the large range of the density and temperature mentioned above, even if the density is around 1026 cm-3 while the deuteron and triton temperature is below 500 eV. Meanwhile, the two important models [Phys. Rev. 126, 1 (1962) and Phys. Rev. E 86, 016406 (2012)] are found not to work in this case. Some unreliable data are found in the last model, which include the range of alpha particles and the electron-ion energy partition fraction when the electron is much hotter than the deuteron and triton in the plasmas.

  10. Plasma Stopping Power Measurements Relevant to Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    McEvoy, Aaron; Herrmann, Hans; Kim, Yongho; Hoffman, Nelson; Schmitt, Mark; Rubery, Michael; Garbett, Warren; Horsfield, Colin; Gales, Steve; Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Petrasso, Richard; Marshall, Frederic; Batha, Steve

    2015-11-01

    Ignition in inertial confinement fusion (ICF) experiments may be achieved if the alpha particle energy deposition results in a thermonuclear burn wave induced in the dense DT fuel layer surrounding the hotspot. As such, understanding the physics of particle energy loss in a plasma is of critical importance to designing ICF experiments. Experiments have validated various stopping power models under select ne and Te conditions, however there remain unexplored regimes where models predict differing rates of energy deposition. An upcoming experiment at the Omega laser facility will explore charged particle stopping in CH plastic capsule ablators across a range of plasma conditions (ne between 1024 cm-3 and 1025 cm-3 and Te on the order of hundreds of eV). Plasma conditions will be measured using x-ray and gamma ray diagnostics, while plasma stopping power will be measured using charged particle energy loss measurements. Details on the experiment and the theoretical models to be tested will be presented.

  11. Isochoric Implosions for Fast Ignition

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Tabak, Max

    2006-10-01

    Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hotspot ignition counterpart. These gain models, however, all assume nearly uniform-density fuel assemblies. By contrast, typical ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hotspot. To realize fully the advantages of FI, then, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hotspots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters, i.e., accessible peak pressures, shell aspect ratios, etc. An implosion scheme is presented which meets all of these requirements, suggesting the possibility of genuinely isochoric implosions for FI.

  12. Research in pulsed power plasma physics

    NASA Astrophysics Data System (ADS)

    Hinshelwood, David; Rose, David

    1993-11-01

    The research was conducted in support of light-ion-driven inertial confinement fusion (ICF) for the Department of Energy (DOE), and nuclear weapon effects simulation (NWES) for the Defense Nuclear Agency (DNA). Accomplishments related to ion beams include: development of a practical backup approach to ion beam transport; the first studies of ion-beam interaction with a neutral gas; initial investigations of a promising industrial application of ion beam technology; and detailed theoretical evaluation of several different ion beam transport schemes. Major accomplishments relating to opening switches include: the first direct measurement of the electron density in an opening switch; detailed studies of switch conduction-time scaling; evaluation of several different switch plasma sources; and extensive studies of switch performance into diode loads, leading to the development of a new (and now generally accepted) model of switch behavior.

  13. Relationship between symmetry and laser pulse shape in low-fill hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.

    2017-10-01

    Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  14. Positron Radiography of Ignition-Relevant ICF Capsules

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Chen, Hui; Field, John; Landen, Nino; Strozzi, David

    2017-10-01

    X-ray and neutron radiography are currently used to infer residual ICF shell and fuel asymmetries and areal density non-uniformities near and at peak compression that can impede ignition. Charged particles offer an alternative probe source that, in principle, are capable of radiographing the shell shape and areal density at arbitrary times, even in the presence of large x-ray self-emission. Laser-generated positrons are evaluated as a source to radiograph ICF capsules where current ultraintense laser facilities are capable of producing 2 ×1012 relativistic positrons in a narrow energy bandwidth and short duration. Monte Carlo simulations suggest that both the areal density and shell radius can be reconstructed for ignition-relevant capsules conditions between 0.002-2 g/cm2, and that this technique might be better suited to direct-drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD Program under project tracking code 17-ERD-010.

  15. Spirituality and the International Classification of Functioning, Disability and Health: content comparison of questionnaires measuring mindfulness based on the International Classification of Functioning.

    PubMed

    Offenbächer, Martin; Sauer, Sebastian; Hieblinger, Robin; Hufford, David J; Walach, Harald; Kohls, Niko

    2011-01-01

    To identify and compare the concepts contained in questionnaires measuring mindfulness using the International Classification of Functioning (ICF) as external reference. Questionnaires which are published in peer-reviewed journals and listed in Pubmed or PsycInfo were included. The questionnaires were analysed and, using a content-analytical approach, the respective items were categorised and linked to the ICF. Ten questionnaires were included. Ninety-four per cent (N = 341) of the concepts could be linked to 37 different ICF categories. One hundred and seventy-one (50.1%) concepts were linked to ICF categories of the component Body Function, 74 (21.7%) to categories of the component Activity and Participation and none to categories of the component Environmental Factors. In total, 28.2% of the linked concepts belonged to Personal factors, which are not yet classified in the ICF. The questionnaires exhibited considerable differences regarding content density (i.e. the average number of concepts per item) and content diversity (i.e. the number of ICF categories per concept). The ICF provides an useful external reference to identify and compare the concepts contained in mindfulness questionnaires. Also, mindfulness questionnaire concepts suggest potentially useful factors for classification within the ICF.

  16. Extracellular Fluid/Intracellular Fluid Volume Ratio as a Novel Risk Indicator for All-Cause Mortality and Cardiovascular Disease in Hemodialysis Patients

    PubMed Central

    Kim, Eun-Jung; Choi, Myung-Jin; Lee, Jeoung-Hwan; Oh, Ji-Eun; Seo, Jang-Won; Lee, Young-Ki; Yoon, Jong-Woo; Kim, Hyung-Jik; Noh, Jung-Woo

    2017-01-01

    Background In hemodialysis patients, fluid overload and malnutrition are accompanied by extracellular fluid (ECF) expansion and intracellular fluid (ICF) depletion, respectively. We investigated the relationship between ECF/ICF ratio (as an integrated marker reflecting both fluid overload and malnutrition) and survival and cardiovascular disease (CVD) in the context of malnutrition-inflammation-arteriosclerosis (MIA) complex. Methods Seventy-seven patients from a single hemodialysis unit were prospectively enrolled. The ECF/ICF volume was measured by segmental multi-frequency bioimpedance analysis. MIA and volume status were measured by serum albumin, C-reactive protein (CRP), pulse wave velocity (PWV) and plasma B-type natriuretic peptide (BNP), respectively. Results The mean ECF/ICF ratio was 0.56±0.06 and the cut-off value for maximum discrimination of survival was 0.57. Compared with the low ECF/ICF group, the high ECF/ICF group (ratio≥0.57, 42%) had higher all-cause mortality, CVD, CRP, PWV, and BNP, but lower serum albumin. During the 5-year follow-up, 24 all-cause mortality and 38 CVD occurred (18 and 24, respectively, in the high ECF/ICF group versus 6 and 14 respectively in the low ECF/ICF group, P<0.001). In the adjusted Cox analysis, the ECF/ICF ratio nullifies the effects of the MIA and volume status on survival and CVD and was an independent predictor of all-cause mortality and CVD: hazard ratio (95% confidence interval); 1.12 (1.01–1.25) and 1.09 (1.01–1.18) for a 0.01 increase in the ECF/ICF ratio. The degree of malnutrition (albumin), inflammation (CRP), arteriosclerosis (PWV), and fluid overload (BNP) were correlated well with the ECF/ICF ratio. Conclusions Hemodialysis patients with high ECF/ICF ratio are not only fluid overloaded, but malnourished and have stiff artery with more inflammation. The ECF/ICF ratio is highly related to the MIA complex, and is a major risk indicator for all-cause mortality and CVD. PMID:28099511

  17. Measuring the ionization balance of gold in a low-density plasma of importance to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M; Beiersdorfer, P; Schneider, M

    Charge state distributions (CSDs) have been determined in low density ({approx}10 {sup 12} cm{sup -3}) gold plasmas having either a monoenergetic beam (E{sub Beam} = 2.66, 3.53 and 4.54 keV) or experimentally simulated thermal electron distributions (T{sub e} = 2.0, 2.5 and 3.0 keV). These plasmas were created in the Livermore electron beam ion traps EBIT-I and EBIT-II. Line emission and radiative recombination features of Ni to Kr-like gold ions were recorded in the x-ray region with a crystal spectrometer and a photometrically calibrated microcalorimeter. The CSDs in the experimentally simulated thermal plasmas were inferred by fitting the observed 4f{yields}3dmore » and 5f{yields}3d lines with synthetic spectra from the Hebrew University Lawrence Livermore Atomic Code (HULLAC). Additionally, the CSDs in the beam plasmas were inferred both from fitting the line emission and fitting the radiative recombination emission to calculations from the General Relativistic Atomic Structure Program (GRASP). Despite the relatively simple atomic physics in the low density plasma, differences existed between the experimental CSDs and the simulations from several available codes (e.g. RIGEL). Our experimental CSD relied upon accurate electron impact cross sections provided by HULLAC. To determine their reliability, we have experimentally determined the cross sections for several of the n=3{yields}4 and n=3{yields}5 excitations in Ni to Ga-like Au and compared them to distorted wave calculations. Recent Au spectra recorded during experiments at the HELEN laser facility are presented and compared with those from EBIT-I and EBIT-II.« less

  18. Measuring the Ionization Balance of Gold in a Low-Density Plasma of Importance to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M.J.; Beiersdorfer, P.; Schneider, M.

    Charge state distributions (CSDs) have been determined in low density ({approx_equal}1012 cm-3) gold plasmas having either a monoenergetic beam (EBeam = 2.66, 3.53 and 4.54 keV) or experimentally simulated thermal electron distributions (Te = 2.0, 2.5 and 3.0 keV). These plasmas were created in the Livermore electron beam ion traps EBIT-I and EBIT-II. Line emission and radiative recombination features of Ni to Kr-like gold ions were recorded in the x-ray region with a crystal spectrometer and a photometrically calibrated microcalorimeter. The CSDs in the experimentally simulated thermal plasmas were inferred by fitting the observed 4f{yields}3d and 5f{yields}3d lines with syntheticmore » spectra from the Hebrew University Lawrence Livermore Atomic Code (HULLAC). Additionally, the CSDs in the beam plasmas were inferred both from fitting the line emission and fitting the radiative recombination emission to calculations from the General Relativistic Atomic Structure Program (GRASP). Despite the relatively simple atomic physics in the low density plasma, differences existed between the experimental CSDs and the simulations from several available codes (e.g. RIGEL). Our experimental CSD relied upon accurate electron impact cross sections provided by HULLAC. To determine their reliability, we have experimentally determined the cross sections for several of the n=3{yields}4 and n=3{yields}5 excitations in Ni to Ga-like Au and compared them to distorted wave calculations. Recent Au spectra recorded during experiments at the HELEN laser facility are presented and compared with those from EBIT-I and EB0011IT-.« less

  19. Effects of the Ponderomotive Terms in the Thermal Transport on the Hydrodynamic Flow in Inertial Confinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Li, G.

    2004-11-01

    Electron thermal transport is significantly modified by the laser-induced electric fields near the turning point and at the critical surface. It is shown that such modifications lead to an additional limitation in the heat flux in laser-produced plasmas. Furthermore, the ponderomotive terms in the heat flux lead to a steepening in the electron-density profile, which is shown to be a larger effect than the profile modification due to the ponderomotive force [W.L. Kruer, The Physics of Laser--Plasma Interactions, Frontiers in Physics, Vol. 73, edited by D. Pines (Addison-Wesley, Redwood City, CA, 1988)]. To take into account the nonlocal effects, the delocalization model developed in Ref. 2 [G.P. Schurtz, Ph.D. Nicolaï, and M. Busquet, Phys. Plasmas 7, 4238 (2000).] has been applied to conditions relevant to ICF experiments. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  20. Full-wave and ray-based modeling of cross-beam energy transfer between laser beams with distributed phase plates and polarization smoothing

    DOE PAGES

    Follett, R. K.; Edgell, D. H.; Froula, D. H.; ...

    2017-10-20

    Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less

  1. Full-wave and ray-based modeling of cross-beam energy transfer between laser beams with distributed phase plates and polarization smoothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K.; Edgell, D. H.; Froula, D. H.

    Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less

  2. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  3. FY14 LLNL OMEGA Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Fournier, K. B.; Baker, K.

    In FY14, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 324 target shots in FY14, with 246 shots using just the OMEGA laser system, 62 shots using just the EP laser system, and 16 Joint shots using Omega and EP together. Approximately 31% of the total number of shots (62 OMEGA shots, 42 EP shots) shots supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID).more » The remaining 69% (200 OMEGA shots and 36 EP shots, including the 16 Joint shots) were dedicated to experiments for High- Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less

  4. FY15 LLNL OMEGA Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Baker, K. L.; Barrios, M. A.

    In FY15, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 468 target shots in FY15, with 315 shots using just the OMEGA laser system, 145 shots using just the EP laser system, and 8 Joint shots using Omega and EP together. Approximately 25% of the total number of shots (56 OMEGA shots and 67 EP shots, including the 8 Joint shots) supported the Indirect Drivemore » Inertial Confinement Fusion Campaign (ICF-ID). The remaining 75% (267 OMEGA shots and 86 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less

  5. LANL Q2 2016 Quarterly Progress Report. Science Campaign and ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Melissa Rae

    2016-04-07

    This progress report includes highlights for the Science Campaign and ICF about Advanced Certification and Assessment Methodologies, Implosion Hydrodynamics (C-1, SCE), Materials and Nuclear Science (C-1, C-2), Capabilities for Nuclear Intelligence, and High Energy Density Science (C-1, C-4, C-10). Upcoming meetings, briefings, and experiments are then listed for April and May.

  6. Non-LTE Equation of State for ICF simulations

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel; Bar-Shalom, Avraham; Colombant, Denis

    2002-11-01

    SCROLL is a collisional radiative model able to deal with complex spectra[1]. It is used to generate opacity/emissivity databases [2] compatible with the hydrocode FAST[3] for all elements of interest in the simulation of ICF targets, including high-Z. It is now modified to yield tables of EOS data for FAST, in the whole range of interest (T=1 to 25000eV, rho=10-6 to 100g/cc). SCROLL contributes the electronic -free and bound- part of the EOS, replacing Busquet's model of an ionization temperature. Ionization energies include contributions of all excited states. Energies and Z* go smoothly to the high density regime, where a "jellium" model is assumed. The free electrons are self consistent with the bound electrons. Examples of runs will be shown. Supported by USDOE through a contract with the Naval Research Laboratory. [1] A. Bar-Shalom, J. Oreg, and M. Klapisch, J. Quant. Spectrosc. Radiat. Transfer 65, 43 (2000). [2] A. Bar-shalom, M. Klapisch, J. Oreg, and D. Colombant, Bull. Am. Phys. Soc. 46, 295 (2001). [3] J. H. Gardner, A. J. Schmitt, J. P. Dahlburg, et al, Phys. Plasmas 5, 1935 (1998).

  7. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  8. Ignition and pusher adiabat

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F.

    2018-07-01

    In the last five years, large amounts of high quality data on inertial confinement fusion (ICF) experiments were produced at the National Ignition Facility (NIF). From this data we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition and identified critical issues that must be addressed to achieve a burning hotspot, such as implosion energetics, pusher adiabat, tamping effects, and confinement time. In this paper we present a review of recently developed TN ignition and implosion scaling theory (Cheng et al 2013 Phys. Rev. E 88 041101; Cheng et al 2014 Phys. Plasmas 21 10270) that characterizes the thermodynamic properties of the hotspot and the ignition criteria for ICF. We compare our theoretical predictions with NIF data and find good agreement between theory and experiments. We demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium–tritium (DT) gas, and thus on the integrated performance of ICF capsules. Theoretical analysis of NIF experiments (Cheng et al 2015 Phys. Plasmas 22 082704; Melvin et al 2015 Phys. Plasmas 22 022708; Cheng et al 2016 Phys. Plasmas 23 120702) and physical explanations of the discrepancies between theory, data, and simulations are presented. It is shown that the true experimental adiabat of the cold DT fuel can be inferred from neutron image data of a capsule implosion. We show that the ablator mix and preheat in the cold fuel can be estimated from the experimentally inferred hotspot mix. Finally, possible paths forward to reach higher yields at NIF implied by the theory are discussed.

  9. On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.

    Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments. In effect, we demonstrate how the diffusive and radiative properties of plasmas with small-scale, turbulent, electromagnetic fluctuations may serve as a powerful tool for the diagnosis of laboratory, astrophysical, and space plasmas.

  10. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  11. Inertial Confinement Fusion Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change providedmore » a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also provide a short summary of the quarterly activities within Nova laser operations, Beamlet laser operations, and National Ignition Facility laser design. LLNL's ICF Program falls within DOE's national ICF program, which includes the Nova and Beamlet (LLNL), OMEGA (University of Rochester Laboratory for Laser Energetics), Nike (Naval Research Laboratory), and Trident (Los Alamos National Laboratory) laser facilities. The Particle Beam Fusion Accelerator (Z) and Saturn pulsed-power facilities are at Sandia National Laboratories. General Atomics, Inc., develops and provides many of the targets for the above experimental facilities. Many of the ICF Annual Report articles are co-authored with our colleagues from these other ICF institutions.« less

  12. The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.

    2014-07-01

    Measuring the width of the energy spectrum of fusion-produced neutrons from deuterium (DD) or deuterium-tritium (DT) plasmas is a commonly used method for determining the ion temperature in inertial confinement fusion (ICF) implosions. In a plasma with a Maxwellian distribution of ion energies, the spread in neutron energy arises from the thermal spread in the center-of-mass velocities of reacting pairs of ions. Fluid velocities in ICF are of a similar magnitude as the center-of-mass velocities and can lead to further broadening of the neutron spectrum, leading to erroneous inference of ion temperature. Motion of the reacting plasma will affect DD and DT neutrons differently, leading to disagreement between ion temperatures inferred from the two reactions. This effect may be a contributor to observations over the past decades of ion temperatures higher than expected from simulations, ion temperatures in disagreement with observed yields, and different temperatures measured in the same implosion from DD and DT neutrons. This difference in broadening of DD and DT neutrons also provides a measure of turbulent motion in a fusion plasma.

  13. High-resolution Imaging of Deuterium-Tritium Capsule Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, Benjamin; Rygg, Ryan; Collins, Gilbert; Patel, Pravesh

    2017-10-01

    Highly-resolved 3-D simulations of inertial confinement fusion (ICF) implosions predict a hot spot plasma that exhibits complex micron-scale structure originating from a variety of 3-D perturbations. Experimental diagnosis of these conditions requires high spatial resolution imaging techniques. X-ray penumbral imaging can improve the spatial resolution over pinhole imaging while simultaneously increasing the detected photon yield at x-ray energies where the ablator opacity becomes negligible. Here we report on the first time-integrated x-ray penumbral imaging experiments of ICF capsule implosions at the National Ignition Facility that achieved spatial resolution as high as 4 micrometer. 6 to 30 keV hot spot images from layered DT implosions will be presented from a variety of experimental ICF campaigns, revealing previously unseen detail. It will be discussed how these and future results can be used to improve our physics understanding of inertially confined fusion plasmas by enabling spatially resolved measurements of hot spot properties, such as radiation energy, temperature or derived quantities. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  14. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, George H.; Hora, H.; Badziak, J.

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authorsmore » showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B{sup 11} with proton clusters imbedded. This then makes p-B{sup 11} fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B{sup 11} power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p-B{sup 11} have been discussed for such applications before, but prior designs face formidable physics/technology issues, largely overcome with the present approach.« less

  15. Comparison of high-density carbon implosions in unlined uranium versus gold hohlraums

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Meezan, Nathan; Tommasini, Riccardo; Khan, Shahab; MacKinnon, Andrew; Berzak Hopkins, Laura; Divol, Laurent; Lepape, Sebastien; Moore, Alastair; Schneider, Marilyn; Pak, Arthur; Nikroo, Abbas; Landen, Otto

    2016-10-01

    In Inertial Confinement Fusion (ICF) implosions, laser energy is converted to x-ray radiation in hohlraums with High-Z walls. At radiation temperatures near 300 eV relevant for ICF experiments, the radiative losses in heating the wall are lower for U than for Au hohlraums. Furthermore, the intensity of the ``M-band'' x-rays with photon energies h ν >1.8 keV is lower for uranium, allowing for reduced capsule dopant concentrations employed to minimize inner ablator preheat and hence keep favorable fuel/ablator interface Atwood numbers. This in turn improves the ablator rocket efficiency and reduces the risk of polluting the hot-spot with emissive dopant material. The first uranium vacuum hohlraum experiments on the National Ignition Facility (NIF) with undoped high-density carbon (HDC, or diamond) capsules have demonstrated 30% lower ``M-band'' intensity relative to Au, resulting in lower inflight ablator thickness due to reduced preheat. In addition, fusion neutron yields are 2x higher in U than in Au hohlraums for D2-gas filled capsule implosions at ICF relevant velocities of 380 +/-20 km/s. These results have led the NIF ICF implosions to routinely employ U hohlraums. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. FY16 LLNL Omega Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Ali, S. J.; Benstead, J.

    In FY16, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall, these LLNL programs led 430 target shots in FY16, with 304 shots using just the OMEGA laser system, and 126 shots using just the EP laser system. Approximately 21% of the total number of shots (77 OMEGA shots and 14 EP shots) supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID). The remaining 79% (227 OMEGA shots and 112more » EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports. In addition to these experiments, LLNL Principal Investigators led a variety of Laboratory Basic Science campaigns using OMEGA and EP, including 81 target shots using just OMEGA and 42 shots using just EP. The highlights of these are also summarized, following the ICF and HED campaigns. Overall, LLNL PIs led a total of 553 shots at LLE in FY 2016. In addition, LLNL PIs also supported 57 NLUF shots on Omega and 31 NLUF shots on EP, in collaboration with the academic community.« less

  17. Return current instability driven by a temperature gradient in ICF plasmas

    DOE PAGES

    Rozmus, W.; Brantov, A. V.; Sherlock, M.; ...

    2017-10-12

    Here, hot plasmas with strong temperature gradients in inertial confinement fusion (ICF) experiments are examined for ion acoustic instabilities produced by electron heat flow. The return current instability (RCI) due to a neutralizing current of cold electrons arising in response to a large electron heat flux has been considered. First, the linear threshold and growth rates are derived in the nonlocal regime of thermal transport. They are compared with the results of Vlasov-Fokker-Planck (VFP) simulations in one spatial dimension. Very good agreement has been found between kinetic VFP simulations and the linear theory of the RCI. A quasi-stationary state ofmore » ion acoustic turbulence produced by the RCI is achieved in the VFP simulations. Saturation of the RCI involves heating of ions in the tail of the ion distribution function and convection of the enhanced ion acoustic fluctuations from the unstable region of the plasma. Further evolution of the ion acoustic turbulence and its effects on absorption and transport are also discussed.« less

  18. Nonlinear plasma wave models in 3D fluid simulations of laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Arrighi, Bill; Langer, Steve; Banks, Jeffrey; Brunner, Stephan

    2017-10-01

    Simulations of laser-plasma interaction (LPI) in inertial confinement fusion (ICF) conditions require multi-mm spatial scales due to the typical laser beam size and durations of order 100 ps in order for numerical laser reflectivities to converge. To be computationally achievable, these scales necessitate a fluid-like treatment of light and plasma waves with a spatial grid size on the order of the light wave length. Plasma waves experience many nonlinear phenomena not naturally described by a fluid treatment, such as frequency shifts induced by trapping, a nonlinear (typically suppressed) Landau damping, and mode couplings leading to instabilities that can cause the plasma wave to decay rapidly. These processes affect the onset and saturation of stimulated Raman and Brillouin scattering, and are of direct interest to the modeling and prediction of deleterious LPI in ICF. It is not currently computationally feasible to simulate these Debye length-scale phenomena in 3D across experimental scales. Analytically-derived and/or numerically benchmarked models of processes occurring at scales finer than the fluid simulation grid offer a path forward. We demonstrate the impact of a range of kinetic processes on plasma reflectivity via models included in the LPI simulation code pF3D. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Canonical Descriptions of High Intensity Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Le Cornu, B. J.

    The problem of laser-plasma interaction has been studied extensively in the context of inertial confinement fusion (ICF). These studies have focussed on effects like the nonlinear force, self-focusing, Rayleigh- Taylor instabilities, stimulated Brillouin scattering and stimulated Raman scattering observed in ICF schemes. However, there remains a large discrepancy between theory and experiment in the context of nuclear fusion schemes. Several authors have attempted to gain greater understanding of the physics involved by the application of standard or 'canonical' methods used in Lagrangian and Hamiltonian mechanics to the problem of plasma physics. This thesis presents a new canonical description of laser-plasma interaction based on the Podolsky Lagrangian. Finite self-energy of charged particles, incroporation of high-frequency effects and an ability to quantise are the main advantages of this new model. The nature of the Podolsky constant is also analysed in the context of plasma physics, specifically in terms of the plasma dispersion relation. A new gauge invariant expression of the energy-momentum tensor for any gauge invariant Lagrangian dependent on second order derivatives is derived for the first time. Finally, the transient and nontransient expressions of the nonlinear ponderomotive force in laser-plasma interaction are discussed and shown to be closely approximated by a canonical derivation of the electromagnetic Lagrangian, a fact that seems to have been missed in the literature.

  20. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  1. The first target experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.

    2007-08-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Theodore Sonne; Dodd, Evan S.; DeVolder, Barbara Gloria

    X-ray opacity is a crucial factor in all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in simulation codes for high-energy-density plasmas. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment for various mid-Z elements (Fe, Cr, Ni). These discrepancies raise doubts regarding the accuracy of the opacity models which are used in ICF and stewardship as well as in astrophysics. Therefore, a new experimental opacity platform has been developed on the National Ignition Facility (NIF), not only to verify the Z-machine experimental results,more » but also to extend the experiments to other temperatures and densities. Within the context of the national opacity strategy, the first NIF experiments were directed towards measuring the opacity of iron at a temperature of ~160 eV and an electron density of ~7xl021 cm-3(Anchor 1). The Z data agree with theory at these conditions, providing a reference point for validation of the NIF platform. Development shots on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule, and also a combined hohlraum, sample and laser drive able to produce iron plasmas at the desired conditions. Spectrometer qualification has been completed, albeit with additional improvements planned, and the first iron absorption spectra have now been obtained.« less

  3. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  4. Proceedings of Symposium on Physics of Target Implosion and Pulsed Power Techniques Held in Yokohama, Japan on 30 September-1 October 1987

    DTIC Science & Technology

    1988-02-01

    Japan. -- ,, mnm mmmm m m mil II m mlmmmm PREFACE A It is reported that by using the Nd glass laser, experiments of beam-target interaction are carried...Beam 8. 14.00-14.30 T. Ishimoto and T. Kato (Waseda Univ.) Electron Current Effect on Stability of Plasma Channel 9. 14.30-15.00 S. Kawata, M ...Matsumoto and Y. Masubuchi (Tech. Univ. Nagaoka) Numerical Simulation in LIB ICF 10. 15.00-15.30 J. M . Perlado (Univ. Politec. Madrid) Simulation Code for ICF

  5. Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping

    PubMed Central

    Depierreux, S.; Yahia, V.; Goyon, C.; Loisel, G.; Masson-Laborde, P. -E.; Borisenko, N.; Orekhov, A.; Rosmej, O.; Rienecker, T.; Labaune, C.

    2014-01-01

    Stimulated Raman backscattering (SRS) has many unwanted effects in megajoule-scale inertially confined fusion (ICF) plasmas. Moreover, attempts to harness SRS to amplify short laser pulses through backward Raman amplification have achieved limited success. In high-temperature fusion plasmas, SRS usually occurs in a kinetic regime where the nonlinear response of the Langmuir wave to the laser drive and its host of complicating factors make it difficult to predict the degree of amplification that can be achieved under given experimental conditions. Here we present experimental evidence of reduced Landau damping with increasing Langmuir wave amplitude and determine its effects on Raman amplification. The threshold for trapping effects to influence the amplification is shown to be very low. Above threshold, the complex SRS dynamics results in increased amplification factors, which partly explains previous ICF experiments. These insights could aid the development of more efficient backward Raman amplification schemes in this regime. PMID:24938756

  6. Measurement of Hydrodynamic Growth near Peak Velocity in an Inertial Confinement Fusion Capsule Implosion using a Self-Radiography Technique

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; MacPhee, A. G.; Scott, H. A.; Robey, H. F.; Landen, O. L.; Barrios, M. A.; Regan, S. P.; Schneider, M. B.; Hoppe, M.; Kohut, T.; Holunga, D.; Walters, C.; Haid, B.; Dayton, M.

    2016-07-01

    First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ =140 μ m , sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ˜7000 × . Measurements were made at convergences of ˜5 to ˜10 × at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both lines of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ˜2 × between the waist and the pole, showing asymmetry in the measured growth factors. These new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.

  7. Measurement of hydrodynamic growth near peak velocity in an inertial confinement fusion capsule implosion using a self-radiography technique

    DOE PAGES

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; ...

    2016-07-11

    First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ = 140 μm, sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ~7000×. Measurements were made at convergences of ~5 to ~10× at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both linesmore » of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ~2× between the waist and the pole, showing asymmetry in the measured growth factors. As a result, these new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.« less

  8. Ultrashort x-ray backlighters and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umstadter, D., University of Michigan

    Previously, using ultrashort laser pulses focused onto solid targets, we have experimentally studied a controllable ultrafast broadband radiation source in the extreme ultraviolet for time-resolved dynamical studies in ultrafast science [J. Workman, A. Maksimchuk, X. Llu, U. Ellenberger, J. S. Coe, C.-Y. Chien, and D. Umstadter, ``Control of Bright Picosecond X-Ray Emission from Intense Sub- Picosecond Laser-Plasma Interactions,`` Phys. Rev. Lett. 75, 2324 (1995)]. Once armed with a bright ultrafast broadband continuum x-ray source and appropriate detectors, we used the source as a backlighter to study a remotely produced plasma. The application of the source to a problem relevant tomore » high-density matter completes the triad: creating and controlling, efficiently detecting, and applying the source. This work represented the first use of an ultrafast laser- produced x-ray source as a time-resolving probe in an application relevant to atomic, plasma and high-energy-density matter physics. Using the x-ray source as a backlighter, we adopted a pump-probe geometry to investigate the dynamic changes in electronic structure of a thin metallic film as it is perturbed by an ultrashort laser pulse. Because the laser deposits its energy in a skin depth of about 100 {Angstrom} before expansion occurs, up to gigabar pressure shock waves lasting picosecond in duration have been predicted to form in these novel plasmas. This raises the possibility of studying high- energy-density matter relevant to inertial confinement fusion (ICF) and astrophysics in small-scale laboratory experiments. In the past, time-resolved measurements of K-edge shifts in plasmas driven by nanosecond pulses have been used to infer conditions in highly compressed materials. In this study, we used 100-fs laser pulses to impulsively drive shocks into a sample (an untamped 1000 {Angstrom} aluminum film on 2000 {Angstrom} of parylene-n), measuring L-edge shifts.« less

  9. Self-similar solutions for multi-species plasma mixing by gradient driven transport

    NASA Astrophysics Data System (ADS)

    Vold, E.; Kagan, G.; Simakov, A. N.; Molvig, K.; Yin, L.

    2018-05-01

    Multi-species transport of plasma ions across an initial interface between DT and CH is shown to exhibit self-similar species density profiles under 1D isobaric conditions. Results using transport theory from recent studies and using a Maxwell–Stephan multi-species approximation are found to be in good agreement for the self-similar mix profiles of the four ions under isothermal and isobaric conditions. The individual ion species mass flux and molar flux profile results through the mixing layer are examined using transport theory. The sum over species mass flux is confirmed to be zero as required, and the sum over species molar flux is related to a local velocity divergence needed to maintain pressure equilibrium during the transport process. The light ion species mass fluxes are dominated by the diagonal coefficients of the diffusion transport matrix, while for the heaviest ion species (C in this case), the ion flux with only the diagonal term is reduced by about a factor two from that using the full diffusion matrix, implying the heavy species moves more by frictional collisions with the lighter species than by its own gradient force. Temperature gradient forces were examined by comparing profile results with and without imposing constant temperature gradients chosen to be of realistic magnitude for ICF experimental conditions at a fuel-capsule interface (10 μm scale length or greater). The temperature gradients clearly modify the relative concentrations of the ions, for example near the fuel center, however the mixing across the fuel-capsule interface appears to be minimally influenced by the temperature gradient forces within the expected compression and burn time. Discussion considers the application of the self-similar profiles to specific conditions in ICF.

  10. Radiation-driven hydrodynamics of long pulse hohlraums on the National Ignition Facility*,**

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard

    2005-10-01

    The first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics. Vacuum hohlraums have been irradiated with laser powers up to 8 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several hohlraum drive diagnostics, to study the radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. The vacuum hohlraums yield low laser backscattering and hot electron fractions, and the hohlraum radiation temperature measured with a newly activated 18 channel Dante soft x-ray power diagnostic agrees well with two-dimensional LASNEX calculations. Using the unique feature of NIF to deliver long steady laser drives, these hohlraum experiments have also validated analytical models and LASNEX calculations of hohlraum plasma filling as evidenced by time-resolved hard x-ray imaging and coronal hohlraum radiation production measured by Dante. Analytical modeling used to estimate hohlraum radiation limits due to plasma filling is in agreement with measurements and predicts for full NIF system with peak powers up to 500 TW peak radiation temperatures that are considerably higher than required in ICF designs. * Work performed in collaboration with L.J. Suter, O.L. Landen, J. Schein, K. Campbell, M.S. Schneider, J. Holder, S.H. Glenzer, J.W. McDonald, C. Niemann, A.J. Mackinnon, D.H. Kalantar, C. Haynam, S. Dixit **This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  11. Mapping the Physical and Chemical Conditions of the Ring Nebula

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, Marcelo L.; Aleman, Isabel; Gaughan, Andrea; Ladjal, Djazia; Ueta, Toshiya; Kerber, Samuel; Conn, Blair; Gardiner, Rhiannon; Tielens, Alexander G. G. M.

    2017-10-01

    We observed the Planetary Nebula NGC 6720 with the Gemini Telescope and the Gemini Multi-Object Spectrographs. We obtained spatial maps of 36 emission-lines in the wavelength range between 3600 Å and 9400 Å. We derived maps of c(Hβ), electronic densities, electronic temperatures, ionic and elemental abundances, and Ionization Correction Factors (ICFs) in the source and investigated the mass-loss history of the progenitor. The elemental abundance results indicate the need for ICFs based on three-dimensional photoionization models.

  12. Compact Torus plasma ring accelerator: a new type driver for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.

    1986-08-22

    We discuss the acceleration of magnetically-confined plasma rings to provide a driver for ICF. The acceleration of plasma rings is predicted to be efficient and following focusing, to generate ion-bombardment power in the range 10/sup 15/ to 10/sup 16/ W/cm/sup 2/ at a total deposition energy of multimegajoules. The simplicity of plasma ring accelerator suggests that a 5 MJ (on target) driver would cost in the range 1 to 5 $/joule. First experimental tests of the accelerator are described.

  13. Ablative Rayleigh Taylor instability in the limit of an infinitely large density ratio

    NASA Astrophysics Data System (ADS)

    Clavin, Paul; Almarcha, Christophe

    2005-05-01

    The instability of ablation fronts strongly accelerated toward the dense medium under the conditions of inertial confinement fusion (ICF) is addressed in the limit of an infinitely large density ratio. The analysis serves to demonstrate that the flow is irrotational to first order, reducing the nonlinear analysis to solve a two-potential flows problem. Vorticity appears at the following orders in the perturbation analysis. This result simplifies greatly the analysis. The possibility for using boundary integral methods opens new perspectives in the nonlinear theory of the ablative RT instability in ICF. A few examples are given at the end of the Note. To cite this article: P. Clavin, C. Almarcha, C. R. Mecanique 333 (2005).

  14. Proceedings of the twelfth target fabrication specialists` meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of anmore » ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.« less

  15. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan

    2017-05-01

    Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, several of which are novel.

  16. Direct observation of electrothermal instability structures on intensely Ohmically heated aluminum with current flowing in a surface skin layer

    NASA Astrophysics Data System (ADS)

    Awe, Thomas

    2017-10-01

    Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.

  17. Ion species stratification within strong shocks in two-ion plasmas

    DOE PAGES

    Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.; ...

    2018-03-01

    We report strong collisional shocks in multi-ion plasmas are featured in many environments, with Inertial Confinement Fusion (ICF) experiments being one prominent example. Recent work [Keenan et al., Phys. Rev. E 96, 053203 (2017)] answered in detail a number of outstanding questions concerning the kinetic structure of steady-state, planar plasma shocks, e.g., the shock width scaling by the Mach number, M. However, it did not discuss shock-driven ion-species stratification (e.g., relative concentration modification and temperature separation). These are important effects since many recent ICF experiments have evaded explanation by standard, single-fluid, radiation-hydrodynamic (rad-hydro) numerical simulations, and shock-driven fuel stratification likelymore » contributes to this discrepancy. Employing the state-of-the-art Vlasov-Fokker-Planck code, iFP, along with multi-ion hydro simulations and semi-analytics, we quantify the ion stratification by planar shocks with the arbitrary Mach number and the relative species concentration for two-ion plasmas in terms of ion mass and charge ratios. In particular, for strong shocks, we find that the structure of the ion temperature separation has a nearly universal character across ion mass and charge ratios. Lastly, we find that the shock fronts are enriched with the lighter ion species and the enrichment scales as M 4 for M»1.« less

  18. Ion species stratification within strong shocks in two-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.

    We report strong collisional shocks in multi-ion plasmas are featured in many environments, with Inertial Confinement Fusion (ICF) experiments being one prominent example. Recent work [Keenan et al., Phys. Rev. E 96, 053203 (2017)] answered in detail a number of outstanding questions concerning the kinetic structure of steady-state, planar plasma shocks, e.g., the shock width scaling by the Mach number, M. However, it did not discuss shock-driven ion-species stratification (e.g., relative concentration modification and temperature separation). These are important effects since many recent ICF experiments have evaded explanation by standard, single-fluid, radiation-hydrodynamic (rad-hydro) numerical simulations, and shock-driven fuel stratification likelymore » contributes to this discrepancy. Employing the state-of-the-art Vlasov-Fokker-Planck code, iFP, along with multi-ion hydro simulations and semi-analytics, we quantify the ion stratification by planar shocks with the arbitrary Mach number and the relative species concentration for two-ion plasmas in terms of ion mass and charge ratios. In particular, for strong shocks, we find that the structure of the ion temperature separation has a nearly universal character across ion mass and charge ratios. Lastly, we find that the shock fronts are enriched with the lighter ion species and the enrichment scales as M 4 for M»1.« less

  19. Ion species stratification within strong shocks in two-ion plasmas

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.; Chacón, Luis

    2018-03-01

    Strong collisional shocks in multi-ion plasmas are featured in many environments, with Inertial Confinement Fusion (ICF) experiments being one prominent example. Recent work [Keenan et al., Phys. Rev. E 96, 053203 (2017)] answered in detail a number of outstanding questions concerning the kinetic structure of steady-state, planar plasma shocks, e.g., the shock width scaling by the Mach number, M. However, it did not discuss shock-driven ion-species stratification (e.g., relative concentration modification and temperature separation). These are important effects since many recent ICF experiments have evaded explanation by standard, single-fluid, radiation-hydrodynamic (rad-hydro) numerical simulations, and shock-driven fuel stratification likely contributes to this discrepancy. Employing the state-of-the-art Vlasov-Fokker-Planck code, iFP, along with multi-ion hydro simulations and semi-analytics, we quantify the ion stratification by planar shocks with the arbitrary Mach number and the relative species concentration for two-ion plasmas in terms of ion mass and charge ratios. In particular, for strong shocks, we find that the structure of the ion temperature separation has a nearly universal character across ion mass and charge ratios. Additionally, we find that the shock fronts are enriched with the lighter ion species and the enrichment scales as M4 for M ≫ 1.

  20. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; hide

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  1. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-08-02

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  2. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-01-01

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  3. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, J.W.K.

    1987-10-14

    Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

  4. Numerical Simulation of Doped Targets for ICF

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Gardner, John H.; Bodner, Stephen E.; Colombant, Denis; Klapisch, Marcel; Bar-Shalom, Avraham

    1997-11-01

    The ablative Rayleigh-Taylor (RT) instability can be reduced by preheating the ablator, thereby reducing the peak density and increasing the mass ablation velocity. The ablator can be preheated with radiation from higher Z dopants.(Gardner, J.H., Bodner, S.E., Dahlburg, J.P., Phys. Fluids 3), 1070 (1991) Dopants also reduce the density gradient at the ablator, which provides a second mechanism to reduce the RT growth rate. We have recently developed a more sophisticated and detailed radiation package that uses opacities generated by an STA code, with non-LTE radiation transport based on the Busquet method. This radiation package has been incorporated into NRL's FAST2D radiation hydrodynamics code, which has been used to evaluate and optimize the use of various dopants that can provide interesting levels of preheat for an ICF target.

  5. NLTE opacity calculations: C-Si and C-Ge mixtures

    NASA Astrophysics Data System (ADS)

    Jarrah, W.; Benredjem, D.; Pain, J.-C.; Dubau, J.

    2017-09-01

    The opacity is an important issue in the knowledge of the radiative properties of ICF and astrophysical plasmas. We present the opacity of dopants (silicon, germanium) embedded in the ablator of some ICF capsules. In recent works, Hill and Rose calculated the opacity of silicon in LTE and non-LTE plasmas, while Minguez and co-workers focused on the opacity of carbon. We have used the Cowan code to calculate the atomic structure of carbon, silicon and germanium in various ionic stages. The cross-sections of atomic processes (collisional excitation, collisional ionization) are obtained by fitting the values given by the code FAC to the Van Regemorter-like formulas of Sampson and Zhang. A corrected Gaunt factor is then obtained. A collisional-radiative code was developed in order to obtain the ionic populations, the level populations and the opacity. Line broadening and line shift are taken into account. The ionization potential depression is included in our calculations. The effect of a radiation field on the opacity is examined.

  6. Stable dense plasma jets produced at laser power densities around 10{sup 14} W/cm{sup 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.

    2006-06-15

    The results of investigations are presented that are connected with defocused laser beam-planar target interaction. Following the very large focus laser-plasma interaction experiments on the Nova [H. T. Powell, J. A. Caird, J. E. Murray, and C. E. Thompson, 1991 ICF Annual Report UCRL-LR-105820-91, p. 163 (1991)] and GEKKO-XII [C. Yamanaka, Y. Kato, Y. Izawa, K. Yoshida, T. Yamanaka, T. Sasaki, T. Nakatsuka, J. Kuroda, and S. Nakai, IEEE J. Quantum Electron. QE-17, 1639 (1981)] lasers, as well as on the National Ignition Facility (NIF) laser [W. J. Hogan, E. I. Moses, B. E. Warner, M. S. Sorem, and J.more » M. Soures, Nucl. Fusion 41, 567 (2001)] with generation of high Mach number jets, this paper is devoted to similar jet generation with very detailed measurements of density profiles by using high-power lasers at large focus conditions. The experiment was carried out with target materials of different mass densities (Al, Cu, Ag, Ta, and Pb) using the Prague Asterix Laser System (PALS) iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikowa, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)]. The investigations were conducted for the laser radiation energy of 100 J at two wavelengths of 1.315 and 0.438 {mu}m (the first and third harmonics of laser radiation), pulse duration of 0.4 ns, and a focal spot radius of 300 {mu}m. Most of the experimental data were obtained by means of a three-frame laser interferometer and an x-ray streak camera; the crater parameters were obtained by using the crater replica technique. These investigations have shown that stable dense plasma jets can be produced in a simple configuration of laser beam-planar target interaction, provided that a proper target material is used.« less

  7. Large-scale 3D simulations of ICF and HEDP targets

    NASA Astrophysics Data System (ADS)

    Marinak, Michael M.

    2000-10-01

    The radiation hydrodynamics code HYDRA continues to be developed and applied to 3D simulations of a variety of targets for both inertial confinement fusion (ICF) and high energy density physics. Several packages have been added enabling this code to perform ICF target simulations with similar accuracy as two-dimensional codes of long-time historical use. These include a laser ray trace and deposition package, a heavy ion deposition package, implicit Monte Carlo photonics, and non-LTE opacities, derived from XSN or the linearized response matrix approach.(R. More, T. Kato, Phys. Rev. Lett. 81, 814 (1998), S. Libby, F. Graziani, R. More, T. Kato, Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, (AIP, New York, 1997).) LTE opacities can also be calculated for arbitrary mixtures online by combining tabular values generated by different opacity codes. Thermonuclear burn, charged particle transport, neutron energy deposition, electron-ion coupling and conduction, and multigroup radiation diffusion packages are also installed. HYDRA can employ ALE hydrodynamics; a number of grid motion algorithms are available. Multi-material flows are resolved using material interface reconstruction. Results from large-scale simulations run on up to 1680 processors, using a combination of massively parallel processing and symmetric multiprocessing, will be described. A large solid angle simulation of Rayleigh-Taylor instability growth in a NIF ignition capsule has resolved simultaneously the full spectrum of the most dangerous modes that grow from surface roughness. Simulations of a NIF hohlraum illuminated with the initial 96 beam configuration have also been performed. The effect of the hohlraum’s 3D intrinsic drive asymmetry on the capsule implosion will be considered. We will also discuss results from a Nova experiment in which a copper sphere is crushed by a planar shock. Several interacting hydrodynamic instabilities, including the Widnall instability, cause breakup of the resulting vortex ring.

  8. Inertial Confinement Fusion Quarterly Report: April--June 1993. Volume 3, Number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGowan, B.J.; Kotowski, M.; Schleich, D.

    1993-11-01

    This issue of the ICF Quarterly contains six articles describing recent advances in Lawrence Livermore National Laboratory`s inertial confinement fusion (ICF) program. The current emphasis of the ICF program is in support of DOE`s National Ignition Facility (NIF) initiative for demonstrating ignition and gain with a 1-2 MJ glass laser. The articles describe recent Nova experiments and investigations tailored towards enhancing understanding of the key physics and technological issues for the NIF. Titles of the articles are: development of large-aperture KDP crystals; inner-shell photo-ionized X-ray lasers; X-ray radiographic measurements of radiation-driven shock and interface motion in solid density materials; themore » role of nodule defects in laser-induced damage of multilayer optical coatings; techniques for Mbar to near-Gbar equation-of-state measurements with the Nova laser; parametric instabilities and laser-beam smoothing.« less

  9. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF.more » NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.« less

  10. Laser Program Annual Report - 1979 Unclassified Excerpts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindl, J D

    The objective of the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) program is to demonstrate the scientific feasibility of ICF for military applications (to develop and utilize the capability to study nuclear weapons physics in support of the weapons program) and for energy-directed uses in the civilian sector. The demonstration of scientific feasibility for both military and civilian objectives will require achieving gains on the order of 10 to 100 in fusion microexplosions. Our major near-term milestones include the attainment of high compression, one-hundred to one-thousand times (100 to 1000X) liquid D-T density in the thermonuclear fuel andmore » ignition of thermonuclear burn. In 1979, our laser fusion experiments and analysis programs focused on two important areas related to achieving this goal: conducting x-ray-driven implosions of a variety of D-T-filled fuel capsule's to unprecedented high densities ({approx}> 50X liquid D-T density) and the determination of the scaling of hot electrons and thermal radiation in hohlraums.« less

  11. Particle-in-cell simulations of Magnetic Field Generation, Evolution, and Reconnection in Laser-driven Plasmas

    NASA Astrophysics Data System (ADS)

    Matteucci, Jack; Moissard, Clément; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    The advent of high-energy-density physics facilities has introduced the opportunity to experimentally investigate magnetic field dynamics relevant to both ICF and astrophysical plasmas. Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the plasma by the Biermann battery effect. In this study, we simulate these experiments from first principles using 2-D and 3-D particle-in-cell simulations. Simulations self-consistently demonstrate magnetic field generation by the Biermann battery effect, followed by advection by the Hall effect and ion flow. In 2-D simulations, we find in both the collisionless case and the semi-collisional case, defined by eVi × B >> Rei /ne (where Rei is the electron ion momentum transfer) that quantitative agreement with the generalized Ohm's law is only obtained with the inclusion of the pressure tensor. Finally, we document that significant field is destroyed at the reconnection site by the Biermann term, an inverse, `anti-Biermann' effect, which has not been considered previously in analysis of the experiment. The role of the anti-Biermann effect will be compared to standard reconnection mechanisms in 3-D reconnection simulations. This research used resources of the ORLC Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. DoE under Contract No. DE-AC05-00OR22725.

  12. Mitigation of X-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube

    NASA Astrophysics Data System (ADS)

    MacPhee, A. G.; Smalyuk, V. A.; Landen, O. L.; Weber, C. R.; Robey, H. F.; Alfonso, E. L.; Biener, J.; Bunn, T.; Crippen, J. W.; Farrell, M.; Felker, S.; Field, J. E.; Hsing, W. W.; Kong, C.; Milovich, J.; Moore, A.; Nikroo, A.; Rice, N.; Stadermann, M.; Wild, C.

    2018-05-01

    We report a reduced X-ray shadow imprint of hydrodynamic instabilities on the high-density carbon ablator surface of inertial confinement fusion (ICF) capsules using a reduced diameter fuel fill tube on the National Ignition Facility (NIF). The perturbation seed mass from hydrodynamic instabilities was reduced by approximately an order of magnitude by reducing both the diameter and wall thickness of the fill tube by ˜2×, consistent with analytical estimates. This work demonstrates a successful mitigation strategy for engineered features for ICF implosions on the NIF.

  13. Optimization of permanent breast seed implant dosimetry incorporating tissue heterogeneity

    NASA Astrophysics Data System (ADS)

    Mashouf, Shahram

    Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG43 formalism, which generates the dose in homogeneous water medium. Recently, AAPM task group no. 186 (TG186) emphasized the importance of accounting for heterogeneities. In this work we introduce an analytical dose calculation algorithm in heterogeneous media using CT images. The advantages over other methods are computational efficiency and the ease of integration into clinical use. An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of the source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. The dose distributions obtained through applying ICF to TG43 protocol agreed very well with those of Monte Carlo simulations and experiments in all phantoms. In all cases, the mean relative error was reduced by at least a factor of two when ICF correction factor was applied to the TG43 protocol. In conclusion we have developed a new analytical dose calculation method, which enables personalized dose calculations in heterogeneous media using CT images. The methodology offers several advantages including the use of standard TG43 formalism, fast calculation time and extraction of the ICF parameters directly from Hounsfield Units. The methodology was implemented into our clinical treatment planning system where a cohort of 140 patients were processed to study the clinical benefits of a heterogeneity corrected dose.

  14. Inertial Confinement Fusion Annual Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, Robert L.

    The ICF Program has undergone a significant change in 1999 with the decommissioning of the Nova laser and the transfer of much of the experimental program to the OMEGA laser at the University of Rochester. The Nova laser ended operations with the final experiment conducted on May 27, 1999. This marked the end to one of DOE's most successful experimental facilities. Since its commissioning in 1985, Nova performed 13,424 experiments supporting ICF, Defense Sciences, high-power laser research, and basic science research. At the time of its commissioning, Nova was the world's most powerful laser. Its early experiments demonstrated that 3ωmore » light could produce high-drive, low-preheat environment required for indirect-drive ICE. In the early 1990s, the technical program on Nova for indirect drive ignition was defined by the Nova technical contract established by National Academy Review of ICF in 1990. Successful completion of this research program contributed significantly to the recommendation by the ICF Advisory Committee in 1995 to proceed with the construction of the National Ignition Facility? Nova experiments also demonstrated the utility of high-powered lasers for studying the physics of interest to Defense Sciences. Now, high-powered lasers along with pulsed-power machines are the principal facilities for studying high energy density science in DOE's Stockpile Stewardship Program (SSP). In 1997, one beam of Nova was converted to a short pulsed beam producing a petawatt of power in subpicosecond pulses. The petawatt beam was used for pioneering research in short-pulse laser-matter interactions relevant to fast ignitor ICF and short pulsed x-ray, electron, and particle production for use as probes. Nova is being disassembled and the space is being used to support NIF construction. Nova components are being distributed to a number of other laser laboratories around the world for reuse as determined by DOE. This report summarizes the research performed by the ICF Program in FY1999. The report is divided into five sections corresponding to the major areas of program activities. These are sections on (1) ignition target physics experiments theory and modeling, (2) high energy density experimental science, (3) target development, fabrication, and handling, (4) NIF laser development, and (5) optics technology development.« less

  15. Metal Alloy ICF Capsules Created by Electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.

    Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less

  16. ICF quarterly report January - March 1997 volume 7, number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J

    The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide criticalmore » information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.« less

  17. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    PubMed

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  18. Metal Alloy ICF Capsules Created by Electrodeposition

    DOE PAGES

    Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.

    2017-12-04

    Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less

  19. Spectroscopic diagnostics of NIF ICF implosions using line ratios of Kr dopant in the ignition capsule

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Ouart, Nicholas; Giuiani, John; Clark, Robert; Schneider, Marilyn; Scott, Howard; Chen, Hui; Ma, Tammy

    2017-10-01

    X ray spectroscopy is used on the NIF to diagnose the plasma conditions in the ignition target in indirect drive ICF implosions. A platform is being developed at NIF where small traces of krypton are used as a dopant to the fuel gas for spectroscopic diagnostics using krypton line emissions. The fraction of krypton dopant was varied in the experiments and was selected so as not to perturb the implosion. Our goal is to use X-ray spectroscopy of dopant line ratios produced by the hot core that can provide a precise measurement of electron temperature. Simulations of the krypton spectra using a 1 in 104 atomic fraction of krypton in direct-drive exploding pusher with a range of electron temperatures and densities show discrepancies when different atomic models are used. We use our non-LTE atomic model with a detailed fine-structure level atomic structure and collisional-radiative rates to investigate the krypton spectra at the same conditions. Synthetic spectra are generated with a detailed multi-frequency radiation transport scheme from the emission regions of interest to analyze the experimental data with 0.02% Kr concentration and compare and contrast with the existing simulations at LLNL. Work supported by DOE/NNSA; Part of this work was also done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  20. Multi-species ion transport in ICF relevant conditions

    NASA Astrophysics Data System (ADS)

    Vold, Erik; Kagan, Grigory; Simakov, Andrei; Molvig, Kim; Yin, Lin; Albright, Brian

    2017-10-01

    Classical transport theory based on Chapman-Enskog methods provides self consistent approximations for kinetic fluxes of mass, heat and momentum for each ion species in a multi-ion plasma characterized with a small Knudsen number. A numerical method for solving the classic forms of multi-ion transport, self-consistently including heat and species mass fluxes relative to the center of mass, is given in [Kagan-Baalrud, arXiv '16] and similar transport coefficients result from recent derivations [Simakov-Molvig, PoP, '16]. We have implemented a combination of these methods in a standalone test code and in xRage, an adaptive-mesh radiation hydrodynamics code, at LANL. Transport mixing is examined between a DT fuel and a CH capsule shell in ICF conditions. The four ion species develop individual self-similar density profiles under the assumption of P-T equilibrium in 1D and show interesting early time transient pressure and center of mass velocity behavior when P-T equilibrium is not enforced. Some 2D results are explored to better understand the transport mix in combination with convective flow driven by macroscopic fluid instabilities at the fuel-capsule interface. Early transient and some 2D behaviors from the fluid transport are compared to kinetic code results. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.

  1. Project Icarus: Analysis of Plasma jet driven Magneto-Inertial Fusion as potential primary propulsion driver for the Icarus probe

    NASA Astrophysics Data System (ADS)

    Stanic, M.; Cassibry, J. T.; Adams, R. B.

    2013-05-01

    Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.

  2. 44th Annual Anomalous Absorption Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, Farhat

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I.more » Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded beyond ICF-related laser-plasma interactions to encompass closely related technical areas including laser particle acceleration, high-intensity laser effects, short­ pulse laser interactions, PIC and Vlasov/rad-hydro modeling, inertial and magnetic fusion plasmas, advanced plasma diagnostics, alternate ignition schemes, EOS/transport/opacity, and this year, x­ ray free-electron lasers and their applications. The conference continues to be a showcase for the presentation and discussion of the latest developments in these areas. II. Meeting Report The conference was extremely successful with more than one hundred participants. There were ninety-nine (99) abstracts submitted. There were forty-four (44) presentations including eleven (11) invited talks. The following topics were covered: a) Radiation Hydrodynamics b) Implosion Plasma Kinetic Effects c) Alternate Ignition Schemes d) Astrophysical Phenomena e) Opacity/Transport/EOS f) High Power Lasers and Facilities g) High-Intensity Laser-Matter Interactions h) Hydrodynamics and Hydro-instabilities i) Hot Dense Plasma Atomic Processes j) High Energy Density Physics k) Laser Particle Acceleration Physics l) Advanced Plasma Diagnostics m) Advanced light sources and applications Despite significant advertising, there were two students who applied for the travel grants: Charlie Jarrott and Joohwan Kim. The total funds expended were $3,216.14.« less

  3. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions

    DOE PAGES

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; ...

    2015-10-14

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. Thus, with first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ = 0.1 to 100 g/cm 3 and T = 1,000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic targetmore » implosions on OMEGA using the FPEOS table of CH have predicted ~5% reduction in implosion velocity and ~30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ~10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered lights from ICF implosions.« less

  4. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions.

    PubMed

    Hu, S X; Collins, L A; Goncharov, V N; Kress, J D; McCrory, R L; Skupsky, S

    2015-10-01

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. With first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ=0.1to100g/cm(3) and T=1000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosions on OMEGA using the FPEOS table of CH have predicted ∼30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ∼5% reduction in implosion velocity that is caused by the ∼10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered light from ICF implosions.

  5. Unique capabilities for ICF and HEDP research with the KrF laser

    NASA Astrophysics Data System (ADS)

    Obenschain, Stephen; Bates, Jason; Chan, Lop-Yung; Karasik, Max; Kehne, David; Sethian, John; Serlin, Victor; Weaver, James; Oh, Jaechul; Jenkins, Bruce; Lehmberg, Robert; Hegeler, Frank; Terrell, Stephen; Aglitskiy, Yefim; Schmitt, Andrew

    2014-10-01

    The krypton-fluoride (KrF) laser provides the shortest wavelength, broadest bandwidth and most uniform target illumination of all developed high-energy lasers. For directly driven targets these characteristics result in higher and more uniform ablation pressures as well as higher intensity thresholds for laser-plasma instability. The ISI beam smoothing scheme implemented on the NRL Nike KrF facility allows easy implementation of focal zooming where the laser radial profile is varied during the laser pulse. The capability for near continuous zooming with KrF would be valuable towards minimizing the effects of cross beam energy transport (CBET) in directly driven capsule implosions. The broad bandwidth ISI beam smoothing that is utilized with the Nike KrF facility may further inhibit certain laser plasma instability. In this presentation we will summarize our current understanding of laser target interaction with the KrF laser and the benefits it provides for ICF and certain HEDP experiments. Status and progress in high-energy KrF laser technology will also be discussed. Work supported by the Deparment of Energy, NNSA.

  6. Picosecond imaging of inertial confinement fusion plasmas using electron pulse-dilation

    NASA Astrophysics Data System (ADS)

    Hilsabeck, T. J.; Nagel, S. R.; Hares, J. D.; Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; Dymoke-Bradshaw, A. K. L.; Piston, K.; Chung, T. M.

    2017-02-01

    Laser driven inertial confinement fusion (ICF) plasmas typically have burn durations on the order of 100 ps. Time resolved imaging of the x-ray self emission during the hot spot formation is an important diagnostic tool which gives information on implosion symmetry, transient features and stagnation time. Traditional x-ray gated imagers for ICF use microchannel plate detectors to obtain gate widths of 40-100 ps. The development of electron pulse-dilation imaging has enabled a 10X improvement in temporal resolution over legacy instruments. In this technique, the incoming x-ray image is converted to electrons at a photocathode. The electrons are accelerated with a time-varying potential that leads to temporal expansion as the electron signal transits the tube. This expanded signal is recorded with a gated detector and the effective temporal resolution of the composite system can be as low as several picoseconds. An instrument based on this principle, known as the Dilation X-ray Imager (DIXI) has been constructed and fielded at the National Ignition Facility. Design features and experimental results from DIXI will be presented.

  7. Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating

    NASA Astrophysics Data System (ADS)

    Taitano, W. T.; Simakov, A. N.; Chacón, L.; Keenan, B.

    2018-05-01

    Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICF capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original Rygg experiments [J. R. Rygg et al., Phys. Plasmas 13, 052702 (2006)]. We employ the same computational setup as in O. Larroche [Phys. Plasmas 19, 122706 (2012)], which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule compression, or effects associated with the interface, which are expected to be important. Studies of such effects are left for future work.

  8. Kinetic Effects in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory

    2014-10-01

    Sharp background gradients, inevitably introduced during ICF implosion, are likely responsible for the discrepancy between the predictions of the standard single-fluid rad-hydro codes and the experimental observations. On the one hand, these gradients drive the inter-ion-species transport, so the fuel composition no longer remains constant, unlike what the single-fluid codes assume. On the other hand, once the background scale is comparable to the mean free path, a fluid description becomes invalid. This point takes on special significance in plasmas, where the particle's mean free path scales with the square of this particle's energy. The distribution function of energetic ions may therefore be far from Maxwellian, even if thermal ions are nearly equilibrated. Ironically, it is these energetic, or tail, ions that are supposed to fuse at the onset of ignition. A combination of studies has been conducted to clarify the role of such kinetic effects on ICF performance. First, transport formalism applicable to multi-component plasmas has been developed. In particular, a novel ``electro-diffusion'' mechanism of the ion species separation has been shown to exist. Equally important, in drastic contrast to the classical case of the neutral gas mixture, thermo-diffusion is predicted to be comparable to, or even much larger than, baro-diffusion. By employing the effective potential theory this formalism has then been generalized to the case of a moderately coupled plasma with multiple ion species, making it applicable to the problem of mix at the shell/fuel interface in ICF implosion. Second, distribution function for the energetic ions has been found from first principles and the fusion reactivity reduction has been calculated for hot-spot relevant conditions. A technique for approximate evaluation of the distribution function has been identified. This finding suggests a path to effectively introducing the tail modification effects into mainline rad-hydro codes, while being in good agreement with the first principle based solution. This work was partially supported by the Laboratory Directed Research and Development (LDRD) program of LANL.

  9. When shape matters: Correcting the ICFs to derive the chemical abundances of bipolar and elliptical PNe

    NASA Astrophysics Data System (ADS)

    Gonçalves, Denise R.; Wesson, Roger; Morisset, Cristophe; Barlow, Michael; Ercolano, Barbara

    2012-08-01

    The extraction of chemical abundances of ionised nebulae from a limited spectral range is usually hampered by the lack of emission lines corresponding to certain ionic stages. So far, the missing emission lines have been accounted for by the ionisation correction factors (ICFs), constructed under simplistic assumptions like spherical geometry by using 1-D photoionisation modelling. In this contribution we discuss the results (Gonçalves et al. 2011, in prep.) of our ongoing project to find a new set of ICFs to determine total abundances of N, O, Ne, Ar, and S, with optical spectra, in the case of non-spherical PNe. These results are based on a grid of 3-D photoionisation modelling of round, elliptical and bipolar shaped PNe, spanning the typical PN luminosities, effective temperatures and densities. We show that the additional corrections to the widely used Kingsburgh & Barlow (1994) ICFs are always higher for bipolars than for ellipticals. Moreover, these additional corrections are, for bipolars, up to: 17% for oxygen, 33% for nitrogen, 40% for neon, 28% for argon and 50% for sulphur. Finally, on top of the fact that corrections change greatly with shape, they vary also greatly with the central star temperature, while the luminosity is a less important parameter.

  10. Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Nicolai, Ph.; Ribeyre, X.

    2015-09-15

    An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation ofmore » state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.« less

  11. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detectormore » for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.« less

  12. Modeling ICF With RAGE, BHR, And The New Laser Package

    NASA Astrophysics Data System (ADS)

    Cliche, Dylan; Welser-Sherrill, Leslie; Haines, Brian; Mancini, Roberto

    2017-10-01

    Inertial Confinement Fusion (ICF) is one method used to obtain thermonuclear burn through the either direct or indirect ablation of a millimeter-scale capsule with several lasers. Although progress has been made in theory, experiment, and diagnostics, the community has yet to reach ignition. A way of investigating this is through the use of high performance computer simulations of the implosion. RAGE is an advanced 1D, 2D, and 3D radiation adaptive grid Eulerian code used to simulate hydrodynamics of a system. Due to the unstable nature of two unequal densities accelerating into one another, it is important to include a turbulence model. BHR is a turbulence model which uses Reynolds-averaged Navier-Stokes (RANS) equations to model the mixing that occurs between the shell and fusion fuel material. Until recently, it was still difficult to model direct drive experiments because there was no laser energy deposition model in RAGE. Recently, a new laser energy deposition model has been implemented using the same ray tracing method as the Mazinisin laser package used at the OMEGA laser facility at the Laboratory for Laser Energetics (LLE) in Rochester, New York. Using the new laser package along with BHR for mixing allows us to more accurately simulate ICF implosions and obtain spatially and temporally resolved information (e.g. position, temperature, density, and mix concentrations) to give insight into what is happening inside the implosion.

  13. SU-E-T-477: An Efficient Dose Correction Algorithm Accounting for Tissue Heterogeneities in LDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashouf, S; Lai, P; Karotki, A

    2014-06-01

    Purpose: Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented usingmore » MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. Methods: An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. Results: The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. Conclusion: We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural Sciences and Engineering Research Council of Canada.« less

  14. Hugoniot equation of state of Si-doped glow discharge polymer and scaling to other plastic ablators

    NASA Astrophysics Data System (ADS)

    Huser, G.; Ozaki, N.; Colin-Lalu, P.; Recoules, V.; Sano, T.; Sakawa, Y.; Miyanishi, K.; Kodama, R.

    2018-05-01

    Pressure, density, and temperature were measured along the principal Hugoniot of the Si-doped Glow Discharge Polymer used in Inertial Confinement Fusion (ICF) capsules up to 5 Mbar, covering conditions beyond the first shock in a full-scale Inertial Confinement Fusion (ICF) capsule. The experiments were performed using the GEKKOXII laser at the Institute of Laser Engineering at Osaka University in Japan. Results are in good agreement with predictions obtained from ab initio Hugoniot calculations, but softer than the quotidian equation of state average atom model. Ab initio calculations show that dissociation of carbon bonds need to be taken into account in order to explain Hugoniot compressibility.

  15. Magnetic Flux Compression Concept for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri

    2000-01-01

    The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel; potential for attaining specific impulses approaching 10 (exp 6) seconds, which would enable missions to the outer planets within ten years and missions at interstellar distances within fifty years.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S.P.

    This volume of the LLE Review, covering the period October--December 1998, includes two articles addressing issues applicable to direct-drive ICF on the National Ignition Facility (NIF): laser-plasma interactions and laser-irradiation uniformity. Additional highlights of the research presented in this issue are: (1) P.B. Radha and S. Skupsky present a novel charged-particle diagnostic that performs simultaneous {rho}R measurements of the fuel, shell, and ablator regions of a compressed ICF target, consisting of an inner DT fuel region, a plastic (CH) shell, and an ablator (CD), by measuring the knock-on deuteron spectrum. (2) F. Dahmani, S. Burns, J. Lambropoulos, S. Papernov, andmore » A. Schmid report results from stress-inhibited laser-driven crack propagation and stress-delayed damage-initiation experiments in fused silica at 351 nm. Research is underway presently to determine the ramifications of these findings for large-aperture systems, such as OMEGA. (3) V. Goncharov presents an analytic theory of the ablative Richtmyer-Meshkov instability, which shows that the main stabilizing mechanism of the ablation-front perturbations is the dynamic overpressure of the blowoff plasma with respect to the target material. The perturbation evolution during the shock transit time is studied to determine the initial conditions for the Rayleigh-Taylor phase of the instability and to analyze the level of laser imprint on ICF direct-drive targets. (4) J.M. Larkin, W.R. Donaldson, T.H. Foster, and R.S. Knox examine the triplet state of rose bengal, a dye used in photodynamic therapy, that is produced by 1,064-nm excitation of T{sub 1}. (5) R. Adam, M. Currie, R. Sobolewski, O. Harnack, and M. Darula report measurements of the picosecond photoresponse of a current-biased YBCO microbridge coupled to a bicrystal YBCO Josephson junction.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint ofmore » the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.« less

  18. Large Survey of Neutron Spectrum Moments Due to ICF Drive Asymmetry

    NASA Astrophysics Data System (ADS)

    Field, J. E.; Munro, D.; Spears, B.; Peterson, J. L.; Brandon, S.; Gaffney, J. A.; Hammer, J.; Langer, S.; Nora, R. C.; Springer, P.; ICF Workflow Collaboration Collaboration

    2016-10-01

    We have recently completed the largest HYDRA simulation survey to date ( 60 , 000 runs) of drive asymmetry on the new Trinity computer at LANL. The 2D simulations covered a large space of credible perturbations to the drive of ICF implosions on the NIF. Cumulants of the produced birth energy spectrum for DD and DT reaction neutrons were tallied using new methods. Comparison of the experimental spectra with our map of predicted spectra from simulation should provide a wealth of information about the burning plasma region. We report on our results, highlighting areas of agreement (and disagreement) with experimental spectra. We also identify features in the predicted spectra that might be amenable to measurement with improved diagnostics. Prepared by LLNL under Contract DE-AC52-07NA27344. IM release #: LLNL-PROC-697321.

  19. Classification of functioning and impairment: the development of ICF core sets for autism spectrum disorder.

    PubMed

    Bölte, Sven; de Schipper, Elles; Robison, John E; Wong, Virginia C N; Selb, Melissa; Singhal, Nidhi; de Vries, Petrus J; Zwaigenbaum, Lonnie

    2014-02-01

    Given the variability seen in Autism Spectrum Disorder (ASD), accurate quantification of functioning is vital to studying outcome and quality of life in affected individuals. The International Classification of Functioning, Disability and Health (ICF) provides a comprehensive, universally accepted framework for the description of health-related functioning. ICF Core Sets are shortlists of ICF categories that are selected to capture those aspects of functioning that are most relevant when describing a person with a specific condition. In this paper, the authors preview the process for developing ICF Core Sets for ASD, a collaboration with the World Health Organization and the ICF Research Branch. The ICF Children and Youth version (ICF-CY) was derived from the ICF and designed to capture the specific situation of the developing child. As ASD affects individuals throughout the life span, and the ICF-CY includes all ICF categories, the ICF-CY will be used in this project ("ICF(-CY)" from now on). The ICF(-CY) categories to be included in the ICF Core Sets for ASD will be determined at an ICF Core Set Consensus Conference, where evidence from four preparatory studies (a systematic review, an expert survey, a patient and caregiver qualitative study, and a clinical cross-sectional study) will be integrated. Comprehensive and Brief ICF Core Sets for ASD will be developed with the goal of providing useful standards for research and clinical practice and generating a common language for functioning and impairment in ASD in different areas of life and across the life span. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  20. Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, R.

    1997-09-01

    In inertial confinement fusion (ICF) experiments, irradiation uniformity is improved by passing laser beams through distributed phase plates (DPPs), which produce focused intensity profiles with well-controlled, reproducible envelopes modulated by fine random speckle. [C. B. Burckhardt, Appl. Opt. {bold 9}, 695 (1970); Y. Kato and K. Mima, Appl. Phys. B {bold 29}, 186 (1982); Y. Kato {ital et al.}, Phys. Rev. Lett. {bold 53}, 1057 (1984); Laboratory for Laser Energetics LLE Review 33, NTIS Document No. DOE/DP/40200-65, 1987 (unpublished), p. 1; Laboratory for Laser Energetics LLE Review 63, NTIS Document No. DOE/SF/19460-91, 1995 (unpublished), p. 1.] A uniformly ablating plasmamore » atmosphere acts to reduce the contribution of the speckle to the time-averaged irradiation nonuniformity by causing the intensity distribution to move relative to the absorption layer of the plasma. This occurs most directly as the absorption layer in the plasma moves with the ablation-driven flow, but it is shown that the effect of the accumulating ablated plasma on the phase of the laser light also makes a quantitatively significant contribution. Analytical results are obtained using the paraxial approximation applied to the beam propagation, and a simple statistical model is assumed for the properties of DPPs. The reduction in the time-averaged spatial spectrum of the speckle due to these effects is shown to be quantitatively significant within time intervals characteristic of atmospheric hydrodynamics under typical ICF irradiation intensities. {copyright} {ital 1997 American Institute of Physics.}« less

  1. BigFoot: a program to reduce risk for indirect drive laser fusion

    NASA Astrophysics Data System (ADS)

    Thomas, Cliff

    2017-10-01

    The conventional approach to inertial confinement fusion (ICF) with indirect drive is to design for high convergence (40), DT areal density, and target gain. By construction, this strategy is challenged by low-mode control of the implosion (Legendre P2 and P4), instability, and difficulties interpreting data. Here we consider an alternative - an approach to ICF that emphasizes control. To begin, we optimize for hohlraum predictability, and coupling to the capsule. Rather than focus on density, we work on making a high-energy hotspot we can diagnose and ``tune'' at low convergence (20). Though gain is reduced, this makes it possible to study (and improve) stagnation physics in a regime relevant to ignition (1E16-1E17). Further improvements can then be made with small, incremental increases in areal density, target scale, etc. Details regarding the ``BigFoot'' platform and pulse are reported, including recent findings. Work that could enable additional improvements in capsule stability and hohlraum control will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. [The International Classification of Functioning, Disability and Health (ICF) : The implementation of the ICF Core Sets for Hand Conditions in clinical routine as an example of application].

    PubMed

    Coenen, Michaela; Rudolf, Klaus-Dieter; Kus, Sandra; Dereskewitz, Caroline

    2018-05-24

    The International Classification of Functioning, Disability and Health (ICF) provides a standardized language of almost 1500 ICF categories for coding information about functioning and contextual factors. Short lists (ICF Core Sets) are helpful tools to support the implementation of the ICF in clinical routine. In this paper we report on the implementation of ICF Core Sets in clinical routine using the "ICF Core Sets for Hand Conditions" and the "Lighthouse Project Hand" as an example. Based on the ICF categories of the "Brief ICF Core Set for Hand Conditions", the ICF-based assessment tool (ICF Hand A ) was developed aiming to guide the assessment and treatment of patients with injuries and diseases located at the hand. The ICF Hand A facilitates the standardized assessment of functioning - taking into consideration of a holistic view of the patients - along the continuum of care ranging from acute care to rehabilitation and return to work. Reference points for the assessment of the ICF Hand A are determined in treatment guidelines for selected injuries and diseases of the hand along with recommendations for acute treatment and care, procedures and interventions of subsequent treatment and rehabilitation. The assessment of the ICF Hand A according to the defined reference points can be done using electronic clinical assessment tools and allows for an automatic generation of a timely medical report of a patient's functioning. In the future, the ICF Hand A can be used to inform the coding of functioning in ICD-11.

  3. New developments and applications of intense pulsed radiation sources at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D.

    In the past thirty-six months, tremendous strides have been made in x-ray production using high-current z-pinches. Today, the x-ray energy (1.9 MJ) and power (200 TW) output of the Z accelerator (formerly PBFA-II) is the largest available in the laboratory. These z-pinch x-ray sources are being developed for research into the physics of high energy density plasmas of interest in weapon behavior and in inertial confinement fusion. Beyond the Z accelerator current of 20 MA, an extrapolation to the X-1 accelerator level of 60 MA may have the potential to drive high-yield ICF reactions at affordable cost if several challengingmore » technical problems can be overcome. New developments have also taken place at Sandia in the area of high current, mm-diameter electron beams for advanced hydrodynamic radiography. On SABRE, x-ray spot diameters were less than 2 mm with a dose of 100 R at 1 meter in a 40 ns pulse.« less

  4. How to apply the ICF and ICF core sets for low back pain.

    PubMed

    Stier-Jarmer, Marita; Cieza, Alarcos; Borchers, Michael; Stucki, Gerold

    2009-01-01

    To introduce the International Classification of Functioning, Disability and Health (ICF) as conceptual model and classification and the ICF Core Sets as a way to specify functioning for a specific health condition such as Low Back Pain, and to illustrate the application of the ICF and ICF Core Sets in the context of clinical practice, the planning and reporting of studies and the comparison of health status measures. A decision-making and consensus process was performed to develop the ICF Core Sets for Low Back Pain, the linking procedure was applied as basis for the content comparison of health-status measures and the Rehab-Cycle was used to exemplify the application of the ICE and ICF Core Sets in clinical practice. Two different ICF Core Sets, namely, a comprehensive and a brief, are presented, three different health-status measures were linked to the ICF and compared and a case example of a patient with Low back Pain was described based on the Rehab-Cycle. The ICF is a promising new framework and classification to assess the impact of Low Back Pain. The ICF and practical tools, such as the ICF Core Sets for Low Back Pain, are useful for clinical practice, outcome and rehabilitation research, education, health statistics, and regulation.

  5. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  6. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects

    PubMed Central

    Weemaes, Corry MR; van Tol, Maarten JD; Wang, Jun; van Ostaijen-ten Dam, Monique M; van Eggermond, Marja CJA; Thijssen, Peter E; Aytekin, Caner; Brunetti-Pierri, Nicola; van der Burg, Mirjam; Graham Davies, E; Ferster, Alina; Furthner, Dieter; Gimelli, Giorgio; Gennery, Andy; Kloeckener-Gruissem, Barbara; Meyn, Stephan; Powell, Cynthia; Reisli, Ismail; Schuetz, Catharina; Schulz, Ansgar; Shugar, Andrea; van den Elsen, Peter J; van der Maarel, Silvère M

    2013-01-01

    Immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome is a primary immunodeficiency, predominantly characterized by agammaglobulinemia or hypoimmunoglobulinemia, centromere instability and facial anomalies. Mutations in two genes have been discovered to cause ICF syndrome: DNMT3B and ZBTB24. To characterize the clinical features of this syndrome, as well as genotype–phenotype correlations, we compared clinical and genetic data of 44 ICF patients. Of them, 23 had mutations in DNMT3B (ICF1), 13 patients had mutations in ZBTB24 (ICF2), whereas for 8 patients, the gene defect has not yet been identified (ICFX). While at first sight these patients share the same immunological, morphological and epigenetic hallmarks of the disease, systematic evaluation of all reported informative cases shows that: (1) the humoral immunodeficiency is generally more pronounced in ICF1 patients, (2) B- and T-cell compartments are both involved in ICF1 and ICF2, (3) ICF2 patients have a significantly higher incidence of intellectual disability and (4) congenital malformations can be observed in some ICF1 and ICF2 cases. It is expected that these observations on prevalence and clinical presentation will facilitate mutation-screening strategies and help in diagnostic counseling. PMID:23486536

  7. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  8. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends criticallymore » on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. • Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-μm after >100-μm propagation distance (an angular divergence angle of 20°!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. • Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser at the University of Texas, Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing simulations codes developed by the National Nuclear Security Administration ICF program. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. This project generated an impressive forty articles in high quality journals including nine (two under review) in Physical Review Letters during the three years of this grant and five graduate students completed their doctoral dissertations.« less

  9. NRL Review 2005. Pioneering the Future

    DTIC Science & Technology

    2005-01-01

    pulse high- intensity lasers —the Table-Top Terawatt (T3) laser and the new Ti:Sapphire Femtosecond Laser (TFL)—to study intense laser -plasma...56 laser beams and is single- pulsed (4-ns pulse ). This facility provides intense radiation for studying inertial confinement fusion (ICF) target... ultrashort - pulse (40 fs), Ti:Sapphire Fem- tosecond Laser (TFL) system is now operational at 1 TW. These lasers comprise a

  10. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Perkins, L. J.; Ho, D. D.-M.; Logan, B. G.; Zimmerman, G. B.; Rhodes, M. A.; Strozzi, D. J.; Blackfield, D. T.; Hawkins, S. A.

    2017-06-01

    We examine the potential that imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under implosion compression may relax the conditions required for ignition and propagating burn in indirect-drive inertial confinement fusion (ICF) targets. This may allow the attainment of ignition, or at least significant fusion energy yields, in presently performing ICF targets on the National Ignition Facility (NIF) that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation [Doeppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. Results of detailed two-dimensional radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction, and potential stabilization of higher-mode Rayleigh-Taylor instabilities. Optimum initial applied fields are found to be around 50 T. Given that the full plasma structure at capsule stagnation may be governed by three-dimensional resistive magneto-hydrodynamics, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to further assess the potential of applied magnetic fields to ICF ignition and burn on NIF.

  11. Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments

    NASA Astrophysics Data System (ADS)

    Macfarlane, J. J.; Golovkin, I.; Kulkarni, S.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L. J.

    2013-10-01

    We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple 2-D plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and K α reemission from the dopant.

  12. Two-temperature equilibration in warm dense hydrogen measured with x-ray scattering from the LCLS

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke; High Energy Density Sciences Collaboration

    2017-10-01

    Understanding the properties of warm dense hydrogen plasmas is critical for modeling stellar and planetary interiors, as well as for inertial confinement fusion (ICF) experiments. Of central importance are the electron-ion collision and equilibration times that determine the microscopic properties in a high energy density state. Spectrally and angularly resolved x-ray scattering measurements from fs-laser heated hydrogen have resolved the picosecond evolution and energy relaxation from a two-temperature plasma towards thermodynamic equilibrium in the warm dense matter regime. The interaction of rapidly heated cryogenic hydrogen irradiated by a 400 nm, 5x1017 W/cm2 , 70 fs-laser is visualized with ultra-bright 5.5 kev x-ray pulses from the Linac Coherent Light (LCLS) source in 1 Hz repetition rate pump-probe setting. We demonstrate that the energy relaxation is faster than many classical binary collision theories that use ad hoc cutoff parameters used in the Landau-Spitzer determination of the Coulomb logarithm. This work was supported by the DOE Office of Science, Fusion Energy Science under contract No. SF00515 and supported under FWP 100182 and DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, contract DE-AC02-76SF00515.

  13. Topology of megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction.

    PubMed

    Lancia, L; Albertazzi, B; Boniface, C; Grisollet, A; Riquier, R; Chaland, F; Le Thanh, K-C; Mellor, Ph; Antici, P; Buffechoux, S; Chen, S N; Doria, D; Nakatsutsumi, M; Peth, C; Swantusch, M; Stardubtsev, M; Palumbo, L; Borghesi, M; Willi, O; Pépin, H; Fuchs, J

    2014-12-05

    The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ^{2}∼10^{13}-10^{14}  W.cm^{-2}.μm^{2}) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.

  14. A Close-Coupled, Heavy Ion ICF Target

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    1998-11-01

    A ``close-coupled'' version of the distributed radiator, heavy ion ICF target has produced gain > 130 from 3.1 MJ of ion beam energy. To achieve these results, we reduced the hohlraum dimensions by 27% from our previous designs(M. Tabak, D. Callahan-Miller, D. D.-M. Ho, G. B. Zimmerman, Nuc. Fusion, 38, 509 (1998)) (M. Tabak, D. A. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) while driving the same capsule. This reduced the beam energy required from 5.9-6.5 MJ to 3.1 MJ. The smaller hohlraum resulted in a smaller beam spot; elliptically shaped beams with effective radius 1.7 mm were used in this design. In addition to describing this target, we will discuss the effect of the close-coupled hohlraum on the Rayleigh-Taylor instability and scaling this design down to 1.5-2 MJ for an ETF (Engineering Test Facility).

  15. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; Lahmann, B.; Gatu Johnson, M.; Séguin, F. H.; Sio, H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Park, H.-S.; Rygg, J. R.; Casey, D. T.; Bionta, R.; Turnbull, D. P.; Huntington, C. M.; Ross, J. S.; Zylstra, A. B.; Rosenberg, M. J.; Glebov, V. Yu.

    2016-11-01

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.

  16. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility.

    PubMed

    Sutcliffe, G D; Milanese, L M; Orozco, D; Lahmann, B; Gatu Johnson, M; Séguin, F H; Sio, H; Frenje, J A; Li, C K; Petrasso, R D; Park, H-S; Rygg, J R; Casey, D T; Bionta, R; Turnbull, D P; Huntington, C M; Ross, J S; Zylstra, A B; Rosenberg, M J; Glebov, V Yu

    2016-11-01

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.

  17. Wetted foam liquid fuel ICF target experiments

    DOE PAGES

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; ...

    2016-05-26

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR~15), but will becomemore » less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.« less

  18. A systematic literature review of the situation of the International Classification of Functioning, Disability, and Health and the International Classification of Functioning, Disability, and Health-Children and Youth version in education: a useful tool or a flight of fancy?

    PubMed

    Moretti, Marta; Alves, Ines; Maxwell, Gregor

    2012-02-01

    This article presents the outcome of a systematic literature review exploring the applicability of the International Classification of Functioning, Disability, and Health (ICF) and its Children and Youth version (ICF-CY) at various levels and in processes within the education systems in different countries. A systematic database search using selected search terms has been used. The selection of studies was then refined further using four protocols: inclusion and exclusion protocols at abstract and full text and extraction levels along with a quality protocol. Studies exploring the direct relationship between education and the ICF/ICF-CY were sought.As expected, the results show a strong presence of studies from English-speaking countries, namely from Europe and North America. The articles were mainly published in noneducational journals. The most used ICF/ICF-CY components are activity and participation, participation, and environmental factors. From the analysis of the papers included, the results show that the ICF/ICF-CY is currently used as a research tool, theoretical framework, and tool for implementing educational processes. The ICF/ICF-CY can provide a useful language to the education field where there is currently a lot of disparity in theoretical, praxis, and research issues. Although the systematic literature review does not report a high incidence of the use of the ICF/ICF-CY in education, the results show that the ICF/ICF-CY model and classification have potential to be applied in education systems.

  19. The application of the International Classification of Functioning, Disability, and Health in psychiatry: possible reasons for the lack of implementation.

    PubMed

    Álvarezz, Ana Sabela

    2012-02-01

    The purpose of this article was to examine the application of the International Classification of Functioning, Disability, and Health (ICF) in the field of psychiatry in the last 10 yrs since the ICF was launched. The hypothesis is that the application of the ICF in the field of psychiatry has not been yet much explored. Therefore, the objective of this article was to provide reasons to explain the difficult implementation of the ICF in this field, which in turn, might account for the lack of studies. A literature search was conducted using the terms ICF AND mental illness OR mental disorders OR psychiatry in titles, abstracts, and key words of articles collected in the databases ISI Web of Knowledge, ScienceDirect and Medline from 2001 to 2010. A total of 64 full-length articles were retrieved and reviewed, and among them, 13 were eventually included in this review because they were related to the ICF in psychiatry. Of the 13 studies identified concerning the ICF and mental disorders, 7 focus on the implementation of the ICF in the clinical practice, and 6 are theoretical papers discussing the potential benefits of the ICF for the field of psychiatry. A number of reasons can be suggested to explain the paucity of studies on the use of the ICF in psychiatry in the last 10 yrs: (1) the novelty of the ICF and the dominance of the medical model, (2) the belief that disability is just about physical conditions, (3) the influence of medication on capacity and performance, (4) the complex structure of the ICF, (5) the intrinsic limitations of the ICF, and (6) limitations in the accessibility of the ICF to some medical professionals.

  20. International Classification of Functioning, Disability and Health Core Sets for cerebral palsy, autism spectrum disorder, and attention-deficit-hyperactivity disorder.

    PubMed

    Schiariti, Verónica; Mahdi, Soheil; Bölte, Sven

    2018-05-30

    Capturing functional information is crucial in childhood disability. The International Classification of Functioning, Disability and Health (ICF) Core Sets promote assessments of functional abilities and disabilities in clinical practice regarding circumscribed diagnoses. However, the specificity of ICF Core Sets for childhood-onset disabilities has been doubted. This study aimed to identify content commonalities and differences among the ICF Core Sets for cerebral palsy (CP), and the newly developed Core Sets for autism spectrum disorder (ASD) and attention-deficit-hyperactivity disorder (ADHD). The categories within each Core Set were aggregated at the ICF component and chapter levels. Content comparison was conducted using descriptive analyses. The activities and participation component of the ICF was the most covered across all Core Sets. Main differences included representation of ICF components and coverage of ICF chapters within each component. CP included all ICF components, while ADHD and ASD predominantly focused on activities and participation. Environmental factors were highly represented in the ADHD Core Sets (40.5%) compared to the ASD (28%) and CP (27%) Core Sets. International Classification of Functioning, Disability and Health Core Sets for CP, ASD, and ADHD capture both common but also unique functional information, showing the importance of creating condition-specific, ICF-based tools to build functional profiles of individuals with childhood-onset disabilities. The International Classification of Functioning, Disability and Health (ICF) Core Sets for cerebral palsy (CP), autism spectrum disorder (ASD), and attention-deficit-hyperactivity disorder (ADHD) include unique functional information. The ICF-based tools for CP, ASD, and ADHD differ in terms of representation and coverage of ICF components and ICF chapters. Representation of environmental factors uniquely influences functioning and disability across ICF Core Sets for CP, ASD and ADHD. © 2018 Mac Keith Press.

  1. The International Classification of Functioning, Disability and Health (ICF) in Electronic Health Records. A Systematic Literature Review.

    PubMed

    Maritz, Roxanne; Aronsky, Dominik; Prodinger, Birgit

    2017-09-20

    The International Classification of Functioning, Disability and Health (ICF) is the World Health Organization's standard for describing health and health-related states. Examples of how the ICF has been used in Electronic Health Records (EHRs) have not been systematically summarized and described yet. To provide a systematic review of peer-reviewed literature about the ICF's use in EHRs, including related challenges and benefits. Peer-reviewed literature, published between January 2001 and July 2015 was retrieved from Medline ® , CINAHL ® , Scopus ® , and ProQuest ® Social Sciences using search terms related to ICF and EHR concepts. Publications were categorized according to three groups: Requirement specification, development and implementation. Information extraction was conducted according to a qualitative content analysis method, deductively informed by the evaluation framework for Health Information Systems: Human, Organization and Technology-fit (HOT-fit). Of 325 retrieved articles, 17 publications were included; 4 were categorized as requirement specification, 7 as development, and 6 as implementation publications. Information regarding the HOT-fit evaluation framework was summarized. Main benefits of using the ICF in EHRs were its unique comprehensive perspective on health and its interdisciplinary focus. Main challenges included the fact that the ICF is not structured as a formal terminology as well as the need for a reduced number of ICF codes for more feasible and practical use. Different approaches and technical solutions exist for integrating the ICF in EHRs, such as combining the ICF with other existing standards for EHR or selecting ICF codes with natural language processing. Though the use of the ICF in EHRs is beneficial as this review revealed, the ICF could profit from further improvements such as formalizing the knowledge representation in the ICF to support and enhance interoperability.

  2. A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C. D.; Betti, R.

    2008-01-01

    This article demonstrates how the ignition condition (Lawson criterion) for inertial confinement fusion (ICF) can be cast in a form depending on the only two parameters of the compressed fuel assembly that can be measured with methods already in existence: the hot spot ion temperature and the total areal density.

  3. Species separation and modification of neutron diagnostics in inertial-confinement fusion

    NASA Astrophysics Data System (ADS)

    Inglebert, A.; Canaud, B.; Larroche, O.

    2014-09-01

    The different behaviours of deuterium (D) and tritium (T) in the hot spot of marginally igniting cryogenic DT inertial-confinement fusion (ICF) targets are investigated with an ion Fokker-Planck model. With respect to an equivalent single-species model, a higher density and a higher temperature are found for T in the stagnation phase of the target implosion. In addition, the stagnating hot spot is found to be less dense but hotter than in the single-species case. As a result, the fusion reaction yield in the hot spot is significantly increased. Fusion neutron diagnostics of the implosion find a larger ion temperature as deduced from DT reactions than from DD reactions, in good agreement with NIF experimental results. ICF target designs should thus definitely take ion-kinetic effects into account.

  4. Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, D.  T.; Woods, D. T.; Smalyuk, V. A.

    2015-05-19

    The ablator couples energy between the driver and fusion fuel in inertial confinement fusion (ICF). Because of its low opacity, high solid density, and material properties, beryllium has long been considered an ideal ablator for ICF ignition experiments at the National Ignition Facility. We report here the first indirect drive Be implosions driven with shaped laser pulses and diagnosed with fusion yield at the OMEGA laser. The results show good performance with an average DD neutron yield of ~2 × 10⁹ at a convergence ratio of R₀/R ~ 10 and little impact due to the growth of hydrodynamic instabilities andmore » mix. In addition, the effect of adding an inner liner of W between the Be and DD is demonstrated.« less

  5. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    2013-12-18

    A 10-parameter, range-separated hybrid (RSH), generalized gradient approximation (GGA) density functional with nonlocal correlation (VV10) is presented in this paper. Instead of truncating the B97-type power series inhomogeneity correction factors (ICF) for the exchange, same-spin correlation, and opposite-spin correlation functionals uniformly, all 16 383 combinations of the linear parameters up to fourth order (m = 4) are considered. These functionals are individually fit to a training set and the resulting parameters are validated on a primary test set in order to identify the 3 optimal ICF expansions. Through this procedure, it is discovered that the functional that performs best onmore » the training and primary test sets has 7 linear parameters, with 3 additional nonlinear parameters from range-separation and nonlocal correlation. The resulting density functional, ωB97X-V, is further assessed on a secondary test set, the parallel-displaced coronene dimer, as well as several geometry datasets. Finally and furthermore, the basis set dependence and integration grid sensitivity of ωB97X-V are analyzed and documented in order to facilitate the use of the functional.« less

  6. The implementation of the ICF among Israeli rehabilitation centers--the case of physical therapy.

    PubMed

    Jacob, Tamar

    2013-10-01

    The extent of the implementation of the International Classification of Functioning, Disability and Health (ICF), developed by the WHO, in rehabilitation units and in physical therapy (PT) departments is unknown. The study aims to describe the extent to which the ICF has been implemented in PT services within rehabilitation units in Israel. To update data on ICF implementation since its inception. An online semi-structured survey was administered to 25 physiotherapists in charge of PT departments in all rehabilitation units throughout Israel. Rehabilitation units were grouped into three categories: general, geriatric and pediatric. The questionnaire included items regarding the ICF implementation, its strengths, and weaknesses. Twenty two physiotherapists (88%) completed the questionnaire. The majority was familiar with the ICF and nearly two thirds reported partial implementation in their units. Implementation focused mostly on adopting the biopsychosocial concepts and using ICF terms. The ICF was not used either for evaluating patients, or for reporting or encoding patient information. Physiotherapists, directors of most Israeli PT departments in rehabilitation units are familiar with the ICF; however, its clinical implementation is very limited. There is need for further research into the processes of knowledge transfer and implementation of the ICF, in order to better understand the factors that facilitate and those that impede ICF implementation.

  7. Development of the striation and filament form of the electrothermal instability

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Awe, T. J.; Yelton, W. G.; McKenzie, B. B.; Peterson, K. J.; Bauer, B. S.; Hutchinson, T. M.; Fuelling, S.; Yates, K. C.; Shipley, G.

    2017-10-01

    Magnetically imploded liners have broad application to ICF, dynamic material property studies, and flux compression. An important consideration in liner performance is the electrothermal instability (ETI), an Ohmic heating instability that manifests in 2 ways: assuming vertical current flow, ETI forms hot, horizontal bands (striations) in metals, and vertical filaments in plasmas. Striations are especially relevant in that they can develop into density perturbations, which then couple to the dangerous magneto Rayleigh-Taylor (MRT) instability during liner acceleration. Recent visible emission images of Ohmically heated rods show evidence of both the striation and filament form of ETI, suggesting several questions: (1) can simulation qualitatively reproduce the data? (2) If so, what seeds the striation ETI, and how does it transition to filaments? (3) Does the striation develop into a strong density perturbation, important for MRT? In this work, we use analytic theory and 3D MHD simulation to study how isolated resistive inclusions, embedded in a perfectly smooth rod and communicating through current redistribution, can be used to address the above questions. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DOE NNSA under contract DE-NA0003525.

  8. Idiopathic chronic fatigue in older adults is linked to impaired mitochondrial content and biogenesis signaling in skeletal muscle.

    PubMed

    Wawrzyniak, Nicholas R; Joseph, Anna-Maria; Levin, David G; Gundermann, David M; Leeuwenburgh, Christiaan; Sandesara, Bhanuprasad; Manini, Todd M; Adhihetty, Peter J

    2016-08-16

    Fatigue is a symptom of many diseases, but it can also manifest as a unique medical condition, such as idiopathic chronic fatigue (ICF). While the prevalence of ICF increases with age, mitochondrial content and function decline with age, which may contribute to ICF. The purpose of this study was to determine whether skeletal muscle mitochondrial dysregulation and oxidative stress is linked to ICF in older adults. Sedentary, old adults (n = 48, age 72.4 ± 5.3 years) were categorized into ICF and non-fatigued (NF) groups based on the FACIT-Fatigue questionnaire. ICF individuals had a FACIT score one standard deviation below the mean for non-anemic adults > 65 years and were excluded according to CDC diagnostic criteria for ICF. Vastus lateralis muscle biopsies were analyzed, showing reductions in mitochondrial content and suppression of mitochondrial regulatory proteins Sirt3, PGC-1α, NRF-1, and cytochrome c in ICF compared to NF. Additionally, mitochondrial morphology proteins, antioxidant enzymes, and lipid peroxidation were unchanged in ICF individuals. Our data suggests older adults with ICF have reduced skeletal muscle mitochondrial content and biogenesis signaling that cannot be accounted for by increased oxidative damage.

  9. The International Classification of Functioning, Disability and Health (ICF) in vocational rehabilitation and disability assessment in Slovenia: state of law and users' perspective.

    PubMed

    Ptyushkin, Pavel; Vidmar, Gaj; Burger, Helena; Marinček, Crt; Escorpizo, Reuben

    2011-01-01

    This study illustrates the use of the ICF in vocational rehabilitation and disability assessment in Slovenia. A review of the Slovenian law about vocational rehabilitation was performed. A survey was developed and group and individual interviews were conducted with professionals involved in vocational rehabilitation who use the ICF. The vast majority of the respondents believe that ICF helps to create a common language for multidisciplinary communication. The main advantages of the ICF identified by the respondents are that it provides a holistic view of the person, assesses complexities of functioning, provides a unified language and offers a quick and easy insight into functioning. The disadvantages of ICF are complicated terminology and subjectivity of the assessor. A difficulty encountered by the users is that by law, only body functions of the ICF are assessed. Additional qualitative analysis of the users' understanding of ICF and its purpose revealed heterogeneity. Significant differences between public and private organisations were found. ICF is a promising tool for use in vocational rehabilitation and disability assessment in Slovenia. A major challenge is the lack of interface between ICF and policies on vocational rehabilitation in Slovenia.

  10. The ICF has made a difference to functioning and disability measurement and statistics.

    PubMed

    Madden, Rosamond H; Bundy, Anita

    2018-02-12

    Fifteen years after the publication of the International Classification of Functioning, Disability and Health (ICF), we investigated: How ICF applications align with ICF aims, contents and principles, and how the ICF has been used to improve measurement of functioning and related statistics. In a scoping review, we investigated research published 2001-2015 relating to measurement and statistics for evidence of: a change in thinking; alignment of applications with ICF specifications and philosophy; and the emergence of new knowledge. The ICF is used in diverse applications, settings and countries, with processes largely aligned with the ICF and intended to improve measurement and statistics: new national surveys, information systems and ICF-based instruments; and international efforts to improve disability data. Knowledge is growing about the components and interactions of the ICF model, the diverse effects of the environment on functioning, and the meaning and measurement of participation. The ICF provides specificity and a common language in the complex world of functioning and disability and is stimulating new thinking, new applications in measurement and statistics, and the assembling of new knowledge. Nevertheless, the field needs to mature. Identified gaps suggest ways to improve measurement and statistics to underpin policies, services and outcomes. Implications for Rehabilitation The ICF offers a conceptualization of functioning and disability that can underpin assessment and documentation in rehabilitation, with a growing body of experience to draw on for guidance. Experience with the ICF reminds practitioners to consider all the domains of participation, the effect of the environment on participation and the importance of involving clients/patients in assessment and service planning. Understanding the variability of functioning within everyday environments and designing interventions for removing barriers in various environments is a vital part of rehabilitation planning.

  11. The ePLAS Code for Ignition Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Rodney J

    2012-09-20

    Inertial Confinement Fusion (ICF) presents unique opportunities for the extraction of clean energy from Fusion. Intense lasers and particle beams can create and interact with such plasmas, potentially yielding sufficient energy to satisfy all our national needs. However, few models are available to help aid the scientific community in the study and optimization of such interactions. This project enhanced and disseminated the computer code ePLAS for the early understanding and control of Ignition in ICF. ePLAS is a unique simulation code that tracks the transport of laser light to a target, the absorption of that light resulting in the generationmore » and transport of hot electrons, and the heating and flow dynamics of the background plasma. It uses an implicit electromagnetic field-solving method to greatly reduce computing demands, so that useful target interaction studies can often be completed in 15 minutes on a portable 2.1 GHz PC. The code permits the rapid scoping of calculations for the optimization of laser target interactions aimed at fusion. Recent efforts have initiated the use of analytic equations of state (EOS), K-alpha image rendering graphics, allocatable memory for source-free usage, and adaption to the latest Mac and Linux Operating Systems. The speed and utility of ePLAS are unequaled in the ICF simulation community. This project evaluated the effects of its new EOSs on target heating, compared fluid and particle models for the ions, initiated the simultaneous use of both ion models in the code, and studied long time scale 500 ps hot electron deposition for shock ignition. ePLAS has been granted EAR99 export control status, permitting export without a license to most foreign countries. Beta-test versions of ePLAS have been granted to several Universities and Commercial users. The net Project was aimed at achieving early success in the laboratory ignition of thermonuclear targets and the mastery of controlled fusion power for the nation.« less

  12. Inertial Confinement Fusion quarterly report, January-March 1998, volume 8, number 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruer, W

    1998-03-31

    The coupling of laser light with plasmas is one of the key physics issues for the use of high-power lasers for inertial fusion, high-energy-density physics, and scientific stockpile stewardship. The coupling physics is extremely rich and challenging, particularly in the large plasmas to be accessed on the National Ignition Facility (NIF). The coupling mechanisms span the gamut from classical inverse bremsstrahlung absorption to a variety of nonlinear optical processes. These include stimulated Raman scattering (SRS) from electron plasma waves, stimulated Brillouin scattering (SBS) from ion sound waves, resonant decay into electron plasma and ion sound waves, and laser beam filamentation.more » These processes depend on laser intensity and produce effects such as changes in the efficiency and location of the energy deposition or generation of a component of very energetic electrons, which can preheat capsules. Coupling physics issues have an extremely high leverage. The coupling models are clearly very important ingredients for detailed calculations of laser-irradiated target behavior. Improved understanding and models enable a more efficient use of laser facilities, which becomes even more important as these facilities become larger and more expensive. Advances in the understanding also allow a more timely and cost-effective identification of new applications of high-power lasers, such as for generation of high-temperature hohlraums and compact x-ray sources, or for discovery of advanced fusion schemes. Finally, the interaction of intense electromagnetic waves with ionized media is a fundamental topic of interest to numerous areas of applied science and is an excellent test bed for advancing plasma science and computational modeling of complex phenomena. This issue of the ICF Quarterly Report is dedicated to laser--plasma interactions. The eight articles present a cross section of the broad progress in understanding the key interaction issues, such as laser beam bending, spraying, and scattering, as well as scaling the Nova results to NIF.« less

  13. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  14. ICF Core Set for Head and Neck Cancer: Do the Categories Discriminate Among Clinically Relevant Subgroups of Patients?

    ERIC Educational Resources Information Center

    Tschiesner, Uta; Oberhauser, Cornelia; Cieza, Alarcos

    2011-01-01

    The multidisciplinary assessment of functioning in patients with head and neck cancer (HNC) according to the "ICF Core Set for Head and Neck Cancer" (ICF-HNC) was developed in an international and multi-disciplinary approach. The ICF-HNC is an application of the ICF that was adopted by the World Health Organization. The objective of this study was…

  15. Exploring use of the ICF in health education.

    PubMed

    Bornbaum, Catherine C; Day, Adam M B; Izaryk, Kristen; Morrison, Stephanie J; Ravenek, Michael J; Sleeth, Lindsay E; Skarakis-Doyle, Elizabeth

    2015-01-01

    Currently, little is known regarding use of the International Classification of Functioning, Disability and Health (ICF) in health education applications. Therefore, this review sought to examine the scope of work that has been conducted regarding the application of the ICF in health education. A review of the current literature related to use of the ICF in health education programs was conducted. Twelve electronic databases were searched in accordance with a search protocol developed by a health sciences librarian. In total, 17,878 records were reviewed, and 18 articles met the criteria for inclusion in this review. Current evidence regarding use of the ICF in healthcare education revealed that program and participant properties can be essential facilitators or barriers to successful education programs. In addition, gaps in comprehensive outcome measurement were revealed as areas for future attention. Educational applications of the ICF are very much a work in progress as might be expected given the ICF's existence for only a little over a decade. To advance use of the ICF in education, it is important to incorporate the measurement of both knowledge acquisition and behavior change related to ICF-based programs. Ultimately, widespread implementation of the ICF represents not only a substantial opportunity but also poses a significant challenge.

  16. Time-resolved Measurements of ICF Capsule Ablator Properties by Streaked X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Hicks, Damien

    2008-11-01

    Determining the capsule ablator thickness and peak laser or x-ray drive pressure required to optimize fuel compression is a critical part of ensuring ICF ignition on the NIF. If too little ablator is burned off, the implosion velocity will be too low for adequate final compression; if too much ablator is burned off, the fuel will be preheated or the shell will be broken up by growth of hydrodynamic instabilities, again compromising compression. Avoiding such failure modes requires having an accurate, in-flight measure of the implosion velocity, areal density, and remaining mass of the ablator near peak velocity. We present a new technique which achieves simultaneous time-resolved measurements of all these parameters in a single, area-backlit, x-ray streaked radiograph. This is accomplished by tomographic inversion of the radiograph to determine the radial density profile at each time step; scalar quantities such as the average position, areal density, and mass of the ablator can then be calculated by taking moments of this density profile. Details of the successful demonstration of this technique using backlit Cu-doped Be capsule implosions at the Omega facility will be presented. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and in collaboration with Brian Spears, David Braun, Peter Celliers, Gilbert Collins, and Otto Landen at LLNL and Rick Olson at SNL.

  17. Practice, science and governance in interaction: European effort for the system-wide implementation of the International Classification of Functioning, Disability and Health (ICF) in Physical and Rehabilitation Medicine.

    PubMed

    Stucki, Gerold; Zampolini, Mauro; Juocevicius, Alvydas; Negrini, Stefano; Christodoulou, Nicolas

    2017-04-01

    Since its launch in 2001, relevant international, regional and national PRM bodies have aimed to implement the International Classification of Functioning, Disability and Health (ICF) in Physical and Rehabilitation Medicine (PRM), whereby contributing to the development of suitable practical tools. These tools are available for implementing the ICF in day-to-day clinical practice, standardized reporting of functioning outcomes in quality management and research, and guiding evidence-informed policy. Educational efforts have reinforced PRM physicians' and other rehabilitation professionals' ICF knowledge, and numerous implementation projects have explored how the ICF is applied in clinical practice, research and policy. Largely lacking though is the system-wide implementation of ICF in day-to-day practice across all rehabilitation services of national health systems. In Europe, system-wide implementation of ICF requires the interaction between practice, science and governance. Considering its mandate, the UEMS PRM Section and Board have decided to lead a European effort towards system-wide ICF implementation in PRM, rehabilitation and health care at large, in interaction with governments, non-governmental actors and the private sector, and aligned with ISPRM's collaboration plan with WHO. In this paper we present the current PRM internal and external policy agenda towards system-wide ICF implementation and the corresponding implementation action plan, while highlighting priority action steps - promotion of ICF-based standardized reporting in national quality management and assurance programs, development of unambiguous rehabilitation service descriptions using the International Classification System for Service Organization in Health-related Rehabilitation, development of Clinical Assessment Schedules, qualitative linkage and quantitative mapping of data to the ICF, and the cultural adaptation of the ICF Clinical Data Collection Tool in European languages.

  18. Readability and Content Assessment of Informed Consent Forms for Phase II-IV Clinical Trials in China

    PubMed Central

    Wen, Gaiyan; Liu, Xinchun; Huang, Lihua; Shu, Jingxian; Xu, Nana; Chen, Ruifang; Huang, Zhijun; Yang, Guoping; Wang, Xiaomin; Xiang, Yuxia; Lu, Yao; Yuan, Hong

    2016-01-01

    Purpose To explore the readability and content integrity of informed consent forms (ICFs) used in China and to compare the quality of Chinese local ICFs with that of international ICFs. Methods The length, readability and content of 155 consent documents from phase II-IV drug clinical trials from the Third Xiangya Hospital Ethics Committee from November 2009 to January 2015 were evaluated. Reading difficulty was tested using a readability formula adapted for the Chinese language. An ICF checklist containing 27 required elements was successfully constructed to evaluate content integrity. The description of alternatives to participation was assessed. The quality of ICFs from different sponsorships were also compared. Results Among the 155 evaluable trials, the ICFs had a median length of 5286 words, corresponding to 7 pages. The median readability score was 4.31 (4.02–4.41), with 63.9% at the 2nd level and 36.1% at the 3rd level. Five of the 27 elements were frequently neglected. The average score for the description of alternatives to participation was 1.06, and 27.7% of the ICFs did not mention any alternatives. Compared with Chinese local ICFs, international ICFs were longer, more readable and contained more of the required elements (P < 0.05). Conclusion The ICFs used in China were difficult to read for most participants. These forms had poor description of alternatives to participation, and failed to provide a high degree of information disclosure, including an explanation of informed consent, follow-up processing of the data/sample, inclusion/exclusion criteria, double blinding, and unpredictable risks. International ICFs had better readability and content integrity than Chinese local ICFs. More efforts should thus be made to improve the quality of consent documents in China. PMID:27701471

  19. Readability and Content Assessment of Informed Consent Forms for Phase II-IV Clinical Trials in China.

    PubMed

    Wen, Gaiyan; Liu, Xinchun; Huang, Lihua; Shu, Jingxian; Xu, Nana; Chen, Ruifang; Huang, Zhijun; Yang, Guoping; Wang, Xiaomin; Xiang, Yuxia; Lu, Yao; Yuan, Hong

    2016-01-01

    To explore the readability and content integrity of informed consent forms (ICFs) used in China and to compare the quality of Chinese local ICFs with that of international ICFs. The length, readability and content of 155 consent documents from phase II-IV drug clinical trials from the Third Xiangya Hospital Ethics Committee from November 2009 to January 2015 were evaluated. Reading difficulty was tested using a readability formula adapted for the Chinese language. An ICF checklist containing 27 required elements was successfully constructed to evaluate content integrity. The description of alternatives to participation was assessed. The quality of ICFs from different sponsorships were also compared. Among the 155 evaluable trials, the ICFs had a median length of 5286 words, corresponding to 7 pages. The median readability score was 4.31 (4.02-4.41), with 63.9% at the 2nd level and 36.1% at the 3rd level. Five of the 27 elements were frequently neglected. The average score for the description of alternatives to participation was 1.06, and 27.7% of the ICFs did not mention any alternatives. Compared with Chinese local ICFs, international ICFs were longer, more readable and contained more of the required elements (P < 0.05). The ICFs used in China were difficult to read for most participants. These forms had poor description of alternatives to participation, and failed to provide a high degree of information disclosure, including an explanation of informed consent, follow-up processing of the data/sample, inclusion/exclusion criteria, double blinding, and unpredictable risks. International ICFs had better readability and content integrity than Chinese local ICFs. More efforts should thus be made to improve the quality of consent documents in China.

  20. Mapping the Content of the Patient Reported Outcomes Measurement Information System (PROMIS®) Using the International Classification of Functioning, Health and Disability

    PubMed Central

    Tucker, Carole A; Escorpizo, Reuben; Cieza, Alarcos; Lai, Jin Shei; Stucki, Gerold; Ustun, T. Bedirhan; Kostanjsek, Nenad; Cella, David; Forrest, Christopher B.

    2014-01-01

    Background The Patient Reported Outcomes Measurement Information System (PROMIS®) is a U.S. National Institutes of Health initiative that has produced self-reported item banks for physical, mental, and social health. Objective To describe the content of PROMIS at the item level using the World Health Organization’s International Classification of Functioning, Disability and Health (ICF). Methods All PROMIS adult items (publicly available as of 2012) were assigned to relevant ICF concepts. The content of the PROMIS adult item banks were then described using the mapped ICF code descriptors. Results The 1006 items in the PROMIS instruments could all be mapped to ICF concepts at the second level of classification, with the exception of 3 items of global or general health that mapped across the first-level classification of ICF activity and participation component (d categories). Individual PROMIS item banks mapped from 1 to 5 separate ICF codes indicating one-to-one, one-to-many and many-to-one mappings between PROMIS item banks and ICF second level classification codes. PROMIS supports measurement of the majority of major concepts in the ICF Body Functions (b) and Activity & Participation (d) components using PROMIS item banks or subsets of PROMIS items that could, with care, be used to develop customized instruments. Given the focus of PROMIS is on measurement of person health outcomes, concepts in body structures (s) and some body functions (b), as well as many ICF environmental factor have minimal coverage in PROMIS. Discussion The PROMIS-ICF mapped items provide a basis for users to evaluate the ICF related content of specific PROMIS instruments, and to select PROMIS instruments in ICF based measurement applications. PMID:24760532

  1. Validation of the Comprehensive ICF Core Set for Vocational Rehabilitation From the Perspective of Physical Therapists: International Delphi Survey.

    PubMed

    Kaech Moll, Veronika M; Escorpizo, Reuben; Portmann Bergamaschi, Ruth; Finger, Monika E

    2016-08-01

    The Comprehensive ICF Core Set for vocational rehabilitation (VR) is a list of essential categories on functioning based on the World Health Organization (WHO) International Classification of Functioning, Disability and Health (ICF), which describes a standard for interdisciplinary assessment, documentation, and communication in VR. The aim of this study was to examine the content validity of the Comprehensive ICF Core Set for VR from the perspective of physical therapists. A 3-round email survey was performed using the Delphi method. A convenience sample of international physical therapists working in VR with work experience of ≥2 years were asked to identify aspects they consider as relevant when evaluating or treating clients in VR. Responses were linked to the ICF categories and compared with the Comprehensive ICF Core Set for VR. Sixty-two physical therapists from all 6 WHO world regions responded with 3,917 statements that were subsequently linked to 338 ICF categories. Fifteen (17%) of the 90 categories in the Comprehensive ICF Core Set for VR were confirmed by the physical therapists in the sample. Twenty-two additional ICF categories were identified that were not included in the Comprehensive ICF Core Set for VR. Vocational rehabilitation in physical therapy is not well defined in every country and might have resulted in the small sample size. Therefore, the results cannot be generalized to all physical therapists practicing in VR. The content validity of the ICF Core Set for VR is insufficient from solely a physical therapist perspective. The results of this study could be used to define a physical therapy-specific set of ICF categories to develop and guide physical therapist clinical practice in VR. © 2016 American Physical Therapy Association.

  2. Content validity of the Comprehensive ICF Core Set for multiple sclerosis from the perspective of speech and language therapists.

    PubMed

    Renom, Marta; Conrad, Andrea; Bascuñana, Helena; Cieza, Alarcos; Galán, Ingrid; Kesselring, Jürg; Coenen, Michaela

    2014-11-01

    The Comprehensive International Classification of Functioning, Disability and Health (ICF) Core Set for Multiple Sclerosis (MS) is a comprehensive framework to structure the information obtained in multidisciplinary clinical settings according to the biopsychosocial perspective of the International Classification of Functioning, Disability and Health (ICF) and to guide the treatment and rehabilitation process accordingly. It is now undergoing validation from the user perspective for which it has been developed in the first place. To validate the content of the Comprehensive ICF Core Set for MS from the perspective of speech and language therapists (SLTs) involved in the treatment of persons with MS (PwMS). Within a three-round e-mail-based Delphi Study 34 SLTs were asked about PwMS' problems, resources and aspects of the environment treated by SLTs. Responses were linked to ICF categories. Identified ICF categories were compared with those included in the Comprehensive ICF Core Set for MS to examine its content validity. Thirty-four SLTs named 524 problems and resources, as well as aspects of environment. Statements were linked to 129 ICF categories (60 Body-functions categories, two Body-structures categories, 42 Activities-&-participation categories, and 25 Environmental-factors categories). SLTs confirmed 46 categories in the Comprehensive ICF Core Set. Twenty-one ICF categories were identified as not-yet-included categories. This study contributes to the content validity of the Comprehensive ICF Core Set for MS from the perspective of SLTs. Study participants agreed on a few not-yet-included categories that should be further discussed for inclusion in a revised version of the Comprehensive ICF Core Set to strengthen SLTs' perspective in PwMS' neurorehabilitation. © 2014 Royal College of Speech and Language Therapists.

  3. Elements of progressive patient care in the Yale Health Plan HMO.

    PubMed

    Pearson, D A; Rowe, D S; Goldberg, B; Seigel, E

    1975-01-01

    The results of a study of the use of intermediate care beds in the intermediate care facility (ICF) of the Yale Health Plan, a prepaid group practice plan for students and an enrolled non-student population, indicate that the ICF may be a possible model for other health maintenance organizations. The ICF, with 30 beds in active use, is located in the Yale health center. Approximately one-third of the ICF patients would have been admitted to the affiliated short-term general hospital if the ICF did not exist. The plan's medical staff also has the option of transferring patients between the affiliated hospital and the ICF, depending on which institution is most appropriate for the patient's needs. A comparison of the levels of care provided in the ICF with those presented in selected articles from the progressive patient care literature revealed that the ICF is not only providing intermediate care but several other classic elements of progressive patient care -self care, continuing care, minimal care, and partial care.

  4. Elements of progressive patient care in the Yale Health Plan HMO.

    PubMed Central

    Pearson, D A; Rowe, D S; Goldberg, B; Seigel, E

    1975-01-01

    The results of a study of the use of intermediate care beds in the intermediate care facility (ICF) of the Yale Health Plan, a prepaid group practice plan for students and an enrolled non-student population, indicate that the ICF may be a possible model for other health maintenance organizations. The ICF, with 30 beds in active use, is located in the Yale health center. Approximately one-third of the ICF patients would have been admitted to the affiliated short-term general hospital if the ICF did not exist. The plan's medical staff also has the option of transferring patients between the affiliated hospital and the ICF, depending on which institution is most appropriate for the patient's needs. A comparison of the levels of care provided in the ICF with those presented in selected articles from the progressive patient care literature revealed that the ICF is not only providing intermediate care but several other classic elements of progressive patient care -self care, continuing care, minimal care, and partial care. PMID:805444

  5. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, George H.

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of themore » available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.« less

  6. Health measurement using the ICF: Test-retest reliability study of ICF codes and qualifiers in geriatric care

    PubMed Central

    Okochi, Jiro; Utsunomiya, Sakiko; Takahashi, Tai

    2005-01-01

    Background The International Classification of Functioning, Disability and Health (ICF) was published by the World Health Organization (WHO) to standardize descriptions of health and disability. Little is known about the reliability and clinical relevance of measurements using the ICF and its qualifiers. This study examines the test-retest reliability of ICF codes, and the rate of immeasurability in long-term care settings of the elderly to evaluate the clinical applicability of the ICF and its qualifiers, and the ICF checklist. Methods Reliability of 85 body function (BF) items and 152 activity and participation (AP) items of the ICF was studied using a test-retest procedure with a sample of 742 elderly persons from 59 institutional and at home care service centers. Test-retest reliability was estimated using the weighted kappa statistic. The clinical relevance of the ICF was estimated by calculating immeasurability rate. The effect of the measurement settings and evaluators' experience was analyzed by stratification of these variables. The properties of each item were evaluated using both the kappa statistic and immeasurability rate to assess the clinical applicability of WHO's ICF checklist in the elderly care setting. Results The median of the weighted kappa statistics of 85 BF and 152 AP items were 0.46 and 0.55 respectively. The reproducibility statistics improved when the measurements were performed by experienced evaluators. Some chapters such as genitourinary and reproductive functions in the BF domain and major life area in the AP domain contained more items with lower test-retest reliability measures and rated as immeasurable than in the other chapters. Some items in the ICF checklist were rated as unreliable and immeasurable. Conclusion The reliability of the ICF codes when measured with the current ICF qualifiers is relatively low. The result in increase in reliability according to evaluators' experience suggests proper education will have positive effects to raise the reliability. The ICF checklist contains some items that are difficult to be applied in the geriatric care settings. The improvements should be achieved by selecting the most relevant items for each measurement and by developing appropriate qualifiers for each code according to the interest of the users. PMID:16050960

  7. X-ray penumbral imaging diagnostic developments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, B.; Abu-Shawareb, H.; Alexander, N.; Ayers, J.; Bailey, C. G.; Bell, P.; Benedetti, L. R.; Bradley, D.; Collins, G.; Divol, L.; Döppner, T.; Felker, S.; Field, J.; Forsman, A.; Galbraith, J. D.; Hardy, C. M.; Hilsabeck, T.; Izumi, N.; Jarrot, C.; Kilkenny, J.; Kramer, S.; Landen, O. L.; Ma, T.; MacPhee, A.; Masters, N.; Nagel, S. R.; Pak, A.; Patel, P.; Pickworth, L. A.; Ralph, J. E.; Reed, C.; Rygg, J. R.; Thorn, D. B.

    2017-08-01

    X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material mix in ICF implosions.

  8. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility

    DOE PAGES

    Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; ...

    2016-08-05

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint ofmore » the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.« less

  9. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutcliffe, G. D., E-mail: gdsut@mit.edu; Milanese, L. M.; Orozco, D.

    2016-11-15

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint ofmore » the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.« less

  10. Mapping of a standard documentation template to the ICF core sets for arthritis and low back pain.

    PubMed

    Escorpizo, Reuben; Davis, Kandace; Stumbo, Teri

    2010-12-01

    To identify the contents of a documentation template in The Guide to Physical Therapist Practice using the International Classification of Functioning, Disability, and Health (ICF) Core Sets for rheumatoid arthritis, osteoarthritis, and low back pain (LBP) as reference. Concepts were identified from items of an outpatient documentation template and mapped to the ICF using established linking rules. The ICF categories that were linked were compared with existing arthritis and LBP Core Sets. Based on the ICF, the template had the highest number (29%) of linked categories under Activities and participation while Body structures had the least (17%). ICF categories in the arthritis and LBP Core Sets had a 37-55% match with the ICF categories found in the template. We found 164 concepts that were not classified or not defined and 37 as personal factors. The arthritis and LBP Core Sets were reflected in the contents of the template. ICF categories in the Core Sets were reflected in the template (demonstrating up to 55% match). Potential integration of ICF in documentation templates could be explored and examined in the future to enhance clinical encounters and multidisciplinary communication. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Development of ICF Core Sets to standardize assessment of functioning and impairment in ADHD: the path ahead.

    PubMed

    Bölte, Sven; de Schipper, Elles; Holtmann, Martin; Karande, Sunil; de Vries, Petrus J; Selb, Melissa; Tannock, Rosemary

    2014-12-01

    In the study of health and quality of life in attention deficit/hyperactivity disorder (ADHD), it is of paramount importance to include assessment of functioning. The International Classification of Functioning, Disability and Health (ICF) provides a comprehensive, universally accepted framework for the description of functioning in relation to health conditions. In this paper, the authors outline the process to develop ICF Core Sets for ADHD. ICF Core Sets are subgroups of ICF categories selected to capture the aspects of functioning that are most likely to be affected in specific disorders. The ICF categories that will be included in the ICF Core Sets for ADHD will be determined at an ICF Core Set Consensus Conference, wherein evidence from four preliminary studies (a systematic review, an expert survey, a patient and caregiver qualitative study, and a clinical cross-sectional study) will be integrated. Comprehensive and Brief ICF Core Sets for ADHD will be developed with the goal of providing useful standards for research and clinical practice, and to generate a common language for the description of functioning in ADHD in different areas of life and across the lifespan.

  12. Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments

    NASA Astrophysics Data System (ADS)

    Macfarlane, Joseph; Golovkin, I.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L.

    2012-10-01

    We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and Kα reemission from the dopant, and to study the sensitivity of the emergent spectra to the dopant and the hot spot and ablator conditions.

  13. Benchmarking algorithms for the solution of Collisional Radiative Model (CRM) equations.

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel; Busquet, Michel

    2007-11-01

    Elements used in ICF target designs can have many charge states in the same plasma conditions, each charge state having numerous energy levels. When LTE conditions are not met, one has to solve CRM equations for the populations of energy levels, which are necessary for opacities/emissivities, Z* etc. In case of sparse spectra, or when configuration interaction is important (open d or f shells), statistical methods[1] are insufficient. For these cases one must resort to a detailed level CRM rate generator[2]. The equations to be solved may involve tens of thousands of levels. The system is by nature ill conditioned. We show that some classical methods do not converge. Improvements of the latter will be compared with new algorithms[3] with respect to performance, robustness, and accuracy. [1] A Bar-Shalom, J Oreg, and M Klapisch, J. Q. S. R. T.,65, 43 (2000). [2] M Klapisch, M Busquet and A. Bar-Shalom, Proceedings of APIP'07, AIP series (to be published). [3] M Klapisch and M Busquet, High Ener. Density Phys. 3,143 (2007)

  14. Laser Absorption by Over-Critical Plasmas

    NASA Astrophysics Data System (ADS)

    May, J.; Tonge, J.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Mori, W. B.

    2015-11-01

    Absorption of high intensity laser light by matter has important applications to emerging sciences and technology, such as Fast Ignition ICF and ion acceleration. As such, understanding the underlying mechanisms of this absorption is key to developing these technologies. Critical features which distinguish the interaction of high intensity light - defined here as a laser field having a normalized vector potential greater than unity - are that the reaction of the material to the fields results in sharp high-density interfaces; and that the movement of the electrons is in general relativistic, both in a fluid and a thermal sense. The results of these features are that the absorption mechanisms are qualitatively distinct from those at lower intensities. We will review previous work, by our group and others, on the absorption mechanisms, and highlight current research. We will show that the standing wave structure of the reflected laser light is key to particle dynamics for normally incident lasers. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  15. Explanatory power does not equal clinical importance: study of the use of the Brief ICF Core Sets for Spinal Cord Injury with a purely statistical approach.

    PubMed

    Ballert, C; Oberhauser, C; Biering-Sørensen, F; Stucki, G; Cieza, A

    2012-10-01

    Psychometric study analyzing the data of a cross-sectional, multicentric study with 1048 persons with spinal cord injury (SCI). To shed light on how to apply the Brief Core Sets for SCI of the International Classification of Functioning, Disability and Health (ICF) by determining whether the ICF categories contained in the Core Sets capture differences in overall health. Lasso regression was applied using overall health, rated by the patients and health professionals, as dependent variables and the ICF categories of the Comprehensive ICF Core Sets for SCI as independent variables. The ICF categories that best capture differences in overall health refer to areas of life such as self-care, relationships, economic self-sufficiency and community life. Only about 25% of the ICF categories of the Brief ICF Core Sets for the early post-acute and for long-term contexts were selected in the Lasso regression and differentiate, therefore, among levels of overall health. ICF categories such as d570 Looking after one's health, d870 Economic self-sufficiency, d620 Acquisition of goods and services and d910 Community life, which capture changes in overall health in patients with SCI, should be considered in addition to those of the Brief ICF Core Sets in clinical and epidemiological studies in persons with SCI.

  16. A revised analysis of Lawson criteria and its implications for ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panarella, E.

    1995-12-31

    Recently, a re-examination of the breakeven conditions for D-T plasmas has been presented. The results show that breakeven might not follow the Lawson nt rule, and in particular the plasma containment time seems to have lost the importance that it previously had. Moreover, a minimum particle density of the order of {approximately}10{sup 15} cm{sup {minus}3} has been found to be required for breakeven, which indicates that the inertial confinement fusion effort is in the right position to reach the fusion goal. In light of these results, a reassessment of Lawson`s analysis has been undertaken. Lawson considered the case of amore » pulsed system that followed this idealized cycle: the gas is heated instantaneously to a temperature T, which is maintained for a time t, after which the gas is allowed to cool. Conduction loss is neglected entirely, and the energy used to heat the gas and supply the radiation loss is regained as useful heat. In order to illustrate how the analysis by Lawson can be improved, the cycle to which the gas is subjected should be divided in three phases: 1st phase: rapid heating of the gas for a time t{sub 1} to bring it from the original ambient temperature to the fusion temperature T; 2nd phase: continuous injection of energy in the plasma for a time t{sub 2} to maintain the temperature T; 3rd phase: no more injection of energy and cooling of the gas to the ambient temperature in a time t{sub 3}.« less

  17. Evaluation of two (125)I-radiolabeled acridine derivatives for Auger-electron radionuclide therapy of melanoma.

    PubMed

    Gardette, Maryline; Viallard, Claire; Paillas, Salomé; Guerquin-Kern, Jean-Luc; Papon, Janine; Moins, Nicole; Labarre, Pierre; Desbois, Nicolas; Wong-Wah-Chung, Pascal; Palle, Sabine; Wu, Ting-Di; Pouget, Jean-Pierre; Miot-Noirault, Elisabeth; Chezal, Jean-Michel; Degoul, Francoise

    2014-08-01

    We previously selected two melanin-targeting radioligands [(125)I]ICF01035 and [(125)I]ICF01040 for melanoma-targeted (125)I radionuclide therapy according to their pharmacological profile in mice bearing B16F0 tumors. Here we demonstrate in vitro that these compounds present different radiotoxicities in relation to melanin and acidic vesicle contents in B16F0, B16F0 PTU and A375 cell lines. ICF01035 is effectively observed in nuclei of achromic (A375) melanoma or in melanosomes of melanized melanoma (B16F0), while ICF01040 stays in cytoplasmic vesicles in both cells. [(125)I]ICF01035 induced a similar survival fraction (A50) in all cell lines and led to a significant decrease in S-phase cells in amelanotic cell lines. [(125)I]ICF01040 induced a higher A50 in B16 cell lines compared to [(125)I]ICF01035 ones. [(125)I]ICF01040 induced a G2/M blockade in both A375 and B16F0 PTU, associated with its presence in cytoplasmic acidic vesicles. These results suggest that the radiotoxicity of [(125)I]ICF01035 and [(125)I]ICF01040 are not exclusively reliant on DNA alterations compatible with γ rays but likely result from local dose deposition (Auger electrons) leading to toxic compound leaks from acidic vesicles. In vivo, [(125)I]ICF01035 significantly reduced the number of B16F0 lung colonies, enabling a significant increase in survival of the treated mice. Targeting melanosomes or acidic vesicles is thus an option for future melanoma therapy.

  18. 42 CFR 440.150 - Intermediate care facility (ICF/IIDICF/IID) services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Intermediate care facility (ICF/IIDICF/IID... Definitions § 440.150 Intermediate care facility (ICF/IIDICF/IID) services. (a) “ICF/IIDICF/IID services” means those items and services furnished in an intermediate care facility for Individuals with...

  19. 42 CFR 440.150 - Intermediate care facility (ICF/IIDICF/IID) services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Intermediate care facility (ICF/IIDICF/IID... Definitions § 440.150 Intermediate care facility (ICF/IIDICF/IID) services. (a) “ICF/IIDICF/IID services” means those items and services furnished in an intermediate care facility for Individuals with...

  20. First-principles equation-of-state table of beryllium based on density-functional theory calculations

    DOE PAGES

    Ding, Y. H.; Hu, S. X.

    2017-06-06

    Beryllium has been considered a superior ablator material for inertial confinement fusion (ICF) target designs. An accurate equation-of-state (EOS) of beryllium under extreme conditions is essential for reliable ICF designs. Based on density-functional theory (DFT) calculations, we have established a wide-range beryllium EOS table of density ρ = 0.001 to 500 g/cm 3 and temperature T = 2000 to 10 8 K. Our first-principle equation-of-state (FPEOS) table is in better agreement with the widely used SESAME EOS table (SESAME 2023) than the average-atom INFERNO and Purgatorio models. For the principal Hugoniot, our FPEOS prediction shows ~10% stiffer than the lastmore » two models in the maximum compression. Although the existing experimental data (only up to 17 Mbar) cannot distinguish these EOS models, we anticipate that high-pressure experiments at the maximum compression region should differentiate our FPEOS from INFERNO and Purgatorio models. Comparisons between FPEOS and SESAME EOS for off-Hugoniot conditions show that the differences in the pressure and internal energy are within ~20%. By implementing the FPEOS table into the 1-D radiation–hydrodynamic code LILAC, we studied in this paper the EOS effects on beryllium-shell–target implosions. Finally, the FPEOS simulation predicts higher neutron yield (~15%) compared to the simulation using the SESAME 2023 EOS table.« less

  1. First-principles equation-of-state table of beryllium based on density-functional theory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y. H.; Hu, S. X.

    Beryllium has been considered a superior ablator material for inertial confinement fusion (ICF) target designs. An accurate equation-of-state (EOS) of beryllium under extreme conditions is essential for reliable ICF designs. Based on density-functional theory (DFT) calculations, we have established a wide-range beryllium EOS table of density ρ = 0.001 to 500 g/cm 3 and temperature T = 2000 to 10 8 K. Our first-principle equation-of-state (FPEOS) table is in better agreement with the widely used SESAME EOS table (SESAME 2023) than the average-atom INFERNO and Purgatorio models. For the principal Hugoniot, our FPEOS prediction shows ~10% stiffer than the lastmore » two models in the maximum compression. Although the existing experimental data (only up to 17 Mbar) cannot distinguish these EOS models, we anticipate that high-pressure experiments at the maximum compression region should differentiate our FPEOS from INFERNO and Purgatorio models. Comparisons between FPEOS and SESAME EOS for off-Hugoniot conditions show that the differences in the pressure and internal energy are within ~20%. By implementing the FPEOS table into the 1-D radiation–hydrodynamic code LILAC, we studied in this paper the EOS effects on beryllium-shell–target implosions. Finally, the FPEOS simulation predicts higher neutron yield (~15%) compared to the simulation using the SESAME 2023 EOS table.« less

  2. Effect of insulating concrete forms in concrete compresive strength

    NASA Astrophysics Data System (ADS)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  3. 42 CFR 440.150 - Intermediate care facility (ICF/MR) services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Intermediate care facility (ICF/MR) services. 440....150 Intermediate care facility (ICF/MR) services. (a) “ICF/MR services” means those items and services furnished in an intermediate care facility for the mentally retarded if the following conditions are met: (1...

  4. State Medicaid ICF-MR Utilization and Expenditures in the 1980-1984 Period.

    ERIC Educational Resources Information Center

    Harrington, Charlene; Swan, James H.

    1990-01-01

    State Medicaid expenditures for Intermediate Care Facilities for the Mentally Retarded (ICF-MR) increased sharply between 1980 and 1984. The ICF-MR bed capacity declined relative to the total state population, while numbers of ICF-MR Medicaid recipients increased. Trends among states are examined, emphasizing changes in demographic factors,…

  5. The ICF and Postsurgery Occupational Therapy after Traumatic Hand Injury

    ERIC Educational Resources Information Center

    Fitinghoff, Helene; Lindqvist, Birgitta; Nygard, Louise; Ekholm, Jan; Schult, Marie-Louise

    2011-01-01

    Recent studies have examined the effectiveness of hand rehabilitation programmes and have linked the outcomes to the concept of ICF but not to specific ICF category codes. The objective of this study was to gain experience using ICF concepts to describe occupational therapy interventions during postsurgery hand rehabilitation, and to describe…

  6. Towards the system-wide implementation of the International Classification of Functioning, Disability and Health in routine practice: Lessons from a pilot study in China.

    PubMed

    Li, Jianan; Prodinger, Birgit; Reinhardt, Jan D; Stucki, Gerold

    2016-06-13

    In 2011 the Chinese leadership in rehabilitation, in collaboration with the International Classification of Functioning, Disability and Health (ICF) Research Branch, embarked on an effort towards the system-wide implementation of the ICF in the healthcare system in China. We report here on the lessons learned from the pilot phase of testing the ICF Generic Set, a parsimonious set of 7 ICF categories, which have been shown to best describe functioning across the general population and people with various health conditions, for use in routine clinical practice in China. The paper discusses whether classification and measurement are compatible, what number of ICF categories should be included in data collection in routine practice, and the usefulness of a functioning profile and functioning score in clinical practice and health research planning. In addition, the paper reflects on the use of ICF qualifiers in a rating scale and the particularities of certain ICF categories contained in the ICF Generic Set when used as items in the context of Chinese rehabilitation and healthcare. Finally, the steps required to enhance the utility of system-wide implementation of the ICF in rehabilitation and healthcare services are set out.

  7. Exploring changes over time in habilitation professionals' perceptions and applications of the International Classification of Functioning, Disability and Health, version for Children and Youth (ICF-CY).

    PubMed

    Adolfsson, Margareta; Granlund, Mats; Björck-Akesson, Eva; Ibragimova, Nina; Pless, Mia

    2010-07-01

    This study explored how professionals in inter-disciplinary teams perceived the implementation of the World Health Organization's International Classification of Functioning, Disability and Health, version for Children and Youth (ICF-CY) in Swedish habilitation services. Descriptive longitudinal mixed-methods design. Following participation in a 2-day in-service training on the ICF-CY, 113 professionals from 14 interdisciplinary teams described their perceptions of the implementation of the ICF-CY at 3 consecutive time-points: during in-service training, after 1 year, and after 2.5 years. Implementation of the ICF-CY in daily work focused on assessment and habilitation planning and required adaptations of routines and materials. The ICF-CY was perceived as useful in supporting analyses and in communication about children's needs. Professionals also perceived it as contributing to new perspectives on problems and a sharpened focus on participation. Professionals indicated that the ICF-CY enhanced their awareness of families' views of child participation, which corresponded to organizational goals for habilitation services. An implementation finding was a lack of tools fitting the comprehensive ICF-CY perspective. The study points to the need for ICF-CY-based assessment and intervention methods focusing on child participation.

  8. Two steps forward, one step back? A commentary on the disease-specific core sets of the International Classification of Functioning, Disability and Health (ICF).

    PubMed

    McIntyre, Anne; Tempest, Stephanie

    2007-09-30

    The International Classification of Functioning, Disability and Health (ICF) has been received favourably by health care professionals, disability rights organizations and proponents of the social model of disability. The success of the ICF largely depends on its uptake in practice and is considered unwieldy in its full format. To enhance the application of the ICF in practice, disease and site-specific core sets have been developed. The objective of this paper is to stimulate thought and discussion about the place of the ICF core sets in rehabilitation practice. The authors' review of the literature uses the ICF core sets (especially stroke), to debate if the ICF is at risk of taking two steps forward, one step back in its holistic portrayal of health. ICF disease specific core sets could be seen as taking two steps forward to enhance the user friendliness of the ICF and evidence-based practice in rehabilitation. However, there is a danger of taking one step back in reverting to a disease-specific classification. It is too early to conclude the efficacy of the disease-specific core sets, but there is an opportunity to debate where the next steps may lead.

  9. [Introduction of an accreditation system for hospital informed consent forms].

    PubMed

    López-Picazo, J J; Tomás-Garcia, N; Calle-Urra, J E; Parra-Hidalgo, P; Valverde-Iniesta, J J

    2015-01-01

    To describe an accreditation system for informed consent forms (ICF) in a tertiary hospital, as an intervention to improve their quality, and to check the improvements achieved. Following an external evaluation of the ICF quality in a public hospital in Murcia (Spain), an accreditation committee set the ICF requirements and associated procedures. Effectiveness is assessed by comparing two external evaluations carried out by the EMCA Program (2011 and 2013) and based on 19 criteria and a sample of 60 ICF for every public hospital in Murcia Region. To be accredited, every ICF must meet the 19 external criteria plus 5 based on legibility, readability and scientific and technical validity. A form to fill in the contents of every ICF was agreed, which would be reviewed, approved and validated for five years. Before the implementation, 8.2 defects/ICF were detected. The accreditation system obtained an 89% improvement (0.9 defects/ICF) and achieved significant improvements in 18 criteria, 16 of which are benchmarked. The accreditation system achieved a substantial improvement in the ICF (obtaining a better result in external evaluations) and guarantees their contents, legibility and readability. This system needs to be extended to other hospitals, since it is not clear whether common ICFs would be suitable. However, this improvement is structural and does not guarantee that the overall information/consent procedure is done properly, thus complementary strategies for measurement and improvement are required. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  10. Content validation of the international classification of functioning, disability and health core set for stroke from gender perspective using a qualitative approach.

    PubMed

    Glässel, A; Coenen, M; Kollerits, B; Cieza, A

    2014-06-01

    The extended ICF Core Set for stroke is an application of the International Classification of Functioning, Disability and Health (ICF) of the World Health Organisation (WHO) with the purpose to represent the typical spectrum of functioning of persons with stroke. The objective of the study is to add evidence to the content validity of the extended ICF Core Set for stroke from persons after stroke taking into account gender perspective. A qualitative study design was conducted by using individual interviews with women and men after stroke in an in- and outpatient rehabilitation setting. The sampling followed the maximum variation strategy. Sample size was determined by saturation. Concepts from qualitative data analysis were linked to ICF categories and compared to the extended ICF Core Set for stroke. Twelve women and 12 men participated in 24 individual interviews. In total, 143 out of 166 ICF categories included in the extended ICF Core Set for stroke were confirmed (women: N.=13; men: N.=17; both genders: N.=113). Thirty-eight additional categories that are not yet included in the extended ICF Core Set for stroke were raised by women and men. This study confirms that the experience of functioning and disability after stroke shows communalities and differences for women and men. The validity of the extended ICF Core Set for stroke could be mostly confirmed, since it does not only include those areas of functioning and disability relevant to both genders but also those exclusively relevant to either women or men. Further research is needed on ICF categories not yet included in the extended ICF Core Set for stroke.

  11. Improved participants' understanding of research information in real settings using the SIDCER informed consent form: a randomized-controlled informed consent study nested with eight clinical trials.

    PubMed

    Koonrungsesomboon, Nut; Tharavanij, Thipaporn; Phiphatpatthamaamphan, Kittichet; Vilaichone, Ratha-Korn; Manuwong, Sudsayam; Curry, Parichat; Siramolpiwat, Sith; Punchaipornpon, Thanachai; Kanitnate, Supakit; Tammachote, Nattapol; Yamprasert, Rodsarin; Chanvimalueng, Waipoj; Kaewkumpai, Ruchirat; Netanong, Soiphet; Kitipawong, Peerapong; Sritipsukho, Paskorn; Karbwang, Juntra

    2017-02-01

    This study aimed to test the applicability and effectiveness of the principles and informed consent form (ICF) template proposed by the Strategic Initiative for Developing Capacity in Ethical Review (SIDCER) across multiple clinical trials involving Thai research participants with various conditions. A single-center, randomized-controlled study nested with eight clinical trials was conducted at Thammasat University Hospital, Thailand. A total of 258 participants from any of the eight clinical trials were enrolled and randomly assigned to read either the SIDCER ICF (n = 130) or the conventional ICF (n = 128) of the respective trial. Their understanding of necessary information was assessed using the post-test questionnaire; they were allowed to consult a given ICF while completing the questionnaire. The primary endpoint was the proportion of the participants who had the post-test score of ≥80%, and the secondary endpoint was the total score of the post-test. The proportion of the participants in the SIDCER ICF group who achieved the primary endpoint was significantly higher than that of the conventional ICF group (60.8 vs. 41.4%, p = 0.002). The total score of the post-test was also significantly higher among the participants who read the SIDCER ICF than those who read the conventional ICF (83.3 vs. 76.0%, p < 0.001). The present study demonstrated that the SIDCER ICF was applicable and effective to improve Thai research participants' understanding of research information in diverse clinical trials. Using the SIDCER ICF methodology, clinical researchers can improve the quality of ICFs for their trials.

  12. [Functioning and disability: the International Classification of Functioning, Disability and Health (ICF)].

    PubMed

    Fernández-López, Juan Antonio; Fernández-Fidalgo, María; Geoffrey, Reed; Stucki, Gerold; Cieza, Alarcos

    2009-01-01

    The World Health Organization's International Classification of Functioning, Disability and Health (ICF) has provided a new foundation for our understanding of health, functioning, and disability. It covers most of the health and health-related domains that make up the human experience, and the most environmental factors that influence that experience of functioning and disability. With the exhaustive ICF, patients' functioning -including its components body functions and structures and activities and participation-, becomes a central perspective in medicine. To implement the ICF in medicine and other fields, practical tools (= ICF Core Sets) have been developed. They are selected sets of categories out of the whole classification which serve as minimal standards for the assessment and reporting of functioning and health for clinical studies and clinical encounters (Brief ICF Core Set) or as standards for multiprofessional comprehensive assessment (Comprehensive ICF Core Set). Different from generic and condition-specific health-status measures, the ICF Core Sets include important body functions and structures and contextual factors. The use of the ICF Core Sets provides an important step towards improved communications between healthcare providers and professionals, and will enable patients and their families to understand and communicate with health professionals about their functioning and treatment goals. Specific applications include multi- and interdisciplinary assessment in clinical settings and in legal expert evaluations and use in disease or functioning-management programs. The ICF has also a potential as a conceptual framework to clarify an interrelated universe of health-related concepts which can be elucidated based on the ICF and therefore will be an ideal tool for teaching students in all medical fields and may open doors to multi-professional learning.

  13. A booklet on participants' rights to improve consent for clinical research: a randomized trial.

    PubMed

    Benatar, Jocelyne R; Mortimer, John; Stretton, Matthew; Stewart, Ralph A H

    2012-01-01

    Information on the rights of subjects in clinical trials has become increasingly complex and difficult to understand. This study evaluates whether a simple booklet which is relevant to all research studies improves the understanding of rights needed for subjects to provide informed consent. 21 currently used informed consent forms (ICF) from international clinical trials were separated into information related to the specific research study, and general information on participants' rights. A booklet designed to provide information on participants' rights which used simple language was developed to replace this information in current ICF's Readability of each component of ICF's and the booklet was then assessed using the Flesch-Kincaid Reading ease score (FK). To further evaluate the booklet 282 hospital inpatients were randomised to one of three ways to present research information; a standard ICF, the booklet combined with a short ICF, or the booklet combined with a simplified ICF. Comprehension of information related to the research proposal and to participant's rights was assessed by questionnaire. Information related to participants' rights contributed an average of 44% of the words in standard ICFs, and was harder to read than information describing the clinical trial (FK 25 versus (vs.) 41 respectively, p = 0.0003). The booklet reduced the number of words and improved FK from 25 to 42. The simplified ICF had a slightly higher FK score than the standard ICF (50 vs. 42). Comprehension assessed in inpatients was better for the booklet and short ICF 62%, (95% confidence interval (CI) 56 to 67) correct, or simplified ICF 62% (CI 58 to 68) correct compared to 52%, (CI 47 to 57) correct for the standard ICF, p = 0.009. This was due to better understanding of questions on rights (62% vs. 49% correct, p = 0.0008). Comprehension of study related information was similar for the simplified and standard ICF (60% vs. 64% correct, p = 0.68). A booklet provides a simple consistent approach to providing information on participant rights which is relevant to all research studies, and improves comprehension of patients who typically participate in clinical trials.

  14. Identification of ICF categories relevant for nursing in the situation of acute and early post-acute rehabilitation

    PubMed Central

    Mueller, Martin; Boldt, Christine; Grill, Eva; Strobl, Ralf; Stucki, Gerold

    2008-01-01

    Background The recovery of patients after an acute episode of illness or injury depends both on adequate medical treatment and on the early identification of needs for rehabilitation care. The process of early beginning rehabilitation requires efficient communication both between health professionals and the patient in order to effectively address all rehabilitation goals. The currently used nursing taxonomies, however, are not intended for interdisciplinary use and thus may not contribute to efficient rehabilitation management and an optimal patient outcome. The ICF might be the missing link in this communication process. The objective of this study was to identify the categories of the International Classification of Functioning, Disability and Health (ICF) categories relevant for nursing care in the situation of acute and early post-acute rehabilitation. Methods First, in a consensus process, "Leistungserfassung in der Pflege" (LEP) nursing interventions relevant for the situation of acute and early post-acute rehabilitation were selected. Second, in an integrated two-step linking process, two nursing experts derived goals of LEP nursing interventions from their practical knowledge and selected corresponding ICF categories most relevant for patients in acute and post-acute rehabilitation (ICF Core Sets). Results Eighty-seven percent of ICF Core Set categories could be linked to goals of at least one nursing intervention variable of LEP. The ICF categories most frequently linked with LEP nursing interventions were respiration functions, experience of self and time functions and focusing attention. Thirteen percent of ICF Core Set categories could not be linked with LEP nursing interventions. The LEP nursing interventions which were linked with the highest number of different ICF-categories of all were "therapeutic intervention", "patient-nurse communication/information giving" and "mobilising". Conclusion The ICF Core Sets for the acute hospital and early post-acute rehabilitation facilities are highly relevant for rehabilitation nursing. Linking nursing interventions with ICF Core Set categories is a feasible way to analyse nursing. Using the ICF Core Sets to describe goals of nursing interventions both facilitates inter-professional communication and respects patient's needs. The ICF may thus be a useful framework to set nursing intervention goals. PMID:18282288

  15. Conversion of the Mini-Mental State Examination to the International Classification of Functioning, Disability and Health terminology and scoring system.

    PubMed

    De Vriendt, P; Gorus, E; Bautmans, I; Mets, T

    2012-01-01

    In older patients, evaluation of the cognitive status is crucial. The Mini-Mental State Examination (MMSE) is widely used for screening of cognition, providing fairly high sensitivity, specificity and reproducibility. Recently, a consensus emerged on the necessity of an international and transparent language, as provided by the WHO's International Classification of Functioning, Disability and Health (ICF). Most assessment tools however are not in accordance with the ICF. To reformulate the MMSE according to the ICF, both for the individual items and for the scoring system. MMSE data (scores varying from 3 to 30/30) of (1) 217 cognitively healthy elderly, (2) 60 persons with mild cognitive impairment, (3) 60 patients with mild Alzheimer's disease (AD), and (4) 60 patients with moderate/severe AD were obtained from studies at a university hospital setting. Subjects were aged 65 years or more and recruited either through advertisement (group 1), from the geriatric day hospital (groups 2 and 3), or the geriatric ward (group 4). The allocation to the groups was done after multidisciplinary evaluation. The conversion of the MMSE to ICF-MMSE was done by content comparison and by subsequent translation of the scoring system using automatic algorithms. All MMSE items were converted to the corresponding ICF categories. Three ICF domains were addressed: global and specific mental functions, general tasks and demands, divided over 6 ICF categories (orientation time/place, sustaining attention, memory functions, mental functions of language, undertaking a simple task). Scores on individual items were transformed according to their relative weight on the original MMSE scale, and a total ICF-MMSE score from 0 (no problem) to 100 (complete problem) was generated. Translation was satisfying, as illustrated by a good correlation between MMSE and ICF-MMSE. The diagnostic groups were distributed over the ICF-MMSE scores as expected. For each ICF domain, ICF-MMSE subscores were higher with increasing severity in cognitive decline. There was a higher dispersion, in accordance with the more detailed scoring possibilities of the ICF-MMSE. It is possible to adapt the MMSE to the ICF concept. This adaptation enhances interdisciplinary communication since it provides more clarity in assessment, with better visibility of the areas covered by the instrument. Copyright © 2011 S. Karger AG, Basel.

  16. Ion Implantation Doping of Inertial Confinement Fusion Targets

    DOE PAGES

    Shin, S. J.; Lee, J. R. I.; van Buuren, T.; ...

    2017-12-19

    Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here in this study, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for themore » entire range of ion doses studied (2 × 10 14 to 1 × 10 16 cm -2) and for annealing temperatures up to 700°C. Lastly, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~10 17 cm -2.« less

  17. Summaries of FY16 LANL experimental campaigns at the OMEGA and EP Laser Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, Eric Nicholas; Merritt, Elizabeth Catherine; Montgomery, David

    In FY16, Los Alamos National Laboratory carried out 22 shot days on the OMEGA and OMEGA- EP laser facilities in the areas of High Energy Density (HED) Science and Inertial Confinement Fusion (ICF). In HED our focus areas were on radiation flow, hydrodynamic turbulent mix and burn, warm dense matter equations of state, and coupled Kelvin-­Helmholtz (KH)/Richtmyer-­ Meshkov (RM) instability growth. For ICF our campaigns focused on the Priority Research Directions (PRD) of implosion phase mix and stagnation and burn, specifically as they pertain to Laser Direct Drive (LDD). We also had several focused shot days on transport properties inmore » the kinetic regime. We continue to develop advanced diagnostics such as Neutron Imaging, Gamma Reaction History, and Gas Cherenkov Detectors. Below are a summary of our campaigns, their motivation, and main results from this year.« less

  18. Ion Implantation Doping of Inertial Confinement Fusion Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, S. J.; Lee, J. R. I.; van Buuren, T.

    Controlled doping of inertial confinement fusion (ICF) targets is needed to enable nuclear diagnostics of implosions. Here in this study, we demonstrate that ion implantation with a custom-designed carousel holder can be used for azimuthally uniform doping of ICF fuel capsules made from a glow discharge polymer (GDP). Particular emphasis is given to the selection of the initial wall thickness of GDP capsules as well as implantation and postimplantation annealing parameters in order to minimize capsule deformation during a postimplantation thermal treatment step. In contrast to GDP, ion-implanted high-density carbon exhibits excellent thermal stability and ~100% implantation efficiency for themore » entire range of ion doses studied (2 × 10 14 to 1 × 10 16 cm -2) and for annealing temperatures up to 700°C. Lastly, we demonstrate a successful doping of planar Al targets with isotopes of Kr and Xe to doses of ~10 17 cm -2.« less

  19. Laboratory Study of the Shaping and Evolution of Magnetized Episodic Plasma Jets

    NASA Astrophysics Data System (ADS)

    Higginson, Drew

    2015-11-01

    The expansion of hot, dense plasma (100 eV, 1018 cm-3) into vacuum occupied by a strong magnetic field (β =Pkinetic /Pmag ~ 1) along the expansion axis is a seemingly elementary physics problem, yet it is one that has scarcely been investigated. As well as being a fundamental problem in plasma physics, understanding such a situation is important to provide an explanation of large-scale jets observed in the formation of young stellar objects (YSO). Additionally, the ability to manipulate such a situation (e.g. to optimize x-ray emission) may be essential to the feasibility of recently proposed inertial confinement fusion (ICF) schemes with an imposed magnetic field. To investigate these situations, a CF2 foil is irradiated with the ELFIE laser (1013 W/cm2, 0.6 ns) in an external axial magnetic field of 20 T. As the plasma expands radially it is restricted by magnetic pressure that creates a cavity with a shock at the expansion edge. This shock redirects flow back on axis and creates a strong, stationary, conical shock that collimates the flow into a jet traveling over 1000 km/s and extending many centimeters. The effect of episodic heating (e.g. from variable mass ejection in a YSO, or pulse shaping in ICF) was investigated by irradiating the target with a precursor laser (1012 W/cm2, 0.6 ns) at 9 to 19 ns prior to the main pulse. The addition of this relatively small addition of energy (<20% of the main pulse energy) changed the dynamics of the expansion dramatically by increasing the strength of the conical shock, reducing the forward expansion of the cavity and dramatically increasing emission. We also present MHD simulations that reproduce the experimental observables and help to understand dynamics of jet and cavity formation. Prepared by LLNL under Contract DE-AC52-07NA27344. Presently at Lawrence Livermore National Laboratory.

  20. Inertial confinement fusion quarterly report, October--December 1992. Volume 3, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, S.N.

    1992-12-31

    This report contains papers on the following topics: The Beamlet Front End: Prototype of a new pulse generation system;imaging biological objects with x-ray lasers; coherent XUV generation via high-order harmonic generation in rare gases; theory of high-order harmonic generation; two-dimensional computer simulations of ultra- intense, short-pulse laser-plasma interactions; neutron detectors for measuring the fusion burn history of ICF targets; the recirculator; and lasnex evolves to exploit computer industry advances.

  1. Towards system-wide implementation of the International Classification of Functioning, Disability and Health (ICF) in routine practice: Developing simple, intuitive descriptions of ICF categories in the ICF Generic and Rehabilitation Set.

    PubMed

    Prodinger, Birgit; Reinhardt, Jan D; Selb, Melissa; Stucki, Gerold; Yan, Tiebin; Zhang, Xia; Li, Jianan

    2016-06-13

    A national, multi-phase, consensus process to develop simple, intuitive descriptions of International Classification of Functioning, Disability and Health (ICF) categories contained in the ICF Generic and Rehabilitation Sets, with the aim of enhancing the utility of the ICF in routine clinical practice, is presented in this study. A multi-stage, national, consensus process was conducted. The consensus process involved 3 expert groups and consisted of a preparatory phase, a consensus conference with consecutive working groups and 3 voting rounds (votes A, B and C), followed by an implementation phase. In the consensus conference, participants first voted on whether they agreed that an initially developed proposal for simple, intuitive descriptions of an ICF category was in fact simple and intuitive. The consensus conference was held in August 2014 in mainland China. Twenty-one people with a background in physical medicine and rehabilitation participated in the consensus process. Four ICF categories achieved consensus in vote A, 16 in vote B, and 8 in vote C. This process can be seen as part of a larger effort towards the system-wide implementation of the ICF in routine clinical and rehabilitation practice to allow for the regular and comprehensive evaluation of health outcomes most relevant for the monitoring of quality of care.

  2. Content comparison of haemophilia specific patient-rated outcome measures with the international classification of functioning, disability and health (ICF, ICF-CY)

    PubMed Central

    2010-01-01

    Background Patient-Reported Outcomes (PROs) are considered important outcomes because they reflect the patient's experience in clinical trials. PROs have been included in the field of haemophilia only recently. Purpose Comparing the contents of PROs measures used in haemophilia, based on the ICF/ICF-CY as frame of reference. Methods Haemophilia-specific PROs for adults and children were selected on the grounds of international accessibility. The content of the selected instruments were examined by linking the concepts within the items of these instruments to the ICF/ICF-CY. Results Within the 5 selected instruments 365 concepts were identified, of which 283 concepts were linked to the ICF/ICF CY and mapped into 70 different categories. The most frequently used categories were "b152: Emotional functions" and "e1101: Drugs". Conclusions The present paper provides an overview on current PROs in haemophilia and facilitates the selection of appropriate instruments for specific purposes in clinical and research settings. This work was made possible by the grant of the European Murinet Project (Multidisciplinary Research Network on Health and Disability in Europe). PMID:21108796

  3. Participation as an outcome measure in psychosocial oncology: content of cancer-specific health-related quality of life instruments.

    PubMed

    van der Mei, Sijrike F; Dijkers, Marcel P J M; Heerkens, Yvonne F

    2011-12-01

    To examine to what extent the concept and the domains of participation as defined in the International Classification of Functioning, Disability and Health (ICF) are represented in general cancer-specific health-related quality of life (HRQOL) instruments. Using the ICF linking rules, two coders independently extracted the meaningful concepts of ten instruments and linked these to ICF codes. The proportion of concepts that could be linked to ICF codes ranged from 68 to 95%. Although all instruments contained concepts linked to Participation (Chapters d7-d9 of the classification of 'Activities and Participation'), the instruments covered only a small part of all available ICF codes. The proportion of ICF codes in the instruments that were participation related ranged from 3 to 35%. 'Major life areas' (d8) was the most frequently used Participation Chapter, with d850 'remunerative employment' as the most used ICF code. The number of participation-related ICF codes covered in the instruments is limited. General cancer-specific HRQOL instruments only assess social life of cancer patients to a limited degree. This study's information on the content of these instruments may guide researchers in selecting the appropriate instrument for a specific research purpose.

  4. To adopt is to adapt: the process of implementing the ICF with an acute stroke multidisciplinary team in England.

    PubMed

    Tempest, Stephanie; Harries, Priscilla; Kilbride, Cherry; De Souza, Lorraine

    2012-01-01

    The success of the International Classification of Functioning, Disability and Health (ICF) depends on its uptake in clinical practice. This project aimed to explore ways the ICF could be used with an acute stroke multidisciplinary team and identify key learning from the implementation process. Using an action research approach, iterative cycles of observe, plan, act and evaluate were used within three phases: exploratory; innovatory and reflective. Thematic analysis was undertaken, using a model of immersion and crystallisation, on data collected via interview and focus groups, e-mail communications, minutes from relevant meetings, field notes and a reflective diary. Two overall themes were determined from the data analysis which enabled implementation. There is a need to: (1) adopt the ICF in ways that meet local service needs; and (2) adapt the ICF language and format. The empirical findings demonstrate how to make the ICF classification a clinical reality. First, we need to adopt the ICF as a vehicle to implement local service priorities e.g. to structure a multidisciplinary team report, thus enabling ownership of the implementation process. Second, we need to adapt the ICF terminology and format to make it acceptable for use by clinicians.

  5. A tool for enhancing strategic health planning: a modeled use of the International Classification of Functioning, Disability and Health

    PubMed Central

    Sinclair, Lisa Bundara; Fox, Michael H.; Betts, Donald R.

    2015-01-01

    SUMMARY This article describes use of the International Classification of Functioning, Disability and Health (ICF) as a tool for strategic planning. The ICF is the international classification system for factors that influence health, including Body Structures, Body Functions, Activities and Participation and Environmental Factors. An overview of strategic planning and the ICF are provided. Selected ICF concepts and nomenclature are used to demonstrate its utility in helping develop a classic planning framework, objectives, measures and actions. Some issues and resolutions for applying the ICF are described. Applying the ICF for strategic health planning is an innovative approach that fosters the inclusion of social ecological health determinants and broad populations. If employed from the onset of planning, the ICF can help public health organizations systematically conceptualize, organize and communicate a strategic health plan. This article is a US Government work and is in the public domain in the USA. PMID:23147247

  6. A tool for enhancing strategic health planning: a modeled use of the International Classification of Functioning, Disability and Health.

    PubMed

    Sinclair, Lisa Bundara; Fox, Michael H; Betts, Donald R

    2013-01-01

    This article describes use of the International Classification of Functioning, Disability and Health (ICF) as a tool for strategic planning. The ICF is the international classification system for factors that influence health, including Body Structures, Body Functions, Activities and Participation and Environmental Factors. An overview of strategic planning and the ICF are provided. Selected ICF concepts and nomenclature are used to demonstrate its utility in helping develop a classic planning framework, objectives, measures and actions. Some issues and resolutions for applying the ICF are described. Applying the ICF for strategic health planning is an innovative approach that fosters the inclusion of social ecological health determinants and broad populations. If employed from the onset of planning, the ICF can help public health organizations systematically conceptualize, organize and communicate a strategic health plan. Published 2012. This article is a US Government work and is in the public domain in the USA.

  7. OMEGA FY13 HED requests - LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Workman, Jonathan B; Loomis, Eric N

    2012-06-25

    This is a summary of scientific work to be performed on the OMEGA laser system located at the Laboratory for Laser Energetics in Rochester New York. The work is funded through Science and ICF Campagins and falls under the category of laser-driven High-Energy Density Physics experiments. This summary is presented to the Rochester scheduling committee on an annual basis for scheduling and planning purposes.

  8. An International Clinical Study of Ability and Disability in Autism Spectrum Disorder Using the WHO-ICF Framework.

    PubMed

    Mahdi, Soheil; Albertowski, Katja; Almodayfer, Omar; Arsenopoulou, Vaia; Carucci, Sara; Dias, José Carlos; Khalil, Mohammad; Knüppel, Ane; Langmann, Anika; Lauritsen, Marlene Briciet; da Cunha, Graccielle Rodrigues; Uchiyama, Tokio; Wolff, Nicole; Selb, Melissa; Granlund, Mats; de Vries, Petrus J; Zwaigenbaum, Lonnie; Bölte, Sven

    2018-06-01

    This is the fourth international preparatory study designed to develop International Classification of Functioning, Disability and Health (ICF, and Children and Youth version, ICF-CY) Core Sets for Autism Spectrum Disorder (ASD). Examine functioning of individuals diagnosed with ASD as documented by the ICF-CY in a variety of clinical settings. A cross-sectional study was conducted, involving 11 units from 10 countries. Clinical investigators assessed functioning of 122 individuals with ASD using the ICF-CY checklist. In total, 139 ICF-CY categories were identified: 64 activities and participation, 40 body functions and 35 environmental factors. The study results reinforce the heterogeneity of ASD, as evidenced by the many functional and contextual domains impacting on ASD from a clinical perspective.

  9. Use of the International Classification of Functioning, Disability and Health Generic-30 Set for the characterization of outpatients: Italian Society of Physical and Rehabilitative Medicine Residents Section Project.

    PubMed

    Gimigliano, Francesca; De Sire, Alessandro; Gastaldo, Marco; Maghini, Irene; Paoletta, Marco; Pasquini, Andrea; Boldrini, Paolo; Selb, Melissa; Prodinger, Birgit

    2018-06-11

    The International Classification of Functioning, Disability and Health (ICF) Generic- 30 Set (previously referred to as Rehabilitation Set) is a minimal set of ICF categories for reporting and assessing functioning and disability in clinical populations with different health conditions along the continuum of care. Recently, the Italian Society of Physical and Rehabilitation Medicine (SIMFER) developed an Italian modification of the simple and intuitive descriptions (SID) of these categories. This study was the first one to implement the use of the SID in practice. 1) To implement the use of the ICF in clinical practice and research among Italian Residents in PRM. 2) To verify if the SID made the application of ICF Generic 30 Set more user-friendly than the original descriptions. 3) To examine the prevalence of functioning problems of patients accessing Rehabilitation Services to serve as reference for the development of an ICF-based clinical data collection tool. Multicenter cross-sectional study. Italian Physical Medicine and Rehabilitation (PRM) outpatient rehabilitation services. Patients referring to Italian PRM outpatient rehabilitation services and Italian Residents in PRM. Each School of Specialization involved, randomly, received the ICF Generic-30 Set with the original descriptions or with the SID. Residents collected over a 4-month period (April-July 2016) patients data related to the ICF Generic-30 Set categories. Moreover, the residents self- assessed their difficulty in using the ICF Generic-30 Set with the original descriptions or with the SID, through a Numeric Rating Scale (NRS). Ninety-three residents collected functioning data of 864 patients (mean aged 57.7±19.3) with ICF Generic-30 Set: 304 with the original descriptions and 560 with SID. The difficulty in using the ICF Generic-30 Set with SID was rated as lower than using the original descriptions (NRS = 2.8±2.5 vs 3.5±3.1; p<0.001). The most common disease was the back pain (9.6%) and the most common altered ICF categories were b280 (76.3%) and b710 (72.9%). This multicenter cross-sectional study shown that the ICF Generic-30 Set is a valuable instrument for reporting and assessing functioning and disability in clinical populations with different health conditions and along the continuum of care and that SID facilitate the understanding of the ICF categories and therefore their use in clinical practice. This National survey, improving the knowledge of ICF among Italian PRM residents, represents an important step towards the system-wide implementation of ICF in the healthcare system.

  10. [Can ICF core sets be helpful in preparing a social-medical expert report due to incapacity to work?--a first proposal].

    PubMed

    Kirschneck, M; Legner, R; Armbrust, W; Nowak, D; Cieza, A

    2015-04-01

    Social-medical expert reports from the German statutory pension insurance are essential for the German statutory pension regulatory authority to decide whether to grant services regarding participation as well as retirement pensions due to incapacity to work.The objective of this investigation is to determine whether the ICF Core Sets and other international approaches, such as the EUMASS Core Sets or ICF Core Set for vocational rehabilitation cover the content of the social-medical expert reports as well as to propose an approach how the ICF can be economically used by the social medicine practitioner when writing a social-medical expert report. A retrospective quantitative study design was used to translate a total of 294 social-medical expert reports from patients with low back pain (LBP) or chronic widespread pain (CWP) into the language of the ICF (linking) by 2 independent health professionals and compare the results with the ICF Core Sets for specific health conditions and other international approaches. The content of social-medical expert reports was largely reflected by the condition specific brief ICF Core Sets, brief ICF Core Sets for vocational rehabilitation and EUMASS Core Sets. The weighted Kappa statistic for the agreement between the 2 health professionals who translated the expert reports were in CWP 0.69 with a bootstrapped confidence interval of 0.67-0.71 and in LBP 0.73 (0.71-0.74). The analyses show that the content of social-medical expert reports varies enormously. A combination of a condition specific brief ICF Core Set as well as vocational rehabilitation and EUMASS ICF Core Sets as well as all ICF-categories from the expert reports that were named at least in 50% of it can largely provide a basis for preparing expert reports. Within the scope of implementation the need for a specific ICF Core Set for expert reports of the German statutory pension insurance should be further analyzed and discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Toward the International Classification of Functioning, Disability and Health (ICF) Rehabilitation Set: A Minimal Generic Set of Domains for Rehabilitation as a Health Strategy.

    PubMed

    Prodinger, Birgit; Cieza, Alarcos; Oberhauser, Cornelia; Bickenbach, Jerome; Üstün, Tevfik Bedirhan; Chatterji, Somnath; Stucki, Gerold

    2016-06-01

    To develop a comprehensive set of the International Classification of Functioning, Disability and Health (ICF) categories as a minimal standard for reporting and assessing functioning and disability in clinical populations along the continuum of care. The specific aims were to specify the domains of functioning recommended for an ICF Rehabilitation Set and to identify a minimal set of environmental factors (EFs) to be used alongside the ICF Rehabilitation Set when describing disability across individuals and populations with various health conditions. Secondary analysis of existing data sets using regression methods (Random Forests and Group Lasso regression) and expert consultations. Along the continuum of care, including acute, early postacute, and long-term and community rehabilitation settings. Persons (N=9863) with various health conditions participated in primary studies. The number of respondents for whom the dependent variable data were available and used in this analysis was 9264. Not applicable. For regression analyses, self-reported general health was used as a dependent variable. The ICF categories from the functioning component and the EF component were used as independent variables for the development of the ICF Rehabilitation Set and the minimal set of EFs, respectively. Thirty ICF categories to be complemented with 12 EFs were identified as relevant to the identified ICF sets. The ICF Rehabilitation Set constitutes of 9 ICF categories from the component body functions and 21 from the component activities and participation. The minimal set of EFs contains 12 categories spanning all chapters of the EF component of the ICF. The identified sets proposed serve as minimal generic sets of aspects of functioning in clinical populations for reporting data within and across heath conditions, time, clinical settings including rehabilitation, and countries. These sets present a reference framework for harmonizing existing information on disability across general and clinical populations. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Comparing contents of outcome measures in cerebral palsy using the International Classification of Functioning (ICF-CY): a systematic review.

    PubMed

    Schiariti, Veronica; Klassen, Anne F; Cieza, Alarcos; Sauve, Karen; O'Donnell, Maureen; Armstrong, Robert; Mâsse, Louise C

    2014-01-01

    The International Classification of Functioning children and youth version (ICF-CY) provides a universal framework for defining and classifying functioning and disability in children worldwide. To facilitate the application of the ICF in practice, ICF based-tools like the "ICF Core Sets" are being developed. In the context of the development of the ICF-CY Core Sets for children with Cerebral Palsy (CP), the aims of this study were as follows: to identify and compare the content of outcome measures used in studies of children with CP using the ICF-CY coding system; and to describe the most frequently addressed areas of functioning in those studies. We searched multiple databases likely to capture studies involving children with CP from January 1998 to March 2012. We included all English language articles that studied children aged 2-18 years and described an interventional or observational study. Constructs of the outcome measures identified in studies were linked to the ICF-CY by two trained professionals. We found 231 articles that described 238 outcome measures. The outcome measures contained 2193 concepts that were linked to the ICF-CY and covered 161 independent ICF-CY categories. Out of the 161 categories, 53 (33.5%) were related to body functions, 75 (46%) were related to activities/participation, 26 (16.1%) were related to environmental factors, and 7 (4.3%) were related to body structures. This systematic review provides information about content of measures that may guide researchers and clinicians in their selection of an outcome measure for use in a study and/or clinical practice with children with CP. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  13. Towards a standardized nutrition and dietetics terminology for clinical practice: An Austrian multicenter clinical documentation analysis based on the International Classification of Functioning, Disability and Health (ICF)-Dietetics.

    PubMed

    Gäbler, Gabriele; Coenen, Michaela; Lycett, Deborah; Stamm, Tanja

    2018-03-03

    High quality, continuity and safe interdisciplinary healthcare is essential. Nutrition and dietetics plays an important part within the interdisciplinary team in many health conditions. In order to work more effectively as an interdisciplinary team, a common terminology is needed. This study investigates which categories of the ICF-Dietetics are used in clinical dietetic care records in Austria and which are most relevant to shared language in different medical areas. A national multicenter retrospective study was conducted to collect clinical dietetic care documentation reports. The analysis included the "best fit" framework synthesis, and a mapping exercise using the ICF Linking Rules. Medical diagnosis and intervention concepts were excluded from the mapping, since they are not supposed to be classified by the ICF. From 100 dietetic records, 307 concepts from 1807 quotations were extracted. Of these, 241 assessment, dietetics diagnosis, goal setting and evaluation concepts were linked to 153 ICF-Dietetics categories. The majority (91.3%) could be mapped to a precise ICF-Dietetics category. The highest number of ICF-Dietetics categories was found in the medical area of diabetes and metabolism and belonged to the ICF component Body Function, while very few categories were used from the component Participation and Environmental Factors. The integration of the ICF-Dietetics in nutrition and dietetic care process is possible. Moreover, it could be considered as a conceptual framework for interdisciplinary nutrition and dietetics care. However, a successful implementation of the ICF-Dietetics in clinical practice requires a paradigm shift from medical diagnosis-focused health care to a holistic perspective of functioning with more attention on Participation and Environmental Factors. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Linking of the quality of life in neurological disorders (Neuro-QoL) to the international classification of functioning, disability and health.

    PubMed

    Wong, Alex W K; Lau, Stephen C L; Cella, David; Lai, Jin-Shei; Xie, Guanli; Chen, Lidian; Chan, Chetwyn C H; Heinemann, Allen W

    2017-09-01

    The quality of life in neurological disorders (Neuro-QoL) is a U.S. National Institutes of Health initiative that produced a set of self-report measures of physical, mental, and social health experienced by adults or children who have a neurological condition or disorder. To describe the content of the Neuro-QoL at the item level using the World Health Organization's international classification of functioning, disability and health (ICF). We assessed the Neuro-QoL for its content coverage of functioning and disability relative to each of the four ICF domains (i.e., body functions, body structures, activities and participation, and environment). We used second-level ICF three-digit codes to classify items into categories within each ICF domain and computed the percentage of categories within each ICF domain that were represented in the Neuro-QoL items. All items of Neuro-QoL could be mapped to the ICF categories at the second-level classification codes. The activities and participation domain and the mental functions category of the body functions domain were the areas most often represented by Neuro-QoL. Neuro-QoL provides limited coverage of the environmental factors and body structure domains. Neuro-QoL measures map well to the ICF. The Neuro-QoL-ICF-mapped items provide a blueprint for users to select appropriate measures in ICF-based measurement applications.

  15. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE PAGES

    Izumi, N.; Meezan, N. B.; Divol, L.; ...

    2016-08-12

    The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less

  16. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, N.; Meezan, N. B.; Divol, L.

    The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less

  17. Effect of Ponderomotive Terms on Heat Flux in Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Li, G.

    2005-10-01

    A laser electromagnetic field introduces ponderomotive termsootnotetextV. N. Goncharov and G. Li, Phys. Plasmas 11, 5680 (2004). in the heat flux in a plasma. To account for the nonlocal effects in the ponderomotive terms, first, the kinetic equation coupled with the Maxwell equations is numerically solved for the isotropic part of the electron distribution function. Such an equation includes self-consistent electromagnetic fields and laser absorption through the inverse bremsstrahlung. Then, the anisotropic part is found by solving a simplified Fokker--Planck equation. Using the distribution function, the electric current and heat flux are obtained and substituted into the hydrocode LILAC to simulate ICF implosions. The simulation results are compared against the existing nonlocal electron conduction modelsootnotetextG. P. Schurtz, P. D. Nicola"i, and M. Busquet, Phys. Plasmas 9, 4238 (2000). and Fokker--Planck simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  18. Laser-Plasma Interactions on NIKE and the Fusion Test Facility

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, James

    2008-11-01

    Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.

  19. Simulations of Foils Irradiated by Finite Laser Spots

    NASA Astrophysics Data System (ADS)

    Phillips, Lee

    2006-10-01

    Recent proposed designs (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities with lower laser energies combined with higher irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) that may lead, for example, to the generation of fast electrons. The proposed use of a 248 nm KrF laser is expected to minimize LPI, and this is being studied by experiments on NRL's NIKE laser. Here we report on simulations aimed at designing and interpreting these experiments. The 2d simulations employ a modification of the FAST code to ablate plasma from CH and DT foils using laser pulses with arbitrary spatial and temporal profiles. These include the customary hypergaussian NIKE profile, gaussian profiles, and combinations of these. The simulations model the structure of the ablating plasma and the absorption of the laser light, providing parameters for design of the experiment and indicating where the relevant LPI (two-plasmon, Raman) may be observed.

  20. Clinical application of ICF key codes to evaluate patients with dysphagia following stroke

    PubMed Central

    Dong, Yi; Zhang, Chang-Jie; Shi, Jie; Deng, Jinggui; Lan, Chun-Na

    2016-01-01

    Abstract This study was aimed to identify and evaluate the International Classification of Functioning (ICF) key codes for dysphagia in stroke patients. Thirty patients with dysphagia after stroke were enrolled in our study. To evaluate the ICF dysphagia scale, 6 scales were used as comparisons, namely the Barthel Index (BI), Repetitive Saliva Swallowing Test (RSST), Kubota Water Swallowing Test (KWST), Frenchay Dysarthria Assessment, Mini-Mental State Examination (MMSE), and the Montreal Cognitive Assessment (MoCA). Multiple regression analysis was performed to quantitate the relationship between the ICF scale and the other 7 scales. In addition, 60 ICF scales were analyzed by the least absolute shrinkage and selection operator (LASSO) method. A total of 21 ICF codes were identified, which were closely related with the other scales. These included 13 codes from Body Function, 1 from Body Structure, 3 from Activities and Participation, and 4 from Environmental Factors. A topographic network map with 30 ICF key codes was also generated to visualize their relationships. The number of ICF codes identified is in line with other well-established evaluation methods. The network topographic map generated here could be used as an instruction tool in future evaluations. We also found that attention functions and biting were critical codes of these scales, and could be used as treatment targets. PMID:27661012

  1. International Classification of Functioning, Disability and Health: Catalyst for interprofessional education and collaborative practice.

    PubMed

    Snyman, Stefanus; Von Pressentin, Klaus B; Clarke, Marina

    2015-01-01

    Patient-centred and community-based care is required for promotion of health equity. To enhance patient-centred interprofessional care, the World Health Organization recommends using the framework of the International Classification of Functioning, Disability and Health (ICF). Stellenbosch University's Interprofessional Education and Collaborative Practice (IPECP) strategy has promoted using ICF since 2010. Undergraduate medical students on rural clinical placements are expected to use ICF in approaching and managing patients. Students' ability to develop interprofessional care plans using ICF is assessed by a team of preceptors representing various health professions. This study explored the experiences of medical students and their preceptors using ICF in IPECP, and how patients perceived care received. Associative Group Analysis methodology was used to collect data for this study. In total, 68 study participants were enrolled of which 37 were medical students, 16 preceptors and 15 patients. Students found ICF enabled a patient-centred approach and reinforce the importance of context. Patients felt listened to and cared for. Preceptors, obliged to use ICF, came to appreciate the advantages of interprofessional care, promoting mutually beneficial teamwork and job satisfaction. The value of integrating IPECP as an authentic learning experience was demonstrated as was ICF as a catalyst in pushing boundaries for change.

  2. To adopt is to adapt: the process of implementing the ICF with an acute stroke multidisciplinary team in England

    PubMed Central

    Tempest, Stephanie; Harries, Priscilla; Kilbride, Cherry; De Souza, Lorraine

    2012-01-01

    Purpose: The success of the International Classifcation of Functioning, Disability and Health (ICF) depends on its uptake in clinical practice. This project aimed to explore ways the ICF could be used with an acute stroke multidisciplinary team and identify key learning from the implementation process. Method: Using an action research approach, iterative cycles of observe, plan, act and evaluate were used within three phases: exploratory; innovatory and refective. Thematic analysis was undertaken, using a model of immersion and crystallisation, on data collected via interview and focus groups, e-mail communications, minutes from relevant meetings, feld notes and a refective diary. Results: Two overall themes were determined from the data analysis which enabled implementation. There is a need to: (1) adopt the ICF in ways that meet local service needs; and (2) adapt the ICF language and format. Conclusions: The empirical fndings demonstrate how to make the ICF classifcation a clinical reality. First, we need to adopt the ICF as a vehicle to implement local service priorities e.g. to structure a multidisciplinary team report, thus enabling ownership of the implementation process. Second, we need to adapt the ICF terminology and format to make it acceptable for use by clinicians. PMID:22372376

  3. Development of the International Classification of Functioning, Disability and Health core sets for hand conditions--results of the World Health Organization International Consensus process.

    PubMed

    Rudolf, Klaus-Dieter; Kus, Sandra; Chung, Kevin C; Johnston, Marie; LeBlanc, Monique; Cieza, Alarcos

    2012-01-01

    A formal decision-making and consensus process was applied to develop the first version of the International Classification on Functioning, Disability and Health (ICF) Core Sets for Hand Conditions. To convene an international panel to develop the ICF Core Sets for Hand Conditions (HC), preparatory studies were conducted, which included an expert survey, a systematic literature review, a qualitative study and an empirical data collection process involving persons with hand conditions. A consensus conference was convened in Switzerland in May 2009 that was attended by 23 healthcare professionals, who treat hand conditions, representing 22 countries. The preparatory studies identified a set of 743 ICF categories at the second, third or fourth hierarchical level. Altogether, 117 chapter-, second-, or third-level categories were included in the comprehensive ICF Core Set for HC. The brief ICF Core Set for HC included a total of 23 chapter- and second-level categories. A formal consensus process integrating evidence and expert opinion based on the ICF led to the formal adoption of the ICF Core Sets for Hand Conditions. The next phase of this ICF project is to conduct a formal validation process to establish its applicability in clinical settings.

  4. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Frequency Detuning

    NASA Astrophysics Data System (ADS)

    Maximov, A.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2015-11-01

    In the direct-drive method of the inertial confinement fusion (ICF), the coupling of laser energy to target plasmas is strongly influenced by the effect of cross-beam energy transfer (CBET) between multiple driving laser beams. The laser -plasma interaction (LPI) model of CBET is based on the nonparaxial laser light propagation coupled with the low-frequency ion-acoustic-domain plasma response. Common ion waves driven by multiple laser beams play a very important role in CBET. The effect of the frequency detuning (colors) in the driving laser beams is studied and it is shown to significantly reduce the level of common ion waves and therefore the level of CBET. The differences between the LPI-based CBET model and the ray-based CBET model used in hydrocodes are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. The Health and Functioning ICF-60: Development and Psychometric Properties

    PubMed Central

    Tutelyan, V A; Chatterji, S; Baturin, A K; Pogozheva, A V; Kishko, O N; Akolzina, S E

    2014-01-01

    Background This paper describes the development and psychometric properties of the Health and Functioning ICF-60 (HF-ICF-60) measure, based on the World Health Organization (WHO) ‘International Classification of Functioning, Disability and Health: ICF’ (2001). The aims of the present study were to test psychometric properties of the HF-ICF-60, developed as a measure that would be responsive to change in functioning through changes in health and nutritional status, as a prospective measure to monitor health and nutritional status of populations and to explore the relationship of the HF-ICF-60 with quality of life measures such as the World Health Organization WHOQOL-BREF quality of life assessment in relation to non-communicable diseases. Methods The HF-ICF-60 measure consists of 60 items selected from the ICF by an expert panel, which included 18 items that cover Body Functions, 21 items that cover Activities and Participation, rated on five-point scales, and 21 items that cover Environmental Factors (seven items cover Individual Environmental Factors and 14 items cover Societal Environmental Factors), rated on nine-point scales. The HF-ICF-60 measure was administered to the Russian nationally representative sample within the Russian National Population Quality of Life, Health and Nutrition Survey, in 2004 (n = 9807) and 2005 (n = 9560), as part of the two waves of the Russian Longitudinal Monitoring Survey (RLMS). The statistical analyses were carried out with the use of both classical and modern psychometric methods, such as factor analysis, and based on Item Response Theory, respectively. Results The HF-ICF-60 questionnaire is a new measure derived directly from the ICF and covers the ICF components as follows: Body Functions, Activities and Participation, and Environmental Factors (Individual Environmental Factors and Societal Environmental Factors). The results from the factor analyses (both Exploratory Factor Analyses and Confirmatory Factor Analyses) show good support for the proposed structure together with an overall higher-order factor for each scale of the measure. The measure has good reliability and validity, and sensitivity to change in the health and nutritional status of respondents over time. Normative values were developed for the Russian adult population. Conclusions The HF-ICF-60 has shown good psychometric properties in the two waves of the nationally representative RLMS, which provided considerable support to using the HF-ICF-60 data as the normative health and functioning values for the Russian population. Similarly, the administration of the WHOQOL-BREF in the same two waves of the nationally representative RLMS has allowed the normative quality of life values for the Russian population to be obtained. Therefore, the objective assessment of health and functioning of the HF-ICF-60 could be mapped onto the subjective evaluation of quality of life of the WHOQOL-BREF to increase the potential usefulness of the surveys in relation to non-communicable diseases. © 2014 The Authors. Clinical Psychology & Psychotherapy. Published by John Wiley & Sons, Ltd. Key Practitioner Message The HF-ICF-60 offers a new perspective in measuring change in functioning through changes in lifestyle and diet. The HF-ICF-60 can be combined with the WHOQOL-BREF to map the objective assessment of health and functioning onto the subjective evaluation of quality of life. Combined use of the HF-ICF-60 and the WHOQOL-BREF can be especially useful for national and global monitoring and surveillance of implementation of measures to reduce risk factors of non-communicable diseases and to promote healthy lifestyles and healthy diets. PMID:24931300

  6. Vesicourethral reflux-induced renal failure in a patient with ICF syndrome due to a novel DNMT3B mutation.

    PubMed

    Kutluğ, Seyhan; Ogur, Gönül; Yilmaz, Aysegül; Thijssen, Peter E; Abur, Ummet; Yildiran, Alisan

    2016-12-01

    ICF syndrome is a primary immunodeficiency disease characterized by hypo- or agammaglobulinemia, centromeric instability mainly on chromosomes 1, 9, and 16 and facial anomalies. ICF syndrome presents with frequent respiratory tract infections in infancy. A 20-month-old female patient was referred to our clinic due to frequent lower respiratory tract infections. ICF syndrome was considered because of comorbidity of hypogammaglobulinemia, facial anomalies, and neuromotor growth retardation. Metaphase chromosome analysis revealed centromeric instability on chromosomes 1, 9, and 16 and through Sanger a previously unreported homozygous missense mutation (c.1805T>C; [p.V602A]) was identified in the DNMT3B, confirming ICF1. The patient was found to have a breakdown in renal function 1 year later; the urinary system was examined and bilateral vesicoureteral reflux was found, warranting the need for dialysis in time. This report expands the mutation spectrum of ICF1 and is the first to describe bilateral vesicoureteral reflux accompanying ICF syndrome. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  8. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, R.; Chang, P. Y.; Anderson, K. S.

    2010-05-15

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehlymore » et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.« less

  9. Laser targets compensate for limitations in inertial confinement fusion drivers

    NASA Astrophysics Data System (ADS)

    Kilkenny, J. D.; Alexander, N. B.; Nikroo, A.; Steinman, D. A.; Nobile, A.; Bernat, T.; Cook, R.; Letts, S.; Takagi, M.; Harding, D.

    2005-10-01

    Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.

  10. Engaging with clinicians to implement and evaluate the ICF in neurorehabilitation practice.

    PubMed

    Tempest, Stephanie; Jefferson, Richard

    2015-01-01

    Although deemed a globally accepted framework, there remains scare evidence on the process and outcome of implementing the International Classification of Functioning, Disability and Health (ICF) within neurorehabilitation. This review briefly explores the existing, broader literature and then reports on two action research projects, undertaken in England, specifically within stroke and neurorehabilitation. Working with participants, including clinicians from in-patient and community settings, there are now 35 different ways identified for the use of the ICF. The outcome of the first project highlights that using the ICF enhances communication within and beyond the acute stroke service, fosters holistic thinking and clarifies team roles. To adopt it into clinical practice, the ICF must be adapted to meet local service needs. The use of action research has facilitated the knowledge translation process which has enabled the ICF to become a clinical reality in neurorehabilitation, with clinicians identifying a range of potential uses.

  11. Perspectives on Teaching the International Classification of Functioning, Disability, and Health Model to Physical Therapy Students.

    PubMed

    Peters-Brinkerhoff, Cheryl

    2016-01-01

    During a reaccreditation visit, deficiencies were discovered in the clinical education curriculum regarding patient-centered care in a Doctorate of Physical Therapy program. To understand the problem and address those deficiencies, the clinical internship experience was examined using the International Classification of Functioning, Disability, and Health (ICF) model as a conceptual framework for clinical reasoning. This qualitative case study aimed to study (1) perceptions of physical therapy (PT) students regarding their knowledge and learning experiences during clinical affiliations and what knowledge they acquired of the ICF as applied to patient-centered care during their internship, and (2) the perceptions of clinical instructors (CIs) of their knowledge of the ICF model, its integration into their practice, barriers to its use, and the learning experiences the CIs provided to students regarding the ICF model. Data were collected using questionnaires sent to 42 CIs and at focus groups of 22 PT students conducted at the study site. Data were also collected from student evaluations on the Clinical Performance Instrument. Data were analyzed using coding techniques and themes based on the use of the ICF model in the clinical setting by students and CIs. Most CIs reported a poor understanding of the ICF model or how it relates to patient-centered care; both CIs and students reported none to minimal learning experience related to the ICF model. Document analysis of the student evaluations revealed no assessment of the ICF model was mentioned. Learning experiences of all domains of the ICF model are generally not being presented to PT students during their clinical affiliations.

  12. [Evaluation and improvement of the comprehension of informed consent documents].

    PubMed

    López-Picazo Ferrer, Julio José; Tomás Garcia, Nuria

    2016-04-01

    The information contained in a good informed consent form (ICF) must be understood by the patients. The aim of this study is to assess and improve the readability of the ICF submitted for accreditation in a tertiary hospital. Study of assessment and improvement of the quality of 132 ICF from 2 departments of a public tertiary hospital, divided into 3 phases: Initial assessment, intervention and reassessment. Both length and readability are assessed. Length is measured in words (adequate to 470, excessive over 940), and readability in INFLESZ points (suitable if over 55). The ICF contents initially proposed by departments were adapted by non-health-related trained persons, whose doubts about medical terms were resolved by the authors. To compare results between evaluations, relative improvement (in both length and INFLESZ) and statistical significances were calculated. 78.8% of the ICFs showed a desired length (CI95% 86,5-71,1) and a mean of 44.1 INFLESZ points (3.8% >55 points, CI95% 6,0-1,6). After the intervention, INFLESZ raised to 61.9 points (improvement 40.3%, P<.001), all ICF showing >55 points. The resulting ICFs had a longer description of the nature of the procedure (P<.0001) and a shorter description of their consequences, risks (P <.0001) and alternatives (P <.05). The introduction of improvement dynamics in the design of ICFs is possible and necessary because it produces more effective and easily readable ICFs. Copyright © 2015 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Portugal's special education law: implementing the International Classification of Functioning, Disability and Health in policy and practice.

    PubMed

    Sanches-Ferreira, Manuela; Simeonsson, Rune J; Silveira-Maia, Mónica; Alves, Sílvia; Tavares, Ana; Pinheiro, Sara

    2013-05-01

    The International Classification of Functioning, Disability and Health (ICF) was introduced in Portuguese education law as the compulsory system to guide eligibility policy and practice in special education. This paper describes the implementation of the ICF and its utility in the assessment process and eligibility determination of students for special education. A study to evaluate the utility of the ICF was commissioned by the Portuguese Ministry of Education and carried out by an external evaluation team. A document analysis was made of the assessment and eligibility processes of 237 students, selected from a nationally representative sample. The results provided support for the use of the ICF in student assessment and in the multidimensional approach of generating student functioning profiles as the basis for determining eligibility. The use of the ICF contributed to the differentiation of eligible and non eligible students based on their functioning profiles. The findings demonstrate the applicability of the ICF framework and classification system for determining eligibility for special education services on the basis of student functioning rather than medical or psychological diagnose. The use of the International Classification of Functioning, Disability and Health (ICF) framework in special education policy is as follows: • The functional perspective of the ICF offers a more comprehensive, holistic assessment of student needs than medical diagnoses. • ICF-based assessment of the nature and severity of functioning can serve as the basis for determining eligibility for special education and habilitation. • Profiles of functioning can support decision making in designing appropriate educational interventions for students.

  14. Application of the International Classification of Functioning, Disability and Health (ICF) to people with dysphagia following non-surgical head and neck cancer management.

    PubMed

    Nund, Rebecca L; Scarinci, Nerina A; Cartmill, Bena; Ward, Elizabeth C; Kuipers, Pim; Porceddu, Sandro V

    2014-12-01

    The International Classification of Functioning, Disability, and Health (ICF) is an internationally recognized framework which allows its user to describe the consequences of a health condition on an individual in the context of their environment. With growing recognition that dysphagia can have broad ranging physical and psychosocial impacts, the aim of this paper was to identify the ICF domains and categories that describe the full functional impact of dysphagia following non-surgical head and neck cancer (HNC) management, from the perspective of the person with dysphagia. A secondary analysis was conducted on previously published qualitative study data which explored the lived experiences of dysphagia of 24 individuals with self-reported swallowing difficulties following HNC management. Categories and sub-categories identified by the qualitative analysis were subsequently mapped to the ICF using the established linking rules to develop a set of ICF codes relevant to the impact of dysphagia following HNC management. The 69 categories and sub-categories that had emerged from the qualitative analysis were successfully linked to 52 ICF codes. The distribution of these codes across the ICF framework revealed that the components of Body Functions, Activities and Participation, and Environmental Factors were almost equally represented. The findings confirm that the ICF is a valuable framework for representing the complexity and multifaceted impact of dysphagia following HNC. This list of ICF codes, which reflect the diverse impact of dysphagia associated with HNC on the individual, can be used to guide more holistic assessment and management for this population.

  15. EDITORIAL: Inertial Fusion State of the Art---A Collection of Overview and Technical Papers from IFSA2003

    NASA Astrophysics Data System (ADS)

    Hogan, W. J.

    2004-12-01

    The Third International Conference on Inertial Fusion Sciences and Applications (IFSA2003) was held in Monterey, CA, USA, on 7--12 September 2003. The goal of IFSA2003 was to bring together scientists and engineers in the fields of inertial fusion sciences, high energy density physics, inertial fusion energy (IFE) and other related research and applications. By all measures IFSA2003 was a resounding success. IFSA2003 was hosted by the University of California, which was supported in organizing the conference by seven institutions: General Atomics, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Naval Research Laboratory, Sandia National Laboratory and the University of Rochester, Laboratory for Laser Energetics. IFSA2003 was the largest IFSA conference yet with 405 participants from 17 countries. Approximately 430 papers were presented and 236 appeared in the Proceedings, published in July 2004 by the American Nuclear Society [1]. A subset of the Nuclear Fusion Board of Editors, those who work on inertial confinement fusion (ICF), recommended creating this special issue of Nuclear Fusion by selecting a representative cross-section of the papers presented at IFSA2003. Authors of the selected papers were asked to expand their papers and make them suitable for publication in it Nuclear Fusion. Nineteen papers are presented in this special issue. They represent a cross-section of the papers presented at IFSA2003. However, there was no attempt to represent the `feel' of the conference by having the same fraction of papers on each topic as existed at IFSA. There were far more detailed scientific papers at IFSA than are presented in this special issue. However, in the interest of giving the reader a cross-section of the papers and showing the entire breadth of ICF research going on, we have biased the selection process toward review papers. The first three papers here are based upon the keynote talks at IFSA2003 and are, therefore, overviews of all ICF research being done in the Americas, Asia, and Europe. The next two papers are also reviews but of a different sort. The Teller Medal is awarded at the IFSA conferences for pioneering work and leadership in inertial fusion and high energy density science. The two recipients for 2003 were H. Takabe of the Institute of Laser Engineering at Osaka University and L. Suter of Lawrence Livermore National Laboratory. These awardees were asked to deliver the two Teller Lectures at IFSA based upon the work for which they were being honoured. The papers presented here are expansions of those two review talks. Suter chose to focus his review on his recent work on ignition physics for targets driven by 0.54 m light. This is of interest because large facilities like the National Ignition Facility (NIF) will deliver much more energy in the frequency doubled wavelength than in the frequency tripled one. Takabe, on the other hand chose to give a historical perspective of his lifelong work. The other 14 papers were selected to represent a cross-section of the research being conducted in the science and engineering of inertial fusion. The papers by Haan et al and Holstein et al represent some of the recent progress in target design calculations for the ignition first experiments. Haan presents his team's work on indirect drive ignition targets (driven by 0.35 m) intended for the National Ignition Facility (NIF) when all the beamlines are activated. Holstein does the same for targets being design for the Laser MegaJoule (LMJ). Suter's paper, presented earlier as a Teller Lecture also falls into this ignition target physics category. The next four papers look at some of the exciting high energy density physics being studied in ICF facilities around the world. Glenzer et al looks at stimulated light scattering processes in hot dense plasmas. Pukhov et al look at relativistic laser-plasma interactions that produce energetic particles and x-rays. Peyrusse et al examine atomic physics and radiative processes in hot dense plasmas. Koenig et al examine ways to simulate planetary physics processes using high pressures generated in laser driven shocks. Non-laser approaches to inertial fusion were also fully represented at IFSA2003. The paper by Lebedev et al shows important physics developments in Z-pinch plasmas. Sharp et al present chamber transport modelling for heavy ion fusion drivers. Technology development studies were also well represented at IFSA2003. There was a special session on facility and driver developments that contained several papers. Presented here are the papers by Miller et al on the NIF, Danson et al on the Vulcan petawatt facility, and Myers et al on KrF lasers for IFE. A paper by Goodin et al shows progress in finding cost effective target manufacturing methods for IFE. Finally, there were many papers at IFSA2003 that focused upon the very promising but more immature field of fast ignition. Barty et al give an overview of the development issues for short pulse lasers that will be essential if fast ignition is to become mainstream. A paper by Kodama et al looks at target physics using cone focus targets. Fast ignition lasers and innovative target physics within this concept were a `hot topic' at IFSA2003. The IFSA conferences have become the principal forum for the exchange of research results in inertial fusion and high energy and density science. There is a unique blend of science and technology. All fields of inertial fusion are represented. This special issue is a snapshot and a cross-section of the field at this time. We hope the reader is encouraged to look into more of the papers in areas that interest them. References [1] Inertial Fusion Sciences and Applications: State of the Art 2003 ed B. Hammel, D. Meyerhofer, J. Meyer-ter-Vehn and H. Azechi American Nuclear Society (July 2004) These IFSA2003 proceedings may be purchased on-line at http://www.ans.org.

  16. Oral health of 65-year olds in Sweden and Norway: a global question and ICF, the latest conceptual model from WHO.

    PubMed

    Ekbäck, Gunnar; Åstrøm, Anne Nordrehaug; Klock, Kristin; Ordell, Sven; Unell, Lennart

    2012-07-01

    The aims of this study were to identify explanatory factors of satisfaction with oral health among Norwegian and Swedish 65 year olds in terms of items from four different domains of ICF and to compare the strengths of the various ICF domains in explaining satisfaction with oral health. Further it was to assess whether the explanatory factors of ICF domains vary between Norway and Sweden. In 2007, standardized questionnaires were mailed to all the residents in certain counties of Sweden and Norway who were born in 1942. Response rates were 73.1% (n = 6078) in Sweden and 56.0% (n = 4062) in Norway. In total, 33 questions based on four different ICF domains were chosen to explain satisfaction with oral health. Logistic regression showed that four different ICF domains in terms of body function, body structure, activity/participation and environmental factors explained, respectively, 53%, 31%, 12% and 34% of the explanatory variance in the satisfaction with oral health. In the final analysis, only nine items were statistically significant (p < 0.05). This study indicates that ICF as a conceptual model could cover a broad spectrum of factors embedded in OHRQoL measured by a global question in Sweden and Norway. Nine items, representing four ICF domains, were important in the final model for explaining satisfaction with oral health.

  17. A Booklet on Participants’ Rights to Improve Consent for Clinical Research: A Randomized Trial

    PubMed Central

    Benatar, Jocelyne R.; Mortimer, John; Stretton, Matthew; Stewart, Ralph A. H.

    2012-01-01

    Objective Information on the rights of subjects in clinical trials has become increasingly complex and difficult to understand. This study evaluates whether a simple booklet which is relevant to all research studies improves the understanding of rights needed for subjects to provide informed consent. Methods 21 currently used informed consent forms (ICF) from international clinical trials were separated into information related to the specific research study, and general information on participants’ rights. A booklet designed to provide information on participants’ rights which used simple language was developed to replace this information in current ICF’s Readability of each component of ICF’s and the booklet was then assessed using the Flesch-Kincaid Reading ease score (FK). To further evaluate the booklet 282 hospital inpatients were randomised to one of three ways to present research information; a standard ICF, the booklet combined with a short ICF, or the booklet combined with a simplified ICF. Comprehension of information related to the research proposal and to participant’s rights was assessed by questionnaire. Results Information related to participants’ rights contributed an average of 44% of the words in standard ICFs, and was harder to read than information describing the clinical trial (FK 25 versus (vs.) 41 respectively, p = 0.0003). The booklet reduced the number of words and improved FK from 25 to 42. The simplified ICF had a slightly higher FK score than the standard ICF (50 vs. 42). Comprehension assessed in inpatients was better for the booklet and short ICF 62%, (95% confidence interval (CI) 56 to 67) correct, or simplified ICF 62% (CI 58 to 68) correct compared to 52%, (CI 47 to 57) correct for the standard ICF, p = 0.009. This was due to better understanding of questions on rights (62% vs. 49% correct, p = 0.0008). Comprehension of study related information was similar for the simplified and standard ICF (60% vs. 64% correct, p = 0.68). Conclusions A booklet provides a simple consistent approach to providing information on participant rights which is relevant to all research studies, and improves comprehension of patients who typically participate in clinical trials. PMID:23094034

  18. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    NASA Astrophysics Data System (ADS)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  19. In search of late time evolution self-similar scaling laws of Rayleigh-Taylor and Richtmyer-Meshkov hydrodynamic instabilities - recent theorical advance and NIF Discovery-Science experiments

    NASA Astrophysics Data System (ADS)

    Shvarts, Dov

    2017-10-01

    Hydrodynamic instabilities, and the mixing that they cause, are of crucial importance in describing many phenomena, from very large scales such as stellar explosions (supernovae) to very small scales, such as inertial confinement fusion (ICF) implosions. Such mixing causes the ejection of stellar core material in supernovae, and impedes attempts at ICF ignition. The Rayleigh-Taylor instability (RTI) occurs at an accelerated interface between two fluids with the lower density accelerating the higher density fluid. The Richtmyer-Meshkov (RM) instability occurs when a shock wave passes an interface between the two fluids of different density. In the RTI, buoyancy causes ``bubbles'' of the light fluid to rise through (penetrate) the denser fluid, while ``spikes'' of the heavy fluid sink through (penetrate) the lighter fluid. With realistic multi-mode initial conditions, in the deep nonlinear regime, the mixing zone width, H, and its internal structure, progress through an inverse cascade of spatial scales, reaching an asymptotic self-similar evolution: hRT =αRT Agt2 for RT and hRM =αRM tθ for RM. While this characteristic behavior has been known for years, the self-similar parameters αRT and θRM and their dependence on dimensionality and density ratio have continued to be intensively studied and a relatively wide distribution of those values have emerged. This talk will describe recent theoretical advances in the description of this turbulent mixing evolution that sheds light on the spread in αRT and θRM. Results of new and specially designed experiments, done by scientists from several laboratories, were performed recently using NIF, the only facility that is powerful enough to reach the self-similar regime, for quantitative testing of this theoretical advance, will be presented.

  20. A case study on the application of International Classification of Functioning, Disability and Health (ICF)-based tools for vocational rehabilitation in spinal cord injury.

    PubMed

    Glässel, Andrea; Rauch, Alexandra; Selb, Melissa; Emmenegger, Karl; Lückenkemper, Miriam; Escorpizo, Reuben

    2012-01-01

    Vocational rehabilitation (VR) plays a key role in bringing persons with acquired disabilities back to work, while encouraging employment participation. The purpose of this case study is to illustrate the systematic application of International Classification of Functioning, Disability, and Health (ICF)-based documentation tools by using ICF Core Sets in VR shown with a case example of a client with traumatic spinal cord injury (SCI). The client was a 26-year-old male with paraplegia (7th thoracic level), working in the past as a mover. This case study describes the integration of the ICF Core Sets for VR into an interdisciplinary rehabilitation program by using ICF-based documentation tools. Improvements in the client's impairments, activity limitations, and participation restrictions were observed following rehabilitation. Goals in different areas of functioning were achieved. The use of the ICF Core Sets in VR allows a comprehensive assessment of the client's level of functioning and intervention planning. Specifically, the Brief ICF Core Set in VR can provide domains for intervention relevant to each member of an interdisciplinary team and hence, can facilitate the VR management process in a SCI center in Switzerland.

  1. Comparison of isometric cervical flexor and isometric cervical extensor system exercises on patients with neuromuscular imbalance and cervical crossed syndrome associated forward head posture.

    PubMed

    Lee, Jaejin; Kim, Dohyeon; Yu, Kyunghoon; Cho, Youngki; You, Joshua H

    2018-01-01

    Isometric cervical flexor system exercise (ICF) and isometric cervical extensor system exercise (ICE) are cervical stabilization techniques that have been used to restore cervical crossed syndrome (CCS)-associated forward head posture. However, the therapeutic effects and underlying motor control mechanisms remain elusive. The purpose of present study was investigating the concurrent therapeutic effects of ICF and ICE on muscle size, muscle imbalance ratio, and muscle recruitment sequence using ultrasound imaging and electromyography. A total of 18 participants (7 females; age=24±4.0 years) with CCS associated with forward head posture underwent ICF and ICE. Paired t-test analysis was used for statistical analysis. Paired t-test analysis showed that sternocleidomastoid thickness was greater during ICF than ICE. Similarly, cross-sectional area and horizontal thickness of the longus colli were greater during ICE than ICF. The upper trapezius/lower trapezius muscle imbalance ratio and the pectoralis major/lower trapezius muscle imbalance ratio were significantly decreased during the application of ICE compared to ICF. These results provide compelling, mechanistic evidence as to how ICE is more beneficial for the restoration of neuromuscular imbalance than ICF in individuals with CCS.

  2. Looking at the ICF and human communication through the lens of classification theory.

    PubMed

    Walsh, Regina

    2011-08-01

    This paper explores the insights that classification theory can provide about the application of the International Classification of Functioning, Disability and Health (ICF) to communication. It first considers the relationship between conceptual models and classification systems, highlighting that classification systems in speech-language pathology (SLP) have not historically been based on conceptual models of human communication. It then overviews the key concepts and criteria of classification theory. Applying classification theory to the ICF and communication raises a number of issues, some previously highlighted through clinical application. Six focus questions from classification theory are used to explore these issues, and to propose the creation of an ICF-related conceptual model of communicating for the field of communication disability, which would address some of the issues raised. Developing a conceptual model of communication for SLP purposes closely articulated with the ICF would foster productive intra-professional discourse, while at the same time allow the profession to continue to use the ICF for purposes in inter-disciplinary discourse. The paper concludes by suggesting the insights of classification theory can assist professionals to apply the ICF to communication with the necessary rigour, and to work further in developing a conceptual model of human communication.

  3. ICF-Based Analysis of Communication Disorders in Dementia of Alzheimer's Type

    PubMed Central

    Badarunisa, Mohamad Basheer; Sebastian, Daly; Rangasayee, Raghunath Rao; Kala, Baby

    2015-01-01

    Purpose Dementia of Alzheimer's type (DAT) is a major cognitive communication disorder. The present study attempted to analyse communication disorders in DAT in the International Classification of Functions (ICF) framework. The study investigated the impact of the severity of communication disorders in persons with DAT on activity participation and environment components of the ICF. Method Thirty bilingual individuals with DAT in the age range of 65-88 years were classified into three groups of mild, moderate and severe degree of dementia. Forty-three items of the American Speech-Language-Hearing Association Functional Assessment of Communication Skills for Adults (ASHA FACS) were linked to the ICF framework. A few additional items were also added for a complete profiling of DAT. A total of 50 (ASHA FACS + ICF) items were rated and administered for the purpose of the study. Results The study revealed a disproportionate impact of the severity of DAT on activity participation and environment components of the ICF. Conclusion The present study investigated the utility of the ICF framework for profiling the functionality of persons with DAT. This profiling highlighted the need for ensuring effective communication and quality of life in the DAT population. PMID:26955380

  4. BOOK REVIEW: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    1999-06-01

    Inertial confinement fusion (ICF) is an alternative way to control fusion which is based on scaling down a thermonuclear explosion to a small size, applicable for power production, a kind of thermonuclear internal combustion engine. This book extends many interesting topics concerning the research and development on ICF of the last 25 years. It provides a systematic development of the physics basis and also various experimental data on radiation driven implosion. This is a landmark treatise presented at the right time. It is based on the article ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain'' by J.D. Lindl, published in Physics of Plasmas, Vol. 2, November 1995, pp. 3933-4024. As is well known, in the United States of America research on the target physics basis for indirect drive remained largely classified until 1994. The indirect drive approaches were closely related to nuclear weapons research at Lawrence Livermore and Los Alamos National Laboratories. In Japan and other countries, inertial confinement fusion research for civil energy has been successfully performed to achieve DT fuel pellet compression up to 1000 times normal density, and indirect drive concepts, such as the `Cannon Ball' scheme, also prevailed at several international conferences. In these circumstances the international fusion community proposed the Madrid Manifesto in 1988, which urged openness of ICF information to promote international collaboration on civil energy research for the future resources of the human race. This proposal was also supported by some of the US scientists. The United States Department of Energy revised its classification guidelines for ICF six years after the Madrid Manifesto. This first book from the USA treating target physics issues, covering topics from implosion dynamics to hydrodynamic stability, ignition physics, high-gain target design and the scope for energy applications is enthusiastically welcomed. The author joined Lawrence Livermore National Laboratory in 1972 to perform intensive theoretical and computational research on implosion and ignition. He was awarded the Edward Teller Medal in 1993. One therefore expects the topics to be treated with authority, and this expectation is well fulfilled. The general treatment throughout the book is to begin with the basic physics of implosion and show how its development leads to an explanation of many fundamental ideas about implosion, via direct drive or indirect drive, particularly ideas associated with radiation transport. This approach is generally successful, with the reader immediately able to relate the theoretical treatments to physical problems. One danger in this approach, however, is that fundamental concepts in implosion often become stressed within the framework of indirect radiation drive of hohlraum targets oriented towards research in the National Ignition Facility. The references in this book to Livermore or Los Alamos internal documents are not yet publicly available, because many are in the process of review for declassification. The reader will have to become accustomed to this situation, which has lasted for a long time but now seems to be gradually improving. The treatise is composed of 13 chapters, including 271 illustrations. An overview of ICF and the historical development of indirect drive in the ICF programme are described in Chapters 1 and 2. Direct drive and indirect drive have different features. The choice of which to use is a very interesting issue. The former has a higher laser-target coupling efficiency but is less uniform in laser irradiation due to discrete beams of lasers. Beam smoothing techniques have a key role in direct drive. The indirect drive by soft X rays which are generated at the inner surface of a hohlraum can have a higher uniform irradiation to reduce the growth of perturbations due to Rayleigh-Taylor (RT) instabilities. The soft X ray drive has much higher ablation rates and is less sensitive to hot electron preheat. A potential disadvantage of indirect drive is the larger scale length of the plasma travelled by the laser beam from the inlet hole to the hohlraum wall. Parametric instabilities in hohlraums have problems because of energy loss and coupling. One of the most important issues for indirect drive is a radiation drive concept which is essentially independent of the driver, such as laser or particle beam. The historical progress of ICF in the USA mainly depended upon the resolution of the fusion database for weaponry. This was a reason to choose indirect drive as the main scheme. Several structures of hohlraum target are described which for a long time were closed to the public. As the minimum energy for ignition depends strongly on the achievable implosion velocity, a great deal of benefit is derived from operating at the highest possible hohlraum temperature and in-flight aspect ratio (IFAR). The conclusion of Chapters 3, 4 and 5 is that achieving an implosion velocity of 3 × 107cm/s with an IFAR-30 Fermi degenerated shell would require a minimum drive temperature of about 200 eV. The hydrodynamic instability, ignition threshold and capsule gain are discussed in Chapter 6. The RT hydrodynamic instability began at the upper limit of the IFAR and hence at the peak implosion velocity. The growth rate of the instability in the acceleration phase was found to be suppressed by the ablation flow at Osaka. Instability during the deceleration phase was primarily stabilized by electron conduction. The combined effects of acceleration, feed-through and deceleration show that the principal modes contributing to perturbations in the fuel have spherical harmonic mode numbers less than about 30-40. The higher modes are rapidly reduced by rarefaction. The lower modes are killed by so-called `fire polishing'. The target uniformity and irradiation uniformity are very effective at suppressing instabilities. The maximum number of e-foldings sets the upper limit of the implosion velocity. This gives the threshold energy of ignition. The minimum capsule energy for ignition for indirect drive is compared with Nuckoll's projections for direct drive. The estimation depends strongly upon the effects of hydrodynamic instability and symmetry in the compressed fuel volume. If the margin of energy is 2, the necessary capsule absorbed energy is about 90 kJ with a radiation temperature of 300 eV. The coupling between driver and capsule is 10-15%, and the driver energy is 0.6-0.9 MJ. The scaling laws for the capsule absorbed power, radius and pulse length with a certain IFAR are given. It is concluded (Chapter 6) that the optimum strategy for gain is operation at the minimum implosion velocity consistent with the desired capsule size and yield, because at the excess implosion velocity the capsules tend to ignite earlier than the optimal point in the compression process. The most crucial issues for the hohlraum target are the coupling efficiency and hohlraum radiation uniformity. Various kinds of devices for hohlraum structures and double cone irradiation schemes have been investigated. These technological developments are energetically described. The implosion symmetry reproducibility (Chapters 7 and 8) for the Precision Nova advanced system meets the requirement of 1% uniformity for ignition experiment time averaged flux. Combined tests of symmetry and hydrodynamic instability as well as the hohlraum plasma conditions estimating the simulated Brillouin scattering (SBS) and simulated Raman scattering (SRS) effects and their influence on the hot electron preheat are summarized in Chapters 9, 10 and 11. The tolerable fraction of hot electrons for keeping the DT fuel preheat at approximately the Fermi specific energy indicates that direct drive capsules are 3 to 4 times larger than the indirect drive capsules. As a conclusion, Chapters 12 and 13 are proudly devoted to the National Ignition Facility and ignition targets. The NIF has a 192 beam, frequency tripled Nd:glass laser system with routine target energies and powers of 1.8 MJ and 500 TW, appropriately pulse shaped. The 192 beams are clustered in groups of 4, so that there are effectively 8 spots in each of the inner cones, and 16 in the outer cones in the hohlraum. Each cluster of 4 beams combines to form an effective f/8 optic. Various kinds of target design are described, for instance, a baseline design 300 eV hohlraum capsule, which absorbs 1.35 MJ of light, an ignition point hydrocarbon (CH) capsule, which is aimed at determining the requirements for symmetry, stability and ignition, and a lower temperature 250 eV capsule with a beryllium ablator, which provides a trade-off between hydroinstabilities and laser-plasma effects. The NIF baseline capsule designs absorb 150 kJ, of which about 25 kJ ends up in the compressed fuel. The central temperature increases to 10 keV when the capsule produces 400 kJ. The fuel energy gain is about 16 at ignition, or when the alpha particle deposition is about 3 times the initial energy delivered to the compressed fuel. The NIF baseline targets are then expected to yield up to 15 MJ and a fuel gain of about 600. Estimates based on NOVA experiments and modelling indicate that SBS, SRS and other plasma hazard processes can be kept within acceptable limits. If these are not attained, the ultimate recourse is to increase the hohlraum size, reduce the laser intensity and reduce the drive temperature to that of the 250 eV design, which has significantly less plasma. The remaining uncertainties can be mitigated by changes in the target design. The author has confidence ignition will be achieved in NIF, which seems to be strongly supported by the Centurion-Halite underground nuclear experiments demonstrating the excellent performance and the basic feasibility of achieving high gain. He thoughtfully adds a comment that developments in direct drive have reached the point where this approach also looks quite promising. NIF will be able to shift rapidly ( <= 1 d) between indirect drive and direct drive. Finally, the short last chapter (Chapter 13) gives an overview on the greatest potential for future ICF power plants. In a book review, questions are usually asked about the readers the book is primarily intended for, whether the book is written at the appropriate level for those readers and whether there are other books that achieve similar objectives. The last section of the Preface states that this book provides an in-depth analysis of theoretical and experimental work on indirect drive ICF classified up to 1994, as well as work carried out throughout the world. It is intended to serve as a reference guide for researchers in the field. Each topic covered contains enough introductory material that the book can also be used at the graduate level by students or newly interested researchers. Most of the laser technology and diagnostic development are not covered at all. To this reviewer that statement is a succinct summary of what the book achieves. Working fusion physicists, particularly in ICF, will find the book to be both instructive and enjoyable. As a secondary market, the book could well be used as a text for a graduate course in laser plasma physics, although some parts are like review papers. As to which books cover some of the same material, W.L. Kruer published Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, CA, 1988), which is suitable as a textbook for graduate students and also for the plasma physicist in general and C. Yamanaka published Introduction to Laser Fusion (Harwood Academic, Chur, 1991), which is the only book treating implosion physics, lasers, target design and diagnostics prior to the USDOE's declassification. As for the Handbook of Plasma Physics series (edited by M.N. Rosenbluth and R.Z. Sagdeev), Vol. 3, Physics of Laser Plasma (edited by A.H. Rubenchik and S. Witkowski) (Elsevier Science, Amsterdam, 1991) comes to mind. However, this last book is larger, and covers somewhat diverse topics. The typography of the book presently under review is also much to be preferred. In summary, I would strongly recommend the book by Lindl to my colleagues in plasma physics, particularly to those engaged in ICF.

  5. On FAST3D simulations of directly-driven inertial-fusion targets with high-Z layers for reducing laser imprint and surface non-uniformity growth

    NASA Astrophysics Data System (ADS)

    Bates, Jason; Schmitt, Andrew; Klapisch, Marcel; Karasik, Max; Obenschain, Steve

    2013-10-01

    Modifications to the FAST3D code have been made to enhance its ability to simulate the dynamics of plastic ICF targets with high-Z overcoats. This class of problems is challenging computationally due in part to plasma conditions that are not in a state of local thermodynamic equilibrium and to the presence of mixed computational cells containing more than one material. Recently, new opacity tables for gold, palladium and plastic have been generated with an improved version of the STA code. These improved tables provide smoother, higher-fidelity opacity data over a wider range of temperature and density states than before, and contribute to a more accurate treatment of radiative transfer processes in FAST3D simulations. Furthermore, a new, more efficient subroutine known as ``MMEOS'' has been installed in the FAST3D code for determining pressure and temperature equilibrium conditions within cells containing multiple materials. We will discuss these topics, and present new simulation results for high-Z planar-target experiments performed recently on the NIKE Laser Facility. Work supported by DOE/NNSA.

  6. Quantitative studies of kinetic effects in direct- and indirect-drive Inertial Confinement Fusion implosions

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans

    2013-10-01

    A comprehensive set of experiments using shock-driven implosions has been conducted to quantitatively study kinetic effects by exploring deviations from hydrodynamic behavior in plasmas relevant to inertial confinement fusion (ICF). Two types of targets were imploded at OMEGA to create ~10 keV, ~1022 cm-3 plasmas with conditions comparable to the incipient hotspot in ignition designs: thin-glass targets filled with mixtures of D2 and 3He gas; and thin deuterated-plastic shells filled with 3He. In the thin-glass experiments, the gas pressure was varied from 1 to 25 atm to scan the ion-mean-free path in the plasma at shock burn. The observed nuclear yields and temperatures deviated more strongly from hydrodynamic predictions as the ion-mean-free path increased to the order of the plasma size. This result provides the first direct experimental evidence how kinetic effects impact yields and ion temperature. The ratio of D to 3He was also varied while maintaining the fuel mass density. As the D fraction was reduced, the DD and D3He fusion products displayed an anomalous yield reduction. Separation of the D and 3He ion species across the strong (Mach ~10) shock-front will be discussed as the likely cause of this result. Finally, thin-CD shells filled with 3He produced significantly more D3He-protons when imploded than is explained by hydrodynamic mix models. This result suggests a kinetic form of mix dominates at the strongly-shocked shell-gas interface. This work was performed in collaboration with C. Li, M. Rosenberg, A. Zylstra, H. Sio, M. Gatu Johnson, F. Séguin, J. Frenje, and R. Petrasso (MIT), V. Glebov, C. Stoeckl, J. Delettrez, and C. Sangster (LLE), J. Pino, P. Amendt, C. Bellei, and S. Wilks (LLNL), G. Kagan, N. Hoffmann and K. Molvig (LANL), and A. Nikroo (GA) and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL and LLE.

  7. Enhanced clarity and holism: the outcome of implementing the ICF with an acute stroke multidisciplinary team in England

    PubMed Central

    Harries, Priscilla; Kilbride, Cherry; De Souza, Lorraine

    2013-01-01

    Purpose: Although it is recommended that the ICF (International Classification of Functioning, Disability and Health) should be implemented to aid communication within multidisciplinary stroke services, there is no empirical evidence to demonstrate the outcomes of such implementation. Working with one stroke service, this project aimed to address this gap and sought to evaluate the outcomes of implementing an ICF-based clinical tool into practice. Method: Using an action research framework with mixed methods, data were collected from individual interviews, a focus group, questionnaires, email communications, minutes from relevant meetings and field notes. Thematic analysis was undertaken, using immersion and crystallisation, to define overall themes. Descriptive statistics were used to analyse quantitative data. Data from both sources were combined to create key findings. Results: Three findings were determined from the data analysis. The ICF (1) fosters communication within and beyond the multidisciplinary stroke team; (2) promotes holistic thinking; and (3) helps to clarify team roles. Conclusions: The ICF enhanced clarity of communication and team roles within the acute stroke multidisciplinary team as well as with other clinicians, patients and their relatives. In addition, the ICF challenged stroke clinicians to think holistically, thereby appropriately extending their domain of concern beyond their traditional remit. Implications for Rehabilitation The ICF is a globally accepted framework to describe functioning and is in use in a variety of clinical settings. Yet, the outcomes of using it in clinical practice have yet to be fully explored. This study found that the ICF enhanced clarity of communication and team roles within an acute stroke multidisciplinary team and to others beyond the team, including clinicians, patients and their relatives. Using the ICF also challenged clinicians to think holistically about patient needs following a stroke. PMID:23530624

  8. Enhanced clarity and holism: the outcome of implementing the ICF with an acute stroke multidisciplinary team in England.

    PubMed

    Tempest, Stephanie; Harries, Priscilla; Kilbride, Cherry; De Souza, Lorraine

    2013-01-01

    Although it is recommended that the ICF (International Classification of Functioning, Disability and Health) should be implemented to aid communication within multidisciplinary stroke services, there is no empirical evidence to demonstrate the outcomes of such implementation. Working with one stroke service, this project aimed to address this gap and sought to evaluate the outcomes of implementing an ICF-based clinical tool into practice. Using an action research framework with mixed methods, data were collected from individual interviews, a focus group, questionnaires, email communications, minutes from relevant meetings and field notes. Thematic analysis was undertaken, using immersion and crystallisation, to define overall themes. Descriptive statistics were used to analyse quantitative data. Data from both sources were combined to create key findings. Three findings were determined from the data analysis. The ICF (1) fosters communication within and beyond the multidisciplinary stroke team; (2) promotes holistic thinking; and (3) helps to clarify team roles. The ICF enhanced clarity of communication and team roles within the acute stroke multidisciplinary team as well as with other clinicians, patients and their relatives. In addition, the ICF challenged stroke clinicians to think holistically, thereby appropriately extending their domain of concern beyond their traditional remit. The ICF is a globally accepted framework to describe functioning and is in use in a variety of clinical settings. Yet, the outcomes of using it in clinical practice have yet to be fully explored. This study found that the ICF enhanced clarity of communication and team roles within an acute stroke multidisciplinary team and to others beyond the team, including clinicians, patients and their relatives. Using the ICF also challenged clinicians to think holistically about patient needs following a stroke.

  9. International classification of functioning, disability and health categories for spinal cord injury nursing in China.

    PubMed

    Li, Kun; Yan, Tiebin; You, Liming; Li, Rui; Ross, Amy Miner

    2015-01-01

    To explore a set of International Classification of Functioning, Disability and Health (ICF) categories that cover the spinal cord injury (SCI) nursing practice in China through a national expert survey. An internet-based email survey was used. An original set of ICF categories specifically for SCI nursing has been developed from the preliminary studies based on an international perspective. For cultural adaptation in China, a national expert survey was conducted with Chinese experts on SCI nursing to identify the ICF categories that were specifically for SCI nursing in China. The ICF categories which received more than 80% support from the experts would be reported. Twenty-nine Chinese experts on SCI nursing participated. There were 81 ICF categories which received more than 80% agreement among the experts, including 33 Body Functions categories, eight Body Structures, 24 Activities and Participation, six Environmental Factors and 10 Personal Factors items. A set of ICF categories that cover the SCI nursing practice in China was identified. It reflects the main issues that Chinese nurses focus on in caring SCI patients. These categories can facilitate Chinese nurses to use the ICF in multidisciplinary teamwork and improve the participation of nurses in the team. Implications for Rehabilitation In China, nurses lack of an effective model or tool to communicate with the other health professionals in the rehabilitation team for spinal cord injury (SCI) patients. International Classification of Functioning, Disability and Health (ICF) is a tool for multidisciplinary use, which can promote the communication and collaboration in the healthcare team by establishing a common language across different disciplines and sectors. This set of ICF categories developed from this study can serve as a roadmap for important items for use in clinical practice of Chinese SCI nursing.

  10. Baseline Design of a 5-7 kJ KrF Laser Facility for Direct Illumination ICF Experiments.

    DTIC Science & Technology

    1985-12-31

    energies of 5-7 kJ, pulsewidths 5 ns, and broadband (> 20 45) capabilities, the proposed sys - tem is intended primarily for laser-plasma experiments...optics with mounts and align- ment hardware, (3) building, (4) chamber system, (5) oscillator, (6) I.S.I. array, and (7) control sys - tem. Each component...hence, for a spherical mirror, 2 - COA 3pDG (B14) NABE - NOMA 16f2?( Astigmatisnr~ (78)MAx 2CID92 -- (VL8)mlN; hence, for either a spherical mirror or

  11. ARES Modeling of High-foot Implosions (NNSA Milestone #5466)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurricane, O. A.

    ARES “capsule only” simulations demonstrated results of applying an ASC code to a suite of high-foot ICF implosion experiments. While a capability to apply an asymmetric FDS drive to the capsule-only model using add-on Python routines exists, it was not exercised here. The ARES simulation results resemble the results from HYDRA simulations documented in A. Kritcher, et al., Phys. Plasmas, 23, 052709 (2016); namely, 1D simulation and data are in reasonable agreement for the lowest velocity experiments, but diverge from each other at higher velocities.

  12. Simulation of alternate hohlraum shapes for improved inner beam propagation in indirectly-driven ICF implosions

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L. F.

    2017-10-01

    Recent indirectly-driven ICF experiments performed on the National Ignition Facility have shown that the propagation of the inner beam cones is impeded late in the laser pulse by the growth of a gold bubble, which is initiated at the location where the outer beams hit the hohlraum wall and which expands radially inward into the hohlraum as the implosion progresses. Late in time, this gold bubble intercepts a significant portion of the inner beams reducing the available energy reaching the waist of the hohlraum and affecting the implosion symmetry. Integrated hohlraum simulations of alternate hohlraum shapes using HYDRA are performed to explore options for reducing the impact of the gold bubble on inner beam propagation. The simulations are based on recent NIF implosions using High-Density Carbon (HDC) ablators, which have shown good performance, but which could benefit from improved inner beam propagation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  13. The holistic claims of the biopsychosocial conception of WHO's International Classification of Functioning, Disability, and Health (ICF): a conceptual analysis on the basis of a pluralistic-holistic ontology and multidimensional view of the human being.

    PubMed

    Solli, Hans Magnus; da Silva, António Barbosa

    2012-06-01

    The International Classification of Functioning, Disability and Health (ICF), designed by the WHO, attempts to provide a holistic model of functioning and disability by integrating a medical model with a social one. The aim of this article is to analyze the ICF's claim to holism. The following components of the ICF's complexity are analyzed: (1) health condition, (2) body functions and structures, (3) activity, (4) participation, (5) environmental factors, (6) personal factors, and (7) health. Although the ICF claims to be holistic, it presupposes a monistic materialistic ontology. We indicate some limitations of this ontology, proposing instead: (a) a pluralistic-holistic ontology (PHO) and (b) a multidimensional view of the human being, with individual and environmental aspects, in relation to three levels of reality implied by the PHO. For the ICF to attain its holistic claim, the interactions between its components should be based on (a) and (b).

  14. Factors associated with expenditures for medicaid home and community based services (HCBS) and intermediate care facilities for persons with mental retardation (ICF/MR) services for persons with intellectual and developmental disabilities.

    PubMed

    Lakin, K Charlie; Doljanac, Robert; Byun, Soo-Yong; Stancliffe, Roger J; Taub, Sarah; Chiri, Giuseppina

    2008-06-01

    This article examines expenditures for a random sample of 1,421 adult Home and Community Based Services (HCBS) and Intermediate Care Facility/Mental Retardation (ICF/MR) recipients in 4 states. The article documents variations in expenditures for individuals with different characteristics and service needs and, controlling for individual characteristics, by residential setting type, Medicaid program (ICF/MR or HCBS), and state. Annual average per-person Medicaid expenditures for HCBS recipients were less than those of ICF/MR residents ($61,770 and $128,275, respectively). HCBS recipients had less severe disability (intellectual, physical, health service needs) than ICF/MR residents. Controlling these differences, and for congregate settings, HCBS were less costly than ICFs/MR, but this distinction accounted for only 3.3% of variation in expenditures. Persons living with families receiving HCBS ($25,072) and in host families (including foster, companion, or shared living arrangements; $44,112) had the lowest Medicaid expenditures.

  15. [¹²³I]ICF01012 melanoma imaging and [¹³¹I]ICF01012 dosimetry allow adapted internal targeted radiotherapy in preclinical melanoma models.

    PubMed

    Viallard, Claire; Perrot, Yann; Boudhraa, Zied; Jouberton, Elodie; Miot-Noirault, Elisabeth; Bonnet, Mathilde; Besse, Sophie; Mishellany, Florence; Cayre, Anne; Maigne, Lydia; Rbah-Vidal, Latifa; D'Incan, Michel; Cachin, Florent; Chezal, Jean-Michel; Degoul, Françoise

    2015-01-01

    Melanin-targeting radiotracers are interesting tools for imaging and treatment of pigmented melanoma metastases. However, variation of the pigment concentration may alter the efficiency of such targeting. A clear assessment of both tumor melanin status and dosimetry are therefore prerequisites for internal radiotherapy of disseminated melanoma. The melanin tracer ICF01012 was labelled with iodine-123 for melanoma imaging in pigmented murine B16F0 and human SK-Mel 3 melanomas. In vivo imaging showed that the uptake of [(123)I]ICF01012 to melanomas correlated significantly with melanin content. Schedule treatment of 3 × 25 MBq [(131)I]ICF01012 significantly reduced SK-Mel 3 tumor growth and significantly increased the median survival in treated mice. For this protocol, the calculated delivered dose was 53.2 Gy. Radio-iodinated ICF01012 is a good candidate for both imaging and therapeutic purposes for patients with metastatic pigmented melanomas.

  16. Numerical Investigation of Magnetically Driven Isentropic Compression of Solid Aluminum Cylinders with a Semi-Analytical Code

    NASA Astrophysics Data System (ADS)

    Largent, Billy T.

    The state of matter at extremely high pressures and densities is of fundamental interest to many branches of research, including planetary science, material science, condensed matter physics, and plasma physics. Matter with pressures, or energy densities, above 1 megabar (100 gigapascal) are defined as High Energy Density (HED) plasmas. They are directly relevant to the interiors of planets such as Earth and Jupiter and to the dense fuels in Inertial Confinement Fusion (ICF) experiments. To create HEDP conditions in laboratories, a sample may be compressed by a smoothly varying pressure ramp with minimal temperature increase, following the isentropic thermodynamic process. Isentropic compression of aluminum targets has been done using magnetic pressure produced by megaampere, pulsed power currents having 100 ns rise times. In this research project, magnetically driven, cylindrical isentropic compression has been numerically studied. In cylindrical geometry, material compression and pressure become higher than in planar geometry due to geometrical effects. Based on a semi-analytical model for the Magnetized Liner Inertial Fusion (MagLIF) concept, a code called "SA" was written to design cylindrical compression experiments on the 1.0 MA Zebra pulsed power generator at the Nevada Terawatt Facility (NTF). To test the physics models in the code, temporal progresses of rod compression and pressure were calculated with SA and compared with 1-D magnetohydrodynamic (MHD) codes. The MHD codes incorporated SESAME tables, for equation of state and resistivity, or the classical Spitzer model. A series of simulations were also run to find optimum rod diameters for 1.0 MA and 1.8 MA Zebra current pulses. For a 1.0 MA current peak and 95 ns rise time, a maximum compression of 2.35 ( 6.3 g/cm3) and a pressure of 900 GPa within a 100 mum radius were found for an initial diameter of 1.05 mm. For 1.8 MA peak simulations with the same rise time, the initial diameter of 1.3 mm was optimal with 3.32 ( 9.0 g/cm 3) compression.

  17. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE PAGES

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; ...

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method describedmore » here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. Transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. Furthermore, we expect that the success of our simple approach will motivate continued theoretical research into the development of first-principles-based, comprehensive, self-consistent, yet useable models of kinetic multispecies ion behavior in ICF plasmas.« less

  18. Disability and Functional Profiles of Patients with Migraine Measured with ICF Classification

    ERIC Educational Resources Information Center

    Raggi, Alberto

    2010-01-01

    To describe the functional profiles of patients with migraine, and the relationships between symptoms, activities and environmental factors, using WHO's International Classification of Functioning (ICF). Patients were consecutively enrolled at the Besta Institute of Milan. The ICF checklist was administered and two count-based indexes developed:…

  19. ICF-CY: A Universal Tool for Documentation of Disability

    ERIC Educational Resources Information Center

    Simeonsson, Rune J.

    2009-01-01

    The "International Classification of Functioning, Disability and Health--ICF" (ICF-CY) conceptual framework offers a new paradigm and taxonomy of human functioning disability, which can be used to guide holistic and interdisciplinary approaches to assessment and intervention. In settings serving children, youth, or adults with disabilities, the…

  20. Regulating Professional Services in ICFs/MR: Remembering the Past and Looking to the Future.

    ERIC Educational Resources Information Center

    Sparr, Margaret P.; Smith, Wayne

    1990-01-01

    This article reviews regulations governing Intermediate Care Facilities for the Mentally Retarded (ICF/MR), including 1971 ICF/MR Medicaid funding legislation, standards development by professional consensus, development of federal regulations, intergovernmental roles, and possible directions for the future. A need is seen for professionals to…

  1. How a Regression Artifact Makes ICFs/MR Look Ineffective.

    ERIC Educational Resources Information Center

    Crinella, Francis M.; McCleary, Richard; Swanson, James M.

    1998-01-01

    Criticizes the research design in "The Small ICF/MR program: Dimensions of Quality and Cost" (Conroy), that found small Intermediate Care Facilities (ICF) for individuals with mental retardation are inferior to other community programs. Discusses the problem in selecting a control group on the basis of pretest matching. (CR)

  2. Easy-to-Read Informed Consent Forms for Hematopoietic Cell Transplantation Clinical Trials

    PubMed Central

    Denzen, Ellen M; Santibáñez, Martha E Burton; Moore, Heather; Foley, Amy; Gersten, Iris D; Gurgol, Cathy; Majhail, Navneet S; Spellecy, Ryan; Horowitz, Mary M; Murphy, Elizabeth A

    2011-01-01

    Informed consent is essential to ethical research and is requisite to participation in clinical research. Yet most hematopoietic cell transplantation (HCT) informed consent forms (ICFs) are written at reading levels that are above the ability of the average person in the US. The recent development of ICF templates by the National Cancer Institute, National Institutes of Health and the National Heart Blood and Lung Instituthas not resulted in increased patient comprehension of information. Barriers to creating Easy-to-Read ICFs that meet US federal requirements and pass Institutional Review Board (IRB) review are the result of multiple interconnected factors. The Blood and Marrow Transplant Clinical Trials Network (BMT CTN) formed an ad hoc review team to address concerns regarding the overall readability and length of ICFs used for BMT CTN trials. This paper summarizes recommendations of the review team for the development and formatting of Easy-to-Read ICFs for HCT multicenter clinical trials, the most novel of which is the use of a two-column layout. These recommendations intend to guide the ICF writing process, simplify local IRB review of the ICF, enhance patient comprehension and improve patient satisfaction. The BMT CTN plans to evaluate the impact of the Easy-to-Read format compared to the traditional format on the informed consent process. PMID:21806948

  3. Mapping the Mayo-Portland adaptability inventory to the international classification of functioning, disability and health.

    PubMed

    Lexell, Jan; Malec, James F; Jacobsson, Lars J

    2012-01-01

    To examine the contents of the Mayo-Portland Adaptability Inventory (MPAI-4) by mapping it to the International Classification of Functioning, Disability and Health (ICF). Each of the 30 scoreable items in the MPAI-4 was mapped to the most precise ICF categories. All 30 items could be mapped to components and categories in the ICF. A total of 88 meaningful concepts were identified. There were, on average, 2.9 meaningful concepts per item, and 65% of all concepts could be mapped. Items in the Ability and Adjustment subscales mapped to categories in both the Body Functions and Activity/Participation components of the ICF, whereas all except 1 in the Participation subscale were to categories in the Activity/Participation component. The items could also be mapped to 34 (13%) of the 258 Environmental Factors in the ICF. This mapping provides better definition through more concrete examples (as listed in the ICF) of the types of body functions, activities, and participation indicators that are represented by the 30 scoreable MPAI-4 items. This may assist users throughout the world in understanding the intent of each item, and support further development and the possibility to report results in the form of an ICF categorical profile, making it universally interpretable.

  4. Validation of the Comprehensive ICF Core Set for obstructive pulmonary diseases from the patient's perspective.

    PubMed

    Marques, Alda; Jácome, Cristina; Gonçalves, Ana; Silva, Sara; Lucas, Carla; Cruz, Joana; Gabriel, Raquel

    2014-06-01

    This study aimed to validate the Comprehensive International Classification of Functioning, Disability and Health (ICF) Core Set for obstructive pulmonary diseases (OPDs) from the perspective of patients with chronic obstructive pulmonary disease. A cross-sectional qualitative study was carried out with outpatients with chronic obstructive pulmonary disease using focus groups with an ICF-based approach. Qualitative data were analysed using the meaning condensation procedure by two researchers with expertise in the ICF. Thirty-two participants (37.5% women; 63.8 ± 11.3 years old) were included in six focus groups. A total of 61 (86%) ICF categories of the Comprehensive ICF Core Set for OPD were confirmed. Thirty-nine additional second-level categories not included in the Core Set were identified: 15 from the body functions component, four from the body structures, nine from the activities and participation and 11 from the environmental factors. The majority of the categories included in the Comprehensive ICF Core Set for OPD were confirmed from the patients' perspective. However, additional categories, not included in the Core Set, were also reported. The categories included in the Core Set were not confirmed and the additional categories need to be investigated further to develop an instrument tailored to patients' needs. This will promote patient-centred assessments and rehabilitation interventions.

  5. Measurement of inflight shell areal density near peak velocity using a self backlighting technique

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; MacPhee, A. G.; Scott, H. A.; Robey, H. F.; Landen, O. L.; Barrios, M. A.; Regan, S. P.; Schneider, M. B.; Hoppe, M., Jr.; Kohut, T.; Holunga, D.; Walters, C.; Haid, B.; Dayton, M.

    2016-05-01

    The growth of perturbations in inertial confinement fusion (ICF) capsules can lead to significant variation of inflight shell areal density (ρR), ultimately resulting in poor compression and ablator material mixing into the hotspot. As the capsule is accelerated inward, the perturbation growth results from the initial shock-transit through the shell and then amplification by Rayleigh-Taylor as the shell accelerates inwards. Measurements of ρR perturbations near peak implosion velocity (PV) are essential to our understanding of ICF implosions because they reflect the integrity of the capsule, after the inward acceleration growth is complete, of the actual shell perturbations including native capsule surface roughness and “isolated defects”. Quantitative measurements of shell-ρR perturbations in capsules near PV are challenging, requiring a new method with which to radiograph the shell. An innovative method, utilized in this paper, is to use the self-emission from the hotspot to “self- backlight” the shell inflight. However, with nominal capsule fills there is insufficient self-emission for this method until the capsule nears peak compression (PC). We produce a sufficiently bright continuum self-emission backlighter through the addition of a high-Z gas (∼ 1% Ar) to the capsule fill. This provides a significant (∼10x) increase in emission at hυ∼8 keV over nominal fills. “Self backlit” radiographs are obtained for times when the shock is rebounding from the capsule center, expanding out to meet the incoming shell, providing a means to sample the capsule optical density though only one side, as it converges through PV.

  6. Patients' functioning as predictor of nursing workload in acute hospital units providing rehabilitation care: a multi-centre cohort study

    PubMed Central

    2010-01-01

    Background Management decisions regarding quality and quantity of nurse staffing have important consequences for hospital budgets. Furthermore, these management decisions must address the nursing care requirements of the particular patients within an organizational unit. In order to determine optimal nurse staffing needs, the extent of nursing workload must first be known. Nursing workload is largely a function of the composite of the patients' individual health status, particularly with respect to functioning status, individual need for nursing care, and severity of symptoms. The International Classification of Functioning, Disability and Health (ICF) and the derived subsets, the so-called ICF Core Sets, are a standardized approach to describe patients' functioning status. The objectives of this study were to (1) examine the association between patients' functioning, as encoded by categories of the Acute ICF Core Sets, and nursing workload in patients in the acute care situation, (2) compare the variance in nursing workload explained by the ICF Core Set categories and with the Barthel Index, and (3) validate the Acute ICF Core Sets by their ability to predict nursing workload. Methods Patients' functioning at admission was assessed using the respective Acute ICF Core Set and the Barthel Index, whereas nursing workload data was collected using an established instrument. Associations between dependent and independent variables were modelled using linear regression. Variable selection was carried out using penalized regression. Results In patients with neurological and cardiopulmonary conditions, selected ICF categories and the Barthel Index Score explained the same variance in nursing workload (44% in neurological conditions, 35% in cardiopulmonary conditions), whereas ICF was slightly superior to Barthel Index Score for musculoskeletal conditions (20% versus 16%). Conclusions A substantial fraction of the variance in nursing workload in patients with rehabilitation needs in the acute hospital could be predicted by selected categories of the Acute ICF Core Sets, or by the Barthel Index score. Incorporating ICF Core Set-based data in nursing management decisions, particularly staffing decisions, may be beneficial. PMID:21034438

  7. Toward an International Classification of Functioning, Disability and Health clinical data collection tool: the Italian experience of developing simple, intuitive descriptions of the Rehabilitation Set categories.

    PubMed

    Selb, Melissa; Gimigliano, Francesca; Prodinger, Birgit; Stucki, Gerold; Pestelli, Germano; Iocco, Maurizio; Boldrini, Paolo

    2017-04-01

    As part of international efforts to develop and implement national models including the specification of ICF-based clinical data collection tools, the Italian rehabilitation community initiated a project to develop simple, intuitive descriptions of the ICF Rehabilitation Set, highlighting the core concept of each category in user-friendly language. This paper outlines the Italian experience in developing simple, intuitive descriptions of the ICF Rehabilitation Set as an ICF-based clinical data collection tool for Italy. Consensus process. Expert conference. Multidisciplinary group of rehabilitation professionals. The first of a two-stage consensus process involved developing an initial proposal for simple, intuitive descriptions of each ICF Rehabilitation Set category based on descriptions generated in a similar process in China. Stage two involved a consensus conference. Divided into three working groups, participants discussed and voted (vote A) whether the initially proposed descriptions of each ICF Rehabilitation Set category was simple and intuitive enough for use in daily practice. Afterwards the categories with descriptions considered ambiguous i.e. not simple and intuitive enough, were divided among the working groups, who were asked to propose a new description for the allocated categories. These proposals were then voted (vote B) on in a plenary session. The last step of the consensus conference required each working group to develop a new proposal for each and the same categories with descriptions still considered ambiguous. Participants then voted (final vote) for which of the three proposed descriptions they preferred. Nineteen clinicians from diverse rehabilitation disciplines from various regions of Italy participated in the consensus process. Three ICF categories already achieved consensus in vote A, while 20 ICF categories were accepted in vote B. The remaining 7 categories were decided in the final vote. The findings were discussed in light of current efforts toward developing strategies for ICF implementation, specifically for the application of an ICF-based clinical data collection tool, not only for Italy but also for the rest of Europe. Promising as minimal standards for monitoring the impact of interventions and for standardized reporting of functioning as a relevant outcome in rehabilitation.

  8. Development of the International Classification of Functioning, Disability and Health core sets for bipolar disorders: results of an international consensus process.

    PubMed

    Ayuso-Mateos, José L; Avila, Carolina C; Anaya, Celia; Cieza, Alarcos; Vieta, Eduard

    2013-01-01

    The International Classification of Functioning, Disability and Health (ICF) is a tool of the World Health Organization (WHO) designed to be a guide to identify and classify relevant domains of human experience affected by health conditions. The purpose of this article is to describe the process for the development of two Core Sets for bipolar disorder (BD) in the framework of the ICF. The Comprehensive ICF Core Set for BD intends to be a guide for multidisciplinary assessment of patients diagnosed with this condition, while the Brief ICF Core Set for BD will be useful when rating aspects of patient's experience for clinical practice or epidemiological studies. An international consensus conference involving a sample of experts with different professional backgrounds was performed using the nominal group technique. Various preparatory studies identified a set of 743 potential ICF categories to be included in the Core Sets. A total of 38 ICF categories were selected to be included in the Comprehensive Core Set for BD. A total of 19 ICF categories from the Comprehensive Core Set were chosen as the most significant to constitute the Brief Core Set for BD. The formal consensus process integrating evidence and expert opinion on the ICF led to the formal adoption of the ICF Core Sets for BD. The most important categories included are representative of the characteristics usually associated with BD. The next phase of this ICF project is to conduct a formal validation process to establish its applicability in clinical settings. Implications for Rehabilitation Bipolar disorder (BD) is a prevalent condition that has a great impact on people who suffer it, not only in health but also in daily functioning and quality of life. No standard has been defined so far regarding the problems in functioning of persons with BDs. The process described in this article defines the set of areas of functioning to be addressed in clinical assessments of persons with BD and establish the starting point for the development of condition-specific outcome measures.

  9. Investigating the International Classification of Functioning, Disability, and Health (ICF) Framework to Capture User Needs in the Concept Stage of Rehabilitation Technology Development.

    PubMed

    Sivan, Manoj; Gallagher, Justin; Holt, Ray; Weightman, Andy; Levesley, Martin; Bhakta, Bipin

    2014-01-01

    This study evaluates whether the International Classification of Functioning, Disability, and Health (ICF) framework provides a useful basis to ensure that key user needs are identified in the development of a home-based arm rehabilitation system for stroke patients. Using a qualitative approach, nine people with residual arm weakness after stroke and six healthcare professionals with expertise in stroke rehabilitation were enrolled in the user-centered design process. They were asked, through semi-structured interviews, to define the needs and specification for a potential home-based rehabilitation device to facilitate self-managed arm exercise. The topic list for the interviews was derived by brainstorming ideas within the clinical and engineering multidisciplinary research team based on previous experience and existing literature in user-centered design. Meaningful concepts were extracted from questions and responses of these interviews. These concepts obtained were matched to the categories within the ICF comprehensive core set for stroke using ICF linking rules. Most of the concepts extracted from the interviews matched to the existing ICF Core Set categories. Person factors like gender, age, interest, compliance, motivation, choice, and convenience that might determine device usability are yet to be categorized within the ICF comprehensive core set. The results suggest that the categories of the comprehensive ICF Core Set for stroke provide a useful basis for structuring interviews to identify most users needs. However some personal factors (related to end users and healthcare professionals) need to be considered in addition to the ICF categories.

  10. Health promotion and education: application of the ICF in the US and Canada using an ecological perspective.

    PubMed

    Howard, David; Nieuwenhuijsen, Els R; Saleeby, Patricia

    2008-01-01

    Health promotion is an issue comprised of complex and multi-layered concepts that involves a process of enabling people to increase control over and improve their health. The aims and applications of the World Health Organization's International Classification of Functioning, Disability and Health (ICF), with its focus on components of functioning, activities and participation, and environmental factors are salient to health promotion and health education efforts. For individuals with or without disabilities, health promotion occurs within the community in which they reside and is influenced by a complex interaction of personal and environmental factors. The aim of this paper is to discuss how the ICF can be useful in enhancing social change through health promotion and health education for all people, in particular those with disabilities and chronic conditions. In doing so health promotion concepts and the ecological approach linked with the ICF, the relationship of social change and social support to the ICF, the potential role of the ICF for national and local (city) policies, and the role of health professionals in this process will be examined. Building on this body of knowledge, the authors recommend that future research should focus on the relationship between policies and the social participation of people with disabilities in the community, the use of ICF measurement tools to improve the indicators established by the National Organization on Disability, the development of a new ICF core set for community accessibility and inclusion, better interventions to enhance social support, and enhancing the role of professionals in health promotion for people with disabilities or chronic health conditions.

  11. Simplified bipartite concepts of functioning and disability recommended for interdisciplinary use of the ICF.

    PubMed

    Thyberg, Mikael; Arvidsson, Patrik; Thyberg, Ingrid; Nordenfelt, Lennart

    2015-01-01

    To argue for and propose bipartite concepts of functioning and disability, to tally with the structure of the ICF classification list, concepts of social models and clinical needs. The ICF concepts are discussed in relation to the history of ideas regarding disability concepts and the needs for such concepts in interdisciplinary rehabilitation. Bipartite concepts are presented; they refer to actual functioning, simply body functions/structures and participation, including functioning in standardized environments. Participation refers to actually performed "activities", with "activities" simply denoting things that people may do. Bipartite concepts are congruent with the ICF classification and the structure of social models of disability, suitable for clinical and interdisciplinary use and easy to understand. The issue of standardized environments represents a methodological issue rather than the conceptual issue of defining functioning and disability. An individual perspective on activity and activity limitations, i.e. the middle part of the tripartite ICF concept, is somewhat similar to concepts of traditional language that were regarded as too generalizing already in 1912, when the interactional concept of "disability in a social sense" was introduced in rehabilitation practices. Bipartite concepts of functioning and disability are recommended for interdisciplinary use of the ICF. The ICF classification is useful, but the ICF concept of activities in an individual perspective is confusing. We suggest a use of the term "activities" simply to denote things that people may do and "participation" to denote actually performed activities. Estimations of ability should be explicit about how they are related to environmental factors.

  12. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosionmore » phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire-array plasma acceleration, shock generation and production, hohlraum formation, radiation ablation and fuel compression.« less

  13. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    PubMed Central

    Consoli, F.; De Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-01-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704

  14. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-06-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.

  15. Using Technology to Support the Army Learning Model

    DTIC Science & Technology

    2016-02-01

    Jessie Hyland ICF International Jennifer S. Tucker Steve Burnett U.S. Army Research Institute February 2016 United States...Director Research accomplished under contract for the Department of the Army by ICF International Technical Review by Jean Dyer...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ICF International U. S. Army Research Institute 9300 Lee Highway

  16. 42 CFR 440.150 - Intermediate care facility (ICF/IID) services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Intermediate care facility (ICF/IID) services. 440.150 Section 440.150 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Definitions § 440.150 Intermediate care facility (ICF/IID)...

  17. Rhetoric and Realities in Today's ICF/MR: Control out of Control.

    ERIC Educational Resources Information Center

    Holburn, C. Steve

    1992-01-01

    This paper contrasts the rhetoric of quality assurance with the realities of poor quality in today's Intermediate Care Facilities for the Mentally Retarded (ICF/MR). The ICF/MR operational model is described as paper oriented, failure based, and insensitive to the effects of its own practices. Recommendations include the establishment of local…

  18. 42 CFR 440.150 - Intermediate care facility (ICF/MR) services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Intermediate care facility (ICF/MR) services. 440.150 Section 440.150 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Definitions § 440.150 Intermediate care facility (ICF/MR) service...

  19. An Examination of a University Success Coaching Program

    ERIC Educational Resources Information Center

    Blankenship, Marlin

    2017-01-01

    This dissertation builds upon previous coaching research by providing a deep examination of a university success coaching program that uses an International Coach Federation (ICF) coaching framework. The dissertation seeks to identify how ICF coaching compares to the findings of previous research, what training is required to be an ICF coach at a…

  20. Progressive intervention strategy for the gait of sub-acute stroke patient using the International Classification of Functioning, Disability, and Health tool.

    PubMed

    Kang, Tae-Woo; Cynn, Heon-Seock

    2017-01-01

    The International Classification of Functioning, Disability, and Health (ICF) provides models for functions and disabilities. The ICF is presented as a frame that enables organizing physical therapists' clinical practice for application. The purpose of the present study was to describe processes through which stroke patients are assessed and treated based on the ICF model. The patient was a 65-year-old female diagnosed with right cerebral artery infarction with left hemiparesis. Progressive interventions were applied, such as those aiming at sitting and standing for the first two weeks, gait intervention for the third and fourth weeks, and those aiming at sitting from a standing position for the fifth and sixth weeks. The ICF model provides rehabilitation experts with a frame that enables them to accurately identify and understand their patients' problems. The ICF model helps the experts understand not only their patients' body structure, function, activity, and participation, but also their problems related to personal and environmental factors. The experts could efficiently make decisions and provide optimum treatment at clinics using the ICF model.

  1. Detection of incidental cardiac findings in noncardiac chest computed tomography

    PubMed Central

    Secchi, Francesco; Di Leo, Giovanni; Zanardo, Moreno; Alì, Marco; Cannaò, Paola Maria; Sardanelli, Francesco

    2017-01-01

    Abstract The aim of the study was to estimate the rate of incidental cardiac findings (ICF) in patients undergoing noncardiac chest CT. An experienced radiologist retrospectively reviewed 237 consecutive patients (147 males and 90 females with median age of 69 years) undergoing a noncardiac chest CT. ICF at targeted review were compared to those mentioned in original reports (χ2 test). At review, ≥1 ICF was detected in 124/237 patients (52%), for a total of 229 ICF, 158 of them (69%) not originally mentioned. Valvular calcifications were unmentioned in 23/23 (100%) patients, main pulmonary artery dilation in 21/22 (96%), coronary calcifications in 69/86 (80%), right or left atrial dilation in 7/11 (64%), aortic atherosclerosis in 29/62 (47%), and ascending aorta dilatation in 8/18 (44%). All 6 pericardial effusions were originally mentioned. No association with sex (P ≥ .189); positive correlation with age (P < .001). Half of patients undergoing noncardiac chest CT presented ≥1 ICF, independently from sex but increasing with age. Moreover, 69% of detectable ICFs were not originally mentioned. PMID:28723768

  2. Detection of incidental cardiac findings in noncardiac chest computed tomography.

    PubMed

    Secchi, Francesco; Di Leo, Giovanni; Zanardo, Moreno; Alì, Marco; Cannaò, Paola Maria; Sardanelli, Francesco

    2017-07-01

    The aim of the study was to estimate the rate of incidental cardiac findings (ICF) in patients undergoing noncardiac chest CT.An experienced radiologist retrospectively reviewed 237 consecutive patients (147 males and 90 females with median age of 69 years) undergoing a noncardiac chest CT. ICF at targeted review were compared to those mentioned in original reports (χ test).At review, ≥1 ICF was detected in 124/237 patients (52%), for a total of 229 ICF, 158 of them (69%) not originally mentioned. Valvular calcifications were unmentioned in 23/23 (100%) patients, main pulmonary artery dilation in 21/22 (96%), coronary calcifications in 69/86 (80%), right or left atrial dilation in 7/11 (64%), aortic atherosclerosis in 29/62 (47%), and ascending aorta dilatation in 8/18 (44%). All 6 pericardial effusions were originally mentioned. No association with sex (P ≥ .189); positive correlation with age (P < .001).Half of patients undergoing noncardiac chest CT presented ≥1 ICF, independently from sex but increasing with age. Moreover, 69% of detectable ICFs were not originally mentioned.

  3. The Nova Upgrade Facility for ICF ignition and gain

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.

    1992-01-01

    Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.

  4. Design of an Experiment to Observe Laser-Plasma Interactions on NIKE

    NASA Astrophysics Data System (ADS)

    Phillips, L.; Weaver, J.; Manheimer, W.; Zalesak, S.; Schmitt, A.; Fyfe, D.; Afeyan, B.; Charbonneau-Lefort, M.

    2007-11-01

    Recent proposed designs (Obenschain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) that may lead, for example, to the generation of fast electrons. The proposed use of a 248 nm KrF laser to drive these targets is expected to minimize LPI; this is being studied by experiments at NRL's NIKE facility. We used a modification of the FAST code that models laser pulses with arbitrary spatial and temporal profiles to assist in designing these experiments. The goal is to design targets and pulseshapes to create plasma conditions that will produce sufficient growth of LPI to be observable on NIKE. Using, for example, a cryogenic DT target that is heated by a brief pulse and allowed to expand freely before interacting with a second, high-intensity pulse, allows the development of long scalelengths at low electron temperatures and leads to a predicted 20-efold growth in two-plasmon amplitude.

  5. Health professionals identify components of the International Classification of Functioning, Disability and Health (ICF) in questionnaires for the upper limb

    PubMed Central

    Philbois, Stella V.; Martins, Jaqueline; Souza, Cesário S.; Sampaio, Rosana F.; Oliveira, Anamaria S.

    2016-01-01

    BACKGROUND: Several Brazilian studies have addressed the International Classification of Functioning, Disability and Health (ICF), but few have analyzed the knowledge of the health professionals with regards to the ICF. OBJECTIVE: To verify whether the classification of the items in the Brazilian-Portuguese versions of The Shoulder Pain and Disability Index (SPADI) and The Disabilities Arm, Shoulder and Hand (DASH) questionnaires, obtained from health professionals who worked with patients having upper limb injuries, could be related to ICF components as defined by others studies. METHOD: There were 4 participants for the group "professionals with high familiarity of the ICF (PHF)" and 19 for the group of "professionals with some or no familiarity of the ICF (PSNF)". The participants judged whether the items on the two questionnaires belonged to the ICF body function, body structure or activity-participation component, and marked a confidence level for each trial using a numerical scale ranging from zero to 10. The items were classified by the discriminant content validity method using the Student'st-test and the Hochberg correction. The ratings were compared to the literature by the percentage of agreement and Kappa coefficient. RESULTS: The percentage of agreement of the rating from the PSNF and the PHF groups with the literature was equal to or greater than 77%. For the DASH, the agreement of the PSNF and PHF groups with the literature were, respectively, moderate (Kappa=0.46 to 0.48) and substantial (Kappa=0.62 to 0.70). CONCLUSIONS: Health professionals were able to correlate the three components of the ICF for most items on the 2 questionnaires, demonstrating some ease of understanding the ICF components. However, the relation of concept of pain with body function component is not clear for professional and deserves a more attentive approach. PMID:26786076

  6. ICF-CY code set for infants with early delay and disabilities (EDD Code Set) for interdisciplinary assessment: a global experts survey.

    PubMed

    Pan, Yi-Ling; Hwang, Ai-Wen; Simeonsson, Rune J; Lu, Lu; Liao, Hua-Fang

    2015-01-01

    Comprehensive description of functioning is important in providing early intervention services for infants with developmental delay/disabilities (DD). A code set of the International Classification of Functioning, Disability and Health: Children and Youth Version (ICF-CY) could facilitate the practical use of the ICF-CY in team evaluation. The purpose of this study was to derive an ICF-CY code set for infants under three years of age with early delay and disabilities (EDD Code Set) for initial team evaluation. The EDD Code Set based on the ICF-CY was developed on the basis of a Delphi survey of international professionals experienced in implementing the ICF-CY and professionals in early intervention service system in Taiwan. Twenty-five professionals completed the Delphi survey. A total of 82 ICF-CY second-level categories were identified for the EDD Code Set, including 28 categories from the domain Activities and Participation, 29 from body functions, 10 from body structures and 15 from environmental factors. The EDD Code Set of 82 ICF-CY categories could be useful in multidisciplinary team evaluations to describe functioning of infants younger than three years of age with DD, in a holistic manner. Future validation of the EDD Code Set and examination of its clinical utility are needed. The EDD Code Set with 82 essential ICF-CY categories could be useful in the initial team evaluation as a common language to describe functioning of infants less than three years of age with developmental delay/disabilities, with a more holistic view. The EDD Code Set including essential categories in activities and participation, body functions, body structures and environmental factors could be used to create a functional profile for each infant with special needs and to clarify the interaction of child and environment accounting for the child's functioning.

  7. A comprehensive scoping review of ability and disability in ADHD using the International Classification of Functioning, Disability and Health-Children and Youth Version (ICF-CY).

    PubMed

    de Schipper, Elles; Lundequist, Aiko; Wilteus, Anna Löfgren; Coghill, David; de Vries, Petrus J; Granlund, Mats; Holtmann, Martin; Jonsson, Ulf; Karande, Sunil; Levy, Florence; Al-Modayfer, Omar; Rohde, Luis; Tannock, Rosemary; Tonge, Bruce; Bölte, Sven

    2015-08-01

    This is the first in a series of four empirical investigations to develop International Classification of Functioning, Disability and Health (ICF) Core Sets for Attention Deficit Hyperactivity Disorder (ADHD). The objective here was to use a comprehensive scoping review approach to identify the concepts of functional ability and disability used in the scientific ADHD literature and link these to the nomenclature of the ICF-CY. Systematic searches were conducted using Medline/PubMed, PsycINFO, ERIC and Cinahl, to extract the relevant concepts of functional ability and disability from the identified outcome studies of ADHD. These concepts were then linked to ICF-CY by two independent researchers using a standardized linking procedure. Data from identified studies were analysed until saturation of ICF-CY categories was reached. Eighty studies were included in the final analysis. Concepts contained in these studies were linked to 128 ICF-CY categories. Of these categories, 68 were considered to be particularly relevant to ADHD (i.e., identified in at least 5 % of the studies). Of these, 32 were related to Activities and participation, 31 were related to Body functions, and five were related to environmental factors. The five most frequently identified categories were school education (53 %), energy and drive functions (50 %), psychomotor functions (50 %), attention functions (49 %), and emotional functions (45 %). The broad variety of ICF-CY categories identified in this study underlines the necessity to consider ability and disability in ADHD across all dimensions of life, for which the ICF-CY provides a valuable and universally applicable framework. These results, in combination with three additional preparatory studies (expert survey, focus groups, clinical study), will provide a scientific basis to define the ICF Core Sets for ADHD for multi-purpose use in basic and applied research, and every day clinical practice.

  8. Clinical Significance of Accounting for Tissue Heterogeneity in Permanent Breast Seed Implant Brachytherapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashouf, Shahram; Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario; Fleury, Emmanuelle

    Purpose: The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Methods and Materials: Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43more » dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Results: Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V{sub 100} and V{sub 90} are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. Conclusions: The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases.« less

  9. The impact of age and gender on the ICF-based assessment of chronic low back pain.

    PubMed

    Fehrmann, Elisabeth; Kotulla, Simone; Fischer, Linda; Kienbacher, Thomas; Tuechler, Kerstin; Mair, Patrick; Ebenbichler, Gerold; Paul, Birgit

    2018-01-12

    To evaluate the impact of age and gender on the international classification of functioning, disability and health (ICF)-based assessment for chronic low back pain. Two hundred forty-four chronic low back pain patients (52% female) with a mean age of 49 years (SD =17.64) were interviewed with the comprehensive ICF core set for activities and participation, and environmental factors. After conducting explorative factor analysis, the impact of age and gender on the different factors was analyzed using analyzes of variances. Results revealed that older patients experienced more limitations within "self-care and mobility" and "walking" but less problems with "transportation" compared to younger patients. Older or middle-aged low back pain patients further perceived more facilitation through "architecture and products for communication", "health services", and "social services and products for mobility" than younger patients. Regarding gender differences, women reported more restriction in "housework" than men. An interaction effect between age and gender was found for "social activities and recreation" with young male patients reporting the highest impairment. The study demonstrated that the comprehensive ICF core set classification for chronic low back pain is influenced by age and gender. This impact is relevant for ICF-based assessments in clinical practice, and should be considered in intervention planning for rehabilitative programs. Implications for rehabilitation It is important to consider age and gender differences when classifying with the ICF. The intervention planning based on the ICF should focus on improvement of bodily functioning and mobility in older patients, facilitation of household activities in women, consideration of work-life balance and recreation (e.g., through mindfulness based stress reduction), and reduction of dissatisfaction with rehabilitation in younger patients. It is important to offer patients the opportunity to participate in intervention planning based on the ICF. For intervention planning professionals should bear in mind the resource-oriented approach of the ICF (e.g., facilitation through environmental factors), and a collaboration with other professionals.

  10. What explains health in persons with visual impairment?

    PubMed Central

    2014-01-01

    Background Visual impairment is associated with important limitations in functioning. The International Classification of Functioning, Disability and Health (ICF) adopted by the World Health Organisation (WHO) relies on a globally accepted framework for classifying problems in functioning and the influence of contextual factors. Its comprehensive perspective, including biological, individual and social aspects of health, enables the ICF to describe the whole health experience of persons with visual impairment. The objectives of this study are (1) to analyze whether the ICF can be used to comprehensively describe the problems in functioning of persons with visual impairment and the environmental factors that influence their lives and (2) to select the ICF categories that best capture self-perceived health of persons with visual impairment. Methods Data from 105 persons with visual impairment were collected, including socio-demographic data, vision-related data, the Extended ICF Checklist and the visual analogue scale of the EuroQoL-5D, to assess self-perceived health. Descriptive statistics and a Group Lasso regression were performed. The main outcome measures were functioning defined as impairments in Body functions and Body structures, limitations in Activities and restrictions in Participation, influencing Environmental factors and self-perceived health. Results In total, 120 ICF categories covering a broad range of Body functions, Body structures, aspects of Activities and Participation and Environmental factors were identified. Thirteen ICF categories that best capture self-perceived health were selected based on the Group Lasso regression. While Activities-and-Participation categories were selected most frequently, the greatest impact on self-perceived health was found in Body-functions categories. The ICF can be used as a framework to comprehensively describe the problems of persons with visual impairment and the Environmental factors which influence their lives. Conclusions There are plenty of ICF categories, Environmental-factors categories in particular, which are relevant to persons with visual impairment, but have hardly ever been taken into consideration in literature and visual impairment-specific patient-reported outcome measures. PMID:24886326

  11. Clinical Significance of Accounting for Tissue Heterogeneity in Permanent Breast Seed Implant Brachytherapy Planning.

    PubMed

    Mashouf, Shahram; Fleury, Emmanuelle; Lai, Priscilla; Merino, Tomas; Lechtman, Eli; Kiss, Alex; McCann, Claire; Pignol, Jean-Philippe

    2016-03-15

    The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43 dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V100 and V90 are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The International Classification of Functioning, Disability and Health and the version for children and youth as a tool in child habilitation/early childhood intervention--feasibility and usefulness as a common language and frame of reference for practice.

    PubMed

    Björck-Åkesson, Eva; Wilder, Jenny; Granlund, Mats; Pless, Mia; Simeonsson, Rune; Adolfsson, Margareta; Almqvist, Lena; Augustine, Lilly; Klang, Nina; Lillvist, Anne

    2010-01-01

    Early childhood intervention and habilitation services for children with disabilities operate on an interdisciplinary basis. It requires a common language between professionals, and a shared framework for intervention goals and intervention implementation. The International Classification of Functioning, Disability and Health (ICF) and the version for children and youth (ICF-CY) may serve as this common framework and language. This overview of studies implemented by our research group is based on three research questions: Do the ICF-CY conceptual model have a valid content and is it logically coherent when investigated empirically? Is the ICF-CY classification useful for documenting child characteristics in services? What difficulties and benefits are related to using ICF-CY model as a basis for intervention when it is implemented in services? A series of studies, undertaken by the CHILD researchers are analysed. The analysis is based on data sets from published studies or master theses. Results and conclusion show that the ICF-CY has a useful content and is logically coherent on model level. Professionals find it useful for documenting children's body functions and activities. Guidelines for separating activity and participation are needed. ICF-CY is a complex classification, implementing it in services is a long-term project.

  13. Using the ICF to clarify team roles and demonstrate clinical reasoning in stroke rehabilitation.

    PubMed

    Tempest, Stephanie; McIntyre, Anne

    2006-05-30

    The International Classification of Functioning, Disability and Health (ICF) is advocated as a tool to structure rehabilitation and a universal language to aid communication, within the multi-disciplinary team (MDT). The ICF may also facilitate clarification of team roles and clinical reasoning for intervention. This article aims to explore both factors in stroke rehabilitation. Following a review of the literature, a summary was presented and discussed with clinicians working within stroke rehabilitation, to gather expert opinions. The discussions were informal, being part of service development and on-going education. The clinicians summarised key themes for the potential use of the ICF within clinical practice. Two key themes emerged from the literature and expert opinion for the potential use of the ICF in stroke rehabilitation: (i) to aid communication and structure service provision, (ii) to clarify team roles and aid clinical reasoning. Expert opinion was that clarification of team roles needs to occur at a local level due to the skill mix, particular interests, setting and staffing levels within individual teams. The ICF has the potential to demonstrate/facilitate clinical reasoning, especially when different MDT members are working on the same intervention. There is potential for the ICF to be used to clarify team roles and demonstrate clinical reasoning within stroke rehabilitation. Further experiential research is required to substantiate this view.

  14. A comparison of participation outcome measures and the International Classification of Functioning, Disability and Health Core Sets for traumatic brain injury.

    PubMed

    Chung, Pearl; Yun, Sarah Jin; Khan, Fary

    2014-02-01

    To compare the contents of participation outcome measures in traumatic brain injury with the International Classification of Functioning, Disability and Health (ICF) Core Sets for traumatic brain injury. A systematic search with an independent review process selected relevant articles to identify outcome measures in participation in traumatic brain injury. Instruments used in two or more studies were linked to the ICF categories, which identified categories in participation for comparison with the ICF Core Sets for traumatic brain injury. Selected articles (n = 101) identified participation instruments used in two or more studies (n = 9): Community Integration Questionnaire, Craig Handicap Assessment and Reporting Technique, Mayo-Portland Adaptability Inventory-4 Participation Index, Sydney Psychosocial Reintegration Scale Version-2, Participation Assessment with Recombined Tool-Objective, Community Integration Measure, Participation Objective Participation Subjective, Community Integration Questionnaire-2, and Quality of Community Integration Questionnaire. Each instrument was linked to 4-35 unique second-level ICF categories, of which 39-100% related to participation. Instruments addressed 86-100% and 50-100% of the participation categories in the Comprehensive and Brief ICF Core Sets for traumatic brain injury, respectively. Participation measures in traumatic brain injury were compared with the ICF Core Sets for traumatic brain injury. The ICF Core Sets for traumatic brain injury could contribute to the development and selection of participation measures.

  15. Proton acceleration: new developments for focusing and energy selection, and applications in plasma physics

    NASA Astrophysics Data System (ADS)

    Audebert, P.

    2007-11-01

    In the last few years, intense research has been conducted on laser-accelerated ion sources and their applications. These sources have exceptional properties, i.e. high brightness and high spectral cut-off, high directionality and laminarity, short burst duration. We have shown that for proton energies >10 MeV, the transverse and longitudinal emittance are respectively <0.004 mm-mrad and <10-4 eV-s, i.e. at least 100-fold and may be as much as 10^4-fold better than conventional accelerators beams. Thanks to these properties, these sources allow for example point-projection radiography with unprecedented resolution. We will show example of such time and space-resolved radiography of fast evolving fields, either of associated with the expansion of a plasma in vacuum [*] or with the propagation of a ICF-relevant laser beam in an underdense plasma. These proton sources also open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications.

  16. Return current instability driven by a temperature gradient in ICF plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Brantov, A. V.; Sherlock, M.; Bychenkov, V. Yu

    2018-01-01

    Hot plasmas with strong temperature gradients in inertial confinement fusion experiments are examined for ion acoustic instabilities produced by electron heat flow. The return current instability (RCI) due to a neutralizing current of cold electrons arising in response to a large electron heat flux has been considered. First, the linear threshold and growth rates are derived in the non-local regime of thermal transport. They are compared with the results of Vlasov-Fokker-Planck (VFP) simulations in one spatial dimension. Very good agreement has been found between kinetic VFP simulations and the linear theory of the RCI. A quasi-stationary state of ion acoustic turbulence (IAT) produced by the RCI is achieved in the VFP simulations. Saturation of the RCI involves heating of ions in the tail of the ion distribution function and convection of the enhanced ion acoustic fluctuations from the unstable region of the plasma. Further evolution of the IAT and its effects on absorption and transport are also discussed.

  17. Scaling of Liquid DT Layer Capsules to an ICF Burning Plasma

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Peterson, R. R.; Haines, B. M.; Yi, S. A.; Bradley, P. A.; Zylstra, A. B.; Kline, J. L.; Leeper, R. J.; Batha, S. H.

    2017-10-01

    Recent experiments at the NIF demonstrated cryogenic liquid DT layer ICF implosions. Unlike DT ice layer implosions, DT liquid layer designs can operate with low-to-moderate convergence ratio (12

  18. Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, R.; Chang, P.Y.; Spears, B.K.

    2010-04-23

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.« less

  19. 42 CFR 442.118 - Denial of payments for new admissions to an ICF/MR.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facility is out of compliance with the conditions of participation for ICFs/MR. (ii) A written decision... participation specified under subpart I of part 483 of this chapter. (b) Agency procedures. Before denying... participation for ICFs/MR. (2) If at the end of the specified period the facility has not achieved compliance...

  20. Relationship between work-related attitudes, performance and capacities according to the ICF in patients with mental disorders.

    PubMed

    Linden, Michael; Baron, Stefanie; Muschalla, Beate

    2010-01-01

    The International Classification of Functioning Disability and Health (ICF) differentiates between functions, activities/capacities, contextual factors and participation. Dysfunctions can result in impaired capacities, which in turn can lead to problems with participation depending on the context. Motivational and volitional deficits are intervening factors. The question is to what degree work performance (i.e. participation), motivational factors, and the inability to perform activities (i.e. dysfunctions) interact. Incapacities were measured in 213 patients (70% women) admitted to the Department of Behavioral Medicine using the Mini-ICF-Rating for Mental Disorders (Mini-ICF-APP), work performance was measured with the Endicott Work Productivity Scale (EWPS), and volitional and motivational problems in regard to work were assessed with the Arbeitsbezogenes Verhaltens- und Erlebensmuster (AVEM). Sick leave prior to admission and work-related problems were assessed in a special clinical interview. The mean global score of the Mini-ICF-APP across all patients was 0.84 +/- 0.56 (SD), corresponding to 'mild disability'. The highest disabilities in this patient population were found for 'flexibility' (item 3, 1.64 +/- 0.94); the lowest disabilities were found for 'self maintenance' (item 11, 0.19 +/- 0.44) and 'mobility' (item 12, 0.43 +/- 0.85). Partial correlations between the Mini-ICF-APP, AVEM and EWPS showed highly significant correlations between the Mini-ICF-APP and EWPS and no or weak correlations between the AVEM and the Mini-ICF-APP or EWPS. Work performance is primarily related to the inability to perform activities and incapacities, and only due to attitudes or volitional/motivational factors to a much lesser degree. Therefore, capacity and motivation can and must be separated. Copyright (c) 2010 S. Karger AG, Basel.

  1. Applying the ICF to identify requirements for students with Asperger syndrome in higher education.

    PubMed

    Adolfsson, Margareta; Simmeborn Fleischer, Ann

    2015-06-01

    Higher education requires more than academic skills and everyday student-life can be stressful. Students with Asperger syndrome (AS) may need support to manage their education due to difficulties in social functioning. As preparation for the development of a structured tool to guide student and coordinator dialogues at Swedish universities, this study aimed to identify ICF categories that reflect requirements in everyday student-life for students with AS. Using descriptive qualitative approach, information in documents reflecting the perspectives of university students, international classifications, user/health organisations and education authorities were linked to ICF codes. In total, 114 ICF categories were identified, most of which related to learning, tasks and demands, communication and interactions. Students with AS need varying accommodations to be successful in higher education. In the future, ICF-based code sets, including demands on student roles, can be used as checklists to describe functioning and needs for support.

  2. A comparison of the International Classification of Functioning, Disability, and Health to the disability tax credit.

    PubMed

    Conti-Becker, Angela; Doralp, Samantha; Fayed, Nora; Kean, Crystal; Lencucha, Raphael; Leyshon, Rhysa; Mersich, Jackie; Robbins, Shawn; Doyle, Phillip C

    2007-01-01

    The Disability Tax Credit (DTC) Certification is an assessment tool used to provide Canadians with disability tax relief The International Classification of Functioning, Disability and Health (ICF) provides a universal framework for defining disability. The purpose of this study was to evaluate the DTC and familiarize occupational therapists with the process of mapping measures to the ICF classification system. Concepts within the DTC were identified and mapped to appropriate ICF codes (Cieza et al., 2005). The DTC was linked to 45 unique ICF codes (16 Body Functions, 19 Activities and Participation, and 8 Environmental Factors). The DTC encompasses various domains of the ICF; however, there is no consideration of Personal Factors, Body Structures, and key aspects of Activities and Participation. Refining the DTC to address these aspects will provide an opportunity for fair and just determinations for those who experience disability.

  3. Simulation of non LTE opacity with incoming radiation

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel; Busquet, Michel

    2009-11-01

    Simulation of radiative properties of hot plasmas is important for ICF, other laboratory plasmas, and astrophysics. When mid-Z or high-Z elements are involved, the spectra are so complex that one commonly uses LTE approximation. This was recently done in interpreting a carefully calibrated experiment on Fe at 160 eV [1]. However some disagreement remains concerning the ion charge distribution. The newest version of HULLAC [2] has the capability to take into account an incoming radiation field in solving the rate equations of the coronal radiative model (CRM). We will show results with different representation of the radiation field.[4pt] [1] J.E. Bailey, G.A. Rochau, C.A. Iglesias, et al., Phys. Rev. Lett. 99, (2007) 265002-4.[0pt] [2] M. Klapisch and M. Busquet, High Ener. Dens. Phys. 5, (2009) 105-9.

  4. In-flight neutron spectra as an ICF diagnostic for implosion asymmetries

    NASA Astrophysics Data System (ADS)

    Cerjan, C.; Sayre, D. B.; Sepke, S. M.

    2018-02-01

    The yield and spectral shape of the neutrons produced during in-flight reactions provide stringent constraints upon the symmetry of the fully compressed fuel conditions in Inertial Confinement Fusion implosions. Neutron production from a specific deuterium gas-filled implosion is simulated in detail and compared with the experimental neutron spectra along two lines-of-sight. An approximate reactivity formulation is applied to obtain further insight into the underlying fuel configuration. This analysis suggests that the differences observed in the observed spectra correspond to angularly dependent triton velocity distributions created by an asymmetric plasma configuration.

  5. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  6. Adolescents with Hearing Loss and the International Classification of Functioning, Health, and Disability: Children & Youth Version

    PubMed Central

    English, Kris; Pajevic, Emily

    2016-01-01

    In 2007, the World Health Organization published a set of International Classification of Functioning, Disability and Health (ICF) codes designed for children and youth (ICF-CY version). The ICF-CY considers typical developmental changes associated with childhood while describing health status and the effects of intervention. In this article we will describe how a specific intervention (transition planning for adolescents) can be documented with the ICF-CY. Transition planning in health care prepares adolescents and their families for the transfer from pediatric to adult health services and has been demonstrated to be an effective practice for adolescents with many types of chronic health conditions (e.g., cystic fibrosis, epilepsy, diabetes). Audiology has not yet addressed transition planning for adolescents with hearing loss; therefore, we propose using the ICF-CY to design a pathway of care. The ICF-CY can standardize transition planning to the benefit of both teen patients and audiologists: teens and their families would gradually acquire necessary knowledge and skills, and audiologists would develop a meaningful data set to help further inform our pediatric practices, as well as give more structure, depth, and accountability to our role in rehabilitation. PMID:27489402

  7. Nature and the natural environment as health facilitators: the need to reconceptualize the ICF environmental factors.

    PubMed

    Day, Adam M B; Theurer, Julie A; Dykstra, Allyson D; Doyle, Philip C

    2012-01-01

    This work examines the environmental factors component of the International Classification of Functioning, Disability, and Health (ICF) relative to current health-facilitating evidence about natural environmental factors. We argue that the environmental factors component warrants reconceptualization in order to offer an extended and more systematic framework for identifying and measuring health-facilitating natural environmental factors. Current evidence highlighting the potential health-facilitating benefits of natural environmental factors is synthesized and considered in the context of the ICF framework and its coding system. In its current form, the ICF's conceptual framework and coding system are inadequate for identifying and measuring natural environmental factors in individuals and groups with and/or without health conditions. The ICF provides an advanced framework for health and disability that reflects contemporary conceptualizations about health. However, given the scope of emerging evidence highlighting positive health and well-being outcomes associated with natural environmental factors, we believe the environmental factors component requires further advancement to reflect this current knowledge. Reconceptualizing the environmental factors component supports a more holistic interpretation of the continuum of environmental factors as both facilitators and barriers. In doing so, it strengthens the ICF's utility in identifying and measuring health-facilitating natural environmental factors.

  8. Developing applications of the ICF in education systems: addressing issues of knowledge creation, management and transfer.

    PubMed

    Hollenweger, Judith

    2013-06-01

    Since its endorsement, the International Classification of Functioning, Disability and Health (ICF) has been applied in many policy contexts, including education. While so far the focus has been on showing ways in which it can be used to describe functioning and disability, this article seeks to focus on its value to represent knowledge. Two applications of the ICF and ICF-CY in the context of the Swiss education system highlight ways in which the classification can be used to assist multidisciplinary teams in acquiring and mapping existing knowledge, in creating new knowledge and in applying it for specific purposes. The conceptual analysis illustrates that "disability in education" is a hybrid conceptual world that needs to bridge disability-related information with information relevant for learning and education. The ICF can be used to adequately map such knowledge in complex social settings. More attention needs to be paid to the ICF as an information system to help negotiate between different views on reality and different areas of expertise. The selection of content and ways of representing it need to be considered in the light of the specific purposes during collaborative knowledge creation processes.

  9. Measuring health and disability: supporting policy development. The European MHADIE project.

    PubMed

    Leonardi, Matilde

    2010-01-01

    Disability is a multi-dimensional phenomenon arising out of an interaction between the individual's health status and his environment: disability data must reflect this bio-psychosocial model. WHO's International Classification of Functioning, Disability and Health (ICF) provides the framework for documenting the interaction between health status and environmental features. MHADIE, a 3-year project supported by a EC 6th Framework Programme Grant, aimed at demonstrating the feasibility and utility of the ICF model in the measurement and description of disability. The ICF model was used as the structure for analysing existing population health surveys and education statistics data. ICF-based tools were used to describe disability in selected health conditions. MHADIE researchers showed that the ICF model is adequate for describing and measuring patterns of disability in clinical samples from different countries cross-sectionally and over time as well as feasible and useful in educational sectors. Valid and reliable information are essential to design, implement or evaluate policies to combat discrimination, promote integration and enhance opportunities. Results made it possible to produce a definition of disability as well as policy recommendations concerning how, in Europe and internationally, the existing sources of data can be harmonized with the ICF model.

  10. The use of the International Classification of Functioning, Disability and Health to understand the health and functioning experiences of people with chronic conditions from the person perspective: a systematic review.

    PubMed

    Alford, Vanessa M; Ewen, Shaun; Webb, Gillian R; McGinley, Jenny; Brookes, Alison; Remedios, Louisa J

    2015-01-01

    This systematic review examines the literature to identify the context and extent of implementation of the International Classification of Functioning, Disability and Health (ICF) model to understand the experience of health and functioning in persons with chronic conditions from the person perspective. The literature search was conducted through five electronic databases between 2001 and December 2012. Reference lists of included papers were also searched. Articles in which the ICF was used to understand the health and functioning experience of adults with chronic conditions from the person-perspective were included. Data were extracted and analysed to identify the year of publication, geographical location, health condition, context of ICF use, authors' remarks and identified limitations of the ICF. Thirty-seven qualitative and mixed-methods studies were included representing 18 countries and a range of chronic conditions. The ICF was found to be used to elicit and analyse people's narratives, with the majority of studies reporting that the ICF provides a comprehensive analysis of experiences and needs from the person perspective. Some limitations to its use and the need to classify the "personal factors" component were reported. The ICF has been used to provide a comprehensive understanding of health and functioning in persons with chronic conditions from the person perspective, although there are currently relatively few studies which have used the ICF in this context. Limitations regarding its use were reported which should be considered by users of the model and during its revision process. The ICF encourages a bio-psycho-social and person-centred approach to healthcare and may provide a useful tool for guiding clinical assessment and encouraging clinicians to consider the multitude of factors which impact health, which may result in more specific and individualised treatment targeted at individual needs. Using a common framework that can be understood across health disciplines may enhance interdisciplinary communication and collaboration, improving health care delivery. The ICF may be used to compare perspectives of individuals and their health professionals and to identify people's needs that are not adequately being addressed, which may have significant implications for improving healthcare provided and overall health outcomes.

  11. Next generation laser for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C.D.; Beach, J.; Bibeau, C.

    1997-07-18

    We are in the process of developing and building the ``Mercury`` laser system as the first in a series of a new generation of diode-pumped solid-state Inertial Confinement Fusion (ICF) lasers at LLNL. Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1{omega} energies of 100 J and with 2{omega}/3{omega} frequency conversion.

  12. Combined application of the International Classification of Functioning, Disability and Health and the NANDA-International Taxonomy II.

    PubMed

    Boldt, Christine; Grill, Eva; Bartholomeyczik, Sabine; Brach, Mirjam; Rauch, Alexandra; Eriks-Hoogland, Inge; Stucki, Gerold

    2010-08-01

    This paper presents a discussion of the conceptual and practical relationships between the International Classification of Functioning, Disability and Health and the NANDA-International Taxonomy II for nursing diagnoses, and their use in nursing practice. The ICF provides a common classification framework for all healthcare professionals, including nurses. Nursing care plans can be broadly based on NANDA-I taxonomies. No published attempt has been made to systematically compare the NANDA-I Taxonomy II to the ICF. The most recently published descriptions of both classifications and a case example presenting the combined use of both classifications. The work was carried out in 2009. There are conceptual commonalities and differences between the ICF and the NANDA-I Taxonomy II. In the case example, the overlap between the ICF categories and NANDA-I nursing diagnoses reflects the fact that the ICF, focusing on functioning and disability, and the NANDA-I Taxonomy II, with its functioning health patterns, are similar in their approaches. The NANDA-I Taxonomy II permits the fulfilment of requirements that are exclusively nursing issues. The application of the ICF is useful for nurses to communicate nursing issues with other healthcare professionals in a common language. For nurses, knowledge shared with other healthcare professionals may contribute to broader understanding of a patient's situation. The ICF and the NANDA-I Taxonomy II should be used in concert by nurses and can complement each other to enhance the quality of clinical team work and nursing practice.

  13. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, R. E.; Leeper, R. J.

    2013-09-27

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ~34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid”more » (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.« less

  14. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, R. E.; Leeper, R. J.

    2013-09-15

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ∼34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid”more » (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.« less

  15. Seeding of capsule instability growth by fill tubes and support rods for inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Macphee, Andrew; Casey, Daniel; Clark, Daniel; Field, John; Haan, Steven; Hammel, Bruce; Kroll, Jeremy; Landen, Otto; Martinez, David; Milovich, Jose; Nikroo, Abbas; Rice, Neal; Robey, Harry; Smalyuk, Vladimir; Stadermann, Michael; Weber, Christopher; Lawrence Livermore National Laboratory Collaboration; Atomics Collaboration, General

    2016-10-01

    Features associated with the target support tent and deuterium-tritium fuel fill tube and support rods can seed hydrodynamic instabilities leading to degraded performance for inertial confinement fusion (ICF) experiments at the National Ignition Facility. We performed in-flight radiography of ICF capsules in the vicinity of the capsule support tent and fill tube surrogates to investigate instability growth associated with these features. For both plastic and high density carbon ablators, the shadow of the 10 μm diameter glass fill-tube cast by the x-ray spots on the hohlraum wall were observed to imprint radial instabilities around the fill tube/capsule interface. Similarly, instability growth was observed for the shadow cast by 12 μm diameter silicon carbide capsule support rods mounted orthogonal to the fill tube as a tent alternative for a plastic ablator. The orientation of the shadows is consistent with raytracing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Compiling standardized information from clinical practice: using content analysis and ICF Linking Rules in a goal-oriented youth rehabilitation program.

    PubMed

    Lustenberger, Nadia A; Prodinger, Birgit; Dorjbal, Delgerjargal; Rubinelli, Sara; Schmitt, Klaus; Scheel-Sailer, Anke

    2017-09-23

    To illustrate how routinely written narrative admission and discharge reports of a rehabilitation program for eight youths with chronic neurological health conditions can be transformed to the International Classification of Functioning, Disability and Health. First, a qualitative content analysis was conducted by building meaningful units with text segments assigned of the reports to the five elements of the Rehab-Cycle ® : goal; assessment; assignment; intervention; evaluation. Second, the meaningful units were then linked to the ICF using the refined ICF Linking Rules. With the first step of transformation, the emphasis of the narrative reports changed to a process oriented interdisciplinary layout, revealing three thematic blocks of goals: mobility, self-care, mental, and social functions. The linked 95 unique ICF codes could be grouped in clinically meaningful goal-centered ICF codes. Between the two independent linkers, the agreement rate was improved after complementing the rules with additional agreements. The ICF Linking Rules can be used to compile standardized health information from narrative reports if prior structured. The process requires time and expertise. To implement the ICF into common practice, the findings provide the starting point for reporting rehabilitation that builds upon existing practice and adheres to international standards. Implications for Rehabilitation This study provides evidence that routinely collected health information from rehabilitation practice can be transformed to the International Classification of Functioning, Disability and Health by using the "ICF Linking Rules", however, this requires time and expertise. The Rehab-Cycle ® , including assessments, assignments, goal setting, interventions and goal evaluation, serves as feasible framework for structuring this rehabilitation program and ensures that the complexity of local practice is appropriately reflected. The refined "ICF Linking Rules" lead to a standardized transformation process of narrative text and thus a higher quality with increased transparency. As a next step, the resulting format of goal codes supplemented by goal-clarifying codes could be validated to strengthen the implementation of the International Classification of Functioning, Disability and Health into rehabilitation routine by respecting the variety of clinical practice.

  17. The Geriatric ICF Core Set reflecting health-related problems in community-living older adults aged 75 years and older without dementia: development and validation.

    PubMed

    Spoorenberg, Sophie L W; Reijneveld, Sijmen A; Middel, Berrie; Uittenbroek, Ronald J; Kremer, Hubertus P H; Wynia, Klaske

    2015-01-01

    The aim of the present study was to develop a valid Geriatric ICF Core Set reflecting relevant health-related problems of community-living older adults without dementia. A Delphi study was performed in order to reach consensus (≥70% agreement) on second-level categories from the International Classification of Functioning, Disability and Health (ICF). The Delphi panel comprised 41 older adults, medical and non-medical experts. Content validity of the set was tested in a cross-sectional study including 267 older adults identified as frail or having complex care needs. Consensus was reached for 30 ICF categories in the Delphi study (fourteen Body functions, ten Activities and Participation and six Environmental Factors categories). Content validity of the set was high: the prevalence of all the problems was >10%, except for d530 Toileting. The most frequently reported problems were b710 Mobility of joint functions (70%), b152 Emotional functions (65%) and b455 Exercise tolerance functions (62%). No categories had missing values. The final Geriatric ICF Core Set is a comprehensive and valid set of 29 ICF categories, reflecting the most relevant health-related problems among community-living older adults without dementia. This Core Set may contribute to optimal care provision and support of the older population. Implications for Rehabilitation The Geriatric ICF Core Set may provide a practical tool for gaining an understanding of the relevant health-related problems of community-living older adults without dementia. The Geriatric ICF Core Set may be used in primary care practice as an assessment tool in order to tailor care and support to the needs of older adults. The Geriatric ICF Core Set may be suitable for use in multidisciplinary teams in integrated care settings, since it is based on a broad range of problems in functioning. Professionals should pay special attention to health problems related to mobility and emotional functioning since these are the most prevalent problems in community-living older adults.

  18. Psychometric properties of the International Classification of Functioning, Disability and Health set for spinal cord injury nursing based on Rasch analysis.

    PubMed

    Li, Kun; Yan, Tiebin; You, Liming; Xie, Sumei; Li, Yun; Tang, Jie; Wang, Yingmin; Gao, Yan

    2018-02-01

    To examine the psychometric properties of the International Classification of Functioning, Disability and Health (ICF) set for spinal cord injury nursing (ICF-SCIN) using Rasch analysis. A total of 140 spinal cord injury patients were recruited between December 2013 and March 2014 through convenience sampling. Nurses used the components body functions (BF), body structures (BS), and activities and participation (AP) of the ICF-SCIN to rate the patients' functioning. Rasch analysis was performed using RUMM 2030 software. In each component, categories were rescored from 01234 to 01112 because of reversed thresholds. Nine testlets were created to overcome local dependency. Four categories which fit to the Rasch model poorly were deleted. After modification, the components BF, BS, and AP showed good fit to the Rasch model with a Bonferroni-adjusted significant level (χ 2  =   86.29, p = 0.006; χ 2  =   22.44, p = 0.130; χ 2  =   39.92, p = 0.159). The person separation indices (PSIs) for the three components were 0.80, 0.54, and 0.97, respectively. No differential item functioning (DIF) was detected across age, gender, or educational level. The fit properties of the ICF set were satisfactory after modifications. The ICF-SCIN has the potential as a nursing assessment instrument for measuring the functioning of patients with spinal cord injury. Implications for rehabilitation The International Classification of Functioning, Disability and Health (ICF) set for spinal cord injury nursing contains a group of categories which can reflect the functioning of spinal cord injury patients from the perspective of nurses. The components body functions (BF), body structures (BS), and activities and participation (AP) of the ICF set for spinal cord injury achieved the fit to the Rasch model through rescoring, generating testlets, and deleting categories with poor fit. The ICF set for spinal cord injury nursing (ICF-SCIN) has the potential to be used as a clinical nursing assessment tool in measuring the functioning of patients with spinal cord injury.

  19. Ability and Disability in Autism Spectrum Disorder: A Systematic Literature Review Employing the International Classification of Functioning, Disability and Health-Children and Youth Version.

    PubMed

    de Schipper, Elles; Lundequist, Aiko; Coghill, David; de Vries, Petrus J; Granlund, Mats; Holtmann, Martin; Jonsson, Ulf; Karande, Sunil; Robison, John E; Shulman, Cory; Singhal, Nidhi; Tonge, Bruce; Wong, Virginia C N; Zwaigenbaum, Lonnie; Bölte, Sven

    2015-12-01

    This study is the first in a series of four empirical investigations to develop International Classification of Functioning, Disability and Health (ICF) Core Sets for Autism Spectrum Disorder (ASD). The objective was to use a systematic review approach to identify, number, and link functional ability and disability concepts used in the scientific ASD literature to the nomenclature of the ICF-CY (Children and Youth version of the ICF, covering the life span). Systematic searches on outcome studies of ASD were carried out in Medline/PubMed, PsycINFO, ERIC and Cinahl, and relevant functional ability and disability concepts extracted from the included studies. These concepts were then linked to the ICF-CY by two independent researchers using a standardized linking procedure. New concepts were extracted from the studies until saturation of identified ICF-CY categories was reached. Seventy-one studies were included in the final analysis and 2475 meaningful concepts contained in these studies were linked to 146 ICF-CY categories. Of these, 99 categories were considered most relevant to ASD (i.e., identified in at least 5% of the studies), of which 63 were related to Activities and Participation, 28 were related to Body functions, and 8 were related to Environmental factors. The five most frequently identified categories were basic interpersonal interactions (51%), emotional functions (49%), complex interpersonal interactions (48%), attention functions (44%), and mental functions of language (44%). The broad variety of ICF-CY categories identified in this study reflects the heterogeneity of functional differences found in ASD--both with respect to disability and exceptionality--and underlines the potential value of the ICF-CY as a framework to capture an individual's functioning in all dimensions of life. The current results in combination with three additional preparatory studies (expert survey, focus groups, and clinical study) will provide the scientific basis for defining the ICF Core Sets for ASD for multipurpose use in basic and applied research and every day clinical practice of ASD. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.

  20. Characterizing and Understanding the Remarkably Slow Basis Set Convergence of Several Minnesota Density Functionals for Intermolecular Interaction Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    2013-08-22

    For a set of eight equilibrium intermolecular complexes, it is discovered in this paper that the basis set limit (BSL) cannot be reached by aug-cc-pV5Z for three of the Minnesota density functionals: M06-L, M06-HF, and M11-L. In addition, the M06 and M11 functionals exhibit substantial, but less severe, difficulties in reaching the BSL. By using successively finer grids, it is demonstrated that this issue is not related to the numerical integration of the exchange-correlation functional. In addition, it is shown that the difficulty in reaching the BSL is not a direct consequence of the structure of the augmented functions inmore » Dunning’s basis sets, since modified augmentation yields similar results. By using a very large custom basis set, the BSL appears to be reached for the HF dimer for all of the functionals. As a result, it is concluded that the difficulties faced by several of the Minnesota density functionals are related to an interplay between the form of these functionals and the structure of standard basis sets. It is speculated that the difficulty in reaching the basis set limit is related to the magnitude of the inhomogeneity correction factor (ICF) of the exchange functional. A simple modification of the M06-L exchange functional that systematically reduces the basis set superposition error (BSSE) for the HF dimer in the aug-cc-pVQZ basis set is presented, further supporting the speculation that the difficulty in reaching the BSL is caused by the magnitude of the exchange functional ICF. In conclusion, the BSSE is plotted with respect to the internuclear distance of the neon dimer for two of the examined functionals.« less

  1. Understanding reliability and some limitations of the images and spectra reconstructed from a multi-monochromatic x-ray imager

    DOE PAGES

    Nagayama, T.; Mancini, R. C.; Mayes, D.; ...

    2015-11-18

    Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. In this paper, we synthetically quantify the accuracymore » of images and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by ~6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of ~10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. Finally, it is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application.« less

  2. Understanding reliability and some limitations of the images and spectra reconstructed from a multi-monochromatic x-ray imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, T.; Mancini, R. C.; Mayes, D.

    2015-11-15

    Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. Here, we synthetically quantify the accuracy of imagesmore » and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by ∼6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of ∼10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. It is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application.« less

  3. Understanding reliability and some limitations of the images and spectra reconstructed from a multi-monochromatic x-ray imager.

    PubMed

    Nagayama, T; Mancini, R C; Mayes, D; Tommasini, R; Florido, R

    2015-11-01

    Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. Here, we synthetically quantify the accuracy of images and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by ∼6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of ∼10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. It is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application.

  4. Applying the ICF framework to study changes in quality-of-life for youth with chronic conditions

    PubMed Central

    McDougall, Janette; Wright, Virginia; Schmidt, Jonathan; Miller, Linda; Lowry, Karen

    2011-01-01

    Objective The objective of this paper is to describe how the ICF framework was applied as the foundation for a longitudinal study of changes in quality-of-life (QoL) for youth with chronic conditions. Method This article will describe the study’s aims, methods, measures and data analysis techniques. It will point out how the ICF framework was used—and expanded upon—to provide a model for studying the impact of factors on changes in QoL for youth with chronic conditions. Further, it will describe the instruments that were chosen to measure the components of the ICF framework and the data analysis techniques that will be used to examine the impact of factors on changes in youths’ QoL. Conclusions Qualitative and longitudinal designs for studying QoL based on the ICF framework can be useful for unraveling the complex ongoing inter-relationships among functioning, contextual factors and individuals’ perceptions of their QoL. PMID:21034288

  5. What Is the International Classification of Functioning, Disability and Health and Why Is It Relevant to Audiology?

    PubMed Central

    Meyer, Carly; Grenness, Caitlin; Scarinci, Nerina; Hickson, Louise

    2016-01-01

    The World Health Organization's International Classification of Functioning, Disability and Health (ICF) is widely used in disability and health sectors as a framework to describe the far-reaching effects of a range of health conditions on individuals. This biopsychosocial framework can be used to describe the experience of an individual in the components of body functions, body structures, and activities and participation, and it considers the influence of contextual factors (environmental and personal) on these components. Application of the ICF in audiology allows the use of a common language between health care professionals in both clinical and research settings. Furthermore, the ICF is promoted as a means of facilitating patient-centered care. In this article, the relevance and application of the ICF to audiology is described, along with clinical examples of its application in the assessment and management of children and adults with hearing loss. Importantly, the skills necessary for clinicians to apply the ICF effectively are discussed. PMID:27489397

  6. Unfolding/Refolding Study on Collagen from Sea Cucumber Based on 2D Fourier Transform Infrared Spectroscopy.

    PubMed

    Qin, Lei; Bi, Jing-Ran; Li, Dong-Mei; Dong, Meng; Zhao, Zi-Yuan; Dong, Xiu-Ping; Zhou, Da-Yong; Zhu, Bei-Wei

    2016-11-16

    We aimed to explore the differences of thermal behaviors between insoluble collagen fibrils (ICFs) and pepsin-solubilized collagens (PSCs) from sea cucumber Stichopus japonicus . The unfolding/refolding sequences of secondary structures of ICFs and PSCs during the heating and cooling cycle (5 → 70 → 5 °C) were identified by Fourier transform infrared spectrometry combined with curve-fitting and 2D correlation techniques. ICFs showed a higher proportion of α-helical structures and higher thermostability than PSCs, and thus had more-stable triple helical structures. The sequences of changes affecting the secondary structures during heating were essentially the same between ICFs and PSCs. In all cases, α-helix structure was the most important conformation and it disappeared to form a β-sheet structure. In the cooling cycle, ICFs showed a partially refolding ability, and the proportion of β-sheet structure rose before the increasing proportion of α-helix structure. PSCs did not obviously refold during the cooling stage.

  7. Kernel-Smoothing Estimation of Item Characteristic Functions for Continuous Personality Items: An Empirical Comparison with the Linear and the Continuous-Response Models

    ERIC Educational Resources Information Center

    Ferrando, Pere J.

    2004-01-01

    This study used kernel-smoothing procedures to estimate the item characteristic functions (ICFs) of a set of continuous personality items. The nonparametric ICFs were compared with the ICFs estimated (a) by the linear model and (b) by Samejima's continuous-response model. The study was based on a conditioned approach and used an error-in-variables…

  8. [Measuring Participation - Discussion of the Theoretical Foundations of Current Assessment Instruments].

    PubMed

    Gebhard, B; Fink, A

    2015-09-01

    For children and adolescents social participation is a central goal of rehabilitation processes. Available measurements and evaluation tools are exposed to the problem that the theoretical foundation of the construct of participation is still unclear as well as differentiation from activity in the International Classification of Functioning, Disabilities and Health (ICF/ICF-CY) of the WHO is not made sufficiently. The objectives of this article were (1) to illustrate the scientific discussions on the term and understanding of participation from rehabilitation science perspectives and (2) to conclude implications for practice and science. A systematic search for participation instruments was performed in MEDLINE, CINAHL, PsycINFO, ERIC und EMBASE in August 2014. The available instruments are based on very different definitions of participation. The discussion about the term seems to be not yet complete. A major demand is a better operationalization of activity and participation according to the ICF/ICF-CY in the instruments. Before using an existing instrument, the transferability should be tested for the own context. The theoretical assumptions of participation in conjunction to ICF/ICF-CY as well as the objectives of the instrument should all be clearly understood before using an existing instrument but also before the development of new instruments. © Georg Thieme Verlag KG Stuttgart · New York.

  9. The International Classification of Functioning (ICF) core set for breast cancer from the perspective of women with the condition.

    PubMed

    Cooney, Marese; Galvin, Rose; Connolly, Elizabeth; Stokes, Emma

    2013-05-01

    The ICF Core Set for breast cancer was generated by international experts for women who have had surgery and radiation but it has not yet been validated. The objective of the study was to validate the ICF Core Set from the perspective of women with breast cancer. A qualitative focus group methodology was used. The sessions were transcribed verbatim. Meaning units were identified by two independent researchers. The agreed list was subsequently linked to ICF categories by two independent researchers according to pre-defined linking rules. Data saturation determined the number of focus groups conducted. Quality of the data analyses was assured by multiple coding and peer review. Thirty-four women participated in seven focus groups. A total of 1621 meaning units were identified which were linked to 74 of the existing 80 Core Set categories. Additional ICF categories not currently included in the Core Set were identified by the women. The validity of the Core Set was largely supported. However, some categories currently not covered by the ICF Core Set for Breast Cancer will need to be considered for inclusion if the Core Set is to reflect all women who have had treatment for breast cancer

  10. Standardised assessment of functioning in ADHD: consensus on the ICF Core Sets for ADHD.

    PubMed

    Bölte, Sven; Mahdi, Soheil; Coghill, David; Gau, Susan Shur-Fen; Granlund, Mats; Holtmann, Martin; Karande, Sunil; Levy, Florence; Rohde, Luis A; Segerer, Wolfgang; de Vries, Petrus J; Selb, Melissa

    2018-02-12

    Attention-deficit/hyperactivity disorder (ADHD) is associated with significant impairments in social, educational, and occupational functioning, as well as specific strengths. Currently, there is no internationally accepted standard to assess the functioning of individuals with ADHD. WHO's International Classification of Functioning, Disability and Health-child and youth version (ICF) can serve as a conceptual basis for such a standard. The objective of this study is to develop a comprehensive, a common brief, and three age-appropriate brief ICF Core Sets for ADHD. Using a standardised methodology, four international preparatory studies generated 132 second-level ICF candidate categories that served as the basis for developing ADHD Core Sets. Using these categories and following an iterative consensus process, 20 ADHD experts from nine professional disciplines and representing all six WHO regions selected the most relevant categories to constitute the ADHD Core Sets. The consensus process resulted in 72 second-level ICF categories forming the comprehensive ICF Core Set-these represented 8 body functions, 35 activities and participation, and 29 environmental categories. A Common Brief Core Set that included 38 categories was also defined. Age-specific brief Core Sets included a 47 category preschool version for 0-5 years old, a 55 category school-age version for 6-16 years old, and a 52 category version for older adolescents and adults 17 years old and above. The ICF Core Sets for ADHD mark a milestone toward an internationally standardised functional assessment of ADHD across the lifespan, and across educational, administrative, clinical, and research settings.

  11. Measurement of activity limitations and participation restrictions: examination of ICF-linked content and scale properties of the FIM and PC-PART instruments.

    PubMed

    Darzins, Susan W; Imms, Christine; Di Stefano, Marilyn

    2017-05-01

    To explore the operationalization of activity and participation-related measurement constructs through comparison of item phrasing, item response categories and scoring (scale properties) for two separate instruments targeting activities of daily living. Personal Care Participation Assessment and Resource Tool (PC-PART) item content was linked to ICF categories using established linking rules. Previously reported ICF-linked FIM content categories and ICF-linked PC-PART content categories were compared to identify common ICF categories between the instruments. Scale properties of both instruments were compared using a patient scenario to explore the instruments' separate measurement constructs. The PC-PART and FIM shared 15 of the 53 level two ICF-linked categories identified across both instruments. Examination of the instruments' scale properties for items with overlapping ICF content, and exploration through a patient scenario, provided supportive evidence that the instruments measure different constructs. While the PC-PART and FIM share common ICF-linked content, they measure separate constructs. Measurement construct was influenced by the instruments' scale properties. The FIM was observed to measure activity limitations and the PC-PART measured participation restrictions. Scrutiny of instruments' scale properties in addition to item content is critical in the operationalization of activity and participation-related measurement constructs. Implications for Rehabilitation When selecting outcome measures for use in rehabilitation it is necessary to examine both the content of the instruments' items and item phrasing, response categories and scoring, to clarify the construct being measured. Measurement of activity limitations as well as participation restrictions in activities of daily living required for community life provides a more comprehensive measurement of rehabilitation outcomes than measurement of either construct alone. To measure the effects of interventions used in rehabilitation, it is necessary to select measures with relevant content and scale properties that enable evaluation of change in the constructs that are expected to change, as a result of the rehabilitation intervention.

  12. Readability of informed consent forms in clinical trials conducted in a skin research center

    PubMed Central

    Samadi, Aniseh; Asghari, Fariba

    2016-01-01

    Obtaining informed consents is one of the most fundamental principles in conducting a clinical trial. In order for the consent to be informed, the patient must receive and comprehend the information appropriately. Complexity of the consent form is a common problem that has been shown to be a major barrier to comprehension for many patients. The objective of this study was to assess the readability of different templates of informed consent forms (ICFs) used in clinical trials in the Center for Research and Training in Skin Diseases and Leprosy (CRTSDL), Tehran, Iran. This study was conducted on ICFs of 45 clinical trials of the CRTSDL affiliated with Tehran University of Medical Sciences. ICFs were tested for reading difficulty, using the readability assessments formula adjusted for the Persian language including the Flesch–Kincaid reading ease score, Flesch–Kincaid grade level, and Gunning fog index. Mean readability score of the whole text of ICFs as well as their 7 main information parts were calculated. The mean ± SD Flesch Reading Ease score for all ICFs was 31.96 ± 5.62 that is in the difficult range. The mean ± SD grade level was calculated as 10.71 ± 1.8 (8.23–14.09) using the Flesch–Kincaid formula and 14.64 ± 1.22 (12.67–18.27) using the Gunning fog index. These results indicate that the text is expected to be understandable for an average student in the 11th grade, while the ethics committee recommend grade level 8 as the standard readability level for ICFs. The results showed that the readability scores of ICFs assessed in our study were not in the acceptable range. This means they were too complex to be understood by the general population. Ethics committees must examine the simplicity and readability of ICFs used in clinical trials. PMID:27471590

  13. Standardized reporting of functioning information on ICF-based common metrics.

    PubMed

    Prodinger, Birgit; Tennant, Alan; Stucki, Gerold

    2018-02-01

    In clinical practice and research a variety of clinical data collection tools are used to collect information on people's functioning for clinical practice and research and national health information systems. Reporting on ICF-based common metrics enables standardized documentation of functioning information in national health information systems. The objective of this methodological note on applying the ICF in rehabilitation is to demonstrate how to report functioning information collected with a data collection tool on ICF-based common metrics. We first specify the requirements for the standardized reporting of functioning information. Secondly, we introduce the methods needed for transforming functioning data to ICF-based common metrics. Finally, we provide an example. The requirements for standardized reporting are as follows: 1) having a common conceptual framework to enable content comparability between any health information; and 2) a measurement framework so that scores between two or more clinical data collection tools can be directly compared. The methods needed to achieve these requirements are the ICF Linking Rules and the Rasch measurement model. Using data collected incorporating the 36-item Short Form Health Survey (SF-36), the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0), and the Stroke Impact Scale 3.0 (SIS 3.0), the application of the standardized reporting based on common metrics is demonstrated. A subset of items from the three tools linked to common chapters of the ICF (d4 Mobility, d5 Self-care and d6 Domestic life), were entered as "super items" into the Rasch model. Good fit was achieved with no residual local dependency and a unidimensional metric. A transformation table allows for comparison between scales, and between a scale and the reporting common metric. Being able to report functioning information collected with commonly used clinical data collection tools with ICF-based common metrics enables clinicians and researchers to continue using their tools while still being able to compare and aggregate the information within and across tools.

  14. Low back pain in 17 countries, a Rasch analysis of the ICF core set for low back pain.

    PubMed

    Røe, Cecilie; Bautz-Holter, Erik; Cieza, Alarcos

    2013-03-01

    Previous studies indicate that a worldwide measurement tool may be developed based on the International Classification of Functioning Disability and Health (ICF) Core Sets for chronic conditions. The aim of the present study was to explore the possibility of constructing a cross-cultural measurement of functioning for patients with low back pain (LBP) on the basis of the Comprehensive ICF Core Set for LBP and to evaluate the properties of the ICF Core Set. The Comprehensive ICF Core Set for LBP was scored by health professionals for 972 patients with LBP from 17 countries. Qualifier levels of the categories, invariance across age, sex and countries, construct validity and the ordering of the categories in the components of body function, body structure, activities and participation were explored by Rasch analysis. The item-trait χ2-statistics showed that the 53 categories in the ICF Core Set for LBP did not fit the Rasch model (P<0.001). The main challenge was the invariance in the responses according to country. Analysis of the four countries with the largest sample sizes indicated that the data from Germany fit the Rasch model, and the data from Norway, Serbia and Kuwait in terms of the components of body functions and activities and participation also fit the model. The component of body functions and activity and participation had a negative mean location, -2.19 (SD 1.19) and -2.98 (SD 1.07), respectively. The negative location indicates that the ICF Core Set reflects patients with a lower level of function than the present patient sample. The present results indicate that it may be possible to construct a clinical measure of function on the basis of the Comprehensive ICF Core Set for LBP by calculating country-specific scores before pooling the data.

  15. Reconsideration of the scheme of the international classification of functioning, disability and health: incentives from the Netherlands for a global debate.

    PubMed

    Heerkens, Yvonne F; de Weerd, Marjolein; Huber, Machteld; de Brouwer, Carin P M; van der Veen, Sabina; Perenboom, Rom J M; van Gool, Coen H; Ten Napel, Huib; van Bon-Martens, Marja; Stallinga, Hillegonda A; van Meeteren, Nico L U

    2018-03-01

    The ICF (International Classification of Functioning, Disability and Health) framework (used worldwide to describe 'functioning' and 'disability'), including the ICF scheme (visualization of functioning as result of interaction with health condition and contextual factors), needs reconsideration. The purpose of this article is to discuss alternative ICF schemes. Reconsideration of ICF via literature review and discussions with 23 Dutch ICF experts. Twenty-six experts were invited to rank the three resulting alternative schemes. The literature review provided five themes: 1) societal developments; 2) health and research influences; 3) conceptualization of health; 4) models/frameworks of health and disability; and 5) ICF-criticism (e.g. position of 'health condition' at the top and role of 'contextual factors'). Experts concluded that the ICF scheme gives the impression that the medical perspective is dominant instead of the biopsychosocial perspective. Three alternative ICF schemes were ranked by 16 (62%) experts, resulting in one preferred scheme. There is a need for a new ICF scheme, better reflecting the ICF framework, for further (inter)national consideration. These Dutch schemes should be reviewed on a global scale, to develop a scheme that is more consistent with current and foreseen developments and changing ideas on health. Implications for Rehabilitation We propose policy makers on community, regional and (inter)national level to consider the use of the alternative schemes of the International Classification of Functioning, Disability and Health within their plans to promote functioning and health of their citizens and researchers and teachers to incorporate the alternative schemes into their research and education to emphasize the biopsychosocial paradigm. We propose to set up an international Delphi procedure involving citizens (including patients), experts in healthcare, occupational care, research, education and policy, and planning to get consensus on an alternative scheme of the International Classification of Functioning, Disability and Health. We recommend to discuss the alternatives for the present scheme of the International Classification of Functioning, Disability and Health in the present update and revision process within the World Health Organization as a part of the discussion on the future of the International Classification of Functioning, Disability and Health framework (including ontology, title and relation with the International Classification of Diseases). We recommend to revise the definition of personal factors and to draft a list of personal factors that can be used in policy making, clinical practice, research, and education and to put effort in the revision of the present list of environmental factors to make it more useful in, e.g., occupational health care.

  16. A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C. D.; Betti, R.; Departments of Mechanical Engineering and Physics and Astronomy, University of Rochester, Rochester, New York 14623

    2008-10-15

    It is shown that the ignition condition (Lawson criterion) for inertial confinement fusion (ICF) can be cast in a form dependent on the only two parameters of the compressed fuel assembly that can be measured with existing techniques: the hot spot ion temperature (T{sub i}{sup h}) and the total areal density ({rho}R{sub tot}), which includes the cold shell contribution. A marginal ignition curve is derived in the {rho}R{sub tot}, T{sub i}{sup h} plane and current implosion experiments are compared with the ignition curve. On this plane, hydrodynamic equivalent curves show how a given implosion would perform with respect to themore » ignition condition when scaled up in the laser-driver energy. For 3<{sub n}<6 keV, an approximate form of the ignition condition (typical of laser-driven ICF) is {sub n}{sup 2.6}{center_dot}<{rho}R{sub tot}>{sub n}>50 keV{sup 2.6}{center_dot} g/cm{sup 2}, where <{rho}R{sub tot}>{sub n} and {sub n} are the burn-averaged total areal density and hot spot ion temperature, respectively. Both quantities are calculated without accounting for the alpha-particle energy deposition. Such a criterion can be used to determine how surrogate D{sub 2} and subignited DT target implosions perform with respect to the one-dimensional ignition threshold.« less

  17. Suprathermal Ion Populations in ICF Plasmas - Implications for Diagnostics and Ignition

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick; Schmit, Paul; Sinars, Daniel

    2013-10-01

    We report on investigations into the effects of suprathermal ion populations on neutron production in Inertial Confinement and Magneto-Inertial Fusion plasmas. In a recent article we showed that a suprathermal population taking the form of a power-law in energy will significantly modify the shape and width of the neutron spectrum and can dramatically increase the fusion reactivity compared to the Maxwellian case. Specific diagnostic signatures are discussed in detail. We build on this work to include the effect of an applied magnetic field on the neutron spectra, isotropy and production rate. Finally, the impact that these modifications have on the ability to reach high fusion yields and ignition is discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.

  18. Stochastic acceleration of electrons from multiple uncorrelated plasma waves

    NASA Astrophysics Data System (ADS)

    Gee, David; Michel, Pierre; Wurtele, Jonathan

    2017-10-01

    One-dimensional theory puts a strict limit on the maximum energy attainable by an electron trapped and accelerated by an electron plasma wave (EPW). However, experimental measurements of hot electron distributions accelerated by stimulated Raman scattering (SRS) in ICF experiments typically show a thermal distribution with temperatures of the order of the kinetic energy of the resonant EPW's (Thot mvp2 , where vp is the phase velocity of the EPW's driven by SRS) and no clear cutoff at high energies. In this project, we are investigating conditions under which electrons can be stochastically accelerated by multiple uncorrelated EPW's, such as those generated by incoherent laser speckles in large laser spots like the ones used on NIF ( mm-size), and reproduce distributions similar to those observed in experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  19. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  20. Anomalous photo-ionization of 4d shell in medium-Z ionized atoms

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Busquet, M.

    2013-09-01

    Photoionization (PI) cross sections (PICS) are necessary for the simulation of astrophysical and ICF plasmas. In order to be used in plasma modeling, the PICS are usually fit to simple analytical formulas. We observed an unusual spectral shape of the PICS of the 4d shell of ionized Xe and other elements, computed with different codes: a local minimum occurs around twice the threshold energy. We explain this phenomenon as interference between the bound 4d wavefunction and the free electron wavefunction, which is similar to the Cooper minima for neutral atoms. Consequently, the usual fitting formulas, which consist of a combination of inverse powers of the frequency beyond threshold, may yield rates for PI and radiative recombination (RR) that are incorrect by orders of magnitude. A new fitting algorithm is proposed and is included in the latest version of HULLAC.v9.5.

  1. Possible maternal offloading of metals in the plasma, uterine and capsule fluid of pregnant ragged-tooth sharks (Carcharias taurus) on the east coast of South Africa.

    PubMed

    Naidoo, Kristina; Chuturgoon, Anil; Cliff, Geremy; Singh, Sanil; Ellis, Megan; Otway, Nicholas; Vosloo, Andre; Gregory, Michael

    2017-07-01

    We studied the possible metal offloading onto the progeny of three pregnant female ragged-tooth sharks (Carcharias taurus) (C. taurus). The presences of five metals, i.e. aluminium (Al), arsenic (As), cadmium (Cd), lead (Pb) and selenium (Se) were validated by mass spectrometry in the maternal plasma as well as the intracapsular and uterine fluids (UF) in which embryos develop. Metals were ranked in a decreasing concentration as follows: Plasma: As > Al > Se > Pb > Cd; ICF: As > Se > Al > Cd > Pb and UF: As > Se > Al > Cd > Pb. As was present in the highest concentration in all three sharks. Al, Pb and Cd were found to be the highest within the plasma, while concentrations of Se were similar in all three fluids. These results indicate that C. taurus embryos are exposed to metals during early development, but the impact of this exposure remains unknown. To the best of our knowledge, this is the first investigation to confirm the presence of metals in the fluids that surround the developing C. taurus embryos, a species that is already listed as vulnerable.

  2. Choice-making among Medicaid HCBS and ICF/MR recipients in six states.

    PubMed

    Lakin, K Charlie; Doljanac, Robert; Byun, Soo-Yong; Stancliffe, Roger; Taub, Sarah; Chiri, Giuseppina

    2008-09-01

    Choice in everyday decisions and in support-related decisions was addressed among 2,398 adults with intellectual and developmental disabilities receiving Medicaid Home and Community Based Services (HCBS) and Intermediate Care Facility (ICF/MR) services and living in non family settings in six states. Everyday choice in daily life and in support-related choice was considerably higher on average for HCBS than for ICF/MR recipients, but after controlling for level of intellectual disability, medical care needs, mobility, behavioral and psychiatric conditions, and self-reporting, we found that choice was more strongly associated with living in a congregate setting than whether that setting was HCBS- or ICF/MR-financed. Marked differences in choice were also evident between states.

  3. Nonlinear Waves, Instabilities and Singularities in Plasma and Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Silantyev, Denis Albertovich

    Nonlinear effects are present in almost every area of science as soon as one tries to go beyond the first order approximation. In particular, nonlinear waves emerge in such areas as hydrodynamics, nonlinear optics, plasma physics, quantum physics, etc. The results of this work are related to nonlinear waves in two areas, plasma physics and hydrodynamics, united by concepts of instability, singularity and advanced numerical methods used for their investigation. The first part of this work concentrates on Langmuir wave filamentation instability in the kinetic regime of plasma. In Internal Confinement Fusion Experiments (ICF) at National Ignition Facility (NIF), where attempts are made to achieve fusion by compressing a small target by many powerful lasers to extremely high temperatures and pressures, plasma is created in the first moments of the laser reaching the target and undergoes complicated dynamics. Some of the most challenging difficulties arise from various plasma instabilities that occur due to interaction of the laser beam and a plasma surrounding the target. In this work we consider one of such instabilities that describes a decay of nonlinear plasma wave, initially excited due to interaction of the laser beam with the plasma, into many filaments in direction perpendicular to the laser beam, therefore named Langmuir filamentation instability. This instability occurs in the kinetic regime of plasma, klambda D > 0.2, where k is the wavenumber and lambda D is the Debye length. The filamentation of Langmuir waves in turn leads to the saturation of the stimulated Raman scattering (SRS) in laser-plasma interaction experiments which plays an essential role in ICF experiments. The challenging part of this work was that unlike in hydrodynamics we needed to use fully kinetic description of plasma to capture the physics in question properly, meaning that we needed to consider the distribution function of charged particles and its evolution in time not only with respect to spatial coordinates but with respect to velocities as well. To study Langmuir filamentation instability in its simplest form we performed 2D+2V numerical simulations. Taking into account that the distribution function in question was 4-dimensional function, making these simulation quite challenging, we developed an efficient numerical method making these simulations possible on modern desktop computers. Using the developed numerical method we studied how Langmuir wave filamentation instability depends on the parameters of the Langmuir wave such as wave length and amplitude that are relevant to ICF experiments. We considered several types of Langmuir waves, including nonlinear Langmuir waves exited by external electric field as well as an idealized approximation of such Langmuir waves by a particular family of Bernstein-Greene-Kruskal (BGK) modes that bifurcates from the linear Langmuir wave. The results of these simulations were compared to the theoretical predictions in our recent papers. An alternative approach to overcome computational difficulty of this problem was considered by our research group in Ref. It involves reducing the number of transverse direction in the model therefore lowering computational difficulty at a cost of lesser accuracy of the model. The second part of this work concentrates on 2D free surface hydrodynamics and in particular on computing Stokes waves with high-precision using conformal maps and spectral methods. Stokes waves are fully nonlinear periodic gravity waves propagating with the constant velocity on a free surface of two-dimensional potential flow of the ideal incompressible fluid of infinite depth. The increase of the scaled wave height H/lambda, where H is the wave height and lambda is the wavelength, from H/lambda = 0 to the critical value Hmax/lambda marks the transition from almost linear wave to a strongly nonlinear limiting Stokes wave. The Stokes wave of the greatest height H = Hmax has an angle of 120° at the crest. To obtain Stokes wave fully nonlinear Euler equations describing the flow can be reformulated in terms of conformal map of the fluid domain into the complex lower half-plane, with fluid free surface mapped into the real line. This description is convenient for analysis and numerical simulations since the whole problem is then reduced to a single nonlinear equation on the real line. Having computed solutions on the real line we extend them to the rest of the complex plane to analyze the singularities above real line. The distance vc from the closest singularity in the upper half-plane to the real line goes to zero as we approach the limiting Stokes wave with maximum hight Hmax/lambda, which is the reason for the widening of the solution's Fourier spectrum. (Abstract shortened by ProQuest.).

  4. Prevalence and features of ICF-disability in Spain as captured by the 2008 National Disability Survey

    PubMed Central

    2011-01-01

    Background Since 1986, the study of disability in Spain has been mainly addressed by National Disability Surveys (NDSs). While international attempts to frame NDS designs within the International Classification of Functioning, Disability and Health (ICF) have progressed, in general, the ICF has hardly been used in either the NDS or epidemiological studies. This study sought to identify ICF Activity- and Participation-related content in the most recent Spanish NDS, the 2008 Survey on Disabilities, Independence and Dependency Situations (Encuesta sobre discapacidades, autonomía personal y situaciones de Dependencia - EDAD 2008), and estimate the prevalence of such ICF-framed disability. Methods EDAD 2008 methods and questions were perused. Of the 51 EDAD items analysed, 29 were backcoded to specific d2-d7 domains of the ICF Checklist and, by rating the recorded difficulty to perform specific tasks with or without help, these were then taken as performance and capacity respectively. A global ICF score was also derived, albeit lacking data for d1, "Learning and applying knowledge", d8, "Major Life Areas" and d9, "Community, Social and Civic Life". Data were grouped by sex, age, residence and initial positive screening, and prevalence figures were calculated by disability level both for the general population, using the originally designed weights, and for the population that had screened positive to disability. Data for institutionalised persons were processed separately. Results Crude prevalence of ICF severe/complete and moderate disability among the community-dwelling population aged ≥6 years was 0.9%-2.2% respectively, and that of severe/complete disability among persons living in sheltered accommodation was 0.3%. Prevalence of severe/complete disability was: higher in women than in men, 0.8% vs. 0.4%; increased with age; and was particularly high in domains such as "Domestic Life", 3.4%, "Mobility", 1.8%, and "Self-care", 1.9%, in which prevalence decreased when measured by reference to performance. Moreover, global scores indicated that severe/complete disability in these same domains was frequent among the moderately disabled group. Conclusions The EDAD 2008 affords an insufficient data set to be ICF-framed when it comes to the Activity and Participation domains. Notwithstanding their unknown validity, ratings for available ICF domains may, however, be suitable for consideration under the ADL model of functional dependency, suggesting that there are approximately 500,000 persons suffering from severe/complete disability and 1,000,000 suffering from moderate disability, with half the latter being severely disabled in domains capable of benefiting from technical or personal aid. Application of EDAD data to the planning of services for regions and other subpopulations means that need for personal help must be assessed, unmet needs ascertained, and knowledge of social participation and support, particularly for the mentally ill, improved. International, WHO-supported co-operation in ICF planning and use of NDSs in Spain and other countries is needed. PMID:22122806

  5. Diode Dynamics, Beam Generation and Transport and Plasma Erosion Opening Switch Development.

    DTIC Science & Technology

    1983-05-17

    3207-83-0-001 A. TITL.. E land Subna tle) S YEO EO I&P RO O E E FINAL REPORT DIODE D’(NA,%’UCS, BEAM GENERAT1ION AND Jan 1J 󈧢 - Apr 14 ’.3 TRANS?0RT...main thrust of the work under this contract. The production and focusing of intense * light-ion beams for ICF purposes and the generation of intense e ...controlled by R/D where R is the diode radius and the ion production I efficiency is controlled by H/D where H is the height of the diode. Thus I /I e could

  6. Pulsed x-ray sources for characterization of gated framing cameras

    NASA Astrophysics Data System (ADS)

    Filip, Catalin V.; Koch, Jeffrey A.; Freeman, Richard R.; King, James A.

    2017-08-01

    Gated X-ray framing cameras are used to measure important characteristics of inertial confinement fusion (ICF) implosions such as size and symmetry, with 50 ps time resolution in two dimensions. A pulsed source of hard (>8 keV) X-rays, would be a valuable calibration device, for example for gain-droop measurements of the variation in sensitivity of the gated strips. We have explored the requirements for such a source and a variety of options that could meet these requirements. We find that a small-size dense plasma focus machine could be a practical single-shot X-ray source for this application if timing uncertainties can be overcome.

  7. Feasibility of using the International Classification of Functioning, Disability and Health Core Set for evaluation of fall-related risk factors in acute rehabilitation settings.

    PubMed

    Huang, Shih W; Lin, Li F; Chou, Lin C; Wu, Mei J; Liao, Chun D; Liou, Tsan H

    2016-04-01

    Previously, we reported the use of an International Classification of Functioning (ICF) core set that can provide a holistic framework for evaluating the risk factors of falls; however, data on the feasibility of applying this core set are lacking. To investigate the feasibility of applying the fall-related ICF risk-factor core set in the case of patients in an acute-rehabilitation setting. A cross-sectional and descriptive correlational design. Acute-rehabilitation ward. A total of 273 patients who experienced fall at acute-rehabilitation ward. The data on falls were collected from the hospital's Nursing Information System (NIS) and the fall-reporting system (Adverse Event Reporting System, AERS) between 2010 and 2013. The relationship of both systems to the fall-related ICF core set was analyzed to assess the feasibility of their clinical application. We evaluated the feasibility of using the fall-related ICF risk-factor core set by using the frequency and the percentage of the fall patients in of the listed categories. The fall-related ICF risk-factor core set category b735 (muscle tone functions) exhibited a high feasibility (85.95%) for clinical application, and the category b730 (muscle power functions) covered 77.11% of the patients. The feasibility of application of the category d410 (change basic body position) was also high in the case of all fall patients (81.69%). In the acute-rehabilitation setting, the feasibility of application of the fall-related ICF risk-factor core set is high. The fall-related ICF risk-factor core set can help multidisciplinary teams develop fall-prevention strategies in acute rehabilitation wards.

  8. An international qualitative study of ability and disability in ADHD using the WHO-ICF framework.

    PubMed

    Mahdi, Soheil; Viljoen, Marisa; Massuti, Rafael; Selb, Melissa; Almodayfer, Omar; Karande, Sunil; de Vries, Petrus J; Rohde, Luis; Bölte, Sven

    2017-10-01

    This is the third in a series of four cross-cultural empirical studies designed to develop International Classification of Functioning, Disability and Health (ICF, and Children and Youth version, ICF(-CY) Core Sets for Attention-Deficit Hyperactivity Disorder (ADHD). To explore the perspectives of individuals diagnosed with ADHD, self-advocates, immediate family members and professional caregivers on relevant areas of impairment and functional abilities typical for ADHD across the lifespan as operationalized by the ICF(-CY). A qualitative study using focus group discussions or semi-structured interviews of 76 participants, divided into 16 stakeholder groups. Participants from five countries (Brazil, India, Saudi Arabia, South Africa and Sweden) were included. A deductive qualitative content analysis was conducted to extract meaningful functioning and disability concepts from verbatim material. Extracted concepts were then linked to ICF(-CY) categories by independent researchers using a standardized linking procedure. In total, 82 ICF(-CY) categories were identified, of which 32 were related to activities and participation, 25 to environmental factors, 23 to body functions and 2 to body structures. Participants also provided opinions on experienced positive sides to ADHD. A high level of energy and drive, creativity, hyper-focus, agreeableness, empathy, and willingness to assist others were the most consistently reported strengths associated with ADHD. Stakeholder perspectives highlighted the need to appraise ADHD in a broader context, extending beyond diagnostic criteria into many areas of ability and disability as well as environmental facilitators and barriers. This qualitative study, along with three other studies (comprehensive scoping review, expert survey and clinical study), will provide the scientific basis to define ICF(-CY) Core Sets for ADHD, from which assessment tools can be derived for use in clinical and research setting, as well as in health care administration.

  9. The effectiveness of rehabilitation on pain-free farming in agriculture workers with low back pain in India.

    PubMed

    Ganesh, Shankar; Chhabra, Deepak; Kumari, Nitika

    2016-10-17

    Studies have shown that farming is associated with many agricultural workers experiencing low back pain (LBP). The rehabilitation of these workers should facilitate their functioning, activities and level of participation in an adequate way. The objectives of this study were to identify the health components associated with LBP and to evaluate the effectiveness of the interventions in returning agricultural workers with LBP to their vocation using the International Classification of Function (ICF) -based tools. Thirty-one full time agricultural workers from 3 different Indian states were prospectively assessed using the ICF core set for LBP. ICF core sets permitted analysis of limitations of function from both the participant and rehabilitation team's perspectives. Each ICF category was rated using an ICF qualifier. The components identified were linked to the ICF categorical profile and assessment sheet. The clinicians identified the global, service program and cycle goals based on ICF. The participants' functioning was followed over a 4-month period. After intervention, the participants were able to undergo their routine activities without increases in pain. However, on returning to active farming, participants noted few improvements in the components d410 (changing basic body position), d415 (maintaining body position), d430 (lifting and carrying objects), d465 (moving around using equipment), d850 (remunerative employment) and d859 (work and employment, other specified and unspecified). The results of the study conclude that the current interventions for LBP are not effective in returning agriculture workers with LBP in India to pain-free farming. There is an urgent need to individualize the health needs of agriculture workers.

  10. [Patient orientation and reference to the ICF as challenges in outcome assessment in rehabilitation].

    PubMed

    Farin, E

    2008-04-01

    Measuring the results of rehabilitation interventions presents a number of issues regarding content and method, two of which have been selected for discussion in view of the findings of current research--the significance of patient orientation and the relation to the International Classification of Functioning, Disability and Health, ICF. Compilation of patients' treatment goals, expectations and preferences, patient participation in the development of assessment instruments, compilation of patients' evaluations of treatment results and consideration of the subjectivity of the physician as well as interaction between patient and physician were discussed with respect to involving patients in measuring results. The ICF is a terminology system presenting a uniform international classification for describing health conditions that could assume the function of a common language for the members of various occupations involved in medical rehabilitation. Orienting the measurement of results to the ICF is an obvious next step. This can promote patient orientation, as the categories used by the ICF--in particular for the domains of activities and participation--are formulated in terms relevant to daily routine and are thus pertinent to the patients' lifestyle. The consequences resulting from this overview concern future research needs on the one hand, and on the other hand tips for carrying out a patient-oriented, ICF-based measurement of results. The need for research becomes especially clear regarding the measurement of results based on patient preferences, the determination of the participation relevance perceived by the patient as a criterion for "patient significance" (analogous to "clinical significance"), the integration and weighting of patient and physician assessments of success, the consideration of physicians' subjective concepts and patients' communication preferences, and the design of new, ICF-oriented assessment instruments.

  11. [ICF-Checklist to Evaluate Inclusion of Elderlies with Intellectual Disability - Psychometric Properties].

    PubMed

    Queri, Silvia; Eggart, Michael; Wendel, Maren; Peter, Ulrike

    2017-11-28

    Background An instrument should have been developed to measure participation as one possible criterion to evaluate inclusion of elderly people with intellectual disability. The ICF was utilized, because participation is one part of health related functioning, respectively disability. Furthermore ICF includes environmental factors (contextual factors) and attaches them an essentially influence on health related functioning, in particular on participation. Thus ICF Checklist additionally identifies environmental barriers for elimination. Methodology A linking process with VINELAND-II yielded 138 ICF items for the Checklist. The sample consists of 50 persons with a light or moderate intellectual disability. Two-thirds are female and the average age is 68. They were directly asked about their perceived quality of life. Additionally, proxy interviews were carried out with responsible staff members concerning necessary support and behavioral deviances. The ICF Checklist was administered twice, once (t2) the current staff member should rate health related functioning at the given time and in addition, a staff member who knows the person at least 10 years before (t1) should rate the former functioning. Content validity was investigated with factor analysis and criterion validity with correlational analysis related to supports need, behavioral deviances and perceived quality of life. Quantitative analysis was validated by qualitative content analysis of patient documentation. Results Factor analysis shows logical variable clusters across the extracted factors but neither interpretable factors. The Checklist is reliable, valid related to the chosen criterions and shows the expected age-related shifts. Qualitative analysis corresponds with quantitative data. Consequences/Conclusion ICF Checklist is appropriate to manage and evaluate patient-centered care. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Growth impairment due to transient hypercortisolism.

    PubMed

    Armour, K; Chalew, S; Kowarski, A A

    1986-01-01

    Cushing's syndrome in childhood is generally recognized by classical features such as truncal obesity, striae, easy bruising, moon facies, hypertension and growth retardation. Exceptionally, Cushing's syndrome has been reported to present as growth failure alone. We diagnosed transient hypercortisolism in 6 children who had poor growth as their only presenting abnormality. The 6 children all had integrated concentrations of cortisols (IC-F) (14.1 +/- 1.7 micrograms/dl; mean +/- 1 SD) which exceeded the IC-F in healthy children and adults (5.7 +/- 1.5 micrograms/dl; P less than 0.001). The IC-F of these 6 index cases overlapped the range of IC-F in patients with pathologically proven Cushing's syndrome (20.2 +/- 4.7 micrograms/dl). Four of the 6 patients were treated with human growth hormone for 8 months and showed a marked improvement in their growth rates. Four patients have entered puberty and are growing at normal rates. Three of the 6 children had normal repeat IC-Fs, subsequently, at a time they had normal growth rates. In 1-1/2 to 3 years of follow-up, none of the patients developed any other stigmata of Cushing's syndrome. We conclude that transient hypercortisolism, documented by the IC-F, may cause growth failure without other symptoms of Cushing's syndrome. Growth hormone therapy may improve the growth rate of these children at the time of their poor growth.

  13. A new informed consent form model for cancer patients: preliminary results of a prospective study by the Italian Association of Medical Oncology (AIOM).

    PubMed

    Gori, Stefania; Greco, Maria Teresa; Catania, Chiara; Colombo, Cinzia; Apolone, Giovanni; Zagonel, Vittorina

    2012-05-01

    To document the preliminary validity of a new informed consent form (ICF) model in terms of face/content validity and feasibility, to collect patients' and oncologists' opinions on it, and to explore physicians' and patients' "knowledge", "opinions" about "the information exchanged". The working group for informed consent promoted by the Italian Association of Medical Oncology developed a new ICF model which was tested in ten Italian cancer centers. Patients and physicians received questionnaires on the new ICF model. Twenty-six independent oncologists were interviewed to collect their opinions. Seventy eight cancer patients were enrolled: about 90% reported having received information about diagnosis and therapy and 80% about prognosis. About 63% of oncologists had no difficulty in administering the ICF. Oncologists used "correct terms" about diagnosis in 92% of patients with localized disease and in 90% with metastasis and about therapy in respectively 75.7% and 80%. About prognosis, oncologists used "vague" and "no information-no pertinent terms" in 79% of patients with localized disease and 92.5% of patients with metastasis. The ICF seemed to have sufficient validity and feasibility. This ICF model could mean that patients require oncologists to spend more time explaining the diagnosis, prognosis and treatment, increasing patient's opportunities to participate actively in the care process. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  14. The ICF-CY and Goal Attainment Scaling: benefits of their combined use for pediatric practice.

    PubMed

    McDougall, Janette; Wright, Virginia

    2009-01-01

    There is much heterogeneity and disconnect in the approaches used by service providers to conduct needs assessments, set goals and evaluate outcomes for clients receiving pediatric rehabilitation services. The purpose of this article is to describe how the International Classification of Functioning, Disability and Health-Child and Youth (ICF-CY) can be used in combination with Goal Attainment Scaling (GAS), an individualised measure of change, to connect the various phases of the therapeutic process to provide consistent clinical care that is family-centred, collaborative, well directed and accountable. A brief description of both the ICF-CY and GAS as they pertain to pediatric rehabilitation is provided as background. An explanation is given of how the ICF-CY offers a framework through which clients, families and service providers can together identify the areas of clients' needs. In addition, the article discusses how the use of GAS facilitates translation of clients' identified needs into distinct, measurable goals set collaboratively by clients, their families and service providers. Examples of integrated GAS goals set for the various components of the ICF-CY are provided. The utility of GAS as a measure of clinical outcomes for individual clients is also discussed. Used in combination, the ICF-CY and GAS can serve to coordinate, simplify and standardise assessment and outcome evaluation practices for individual clients receiving pediatric rehabilitation services.

  15. Using the International Classification of Functioning, Disability and Health in Assessment and Intervention of School-Aged Children With Language Impairments.

    PubMed

    Westby, Carol; Washington, Karla N

    2017-07-26

    The aim of this tutorial is to support speech-language pathologists' (SLPs') application of the International Classification of Functioning, Disability and Health (ICF) in assessment and treatment practices with children with language impairment. This tutorial reviews the framework of the ICF, describes the implications of the ICF for SLPs, distinguishes between students' capacity to perform a skill in a structured context and the actual performance of that skill in naturalistic contexts, and provides a case study of an elementary school child to demonstrate how the principles of the ICF can guide assessment and intervention. The Scope of Practice and Preferred Practice documents for the American Speech-Language-Hearing Association identify the ICF as the framework for practice in speech-language pathology. This tutorial will facilitate clinicians' ability to identify personal and environmental factors that influence students' skill capacity and skill performance, assess students' capacity and performance, and develop impairment-based and socially based language goals linked to Common Core State Standards that build students' language capacity and their communicative performance in naturalistic contexts.

  16. Observed side feeding in incomplete fusion dynamics in 16O + 160Gd reaction at energy ∼5.6 MeV/A: Spin distribution measurements

    NASA Astrophysics Data System (ADS)

    Ali, Rahbar; Afzal Ansari, M.; Singh, D.; Kumar, Rakesh; Singh, D. P.; Sharma, M. K.; Gupta, Unnati; Singh, B. P.; Shidling, P. D.; Negi, Dinesh; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2017-12-01

    Spin distributions of various residues populated via complete fusion (CF) and incomplete fusion (ICF) reactions in the interaction of 16O with 160Gd at the projectile energy Eproj ∼ 5.6 MeV/A have been studied. The experimentally measured spin distributions of the residues associated with the ICF reactions are found to be distinctly different from those populated via the CF reactions. An attempt has been made to extract the side-feeding pattern from the spin distributions of CF and ICF reaction products. It has been observed that the CF products are strongly fed over a broad spin range. But, no side-feeding takes place in the low observed spins as low partial waves are strongly hindered in the fast α-emission channels (associated with ICF) in the forward direction. It has also been observed that the mean input angular momentum for direct α-emitting (ICF) channels is relatively higher than evaporation α-emitting (CF) channels, and it increases with direct α-multiplicity in forward direction.

  17. Quality of life of persons with severe mental illness living in an intermediate care facility.

    PubMed

    Anderson, R L; Lewis, D A

    2000-04-01

    This study examined resident characteristics, clinical factors, and mental health service utilization associated with quality of life (QOL) for residents living in an Intermediate Care Facility (ICF). This study also utilized published literature to compare the QOL of ICF residents to persons with psychiatric disorders living in other residential settings. Chart review and interviews were used to study 100 randomly selected residents living in an ICF with a chart diagnosis of schizophrenia. Multivariate analyses suggest that higher levels of QOL are associated with reports that psychological problems did not interfere with work and activities and with lower levels of being a danger to others. Also, a comparison of the QOL scores reported by ICF residents to other published mentally ill populations suggests that residents of the ICF report somewhat higher QOL scores than state hospital patients, but lower scores as compared to other community samples. Data provide insight into the types of problems faced by residents of an intermediate care facility. These findings have implications for understanding the importance of mental health service utilization on QOL.

  18. Italian ICF training programs: describing and promoting human functioning and research.

    PubMed

    Francescutti, Carlo; Fusaro, Guido; Leonardi, Matilde; Martinuzzi, Andrea; Sala, Marina; Russo, Emanuela; Frare, Mara; Pradal, Monica; Zampogna, Daniela; Cosentino, Alessandro; Raggi, Alberto

    2009-01-01

    Purpose of the article is to report on 5 years of ICF training experiences in Italy aimed at promoting a consistent approach to ICF's field application. More than 7000 persons participated in around 150 training events: almost half were organised by political bodies, at national, regional or local level, directly linked to implementation experiences. Few training events were organised by the school sector, while training commissioned by NGOs represent a relevant area and, in our opinion, constitute the first step towards a full inclusion of persons with disabilities. Central pillars of our training modules are: the inclusion of all ICF components in the description of functional profiles, the need of providing brief theoretical background information before moving to practical aspects and the importance of providing personalised face to face training modules, in contrast to self-administered learning modules, or web-based protocols. On the basis of our experience, we can conclude that training's objectives are generally reached: trainees improved their knowledge of the ICF and its related tools, and are able to begin practical applications in their contexts.

  19. Improved algorithm of ray tracing in ICF cryogenic targets

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yang, Yongying; Ling, Tong; Jiang, Jiabin

    2016-10-01

    The high precision ray tracing inside inertial confinement fusion (ICF) cryogenic targets plays an important role in the reconstruction of the three-dimensional density distribution by algebraic reconstruction technique (ART) algorithm. The traditional Runge-Kutta methods, which is restricted by the precision of the grid division and the step size of ray tracing, cannot make an accurate calculation in the case of refractive index saltation. In this paper, we propose an improved algorithm of ray tracing based on the Runge-Kutta methods and Snell's law of refraction to achieve high tracing precision. On the boundary of refractive index, we apply Snell's law of refraction and contact point search algorithm to ensure accuracy of the simulation. Inside the cryogenic target, the combination of the Runge-Kutta methods and self-adaptive step algorithm are employed for computation. The original refractive index data, which is used to mesh the target, can be obtained by experimental measurement or priori refractive index distribution function. A finite differential method is performed to calculate the refractive index gradient of mesh nodes, and the distance weighted average interpolation methods is utilized to obtain refractive index and gradient of each point in space. In the simulation, we take ideal ICF target, Luneberg lens and Graded index rod as simulation model to calculate the spot diagram and wavefront map. Compared the simulation results to Zemax, it manifests that the improved algorithm of ray tracing based on the fourth-order Runge-Kutta methods and Snell's law of refraction exhibits high accuracy. The relative error of the spot diagram is 0.2%, and the peak-to-valley (PV) error and the root-mean-square (RMS) error of the wavefront map is less than λ/35 and λ/100, correspondingly.

  20. Next-generation laser for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C.D.; Deach, R.J.; Bibeau, C.

    1997-09-29

    We report on the progress in developing and building the Mercury laser system as the first in a series of a new generation of diode- pumped solid-state Inertial Confinement Fusion (ICF) lasers at Lawrence Livermore National Laboratory (LLNL). Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1 omega energies of 100 J and with 2 omega/3 omega frequency conversion.

  1. Measuring the properties of shock released Quartz and Parylene-N

    NASA Astrophysics Data System (ADS)

    Hawreliak, James; Karasik, Max; Oh, Jaechul; Aglitskiy, Yefim

    2016-10-01

    The high pressure and temperature properties of Quartz and hydrocarbons are important to high energy density (HED) research and inertial confinement fusion (ICF) science. The bulk of HED material research studies the single shock Hugoniot. Here, we present experimental results from the NIKE laser where quartz and parylene-N are shock compressed to high pressure and temperature and the release state is measured through x-ray imaging. The shock state is characterized by shock front velocity measurements using VISAR and the release state is characterized by using side-on streaked x-ray radiography.

  2. The Rocket Equation Improvement under ICF Implosion Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin; Zheng, Zhijian

    2013-10-01

    The ICF explosion process has been studied in details. The rocket equation has been improved in explosive process by introducing the pressure parameter of fuel. Some methods could be drawn by the improved rocket equation. And the methods could be used to improve ICF target design, driving pulse design and experimental design. The First is to increase ablation pressure. The second is to decrease pressure of fuel. The third is to use larger diameter of target sphere. And the forth is to a shorten driving pulse.

  3. [Use of ICF Core Sets for medical reports concerning patients with low back pain and chronic widespread pain syndrome].

    PubMed

    Kirschneck, M; Winkelmann, A; Kirchberger, I; Glässel, A; Ewert, T; Stucki, G; Cieza, A

    2008-11-01

    Medical reports of the national pension insurance are essential for the national pension regulatory authority to decide on granting services regarding participation as well as retirement pensions due to inability to work. There are guidelines regarding the content of medical reports. It is also generally accepted that the evaluation of functioning is an essential component of them. However, it is still an open question to what extent the standardisation and the objectiveness of medical reports can be improved. The ICF (International Classification of Functioning, Disability and Health) is a framework as well as a common language for describing functioning and disability. ICF Core Sets are lists of disease-specific relevant ICF categories and can be a useful practicable tool for medical reports for national pension insurance. They could support the standardization of the medical reports. The aim of this planned project is to examine whether the ICF Core Sets for low back pain and chronic widespread pain could serve as a useful basis for medical reports for national pension insurance regarding the patients suffering low back pain or chronic widespread pain. Six hundred medical reports from patients with low back pain or chronic widespread pain, respectively, will be translated into the language of the ICF using a retrospective qualitative study design. For this translation ('linking') process specialised physicians from the national pension insurance and members of the Institute for Health and Rehabilitations Science will be trained to use established linking rules. STATE OF THE PROJECT: Currently, a total of 244 medical reports from the national pension insurance with the health conditions low back pain or chronic widespread pain were selected by members of the national pension insurance. The medical reports are anonymised in different federal states according to the appropriate requirements. The first 10 medical reports have already being analysed. First analyses show that the structure of medical reports varies enormously. Therefore a comparison of the content without having a common basis is hardly possible. This demonstrates the importance of the project and the possible usefulness of the ICF and the ICF Core Sets for structuring the content of medical reports for the national pension insurance.

  4. Developing comprehensive and Brief ICF core sets for morbid obesity for disability assessment in Taiwan: a preliminary study.

    PubMed

    Lin, Y-N; Chang, K-H; Lin, C-Y; Hsu, M-I; Chen, H-C; Chen, H-H; Liou, T-H

    2014-04-01

    The International Classification of Functioning, Disability, and Health (ICF) provides a framework for measuring functioning and disability based on a biopsychosocial model. The aim of this study was to develop comprehensive and brief ICF core sets for morbid obesity for disability assessment in Taiwan. Observational Other Twenty-nine multidisciplinary experts of ICF METHODS: The questionnaire contained 112 obesity-relevant and second-level ICF categories. Using a 5-point Likert scale, the participants rated the significance of the effects of each category on the heath status of people with obesity. Correlation between an individual's score and the average score of the group indicated consensus. The categories were selected for the comprehensive core set for obesity if more than 50% of the experts rated them as "important" in the third round of the Delphi exercise, and for the brief core set if more than 80% of the experts rated them "very important." Twenty-nine experts participated in the study. These included 18 physicians, 4 dieticians, 3 physical therapists, 2 nurses, and 2 ICF experts. The comprehensive core set for morbid obesity contained 61 categories. Of these, 26 categories were from the component body function, 8 were from body structure, 18 were from activities and participation, and 9 were from environmental factors. The brief core set for obesity disability contained 29 categories. Of these, 19 categories were from the component body function, 3 were from body structure, 6 were from activities and participation, and one was from environmental factors. The comprehensive and brief ICF core sets provide comprehensive information on the health effects of morbid obesity and concise information for clinical practice. Comprehensive and brief core sets were created after three rounds of Delphi technique. Further validation study of these core sets by applying to patients with morbid obesity is needed. The comprehensive ICF core set for morbid obesity provides comprehensive information on the health effects of morbid obesity; the brief core set can provide concise information for clinical practice.

  5. Foam-lined hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Thomas, Cliff

    2017-10-01

    Indirect drive inertial confinement fusion (ICF) is made difficult by hohlraum wall motion, laser backscatter, x-ray preheat, high-energy electrons, and specular reflection of the incident laser (i.e. glint). To mitigate, we line the hohlraum with a low-density metal foam, or tamper, whose properties can be readily engineered (opacity, density, laser absorption, ion-acoustic damping, etc.). We motivate the use of low-density foams for these purposes, discuss their development, and present initial findings. Importantly, we demonstrate that we can fabricate a 200-500 um thick liner at densities of 10-100 mg/cm3 that could extend the capabilities of existing physics platforms. The goal of this work is to increase energy coupled to the capsule, and maximize the yield available to science missions at the National Ignition Facility. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Understanding Yield Anomalies in ICF Implosions via Fully Kinetic Simulations

    NASA Astrophysics Data System (ADS)

    Taitano, William

    2017-10-01

    In the quest towards ICF ignition, plasma kinetic effects are among prime candidates for explaining some significant discrepancies between experimental observations and rad-hydro simulations. To assess their importance, high-fidelity fully kinetic simulations of ICF capsule implosions are needed. Owing to the extremely multi-scale nature of the problem, kinetic codes have to overcome nontrivial numerical and algorithmic challenges, and very few options are currently available. Here, we present resolutions of some long-standing yield discrepancy conundrums using a novel, LANL-developed, 1D-2V Vlasov-Fokker-Planck code iFP. iFP possesses an unprecedented fidelity and features fully implicit time-stepping, exact mass, momentum, and energy conservation, and optimal grid adaptation in phase space, all of which are critically important for ensuring long-time numerical accuracy of the implosion simulations. Specifically, we concentrate on several anomalous yield degradation instances observed in Omega campaigns, with the so-called ``Rygg effect'', or an anomalous yield scaling with the fuel composition, being a prime example. Understanding the physical mechanisms responsible for such degradations in non-ignition-grade Omega experiments is of great interest, as such experiments are often used for platform and diagnostic development, which are then used in ignition-grade experiments on NIF. In the case of Rygg's experiments, effects of a kinetic stratification of fuel ions on the yield have been previously proposed as the anomaly explanation, studied with a kinetic code FPION, and found unimportant. We have revisited this issue with iFP and obtained excellent yield-over-clean agreement with the original Rygg results, and several subsequent experiments. This validates iFP and confirms that the kinetic fuel stratification is indeed at the root of the observed yield degradation. This work was sponsored by the Metropolis Postdoctoral Fellowship, LDRD office, Thermonuclear Burn Initiative of ASC, and the LANL Institutional Computing. This work was performed under the NNSA of the USDOE at LANL under contract DE-AC52-06NA25396.

  7. 78 FR 50057 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... collection; Title of Information Collection: Intermediate Care Facility (ICF) for the Mentally Retarded (MR... intermediate care facility (ICF) for the mentally retarded (MR) provider and client characteristics are...

  8. Exploring incomplete fusion fraction in 6,7Li induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Parkar, V. V.; Jha, V.; Kailas, S.

    2017-11-01

    We have included breakup effects explicitly to simultaneously calculate the measured cross-sections of the complete fusion, incomplete fusion, and total fusion for 6,7Li projectiles on various targets using the Continuum Discretized Coupled Channels method. The breakup absorption cross-sections obtained with different choices of short range imaginary potentials are utilized to evaluate the individual α-capture and d/t-capture cross-sections and compare with the measured data. It is interesting to note, while in case of 7Li projectile the cross-sections for triton-ICF/triton-capture is far more dominant than α-ICF/α-capture at all energies, similar behavior is not observed in case of 6Li projectile for the deuteron-ICF/deuteron-capture and α-ICF/α-capture. Both these observations are also corroborated by the experimental data for all the systems studied.

  9. Identification of relevant ICF categories for indication, intervention planning and evaluation of health resort programs: a Delphi exercise

    NASA Astrophysics Data System (ADS)

    Morita, E.; Weigl, M.; Schuh, A.; Stucki, G.

    2006-01-01

    Health resort programs have a long tradition, mainly in European countries and Japan. They rely on local resources and the physical environment, physical medicine interventions and traditional medicine to optimise functioning and health. Arguably because of the long tradition, there is only a limited number of high-quality studies that examine the effectiveness of health resort programs. Specific challenges to the evaluation of health resort programs are to randomise the holistic approach with a varying number of specific interventions but also the reliance on the effect of the physical environment. Reference standards for the planning and reporting of health resort studies would be highly beneficial. With the International Classification of Functioning Disability and Health (ICF), we now have such a standard that allows us to describe body functions and structures, activities and participation and interaction with environmental factors. A major challenge when applying the ICF in practice is its length. Therefore, the objective of this project was to identify the ICF categories most relevant for health resort programs. We conducted a consensus-building, three-round, e-mail survey using the Delphi technique. Based on the consensus of the experts, it was possible to come up with an ICF Core Set that can serve as reference standards for the indication, intervention planning and evaluation of health resort programs. This preliminary ICF Core Set should be tested in different regions and in subsets of health resort visitors with varying conditions.

  10. Content comparison of occupation-based instruments in adult rheumatology and musculoskeletal rehabilitation based on the International Classification of Functioning, Disability and Health.

    PubMed

    Stamm, Tanja A; Cieza, Alarcos; Machold, Klaus P; Smolen, Josef S; Stucki, Gerold

    2004-12-15

    To compare the content of clinical, occupation-based instruments that are used in adult rheumatology and musculoskeletal rehabilitation in occupational therapy based on the International Classification of Functioning, Disability and Health (ICF). Clinical instruments of occupational performance and occupation in adult rehabilitation and rheumatology were identified in a literature search. All items of these instruments were linked to the ICF categories according to 10 linking rules. On the basis of the linking, the content of these instruments was compared and the relationship between the capacity and performance component explored. The following 7 instruments were identified: the Canadian Occupational Performance Measure, the Assessment of Motor and Process Skills, the Sequential Occupational Dexterity Assessment, the Jebson Taylor Hand Function Test, the Moberg Picking Up Test, the Button Test, and the Functional Dexterity Test. The items of the 7 instruments were linked to 53 different ICF categories. Five items could not be linked to the ICF. The areas covered by the 7 occupation-based instruments differ importantly: The main focus of all 7 instruments is on the ICF component activities and participation. Body functions are covered by 2 instruments. Two instruments were linked to 1 single ICF category only. Clinicians and researchers who need to select an occupation-based instrument must be aware of the areas that are covered by this instrument and the potential areas that are not covered at all.

  11. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to themore » predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.« less

  12. Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk

    2017-10-01

    The LANL Shear experiments on the NIF are designed to study the Kelvin-Helmholtz instability (KHI), which is the predominate mechanism for generating vorticity, leading to turbulence and mixing at high Reynolds numbers. The KHI is pervasive, as velocity sheared and density-stratified flows abound, from accretion disks of a black holes to the fuel capsule in an ICF implosion. The NIF laser has opened up a new class of long-lived planar HED fluid instability experiments that can scale fluid experiments over impressive orders of magnitude in pressure (up to > Mbar), temperature (>105 K) and space (<10s of μm) and still recover classical fluid instability behavior, and elucidate mixing and plasma effects. The reproducibility allows for the unique capability in an HED experiment to directly measure values comparable to those in the mix model, the Besnard-Harlow-Rauenzahn (BHR[3]) model implemented in the LANL hydro-code RAGE, like the mixedness parameter, b, and the turbulent kinetic energy using the observed coherent features. We have acquired time histories of 4 tracer materials and 3 surface finishes spanning dynamic Atwood numbers from 0.63 to 0.88 and developed Reynolds numbers around 106. When the shocks cross, the layer is exposed to extreme shear forces and evolves into KHI rollers from an unseeded (but naturally broadband) surface. Two sets of data are acquired for each material type: an edge-view and a plan-view, through the plane of the material. The results hint at plasma physics effects in the layer. The edge-view is compared to BHR calculations, to understand mixing and layer growth. The BHR model matches the evolution and asymptotic behavior of the layer, and the initial scale-length used for the model correlates well to initial surface roughness, even when the surface is artificially roughened, forcing the layer's evolution from coherent to disordered. This work performed under the auspices of the U.S. Department of Energy by LANL under contract DE-AC52-06NA25396.

  13. Assessment of functional outcomes in patients with head and neck cancer according to the International Classification of Functioning, Disability and Health Core Sets from the perspective of the multi-professional team: results of 4 Delphi surveys.

    PubMed

    Kirschneck, Michaela; Sabariego, Carla; Singer, Susanne; Tschiesner, Uta

    2014-07-01

    The International Classification of Functioning, Disability and Health Core Set for Head and Neck Cancer (ICF-HNC) covers the typical spectrum of problems in functioning in head and neck cancer. This study is part of a multistep process to develop practical guidelines in Germany. The purpose of this study was to identify instruments for the assessment of functioning using the ICF-HNC as reference. Four Delphi surveys with physicians, physiotherapists, psychologists, and social workers were performed to identify which aspects of the ICF-HNC are being treated and which assessment tools are recommended for the assessment of functioning. Ninety-seven percent categories of the ICF-HNC were treated by healthcare professionals participating in the current study. Altogether, 33 assessment tools were recommended for therapy monitoring, food intake, pain, further organic problems/laboratory tests, and psychosocial areas. Although the ICF-HNC is being currently implemented by the head and neck cancer experts, several areas are not covered regularly. Additionally, validated tools were rarely recommended. Copyright © 2013 Wiley Periodicals, Inc.

  14. Examining Functioning and Contextual Factors in Individuals with Joint Contractures from the Health Professional Perspective Using the ICF: An International Internet-Based Qualitative Expert Survey.

    PubMed

    Fischer, Uli; Müller, Martin; Strobl, Ralf; Bartoszek, Gabriele; Meyer, Gabriele; Grill, Eva

    2016-01-01

    The aim of this study was to identify disease-related aspects of functioning and disability in people with joint contractures from a health professionals' perspective and to describe the findings, using categories of the International Classification of Functioning, Disability, and Health (ICF). An Internet-based expert survey. We asked international health professionals for typical problems in functioning and important contextual factors of individuals with joint contractures using an Internet-based open-ended questionnaire. All answers were linked to the ICF according to established rules. Absolute and relative frequencies of the linked ICF categories were reported. Eighty experts named 1785 meaning units which could be linked to 256 ICF categories. Among the categories, 24.2% belonged to the component Body Functions, 20.7% to Body Structures, 36.3% to Activities and Participation, and 18.8% to Environmental Factors. Health professionals addressed a large variety of functional problems and multifaceted aspects due to the symptom joint contractures. International health professionals reported a large variety of aspects of functioning and health, which are related to joint contractures. © 2014 Association of Rehabilitation Nurses.

  15. First beryllium capsule implosions on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.

    2016-05-15

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosionmore » shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less

  16. First beryllium capsule implosions on the National Ignition Facility

    DOE PAGES

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; ...

    2016-05-01

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosionmore » shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less

  17. Beam wavefront and farfield control for ICF laser driver

    NASA Astrophysics Data System (ADS)

    Dai, Wanjun; Deng, Wu; Zhang, Xin; Jiang, Xuejun; Zhang, Kun; Zhou, Wei; Zhao, Junpu; Hu, Dongxia

    2010-10-01

    Five main problems of beam wavefront and farfield control in ICF laser driver are synthetically discussed, including control requirements, beam propagation principle, distortions source control, system design and adjustment optimization, active wavefront correction technology. We demonstrate that beam can be propagated well and the divergence angle of the TIL pulses can be improved to less than 60μrad with solving these problems, which meets the requirements of TIL. The results can provide theoretical and experimental support for wavefront and farfield control designing requirements of the next large scale ICF driver.

  18. Method of high-precision microsampled blood and plasma mass densitometry

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.

    1986-01-01

    The reliability of the mechanical oscillator technique for blood and plasma density measurements on samples of volumes less than 0.1 ml is examined, and a precision of 0.001 g/l is found if plasma-isodensic heparin solution and siliconized densitometers are employed. Sources of measurement errors in the density determinations include storage of plasma samples, inhomogeneity of blood samples, and density reading before adequate temperature equilibration. In tests of plasma sample storage, the best reproducibility was obtained with samples kept at 4 C. Linear correlations were found between plasma density and plasma protein concentration, blood density and blood hemoglobin concentration, and erythrocyte density and MCHC.

  19. A Global Oral Health Survey of professional opinion using the International Classification of Functioning, Disability and Health.

    PubMed

    Dougall, Alison; Molina, Gustavo F; Eschevins, Caroline; Faulks, Denise

    2015-06-01

    The concept of oral health is frequently reduced to the absence of disease, despite existing conceptual models exploring the wider determinants of oral health and quality of life. The International Classification of Functioning, Disability and Health (ICF) (WHO) is designed to qualify functional, social and environmental aspects of health. This survey aimed to reach a consensual description of adult oral health, derived from the ICF using international professional opinion. The Global Oral Health Survey involved a two-round, online survey concerning factors related to oral health including functioning, participation and social environment. Four hundred eighty-six oral health professionals from 74 countries registered online. Professionals were pooled into 18 groups of six WHO world regions and three professional groups. In a randomised stratification process, eight professionals from each pool (n=144) completed the survey. The first round consisted of eight open-ended questions. Open expression replies were analysed for meaningful concepts and linked using established rules to the ICF. In Round 2, items were rated for their relevance to oral health (88% response rate). Eighty-nine ICF items and 30 other factors were considered relevant by at least 80% of participants. International professionals reached consensus on a holistic description of oral health, which could be qualified and quantified using the ICF. These results represent the first step towards developing an ICF Core Set in Oral Health, which would provide a practical tool for reporting outcome measures in clinical practice, for research and epidemiology, and for the improvement of interdisciplinary communication regarding oral health. Professional consensus reached in this survey is the foundation stone for developing an ICF Core Set in Oral Health, allowing the holistic aspects of oral health to be qualified and quantified. This tool is necessary to widen our approach to clinical decision making, measurement of clinical outcomes, research and epidemiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Using the International Classification of Functioning, Disability and Health (ICF) to describe children referred to special care or paediatric dental services.

    PubMed

    Faulks, Denise; Norderyd, Johanna; Molina, Gustavo; Macgiolla Phadraig, Caoimhin; Scagnet, Gabriela; Eschevins, Caroline; Hennequin, Martine

    2013-01-01

    Children in dentistry are traditionally described in terms of medical diagnosis and prevalence of oral disease. This approach gives little information regarding a child's capacity to maintain oral health or regarding the social determinants of oral health. The biopsychosocial approach, embodied in the International Classification of Functioning, Disability and Health - Child and Youth version (ICF-CY) (WHO), provides a wider picture of a child's real-life experience, but practical tools for the application of this model are lacking. This article describes the preliminary empirical study necessary for development of such a tool - an ICF-CY Core Set for Oral Health. An ICF-CY questionnaire was used to identify the medical, functional, social and environmental context of 218 children and adolescents referred to special care or paediatric dental services in France, Sweden, Argentina and Ireland (mean age 8 years ± 3.6 yrs). International Classification of Disease (ICD-10) diagnoses included disorders of the nervous system (26.1%), Down syndrome (22.0%), mental retardation (17.0%), autistic disorders (16.1%), and dental anxiety alone (11.0%). The most frequently impaired items in the ICF Body functions domain were 'Intellectual functions', 'High-level cognitive functions', and 'Attention functions'. In the Activities and Participation domain, participation restriction was frequently reported for 25 items including 'Handling stress', 'Caring for body parts', 'Looking after one's health' and 'Speaking'. In the Environment domain, facilitating items included 'Support of friends', 'Attitude of friends' and 'Support of immediate family'. One item was reported as an environmental barrier - 'Societal attitudes'. The ICF-CY can be used to highlight common profiles of functioning, activities, participation and environment shared by children in relation to oral health, despite widely differing medical, social and geographical contexts. The results of this empirical study might be used to develop an ICF-CY Core Set for Oral Health - a holistic but practical tool for clinical and epidemiological use.

  1. Lymphoedema Functioning, Disability and Health Questionnaire for Lower Limb Lymphoedema (Lymph-ICF-LL): reliability and validity.

    PubMed

    Devoogdt, Nele; De Groef, An; Hendrickx, Ad; Damstra, Robert; Christiaansen, Anke; Geraerts, Inge; Vervloesem, Nele; Vergote, Ignace; Van Kampen, Marijke

    2014-05-01

    Patients may develop primary (congenital) or secondary (acquired) lymphedema, causing significant physical and psychosocial problems. To plan treatment for lymphedema and monitor a patient's progress, swelling, and problems in functioning associated with lymphedema development should be assessed at baseline and follow-up. The purpose of this study was to investigate the reliability (test-retest, internal consistency, and measurement variability) and validity (content and construct) of data obtained with the Lymphoedema Functioning, Disability and Health Questionnaire for Lower Limb Lymphoedema (Lymph-ICF-LL). This was a multicenter, cross-sectional study. The Lymph-ICF-LL is a descriptive, evaluative tool containing 28 questions about impairments in function, activity limitations, and participation restrictions in patients with lower limb lymphedema. The questionnaire has 5 domains: physical function, mental function, general tasks/household activities, mobility activities, and life domains/social life. The reliability and validity of the Lymph-ICF-LL were examined in 30 participants with objective lower limb lymphedema. Intraclass correlation coefficients for test-retest reliability ranged from .69 to .94, and Cronbach alpha coefficients for internal consistency ranged from .82 to .97. Measurement variability was acceptable (standard error of measurement=5.9-12.6). Content validity was good because all questions were understandable for 93% of participants, the scoring system (visual analog scale) was clear, and the questionnaire was comprehensive for 90% of participants. Construct validity was good. All hypotheses for assessing convergent validity and divergent validity were accepted. The known-groups validity and responsiveness of the Dutch Lymph-ICF-LL and the cross-cultural validity of the English version of the Lymph-ICF-LL were not investigated. The Lymph-ICF-LL is a Dutch questionnaire with evidence of reliability and validity for assessing impairments in function, activity limitations, and participation restrictions in people with primary or secondary lower limb lymphedema.

  2. Families' perception of children / adolescents with language impairment through the International Classification of Functioning, Disability, and Health (ICF-CY).

    PubMed

    Ostroschi, Daniele Theodoro; Zanolli, Maria de Lurdes; Chun, Regina Yu Shon

    2017-05-22

    To investigate the perception of family members regarding linguistic conditions and social participation of children and adolescents with speech and language impairments using the International Classification of Functioning, Disability and Health - Children and Youth Version (ICF-CY). Quali-quantitative approach research, in which a survey of medical records of 24 children/adolescents undergoing speech-language therapy and interviews with their family members was conducted. A descriptive analysis of the participants' profiles was performed, followed by a categorization of responses using the ICF-CY. All family members mentioned various aspects of speech/language categorized by the ICF-CY. Initially, they approached it as an organic issue, categorized under the component of Body Functions and Structures. Most reported different repercussions of the speech-language impairments on the domains, such as dealing with stress and speaking, qualified from mild to severe. Participants reported Environmental Factors categorized as facilitators in the immediate family's attitudes and as barriers in the social attitudes. These findings, according to the use of the ICF-CY, demonstrate that the children/adolescents' speech-language impairments, from the families' perception, are primarily understood in the body dimension. However, guided by a broader approach to health, the findings in the Activities and Participation and Environmental Factors demonstrate a broader understanding of the participants of the speech-language impairments. The results corroborate the importance of using the ICF-CY as a health care analysis tool, by incorporating functionality and participation aspects and providing subsidies for the construction of unique therapeutic projects in a broader approach to the health of the group studied.

  3. Outcome measures in older persons with acquired joint contractures: a systematic review and content analysis using the ICF (International Classification of Functioning, Disability and Health) as a reference.

    PubMed

    Bartoszek, Gabriele; Fischer, Uli; Müller, Martin; Strobl, Ralf; Grill, Eva; Nadolny, Stephan; Meyer, Gabriele

    2016-02-09

    Joint contractures are a common health problem in older persons with significant impact on activities of daily living. We aimed to retrieve outcome measures applied in studies on older persons with joint contractures and to identify and categorise the concepts contained in these outcome measures using the ICF (International Classification of Functioning, Disability and Health) as a reference. Electronic searches of Medline, EMBASE, CINAHL, Pedro and the Cochrane Library were conducted (1/2002-8/2012). We included studies in the geriatric rehabilitation and nursing home settings with participants aged ≥ 65 years and with acquired joint contractures. Two independent reviewers extracted the outcome measures and transferred them to concepts using predefined conceptual frameworks. Concepts were subsequently linked to the ICF categories. From the 1057 abstracts retrieved, 60 studies met the inclusion criteria. We identified 52 single outcome measures and 24 standardised assessment instruments. A total of 1353 concepts were revealed from the outcome measures; 96.2% could be linked to 50 ICF categories in the 2nd level; 3.8% were not categorised. Fourteen of the 50 categories (28%) belonged to the component Body Functions, 4 (8%) to the component Body Structures, 26 (52%) to the component Activities and Participation, and 6 (12%) to the component Environmental Factors. The ICF is a valuable reference for identifying and quantifying the concepts of outcome measures on joint contractures in older people. The revealed ICF categories remain to be validated in populations with joint contractures in terms of clinical relevance and personal impact.

  4. Development of the first disability index for inflammatory bowel disease based on the international classification of functioning, disability and health

    PubMed Central

    Peyrin-Biroulet, Laurent; Cieza, Alarcos; Sandborn, William J; Coenen, Michaela; Chowers, Yehuda; Hibi, Toshifumi; Kostanjsek, Nenad; Stucki, Gerold

    2011-01-01

    Objective The impact of inflammatory bowel disease (IBD) on disability remains poorly understood. The World Health Organization's integrative model of human functioning and disability in the International Classification of Functioning, Disability and Health (ICF) makes disability assessment possible. The ICF is a hierarchical coding system with four levels of details that includes over 1400 categories. The aim of this study was to develop the first disability index for IBD by selecting most relevant ICF categories that are affected by IBD. Methods Relevant ICF categories were identified through four preparatory studies (systematic literature review, qualitative study, expert survey and cross-sectional study), which were presented at a consensus conference. Based on the identified ICF categories, a questionnaire to be filled in by clinicians, called the ‘IBD disability index’, was developed. Results The four preparatory studies identified 138 second-level categories: 75 for systematic literature review (153 studies), 38 for qualitative studies (six focus groups; 27 patients), 108 for expert survey (125 experts; 37 countries; seven occupations) and 98 for cross-sectional study (192 patients; three centres). The consensus conference (20 experts; 17 countries) led to the selection of 19 ICF core set categories that were used to develop the IBD disability index: seven on body functions, two on body structures, five on activities and participation and five on environmental factors. Conclusions The IBD disability index is now available. It will be used in studies to evaluate the long-term effect of IBD on patient functional status and will serve as a new endpoint in disease-modification trials. PMID:21646246

  5. Review Article: Mapping of children's health and development data on population level using the classification system ICF-CY.

    PubMed

    Ståhl, Ylva; Granlund, Mats; Gäre-Andersson, Boel; Enskär, Karin

    2011-02-01

    The aim of this study was to investigate if essential health and development data of all children in Sweden in the Child Health Service (CHS) and School Health Service (SHS) can be linked to the classification system International Classification of Functioning, Disability and Health--Children and Youth (ICF-CY). Lists of essential health terms, compiled by professionals from CHS and SHS, expected to be used in the national standardised records form the basis for the analysis in this study. The essential health terms have been linked to the codes of ICF-CY by using linking rules and a verification procedure. After exclusion of terms not directly describing children's health, a majority of the health terms could be linked into the ICF-CY with a high proportion of terms in body functions and a lower proportion in activity/participation and environment respectively. Some health terms had broad description and were linked to several ICF-CY codes. The precision of the health terms was at a medium level of detail. ICF-CY can be useful as a tool for documenting child health. It provides not only a code useful for statistical purposes but also a language useful for the CHS and SHS in their work on individual as well as population levels. It was noted that the health terms used by services mainly focused on health related to body function. This indicates that more focus is needed on health data related to child's functioning in everyday life situations.

  6. Heavy ion beams from an Alphatross source for use in calibration and testing of diagnostics

    NASA Astrophysics Data System (ADS)

    Ward, R. J.; Brown, G. M.; Ho, D.; Stockler, B. F. O. F.; Freeman, C. G.; Padalino, S. J.; Regan, S. P.

    2016-10-01

    Ion beams from the 1.7 MV Pelletron Accelerator at SUNY Geneseo have been used to test and calibrate many inertial confinement fusion (ICF) diagnostics and high energy density physics (HEDP) diagnostics used at the Laboratory for Laser Energetics (LLE). The ion source on this accelerator, a radio-frequency (RF) alkali-metal charge exchange source called an Alphatross, is designed to produce beams of hydrogen and helium isotopes. There is interest in accelerating beams of carbon, oxygen, argon, and other heavy ions for use in testing several diagnostics, including the Time Resolved Tandem Faraday Cup (TRTF). The feasibility of generating these heavy ion beams using the Alphatross source will be reported. Small amounts of various gases are mixed into the helium plasma in the ion source bottle. A velocity selector is used to allow the desired ions to pass into the accelerator. As the heavy ions pass through the stripper canal of the accelerator, they emerge in a variety of charge states. The energy of the ion beam at the high-energy end of the accelerator will vary as a function of the charge state, however the maximum energy deliverable to target is limited by the maximum achievable magnetic field produced by the accelerator's steering magnet. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Discharge dynamics and plasma density recovery by on/off switches of additional gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: lhc@kriss.re.kr; Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763; Kwon, Deuk-Chul

    2016-06-15

    Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due tomore » enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.« less

  8. Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam

    PubMed Central

    Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.

    2016-01-01

    The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471

  9. Modified preauricular approach and rigid internal fixation for intracapsular condyle fracture of the mandible.

    PubMed

    He, Dongmei; Yang, Chi; Chen, Minjie; Bin, Jiang; Zhang, Xiaohu; Qiu, Yating

    2010-07-01

    This article reports a modified preauricular approach for intracapsular condyle fracture (ICF) of the mandible and evaluates the stability of various internal fixation methods in the temporomandibular joint (TMJ) division of the Shanghai Ninth People's Hospital. One hundred fifty-one patients with 208 ICFs diagnosed by panoramic radiograph and computed tomographic (CT) scan received open treatment in the TMJ division from 1999 to 2008. Their charts were reviewed. Classification of the fracture was based on coronal CT scan. Forty-three patients also underwent magnetic resonance imaging before the operation to check displacement of the disc. A modified preauricular approach was used for all patients. Various internal fixation methods from wire, to screw, to plate were evaluated for stability. There were 110 ICFs of type A fracture, 60 of type B fracture, 9 of type C fracture, 25 of type M fracture, and 4 fractures without displacement. A modified preauricular approach was used for open treatment, which can better expose and protect the TMJ and superficial temporal vessels. Wire and plate is the commonly used stable fixation method for type A, B, and M fractures, which accounted for 56.7% (101/178). Small fracture fragments were removed with disc repositioning for all type C fractures (n = 9) and some type B (n = 9) and M fractures (n = 5). Three type M fracture and 3 nondisplaced ICFs were treated closed. Eighty-nine patients with 115 ICFs had postoperative CT scan, which showed anatomic and nearly anatomic fracture reduction rates of 95.6%. Thirty-five patients with 44 ICFs had long-term follow-ups from 3 months to 5 years. Among them, 63.2% (n = 12/19) pediatric ICFs had continuous condyle growth after open reduction and rigid fixation; 92% adults had ICFs that healed well (n = 23/25). Postoperative complications were facial nerve injury (n = 3), TMJ clicking (n = 1), and condyle resorption that required plate removal (n = 4). A modified preauricular approach provides better exposure and protection of the TMJ and superficial temporal vessels. Wire and plate provides stable fixation for type A and some type B and M fractures. Open reduction and rigid fixation produce good results for adult patients. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. PRP Comments for ICF Q1/Q2 FY17 Experiments 3/10/16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, R.

    2016-04-14

    The PRP generally endorsed the Program plan during the short time for discussions. We agree that the strategy to develop a hohlraum that is symmetric and has low laser-plasma instabilities and to develop an alternative method for supporting the capsule is the best path forward for making progress in understanding ignition performance. The Program is oriented toward a milestone in 2020 for “determining the efficacy of NIF for ignition and credible physics-scaling to multi-megajoule yields for all ICF approaches.” We are concerned that the time and resources are not sufficient to vet all of the various approaches that are beingmore » pursued to make an informed decision by this date. For NIF to meet this goal, a process will be needed to to select the most promising paths forward. We recommend that the Program develop this process for selecting the path forward to optimize resources. We were glad to see that the direct drive program took our comments under consideration. We think that the proposed experiments have the program headed in a better direction. The PRP had only a short time to discuss the detailed experimental proposals. The following are comments on the detailed proposals. We did not have time to discuss them as a group. They represent individual opinions and provided to you as feedback to your proposals.« less

  11. Experiments Aimed at the ``Baikal'' Program

    NASA Astrophysics Data System (ADS)

    Kingsep, Alexander; Bakshaev, Yuri; Bartov, Alexander; Blinov, Petr; Chernenko, Andrey; Danko, Sergey; Dolgachev, Georgy; Kalinin, Yuri; Kovalenko, Igor; Lobanov, Alexey; Maslennikov, Dmitri; Mizhiritsky, Valery; Shashkov, Andrey; Smirnov, Valentin

    2002-12-01

    On the S-300 pulsed power generator (4.5 MA, 70 ns, 0.15 Ohm), within the frames of ICF program based on fast high-current Z-pinches, experiments are being carried out studying promising schemes of output units. In particular, a nanosecond-range plasma flow switch is being investigated aimed at sharpening the pulse. As a result, the switching rate as high as 2.5 MA / 2.5 ns has been achieved. The numerical simulation of such a device has been carried out. The results of experiments on the extrinsic magnetic field influence on high-impedance plasma opening switch (POS) operation are reported. It has been demonstrated that the POS output voltage could be increased by the factor of 1.5 compared to the POS free of an extrinsic field. Also the possibility of the expansion of POS conduction phase duration up to 40 μs has been presented. The development of more new laser and nuclear diagnostic methods will definitely contribute to attain new data which could help in understanding the POS operation physics.

  12. Anisotropic Thermal Diffusion

    NASA Astrophysics Data System (ADS)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  13. Medicare: Comparison of Catastropic Health Insurance Proposals--an Update.

    DTIC Science & Technology

    1987-10-01

    Accounting Office ICF intermediate care facility SNF skilled nursing facility VA Veterans Administration d4 ....... ’. - --- MEDICARE: COMPARISON OF...optional woe services, such as home and community-based services; services in an intermediate care facility (ICF); and prescribed drugs, dentures

  14. Medicare: Comparison of Catastrophic Health Insurance Proposals.

    DTIC Science & Technology

    1987-06-01

    GAO General Accounting Office ICF intermediate care facility SNF skilled nursing facility VA Veterans Administration -4 MEDICARE: COMPARISON OF...community-based services; services in an intermediate care facility (ICF); and prescribed drugs, dentures, and eyeglasses. In recent years, the number of

  15. Measuring body structures and body functions from the International Classification of Functioning, Disability, and Health perspective: considerations for biomedical parameters in spinal cord injury research.

    PubMed

    Eriks-Hoogland, Inge E; Brinkhof, Martin W G; Al-Khodairy, Abdul; Baumberger, Michael; Brechbühl, Jörg; Curt, Armin; Mäder, Mark; Stucki, Gerold; Post, Marcel W M

    2011-11-01

    The aims of this study were to provide a selection of biomedical domains based on the comprehensive International Classification of Functioning, Disability, and Health (ICF) core sets for spinal cord injury (SCI) and to present an overview of the corresponding measurement instruments. Based on the Biomedical Domain Set, the SCI literature, the International Spinal Cord Society international data sets, and the Spinal Cord Injury Rehabilitation Evidence project publications were used to derive category specifications for use in SCI research. Expert opinion was used to derive a priority selection. The same sources were used to determine candidate measurement instruments for the specification of body functions and body structures using an example, and guiding principles were applied to select the most appropriate biomedical measurement instrument(s) for use in an SCI research project. Literature searches were performed for 41 second-level ICF body functions categories and for four second-level ICF body structures categories. For some of these categories, only a few candidate measurement instruments were found with limited variation in the type of measurement instruments. An ICF-based measurement set for biomedical aspects of functioning with SCI was established. For some categories of the ICF core sets for SCI, there is a need to develop measurement instruments.

  16. Young adults with intellectual disability transitioning from school to post-school: a literature review framed within the ICF.

    PubMed

    Foley, K-R; Dyke, P; Girdler, S; Bourke, J; Leonard, H

    2012-01-01

    The purpose of this review was to describe literature relating to transition for young people with an intellectual disability and identify gaps within the current knowledge base. A narrative literature review was undertaken. Searches of databases Medline, CINAHL, PsycINFO, ERIC, ISI Web of Science and ProQuest 500 International provided relevant research articles. The search terms used were intellectual disability, transition, employment, and ICF as well as other terms derived from the ICF. Manual searches of reference lists identified additional studies. Furthermore, government websites were searched for relevant reports and policies. Transition literature was explored by ICF domains; body functions and structures, activity and participation and contextual factors. Studies were identified in some but not all areas and included literature describing self-determination and participation in leisure activities for those with mild intellectual disability. However, significant gaps were found particularly for those with severe intellectual disability. The ICF is a useful tool in framing a review of transition literature for young people with intellectual disability due to the complexity and multi-faceted nature of transition. The important influence of environmental factors including family systems, post-school services and access to transport were highlighted as having considerable impacts on transition outcomes.

  17. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources.

    PubMed

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-21

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  18. The multicenter benchmarking study of burn injury: A content analysis of the outcome measures using the international classification of functioning, disability and health.

    PubMed

    Osborne, Candice L; Petersson, Christina; Graham, James E; Meyer, Walter J; Simeonsson, Rune J; Suman, Oscar E; Ottenbacher, Kenneth J

    2016-11-01

    To link, classify and describe the content of the Multicenter Benchmarking Study Burn Outcomes Questionnaires (BOQ) using the International Classification of Functioning, Disability and Health (ICF) to determine if the information garnered provides researchers with the data necessary to develop a comprehensive understanding of life after burns. Two ICF linking experts used a standardized linking technique endorsed by the World Health Organization to link all BOQ concepts to the ICF. Linking results were analyzed to determine the comprehensiveness of each of the five measures. The activities and participation component was most frequently addressed followed by the body functions component. Environmental factors are not extensively covered and body structures are not addressed. ICF chapter and category distribution were skewed and varied between assessments. The majority of BOQ items are of the health status perspective. BOQ item composition could be improved with a more even distribution of pertinent ICF topics. Assessment authors may consider addressing the impact of environmental factors on participation. Including body structure concepts would allow investigators to track structural deformation and/or developmental delay. Generally speaking, this data should not be used to examine quality of life outcomes. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  19. Computer-assisted virtual technology in intracapsular condylar fracture with two resorbable long-screws.

    PubMed

    Wang, W H; Deng, J Y; Zhu, J; Li, M; Xia, B; Xu, B

    2013-03-01

    Our aim was to fix intracapsular condylar fractures (ICF) with two resorbable long screws using preoperative computer-assisted virtual technology. From February 2008 to July 2011, 19 patients with ICF were treated with two resorbable long screws. Preoperatively we took panoramic radiographs and spiral computed tomography (CT). Depending on their digital imaging and communications in medicine (DICOM) data, the dislocated condylar segments were restored using the SimPlant Pro™ software, version 11.04. The mean (SD) widths of the condylar head and neck from lateral to medial were 19.01 (1.28)mm and 13.84 (1.13)mm, respectively. In all patients, the mandibles and the ICF seen intraoperatively corresponded with the preoperative three-dimensional and virtual reposition. All patients were followed up for 6-46 months (mean 21). Occlusion and mouth opening had been restored completely in all but one patient, and absolute anatomical reduction was also achieved in most cases. Computer-assisted virtual technology plays an important part in the diagnosis of ICF, as well as in its preoperative design. Fixation with only two resorbable long screws is an effective and reliable method for fixing ICF. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Waves generated in the plasma plume of helicon magnetic nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen

    2013-03-15

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of themore » plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.« less

  1. BigFoot, a program to reduce risk for indirect drive laser fusion

    NASA Astrophysics Data System (ADS)

    Thomas, Cliff

    2016-10-01

    The conventional approach to inertial confinement fusion (ICF) is to maximize compressibility, or, total areal density. To achieve high convergence (40), the laser pulse is shaped to launch a weak first shock, which is followed in turn by 2-3 stronger shocks. Importantly, this has an outsized effect on integrated target physics, as the time it takes the shocks to transit the shell is related to hohlraum wall motion and filling, and can contribute to difficulties achieving an implosion that is fast, tunable, and/or predictable. At its outset, this approach attempts to predict the tradeoff in capsule and hohlraum physics in a case that is challenging, and assumes the hotspot can still reach the temperature and density necessary to self-heat (4-5 keV and 0.1-0.2 g/cm2, respectively). Here, we consider an alternate route to fusion ignition, for which the benefits of predictability, control, and coupling could exceed the benefits of convergence. In this approach we avoid uncertainty, and instead, seek a target that is predictable. To simplify hohlraum physics and limit wall motion we keep the implosion time short (6-7 ns), and design the target to avoid laser-plasma instabilities. Whereas the previous focus was on density, it is now on making a 1D hotspot at low convergence (20) that is robust with respect to alpha heating (5-6 keV, and 0.2-0.3 g/cm2) . At present, we estimate the tradeoff between convergence and control is relatively flat, and advantages in coupling enable high velocity (450-500 um/ns) and high yield (1E17). Were the approach successful, we believe it could reduce barriers to progress, as further improvements could be made with small, incremental increases in areal density. Details regarding the ``BigFoot'' platform and pulse are reported, as well as initial experiments. Work that could enable additional improvements in laser power, laser control, and capsule stability will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Shock interaction with a two-gas interface in a novel dual-driver shock tube

    NASA Astrophysics Data System (ADS)

    Labenski, John R.

    Fluid instabilities exist at the interface between two fluids having different densities if the flow velocity and density gradient are anti-parallel or if a shock wave crosses the boundary. The former case is called the Rayleigh-Taylor (R-T) instability and the latter, the Richtmyer-Meshkov (R-M) instability. Small initial perturbations on the interface destabilize and grow into larger amplitude structures leading to turbulent mixing. Instabilities of this type are seen in inertial confinement fusion (ICF) experiments, laser produced plasmas, supernova explosions, and detonations. A novel dual-driver shock tube was used to investigate the growth rate of the R-M instability. One driver is used to create an argon-refrigerant interface, and the other at the opposite end of the driven section generates a shock to force the interface with compressible flows behind the shock. The refrigerant gas in the first driver is seeded with sub-micron oil droplets for visualization of the interface. The interface travels down the driven section past the test section for a fixed amount of time. A stronger shock of Mach 1.1 to 1.3 drives the interface back past the test section where flow diagnostics are positioned. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thickness and that the interaction with a shock further broadens the interface. The growth rate was found to exhibit a dependence on the shock strength.

  3. Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team

    2013-10-01

    Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.

  4. Oral supplementation with L‐homoarginine in young volunteers

    PubMed Central

    Atzler, Dorothee; Schönhoff, Mirjam; Cordts, Kathrin; Ortland, Imke; Hoppe, Julia; Hummel, Friedhelm C.; Gerloff, Christian; Jaehde, Ulrich; Jagodzinski, Annika; Böger, Rainer H.; Choe, Chi‐un

    2016-01-01

    Aims Low blood concentrations of the naturally occurring amino acid L‐homoarginine (L‐hArg) are related to impaired cardiovascular outcome and mortality in humans and animals. L‐hArg is a weak substrate of nitric oxide synthase and an inhibitor of arginases in vitro. The aim of our study was to obtain kinetic and dynamic data after oral L‐hArg supplementation. Methods In a double‐blind, randomized, placebo‐controlled crossover study, 20 young volunteers received 125 mg L‐hArg once daily for 4 weeks. Kinetic parameters (C max, T max and AUC0‐24h) were calculated after ingestion of single and multiple doses of oral supplementation as primary endpoint. Secondary endpoints that were evaluated were routine laboratory, L‐arginine, asymmetric dimethylarginine (ADMA), pulse wave velocity (PWV), augmentation index (AIx), flow‐mediated vasodilatation (FMD), corticospinal excitability, i.e. motor threshold (MT), and cortical excitability, i.e. intracortical inhibition (ICI) and facilitation (ICF). Results One hour after ingestion (T max), L‐hArg increased the baseline L‐hArg plasma concentration (2.87 ± 0.91 μmol l−1, mean ± SD) by 8.74 ± 4.46 [95% confidence intervals 6.65; 10.9] and 17.3 ± 4.97 [14.9; 19.6] μmol l−1 (C max), after single and multiple doses, respectively. Once‐only and 4 weeks of supplementation resulted in AUCs0‐24h of 63.5 ± 28.8 [50.0; 76.9] and 225 ± 78.5 [188; 2624] μmol l−1*h, for single and multiple doses, respectively. Routine laboratory parameters, L‐arginine, ADMA, PWV, AIx, FMD, MT, ICI and ICF did not change by L‐hArg supplementation compared to baseline. Conclusion Once daily orally applied 125 mg L‐hArg raises plasma L‐hArg four‐ and sevenfold after single dose and 4 weeks of supplementation, respectively, and is safe and well tolerated in young volunteers. PMID:27434056

  5. Exploring the dynamics of kinetic/multi-ion effects and ion-electron equilibration rates in ICF plasmas at OMEGA

    NASA Astrophysics Data System (ADS)

    Sio, H.

    2017-10-01

    During the last few years, an increasing number of experiments have shown that kinetic and multi-ion-fluid effects do impact the performance of an ICF implosion. Observations include: increasing yield degradation as the implosion becomes more kinetic; thermal decoupling between ion species; anomalous yield scaling for different fuel mixtures; ion diffusion; and fuel stratification. The common theme in these experiments is that the results are based on time-integrated nuclear observables that are affected by an accumulation of effects throughout the implosion, which complicate interpretation of the data. A natural extension of these studies is therefore to conduct time-resolved measurements of multiple nuclear-burn histories to explore the dynamics of kinetic/multi-ion effects in the fuel and their impact on the implosion performance. This was accomplished through simultaneous, high-precision measurements of the relative timing of the onset, bang time and duration of DD, D3He, DT and T3He burn from T3He (with trace D) or D3He gas-filled implosions using the new Particle X-ray Temporal Diagnostic (PXTD) on OMEGA. As the different reactions have different temperature sensitivities, Ti(t) was determined from the data. Uniquely to the PXTD, several x-ray emission histories (in different energy bands) were also measured, from which a spatially averaged Te(t) was also determined. The inferred Ti(t) and Te(t) data have been used to experimentally explore ion-electron equilibration rates and the Coulomb Logarithm for various plasma conditions. Finally, the implementation and use of PXTD, which represents a significant advance at OMEGA, have laid the foundation for implementing a Te(t) measurement in support of the main cryogenic DT programs at OMEGA and the NIF. This work was supported in part by the US DOE, LLE, LLNL, and DOE NNSA SSGF.

  6. Wavefront-sensor-based electron density measurements for laser-plasma accelerators.

    PubMed

    Plateau, G R; Matlis, N H; Geddes, C G R; Gonsalves, A J; Shiraishi, S; Lin, C; van Mourik, R A; Leemans, W P

    2010-03-01

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength and hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, offer greater phase sensitivity and straightforward analysis, improving shot-to-shot plasma density diagnostics.

  7. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  8. Do Open Reduction and Internal Fixation With Articular Disc Anatomical Reduction and Rigid Anchorage Manifest a Promising Prospect in the Treatment of Intracapsular Fractures?

    PubMed

    Cai, Bo-Lei; Ren, Rong; Yu, Hong-Bo; Liu, Peng-Chao; Shen, Steve G F; Shi, Jun

    2018-05-01

    In response to the increased attention to soft tissue reduction in the treatment of intracapsular condylar fractures (ICFs), a modified open reduction technique is proposed and its functional and radiographic outcomes were evaluated in this study. This is a retrospective case series study of patients with all ICF types that were treated with open reduction and internal fixation (ORIF) with articular disc anatomic reduction and rigid anchorage. Inclusion and exclusion criteria were strictly applied. Preoperative and postoperative clinical examinations of malocclusion, maximum incisor opening (MIO), laterotrusion, and temporomandibular disorder symptoms were recorded and analyzed. Computed tomography (CT) and magnetic resonance imaging (MRI) were used to assess articular position and condylar morphology and position. Thirty-four patients with ICFs (47 sides) were treated with the modified ORIF technique. At 6 months of follow-up, no malocclusion was found and the MIO considerably expanded to 3.56 ± 0.13 cm. Only 4 patients (12%) had temporomandibular joint discomfort with mouth opening. Interestingly, for unilateral type B ICFs, the laterotrusion distance to the ORIF sides was notably longer than to the non-ORIF sides. Postoperative CT and MRI showed that all fragments were properly reduced and the condyles were in the normal position. Postoperative anterior disc displacement occurred in 4 sides and condylar morphologic abnormalities (slight surface roughening and articular cartilage absorption) occurred in 3 sides (6.4%). This modified ORIF technique, which achieved good outcomes after treatment of all ICF types, shows promise for the treatment of ICFs. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Effect of projectile on incomplete fusion reactions at low energies

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay R.; Shuaib, Mohd.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Singh, Devendra P.; Singh, B. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.; Prasad, R.

    2017-11-01

    Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  10. An ontology-based exploration of the concepts and relationships in the activities and participation component of the international classification of functioning, disability and health.

    PubMed

    Della Mea, Vincenzo; Simoncello, Andrea

    2012-02-28

    The International Classification of Functioning, Disability and Health (ICF) is a classification of health and health-related issues, aimed at describing and measuring health and disability at both individual and population levels. Here we discuss a preliminary qualitative and quantitative analysis of the relationships used in the Activities and Participation component of ICF, and a preliminary mapping to SUMO (Suggested Upper Merged Ontology) concepts. The aim of the analysis is to identify potential logical problems within this component of ICF, and to understand whether activities and participation might be defined more formally than in the current version of ICF. In the relationship analysis, we used four predicates among those available in SUMO for processes (Patient, Instrument, Agent, and subProcess). While at the top level subsumption was used in most cases (90%), at the lower levels the percentage of other relationships rose to 41%. Chapters were heterogeneous in the relationships used and some of the leaves of the tree seemed to represent properties or parts of the parent concept rather than subclasses. Mapping of ICF to SUMO proved partially feasible, with the activity concepts being mapped mostly (but not totally) under the IntentionalProcess concept in SUMO. On the other hand, the participation concept has not been mapped to any upper level concept. Our analysis of the relationships within ICF revealed issues related to confusion between classes and their properties, incorrect classifications, and overemphasis on subsumption, confirming what already observed by other researchers. However, it also suggested some properties for Activities that could be included in a more formal model: number of agents involved, the instrument used to carry out the activity, the object of the activity, complexity of the task, and an enumeration of relevant subtasks.

  11. Functioning and disability in autism spectrum disorder: A worldwide survey of experts

    PubMed Central

    de Schipper, Elles; Mahdi, Soheil; de Vries, Petrus; Granlund, Mats; Holtmann, Martin; Karande, Sunil; Almodayfer, Omar; Shulman, Cory; Tonge, Bruce; Wong, Virginia V.C.N.; Zwaigenbaum, Lonnie

    2016-01-01

    Objective: This study is the second of four to prepare International Classification of Functioning, Disability and Health (ICF; and Children and Youth version, ICF(‐CY)) Core Sets for Autism Spectrum Disorder (ASD).The objective of this study was to survey the opinions and experiences of international experts on functioning and disability in ASD. Methods: Using a protocol stipulated by the World Health Organization (WHO) and monitored by the ICF Research Branch, an email‐based questionnaire was circulated worldwide among ASD experts, and meaningful functional ability and disability concepts were extracted from their responses. These concepts were then linked to the ICF(‐CY) by two independent researchers using a standardized linking procedure. Results: N = 225 experts from 10 different disciplines and all six WHO‐regions completed the survey. Meaningful concepts from the responses were linked to 210 ICF(‐CY) categories. Of these, 103 categories were considered most relevant to ASD (i.e., identified by at least 5% of the experts), of which 37 were related to Activities and Participation, 35 to Body functions, 22 to Environmental factors, and 9 to Body structures. A variety of personal characteristics and ASD‐related functioning skills were provided by experts, including honesty, loyalty, attention to detail and creative talents. Reported gender differences in ASD comprised more externalizing behaviors among males and more internalizing behaviors in females. Conclusion: The ICF(‐CY) categories derived from international expert opinions indicate that the impact of ASD on functioning extends far beyond core symptom domains. Autism Res 2016, 9: 959–969. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:26749373

  12. [Global analysis of the readability of the informed consent forms used in public hospitals of Spain].

    PubMed

    Mariscal-Crespo, M I; Coronado-Vázquez, M V; Ramirez-Durán, M V

    To analyse the readability of informed consent forms (ICF) used in Public Hospitals throughout Spain, with the aim of checking their function of providing comprehensive information to people who are making any health decision no matter where they are in Spain. A descriptive study was performed on a total of 11,339 ICF received from all over Spanish territory, of which 1617 ICF were collected from 4 web pages of Health Portal and the rest (9722) were received through email and/or telephone contact from March 2012 to February 2013. The readability level was studied using the Inflesz tool. A total of 372 ICF were selected and analysed using simple random sampling. The Inflesz scale and the Flesch-Szigriszt index were used to analyse the readability. The readability results showed that 62.4% of the ICF were rated as a "little difficult", the 23.4% as "normal", and the 13.4% were rated as "very difficult". The highest readability means using the Flesch index were scored in Andalusia with a mean of 56.99 (95% CI; 55.42-58.57) and Valencia with a mean of 51.93 (95% CI; 48.4-55.52). The lowest readability means were in Galicia with a mean of 40.77 (95% CI; 9.83-71.71) and Melilla, mean=41.82 (95% CI; 35.5-48.14). The readability level of Spanish informed consent forms must be improved because their scores using readability tools could not be classified in normal scales. Furthermore, there was very wide variability among Spanish ICF, which showed a lack of equity in information access among Spanish citizens. Copyright © 2017 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Linking Frailty Instruments to the International Classification of Functioning, Disability, and Health: A Systematic Review.

    PubMed

    Azzopardi, Roberta Vella; Vermeiren, Sofie; Gorus, Ellen; Habbig, Ann-Katrin; Petrovic, Mirko; Van Den Noortgate, Nele; De Vriendt, Patricia; Bautmans, Ivan; Beyer, Ingo

    2016-11-01

    To date, the major dilemma concerning frailty is the lack of a standardized language regarding its operationalization. Considering the demographic challenge that the world is facing, standardization of frailty identification is indeed the first step in tackling the burdensome consequences of frailty. To demonstrate this diversity in frailty assessment, the available frailty instruments have been linked to the International Classification of Functioning, Disability, and Health (ICF): a standardized and hierarchically coded language developed by World Health Organization regarding health conditions and their positive (functioning) and negative (disability) consequences. A systematic review on frailty instruments was carried out in PubMed, Web of Knowledge, and PsycINFO. The items of the identified frailty instruments were then linked to the ICF codes. 79 original or adapted frailty instruments were identified and categorized into single (n = 25) and multidomain (n = 54) groups. Only 5 frailty instruments (indexes) were linked to all 5 ICF components. Whereas the ICF components Body Functions and Activities and Participation were frequently linked to the frailty instruments, Body Structures, Environmental and Personal factors were sparingly represented mainly in the multidomain frailty instruments. This review highlights the heterogeneity in frailty operationalization. Environmental and personal factors should be given more thought in future frailty assessments. Being unambiguous, structured, and neutral, the ICF language allows comparing observations made with different frailty instruments. In conclusion, this systematic overview and ICF translation can be a cornerstone for future standardization of frailty assessment. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  14. Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet.

    PubMed

    Li, Na; Bai, Ya; Miao, Tianshi; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2016-10-03

    Contribution of plasma oscillation to the broadband terahertz (THz) emission is revealed by interacting two-color (ω/2ω) laser pulses with a supersonic jet of nitrogen molecules. Temporal and spectral shifts of THz waves are observed as the plasma density varies. The former owes to the changing refractive index of the THz waves, and the latter correlates to the varying plasma frequency. Simulation of considering photocurrents, plasma oscillation and decaying plasma density explains the broadband THz spectrum and the varying THz spectrum. Plasma oscillation only contributes to THz waves at low plasma density owing to negligible plasma absorption. At the longer medium or higher density, the combining effects of plasma oscillation and absorption results in the observed low-frequency broadband THz spectra.

  15. High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Kegong; Wu, Yuchi; Zhu, Bin

    The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less

  16. Investigation of complete and incomplete fusion in the 7Li+124Sn reaction near Coulomb barrier energies

    NASA Astrophysics Data System (ADS)

    Parkar, V. V.; Sharma, Sushil K.; Palit, R.; Upadhyaya, S.; Shrivastava, A.; Pandit, S. K.; Mahata, K.; Jha, V.; Santra, S.; Ramachandran, K.; Nag, T. N.; Rath, P. K.; Kanagalekar, Bhushan; Trivedi, T.

    2018-01-01

    The complete and incomplete fusion cross sections for the 7Li+124Sn reaction were measured using online and offline characteristic γ -ray detection techniques. The complete fusion (CF) cross sections at energies above the Coulomb barrier were found to be suppressed by ˜26 % compared to the coupled channel calculations. This suppression observed in complete fusion cross sections is found to be commensurate with the measured total incomplete fusion (ICF) cross sections. There is a distinct feature observed in the ICF cross sections, i.e., t capture is found to be dominant compared to α capture at all the measured energies. A simultaneous explanation of complete, incomplete, and total fusion (TF) data was also obtained from the calculations based on the continuum discretized coupled channel method with short range imaginary potentials. The cross section ratios of CF/TF and ICF/TF obtained from the data as well as the calculations showed the dominance of ICF at below-barrier energies and CF at above-barrier energies.

  17. Utility of the International Classification of Functioning, Disability and Health (ICF) for educational psychologists’ work

    PubMed Central

    Aljunied, Mariam; Frederickson, Norah

    2014-01-01

    Despite embracing a bio-psycho-social perspective, the World Health Organization’s International Classification of Functioning, Disability and Health (ICF) assessment framework has had limited application to date with children who have special educational needs (SEN). This study examines its utility for educational psychologists’ work with children who have Autism Spectrum Disorders (ASD). Mothers of 40 children with ASD aged eight to 12 years were interviewed using a structured protocol based on the ICF framework. The Diagnostic Interview for Social and Communication Disorder (DISCO) was completed with a subset of 19 mothers. Internal consistency and inter-rater reliability of the interview assessments were found to be acceptable and there was evidence for concurrent and discriminant validity. Despite some limitations, initial support for the utility of the ICF model suggests its potential value across educational, health and care fields. Further consideration of its relevance to educational psychologists in new areas of multi-agency working is warranted. PMID:26157197

  18. Participation and environmental aspects in education and the ICF and the ICF-CY: findings from a systematic literature review.

    PubMed

    Maxwell, Gregor; Alves, Ines; Granlund, Mats

    2012-01-01

    This paper presents findings from a systematic review of the literature related to participation and the ICF/ICF-CY in educational research. To analyse how and investigate the application of participation in educational research. Specifically, how participation is related to the environmental dimensions availability, accessibility, affordability, accommodability and acceptability. A systematic literature review using database keyword searches and refinement protocols using inclusion and exclusion criteria at abstract, full-text and extraction. Four hundred and twenty-one initial works were found. Twenty-three met the inclusion criteria. Availability and accommodations are the most investigated dimensions. Operationalization of participation is not always consistent with definitions used. Research is developing a holistic approach to investigating participation as, although all papers reference at least one environmental dimension, only four of the 11 empirical works reviewed present a fully balanced approach when theorizing and operationalizing participation; hopefully this balanced approach will continue and influence educational policy and school practice.

  19. The International Classification of Functioning, Disability and Health (ICF) and nursing.

    PubMed

    Kearney, Penelope M; Pryor, Julie

    2004-04-01

    Nursing conceptualizes disability from largely medical and individual perspectives that do not consider its social dimensions. Disabled people are critical of this paradigm and its impact on their health care. The aims of this paper are to review the International Classification of Functioning, Disability and Health (ICF), including its history and the theoretical models upon which it is based and to discuss its relevance as a conceptual framework for nursing. The paper presents a critical overview of concepts of disability and their implications for nursing and argues that a broader view is necessary. It examines ICF and its relationship to changing paradigms of disability and presents some applications for nursing. The ICF, with its acknowledgement of the interaction between people and their environments in health and disability, is a useful conceptual framework for nursing education, practice and research. It has the potential to expand nurses' thinking and practice by increasing awareness of the social, political and cultural dimensions of disability.

  20. Application of the ICF in fluency disorders.

    PubMed

    Yaruss, J Scott

    2007-11-01

    Stuttering is a complicated communication disorder that can affect many aspects of a speaker's life. In addition to exhibiting observable disruptions in speech (e.g., part-word repetitions, prolongations, blocks), many people who stutter also experience broader consequences in their lives because of their stuttering. Examples include difficulty with social communication (e.g., speaking with other people, making introductions) and job-related tasks (e.g., talking on the phone, participating in meetings). Because it incorporates these types of daily experiences, the World Health Organization's International Classification of Functioning, Disability and Health (ICF) provides an ideal framework for considering the overall experience of the stuttering disorder. The purpose of this article is to highlight the ways in which the ICF can help clinicians, people who stutter, and the general public understand the multifaceted nature of stuttering. The article will also describe how clinicians can use the ICF as a framework for developing comprehensive evaluations and providing individualized treatment plans for people who stutter.

  1. Type C investigation of electrical fabrication projects in ICF Kaiser shops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckfeldt, R.A.

    1995-06-01

    A Type C Investigation Board was convened to investigate an electrical miswiring problem found during the operation of the electrical distribution trailer for the TWRS Rotary Mode Core Sampling Truck {number_sign}2. The trailer was designed by WHC and fabricated ICF KH on site for use in the Characterization Program. This problem resulted in a serious safety hazard since the support truck frame/chassis became electrically energized. This final report provides results of the ``Type C Investigation, Electrical Fabrication Projects in ICF KH Shops, June, 1995.`` It contains the investigation scope, executive summary, relevant facts, analysis, conclusions and corrective actions. DOE Ordermore » 5484.1, ``Environmental Protection, Safety and Health Protection Information Reporting Requirements,`` was followed in preparation of this report. Because the incident was electrical in nature and involved both Westinghouse Hanford Company and ICF Kaiser Hanford organizations, the board included members from both contractors and members with considerable electrical expertise.« less

  2. Lightweight Target Generates Bright, Energetic X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    Radiography with x rays is a long-established method to see inside objects, from human limbs to weapon parts. Livermore scientists have a continuing need for powerful x rays for such applications as backlighting, or illuminating, inertial confinement fusion (ICF) experiments and imaging still or exploding materials for the nation's Stockpile Stewardship Program. X-radiography is one of the prime diagnostics for ICF experiments because it captures the fine detail needed to determine what happens to nearly microscopic targets when they are compressed by laser light. For example, Livermore scientists participating in the National Ignition Facility's (NIF's) 18-month-long Early Light experimental campaign,more » which ended in 2004, used x rays to examine hydrodynamic instabilities in jets of plasma. In these experiments, one laser beam irradiated a solid target of titanium, causing it to form a high-temperature plasma that generated x rays of about 4.65 kiloelectronvolts (keV). These x rays backlit a jet of plasma formed when two other laser beams hit a plastic ablator and sent a shock to an aluminum washer. Livermore physicist Kevin Fournier of the Physics and Advanced Technologies Directorate leads a team that is working to increase the efficiency of converting laser energy into x rays so the resulting images provide more information about the object being illuminated. The main characteristics of x-ray sources are energy and brightness. ''As experimental targets get larger and as compression of the targets increases, the backlighter sources must be brighter and more energetic'', says Fournier. The more energetic the x rays, the further they penetrate an object. The brighter the source--that is, the more photons it has--the clearer the image. historically, researchers have used solid targets such as thin metal foils to generate x rays. however, when photon energies are greater than a few kiloelectronvolts, the conversion efficiency of solid targets is only a fraction of 1 percent. Solid targets have low efficiencies because much of the laser energy is deposited far from the target's x-ray emitting region, and the energy is carried by the relatively slow process of thermal conduction. ''The laser beam ablates material from the massive target, and that material moves away from the target's surface'', says Fournier. With a nanosecond pulse or longer, the laser interacts with the blow-off plasma rather than the remaining bulk sample. As a result, much of the laser's energy goes into the kinetic energy of the blow-off material, not into heating the bulk of the foil.« less

  3. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  4. Using the International Classification of Functioning, Disability and Health (ICF) to Describe Children Referred to Special Care or Paediatric Dental Services

    PubMed Central

    Faulks, Denise; Norderyd, Johanna; Molina, Gustavo; Macgiolla Phadraig, Caoimhin; Scagnet, Gabriela; Eschevins, Caroline; Hennequin, Martine

    2013-01-01

    Children in dentistry are traditionally described in terms of medical diagnosis and prevalence of oral disease. This approach gives little information regarding a child’s capacity to maintain oral health or regarding the social determinants of oral health. The biopsychosocial approach, embodied in the International Classification of Functioning, Disability and Health - Child and Youth version (ICF-CY) (WHO), provides a wider picture of a child’s real-life experience, but practical tools for the application of this model are lacking. This article describes the preliminary empirical study necessary for development of such a tool - an ICF-CY Core Set for Oral Health. An ICF-CY questionnaire was used to identify the medical, functional, social and environmental context of 218 children and adolescents referred to special care or paediatric dental services in France, Sweden, Argentina and Ireland (mean age 8 years ±3.6yrs). International Classification of Disease (ICD-10) diagnoses included disorders of the nervous system (26.1%), Down syndrome (22.0%), mental retardation (17.0%), autistic disorders (16.1%), and dental anxiety alone (11.0%). The most frequently impaired items in the ICF Body functions domain were ‘Intellectual functions’, ‘High-level cognitive functions’, and ‘Attention functions’. In the Activities and Participation domain, participation restriction was frequently reported for 25 items including ‘Handling stress’, ‘Caring for body parts’, ‘Looking after one’s health’ and ‘Speaking’. In the Environment domain, facilitating items included ‘Support of friends’, ‘Attitude of friends’ and ‘Support of immediate family’. One item was reported as an environmental barrier – ‘Societal attitudes’. The ICF-CY can be used to highlight common profiles of functioning, activities, participation and environment shared by children in relation to oral health, despite widely differing medical, social and geographical contexts. The results of this empirical study might be used to develop an ICF-CY Core Set for Oral Health - a holistic but practical tool for clinical and epidemiological use. PMID:23614000

  5. An international qualitative study of functioning in autism spectrum disorder using the World Health Organization international classification of functioning, disability and health framework

    PubMed Central

    Mahdi, Soheil; Viljoen, Marisa; Yee, Tamara; Selb, Melissa; Singhal, Nidhi; Almodayfer, Omar; Granlund, Mats; de Vries, Petrus J.; Zwaigenbaum, Lonnie

    2017-01-01

    This is the third in a series of four empirical studies designed to develop International Classification of Functioning, Disability and Health (ICF) Core Sets for Autism Spectrum Disorder (ASD). The present study aimed to describe functioning in ASD (as operationalized by the ICF) derived from the perspectives of diagnosed individuals, family members, and professionals. A qualitative study using focus groups and semi‐structured interviews were conducted with 19 stakeholder groups (N = 90) from Canada, India, Saudi Arabia, South Africa, and Sweden. Meaningful concepts from the focus groups and individual interviews were linked to ICF categories using a deductive qualitative approach with standardized linking procedures. The deductive qualitative content analysis yielded meaningful functioning concepts that were linked to 110 ICF categories across all four ICF components. Broad variation of environmental factors and activities and participation categories were identified in this study, while body functions consisted mainly of mental functions. Body structures were sparsely mentioned by the participants. Positive aspects of ASD included honesty, attention to detail, and memory. The experiences provided by international stakeholders support the need to understand individuals with ASD in a broader perspective, extending beyond diagnostic criteria into many areas of functioning and environmental domains. This study is part of a larger systematic effort that will provide the basis to define ICF Core Sets for ASD, from which assessment tools can be generated for use in clinical practice, research, and health care policy making. Autism Res 2018, 11: 463–475. © 2017 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. Lay Summary The study findings support the need to understand the living experiences of individuals with Autism Spectrum Disorder (ASD) from a broader perspective, taking into account many areas of an individual's functioning and environment. The ICF can serve as foundation for exploring these living experiences more extensively by offering tools that enable wide variety of individual difficulties and strengths to be captured along with important environmental influences. As such, these tools can facilitate interventions that meet the needs and goals of the individual. PMID:29226604

  6. Health problems and disability in long-term sickness absence: ICF coding of medical certificates.

    PubMed

    Morgell, Roland; Backlund, Lars G; Arrelöv, Britt; Strender, Lars-Erik; Nilsson, Gunnar H

    2011-11-11

    The purpose of this study was to test the feasibility of International Classification of Functioning, Disability and Health (ICF) and to explore the distribution, including gender differences, of health problems and disabilities as reflected in long-term sickness absence certificates. A total of 433 patients with long sick-listing periods, 267 women and 166 men, were included in the study. All certificates exceeding 28 days of sick-listing sent to the local office of the Swedish Social Insurance Administration of a municipality in the Stockholm area were collected during four weeks in 2004-2005. ICD-10 medical diagnosis codes in the certificates were retrieved and free text information on disabilities in body function, body structure or activity and participation were coded according to ICF short version. In 89.8% of the certificates there were descriptions of disabilities that readily could be classified according to ICF. In a reliability test 123/131 (94%) items of randomly chosen free text information were identically classified by two of the authors. On average 2.4 disability categories (range 0-9) were found per patient; the most frequent were 'Sensation of pain' (35.1% of the patients), 'Emotional functions' (34.1%), 'Energy and drive functions' (22.4%), and 'Sleep functions' (16.9%). The dominating ICD-10 diagnostic groups were 'Mental and behavioural disorders' (34.4%) and 'Diseases of the musculoskeletal system and connective tissue' (32.8%). 'Reaction to severe stress and adjustment disorders' (14.7%), and 'Depressive episode' (11.5%) were the most frequent diagnostic codes. Disabilities in mental functions and activity/participation were more commonly described among women, while disabilities related to the musculoskeletal system were more frequent among men. Both ICD-10 diagnoses and ICF categories were dominated by mental and musculoskeletal health problems, but there seems to be gender differences, and ICF classification as a complement to ICD-10 could provide a better understanding of the consequences of diseases and how individual patients can cope with their health problems. ICF is feasible for secondary classifying of free text descriptions of disabilities stated in sick-leave certificates and seems to be useful as a complement to ICD-10 for sick-listing management and research.

  7. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation

    PubMed Central

    2013-01-01

    Background The cortical silent period (CSP) elicited by transcranial magnetic stimulation (TMS) is affected by changes in TMS intensity. Some studies have shown that CSP is shortened or prolonged by short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), Those studies, however, used different TMS intensities to adjust the amplitude of the motor evoked potential (MEP). Therefore, it is unclear whether changes in CSP duration are induced by changes in TMS intensities or by SICI and ICF. The purpose of this study was to confirm the effects of muscle contractions and stimulus intensities on MEP amplitude and the duration of CSP induced by single-pulse TMS and to clarify the effects of SICI and ICF on CSP duration. MEP evoked by TMS was detected from the right first dorsal interosseous muscle in 15 healthy subjects. First, MEP and CSP were induced by single-pulse TMS with an intensity of 100% active motor threshold (AMT) at four muscle contraction levels [10%, 30%, 50%, and 70% electromyogram (EMG)]. Next, MEP and CSP were induced by seven TMS intensities (100%, 110%, 120%, 130%, 140%, 150%, and 160% AMT) during muscle contraction of 10% EMG. Finally, SICI and ICF were recorded at the four muscle contraction levels (0%, 10%, 30%, and 50% EMG). Results MEP amplitudes increased with increases in muscle contraction and stimulus intensity. However, CSP duration did not differ at different muscle contraction levels and was prolonged with increases in stimulus intensity. CSP was shortened with SICI compared with CSP induced by single-pulse TMS and with ICF at all muscle contraction levels, whereas CSP duration was not significantly changed with ICF. Conclusions We confirmed that CSP duration is affected by TMS intensity but not by the muscle contraction level. This study demonstrated that CSP is shortened with SICI, but it is not altered with ICF. These results indicate that after SICI, CSP duration is affected by the activity of inhibitory intermediate neurons that are activated by the conditioning SICI stimulus. PMID:23547559

  8. Electron density and effective atomic number (Zeff) determination through x-ray Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Valdivia Leiva, Maria Pia; Stutman, Dan; Finkenthal, Michael

    2014-10-01

    Talbot-Lau based Moiré deflectometry is a powerful density diagnostic capable of delivering refraction information and attenuation from a single image, through the accurate detection of X-ray phase-shift and intensity. The technique is able to accurately measure both the real part of the index of refraction δ (directly related to electron density) and the attenuation coefficient μ of an object placed in the x-ray beam. Since the atomic number Z (or Zeff for a composite sample) is proportional to these quantities, an elemental map of the effective atomic number can be obtained with the ratio of the phase and the absorption image. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest in various fields of HED research such as shocked materials and ICF experiments as Zeff is linked, by definition, to the x-ray absorption properties of a specific material. This work is supported by U.S. DoE/NNSA Grant No. 435 DENA0001835.

  9. Medicaid-financed residential care for persons with mental retardation.

    PubMed

    Lakin, K C; Hall, M J

    1990-12-01

    Two sources of Medicaid support for persons with mental retardation and related conditions (MR/RC) are examined, the intermediate care facility for the mentally retarded (ICF/MR) program and the home and community-based services (HCBS) waiver. Results indicate that Medicaid support through the ICF/MR program has shown little recent growth in terms of number of persons served, although expenditures continue to increase. Medicaid's HCBS waiver is being used increasingly by States to support residential placement because of its greater flexibility and more individualized approach relative to ICF/MR care. Use of Medicaid to finance care for persons with MR/RC varies considerably across States.

  10. Medicaid-financed residential care for persons with mental retardation

    PubMed Central

    Lakin, K. Charlie; Hall, Margaret Jean

    1990-01-01

    Two sources of Medicaid support for persons with mental retardation and related conditions (MRIRC) are examined, the intermediate care facility for the mentally retarded (ICF/MR) program and the home and community-based services (HCBS) waiver. Results indicate that Medicaid support through the ICF/MR program has shown little recent growth in terms of number of persons served, although expenditures continue to increase. Medicaid's HCBS waiver is being used increasingly by States to support residential placement because of its greater flexibility and more individualized approach relative to ICF/MR care. Use of Medicaid to finance care for persons with MR/RC varies considerably across States. PMID:10113489

  11. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer's disease patients

    PubMed Central

    Di Lorenzo, Francesco; Martorana, Alessandro; Ponzo, Viviana; Bonnì, Sonia; D'Angelo, Egidio; Caltagirone, Carlo; Koch, Giacomo

    2013-01-01

    The dysfunction of cholinergic neurons is a typical hallmark in Alzheimer's disease (AD). Previous findings demonstrated that high density of cholinergic receptors is found in the thalamus and the cerebellum compared with the cerebral cortex and the hippocampus. We aimed at investigating whether activation of the cerebello-thalamo-cortical pathway by means of cerebellar theta burst stimulation (TBS) could modulate central cholinergic functions evaluated in vivo by using the neurophysiological determination of Short-Latency Afferent Inhibition (SLAI). We tested the SLAI circuit before and after administration of cerebellar continuous TBS (cTBS) in 12 AD patients and in 12 healthy age-matched control subjects (HS). We also investigated potential changes of intracortical circuits of the contralateral primary motor cortex (M1) by assessing short intracortical inhibition (SICI) and intracortical facilitation (ICF). SLAI was decreased in AD patients compared to HS. Cerebellar cTBS partially restored SLAI in AD patients at later inter-stimulus intervals (ISIs), but did not modify SLAI in HS. SICI and ICF did not differ in the two groups and were not modulated by cerebellar cTBS. These results demonstrate that cerebellar magnetic stimulation is likely to affect mechanisms of cortical cholinergic activity, suggesting that the cerebellum may have a direct influence on the cholinergic dysfunction in AD. PMID:23423358

  12. Theoretical study on the mechanism of the gas-phase elimination kinetics of alkyl chloroformates

    NASA Astrophysics Data System (ADS)

    Alcázar, Jackson J.; Marquez, Edgar; Mora, José R.; Cordova-Sintjago, Tania; Chuchani, Gabriel

    2016-03-01

    The theoretical calculations on the mechanism of the homogeneous and unimolecular gas-phase elimination kinetics of alkyl chloroformates- ethyl chloroformate (ECF), isopropyl chloroformate (ICF), and sec-butyl chloroformate (SCF) - have been carried out by using CBS-QB3 level of theory and density functional theory (DFT) functionals CAM-B3LYP, M06, MPW1PW91, and PBE1PBE with the basis sets 6-311++G(d,p) and 6-311++G(2d,2p). The chlorofomate compounds with alkyl ester Cβ-H bond undergo thermal decomposition producing the corresponding olefin, HCl and CO2. These homogeneous eliminations are proposed to undergo two different types of mechanisms: a concerted process, or via the formation of an unstable intermediate chloroformic acid (ClCOOH), which rapidly decomposes to HCl and CO2 gas. Since both elimination mechanisms may occur through a six-membered cyclic transition state structure, it is difficult to elucidate experimentally which is the most reasonable reaction mechanism. Theoretical calculations show that the stepwise mechanism with the formation of the unstable intermediate chloroformic acid from ECF, ICF, and SCF is favoured over one-step elimination. Reasonable agreements were found between theoretical and experimental values at the CAM-B3LYP/6-311++G(d,p) level.

  13. Accommodation Outcomes and the ICF Framework

    ERIC Educational Resources Information Center

    Schreuer, Naomi

    2009-01-01

    Accommodation of the environment and technology is one of the key mediators of adjustment to disability and participation in community. In this article, accommodations are tested empirically as facilitators of return to work and participation, as defined by the "International Classification of Disability, Function, and Health" (ICF) and…

  14. Design of a novel high efficiency antenna for helicon plasma sources

    NASA Astrophysics Data System (ADS)

    Fazelpour, S.; Chakhmachi, A.; Iraji, D.

    2018-06-01

    A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.

  15. Employing the International Classification of Functioning, Disability and Health framework to capture user feedback in the design and testing stage of development of home-based arm rehabilitation technology.

    PubMed

    Sivan, Manoj; Gallagher, Justin; Holt, Ray; Weightman, Andrew; O'Connor, Rory; Levesley, Martin

    2016-01-01

    The purpose of this study was to evaluate the International Classification of Functioning, Disability and Health (ICF) as a framework to ensure that key aspects of user feedback are identified in the design and testing stages of development of a home-based upper limb rehabilitation system. Seventeen stroke survivors with residual upper limb weakness, and seven healthcare professionals with expertise in stroke rehabilitation, were enrolled in the user-centered design process. Through semi-structured interviews, they provided feedback on the hardware, software and impact of a home-based rehabilitation device to facilitate self-managed arm exercise. Members of the multidisciplinary clinical and engineering research team, based on previous experience and existing literature in user-centred design, developed the topic list for the interviews. Meaningful concepts were extracted from participants' interviews based on existing ICF linking rules and matched to categories within the ICF Comprehensive Core Set for stroke. Most of the interview concepts (except personal factors) matched the existing ICF Comprehensive Core Set categories. Personal factors that emerged from interviews e.g. gender, age, interest, compliance, motivation, choice and convenience that might determine device usability are yet to be categorised within the ICF framework and hence could not be matched to a specific Core Set category.

  16. An overview on incomplete fusion reaction dynamics at energy range ∼ 3-8 MeV/A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Rahbar, E-mail: rahbarali1@rediffmail.com; Singh, D.; Ansari, M. Afzal

    2014-08-14

    The information of ICF reaction has been obtained from the measurement of excitation function (EF) of ERs populated in the interaction of {sup 20}Ne and {sup 16}O on {sup 55}Mn, {sup 159}Tb and {sup 156}Gd targets. Sizable enhancement in the measured cross-sections has been observed in α-emitting channels over theoretical predictions, which has been attributed to ICF of the projectile. In order to confirm the findings of the measurements and analysis of EFs, the forward recoil range distributions of ERs populated in {sup 20}Ne+{sup 159}Tb (E ∼165MeV) and {sup 16}O+{sup 156}Gd (E ∼ 72, 82 and 93MeV) systems, have beenmore » measured. It has been observed that peaks appearing at different cumulative thicknesses in the stopping medium are related with different degree of linear momentum transfer from projectile to target nucleus by adopting the break-up fusion model consideration. In order to deduce the angular momentum involved in various CF and / or ICF reaction products, spin distribution and side-feeding intensity profiles of radio-nuclides populated via CF and ICF channels in {sup 16}O+{sup 160}Gd system at energy, E ∼ 5.6 MeV/A, have been studied. Spin distribution of ICF products are found to be distinctly different than that observed from CF products.« less

  17. Can the ICF osteoarthritis core set represent a future clinical tool in measuring functioning in persons with osteoarthritis undergoing hip and knee joint replacement?

    PubMed

    Alviar, Maria Jenelyn; Olver, John; Pallant, Julie F; Brand, Caroline; de Steiger, Richard; Pirpiris, Marinis; Bucknill, Andrew; Khan, Fary

    2012-11-01

    To determine the dimensionality, reliability, model fit, adequacy of the qualifier levels, response patterns across different factors, and targeting of the International Classification of Functioning, Disability and Health (ICF) osteoarthritis core set categories in people with osteoarthritis undergoing hip and knee arthroplasty. The osteoarthritis core set was rated in 316 persons with osteoarthritis who were either in the pre-operative or within one year post-operative stage. Rasch analyses were performed using the RUMM 2030 program. Twelve of the 13 body functions categories and 13 of the 19 activity and participation categories had good model fit. The qualifiers displayed disordered thresholds necessitating rescoring. There was uneven spread of ICF categories across the full range of the patients' scores indicating off--targeting. Subtest analysis of the reduced ICF categories of body functions and activity and participation showed that the two components could be integrated to form one measure. The results suggest that it is possible to measure functioning using a unidimensional construct based on ICF osteoarthritis core set categories of body functions and activity and participation in this population. However, omission of some categories and reduction in qualifier levels are necessary. Further studies are needed to determine whether better targeting is achieved, particularly during the pre-operative and during the sub-acute care period.

  18. Comparison of subjective and objective assessments of outcome after traumatic brain injury using the International Classification of Functioning, Disability and Health (ICF).

    PubMed

    Koskinen, Sanna; Hokkinen, Eeva-Maija; Wilson, Lindsay; Sarajuuri, Jaana; Von Steinbüchel, Nicole; Truelle, Jean-Luc

    2011-01-01

    The aim is to examine two aspects of outcome after traumatic brain injury (TBI). Functional outcome was assessed by the Glasgow Outcome Scale - Extended (GOSE) and by clinician ratings, while health-related quality of life (HRQoL) was assessed by the Quality of Life after Brain Injury (QOLIBRI). The GOSE and the QOLIBRI were linked to the International Classification of Functioning, Disability and Health (ICF) to analyse their content. Functional outcome on ICF categories was assessed by rehabilitation clinicians in 55 participants with TBI and was compared to the participants' own judgements of their HRQoL. The QOLIBRI was linked to 42 and the GOSE to 57 two-level ICF categories covering 78% of the categories on the ICF brief core set for TBI. The closest agreement in the views of the professionals and the participants was found on the Physical Problems and Cognition scales of the QOLIBRI. The problems encountered after TBI are well covered by the QOLIBRI and the GOSE. They capture important domains that are not traditionally sufficiently documented, especially in the domains of interpersonal relationships, social and leisure activities, self and the environment. The findings indicate that they are useful and complementary outcome measures for TBI. In rehabilitation, they can serve as tools in assessment, setting meaningful goals and creating therapeutic alliance.

  19. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  20. The selection of core International Classification of Functioning, Disability, and Health (ICF) categories for patient-reported outcome measurement in spine trauma patients-results of an international consensus process.

    PubMed

    Sadiqi, Said; Lehr, A Mechteld; Post, Marcel W; Jacobs, Wilco C H; Aarabi, Bizhan; Chapman, Jens R; Dunn, Robert N; Dvorak, Marcel F; Fehlings, Michael G; Rajasekaran, S; Vialle, Luiz R; Vaccaro, Alexander R; Oner, F Cumhur

    2016-08-01

    There is no outcome instrument specifically designed and validated for spine trauma patients without complete paralysis, which makes it difficult to compare outcomes of different treatments of the spinal column injury within and between studies. The paper aimed to report on the evidence-based consensus process that resulted in the selection of core International Classification of Functioning, Disability, and Health (ICF) categories, as well as the response scale for use in a universal patient-reported outcome measure for patients with traumatic spinal column injury. The study used a formal decision-making and consensus process. The sample includes patients with a primary diagnosis of traumatic spinal column injury, excluding completely paralyzed and polytrauma patients. The wide array of function and health status of patients with traumatic spinal column injury was explored through the identification of all potentially meaningful ICF categories. A formal decision-making and consensus process integrated evidence from four preparatory studies. Three studies aimed to identify relevant ICF categories from three different perspectives. The research perspective was covered by a systematic literature review identifying outcome measures focusing on the functioning and health of spine trauma patients. The expert perspective was explored through an international web-based survey among spine surgeons from the five AOSpine International world regions. The patient perspective was investigated in an international empirical study. A fourth study investigated various response scales for their potential use in the future universal outcome instrument. This work was supported by AOSpine. AOSpine is a clinical division of the AO Foundation, an independent medically guided non-profit organization. The AOSpine Knowledge Forums are pathology-focused working groups acting on behalf of AOSpine in their domain of scientific expertise. Combining the results of the preparatory studies, the list of ICF categories presented at the consensus conference included 159 different ICF categories. Based on voting and discussion, 11 experts from 6 countries selected a total of 25 ICF categories as core categories for patient-reported outcome measurement in adult traumatic spinal column injury patients (9 body functions, 14 activities and participation, and 2 environmental factors). The experts also agreed to use the Numeric Rating Scale 0-100 as response scale in the future universal outcome instrument. A formal consensus process integrating evidence and expert opinion led to a set of 25 core ICF categories for patient-reported outcome measurement in adult traumatic spinal column injury patients, as well as the response scale for use in the future universal disease-specific outcome instrument. The adopted core ICF categories could also serve as a benchmark for assessing the content validity of existing and future outcome instruments used in this specific patient population. Copyright © 2016 Elsevier Inc. All rights reserved.

Top