Sample records for density internal target

  1. Polarized internal target apparatus

    DOEpatents

    Holt, Roy J.

    1986-01-01

    A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.

  2. Polarized internal target apparatus

    DOEpatents

    Holt, R.J.

    1984-10-10

    A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.

  3. Laboratory-Scale Internal Wave Apparatus for Studying Copepod Behavior

    NASA Astrophysics Data System (ADS)

    Jung, S.; Webster, D. R.; Haas, K. A.; Yen, J.

    2016-02-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. The objective is to provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in two-layer stratification. Two cases were chosen with density jump of 1 and 1.5 sigma-t units. Analytical analysis of the two-layer system provided guidance to the target forcing frequency needed to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location were used to quantify the wave characteristics. The results show a close match to the target wave parameters. Marine copepod (mixed population of Acartia tonsa, Temora longicornis, and Eurytemora affinis) behavior assays were conducted for three different physical arrangements: (1) no density stratification, (2) stagnant two-layer density stratification, and (3) two-layer density stratification with internal wave motion. Digitized trajectories of copepod swimming behavior indicate that in the control (case 1) the animals showed no preferential motion in terms of direction. In the stagnant density jump treatment (case 2) copepods preferentially moved horizontally, parallel to the density interface. In the internal wave treatment (case 3) copepods demonstrated orbital trajectories near the density interface.

  4. Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer.

    PubMed

    Zheng, Gang; Li, Hui; Zhang, Min; Lund-Katz, Sissel; Chance, Britton; Glickson, Jerry D

    2002-01-01

    To target tumors overexpressing low-density lipoprotein receptors (LDLr), a pyropheophorbide cholesterol oleate conjugate was synthesized and successfully reconstituted into the low-density lipoprotein (LDL) lipid core. Laser scanning confocal microscopy studies demonstrated that this photosensitizer-reconstituted LDL can be internalized via LDLr by human hepatoblastoma G(2) (HepG(2)) tumor cells.

  5. Polarized deuterium internal target at AmPS (NIKHEF)

    NASA Astrophysics Data System (ADS)

    Ferro-Luzzi, M.; Zhou, Z.-L.; van den Brand, J. F. J.; Bulten, H. J.; Alarcon, R.; van Bakel, N.; Botto, T.; Bouwhuis, M.; van Buuren, L.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Geurts, D.; Heimberg, P.; Higinbotham, D. W.; de Jager, C. W.; Lang, J.; de Lange, D. J.; Norum, B.; Passchier, I.; Poolman, H. R.; Six, E.; Steijger, J.; Szczerba, D.; Unal, O.; de Vries, H.

    1998-01-01

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)α reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.

  6. Polarized deuterium internal target at AmPS (NIKHEF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferro-Luzzi, M.; NIKHEF, P.O. Box 41882, 1009 DB Amsterdam; Zhou, Z.-L.

    1998-01-20

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the {sup 3}H(d,n){alpha} reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of themore » target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less

  7. A high density field reversed configuration (FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Zhang, S. Y.; Degnan, J. H.; Furno, I.; Grabowski, C.; Hsu, S. C.; Ruden, E. L.; Sanchez, P. G.; Taccetti, J. M.; Tuszewski, M.; Waganaar, W. J.; Wurden, G. A.

    2004-05-01

    Magnetized target fusion (MTF) is a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. To demonstrate the physics basis for MTF, a field reversed configuration (FRC) target plasma has been chosen that will ultimately be compressed within an imploding metal liner. The required FRC will need large density, and this regime is being explored by the FRX-L (FRC-Liner) experiment. All theta pinch formed FRCs have some shock heating during formation, but FRX-L depends further on large ohmic heating from magnetic flux annihilation to heat the high density (2-5×1022m-3), plasma to a temperature of Te+Ti≈500 eV. At the field null, anomalous resistivity is typically invoked to characterize the resistive like flux dissipation process. The first resistivity estimate for a high density collisional FRC is shown here. The flux dissipation process is both a key issue for MTF and an important underlying physics question.

  8. Polarized deuterium internal target at AmPS (NIKHEF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norum, Blaine; De Jager, Cornelis; Geurts, D.

    1997-08-01

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)sigma reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the targetmore » gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less

  9. Effect of lung and target density on small-field dose coverage and PTV definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Patrick D., E-mail: higgi010@umn.edu; Ehler, Eric D.; Cho, Lawrence C.

    We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy wasmore » delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.« less

  10. Update On The Development, Testing, And Manufacture Of High Density LEU-Foil Targets For The Production Of Mo-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creasy, John T

    2015-05-12

    This project has the objective to reduce and/or eliminate the use of HEU in commerce. Steps in the process include developing a target testing methodology that is bounding for all Mo-99 target irradiators, establishing a maximum target LEU-foil mass, developing a LEU-foil target qualification document, developing a bounding target failure analysis methodology (failure in reactor containment), optimizing safety vs. economics (goal is to manufacture a safe, but relatively inexpensive target to offset the inherent economic disadvantage of using LEU in place of HEU), and developing target material specifications and manufacturing QC test criteria. The slide presentation is organized under themore » following topics: Objective, Process Overview, Background, Team Structure, Key Achievements, Experiment and Activity Descriptions, and Conclusions. The High Density Target project has demonstrated: approx. 50 targets irradiated through domestic and international partners; proof of concept for two front end processing methods; fabrication of uranium foils for target manufacture; quality control procedures and steps for manufacture; multiple target assembly techniques; multiple target disassembly devices; welding of targets; thermal, hydraulic, and mechanical modeling; robust target assembly parametric studies; and target qualification analysis for insertion into very high flux environment. The High Density Target project has tested and proven several technologies that will benefit current and future Mo-99 producers.« less

  11. Preface: Twenty-First Target Fabrication Specialists Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikroo, Abbas; Czechowicz, Don

    The Twenty First Target Fabrication Meeting held in Las Vegas, Nevada, from June xx-yy 2015, was attended by more than 100 scientists, engineers, and technicians from the United States, the United Kingdom, France, and Japan, bringing together international experts on the design, development, and fabrication of inertial confinement fusion (ICF) and high-energy-density (HED) experimental targets fielded on laser and pulsed-power facilities around the world. We were delighted to have such exceptional international representation. The program included 4 invited papers, 53 contributed papers, and 55 posters. A selection of these is presented in this dedicated issue of Fusion Science and Technologymore » (FST).« less

  12. Preface: Twenty-First Target Fabrication Specialists Meeting

    DOE PAGES

    Nikroo, Abbas; Czechowicz, Don

    2017-04-21

    The Twenty First Target Fabrication Meeting held in Las Vegas, Nevada, from June xx-yy 2015, was attended by more than 100 scientists, engineers, and technicians from the United States, the United Kingdom, France, and Japan, bringing together international experts on the design, development, and fabrication of inertial confinement fusion (ICF) and high-energy-density (HED) experimental targets fielded on laser and pulsed-power facilities around the world. We were delighted to have such exceptional international representation. The program included 4 invited papers, 53 contributed papers, and 55 posters. A selection of these is presented in this dedicated issue of Fusion Science and Technologymore » (FST).« less

  13. From Lévy to Brownian: a computational model based on biological fluctuation.

    PubMed

    Nurzaman, Surya G; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi

    2011-02-03

    Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.

  14. From Lévy to Brownian: A Computational Model Based on Biological Fluctuation

    PubMed Central

    Nurzaman, Surya G.; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi

    2011-01-01

    Background Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. Methodology/Principal Findings We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Conclusions/Significance Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior. PMID:21304911

  15. Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery

    PubMed Central

    McMahon, Kaylin M.; Mutharasan, R. Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K.; Luthi, Andrea J.; Helfand, Brian T.; Ardehali, Hossein; Mirkin, Chad A.; Volpert, Olga; Thaxton, C. Shad

    2014-01-01

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy which combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy (TEM), and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery. PMID:21319839

  16. Birds and insects as radar targets - A review

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R.

    1985-01-01

    A review of radar cross-section measurements of birds and insects is presented. A brief discussion of some possible theoretical models is also given and comparisons made with the measurements. The comparisons suggest that most targets are, at present, better modeled by a prolate spheroid having a length-to-width ratio between 3 and 10 than by the often used equivalent weight water sphere. In addition, many targets observed with linear horizontal polarization have maximum cross sections much better estimated by a resonant half-wave dipole than by a water sphere. Also considered are birds and insects in the aggregate as a local radar 'clutter' source. Order-of-magnitude estimates are given for many reasonable target number densities. These estimates are then used to predict X-band volume reflectivities. Other topics that are of interest to the radar engineer are discussed, including the doppler bandwidth due to the internal motions of a single bird, the radar cross-section probability densities of single birds and insects, the variability of the functional form of the probability density functions, and the Fourier spectra of single birds and insects.

  17. Atmospheric electromagnetic pulse propagation effects from thick targets in a terawatt laser target chamber.

    PubMed

    Remo, John L; Adams, Richard G; Jones, Michael C

    2007-08-20

    Generation and effects of atmospherically propagated electromagnetic pulses (EMPs) initiated by photoelectrons ejected by the high density and temperature target surface plasmas from multiterawatt laser pulses are analyzed. These laser radiation pulse interactions can significantly increase noise levels, thereby obscuring data (sometimes totally) and may even damage sensitive probe and detection instrumentation. Noise effects from high energy density (approximately multiterawatt) laser pulses (approximately 300-400 ps pulse widths) interacting with thick approximately 1 mm) metallic and dielectric solid targets and dielectric-metallic powder mixtures are interpreted as transient resonance radiation associated with surface charge fluctuations on the target chamber that functions as a radiating antenna. Effective solutions that minimize atmospheric EMP effects on internal and proximate electronic and electro-optical equipment external to the system based on systematic measurements using Moebius loop antennas, interpretations of signal periodicities, and dissipation indicators determining transient noise origin characteristics from target emissions are described. Analytic models for the effect of target chamber resonances and associated noise current and temperature in a probe diode laser are described.

  18. Atmospheric electromagnetic pulse propagation effects from thick targets in a terawatt laser target chamber

    NASA Astrophysics Data System (ADS)

    Remo, John L.; Adams, Richard G.; Jones, Michael C.

    2007-08-01

    Generation and effects of atmospherically propagated electromagnetic pulses (EMPs) initiated by photoelectrons ejected by the high density and temperature target surface plasmas from multiterawatt laser pulses are analyzed. These laser radiation pulse interactions can significantly increase noise levels, thereby obscuring data (sometimes totally) and may even damage sensitive probe and detection instrumentation. Noise effects from high energy density (approximately multiterawatt) laser pulses (˜300-400 ps pulse widths) interacting with thick (˜1 mm) metallic and dielectric solid targets and dielectric-metallic powder mixtures are interpreted as transient resonance radiation associated with surface charge fluctuations on the target chamber that functions as a radiating antenna. Effective solutions that minimize atmospheric EMP effects on internal and proximate electronic and electro-optical equipment external to the system based on systematic measurements using Moebius loop antennas, interpretations of signal periodicities, and dissipation indicators determining transient noise origin characteristics from target emissions are described. Analytic models for the effect of target chamber resonances and associated noise current and temperature in a probe diode laser are described.

  19. Atmospheric electromagnetic pulse propagation effects from thick targets in a terawatt laser target chamber

    DOE PAGES

    Remo, John L.; Adams, Richard G.; Jones, Michael C.

    2007-08-16

    Generation and effects of atmospherically propagated electromagnetic pulses (EMPs) initiated by photoelectrons ejected by the high density and temperature target surface plasmas from multiterawatt laser pulses are analyzed. These laser radiation pulse interactions can significantly increase noise levels, thereby obscuring data (sometimes totally) and may even damage sensitive probe and detection instrumentation. Noise effects from high energy density (approximately multiterawatt) laser pulses (~300–400 ps pulse widths) interacting with thick (~1 mm) metallic and dielectric solid targets and dielectric–metallic powder mixtures are interpreted as transient resonance radiation associated with surface charge fluctuations on the target chamber that functions as a radiatingmore » antenna. Effective solutions that minimize atmospheric EMP effects on internal and proximate electronic and electro-optical equipment external to the system based on systematic measurements using Moebius loop antennas, interpretations of signal periodicities, and dissipation indicators determining transient noise origin characteristics from target emissions are described. Analytic models for the effect of target chamber resonances and associated noise current and temperature in a probe diode laser are described.« less

  20. Antibody Drug Conjugates: Application of Quantitative Pharmacology in Modality Design and Target Selection.

    PubMed

    Sadekar, S; Figueroa, I; Tabrizi, M

    2015-07-01

    Antibody drug conjugates (ADCs) are a multi-component modality comprising of an antibody targeting a cell-specific antigen, a potent drug/payload, and a linker that can be processed within cellular compartments to release payload upon internalization. Numerous ADCs are being evaluated in both research and clinical settings within the academic and pharmaceutical industry due to their ability to selectively deliver potent payloads. Hence, there is a clear need to incorporate quantitative approaches during early stages of drug development for effective modality design and target selection. In this review, we describe a quantitative approach and framework for evaluation of the interplay between drug- and systems-dependent properties (i.e., target expression, density, localization, turnover, and affinity) in order to deliver a sufficient amount of a potent payload into the relevant target cells. As discussed, theoretical approaches with particular considerations given to various key properties for the target and modality suggest that delivery of the payload into particular effect cells to be more sensitive to antigen concentrations for targets with slow turnover rates as compared to those with faster internalization rates. Further assessments also suggest that increasing doses beyond the threshold of the target capacity (a function of target internalization and expression) may not impact the maximum amount of payload delivered to the intended effect cells. This article will explore the important application of quantitative sciences in selection of the target and design of ADC modalities.

  1. Developing Optimized Treatment Plans for Patients with Dyslipidemia in the Era of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitor Therapeutics.

    PubMed

    Underberg, James A; Blaha, Michael J; Jackson, Elizabeth J; Jones, Peter H

    2017-10-01

    This educational content was derived from a live satellite symposium at the American College of Physicians Internal Medicine Meeting 2017 in San Diego, California (online at http://courses.elseviercme.com/acp/702e). This activity will focus on optimized treatment plans for patients with dyslipidemia in the era of proprotein convertase subtilisin/kexin type 9 inhibitor therapeutics. Low-density lipoprotein cholesterol has been identified as an important therapeutic target to prevent the progression of atherosclerotic disease; however, only 1 of every 3 adults with high low-density lipoprotein cholesterol has the condition under control. Expert faculty on this panel will discuss the science of proprotein convertase subtilisin/kexin type 9 inhibitors and aid physicians in the best practices to achieve low-density lipoprotein cholesterol target in their patients. Copyright © 2017. Published by Elsevier Inc.

  2. Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting.

    PubMed

    Almeda, Dariela; Wang, Biran; Auguste, Debra T

    2015-02-01

    Liposomes may be engineered to target inflamed endothelium by mimicking ligand-receptor interactions between leukocytes and cytokine-activated endothelial cells (ECs). The upregulation and assembly of vascular cell adhesion molecule-1 (VCAM1) and E-selectin on the cell membrane upon exposure to cytokines have shown potential for drug delivery vehicles to target sites of chronic endothelial inflammation, such as atherosclerosis and cancer. Herein, we characterized EC surfaces by measuring the E-selectin and VCAM1 surface densities and adhesion forces of aVCAM1 and aE-selectin to ECs. We quantified the antibody density, ratio, and diffusivity of liposomes to achieve significant binding and internalization. At 1 h, the 1:1 ratio of VCAM1:E-selectin antibodies was significantly higher than 1:0 and 0:1. Significant binding and uptake was achieved at aE-selectin densities as low as 400 molecules/μm(2). The highest levels of binding and uptake were achieved when using a 1:1 ratio of VCAM1:E-selectin antibodies at a density of 1000 molecules/μm(2); this density is 85% lower than previous reports. The binding and uptake of functionalized liposomes were reduced to levels comparable to IgG functionalized liposomes upon a 10-fold reduction in liposome membrane diffusivity. We conclude with a liposomal design that discriminates between healthy and inflamed endothelium while reducing antibody surface presentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Internal Wave Apparatus for Copepod Behavior Assays

    NASA Astrophysics Data System (ADS)

    Jung, S.; Haas, K. A.; Webster, D. R.

    2015-11-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves are generated through oscillations of the pycnocline in stratified waters and thereby create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. Thus, a coupled quantification of copepod behavior and hydrodynamic cues will provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in a two-layer stratification. Three cases are chosen with density jump ranging between 0.75 - 1.5 kg/m3. Analytical analysis of the two-layer system provides guidance of the target forcing frequency to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location are used to quantify the wave characteristics. A copepod behavior assay is conducted, and sample trajectories are analyzed to identify copepod response to internal wave structure.

  4. Component extraction on CT volumes of assembled products using geometric template matching

    NASA Astrophysics Data System (ADS)

    Muramatsu, Katsutoshi; Ohtake, Yutaka; Suzuki, Hiromasa; Nagai, Yukie

    2017-03-01

    As a method of non-destructive internal inspection, X-ray computed tomography (CT) is used not only in medical applications but also for product inspection. Some assembled products can be divided into separate components based on density, which is known to be approximately proportional to CT values. However, components whose densities are similar cannot be distinguished using the CT value driven approach. In this study, we proposed a new component extraction algorithm from the CT volume, using a set of voxels with an assigned CT value with the surface mesh as the template rather than the density. The method has two main stages: rough matching and fine matching. At the rough matching stage, the position of candidate targets is identified roughly from the CT volume, using the template of the target component. At the fine matching stage, these candidates are precisely matched with the templates, allowing the correct position of the components to be detected from the CT volume. The results of two computational experiments showed that the proposed algorithm is able to extract components with similar density within the assembled products on CT volumes.

  5. Density overwrites of internal tumor volumes in intensity modulated proton therapy plans for mobile lung tumors

    NASA Astrophysics Data System (ADS)

    Botas, Pablo; Grassberger, Clemens; Sharp, Gregory; Paganetti, Harald

    2018-02-01

    The purpose of this study was to investigate internal tumor volume density overwrite strategies to minimize intensity modulated proton therapy (IMPT) plan degradation of mobile lung tumors. Four planning paradigms were compared for nine lung cancer patients. Internal gross tumor volume (IGTV) and internal clinical target volume (ICTV) structures were defined encompassing their respective volumes in every 4DCT phase. The paradigms use different planning CT (pCT) created from the average intensity projection (AIP) of the 4DCT, overwriting the density within the IGTV to account for movement. The density overwrites were: (a) constant filling with 100 HU (C100) or (b) 50 HU (C50), (c) maximum intensity projection (MIP) across phases, and (d) water equivalent path length (WEPL) consideration from beam’s-eye-view. Plans were created optimizing dose-influence matrices calculated with fast GPU Monte Carlo (MC) simulations in each pCT. Plans were evaluated with MC on the 4DCTs using a model of the beam delivery time structure. Dose accumulation was performed using deformable image registration. Interplay effect was addressed applying 10 times rescanning. Significantly less DVH metrics degradation occurred when using MIP and WEPL approaches. Target coverage (D99≥slant 70 Gy(RBE)) was fulfilled in most cases with MIP and WEPL (D{{99}WEPL}=69.2+/- 4.0 Gy (RBE)), keeping dose heterogeneity low (D5-D{{95}WEPL}=3.9+/- 2.0 Gy(RBE)). The mean lung dose was kept lowest by the WEPL strategy, as well as the maximum dose to organs at risk (OARs). The impact on dose levels in the heart, spinal cord and esophagus were patient specific. Overall, the WEPL strategy gives the best performance and should be preferred when using a 3D static geometry for lung cancer IMPT treatment planning. Newly available fast MC methods make it possible to handle long simulations based on 4D data sets to perform studies with high accuracy and efficiency, even prior to individual treatment planning.

  6. Creep stability of the proposed AIDA mission target 65803 Didymos: I. Discrete cohesionless granular physics model

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier S.; Maurel, Clara; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Benner, Lance A. M.; Naidu, Shantanu P.; Li, Junfeng

    2017-09-01

    As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, the near-Earth binary asteroid 65803 Didymos represents a special class of binary asteroids, those whose primaries are at risk of rotational disruption. To gain a better understanding of these binary systems and to support the AIDA mission, this paper investigates the creep stability of the Didymos primary by representing it as a cohesionless self-gravitating granular aggregate subject to rotational acceleration. To achieve this goal, a soft-sphere discrete element model (SSDEM) capable of simulating granular systems in quasi-static states is implemented and a quasi-static spin-up procedure is carried out. We devise three critical spin limits for the simulated aggregates to indicate their critical states triggered by reshaping and surface shedding, internal structural deformation, and shear failure, respectively. The failure condition and mode, and shear strength of an aggregate can all be inferred from the three critical spin limits. The effects of arrangement and size distribution of constituent particles, bulk density, spin-up path, and interparticle friction are numerically explored. The results show that the shear strength of a spinning self-gravitating aggregate depends strongly on both its internal configuration and material parameters, while its failure mode and mechanism are mainly affected by its internal configuration. Additionally, this study provides some constraints on the possible physical properties of the Didymos primary based on observational data and proposes a plausible formation mechanism for this binary system. With a bulk density consistent with observational uncertainty and close to the maximum density allowed for the asteroid, the Didymos primary in certain configurations can remain geo-statically stable without requiring cohesion.

  7. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes.

    PubMed

    Qhattal, Hussaini Syed Sha; Hye, Tanvirul; Alali, Amer; Liu, Xinli

    2014-06-24

    Hyaluronan-grafted liposomes (HA-liposomes) preferentially target CD44-overexpressing tumor cells in vitro via receptor-mediated endocytosis. We investigated the pharmacokinetics and biodistribution of HA-liposomes with various sizes of HA (MW 5-8, 50-60, and 175-350 kDa) in mice. Incorporation of negatively charged HA on the liposome surface compromised its blood circulation time, which led to decreased tumor accumulation in CD44+ human breast cancer MDA-MB-231 xenografts compared to PEGylated liposomes (PEG-5000). Clearance of HA-liposomes was HA polymer length-dependent; high MW (175-350 kDa, highest ligand binding affinity) HA-liposomes displayed faster clearance compared to low MW (5-8, 50-60 kDa) HA-liposomes or PEGylated liposomes. Surface HA ligand density can also affect clearance of HA-liposomes. Thus, HA is not an effective stealth coating material. When dual coating of PEG and HA was used, the PEG-HA-liposomes displayed similar blood circulation time and tumor accumulation to that of the PEGylated liposomes; however, the PEG-HA-liposomes displayed better cellular internalization capability in vivo. Tumor histology showed that PEG-HA-liposomes had a more direct association with CD44+ cancer cells, while PEGylated liposomes located predominantly in the tumor periphery, with less association with CD44+ cells. Flow cytometry analysis of ex vivo tumor cells showed that PEG-HA-liposomes had significantly higher tumor cell internalization compared to PEGylated liposomes. This study demonstrates that a long blood circulation time is critical for active tumor targeting. Furthermore, the use of the tumor-targeting ligand HA does not increase total tumor accumulation of actively targeted liposomes in solid tumors; however, it can enhance intracellular delivery.

  8. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  9. Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers

    PubMed Central

    D’Addio, Suzanne M.; Baldassano, Steven; Shi, Lei; Cheung, Lila; Adamson, Douglas H.; Bruzek, Matthew; Anthony, John E.; Laskin, Debra L.; Sinko, Patrick J.; Prud’homme, Robert K.

    2013-01-01

    Treatment of tuberculosis is impaired by poor drug bioavailability, systemic side effects, patient non-compliance, and pathogen resistance to existing therapies. The mannose receptor (MR) is known to be involved in the recognition and internalization of Mycobacterium tuberculosis. We present a new assembly process to produce nanocarriers with variable surface densities of mannose targeting ligands in a single step, using kinetically-controlled, block copolymer-directed assembly. Nanocarrier association with murine macrophage J774 cells expressing the MR is examined as a function of incubation time and temperature, nanocarrier size, dose, and PEG corona properties. Amphiphilic diblock copolymers are prepared with terminal hydroxyl, methoxy, or mannoside functionality and incorporated into nanocarrier formulations at specific ratios by Flash NanoPrecipitation. Association of nanocarriers protected by a hydroxyl-terminated PEG corona with J774 cells is size dependent, while nanocarriers with methoxy-terminated PEG coronas do not associate with cells, regardless of size. Specific targeting of the MR is investigated using nanocarriers having 0-75% mannoside-terminated PEG chains in the PEG corona. This is a wider range of mannose densities than has been previously studied. Maximum nanocarrier association is attained with 9% mannoside-terminated PEG chains, increasing uptake more than 3-fold compared to non-targeted nanocarriers with a 5 kg mol−1 methoxy-terminated PEG corona. While a 5 kg mol−1 methoxy-terminated PEG corona prevents non-specific uptake, a 1.8 kg mol−1 methoxy-terminated PEG corona does not sufficiently protect the nanocarriers from nonspecific association. There is continuous uptake of MR-targeted nanocarriers at 37°C, but a saturation of association at 4°C. The majority of targeted nanocarriers associate with J774E cells are internalized at 37°C and uptake is receptor-dependent, diminishing with competitive inhibition by dextran. This characterization of nanocarrier uptake and targeting provides promise for optimizing drug delivery to macrophages for TB treatment and establishes a general route for optimizing targeted formulations of nanocarriers for specific delivery at targeted sites. PMID:23419950

  10. Grid-texture mechanisms in human vision: Contrast detection of regular sparse micro-patterns requires specialist templates.

    PubMed

    Baker, Daniel H; Meese, Tim S

    2016-07-27

    Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50-100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures.

  11. Grid-texture mechanisms in human vision: Contrast detection of regular sparse micro-patterns requires specialist templates

    PubMed Central

    Baker, Daniel H.; Meese, Tim S.

    2016-01-01

    Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50–100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures. PMID:27460430

  12. Vacuum injection of hydrogen micro-sphere beams

    NASA Astrophysics Data System (ADS)

    Trostell, Bertil

    1995-02-01

    The design, construction and operation of a facility producing hydrogen micro-sphere beams in vacuum are summarized. A scheme is utilized, where a liquid hydrogen jet is broken up into droplets, which are injected into vacuum through a capillary at continuum gas flow conditions. In a typical beam, 40 μm diameter micro-spheres, generated at a frequency of 70 kHz, travel at free flight speeds of 60 m/s. The angular divergence of the beam amounts to ±0.04°. The intention is to use the micro-sphere beams as high luminosity internal targets in the WASA experimental station at the CELSIUS cooler storage ring in Uppsala. A time averaged target density profile, having a FWHM and peak density of 3.5 mm and 5 × 10 16 atoms/cm 2, respectively, is obtained 2.5 m downstream of the capillary exit.

  13. Constraining the Bulk Density of 10m-Class Near-Earth Asteroid 2012 LA

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Hora, Joseph; Farnocchia, Davide; Trilling, David; Chesley, Steve; Harris, Alan; Mueller, Migo; Smith, Howard

    2016-08-01

    The physical properties of near-Earth asteroids (NEAs) provide important hints on their origin, as well as their past physical and orbital evolution. Recent observations seem to indicate that small asteroids are different than expected: instead of being monolithic bodies, some of them instead resemble loose conglomerates of smaller rocks, so called 'rubble piles'. This is surprising, since self-gravitation is practically absent in these bodies. Hence, bulk density measurements of small asteroids, from which their internal structure can be estimated, provide unique constraints on asteroid physical models, as well as models for asteroid evolution. We propose Spitzer Space Telescope observations of 10 m-sized NEA 2012 LA, which will allow us to constrain the diameter, albedo, bulk density, macroporosity, and mass of this object. We require 30 hrs of Spitzer time to detect our target with a minimum SNR of 3 in CH2. In order to interpret our observational results, we will use the same analysis technique that we used in our successful observations and analyses of tiny asteroids 2011 MD and 2009 BD. Our science goal, which is the derivation of the target's bulk density and its internal structure, can only be met with Spitzer. Our observations will produce only the third comprehensive physical characterization of an asteroid in the 10m size range (all of which have been carried out by our team, using Spitzer). Knowledge of the physical properties of small NEAs, some of which pose an impact threat to the Earth, is of importance for understanding their evolution and estimating the potential of destruction in case of an impact, as well as for potential manned missions to NEAs for either research or potential commercial uses.

  14. Association of Internalized and Social Network Level HIV Stigma With High-Risk Condomless Sex Among HIV-Positive African American Men.

    PubMed

    Wagner, Glenn J; Bogart, Laura M; Klein, David J; Green, Harold D; Mutchler, Matt G; McDavitt, Bryce; Hilliard, Charles

    2016-08-01

    We examined whether internalized HIV stigma and perceived HIV stigma from social network members (alters), including the most popular and most similar alter, predicted condomless intercourse with negative or unknown HIV status partners among 125 African American HIV-positive men. In a prospective, observational study, participants were administered surveys at baseline and months 6 and 12, with measures including sexual behavior, internalized HIV stigma, and an egocentric social network assessment that included several measures of perceived HIV stigma among alters. In longitudinal multivariable models comparing the relative predictive value of internalized stigma versus various measures of alter stigma, significant predictors of having had condomless intercourse included greater internalized HIV stigma (in all models), the perception that a popular (well-connected) alter or alter most like the participant agrees with an HIV stigma belief, and the interaction of network density with having any alter that agrees with a stigma belief. The interaction indicated that the protective effect of greater density (connectedness between alters) in terms of reduced risk behavior dissipated in the presence of perceived alter stigma. These findings call for interventions that help people living with HIV to cope with their diagnosis and reduce stigma, and inform the targets of social network-based and peer-driven HIV prevention interventions.

  15. Association of Internalized and Social Network Level HIV Stigma With High-Risk Condomless Sex Among HIV-Positive African American Men

    PubMed Central

    Bogart, Laura M.; Klein, David J.; Green, Harold D.; Mutchler, Matt G.; McDavitt, Bryce; Hilliard, Charles

    2016-01-01

    We examined whether internalized HIV stigma and perceived HIV stigma from social network members (alters), including the most popular and most similar alter, predicted condomless intercourse with negative or unknown HIV status partners among 125 African American HIV-positive men. In a prospective, observational study, participants were administered surveys at baseline and months 6 and 12, with measures including sexual behavior, internalized HIV stigma, and an egocentric social network assessment that included several measures of perceived HIV stigma among alters. In longitudinal multivariable models comparing the relative predictive value of internalized stigma versus various measures of alter stigma, significant predictors of having had condomless intercourse included greater internalized HIV stigma (in all models), the perception that a popular (well-connected) alter or alter most like the participant agrees with an HIV stigma belief, and the interaction of network density with having any alter that agrees with a stigma belief. The interaction indicated that the protective effect of greater density (connectedness between alters) in terms of reduced risk behavior dissipated in the presence of perceived alter stigma. These findings call for interventions that help people living with HIV to cope with their diagnosis and reduce stigma, and inform the targets of social network-based and peer-driven HIV prevention interventions. PMID:26718361

  16. Comparison of methods to monitor the distribution and impacts of unauthorized travel routes in a border park

    USGS Publications Warehouse

    Esque, Todd C.; Inman, Rich; Nussear, Kenneth E.; Webb, Robert; Girard, M.M.; DeGayner, J.

    2016-01-01

    The distribution and abundance of human-caused disturbances vary greatly through space and time and are cause for concern among land stewards in natural areas of the southwestern border-lands between the USA and Mexico. Human migration and border protection along the international boundary create Unauthorized Trail and Road (UTR) networks across National Park Service lands and other natural areas. UTRs may cause soil erosion and compaction, damage to vegetation and cultural resources, and may stress wildlife or impede their movements. We quantify the density and severity of UTR disturbances in relation to soils, and compare the use of previously established targeted trail assessments (hereafter — targeted assessments) against randomly placed transects to detect trail densities at Coronado National Memorial in Arizona in 2011. While trail distributions were similar between methods, targeted assessments estimated a large portion of the park to have the lowest density category (0–5 trail encounters per/km2), whereas the random transects in 2011 estimated more of the park as having the higher density categories (e.g., 15–20 encounters per km2category). Soil vulnerability categories that were assigned, a priori, based on published soil texture and composition did not accurately predict the impact of UTRs on soil, indicating that empirical methods may be better suited for identifying severity of compaction. While the estimates of UTR encounter frequencies were greater using the random transects than the targeted assessments for a relatively short period of time, it is difficult to determine whether this difference is dependent on greater cross-border activity, differences in technique, or from confounding environmental factors. Future surveys using standardized sampling techniques would increase accuracy.

  17. A model for sputtering from solid surfaces bombarded by energetic clusters

    NASA Astrophysics Data System (ADS)

    Benguerba, Messaoud

    2018-04-01

    A model is developed to explain and predict the sputtering from solid surfaces bombarded by energetic clusters, on the basis of shock wave generated at the impact of cluster. Under the shock compression the temperature increases causing the vaporization of material that requires an internal energy behind the shock, at least, of about twice the cohesive energy of target. The sputtering is treated as a gas of vaporized particles from a hemispherical volume behind the shock front. The sputter yield per cluster atoms is given as a universal function depending on the ratio of target to cluster atomic density and the ratio of cluster velocity to the velocity calculated on the basis of an internal energy equals about twice cohesive energy. The predictions of the model for self sputter yield of copper, gold, tungsten and of silver bombarded by C60 clusters agree well, with the corresponding data simulated by molecular dynamics.

  18. Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research.

    PubMed

    Tahir, N A; Burkart, F; Shutov, A; Schmidt, R; Wollmann, D; Piriz, A R

    2014-12-01

    In a recent publication [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we reported results on beam-target interaction experiments that have been carried out at the CERN HiRadMat (High Radiation to Materials) facility using extended solid copper cylindrical targets that were irradiated with a 440-GeV proton beam delivered by the Super Proton Synchrotron (SPS). On the one hand, these experiments confirmed the existence of hydrodynamic tunneling of the protons that leads to substantial increase in the range of the protons and the corresponding hadron shower in the target, a phenomenon predicted by our previous theoretical investigations [Tahir et al., Phys. Rev. ST Accel. Beams 25, 051003 (2012)]. On the other hand, these experiments demonstrated that the beam heated part of the target is severely damaged and is converted into different phases of high energy density (HED) matter, as suggested by our previous theoretical studies [Tahir et al., Phys. Rev. E 79, 046410 (2009)]. The latter confirms that the HiRadMat facility can be used to study HED physics. In the present paper, we give details of the numerical simulations carried out to understand the experimental measurements. These include the evolution of the physical parameters, for example, density, temperature, pressure, and the internal energy in the target, during and after the irradiation. This information is important in order to determine the region of the HED phase diagram that can be accessed in such experiments. These simulations have been done using the energy deposition code fluka and a two-dimensional hydrodynamic code, big2, iteratively.

  19. Interactions among Behavioral Responses of Baleen Whales to Acoustic Stimuli, Oceanographic Features, and Prey Availability

    DTIC Science & Technology

    2015-09-30

    differentiate krill from larger fish targets, as krill have greater backscatter at 120kHz than 38kHz. Figure 3. Clover leaf sampling design...response in dive axis 1 (dive time, surface time, breaths , dive depth, etc.) showed a significant before-after effect including potential changes in...acoustic instruments for fish density estimation: a practical guide. International Council for the Exploration of the Sea (ICES) Cooperative

  20. Effect of the target power density on high-power impulse magnetron sputtering of copper

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš

    2012-04-01

    We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.

  1. Density-Functional-Theory-Based Equation-of-State Table of Beryllium for Inertial Confinement Fusion Applications

    NASA Astrophysics Data System (ADS)

    Ding, Y. H.; Hu, S. X.

    2017-10-01

    Beryllium has been considered a superior ablator material for inertial confinement fusion target designs. Based on density-functional-theory calculations, we have established a wide-range beryllium equation-of-state (EOS) table of density ρ = 0.001 to ρ = 500 g/cm3 and temperature T = 2000 to 108 K. Our first-principles equation-of-state (FPEOS) table is in better agreement with widely used SESAMEEOS table (SESAME2023) than the average-atom INFERNOmodel and the Purgatoriomodel. For the principal Hugoniot, our FPEOS prediction shows 10% stiffer behavior than the last two models at maximum compression. Comparisons between FPEOS and SESAMEfor off-Hugoniot conditions show that both the pressure and internal energy differences are within 20% between two EOS tables. By implementing the FPEOS table into the 1-D radiation-hydrodynamics code LILAC, we studied the EOS effects on beryllium target-shell implosions. The FPEOS simulation predicts up to an 15% higher neutron yield compared to the simulation using the SESAME2023 EOS table. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Effect of graphite target power density on tribological properties of graphite-like carbon films

    NASA Astrophysics Data System (ADS)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  3. Results from Radio Tracking the Rosetta Spacecraft: Gravity, Internal Structure and Nucleus Composition of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Andert, T.; Asmar, S.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Weissman, P. R.; Barriot, J. P.; Sierks, H.

    2017-12-01

    When Rosetta arrived at its target comet 67P/Churyumov-Gerasimenko it first performed a series of distant flybys (100 - 30 km). During this mission phase the mass of the comets nucleus could be determined by analyzing the RSI radio tracking data. In combination with the volume from images of the OSIRIS camera this resulted in a precise bulk density determination. That already gave first insights into the comets interior structure. The nucleus appears to be a low-density, highly porous dusty body. From bound orbits with distances below 30 km the low degree and order gravity field coefficients could be derived. The gravity field coefficients strongly depend on the nucleus irregular shape and on the interior mass distribution. The shape is very well reconstructed from of the OSIRIS camera images. Various models of the interior nucleus structure and density distributions are used to compute simulated values of the gravity field coefficients. A comparison with the observed coefficients yields the feasibility of the theoretical interior structure. Thus, the gravity field helps constraining models of the internal structure, the composition and also of the origin and formation of the comets nucleus.

  4. Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, In Soo; Borycz, Joshua; Platero-Prats, Ana E.

    Postsynthetic functionalization of metal organic frameworks (MOFs) enables the controlled, high-density incorporation of new atoms on a crystallographically precise framework. Leveraging the broad palette of known atomic layer deposition (ALD) chemistries, ALD in MOFs (AIM) is one such targeted approach to construct diverse, highly functional, few-atom clusters. We here demonstrate the saturating reaction of trimethylindium (InMe3) with the node hydroxyls and ligated water of NU-1000, which takes place without significant loss of MOF crystallinity or internal surface area. We computationally identify the elementary steps by which trimethylated trivalent metal compounds (ALD precursors) react with this Zr-based MOF node to generatemore » a uniform and well characterized new surface layer on the node itself, and we predict a final structure that is fully consistent with experimental X-ray pair distribution function (PDF) analysis. We further demonstrate tunable metal loading through controlled number density of the reactive handles (-OH and -OH2) achieved through node dehydration at elevated temperatures.« less

  5. Effect of N-acetylgalactosamine ligand valency on targeting dendrimers to hepatic cancer cells.

    PubMed

    Kuruvilla, Sibu P; Tiruchinapally, Gopinath; Kaushal, Neha; ElSayed, Mohamed E H

    2018-04-16

    The display of N-acetylgalactosamine (NAcGal) ligands has shown great potential in improving the targeting of various therapeutic molecules to hepatocellular carcinoma (HCC), a severe disease whose clinical treatment is severely hindered by limitations in delivery of therapeutic cargo. We previously used the display of NAcGal on generation 5 (G5) polyamidoamine (PAMAM) dendrimers connected through a poly(ethylene glycol) (PEG) brush (i.e. G5-cPEG-NAcGal; monoGal) to effectively target hepatic cancer cells and deliver a loaded therapeutic cargo. In this study, we were interested to see if tri-valent NAcGal ligands (i.e. NAcGal 3 ) displayed on G5 dendrimers (i.e. G5-cPEG-NAcGal 3 ; triGal) could improve their ability to target hepatic cancer cells compared to their monoGal counterparts. We therefore synthesized a library of triGal particles, with either 2, 4, 6, 8, 11, or 14 targeting branches (i.e. cPEG-NAcGal 3 ) attached. Conventional flow cytometry studies showed that all particle formulations can label hepatic cancer cells in a concentration-dependent manner, reaching 90-100% of cells labeled at either 285 or 570 nM G5, but interestingly, monoGal labeled more cells at lower concentrations. To elucidate the difference in internalization of monoGal versus triGal conjugates, we turned to multi-spectral imaging flow cytometry and quantified the amount of internalized (I) versus surface-bound (I 0 ) conjugates to determine the ratio of internalization (I/I 0 ) in all treatment groups. Results show that regardless of NAcGal valency, or the density of targeting branches, all particles achieve full internalization and diffuse localization throughout the cell (I/I 0  ∼ 3.0 for all particle compositions). This indicates that while tri-valent NAcGal is a promising technique for targeting nanoparticles to hepatic cancer cells, mono-valent NAcGal is more efficient, contrary to what is observed with small molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Neuron density is decreased in the prefrontal cortex in Williams syndrome.

    PubMed

    Lew, Caroline Horton; Brown, Chelsea; Bellugi, Ursula; Semendeferi, Katerina

    2017-01-01

    Williams Syndrome (WS) is a rare neurodevelopmental disorder associated with a hemideletion in chromosome 7, which manifests a distinct behavioral phenotype characterized by a hyperaffiliative social drive, in striking contrast to the social avoidance behaviors that are common in Autism Spectrum Disorder (ASD). MRI studies have observed structural and functional abnormalities in WS cortex, including the prefrontal cortex (PFC), a region implicated in social cognition. This study utilizes the Bellugi Williams Syndrome Brain Collection, a unique resource that comprises the largest WS postmortem brain collection in existence, and is the first to quantitatively examine WS PFC cytoarchitecture. We measured neuron density in layers II/III and V/VI of five cortical areas: PFC areas BA 10 and BA 11, primary motor BA 4, primary somatosensory BA 3, and visual area BA 18 in six matched pairs of WS and typically developing (TD) controls. Neuron density in PFC was lower in WS relative to TD, with layers V/VI demonstrating the largest decrease in density, reaching statistical significance in BA 10. In contrast, BA 3 and BA 18 demonstrated a higher density in WS compared to TD, although this difference was not statistically significant. Neuron density in BA 4 was similar in WS and TD. While other cortical areas were altered in WS, prefrontal areas appeared to be most affected. Neuron density is also altered in the PFC of individuals with ASD. Together these findings suggest that the PFC is targeted in neurodevelopmental disorders associated with sociobehavioral alterations. Autism Res 2017, 10: 99-112. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  7. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling

    2017-05-01

    Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.

  8. Pulsed polarimetry progress on the LANL MSX magnetized shock experiment

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Intrator, T. P.; Weber, T. E.; Hutchinson, T. M.; Boguski, J. C.

    2013-10-01

    The UW pulsed polarimeter is a Lidar Thomson scattering diagnostic that can also provide measurements of the internal distribution of B| | as well as ne and Te for Magnetized High Energy Density targets with cm resolution. Scattering has now been observed in MSX and mirror issues that interrupted the last campaign have been corrected. Subsidiary diagnostics are being developed along side to aid in calibration. Fiber optic pulsed polarimetry is also being explored as both measurements can be performed simultaneously with the one instrument. The fiber sensing would allow measurements of modest fields using an internal cladded fiber. Progress in these directions will be presented. This work is supported by DOE Office of Fusion Energy Sciences.

  9. Streaked x-ray backlighting with twin-slit imager for study of density profile and trajectory of low-density foam target filled with deuterium liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraga, H.; Mahigashi, N.; Yamada, T.

    2008-10-15

    Low-density plastic foam filled with liquid deuterium is one of the candidates for inertial fusion target. Density profile and trajectory of 527 nm laser-irradiated planer foam-deuterium target in the acceleration phase were observed with streaked side-on x-ray backlighting. An x-ray imager employing twin slits coupled to an x-ray streak camera was used to simultaneously observe three images of the target: self-emission from the target, x-ray backlighter profile, and the backlit target. The experimentally obtained density profile and trajectory were in good agreement with predictions by one-dimensional hydrodynamic simulation code ILESTA-1D.

  10. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, Chris; Wierzbicki, Marcin

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITVmore » dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.« less

  11. Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 – 2013

    PubMed Central

    Ribic, Christine A.; Donner, Deahn M.; Beck, Albert J.; Reinecke, Sue; Eklund, Dan

    2017-01-01

    The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs. PMID:28081271

  12. Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 - 2013.

    PubMed

    Ribic, Christine A; Donner, Deahn M; Beck, Albert J; Rugg, David J; Reinecke, Sue; Eklund, Dan

    2017-01-01

    The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987-2013 (Nicolet, northeast Wisconsin) and 1997-2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.

  13. Beaver colony density trends on the Chequamegon-Nicolet National Forest, 1987 – 2013

    USGS Publications Warehouse

    Ribic, Christine; Donner, Deahn M.; Beck, Albert J.; Rugg, David J.; Reinecke, Sue; Eklund, Dan

    2017-01-01

    The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.

  14. The Storage Cell for the Tri-Experiment at COSY-JÜLICH

    NASA Astrophysics Data System (ADS)

    Felden, O.; Gebel, R.; Glende, M.; Lehrach, A.; Maier, R.; Prasuhn, D.; von Rossen, P.; Bisplinghoff, J.; Eversheim, P. D.; Hinterberger, F.

    2002-04-01

    At the EDDA experiment in the cooler synchrotron COSY in Jülich an atomic beam target is used which provides the designed polarization and density distribution. To increase the target density significantly a storage cell has been developed and implemented. This will contribute to a higher accuracy for the test of Time Reversal Invariance (TRI) which will be performed at the EDDA target place. To obtain the higher luminosity the target density and the transmission of the COSY beam through the cell were determined in their dependence on the cell aperture. Low storage cell apertures increase the target density in the cell but reduce the transmission of the circulating proton beam. To find the optimal cell design the transmission of the COSY beam was measured with movable scrapers and tested with an aperture at EDDA simulating the storage cell. The target density was calculated by Monte Carlo simulations for several cell geometries. An additional gain in target density is achieved by cooling the cell. A Teflon coating of the cell reduces depolarization of the target gas. First measurements with the EDDA detector have shown that the target density as well as the polarization are within the range of the expected values.

  15. On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantov, A. V., E-mail: brantov@lebedev.ru; Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru

    2015-06-15

    Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.

  16. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Gao, R.; Ding, Y.; Collins, L. A.; Kress, J. D.

    2017-04-01

    Using density-functional theory-based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ =0.001 -500 g /c m3 and T =2000 -108K . With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ˜20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1-10 eV (depending on density), while the former becomes higher in the low-T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ˜50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ˜10% slower; (2) the peak density of an in-flight Si shell during implosion is ˜20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ˜40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ˜30% and ˜70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. These results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.

  17. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    DOE PAGES

    Hu, S. X.; Gao, R.; Ding, Y.; ...

    2017-04-21

    Using density-functional theory–based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ=0.001–500g/cm 3 and T=2000–10 8K. With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ~20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1–10 eV (depending on density), while the former becomes highermore » in the low- T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ~50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ~10% slower; (2) the peak density of an in-flight Si shell during implosion is ~20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ~40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ~30% and ~70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. Furthermore, these results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.« less

  18. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.; Gao, R.; Ding, Y.

    Using density-functional theory–based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ=0.001–500g/cm 3 and T=2000–10 8K. With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ~20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1–10 eV (depending on density), while the former becomes highermore » in the low- T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ~50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ~10% slower; (2) the peak density of an in-flight Si shell during implosion is ~20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ~40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ~30% and ~70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. Furthermore, these results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.« less

  19. Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Mirzabekov, A. D.; Stahl, D. A.

    2001-01-01

    The utility of a high-density oligonucleotide microarray (microchip) for identifying strains of five closely related bacilli (Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus medusa and Bacillus subtilis) was demonstrated using an approach that compares the non-equilibrium dissociation rates ('melting curves') of all probe-target duplexes simultaneously. For this study, a hierarchical set of 30 oligonucleotide probes targeting the 16S ribosomal RNA of these bacilli at multiple levels of specificity (approximate taxonomic ranks of domain, kingdom, order, genus and species) was designed and immobilized in a high-density matrix of gel pads on a glass slide. Reproducible melting curves for probes with different levels of specificity were obtained using an optimized salt concentration. Clear discrimination between perfect match (PM) and mismatch (MM) duplexes was achieved. By normalizing the signals to an internal standard (a universal probe), a more than twofold discrimination (> 2.4x) was achieved between PM and 1-MM duplexes at the dissociation temperature at which 50% of the probe-target duplexes remained intact. This provided excellent differentiation among representatives of different Bacillus species, both individually and in mixtures of two or three. The overall pattern of hybridization derived from this hierarchical probe set also provided a clear 'chip fingerprint' for each of these closely related Bacillus species.

  20. Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition

    DOE PAGES

    Kim, In Soo; Borycz, Joshua; Platero-Prats, Ana E.; ...

    2015-07-02

    Postsynthetic functionalization of metal organic frameworks (MOFs) enables the controlled, high-density incorporation of new atoms on a crystallographically precise framework. Leveraging the broad palette of known atomic layer deposition (ALD) chemistries, ALD in MOFs (AIM) is one such targeted approach to construct diverse, highly functional, few-atom clusters. In this paper, we demonstrate the saturating reaction of trimethylindium (InMe 3) with the node hydroxyls and ligated water of NU-1000, which takes place without significant loss of MOF crystallinity or internal surface area. We computationally identify the elementary steps by which trimethylated trivalent metal compounds (ALD precursors) react with this Zr-based MOFmore » node to generate a uniform and well characterized new surface layer on the node itself, and we predict a final structure that is fully consistent with experimental X-ray pair distribution function (PDF) analysis. Finally, we further demonstrate tunable metal loading through controlled number density of the reactive handles (–OH and –OH 2) achieved through node dehydration at elevated temperatures.« less

  1. Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, In Soo; Borycz, Joshua; Platero-Prats, Ana E.

    Postsynthetic functionalization of metal organic frameworks (MOFs) enables the controlled, high-density incorporation of new atoms on a crystallographically precise framework. Leveraging the broad palette of known atomic layer deposition (ALD) chemistries, ALD in MOFs (AIM) is one such targeted approach to construct diverse, highly functional, few-atom clusters. In this paper, we demonstrate the saturating reaction of trimethylindium (InMe 3) with the node hydroxyls and ligated water of NU-1000, which takes place without significant loss of MOF crystallinity or internal surface area. We computationally identify the elementary steps by which trimethylated trivalent metal compounds (ALD precursors) react with this Zr-based MOFmore » node to generate a uniform and well characterized new surface layer on the node itself, and we predict a final structure that is fully consistent with experimental X-ray pair distribution function (PDF) analysis. Finally, we further demonstrate tunable metal loading through controlled number density of the reactive handles (–OH and –OH 2) achieved through node dehydration at elevated temperatures.« less

  2. On the Impact of Localization and Density Control Algorithms in Target Tracking Applications for Wireless Sensor Networks

    PubMed Central

    Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.

    2012-01-01

    Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329

  3. Spin Filtering in Storage Rings

    NASA Astrophysics Data System (ADS)

    Nikolaev, N. N.; Pavlov, F. F.

    The spin filtering in storage rings is based on a multiple passage of a stored beam through a polarized internal gas target. Apart from the polarization by the spin-dependent transmission, a unique geometrical feature of interaction with the target in such a filtering process, pointed out by H.O. Meyer,1 is a scattering of stored particles within the beam. A rotation of the spin in the scattering process affects the polarization buildup. We derive here a quantum-mechanical evolution equation for the spin-density matrix of a stored beam which incorporates the scattering within the beam. We show how the interplay of the transmission and scattering within the beam changes from polarized electrons to polarized protons in the atomic target. After discussions of the FILTEX results on the filtering of stored protons,2 we comment on the strategy of spin filtering of antiprotons for the PAX experiment at GSI FAIR.3.

  4. Searching for a dark photon with DarkLight

    NASA Astrophysics Data System (ADS)

    Corliss, R.; DarkLight Collaboration

    2017-09-01

    Despite compelling astrophysical evidence for the existence of dark matter in the universe, we have yet to positively identify it in any terrestrial experiment. If such matter is indeed particle in nature, it may have a new interaction as well, carried by a dark counterpart to the photon. The DarkLight experiment proposes to search for such a beyond-the-standard-model dark photon through complete reconstruction of the final states of electron-proton collisions. In order to accomplish this, the experiment requires a moderate-density target and a very high intensity, low energy electron beam. I describe DarkLight's approach and focus on the implications this has for the design of the experiment, which centers on the use of an internal gas target in Jefferson Lab's Low Energy Recirculating Facility. I also discuss upcoming beam tests, where we will place our target and solenoidal magnet in the beam for the first time.

  5. Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: Insight through intravital imaging.

    PubMed

    Rapoport, Natalya; Gupta, Roohi; Kim, Yoo-Shin; O'Neill, Brian E

    2015-05-28

    Intravital imaging of nanoparticle extravasation and tumor accumulation has revealed, for the first time, detailed features of carrier and drug behavior in circulation and tissue that suggest new directions for optimization of drug nanocarriers. Using intravital fluorescent microscopy, the extent of the extravasation, diffusion in the tissue, internalization by tissue cells, and uptake by the RES system were studied for polymeric micelles, nanoemulsions, and nanoemulsion-encapsulated drug. Discrimination of vascular and tissue compartments in the processes of micelle and nanodroplet extravasation and tissue accumulation was possible. A simple 1-D continuum model was suggested that allowed discriminating between various kinetic regimes of nanocarrier (or released drug) internalization in tumors of various sizes and cell density. The extravasation and tumor cell internalization occurred much faster for polymeric micelles than for nanoemulsion droplets. Fast micelle internalization resulted in the formation of a perivascular fluorescent coating around blood vessels. A new mechanism of micelle extravasation and internalization was suggested, based on the fast extravasation and internalization rates of copolymer unimers while maintaining micelle/unimer equilibrium in the circulation. The data suggested that to be therapeutically effective, nanoparticles with high internalization rate should manifest fast diffusion in the tumor tissue in order to avoid generation of concentration gradients that induce drug resistance. However an extra-fast diffusion should be avoided as it may result in the flow of extravasated nanoparticles from the tumor to normal organs, which would compromise targeting efficiency. The extravasation kinetics were different for nanodroplets and nanodroplet-encapsulated drug F-PTX suggesting a premature release of some fraction of the drug from the carrier. In conclusion, the development of an "ideal" drug carrier should involve the optimization of both drug retention and carrier diffusion parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. [Guidelines for the management of dyslipidemia].

    PubMed

    Díaz Rodríguez, Ángel

    2014-09-01

    The AHA/ACC 2013 guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular disease (ASCVD) in adults contains major differences with the previous ESC/EAS 2011 guidelines and the remaining international guidelines, which has generated major controversies. The AHA/ACC document has developed a new model for estimating cardiovascular risk for primary prevention which is not comparable with the SCORE recommended in the European guidelines. This guideline does not establish a fixed target for low-density lipoprotein cholesterol (LDLc). Instead, it identifies 4 major statin benefit groups at risk for the development ASCVD, who should receive low-, moderate-, and high-intensity statin therapy to reduce LCLc. In contrast, the European guidelines maintain LDLc as the main treatment target and non-high-density lipoprotein cholesterol as a secondary treatment target. The document recommends calculating cardiovascular risk for the overall treatment of patients with dyslipidemia according to 4 risk levels (low, moderate, high, and very high), establishes LDLc treatment targets, and recommends a statin-based therapeutic strategy and other, lipid-lowering strategies, aimed at achieving these targets. The American guidelines cannot be extrapolated to the European population. Target-based treatment, as recommended in the EAS/ESC guidelines, is the best strategy for Europe. In Spain, the Primary Care Guidelines of the Spanish Society of Family and Community Medicine (semFYC) and the Spanish Society of Primary Care Physicians (SEMERGEN) are based on the European recommendations. Finally, the Spanish Society of Arteriosclerosis (SEA), SEMERGEN, semFYC and the Spanish Society of General Medicine (SEMG) are reaching a consensus on the approach and management of patients with atherogenic dyslipidemia in primary care. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Medicina Rural y Generalista (SEMERGEN). All rights reserved.

  7. Electron beam plasma ionizing target for the production of neutron-rich nuclides

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Barzakh, A. E.; Essabaa, S.; Fedorov, D. V.; Ionan, A. M.; Ivanov, V. S.; Lau, C.; Leroy, R.; Lhersonneau, G.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Stroe, L.; Tecchio, L. B.; Villari, A. C. C.; Volkov, Yu. M.

    2008-10-01

    The production of neutron-rich Ag, In and Sn isotopes from a uranium carbide target of a high density has been investigated at the IRIS facility in the PLOG (PNPI-Legnaro-GANIL-Orsay) collaboration. The UC target material with a density of 12 g/cm3 was prepared by the method of powder metallurgy in a form of pellets of 2 mm thickness, 11 mm in diameter and grain dimensions of about 20 μm. The uranium target mass of 31 g was exposed at a 1 GeV proton beam of intensity 0.05-0.07 μA. For the ionization of the produced species the electron beam-plasma ionization inside the target container (ionizing target) has been used. It was the first experiment when the new high density UC target material was exploited with the electron-plasma ionization. Yields of Sn isotopes have been measured in the target temperature range of (1900-2100) °C. The yields of some Pd, In and Cd isotopes were measured as well to compare to previously measured ones from a high density uranium carbide target having a ceramic-like structure. For the first time a nickel isotope was obtained from a high density UC target.

  8. Hydrogen Crystallization in Low-Density Aerogels

    DOE PAGES

    Kucheyev, S. O.; Van Cleve, E.; Johnston, L. T.; ...

    2015-03-17

    Crystallization of liquids confined in disordered low-density nanoporous scaffolds is poorly understood. Here in this work, we use relaxation calorimetry to study the liquid–solid phase transition of H 2 in a series of silica and carbon (nanotube- and graphene-based) aerogels with porosities ≳94%. Results show that freezing temperatures of H 2 inside all the aerogels studied are depressed but do not follow predictions of the Gibbs–Thomson theory based on average pore diameters measured by conventional gas sorption techniques. Instead, we find that, for each material family investigated, the depression of average freezing temperatures scales linearly with the ratio of themore » internal surface area (measured by gas sorption) and the total pore volume derived from the density of aerogel monoliths. The slope of such linear dependences is, however, different for silica and carbon aerogels, which we attribute to microporosity of carbons and the presence of macropores in silica aerogels. In conclusion, our results have important implications for the analysis of pore size distributions of low-density nanoporous materials and for controlling crystallization of fuel layers in targets for thermonuclear fusion energy applications.« less

  9. Laser-induced plasmas in air studied using two-color interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zefeng; Wu, Jian, E-mail: jxjawj@mail.xjtu.edu.cn; Li, Xingwen

    2016-08-15

    Temporally and spatially resolved density profiles of Cu atoms, electrons, and compressed air, from laser-induced copper plasmas in air, are measured using fast spectral imaging and two-color interferometry. From the intensified CCD images filtered by a narrow-band-pass filter centered at 515.32 nm, the Cu atoms expansion route is estimated and used to determine the position of the fracture surface between the Cu atoms and the air. Results indicate that the Cu atoms density at distances closer to the target (0–0.4 mm) is quite low, with the maximum density appearing at the edge of the plasma's core being ∼4.6 × 10{sup 24 }m{sup −3} at 304 ns.more » The free electrons are mainly located in the internal region of the plume, which is supposed to have a higher temperature. The density of the shock wave is (4–6) × 10{sup 25 }m{sup −3}, corresponding to air compression of a factor of 1.7–2.5.« less

  10. Hydrogen crystallization in low-density aerogels.

    PubMed

    Kucheyev, S O; Van Cleve, E; Johnston, L T; Gammon, S A; Worsley, M A

    2015-04-07

    Crystallization of liquids confined in disordered low-density nanoporous scaffolds is poorly understood. Here, we use relaxation calorimetry to study the liquid-solid phase transition of H2 in a series of silica and carbon (nanotube- and graphene-based) aerogels with porosities ≳94%. Results show that freezing temperatures of H2 inside all the aerogels studied are depressed but do not follow predictions of the Gibbs-Thomson theory based on average pore diameters measured by conventional gas sorption techniques. Instead, we find that, for each material family investigated, the depression of average freezing temperatures scales linearly with the ratio of the internal surface area (measured by gas sorption) and the total pore volume derived from the density of aerogel monoliths. The slope of such linear dependences is, however, different for silica and carbon aerogels, which we attribute to microporosity of carbons and the presence of macropores in silica aerogels. Our results have important implications for the analysis of pore size distributions of low-density nanoporous materials and for controlling crystallization of fuel layers in targets for thermonuclear fusion energy applications.

  11. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  12. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE PAGES

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai; ...

    2016-02-12

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm 3, when compared with that of a solid gold target (19.3 g/cm 3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  13. Experimental demonstration of laser to x-ray conversion enhancements with low density gold targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Wanli; Yang, Jiamin; Zhang, Wenhai

    The enhancement of laser to x-ray conversion efficiencies using low density gold targets [W. L. Shang, J. M. Yang, and Y. S. Dong, Appl. Phys. Lett. 102, 094105 (2013)] is demonstrated. Laser to x-ray conversion efficiencies with 6.3% and 12% increases are achieved with target densities of 1 and 0.25 g/cm 3, when compared with that of a solid gold target (19.3 g/cm 3). Experimental data and numerical simulations are in good agreement. Lastly, the enhancement is caused by larger x-ray emission zone lengths formed in low density targets, which is in agreement with the simulation results.

  14. Interactions of task and subject variables among continuous performance tests.

    PubMed

    Denney, Colin B; Rapport, Mark D; Chung, Kyong-Mee

    2005-04-01

    Contemporary models of working memory suggest that target paradigm (TP) and target density (TD) should interact as influences on error rates derived from continuous performance tests (CPTs). The present study evaluated this hypothesis empirically in a typically developing, ethnically diverse sample of children. The extent to which scores based on different combinations of these task parameters showed different patterns of relationship to age, intelligence, and gender was also assessed. Four continuous performance tests were derived by combining two target paradigms (AX and repeated letter target stimuli) with two levels of target density (8.3% and 33%). Variations in mean omission (OE) and commission (CE) error rates were examined within and across combinations of TP and TD. In addition, a nested series of structural equation models was utilized to examine patterns of relationship among error rates, age, intelligence, and gender. Target paradigm and target density interacted as influences on error rates. Increasing density resulted in higher OE and CE rates for the AX paradigm. In contrast, the high density condition yielded a decline in OE rates accompanied by a small increase in CEs using the repeated letter CPT. Target paradigms were also distinguishable on the basis of age when using OEs as the performance measure, whereas combinations of age and intelligence distinguished between density levels but not target paradigms using CEs as the dependent measure. Different combinations of target paradigm and target density appear to yield scores that are conceptually and psychometrically distinguishable. Consequently, developmentally appropriate interpretation of error rates across tasks may require (a) careful analysis of working memory and attentional resources required for successful performance, and (b) normative data bases that are differently stratified with respect to combinations of age and intelligence.

  15. Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z.-L. Zhou; M. Bouwhuis; M. Ferro-Luzzi

    1999-01-01

    We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm{sup -1}. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/c with a tensor polarized {sup 2}H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.

  16. Fabrication and characterisation of phantom material made of Tannin-added Rhizophora spp. particleboards for photon and electron beams

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Hamid, P. N. K. Abd; Tajuddin, A. A.; Hashim, R.; Bauk, S.; Isa, N. Mohd; Isa, M. J. Md

    2017-05-01

    Particleboards made of Rhizophora spp. with addition of tannin adhesive were fabricated at target density of 1.0 g/cm3. The physical and mechanical properties of the particleboards including internal bond strength (IB) and modulus of rupture (MOR) were measured based on Japanese Industrial Standards (JIS A-5908). The characterisation of the particleboards including the effective atomic number, CT number and relative electron density were determined and compared to water. The mass attenuation coefficient of the particleboards were measured and compared to the calculated value of water using photon cross-section database (XCOM). The results showed that the physical and mechanical properties of the particleboards complied with Type 13 and 18 of JIS A-5908. The values of effective atomic number, CT number and relative electron density were also close to the value of water. The value of mass attenuation coefficients of the particleboards showed good agreement with water (XCOM) at low and high energy photon indicated by the χ2 values.

  17. Prospects for searching the η→e+e- rare decay at the CSR

    NASA Astrophysics Data System (ADS)

    Ji, Chang-Sheng; Shao, Ming; Zhang, Hui; Chen, Hong-Fang; Zhang, Yi-Fei

    2013-04-01

    We study the possibility of searching the η→e+e- rare decay on the Cooling Storage Ring (CSR) at Lanzhou. The main features of the proposed Internal Target Experiment (ITE) and External Target Facility (ETF) are included in the Monte Carlo simulation. Both the beam condition at the CSR and the major physics backgrounds are carefully taken into account. We conclude that the ITE is more suitable for such a study due to better detector acceptance and higher beam density. At the maximum designed luminosity (1034 cm-2 s-1), η→e+e- events can be collected every ~400 seconds at the CSR. With a mass resolution of 1 MeV, the expected signal-to-background (S/B) ratio is around 1.

  18. First-principles equation-of-state table of beryllium based on density-functional theory calculations

    DOE PAGES

    Ding, Y. H.; Hu, S. X.

    2017-06-06

    Beryllium has been considered a superior ablator material for inertial confinement fusion (ICF) target designs. An accurate equation-of-state (EOS) of beryllium under extreme conditions is essential for reliable ICF designs. Based on density-functional theory (DFT) calculations, we have established a wide-range beryllium EOS table of density ρ = 0.001 to 500 g/cm 3 and temperature T = 2000 to 10 8 K. Our first-principle equation-of-state (FPEOS) table is in better agreement with the widely used SESAME EOS table (SESAME 2023) than the average-atom INFERNO and Purgatorio models. For the principal Hugoniot, our FPEOS prediction shows ~10% stiffer than the lastmore » two models in the maximum compression. Although the existing experimental data (only up to 17 Mbar) cannot distinguish these EOS models, we anticipate that high-pressure experiments at the maximum compression region should differentiate our FPEOS from INFERNO and Purgatorio models. Comparisons between FPEOS and SESAME EOS for off-Hugoniot conditions show that the differences in the pressure and internal energy are within ~20%. By implementing the FPEOS table into the 1-D radiation–hydrodynamic code LILAC, we studied in this paper the EOS effects on beryllium-shell–target implosions. Finally, the FPEOS simulation predicts higher neutron yield (~15%) compared to the simulation using the SESAME 2023 EOS table.« less

  19. First-principles equation-of-state table of beryllium based on density-functional theory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y. H.; Hu, S. X.

    Beryllium has been considered a superior ablator material for inertial confinement fusion (ICF) target designs. An accurate equation-of-state (EOS) of beryllium under extreme conditions is essential for reliable ICF designs. Based on density-functional theory (DFT) calculations, we have established a wide-range beryllium EOS table of density ρ = 0.001 to 500 g/cm 3 and temperature T = 2000 to 10 8 K. Our first-principle equation-of-state (FPEOS) table is in better agreement with the widely used SESAME EOS table (SESAME 2023) than the average-atom INFERNO and Purgatorio models. For the principal Hugoniot, our FPEOS prediction shows ~10% stiffer than the lastmore » two models in the maximum compression. Although the existing experimental data (only up to 17 Mbar) cannot distinguish these EOS models, we anticipate that high-pressure experiments at the maximum compression region should differentiate our FPEOS from INFERNO and Purgatorio models. Comparisons between FPEOS and SESAME EOS for off-Hugoniot conditions show that the differences in the pressure and internal energy are within ~20%. By implementing the FPEOS table into the 1-D radiation–hydrodynamic code LILAC, we studied in this paper the EOS effects on beryllium-shell–target implosions. Finally, the FPEOS simulation predicts higher neutron yield (~15%) compared to the simulation using the SESAME 2023 EOS table.« less

  20. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    PubMed

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT.

    PubMed

    Bohula, Erin A; Giugliano, Robert P; Cannon, Christopher P; Zhou, Jing; Murphy, Sabina A; White, Jennifer A; Tershakovec, Andrew M; Blazing, Michael A; Braunwald, Eugene

    2015-09-29

    Statins lower low-density lipoprotein cholesterol (LDL-C) and high-sensitivity C-reactive protein (hs-CRP); addition of ezetimibe to statins further reduces LDL-C and hs-CRP. An analysis of the relationship between achieved LDL-C and hs-CRP targets and outcomes for simvastatin and ezetimibe/simvastatin was prespecified in Improved Reduction of Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT). The IMPROVE-IT trial randomly assigned 18 144 patients stabilized after acute coronary syndrome to simvastatin or ezetimibe/simvastatin. LDL-C and hs-CRP were measured at baseline and 1 month after randomization. Outcomes were assessed in those achieving one or both of the prespecified targets of LDL-C<70 mg/dL and hs-CRP<2 mg/L versus achieving neither target, adjusting for differences in baseline characteristics. An exploratory analysis examined targets of LDL-C<50 mg/dL and hs-CRP<1 mg/L. Patients meeting both targets at baseline, with no 1-month values, or with end points before 1 month were excluded. Of 15 179 patients, 39% achieved the dual LDL-C (<70 mg/dL) and hs-CRP (<2 mg/L) targets at 1 month, 14% met neither target, 14% met only the hs-CRP target, and 33% met only the LDL-C target. Those achieving dual targets had lower primary end point rates than those meeting neither target (cardiovascular death, major coronary event, or stroke; 38.9% versus 28.0%; adjusted hazard ratio, 0.73; 0.66-0.81; P<0.001). More patients treated with ezetimibe/simvastatin met dual targets than those treated with simvastatin alone (50% versus 29%, P<0.001). The association of dual-target attainment with improved outcomes was similar irrespective of treatment assignment (P-interaction=0.65). Similar findings were observed using the exploratory targets. Significantly more patients treated with ezetimibe/simvastatin met prespecified and exploratory dual LDL-C and hs-CRP targets than patients treated with simvastatin alone. Reaching both LDL-C and hs-CRP targets was associated with improved outcomes after multivariable adjustment. URL: http://www.clinicaltrials.gov; Unique identifier: NCT00202878. © 2015 American Heart Association, Inc.

  2. Computational selection of antibody-drug conjugate targets for breast cancer

    PubMed Central

    Fauteux, François; Hill, Jennifer J.; Jaramillo, Maria L.; Pan, Youlian; Phan, Sieu; Famili, Fazel; O'Connor-McCourt, Maureen

    2016-01-01

    The selection of therapeutic targets is a critical aspect of antibody-drug conjugate research and development. In this study, we applied computational methods to select candidate targets overexpressed in three major breast cancer subtypes as compared with a range of vital organs and tissues. Microarray data corresponding to over 8,000 tissue samples were collected from the public domain. Breast cancer samples were classified into molecular subtypes using an iterative ensemble approach combining six classification algorithms and three feature selection techniques, including a novel kernel density-based method. This feature selection method was used in conjunction with differential expression and subcellular localization information to assemble a primary list of targets. A total of 50 cell membrane targets were identified, including one target for which an antibody-drug conjugate is in clinical use, and six targets for which antibody-drug conjugates are in clinical trials for the treatment of breast cancer and other solid tumors. In addition, 50 extracellular proteins were identified as potential targets for non-internalizing strategies and alternative modalities. Candidate targets linked with the epithelial-to-mesenchymal transition were identified by analyzing differential gene expression in epithelial and mesenchymal tumor-derived cell lines. Overall, these results show that mining human gene expression data has the power to select and prioritize breast cancer antibody-drug conjugate targets, and the potential to lead to new and more effective cancer therapeutics. PMID:26700623

  3. Cell Density Affects the Detection of Chk1 Target Engagement by the Selective Inhibitor V158411.

    PubMed

    Geneste, Clara C; Massey, Andrew J

    2018-02-01

    Understanding drug target engagement and the relationship to downstream pharmacology is critical for drug discovery. Here we have evaluated target engagement of Chk1 by the small-molecule inhibitor V158411 using two different target engagement methods (autophosphorylation and cellular thermal shift assay [CETSA]). Target engagement measured by these methods was subsequently related to Chk1 inhibitor-dependent pharmacology. Inhibition of autophosphorylation was a robust method for measuring V158411 Chk1 target engagement. In comparison, while target engagement determined using CETSA appeared robust, the V158411 CETSA target engagement EC 50 values were 43- and 19-fold greater than the autophosphorylation IC 50 values. This difference was attributed to the higher cell density in the CETSA assay configuration. pChk1 (S296) IC 50 values determined using the CETSA assay conditions were 54- and 33-fold greater than those determined under standard conditions and were equivalent to the CETSA EC 50 values. Cellular conditions, especially cell density, influenced the target engagement of V158411 for Chk1. The effects of high cell density on apparent compound target engagement potency should be evaluated when using target engagement assays that necessitate high cell densities (such as the CETSA conditions used in this study). In such cases, the subsequent relation of these data to downstream pharmacological changes should therefore be interpreted with care.

  4. Uniform magnetic targeting of magnetic particles attracted by a new ferromagnetic biological patch.

    PubMed

    Pei, Ning; Cai, Lanlan; Yang, Kai; Ma, Jiaqi; Gong, Yongyong; Wang, Qixin; Huang, Zheyong

    2018-02-01

    A new non-toxic ferromagnetic biological patch (MBP) was designed in this paper. The MBP consisted of two external layers that were made of transparent silicone, and an internal layer that was made of a mixture of pure iron powder and silicon rubber. Finite-element analysis showed that the local inhomogeneous magnetic field (MF) around the MBP was generated when MBP was placed in a uniform MF. The local MF near the MBP varied with the uniform MF and shape of the MBP. Therefore, not only could the accumulation of paramagnetic particles be adjusted by controlling the strength of the uniform MF, but also the distribution of the paramagnetic particles could be improved with the different shape of the MBP. The relationship of the accumulation of paramagnetic particles or cells, magnetic flux density, and fluid velocity were studied through in vitro experiments and theoretical considerations. The accumulation of paramagnetic particles first increased with increment in the magnetic flux density of the uniform MF. But when the magnetic flux density of the uniform MF exceeded a specific value, the magnetic flux density of the MBP reached saturation, causing the accumulation of paramagnetic particles to fall. In addition, the adsorption morphology of magnetic particles or cells could be improved and the uniform distribution of magnetic particles could be achieved by changing the shape of the MBP. Also, MBP may be used as a new implant to attract magnetic drug carrier particles in magnetic drug targeting. Bioelectromagnetics. 39:98-107, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. The intact capture of hypervelocity dust particles using underdense foams

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Borg, J.; Tanner, William G.; Stevenson, T. J.; Bibring, J.-P.

    1994-01-01

    The impact of a hypervelocity projectile (greater than 3 km/s) is a process that subjects both the impactor and the impacted material to a large transient pressure distribution. The resultant stresses cause a large degree of fragmentation, melting, vaporization, and ionization (for normal densities). The pressure regime magnitude, however, is directly related to the density relationship between the projectile and target materials. As a consequence, a high-density impactor on a low-density target will experience the lowest level of damage. Historically, there have been three different approaches toward achieving the lowest possible target density. The first employs a projectile impinging on a foil or film of moderate density, but whose thickness is much less than the particle diameter. This results in the particle experiencing a pressure transient with both a short duration and a greatly reduced destructive effect. A succession of these films, spaced to allow nondestructive energy dissipation between impacts, will reduce the impactor's kinetic energy without allowing its internal energy to rise to the point where destruction of the projectile mass will occur. An added advantage to this method is that it yields the possibility of regions within the captured particle where a minimum of thermal modification has taken place. Polymer foams have been employed as the primary method of capturing particles with minimum degradation. The manufacture of extremely low bulk density materials is usually achieved by the introduction of voids into the material base. It must be noted, however, that a foam structure only has a true bulk density of the mixture at sizes much larger than the cell size, since for impact processes this is of paramount importance. The scale at which the bulk density must still be close to that of the mixture is approximately equal to the impactor. When this density criterion is met, shock pressures during impact are minimized, which in turn maximizes the probability of survival for the impacting particle. The primary objectives of the experiment are to (1) Examine the morphology of primary and secondary hypervelocity impact craters. Primary attention will be paid to craters caused by ejecta during hypervelocity impacts of different substrates. (2) Determine the size distribution of ejecta by means of witness plates and collect fragments of ejecta from craters by means of momentum-sensitive mcropore foam. (3) Assess the directionality of the flux by means of penetration-hole alignment of thin films placed above the cells. (4) Capture intact the particles that perforated the thin film and entered the cell. Capture media consisted of both previously flight-tested micropore foams and aerogel. The foams had different latent heats of fusion and, accordingly, will capture particles over a range of momenta. Aerogel was incorporated into the cells to determine the minimum diameter than can be captured intact.

  6. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation.

    PubMed

    Cheng, Liang; Huang, Fa-Zhen; Cheng, Li-Fang; Zhu, Ya-Qin; Hu, Qing; Li, Ling; Wei, Lin; Chen, Da-Wei

    2014-01-01

    Non-small cell lung cancer (NSCLC) is a serious threat to human health, and 40%-80% of NSCLCs express high levels of epidermal growth factor receptor (EGFR). GE11 is a novel peptide and exhibits high affinity for EGFR binding. The aim of this study was to construct and evaluate GE11-modified liposomes for targeted drug delivery to EGFR-positive NSCLC. Doxorubicin, a broad-spectrum antitumor agent, was chosen as the payload. GE11 was conjugated to the distal end of DSPE-PEG2000-Mal by an addition reaction with a conjugation efficiency above 90%. Doxorubicin-loaded liposomes containing GE11 (GE11-LP/DOX) at densities ranging from 0% to 15% were prepared by combination of a thin film hydration method and a post insertion method. Irrespective of GE11 density, the physicochemical properties of these targeted liposomes, including particle size, zeta potential, and drug entrapment efficiency, were nearly identical. Interestingly, the cytotoxic effect of the liposomes on A549 tumor cells was closely related to GE11 density, and liposomes with 10% GE11 had the highest tumor cell killing activity and a 2.6-fold lower half maximal inhibitory concentration than that of the nontargeted counterpart (PEG-LP/DOX). Fluorescence microscopy and flow cytometry analysis revealed that GE11 significantly increased cellular uptake of the liposomes, which could be ascribed to specific EGFR-mediated endocytosis. It was found that multiple endocytic pathways were involved in entry of GE11-LP/DOX into cells, but GE11 assisted in cellular internalization mainly via the clathrin-mediated endocytosis pathway. Importantly, the GE11-modified liposomes showed enhanced accumulation and prolonged retention in tumor tissue, as evidenced by a 2.2-fold stronger mean fluorescence intensity in tumor tissue than the unmodified liposomes at 24 hours. In summary, GE11-modified liposomes may be a promising platform for targeted delivery of chemotherapeutic drugs in NSCLC.

  7. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  8. Global Fund-supported programmes contribution to international targets and the Millennium Development Goals: an initial analysis.

    PubMed

    Komatsu, Ryuichi; Low-Beer, Daniel; Schwartländer, Bernhard

    2007-10-01

    The Global Fund to Fight AIDS, Tuberculosis and Malaria is one of the largest funders to fight these diseases. This paper discusses the programmatic contribution of Global Fund-supported programmes towards achieving international targets and Millennium Development Goals, using data from Global Fund grants. Results until June 2006 of 333 grants supported by the Global Fund in 127 countries were aggregated and compared against international targets for HIV/AIDS, tuberculosis and malaria. Progress reports to the Global Fund secretariat were used as a basis to calculate results. Service delivery indicators for antiretrovirals (ARV) for HIV/AIDS, case detection under the DOTS strategy for tuberculosis (DOTS) and insecticide-treated nets (ITNs) for malaria prevention were selected to estimate programmatic contributions to international targets for the three diseases. Targets of Global Fund-supported programmes were projected based on proposals for Rounds 1 to 4 and compared to international targets for 2009. Results for Global Fund-supported programmes total 544,000 people on ARV, 1.4 million on DOTS and 11.3 million for ITNs by June 2006. Global Fund-supported programmes contributed 18% of international ARV targets, 29% of DOTS targets and 9% of ITNs in sub-Saharan Africa by mid-2006. Existing Global Fund-supported programmes have agreed targets that are projected to account for 19% of the international target for ARV delivery expected for 2009, 28% of the international target for DOTS and 84% of ITN targets in sub-Saharan Africa. Global Fund-supported programmes have already contributed substantially to international targets by mid-2006, but there is a still significant gap. Considerably greater financial support is needed, particularly for HIV, in order to achieve international targets for 2009.

  9. From Paris to Iowa and Back: Global Temperature Targets, Agricultural Impacts, and Producer Response

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Hayhoe, K.; Terando, A. J.

    2016-12-01

    Traditionally, assessments such as those produced by IPCC and USGCRP have been structured to provide a one-way flow of information from scientists to national and international policy makers. Because the Paris Agreement will ultimately require corresponding domestic policies, the traditional one-way information flow could be inadequate, since it lacks both direct participation and informed feedback from many of the important entities that influence domestic policy. We have engaged Iowa row crop producers in identifying impacts and feasibility of adaptation under global warming of 1.0 and 2.0OC. Our engagement seeks to create within climate impacts assessment a decision-maker feedback loop. We have engaged an expert panel by using yield data modeling as a first step to communicate vividly the potential yield impacts of global average temperature targets. This engagement included validation with historical global average temperature before presenting yield impact under global mean surface temperature increase of 1.0 and 2.0OC. The expert panel requested further analysis of targets at 0.25 and 0.50OC increase and of possible impacts should they pursue adaptation by increasing maize plant population density and soil moisture storage. Several clear messages have emerged that can be voiced by Iowa agribusiness leaders to national and international decision-makers. While Iowa soybean agriculture may remain robust for the foreseeable future, the Paris Agreement is insufficient to protect Iowa maize production from substantial changes in productivity and volatility. These effects could be largely (though not entirely) mitigated by moving from the current +2OC to the "high ambition" +1.5OC target. The projected spring rainfall increase of 10% under +1OC would increase the cost of spring planting. The data model predicts a 5-day reduction in average number of fieldwork days, which requires the addition of one half-time person or larger planting equipment. The current annual rate of increase in maize plant density will maintain historical yield increase through +1OC but by +2OC is substantially reduced and results in unprecedented yield volatility. By increasing soil moisture during July, Iowa maize production can reduce markedly the impacts of +2OC.

  10. High density laser-driven target

    DOEpatents

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  11. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  12. Low-enriched uranium high-density target project. Compendium report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassemblymore » of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.« less

  13. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    NASA Astrophysics Data System (ADS)

    Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2014-03-01

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  14. Radiation source

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  15. PCSK9: Regulation and Target for Drug Development for Dyslipidemia.

    PubMed

    Burke, Amy C; Dron, Jacqueline S; Hegele, Robert A; Huff, Murray W

    2017-01-06

    Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted zymogen expressed primarily in the liver. PCSK9 circulates in plasma, binds to cell surface low-density lipoprotein (LDL) receptors, is internalized, and then targets the receptors to lysosomal degradation. Studies of naturally occurring PCSK9 gene variants that caused extreme plasma LDL cholesterol (LDL-C) deviations and altered atherosclerosis risk unleashed a torrent of biological and pharmacological research. Rapid progress in understanding the physiological regulation of PCSK9 was soon translated into commercially available biological inhibitors of PCSK9 that reduced LDL-C levels and likely also cardiovascular outcomes. Here we review the swift evolution of PCSK9 from novel gene to drug target, to animal and human testing, and finally to outcome trials and clinical applications. In addition, we explore how the genetics-guided path to PCSK9 inhibitor development exemplifies a new paradigm in pharmacology. Finally, we consider some potential challenges as PCSK9 inhibition becomes established in the clinic.

  16. Trans-Modulation of the Somatostatin Type 2A Receptor Trafficking by Insulin-Regulated Aminopeptidase Decreases Limbic Seizures.

    PubMed

    De Bundel, Dimitri; Fafouri, Assia; Csaba, Zsolt; Loyens, Ellen; Lebon, Sophie; El Ghouzzi, Vincent; Peineau, Stéphane; Vodjdani, Guilan; Kiagiadaki, Foteini; Aourz, Najat; Coppens, Jessica; Walrave, Laura; Portelli, Jeanelle; Vanderheyden, Patrick; Chai, Siew Yeen; Thermos, Kyriaki; Bernard, Véronique; Collingridge, Graham; Auvin, Stéphane; Gressens, Pierre; Smolders, Ilse; Dournaud, Pascal

    2015-08-26

    Within the hippocampus, the major somatostatin (SRIF) receptor subtype, the sst2A receptor, is localized at postsynaptic sites of the principal neurons where it modulates neuronal activity. Following agonist exposure, this receptor rapidly internalizes and recycles slowly through the trans-Golgi network. In epilepsy, a high and chronic release of somatostatin occurs, which provokes, in both rat and human tissue, a decrease in the density of this inhibitory receptor at the cell surface. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. In addition, IRAP ligands display anticonvulsive properties. We therefore sought to assess by in vitro and in vivo experiments in hippocampal rat tissue whether IRAP ligands could regulate the trafficking of the sst2A receptor and, consequently, modulate limbic seizures. Using pharmacological and cell biological approaches, we demonstrate that IRAP ligands accelerate the recycling of the sst2A receptor that has internalized in neurons in vitro or in vivo. Most importantly, because IRAP ligands increase the density of this inhibitory receptor at the plasma membrane, they also potentiate the neuropeptide SRIF inhibitory effects on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures and possibly for other neurological conditions in which downregulation of G-protein-coupled receptors occurs. The somatostatin type 2A receptor (sst2A) is localized on principal hippocampal neurons and displays anticonvulsant properties. Following agonist exposure, however, this receptor rapidly internalizes and recycles slowly. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. We therefore assessed by in vitro and in vivo experiments whether IRAP could regulate the trafficking of this receptor. We demonstrate that IRAP ligands accelerate sst2A recycling in hippocampal neurons. Because IRAP ligands increase the density of sst2A receptors at the plasma membrane, they also potentiate the effects of this inhibitory receptor on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures. Copyright © 2015 the authors 0270-6474/15/3511961-16$15.00/0.

  17. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  18. 26 CFR 1.430(d)-1 - Determination of target normal cost and funding target.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false Determination of target normal cost and funding target. 1.430(d)-1 Section 1.430(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Determination of target normal cost and funding target. (a) In general—(1) Overview. This section sets forth...

  19. 26 CFR 1.430(d)-1 - Determination of target normal cost and funding target.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Determination of target normal cost and funding target. 1.430(d)-1 Section 1.430(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Determination of target normal cost and funding target. (a) In general—(1) Overview. This section sets forth...

  20. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOEpatents

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  1. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    PubMed

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  2. Manipulation of a DNA aptamer-protein binding site through arylation of internal guanine residues.

    PubMed

    Van Riesen, Abigail J; Fadock, Kaila L; Deore, Prashant S; Desoky, Ahmed; Manderville, Richard A; Sowlati-Hashjin, Shahin; Wetmore, Stacey D

    2018-05-23

    Chemically modified aptamers have the opportunity to increase aptamer target binding affinity and provide structure-activity relationships to enhance our understanding of molecular target recognition by the aptamer fold. In the current study, 8-aryl-2'-deoxyguanosine nucleobases have been inserted into the G-tetrad and central TGT loop of the thrombin binding aptamer (TBA) to determine their impact on antiparallel G-quadruplex (GQ) folding and thrombin binding affinity. The aryl groups attached to the dG nucleobase vary greatly in aryl ring size and impact on GQ stability (∼20 °C change in GQ thermal melting (Tm) values) and thrombin binding affinity (17-fold variation in dissociation constant (Kd)). At G8 of the central TGT loop that is distal from the aptamer recognition site, the probes producing the most stable GQ structure exhibited the strongest thrombin binding affinity. However, within the G-tetrad, changes to the electron density of the dG component within the modified nucleobase can diminish thrombin binding affinity. Detailed molecular dynamics (MD) simulations on the modified TBA (mTBA) and mTBA-protein complexes demonstrate how the internal 8-aryl-dG modification can manipulate the interactions between the DNA nucleobases and the amino acid residues of thrombin. These results highlight the potential of internal fluorescent nuclobase analogs (FBAs) to broaden design options for aptasensor development.

  3. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  4. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  5. Extracting a mix parameter from 2D radiography of variable density flow

    NASA Astrophysics Data System (ADS)

    Kurien, Susan; Doss, Forrest; Livescu, Daniel

    2017-11-01

    A methodology is presented for extracting quantities related to the statistical description of the mixing state from the 2D radiographic image of a flow. X-ray attenuation through a target flow is given by the Beer-Lambert law which exponentially damps the incident beam intensity by a factor proportional to the density, opacity and thickness of the target. By making reasonable assumptions for the mean density, opacity and effective thickness of the target flow, we estimate the contribution of density fluctuations to the attenuation. The fluctuations thus inferred may be used to form the correlation of density and specific-volume, averaged across the thickness of the flow in the direction of the beam. This correlation function, denoted by b in RANS modeling, quantifies turbulent mixing in variable density flows. The scheme is tested using DNS data computed for variable-density buoyancy-driven mixing. We quantify the deficits in the extracted value of b due to target thickness, Atwood number, and modeled noise in the incident beam. This analysis corroborates the proposed scheme to infer the mix parameter from thin targets at moderate to low Atwood numbers. The scheme is then applied to an image of counter-shear flow obtained from experiments at the National Ignition Facility. US Department of Energy.

  6. LPWA using supersonic gas jet with tailored density profile

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  7. Internal rib structure can be predicted using mathematical models: An anatomic study comparing the chest to a shell dome with application to understanding fractures.

    PubMed

    Casha, Aaron R; Camilleri, Liberato; Manché, Alexander; Gatt, Ruben; Attard, Daphne; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Mcdonald, Stuart; Grima, Joseph N

    2015-11-01

    The human rib cage resembles a masonry dome in shape. Masonry domes have a particular construction that mimics stress distribution. Rib cortical thickness and bone density were analyzed to determine whether the morphology of the rib cage is sufficiently similar to a shell dome for internal rib structure to be predicted mathematically. A finite element analysis (FEA) simulation was used to measure stresses on the internal and external surfaces of a chest-shaped dome. Inner and outer rib cortical thickness and bone density were measured in the mid-axillary lines of seven cadaveric rib cages using computerized tomography scanning. Paired t tests and Pearson correlation were used to relate cortical thickness and bone density to stress. FEA modeling showed that the stress was 82% higher on the internal than the external surface, with a gradual decrease in internal and external wall stresses from the base to the apex. The inner cortex was more radio-dense, P < 0.001, and thicker, P < 0.001, than the outer cortex. Inner cortical thickness was related to internal stress, r = 0.94, P < 0.001, inner cortical bone density to internal stress, r = 0.87, P = 0.003, and outer cortical thickness to external stress, r = 0.65, P = 0.035. Mathematical models were developed relating internal and external cortical thicknesses and bone densities to rib level. The internal anatomical features of ribs, including the inner and outer cortical thicknesses and bone densities, are similar to the stress distribution in dome-shaped structures modeled using FEA computer simulations of a thick-walled dome pressure vessel. Fixation of rib fractures should include the stronger internal cortex. © 2015 Wiley Periodicals, Inc.

  8. Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS)

    NASA Astrophysics Data System (ADS)

    Pätzold, M.; Häusler, B.; Tyler, G. L.; Andert, T.; Asmar, S. W.; Bird, M. K.; Dehant, V.; Hinson, D. P.; Rosenblatt, P.; Simpson, R. A.; Tellmann, S.; Withers, P.; Beuthe, M.; Efimov, A. I.; Hahn, M.; Kahan, D.; Le Maistre, S.; Oschlisniok, J.; Peter, K.; Remus, S.

    2016-08-01

    The Mars Express spacecraft is operating in Mars orbit since early 2004. The Mars Express Radio Science Experiment (MaRS) employs the spacecraft and ground station radio systems (i) to conduct radio occultations of the atmosphere and ionosphere to obtain vertical profiles of temperature, pressure, neutral number densities and electron density, (ii) to conduct bistatic radar experiments to obtain information on the dielectric and scattering properties of the surface, (iii) to investigate the structure and variation of the crust and lithosphere in selected target areas, (iv) to determine the mass, bulk and internal structure of the moon Phobos, and (v) to track the MEX radio signals during superior solar conjunction to study the morphology of coronal mass ejections (CMEs). Here we report observations, results and discoveries made in the Mars environment between 2004 and 2014 over almost an entire solar cycle.

  9. Estimating Small-Body Gravity Field from Shape Model and Navigation Data

    NASA Technical Reports Server (NTRS)

    Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam

    2008-01-01

    This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.

  10. Laser imprint reduction for the critical-density foam buffered target driven by a relatively strong foot pulse at early stage of laser implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. W., E-mail: li-jiwei@iapcm.ac.cn; He, X. T.; Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094

    In order to reduce the effect of laser imprint in direct-drive ignition scheme a low-density foam buffered target has been proposed. This target is driven by a laser pulse with a low-intensity foot at the early stage of implosion, which heats the foam and elongates the thermal conduction zone between the laser absorption region and ablation front, increasing the thermal smoothing effect. In this paper, a relatively strong foot pulse is adopted to irradiate the critical-density foam buffered target. The stronger foot, near 1 × 10{sup 14 }W/cm{sup 2}, is able to drive a radiative shock in the low-density foam, which helps smoothmore » the shock and further reduce the effect of laser imprint. The radiative shock also forms a double ablation front structure between the two ablation fronts to further stabilize the hydrodynamics, achieving the similar results to a target with a high-Z dopant in the ablator. 2D analysis shows that for the critical-density foam buffered target irradiated by the strong foot pulse, the laser imprint can be reduced due to the radiative shock in the foam and an increased thermal smoothing effect. It seems viable for the critical-density foam buffered target to be driven by a relatively strong foot pulse with the goal of reducing the laser imprint and achieving better implosion symmetry in the direct-drive laser fusion.« less

  11. Apolipoprotein E3 Mediated Targeted Brain Delivery of Reconstituted High Density Lipoprotein Bearing 3, 10, And 17 Nm Hydrophobic Core Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chuang, Skylar T.

    We have developed a high density lipoprotein (HDL)-based platform for transport and delivery of hydrophobic gold nanoparticles (AuNP). The ability of apolipoprotein E3 (apoE3) to act as a ligand for the low-density lipoprotein receptor (LDLr) was exploited to gain entry of HDL with AuNP into glioblastoma cells. AuNP of 3, 10 and 17 nm diameter, the latter two synthesized by phase transfer process, were solubilized by integration into reconstituted HDL (rHDL). Absorption spectroscopy indicated the presence of stable particles with signature surface plasmon bands, while electron microscopy revealed AuNP embedded in rHDL core. The rHDL-AuNP complexes displayed robust binding to the LDLr, were internalized by the glioblastoma cells, and appeared as aggregated AuNP in the endosomal-lysosomal compartments. The rHDL-AuNP generated little cytotoxicity and were able to cross the blood brain barrier. The findings bear significance since they offer an effective means of delivering AuNP across tumor cell membrane.

  12. Visualization and analysis of pulsed ion beam energy density profile with infrared imaging

    NASA Astrophysics Data System (ADS)

    Isakova, Y. I.; Pushkarev, A. I.

    2018-03-01

    Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.

  13. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery.

    PubMed

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future.

  14. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery

    PubMed Central

    Ding, Yuan; Sun, Dan; Wang, Gui-Ling; Yang, Hong-Ge; Xu, Hai-Feng; Chen, Jian-Hua; Xie, Ying; Wang, Zhi-Qiang

    2015-01-01

    Cell-penetrating peptides (CPPs) as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG) and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL) to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR) to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS) was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into targeted subcellular compartments while remaining inactive and free from opsonins at a maximum extent in systemic circulation. The 4% CPPL as a drug delivery system will have great potential in the clinical application of anticancer drugs in future. PMID:26491292

  15. Repetition rates in heavy ion beam driven fusion reactors

    NASA Astrophysics Data System (ADS)

    Peterson, Robert R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.

  16. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOEpatents

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  17. [Consensus on objectives and action guidelines on low density lipoproteins-cholesterol control in very high risk cardiovascular patients].

    PubMed

    Galve, Enrique; Guijarro-Herraiz, Carlos; Masana-Marin, Luis; Cordero-Fort, Alberto

    2016-01-01

    Cardiovascular disease is the leading cause of death in developed countries. Among cardiovascular disease risk factors one of the most relevant is low-density lipoprotein-associated cholesterol (LDL-c), but there is controversy about the methods used to control it. The aim was to obtain an expert opinion to clarify the most relevant issues regarding the control of dyslipidemia in very high cardiovascular risk patients. A survey with 55 items, stratified into 4 blocks: LDL-c as a therapeutic target, therapeutic goals, causes of the failure to achieve LDL-c goals, and recommendations to optimize their achievement, was addressed to 41 specialists (Cardiology and Internal Medicine) using the Delphi method to achieve professional consensus criteria. A high consensus was reached among all items, in line with the European recommendations. The panelists considered that the goal of 70mg/dl for LDL-c for high cardiovascular disease risk (mainly vascular disease, diabetes mellitus, and renal failure), using combined treatment when necessary. Lack of adherence and therapeutic inertia were considered the main reasons for treatment failure. The Spanish experts show an elevated consensus with the European recommendations, confirming the LDL-c control target of <70mg/dl. The simplification of the guidelines and the combined treatment may favor an improvement the achievement of lipid target goals. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  18. X-ray tomography characterization of density gradient aerogel in laser targets

    NASA Astrophysics Data System (ADS)

    Borisenko, L.; Orekhov, A.; Musgrave, C.; Nazarov, W.; Merkuliev, Yu; Borisenko, N.

    2016-04-01

    The low-density solid laser target characterization studies begun with the SkyScan 1074 computer microtomograph (CMT) [1, 2] are now continued with higher resolution of SkyScan 1174. The research is particularly focused on the possibility to obtain, control and measure precisely the gradient density polymers for laser target production. Repeatability of the samples and possibility to obtain stable gradients are analysed. The measurements were performed on the mm-scale divinyl benzene (DVB) rods.

  19. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  20. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy.

    PubMed

    Hansen, Nienke L; Kesch, Claudia; Barrett, Tristan; Koo, Brendan; Radtke, Jan P; Bonekamp, David; Schlemmer, Heinz-Peter; Warren, Anne Y; Wieczorek, Kathrin; Hohenfellner, Markus; Kastner, Christof; Hadaschik, Boris

    2017-11-01

    To evaluate the detection rates of targeted and systematic biopsies in magnetic resonance imaging (MRI) and ultrasound (US) image-fusion transperineal prostate biopsy for patients with previous benign transrectal biopsies in two high-volume centres. A two centre prospective outcome study of 487 patients with previous benign biopsies that underwent transperineal MRI/US fusion-guided targeted and systematic saturation biopsy from 2012 to 2015. Multiparametric MRI (mpMRI) was reported according to Prostate Imaging Reporting and Data System (PI-RADS) Version 1. Detection of Gleason score 7-10 prostate cancer on biopsy was the primary outcome. Positive (PPV) and negative (NPV) predictive values including 95% confidence intervals (95% CIs) were calculated. Detection rates of targeted and systematic biopsies were compared using McNemar's test. The median (interquartile range) PSA level was 9.0 (6.7-13.4) ng/mL. PI-RADS 3-5 mpMRI lesions were reported in 343 (70%) patients and Gleason score 7-10 prostate cancer was detected in 149 (31%). The PPV (95% CI) for detecting Gleason score 7-10 prostate cancer was 0.20 (±0.07) for PI-RADS 3, 0.32 (±0.09) for PI-RADS 4, and 0.70 (±0.08) for PI-RADS 5. The NPV (95% CI) of PI-RADS 1-2 was 0.92 (±0.04) for Gleason score 7-10 and 0.99 (±0.02) for Gleason score ≥4 + 3 cancer. Systematic biopsies alone found 125/138 (91%) Gleason score 7-10 cancers. In patients with suspicious lesions (PI-RADS 4-5) on mpMRI, systematic biopsies would not have detected 12/113 significant prostate cancers (11%), while targeted biopsies alone would have failed to diagnose 10/113 (9%). In equivocal lesions (PI-RADS 3), targeted biopsy alone would not have diagnosed 14/25 (56%) of Gleason score 7-10 cancers, whereas systematic biopsies alone would have missed 1/25 (4%). Combination with PSA density improved the area under the curve of PI-RADS from 0.822 to 0.846. In patients with high probability mpMRI lesions, the highest detection rates of Gleason score 7-10 cancer still required combined targeted and systematic MRI/US image-fusion; however, systematic biopsy alone may be sufficient in patients with equivocal lesions. Repeated prostate biopsies may not be needed at all for patients with a low PSA density and a negative mpMRI read by experienced radiologists. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  1. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning

    NASA Astrophysics Data System (ADS)

    Jiang, Runqing; Barnett, Rob B.; Chow, James C. L.; Chen, Jeff Z. Y.

    2007-03-01

    The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15° increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.

  2. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.

    PubMed

    Jiang, Runqing; Barnett, Rob B; Chow, James C L; Chen, Jeff Z Y

    2007-03-07

    The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15 degree increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.

  3. 4D CT sorting based on patient internal anatomy

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Cerviño, Laura I.; Jiang, Steve B.

    2009-08-01

    Respiratory motion during free-breathing computed tomography (CT) scan may cause significant errors in target definition for tumors in the thorax and upper abdomen. A four-dimensional (4D) CT technique has been widely used for treatment simulation of thoracic and abdominal cancer radiotherapy. The current 4D CT techniques require retrospective sorting of the reconstructed CT slices oversampled at the same couch position. Most sorting methods depend on external surrogates of respiratory motion recorded by extra instruments. However, respiratory signals obtained from these external surrogates may not always accurately represent the internal target motion, especially when irregular breathing patterns occur. We have proposed a new sorting method based on multiple internal anatomical features for multi-slice CT scan acquired in the cine mode. Four features are analyzed in this study, including the air content, lung area, lung density and body area. We use a measure called spatial coherence to select the optimal internal feature at each couch position and to generate the respiratory signals for 4D CT sorting. The proposed method has been evaluated for ten cancer patients (eight with thoracic cancer and two with abdominal cancer). For nine patients, the respiratory signals generated from the combined internal features are well correlated to those from external surrogates recorded by the real-time position management (RPM) system (average correlation: 0.95 ± 0.02), which is better than any individual internal measures at 95% confidence level. For these nine patients, the 4D CT images sorted by the combined internal features are almost identical to those sorted by the RPM signal. For one patient with an irregular breathing pattern, the respiratory signals given by the combined internal features do not correlate well with those from RPM (correlation: 0.68 ± 0.42). In this case, the 4D CT image sorted by our method presents fewer artifacts than that from the RPM signal. Our 4D CT internal sorting method eliminates the need of externally recorded surrogates of respiratory motion. It is an automatic, accurate, robust, cost efficient and yet simple method and therefore can be readily implemented in clinical settings.

  4. Changes in divertor conditions in response to changing core density with RMPs

    DOE PAGES

    Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.; ...

    2017-06-07

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less

  5. Changes in divertor conditions in response to changing core density with RMPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less

  6. Diagnosing and controlling mix in National Ignition Facility implosion experiments a)

    NASA Astrophysics Data System (ADS)

    Hammel, B. A.; Scott, H. A.; Regan, S. P.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Epstein, R.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Kyrala, G. A.; Landen, O. L.; Langer, S. H.; Peterson, K.; Smalyuk, V. A.; Suter, L. J.; Wilson, D. C.

    2011-05-01

    High mode number instability growth of "isolated defects" on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce "isolated defects." An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning.

  7. A Canopy Density Model for Planar Orchard Target Detection Based on Ultrasonic Sensors

    PubMed Central

    Li, Hanzhe; Zhai, Changyuan; Weckler, Paul; Wang, Ning; Yang, Shuo; Zhang, Bo

    2016-01-01

    Orchard target-oriented variable rate spraying is an effective method to reduce pesticide drift and excessive residues. To accomplish this task, the orchard targets’ characteristic information is needed to control liquid flow rate and airflow rate. One of the most important characteristics is the canopy density. In order to establish the canopy density model for a planar orchard target which is indispensable for canopy density calculation, a target density detection testing system was developed based on an ultrasonic sensor. A time-domain energy analysis method was employed to analyze the ultrasonic signal. Orthogonal regression central composite experiments were designed and conducted using man-made canopies of known density with three or four layers of leaves. Two model equations were obtained, of which the model for the canopies with four layers was found to be the most reliable. A verification test was conducted with different layers at the same density values and detecting distances. The test results showed that the relative errors of model density values and actual values of five, four, three and two layers of leaves were acceptable, while the maximum relative errors were 17.68%, 25.64%, 21.33% and 29.92%, respectively. It also suggested the model equation with four layers had a good applicability with different layers which increased with adjacent layers. PMID:28029132

  8. Device and method for imploding a microsphere with a fast liner

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner to drive the fast liner to implode a microsphere.

  9. Patterns of Care and Treatment Target Success among Persons with Type 2 Diabetes Mellitus in Dubai: A Retrospective Cohort Study.

    PubMed

    Osenenko, Katherine M; Szabo, Shelagh M; Qatami, Lara; Korenblat Donato, Bonnie M; Al Madani, Abdulrazzak Ali; Al Awadi, Fatheya Fardallah; Al-Ansari, Jaber; Maclean, Ross; Levy, Adrian R

    2015-09-01

    Despite the high prevalence of type 2 diabetes mellitus (T2DM), few data exist describing its management in Dubai. This study characterized the treatment and estimated levels of glycemic, lipid, and blood pressure control among a sample with T2DM at a large Dubai Hospital. This retrospective cohort study systematically sampled charts from adults seeking care for T2DM from October 2009 to March 2010 until the target (N = 250) was reached. Data on patient characteristics, pharmacotherapy, complications, and laboratory testing were abstracted until September 2011. The frequency of treatments and modifications over the period was calculated, and measures of glycosylated hemoglobin A 1c , low-density lipoprotein, and blood pressure control were compared with guideline targets. Frequencies of complications were compared according to treatment type. One-third of the cohort comprised men, and the mean age was 58 years. At enrolment, the mean time from T2DM diagnosis was nearly 15 years and 74% had received insulin. During the study period, the most common regimens were insulin + oral combinations (55%) and oral combination therapy (39%). Overall, 67% received any insulin therapy during the study; and by study end, 78% had received insulin at any time. At the most recent assessment, guideline targets for glycosylated hemoglobin A 1c , blood pressure, and low-density lipoprotein were met by 23%, 29%, and 71%, respectively. Complications were more frequent among those treated with combination or insulin therapies. This study provides baseline data from Dubai for future comparisons of the effectiveness of new treatments, and to better understand the humanistic and economic burden of T2DM and its complications. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. Instant snapshot of the internal structure of Unzen lava dome, Japan with airborne muography

    PubMed Central

    Tanaka, Hiroyuki K. M.

    2016-01-01

    An emerging elementary particle imaging technique called muography has increasingly been used to resolve the internal structures of volcanoes with a spatial resolution of less than 100 m. However, land-based muography requires several days at least to acquire satisfactory image contrast and thus, it has not been a practical tool to diagnose the erupting volcano in a real time manner. To address this issue, airborne muography was implemented for the first time, targeting Heisei-Shinzan lava dome of Unzen volcano, Japan. Obtained in 2.5 hours, the resultant image clearly showed the density contrast inside the dome, which is essential information to predict the magnitude of the dome collapse. Since airborne muography is not restricted by topographic conditions for apparatus placements, we anticipate that the technique is applicable to creating images of this type of lava dome evolution from various angles in real time. PMID:28008978

  11. 26 CFR 1.430(d)-1 - Determination of target normal cost and funding target.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Determination of target normal cost and funding target. 1.430(d)-1 Section 1.430(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Certain Stock Options § 1.430(d)-1 Determination of target normal cost and fundin...

  12. Density- and wavefunction-normalized Cartesian spherical harmonics for l ≤ 20.

    PubMed

    Michael, J Robert; Volkov, Anatoliy

    2015-03-01

    The widely used pseudoatom formalism [Stewart (1976). Acta Cryst. A32, 565-574; Hansen & Coppens (1978). Acta Cryst. A34, 909-921] in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l ≤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens [Acta Cryst. (1988), A44, 6-7]. It was shown that the analytical form for normalization coefficients is available primarily for l ≤ 4 [Hansen & Coppens, 1978; Paturle & Coppens, 1988; Coppens (1992). International Tables for Crystallography, Vol. B, Reciprocal space, 1st ed., edited by U. Shmueli, ch. 1.2. Dordrecht: Kluwer Academic Publishers; Coppens (1997). X-ray Charge Densities and Chemical Bonding. New York: Oxford University Press]. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 < l ≤ 7 (Paturle & Coppens, 1988). In most cases for l > 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturle-Coppens (Paturle & Coppens, 1988) method in the Wolfram Mathematica software to derive the Cartesian spherical harmonics for l ≤ 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.

  13. Clinical implications of the IMPROVE-IT trial in the light of current and future lipid-lowering treatment options.

    PubMed

    Serban, Maria-Corina; Banach, Maciej; Mikhailidis, Dimitri P

    2016-01-01

    A residual risk of morbidity and mortality from cardiovascular (CV) disease remains despite statin therapy. This situation has generated an interest in finding novel approaches of combining statins with other lipid-lowering agents, or finding new lipid and non-lipid targets, such as triglycerides, high-density lipoprotein cholesterol (HDL-C), non-HDL-C, proprotein convertase subtilisin/kexin type 9 (PCSK9) gene, cholesterol ester transfer protein (CETP), lipoprotein (a), fibrinogen or C-reactive protein. The recent results from the IMProved Reduction of Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT) demonstrated an incremental clinical benefit when ezetimibe, a non-statin agent, was added to simvastatin therapy. The results from IMPROVE-IT revalidated the concept that low-density lipoprotein cholesterol (LDL-C) levels are a clinically relevant treatment goal. This trial also suggested that further decrease of LDL-C levels (53 vs. 70 mg/dl; 1.4 vs. 1.8 mmol/l) was more beneficial in lowering CV events. This "even lower is even better" evidence for LDL-C levels may influence future guidelines and the use of new drugs. Furthermore, these findings make ezetimibe a more realistic option to treat patients with statin intolerance or those who cannot achieve LDL-C targets with statin monotherapy.

  14. High-density convergent plasma sputtering device for a liquid metal target using an unheated glass plate

    NASA Astrophysics Data System (ADS)

    Motomura, T.; Tabaru, T.

    2018-06-01

    A high-density convergent plasma sputtering device has been developed for a liquid metal target, using an unheated glass plate. The convergent magnetic field lines, which are produced by an external solenoid coil and a permanent magnet positioned behind the liquid metal target, effectively transport high-density plasmas near the target. In this study, a liquid gallium target was sputtered with nitrogen plasmas, without additive gas required for depositing gallium nitride films on the unheated substrates. The deposition rate of the GaN film was estimated at ˜13 nm/min at a gas pressure of 0.2 Pa. A strong diffraction peak was observed along the GaN (002) axis, with the use of an unheated glass plate and a target-substrate distance of ˜45 mm.

  15. Measuring the Density of Different Materials by Using the Fast Neutron Beam and Associated Alpha Particle Technique

    NASA Astrophysics Data System (ADS)

    Sudac, D.; Nad, K.; Orlic, Z.; Obhodas, J.; Valkovic, V.

    2016-06-01

    It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the target position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays.

  16. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    PubMed

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Observation of ionization fronts in low density foam targets

    NASA Astrophysics Data System (ADS)

    Hoarty, D.; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.

    1999-05-01

    Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.

  18. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization.

    PubMed

    Wang, Sheng; Huang, Peng; Chen, Xiaoyuan

    2016-09-01

    Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re-activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Scaling up towards international targets for AIDS, tuberculosis, and malaria: contribution of global fund-supported programs in 2011-2015.

    PubMed

    Katz, Itamar; Komatsu, Ryuichi; Low-Beer, Daniel; Atun, Rifat

    2011-02-23

    The paper projects the contribution to 2011-2015 international targets of three major pandemics by programs in 140 countries funded by the Global Fund to Fight AIDS, Tuberculosis and Malaria, the largest external financier of tuberculosis and malaria programs and a major external funder of HIV programs in low and middle income countries. Estimates, using past trends, for the period 2011-2015 of the number of persons receiving antiretroviral (ARV) treatment, tuberculosis case detection using the internationally approved DOTS strategy, and insecticide-treated nets (ITNs) to be delivered by programs in low and middle income countries supported by the Global Fund compared to international targets established by UNAIDS, Stop TB Partnership, Roll Back Malaria Partnership and the World Health Organisation. Global Fund-supported programs are projected to provide ARV treatment to 5.5-5.8 million people, providing 30%-31% of the 2015 international target. Investments in tuberculosis and malaria control will enable reaching in 2015 60%-63% of the international target for tuberculosis case detection and 30%-35% of the ITN distribution target in sub-Saharan Africa. Global Fund investments will substantially contribute to the achievement by 2015 of international targets for HIV, TB and malaria. However, additional large scale international and domestic financing is needed if these targets are to be reached by 2015.

  20. Size-Dependency of the Surface Ligand Density of Liposomes Prepared by Post-insertion.

    PubMed

    Lee, Shang-Hsuan; Sato, Yusuke; Hyodo, Mamoru; Harashima, Hideyoshi

    2017-01-01

    In the active targeting of a drug delivery system (DDS), the density of the ligand on the functionalized liposome determines its affinity for binding to the target. To evaluate these densities on the surface of different sized liposomes, 4 liposomes with various diameters (188, 137, 70, 40 nm) were prepared and their surfaces were modified with fluorescently labeled ligand-lipid conjugates by the post-insertion method. Each liposomal mixture was fractionated into a series of fractions using size exclusion chromatography (SEC), and the resulting liposome fractions were precisely analyzed and the surface ligand densities calculated. The data collected using this methodology indicate that the density of the ligand on a particle is greatly dependent on the size of the liposome. This, in turn, indicates that smaller liposomes (75-40 nm) tend to possess higher densities. For developing active targeting systems, size and the density of the ligands are two important and independent factors that can affect the efficiency of a system as it relates to medical use.

  1. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  2. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in either the elastomer, or the aluminum, must be at least as big as 80% to 90% of width of the bulb of the seal before significant leakage occurs.

  3. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic centimeter), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic centimeter. Projectile incidence angles examined included 0 degrees, 45 degrees , and 60 degrees from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in either the elastomer, or the aluminum, must be at least as big as 80% to 90% of width of the bulb of the seal before significant leakage occurs.

  4. The roles of outlet density and norms in alcohol use disorder.

    PubMed

    Ahern, Jennifer; Balzer, Laura; Galea, Sandro

    2015-06-01

    Alcohol outlet density and norms shape alcohol consumption. However, due to analytic challenges we do not know: (a) if alcohol outlet density and norms also shape alcohol use disorder, and (b) whether they act in combination to shape disorder. We applied a new targeted minimum loss-based estimator for rare outcomes (rTMLE) to a general population sample from New York City (N = 4000) to examine the separate and combined relations of neighborhood alcohol outlet density and norms around drunkenness with alcohol use disorder. Alcohol use disorder was assessed using the World Mental Health Comprehensive International Diagnostic Interview (WMH-CIDI) alcohol module. Confounders included demographic and socioeconomic characteristics, as well as history of drinking prior to residence in the current neighborhood. Alcohol use disorder prevalence was 1.78%. We found a marginal risk difference for alcohol outlet density of 0.88% (95% CI 0.00-1.77%), and for norms of 2.05% (95% CI 0.89-3.21%), adjusted for confounders. While each exposure had a substantial relation with alcohol use disorder, there was no evidence of additive interaction between the exposures. Results indicate that the neighborhood environment shapes alcohol use disorder. Despite the lack of additive interaction, each exposure had a substantial relation with alcohol use disorder and our findings suggest that alteration of outlet density and norms together would likely be more effective than either one alone. Important next steps include development and testing of multi-component intervention approaches aiming to modify alcohol outlet density and norms toward reducing alcohol use disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  6. Dolphin biosonar target detection in noise: wrap up of a past experiment.

    PubMed

    Au, Whitlow W L

    2014-07-01

    The target detection capability of bottlenose dolphins in the presence of artificial masking noise was first studied by Au and Penner [J. Acoust. Soc. Am. 70, 687-693 (1981)] in which the dolphins' target detection threshold was determined as a function of the ratio of the echo energy flux density and the estimated received noise spectral density. Such a metric was commonly used in human psychoacoustics despite the fact that the echo energy flux density is not compatible with noise spectral density which is averaged intensity per Hz. Since the earlier detection in noise studies, two important parameters, the dolphin integration time applicable to broadband clicks and the dolphin's auditory filter shape, were determined. The inclusion of these two parameters allows for the estimation of the received energy flux density of the masking noise so that the dolphin target detection can now be determined as a function of the ratio of the received energy of the echo over the received noise energy. Using an integration time of 264 μs and an auditory bandwidth of 16.7 kHz, the ratio of the echo energy to noise energy at the target detection threshold is approximately 1 dB.

  7. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    NASA Astrophysics Data System (ADS)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit of gradient material designs. A macroscopic gradient can be achieved by varying the microstructure or the mesostructures of an object. The mesostructure interpretation allows for more design freedom since the mesostructures can be tuned to have non-isotropic material properties. A new algorithm called Bi-level Optimization of Topology using Targets (BOTT) seeks to find the best distribution of mesostructure designs throughout a single object in order to minimize an objective value. On the macro level, the BOTT algorithm optimizes the macro topology and gradient material properties within the object. The BOTT algorithm optimizes the material gradient by finding the best constitutive matrix at each location with the object. In order to enhance the likelihood that a mesostructure can be generated with the same equivalent constitutive matrix, the variability of the constitutive matrix is constrained to be an orthotropic material. The stiffness in the X and Y directions (of the base coordinate system) can change in addition to rotating the orthotropic material to align with the loading at each region. Second, the BOTT algorithm designs mesostructures with macroscopic properties equal to the target properties found in step one while at the same time the algorithm seeks to minimize material usage in each mesostructure. The mesostructure algorithm maximizes the strain energy of the mesostructures unit cell when a pseudo strain is applied to the cell. A set of experiments reveals the fundamental relationship between target cell density and the strain (or pseudo strain) applied to a unit cell and the output effective properties of the mesostructure. At low density, a few mesostructure unit cell design are possible, while at higher density the mesostructure unit cell designs have many possibilities. Therefore, at low densities the effective properties of the mesostructure are a step function of the applied pseudo strain. At high densities, the effective properties of the mesostructure are continuous function of the applied pseudo strain. Finally, the macro and mesostructure designs are coordinated so that the macro and meso levels agree on the material properties at each macro region. In addition, a coordination effort seeks to coordinate the boundaries of adjacent mesostructure designs so that the macro load path is transmitted from one mesostructure design to its neighbors. The BOTT algorithm has several advantages over existing algorithms within the literature. First, the BOTT algorithm significantly reduces the computational power required to run the algorithm. Second, the BOTT algorithm indirectly enforces a minimum mesostructure density constraint which increases the manufacturability of the final design. Third, the BOTT algorithm seeks to transfer the load from one mesostructure to its neighbors by coordinating the boundaries of adjacent mesostructure designs. However, the BOTT algorithm can still be improved since it may have difficulty converging due to the step function nature of the mesostructure design problem at low density.

  8. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Rodney Dale; Johnson, Jared A.; Collins, Jack Lee

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC 2), which is UC 1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UCmore » 2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90–92% of TD with full conversion of UC to UC 2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC 2. Lastly, the selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.« less

  9. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    NASA Astrophysics Data System (ADS)

    Hunt, R. D.; Johnson, J. A.; Collins, J. L.; McMurray, J. W.; Reif, T. J.; Brown, D. R.

    2018-01-01

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC2), which is UC1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UC2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90-92% of TD with full conversion of UC to UC2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC2. The selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.

  10. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    DOE PAGES

    Hunt, Rodney Dale; Johnson, Jared A.; Collins, Jack Lee; ...

    2017-10-12

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC 2), which is UC 1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UCmore » 2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90–92% of TD with full conversion of UC to UC 2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC 2. Lastly, the selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.« less

  11. Final report SI 08-SI-004: Fusion application targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biener, J; Kucheyev, S O; Wang, M Y

    2010-12-03

    Complex target structures are necessary to take full advantage of the unique laboratory environment created by inertial confinement fusion experiments. For example, uses-of-ignition targets that contain a thin layer of a low density nanoporous material inside a spherical ablator shell allow placing dopants in direct contact with the DT fuel. The ideal foam for this application is a low-density hydrocarbon foam that is strong enough to survive wetting with cryogenic hydrogen, and low enough in density (density less than {approx}30 mg/cc) to not reduce the yield of the target. Here, we discuss the fabrication foam-lined uses-of-ignition targets, and the developmentmore » of low-density foams that can be used for this application. Much effort has been directed over the last 20 years toward the development of spherical foam targets for direct-drive and fast-ignition experiments. In these targets, the spherical foam shell is used to define the shape of the cryogenic DT fuel layer, or acts as a surrogate to simulate the cryogenic fuel layer. These targets are fabricated from relatively high-density aerogels (>100 mg/cc) and coated with a few micron thick permeation barrier. With exception of the above mentioned fast ignition targets, the wall of these targets is typically larger than 100 microns. In contrast, the fusion application targets for indirect-drive experiments on NIF will require a much thinner foam shell surrounded by a much thicker ablator shell. The design requirements for both types of targets are compared in Table 1. The foam shell targets for direct-drive experiments can be made in large quantities and with reasonably high yields using an encapsulation technique pioneered by Takagi et al. in the early 90's. In this approach, targets are made by first generating unsupported foam shells using a triple-orifice droplet generator, followed by coating the dried foam shells with a thin permeation barrier. However, this approach is difficult, if not impossible, to transfer to the lower density and thinner wall foam shells required for indirect-drive uses-of-ignition targets for NIF that then would have to be coated with an at least hundred-micron-thick ablator film. So far, the thinnest shells that have been fabricated using the triple-orifice-droplet generator technique had a wall thickness of {approx}20 microns, but despite of being made from a higher-density foam formulation, the shells were mechanically very sensitive, difficult to dry, and showed large deviations from roundness. We thus decided to explore a different approach based on using prefabricated thick-walled spherical ablator shells as templates for the thin-walled foam shell. As in the case of the above mentioned encapsulation technique, the foam is made by sol-gel chemistry. However, our approach removes much the requirements on the mechanical stability of the foam shell as the foam shell is never handled in its free-standing form, and promises superior ablator uniformity and surface roughness. As discussed below, the success of this approach depends strongly on the availability of suitable aerogel chemistries (ideally pure hydrocarbon (CH)-based systems) with suitable rheological properties (high viscosity and high modulus near the gel point) that produce low-density and mechanically strong foams.« less

  12. Assessment of Template-Based Modeling of Protein Structure in CASP11

    PubMed Central

    Modi, Vivek; Xu, Qifang; Adhikari, Sam; Dunbrack, Roland L.

    2016-01-01

    We present the assessment of predictions submitted in the template-based modeling (TBM) category of CASP11 (Critical Assessment of Protein Structure Prediction). Model quality was judged on the basis of global and local measures of accuracy on all atoms including side chains. The top groups on 39 human-server targets based on model 1 predictions were LEER, Zhang, LEE, MULTICOM, and Zhang-Server. The top groups on 81 targets by server groups based on model 1 predictions were Zhang-Server, nns, BAKER-ROSETTASERVER, QUARK, and myprotein-me. In CASP11, the best models for most targets were equal to or better than the best template available in the Protein Data Bank, even for targets with poor templates. The overall performance in CASP11 is similar to the performance of predictors in CASP10 with slightly better performance on the hardest targets. For most targets, assessment measures exhibited bimodal probability density distributions. Multi-dimensional scaling of an RMSD matrix for each target typically revealed a single cluster with models similar to the target structure, with a mode in the GDT-TS density between 40 and 90, and a wide distribution of models highly divergent from each other and from the experimental structure, with density mode at a GDT-TS value of ~20. The models in this peak in the density were either compact models with entirely the wrong fold, or highly non-compact models. The results argue for a density-driven approach in future CASP TBM assessments that accounts for the bimodal nature of these distributions instead of Z-scores, which assume a unimodal, Gaussian distribution. PMID:27081927

  13. MO-FG-BRA-04: A Novel Time Weighted Density Correction for Stereotactic Lung Radiotherapy: A Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohatt, D; Malhotra, H

    Purpose: Conventional treatment plans for lung radiotherapy are created using either the free breathing (FB) scheme which represents the tumor at an arbitrary breathing phase of the patient’s respiratory cycle, or the average computed tomography (ACT) intensity projection over 10-binned phases. Neither method is entirely accurate because of the absence of time dependence of tumor movement. In the present “Hybrid” method, the HU of tumor in 3D space is determined by relative weighting of the HU of the tumor and lung in proportion to the time they spend at that location during the entire breathing cycle. Methods: A Quasar respiratorymore » motion phantom was employed to simulate lung tumor movement. Utilizing 4DCT image scans, volumetric modulated arc therapy (VMAT) plans were generated for three treatment planning scenarios which included conventional FB and ACT schemes, along with a third alternative Hybrid approach. Our internal target volume (ITV) hybrid structure was created using Boolean operation in Eclipse (ver. 11) treatment planning system, where independent sub-regions created by the gross tumor volume (GTV) overlap from the 10 motion phases were each assigned a time weighted CT value. The dose-volume-histograms (DVH) for each scheme were compared and analyzed. Results: Using our hybrid technique, we have demonstrated a reduction of 1.9% – 3.4% in total monitor units with respect to conventional treatment planning strategies, along with a 6 fold improvement in high dose spillage over the FB plan. The higher density ACT and Hybrid schemes also produced a slight enhancement in target conformity and reduction in low dose spillage. Conclusion: All treatment plans created in this study exceeded RTOG protocol criteria. Our results determine the free breathing approach yields an inaccurate account of the target treatment density. A significant decrease in unnecessary lung irradiation can be achieved by implementing Hybrid HU method with ACT method second best.« less

  14. Toxin activity assays, devices, methods and systems therefor

    DOEpatents

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  15. Development of the GDM system for imaging the internal structure of the Usu Cryptodome

    NASA Astrophysics Data System (ADS)

    Tanaka, H. K. M.; Kusagaya, T.; Taketa, A.; Oshima, H.; Maekawa, T.

    2012-04-01

    We developed a multilayer, scintillator based, segmented muon hodoscope whose number of layers can increase systematically by combining newly developed muon read out modules. The precise selection of muon trajectories from other cosmic ray background components are one of the most important processes for cosmic ray muon radiography. As the size of the target becomes larger, the muon path length in the target becomes longer, and thus the flux of the penetrating muon substantially decreases and the effect of the background (BG) noise becomes significant. The most probable source to create a BG track is the simultaneously arriving, vertical electromagnetic (EM) shower. When the EM shower hits only one point on each position sensitive detector (PSD), a hodoscope that consists of two PSD layers creates a fake muon track. This is because each shower particle is a charged particle and it is difficult for us to separate it from a muon. Another possible source degrading the quality of the measurement comes from the uncertainty in the muon spectrum model. Radiography using the propagation of muons utilizes a muon energy spectrum and a specific muon propagation model through matter. Conventionally, after passing through the target the integrated muon flux is compared with the muon flux directly from the sky to calculate the muon transmission. In this work, we attempted to reduce the vertical EM shower originated background events and to screen the low energy muons with energies below 10 GeV, by constructing a multi-layered, rotational muon hodoscope named GDM (gradient of density measurement). The maximum detectable thickness (MDT) of the GDM was designed to be 4 km.w.e. The trajectory of the cosmic-ray muons was measured by four or more PSD layers while the low energy muons were screened in the process of GDM analysis. We measured the internal structure of the 1910 cryptodome of Usu volcano located in Hokkaido, Japan during 290 hours with +/-2% precision in the density measurement. The obtained image is different from its conventional picture.

  16. Familial risk and sibling mentalization: Links with preschoolers' internalizing problems.

    PubMed

    Rodrigues, Michelle; Binnoon-Erez, Noam; Prime, Heather; Perlman, Michal; Jenkins, Jennifer M

    2017-09-01

    The current study explored whether older sibling mentalization moderated the relationship between familial risk for internalizing symptoms and the development of future internalizing problems in the younger siblings, referred to as target children. Data were collected on 397 older siblings at Time 1 (T1) when target children were newborn and their older siblings were on average 2.61 years old (SD = .75). Target children were on average 1.60 years old at Time 2 (T2). Internalizing problems were assessed via mother and partner reports. Familial risk was operationalized as the average of all older siblings' level of internalizing problems. Older sibling mentalization, indexed by internal state talk and reasoning, was observed and coded during a sibling pretend-play interaction at T2. Results revealed a significant interaction between familial risk of internalizing problems and older siblings' mentalizing abilities, showing that familial risk was related to target children's internalizing problems in the absence of sibling mentalization. Familial risk was not associated with target children's internalizing problems when siblings demonstrated mentalizing abilities. Findings support the need to consider sibling mentalization as a protective factor for children's internalizing problems. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Numerical Modelling of the Deep Impact Mission Experiment

    NASA Technical Reports Server (NTRS)

    Wuennemann, K.; Collins, G. S.; Melosh, H. J.

    2005-01-01

    NASA s Deep Impact Mission (launched January 2005) will provide, for the first time ever, insights into the interior of a comet (Tempel 1) by shooting a approx.370 kg projectile onto the surface of a comets nucleus. Although it is usually assumed that comets consist of a very porous mixture of water ice and rock, little is known about the internal structure and in particular the constitutive material properties of a comet. It is therefore difficult to predict the dimensions of the excavated crater. Estimates of the crater size are based on laboratory experiments of impacts into various target compositions of different densities and porosities using appropriate scaling laws; they range between 10 s of meters up to 250 m in diameter [1]. The size of the crater depends mainly on the physical process(es) that govern formation: Smaller sizes are expected if (1) strength, rather than gravity, limits crater growth; and, perhaps even more crucially, if (2) internal energy losses by pore-space collapse reduce the coupling efficiency (compaction craters). To investigate the effect of pore space collapse and strength of the target we conducted a suite of numerical experiments and implemented a novel approach for modeling porosity and the compaction of pores in hydrocode calculations.

  18. 78 FR 31944 - International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ...] International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of Pharmacopoeial Texts... ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on... evaluation of the Bulk Density and Tapped Density of Powders General Chapter harmonized text from each of the...

  19. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells.

    PubMed

    Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2015-08-01

    In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.

  20. 75 FR 40843 - International Conference on Harmonisation; Draft Guidance on Q4B Evaluation and Recommendation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... Texts for Use in the International Conference on Harmonisation Regions; Annex 13 on Bulk Density and... guidance entitled ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions... evaluation of the Bulk Density and Tapped Density of Powders General Chapter harmonized text from each of the...

  1. Vertical density profile and internal bond strength of wet-formed particleboard bonded with cellulose nanofibrils

    Treesearch

    John F. Hunt; Weiqi Leng; Mehdi Tajvidi

    2017-01-01

    In this study, the effects of cellulose nanofibrils (CNFs) ratio, press program, particle size, and density on the vertical density profile (VDP) and internal bond (IB) strength of the wet-formed particleboard were investigated. Results revealed that the VDP was significantly influenced by the press program. Pressing using a constant pressure (CP) press program...

  2. Development and characterization of plasma targets for controlled injection of electrons into laser-driven wakefields

    NASA Astrophysics Data System (ADS)

    Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2012-10-01

    Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.

  3. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    DOE PAGES

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; ...

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achievemore » areal densities in excess of 300 mg cm -2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.« less

  4. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion.

    PubMed

    Theobald, W; Solodov, A A; Stoeckl, C; Anderson, K S; Beg, F N; Epstein, R; Fiksel, G; Giraldez, E M; Glebov, V Yu; Habara, H; Ivancic, S; Jarrott, L C; Marshall, F J; McKiernan, G; McLean, H S; Mileham, C; Nilson, P M; Patel, P K; Pérez, F; Sangster, T C; Santos, J J; Sawada, H; Shvydky, A; Stephens, R B; Wei, M S

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm(-2) with a nanosecond-duration compression pulse--the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.

  5. Modelling the detachment dependence on strike point location in the small angle slot divertor (SAS) with SOLPS

    NASA Astrophysics Data System (ADS)

    Casali, Livia; Covele, Brent; Guo, Houyang

    2017-10-01

    The new Small Angle Slot (SAS) divertor in DIII-D is characterized by a shallow-angle target enclosed by a slot structure about the strike point (SP). SOLPS modelling results of SAS have demonstrated divertor closure's utility in widening the range of acceptable densities for adequate heat handling. An extensive database of runs has been built to study the detachment dependence on SP location in SAS. Density scans show that lower Te at lower upstream density occur when the SP is at the critical location in the slot. The cooling front spreads across the entire target at higher densities, in agreement with experimental Langmuir probe measurements. A localized increase of the atomic and molecular density takes place near the SP, which reduces the target incident power density and facilitates detachment at lower upstream density. Systematic scans of variables such as power, transport, and viscosity have been carried out to assess the detachment sensitivity. Therein, a positive role of the viscosity is found. This work supported by DOE Contract Number DE-FC02-04ER54698.

  6. The shape dependence of chameleon screening

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.; Moss, Adam; Stevenson, James A.

    2018-01-01

    Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological surveys and terrestrial experiments. In particular there has been much recent interest in searching for chameleon fifth forces in the laboratory. It is known that the chameleon force is less screened around non-spherical sources, but only the field profiles around a few simple shapes are known analytically. In this work we introduce a numerical code that solves for the chameleon field around arbitrary shapes with azimuthal symmetry placed in a spherical vacuum chamber. We find that deviations from spherical symmetry can increase the chameleon acceleration experienced by a test particle, and that the least screened objects are those which minimize some internal dimension. For the shapes considered in this work, keeping the mass, density and background environment fixed, the accelerations due to the source varied by a factor of ~ 3.

  7. Experimental investigation of adiabatic compression and heating using collision of an MHD-driven jet with a gas target cloud for magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Seo, Byonghoon; Li, Hui; Bellan, Paul

    2017-10-01

    We are studying magnetized target fusion using an experimental method where an imploding liner compressing a plasma is simulated by a high-speed MHD-driven plasma jet colliding with a gas target cloud. This has the advantage of being non-destructive so orders of magnitude more shots are possible. Since the actual density and temperature are much more modest than fusion-relevant values, the goal is to determine the scaling of the increase in density and temperature when an actual experimental plasma is adiabatically compressed. Two new-developed diagnostics are operating and providing data. The first new diagnostic is a fiber-coupled interferometer which measures line-integrated electron density not only as a function of time, but also as a function of position along the jet. The second new diagnostic is laser Thomson scattering which measures electron density and temperature at the location where the jet collides with the cloud. These diagnostics show that when the jet collides with a target cloud the jet slows down substantially and both the electron density and temperature increase. The experimental measurements are being compared with 3D MHD and hybrid kinetic numerical simulations that model the actual experimental geometry.

  8. Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity

    NASA Astrophysics Data System (ADS)

    Chen, Shaoyi; Florinas, Stelios; Teitgen, Abigail; Xu, Ze-Qi; Gao, Changshou; Wu, Herren; Kataoka, Kazunori; Cabral, Horacio; Christie, R. James

    2017-12-01

    Antibodies and antigen-binding fragments (Fabs) can be used to modify the surface of nanoparticles for enhanced target binding. In our previous work, site-specific conjugation of Fabs to polymeric micelles using conventional methods was limited to approximately 30% efficiency, possibly due to steric hindrance related to macromolecular reactants. Here, we report a new method that enables conjugation of Fabs onto a micelle surface in a controlled manner with up to quantitative conversion of nanoparticle reactive groups. Variation of (i) PEG spacer length in a heterofunctionalized cross-linker and (ii) Fab/polymer feed ratios resulted in production of nanoparticles with a range of Fab densities on the surface up to the theoretical maximum value. The biological impact of variable Fab density was evaluated in vitro with respect to cell uptake and cytotoxicity of a drug-loaded (SN38) targeted polymeric micelle bearing anti-EphA2 Fabs. Fab conjugation increased cell uptake and potency compared with non-targeted micelles, although a Fab density of 60% resulted in decreased uptake and potency of the targeted micelles. Altogether, our findings demonstrate that conjugation strategies can be optimized to allow control of Fab density on the surface of nanoparticles and also that Fab density may need to be optimized for a given cell-surface target to achieve the highest bioactivity.

  9. On the road to self-sputtering in high power impulse magnetron sputtering: particle balance and discharge characteristics

    NASA Astrophysics Data System (ADS)

    Huo, Chunqing; Lundin, Daniel; Raadu, Michael A.; Anders, André; Tomas Gudmundsson, Jon; Brenning, Nils

    2014-04-01

    The onset and development of self-sputtering (SS) in a high power impulse magnetron sputtering (HiPIMS) discharge have been studied using a plasma chemical model and a set of experimental data, taken with an aluminum target and argon gas. The model is tailored to duplicate the discharge in which the data are taken. The pulses are long enough to include both an initial transient and a following steady state. The model is used to unravel how the internal discharge physics evolves with pulse power and time, and how it is related to features in the discharge current-voltage-time characteristics such as current densities, maxima, kinks and slopes. The connection between the self-sputter process and the discharge characteristics is quantified and discussed in terms of three parameters: a critical target current density Jcrit based on the maximum refill rate of process (argon) gas above the target, an SS recycling factor ΠSS-recycle, and an approximation \\tilde{\\alpha} of the probabilities of ionization of species that come from the target (both sputtered metal and embedded argon atoms). For low power pulses, discharge voltages UD ⩽ 380 V with peak current densities below ≈ 0.2 A cm-2, the discharge is found to be dominated by process gas sputtering. In these pulses there is an initial current peak in time, associated with partial gas rarefaction, which is followed by a steady-state-like plateau in all parameters similar to direct current magnetron sputtering. In contrast, high power pulses, with UD ⩾ 500 V and peak current densities above JD ≈ 1.6 A cm-2, make a transition to a discharge mode where SS dominates. The transition is found not to be driven by process gas rarefaction which is only about 10% at this time. Maximum gas rarefaction is found later in time and always after the initial peak in the discharge current. With increasing voltage, and pulse power, the discharge can be described as following a route where the role of SS increases in four steps: process gas sputtering, gas-sustained SS, self-sustained SS and SS runaway. At the highest voltage, 1000 V, the discharge is very close to, but does not go into, the SS runaway mode. This absence of runaway is proposed to be connected to an unexpected finding: that twice ionized ions of the target species play almost no role in this discharge, not even at the highest powers. This reduces ionization by secondary-emitted energetic electrons almost to zero in the highest power range of the discharge.

  10. 76 FR 19517 - Orders Limiting Scheduled Operations at John F. Kennedy International Airport, LaGuardia Airport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... Liberty International Airport; High Density Rule at Reagan National Airport AGENCY: Federal Aviation... support for the ATA request for waiver. FAA Analysis Under the FAA's High Density Rule and Orders limiting...

  11. Impact of an individualist vs. collectivist context on the social valorization of internal explanations.

    PubMed

    Testé, Benoît

    2012-01-01

    The theory of the norm of internality emphasizes the role of Western individualism in the normativity of internal explanations. The present study examines the link between the social value accorded to targets expressing internal vs. external explanations and individualist vs. collectivist contexts. Sixty-three male and female French management sciences students evaluated two targets (internal vs. external) in a simulated recruitment situation. The job vacancy was partially manipulated to create individualist vs. collectivist contexts. Participants were asked to state whether or not they would recruit the targets and to describe the targets on traits relating to social utility (market value) and social desirability (likeability). As expected, the results showed that the effect of the targets' internality on recruitment judgments and perceived social utility was stronger in the individualist context than in the collectivist context. However, the analysis also revealed that the participant's gender moderated the impact of the context on the evaluation of the targets. The results showed that the context strongly affected the men's judgments, whereas it had no effect on the women's judgments.

  12. Vacuum compatible miniature CCD camera head

    DOEpatents

    Conder, Alan D.

    2000-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  13. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  14. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  15. Investigations of internal noise levels for different target sizes, contrasts, and noise structures

    NASA Astrophysics Data System (ADS)

    Han, Minah; Choi, Shinkook; Baek, Jongduk

    2014-03-01

    To describe internal noise levels for different target sizes, contrasts, and noise structures, Gaussian targets with four different sizes (i.e., standard deviation of 2,4,6 and 8) and three different noise structures(i.e., white, low-pass, and highpass) were generated. The generated noise images were scaled to have standard deviation of 0.15. For each noise type, target contrasts were adjusted to have the same detectability based on NPW, and the detectability of CHO was calculated accordingly. For human observer study, 3 trained observers performed 2AFC detection tasks, and correction rate, Pc, was calculated for each task. By adding proper internal noise level to numerical observer (i.e., NPW and CHO), detectability of human observer was matched with that of numerical observers. Even though target contrasts were adjusted to have the same detectability of NPW observer, detectability of human observer decreases as the target size increases. The internal noise level varies for different target sizes, contrasts, and noise structures, demonstrating different internal noise levels should be considered in numerical observer to predict the detection performance of human observer.

  16. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  17. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells.

    PubMed

    Setzler, Brian P; Zhuang, Zhongbin; Wittkopf, Jarrid A; Yan, Yushan

    2016-12-06

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW -1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  18. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  19. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Newhauser, Wayne D.

    2009-03-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material.

  20. Linear increases in carbon nanotube density through multiple transfer technique.

    PubMed

    Shulaker, Max M; Wei, Hai; Patil, Nishant; Provine, J; Chen, Hong-Yu; Wong, H-S P; Mitra, Subhasish

    2011-05-11

    We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.

  1. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    PubMed

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  2. Study rationale and design of OPTIMISE, a randomised controlled trial on the effect of benchmarking on quality of care in type 2 diabetes mellitus.

    PubMed

    Nobels, Frank; Debacker, Noëmi; Brotons, Carlos; Elisaf, Moses; Hermans, Michel P; Michel, Georges; Muls, Erik

    2011-09-22

    To investigate the effect of physician- and patient-specific feedback with benchmarking on the quality of care in adults with type 2 diabetes mellitus (T2DM). Study centres in six European countries were randomised to either a benchmarking or control group. Physicians in both groups received feedback on modifiable outcome indicators (glycated haemoglobin [HbA1c], glycaemia, total cholesterol, high density lipoprotein-cholesterol, low density lipoprotein [LDL]-cholesterol and triglycerides) for each patient at 0, 4, 8 and 12 months, based on the four times yearly control visits recommended by international guidelines. The benchmarking group also received comparative results on three critical quality indicators of vascular risk (HbA1c, LDL-cholesterol and systolic blood pressure [SBP]), checked against the results of their colleagues from the same country, and versus pre-set targets. After 12 months of follow up, the percentage of patients achieving the pre-determined targets for the three critical quality indicators will be assessed in the two groups. Recruitment was completed in December 2008 with 3994 evaluable patients. This paper discusses the study rationale and design of OPTIMISE, a randomised controlled study, that will help assess whether benchmarking is a useful clinical tool for improving outcomes in T2DM in primary care. NCT00681850.

  3. Study rationale and design of OPTIMISE, a randomised controlled trial on the effect of benchmarking on quality of care in type 2 diabetes mellitus

    PubMed Central

    2011-01-01

    Background To investigate the effect of physician- and patient-specific feedback with benchmarking on the quality of care in adults with type 2 diabetes mellitus (T2DM). Methods Study centres in six European countries were randomised to either a benchmarking or control group. Physicians in both groups received feedback on modifiable outcome indicators (glycated haemoglobin [HbA1c], glycaemia, total cholesterol, high density lipoprotein-cholesterol, low density lipoprotein [LDL]-cholesterol and triglycerides) for each patient at 0, 4, 8 and 12 months, based on the four times yearly control visits recommended by international guidelines. The benchmarking group also received comparative results on three critical quality indicators of vascular risk (HbA1c, LDL-cholesterol and systolic blood pressure [SBP]), checked against the results of their colleagues from the same country, and versus pre-set targets. After 12 months of follow up, the percentage of patients achieving the pre-determined targets for the three critical quality indicators will be assessed in the two groups. Results Recruitment was completed in December 2008 with 3994 evaluable patients. Conclusions This paper discusses the study rationale and design of OPTIMISE, a randomised controlled study, that will help assess whether benchmarking is a useful clinical tool for improving outcomes in T2DM in primary care. Trial registration NCT00681850 PMID:21939502

  4. MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples

    EPA Science Inventory

    DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from ...

  5. Drug 'hot-spots', alcohol availability and violence.

    PubMed

    Gorman, D M; Zhu, Li; Horel, Scott

    2005-11-01

    Ecological studies have shown a relationship between alcohol outlet densities and violence and between the location of crimes related to illicit drug use (so-called 'hot spots') and violence. To date, no study has compared the effects of alcohol outlets and drug hot spots on rates of violence. The present study examined this relationship in the City of Houston, Texas. An ecological study design was employed, using a sample of 439 census tracts from Houston, Texas. Neighborhood socio-structural, alcohol outlet density, drug crime density and violent crime density data were collected from archival sources and analyzed using multivariate and spatial statistics. Using ordinary least-squares analysis, the neighborhood socio-structural covariates explained about 40% of the variability in violent crime. Adding alcohol outlet density in the target census tracts explained an additional 6%, while the addition of drug crime density explained an additional 32%. In the final model, that controlled for the effects of autocorrelated error, both drug crime density in the target and adjacent census tracts remained significant predictors of violent crime, while only off-sale density in the target census tract remained significant in the model. The findings indicate that drug crime density explained a greater amount of variance in violent crime rates than the alcohol outlet density. The methodological and policy implications of these findings are discussed, along with the shortcomings of the analysis presented.

  6. Effect of target composition on proton acceleration in ultraintense laser-thin foil interaction

    NASA Astrophysics Data System (ADS)

    Liu, Qingcao; Liu, Meng; Yu, Tongpu; Ding, Pengji; Liu, Zuoye; Sun, Shaohua; Liu, Xiaoliang; Lu, Xing; Guo, Zeqin; Hu, Bitao

    2012-09-01

    The interactions of ultraintense circularly polarized laser pulses with a mixed solid target and a double-layer target are studied by two-dimensional particle-in-cell simulations. Different carbon and proton compositions in the targets are used in the simulations. It is shown that the proton acceleration mechanisms in both targets are very sensitive to the ion density ratios between protons and carbon ions. For a mixed solid target, a relatively low proton density gives rise to monoenergetic peaks in the proton energy spectrum while a high proton density leads to a large cut-off energy and wide energy spread. With the increase of the ratio, the so-called directed-Coulomb-explosion becomes dominated over the radiation pressure. Surprisingly, for a double-layer target with a front proton layer and an ultrathin rear carbon layer, a highly monoenergetic proton beam with a peak energy of 1.7 GeV/u, an energy spread of ˜4%, and a divergency angle of 2° can be obtained, which might have diverse applications in medical therepy and proton imaging in future.

  7. Confinement & Stability in MAST

    NASA Astrophysics Data System (ADS)

    Akers, Rob

    2001-10-01

    Transition to H-mode has been achieved in the MAST spherical tokamak (ST) for both ohmically and neutral beam heated plasmas (P_NBI ~ 0.5-1.5MW), resulting in double-null diverted discharges containing both regular and irregular edge localised modes (ELMs). The observed L-H power threshold is ~10 times higher than predicted by established empirical scalings. L-H transition in MAST is accompanied by a sharp increase in edge density gradient, the efficient conversion of internal electron Bernstein waves into free space waves, the onset and saturation of edge poloidal rotation and a marked decrease in turbulence. During ELM free periods, a reduction in outboard power deposition width is observed using a Langmuir probe array. A novel divertor structure has been installed to counter the resulting increase in target heat-flux by applying a toroidally varying potential to the divertor plasma, theory suggesting that convective broadening of the scrape off layer will take place. Global confinement in H-mode is found to routinely exceed the international IPB(y,2) scaling, even for discharges approaching the Greenwald density. In an attempt to further extend the density range (densities in excess of Greenwald having been achieved for plasma currents up to 0.8MA) a multi-pellet injector has been installed at the low-field-side. In addition, high field side fuelling can be supplied via a gas-feed located at the centre-column mid-plane, this technique having been found to significantly enhance H-mode accessibility and quality. A range of stability issues will be discussed, including vertical displacement events, the rich variety of high frequency MHD seen in MAST and the physics of the Neoclassical Tearing Mode. This work was funded by the UK Department of Trade and Industry and by EURATOM. The NBI equipment is on loan from ORNL and the pellet injector was provided by FOM.

  8. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    PubMed Central

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement. PMID:26739230

  9. Particle therapy of moving targets—the strategies for tumour motion monitoring and moving targets irradiation

    PubMed Central

    2016-01-01

    Particle therapy of moving targets is still a great challenge. The motion of organs situated in the thorax and abdomen strongly affects the precision of proton and carbon ion radiotherapy. The motion is responsible for not only the dislocation of the tumour but also the alterations in the internal density along the beam path, which influence the range of particle beams. Furthermore, in case of pencil beam scanning, there is an interference between the target movement and dynamic beam delivery. This review presents the strategies for tumour motion monitoring and moving target irradiation in the context of hadron therapy. Methods enabling the direct determination of tumour position (fluoroscopic imaging of implanted radio-opaque fiducial markers, electromagnetic detection of inserted transponders and ultrasonic tumour localization systems) are presented. Attention is also drawn to the techniques which use external surrogate motion for an indirect estimation of target displacement during irradiation. The role of respiratory-correlated CT [four-dimensional CT (4DCT)] in the determination of motion pattern prior to the particle treatment is also considered. An essential part of the article is the review of the main approaches to moving target irradiation in hadron therapy: gating, rescanning (repainting), gated rescanning and tumour tracking. The advantages, drawbacks and development trends of these methods are discussed. The new accelerators, called “cyclinacs”, are presented, because their application to particle therapy will allow making a breakthrough in the 4D spot scanning treatment of moving organs. PMID:27376637

  10. Engineering nanoparticles to overcome barriers to immunotherapy

    PubMed Central

    Toy, Randall

    2016-01-01

    Abstract Advances in immunotherapy have led to the development of a variety of promising therapeutics, including small molecules, proteins and peptides, monoclonal antibodies, and cellular therapies. Despite this wealth of new therapeutics, the efficacy of immunotherapy has been limited by challenges in targeted delivery and controlled release, that is, spatial and temporal control on delivery. Particulate carriers, especially nanoparticles have been widely studied in drug delivery and vaccine research and are being increasingly investigated as vehicles to deliver immunotherapies. Nanoparticle‐mediated drug delivery could provide several benefits, including control of biodistribution and transport kinetics, the potential for site‐specific targeting, immunogenicity, tracking capability using medical imaging, and multitherapeutic loading. There are also a unique set of challenges, which include nonspecific uptake by phagocytic cells, off‐target biodistribution, permeation through tissue (transport limitation), nonspecific immune‐activation, and poor control over intracellular localization. This review highlights the importance of understanding the relationship between a nanoparticle's size, shape, charge, ligand density and elasticity to its vascular transport, biodistribution, cellular internalization, and immunogenicity. For the design of an effective immunotherapy, we highlight the importance of selecting a nanoparticle's physical characteristics (e.g., size, shape, elasticity) and its surface functionalization (e.g., chemical or polymer modifications, targeting or tissue‐penetrating peptides) with consideration of its reactivity to the targeted microenvironment (e.g., targeted cell types, use of stimuli‐sensitive biomaterials, immunogenicity). Applications of this rational nanoparticle design process in vaccine development and cancer immunotherapy are discussed. PMID:29313006

  11. Systems and Methods for Correcting Optical Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Yang, Ye (Inventor); Shear, Michael A. (Inventor); Soller, Babs R. (Inventor); Soyemi, Olusola O. (Inventor)

    2014-01-01

    We disclose measurement systems and methods for measuring analytes in target regions of samples that also include features overlying the target regions. The systems include: (a) a light source; (b) a detection system; (c) a set of at least first, second, and third light ports which transmit light from the light source to a sample and receive and direct light reflected from the sample to the detection system, generating a first set of data including information corresponding to both an internal target within the sample and features overlying the internal target, and a second set of data including information corresponding to features overlying the internal target; and (d) a processor configured to remove information characteristic of the overlying features from the first set of data using the first and second sets of data to produce corrected information representing the internal target.

  12. Systems and methods for correcting optical reflectance measurements

    NASA Technical Reports Server (NTRS)

    Yang, Ye (Inventor); Soller, Babs R. (Inventor); Soyemi, Olusola O. (Inventor); Shear, Michael A. (Inventor)

    2009-01-01

    We disclose measurement systems and methods for measuring analytes in target regions of samples that also include features overlying the target regions. The systems include: (a) a light source; (b) a detection system; (c) a set of at least first, second, and third light ports which transmit light from the light source to a sample and receive and direct light reflected from the sample to the detection system, generating a first set of data including information corresponding to both an internal target within the sample and features overlying the internal target, and a second set of data including information corresponding to features overlying the internal target; and (d) a processor configured to remove information characteristic of the overlying features from the first set of data using the first and second sets of data to produce corrected information representing the internal target.

  13. Hot spot formation and stagnation properties in simulations of direct-drive NIF implosions

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Obenschain, Stephen P.

    2016-05-01

    We investigate different proposed methods of increasing the hot spot energy and radius in inertial confinement fusion implosions. In particular, shock mistiming (preferentially heating the inner edge of the target's fuel) and increasing the initial vapor gas density are investigated as possible control mechanisms. We find that only the latter is effective in substantially increasing the hot spot energy and dimensions while achieving ignition. In all cases an increase in the hot spot energy is accompanied by a decrease in the hot spot energy density (pressure) and both the yield and the gain of the target drop substantially. 2D simulations of increased vapor density targets predict an increase in the robustness of the target with respect to surface perturbations but are accompanied by significant yield degradation.

  14. The Internationalization of Industry. Annex B. Offshore Production in the International Semiconductor Industry,

    DTIC Science & Technology

    1981-11-01

    essence of these arrangements is specialization based in international differentials in * 379 the costs of labor services. The availability of low...of electronic equipment vary with the complexity and cost of the equipment, a differentiated market for chips of varying densities, for use in...level of chip density, while more complex products will be most economically produced with higher levels of chip density. Thuse a differentiated

  15. Ambient mass density effects on the International Space Station (ISS) microgravity experiments

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Smith, R. E.

    1996-01-01

    The Marshall engineering thermosphere model was specified by NASA to be used in the design, development and testing phases of the International Space Station (ISS). The mass density is the atmospheric parameter which most affects the ISS. Under simplifying assumptions, the critical ambient neutral density required to produce one micro-g on the ISS is estimated using an atmospheric drag acceleration equation. Examples are presented for the critical density versus altitude, and for the critical density that is exceeded at least once a month and once per orbit during periods of low and high solar activity. An analysis of the ISS orbital decay is presented.

  16. Inertial confinement fusion and fast ignitor studies

    NASA Astrophysics Data System (ADS)

    Willi, O.; Barringer, L.; Bell, A.; Borghesi, M.; Davies, J.; Gaillard, R.; Iwase, A.; MacKinnon, A.; Malka, G.; Meyer, C.; Nuruzzaman, S.; Taylor, R.; Vickers, C.; Hoarty, D.; Gobby, P.; Johnson, R.; Watt, R. G.; Blanchot, N.; Canaud, B.; Croso, H.; Meyer, B.; Miquel, J. L.; Reverdin, C.; Pukhov, A.; Meyer-ter-Vehn, J.

    2000-03-01

    Laser imprinting has been studied and, in particular, saturation of areal density perturbations induced by near single mode laser imprinting was observed. Several issues important for the foam buffered direct drive scheme have been investigated. These studies included measurements of the absolute levels of stimulated Brillouin and Raman scattering observed from laser irradiated low density foam targets, either bare or overcoated with a thin layer of gold. A novel scheme is proposed to increase the pressure in indirectly driven targets. By heating a foam supersonically that is attached to a solid target the pressure generated is not only the ablation pressure but also the combined pressure due to ablation at the foam-foil interface and the heated foam material. Planar brominated plastic foil targets overcoated with a low density foam were irradiated by a soft X ray pulse. The pressure was obtained by comparing the rear side trajectory of the driven target observed by soft X ray radiography with one dimensional radiation hydrodynamic simulations. Observations were also carried out of the transition from supersonic to subsonic propagation of an ionization front in low density chlorinated foam targets irradiated by an intense soft X ray pulse. The diagnostic for these measurements was K shell point projection absorption spectroscopy. In the fast ignitor area the channelling and guiding of picosecond laser pulses through underdense plasmas, preformed density channels and microtubes were investigated. It was observed that a large fraction of the incident laser energy can be propagated. Megagauss magnetic fields were measured, with a polarimetric technique, during and after propagation of intense picosecond pulses in preionized plasmas. Two types of toroidal fields, of opposite orientation, were detected. In addition, the production and propagation of an electron beam through solid glass targets irradiated at intensities above 1019W/cm2 were observed using optical probing techniques.

  17. US Food Industry Progress During the National Salt Reduction Initiative: 2009-2014.

    PubMed

    Curtis, Christine J; Clapp, Jenifer; Niederman, Sarah A; Ng, Shu Wen; Angell, Sonia Y

    2016-10-01

    To assess the US packaged food industry's progress from 2009 to 2014, when the National Salt Reduction Initiative had voluntary, category-specific sodium targets with the goal of reducing sodium in packaged and restaurant foods by 25% over 5 years. Using the National Salt Reduction Initiative Packaged Food Database, we assessed target achievement and change in sales-weighted mean sodium density in top-selling products in 61 food categories in 2009 (n = 6336), 2012 (n = 6898), and 2014 (n = 7396). In 2009, when the targets were established, no categories met National Salt Reduction Initiative 2012 or 2014 targets. By 2014, 26% of categories met 2012 targets and 3% met 2014 targets. From 2009 to 2014, the sales-weighted mean sodium density declined significantly in almost half of all food categories (43%; 26/61 categories). Overall, sales-weighted mean sodium density declined significantly (by 6.8%; P < .001). National target setting with monitoring through a partnership of local, state, and national health organizations proved feasible, but industry progress was modest. The US Food and Drug Administration's proposed voluntary targets will be an important step in achieving more substantial sodium reductions.

  18. Dendrimer Nanocarriers for Transport Modulation Across Models of the Pulmonary Epithelium

    PubMed Central

    2015-01-01

    The purpose of this study was to determine the effect of PEGylation on the interaction of poly(amidoamine) (PAMAM) dendrimer nanocarriers (DNCs) with in vitro and in vivo models of the pulmonary epithelium. Generation-3 PAMAM dendrimers with varying surface densities of PEG 1000 Da were synthesized and characterized. The results revealed that the apical to basolateral transport of DNCs across polarized Calu-3 monolayers increases with an increase in PEG surface density. DNC having the greatest number of PEG groups (n = 25) on their surface traversed at a rate 10-fold greater than its non-PEGylated counterpart, in spite of their larger size. This behavior was attributed to a significant reduction in charge density upon PEGylation. We also observed that PEGylation can be used to modulate cellular internalization. The total uptake of PEG-free DNC into polarized Calu-3 monolayers was 12% (w/w) vs 2% (w/w) for that with 25 PEGs. Polarization is also shown to be of great relevance in studying this in vitro model of the lung epithelium. The rate of absorption of DNCs administered to mice lungs increased dramatically when conjugated with 25 PEG groups, thus supporting the in vitro results. The exposure obtained for the DNC with 25PEG was determined to be very high, with peak plasma concentrations reaching 5 μg·mL–1 within 3 h. The combined in vitro and in vivo results shown here demonstrate that PEGylation can be potentially used to modulate the internalization and transport of DNCs across the pulmonary epithelium. Modified dendrimers thereby may serve as a valuable platform that can be tailored to target the lung tissue for treating local diseases, or the circulation, using the lung as pathway to the bloodstream, for systemic delivery. PMID:25455560

  19. Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium.

    PubMed

    Bharatwaj, Balaji; Mohammad, Abdul Khader; Dimovski, Radovan; Cassio, Fernando L; Bazito, Reinaldo C; Conti, Denise; Fu, Qiang; Reineke, Joshua; da Rocha, Sandro R P

    2015-03-02

    The purpose of this study was to determine the effect of PEGylation on the interaction of poly(amidoamine) (PAMAM) dendrimer nanocarriers (DNCs) with in vitro and in vivo models of the pulmonary epithelium. Generation-3 PAMAM dendrimers with varying surface densities of PEG 1000 Da were synthesized and characterized. The results revealed that the apical to basolateral transport of DNCs across polarized Calu-3 monolayers increases with an increase in PEG surface density. DNC having the greatest number of PEG groups (n = 25) on their surface traversed at a rate 10-fold greater than its non-PEGylated counterpart, in spite of their larger size. This behavior was attributed to a significant reduction in charge density upon PEGylation. We also observed that PEGylation can be used to modulate cellular internalization. The total uptake of PEG-free DNC into polarized Calu-3 monolayers was 12% (w/w) vs 2% (w/w) for that with 25 PEGs. Polarization is also shown to be of great relevance in studying this in vitro model of the lung epithelium. The rate of absorption of DNCs administered to mice lungs increased dramatically when conjugated with 25 PEG groups, thus supporting the in vitro results. The exposure obtained for the DNC with 25PEG was determined to be very high, with peak plasma concentrations reaching 5 μg·mL(-1) within 3 h. The combined in vitro and in vivo results shown here demonstrate that PEGylation can be potentially used to modulate the internalization and transport of DNCs across the pulmonary epithelium. Modified dendrimers thereby may serve as a valuable platform that can be tailored to target the lung tissue for treating local diseases, or the circulation, using the lung as pathway to the bloodstream, for systemic delivery.

  20. Locating the optimal internal jugular target site for central venous line placement.

    PubMed

    Giordano, Chris R; Murtagh, Kevin R; Mills, Jaime; Deitte, Lori A; Rice, Mark J; Tighe, Patrick J

    2016-09-01

    Historically, the placement of internal jugular central venous lines has been accomplished by using external landmarks to help identify target-rich locations in order to steer clear of dangerous structures. This paradigm is largely being displaced, as ultrasound has become routine practice, raising new considerations regarding target locations and risk mitigation. Most human anatomy texts depict the internal jugular vein as a straight columnar structure that exits the cranial vault the same size that it enters the thoracic cavity. We dispute the notion that the internal jugulars are cylindrical columns that symmetrically descend into the thoracic cavity, and purport that they are asymmetric conical structures. The primary aim of this study was to evaluate 100 consecutive adult chest and neck computed tomography exams that were imaged at an inpatient hospital. We measured the internal jugular on the left and right sides at three different levels to look for differences in size as the internal jugular descends into the thoracic cavity. We revealed that as the internal jugular descends into the thorax, the area of the vessel increases and geometrically resembles a conical structure. We also reconfirmed that the left internal jugular is smaller than the right internal jugular. Understanding that the largest target area for central venous line placement is the lower portion of the right internal jugular vein will help to better target vascular access for central line placement. This is the first study the authors are aware of that depicts the internal jugular as a conical structure as opposed to the commonly depicted symmetrical columnar structure frequently illustrated in anatomy textbooks. This target area does come with additional risk, as the closer you get to the thoracic cavity, the greater the chances for lung injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues. Electronic supplementary information (ESI) available: Movie showing simulation renderings of targeted (ρL = 1820/μm2, KD = 120 μM) nanoparticle selective binding to cancer (ρR = 256/μm2) vs. healthy (ρR = 64/μm2) cell surfaces. Target membrane proteins have linear color scale depending on binding energy ranging from white when unbound (URL = 0) to red when tightly bound (URL = UM). See DOI: 10.1039/c5nr03691g

  2. Sensitivity of fish density estimates to standard analytical procedures applied to Great Lakes hydroacoustic data

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Rudstam, Lars G.; Yule, Daniel L.; Warner, David M.; Schaner, Ted; Pientka, Bernie; Deller, John W.; Waterfield, Holly A.; Witzel, Larry D.; Sullivan, Patrick J.

    2013-01-01

    Standardized methods of data collection and analysis ensure quality and facilitate comparisons among systems. We evaluated the importance of three recommendations from the Standard Operating Procedure for hydroacoustics in the Laurentian Great Lakes (GLSOP) on density estimates of target species: noise subtraction; setting volume backscattering strength (Sv) thresholds from user-defined minimum target strength (TS) of interest (TS-based Sv threshold); and calculations of an index for multiple targets (Nv index) to identify and remove biased TS values. Eliminating noise had the predictable effect of decreasing density estimates in most lakes. Using the TS-based Sv threshold decreased fish densities in the middle and lower layers in the deepest lakes with abundant invertebrates (e.g., Mysis diluviana). Correcting for biased in situ TS increased measured density up to 86% in the shallower lakes, which had the highest fish densities. The current recommendations by the GLSOP significantly influence acoustic density estimates, but the degree of importance is lake dependent. Applying GLSOP recommendations, whether in the Laurentian Great Lakes or elsewhere, will improve our ability to compare results among lakes. We recommend further development of standards, including minimum TS and analytical cell size, for reducing the effect of biased in situ TS on density estimates.

  3. Microdosimetric Analysis Confirms Similar Biological Effectiveness of External Exposure to Gamma-Rays and Internal Exposure to 137Cs, 134Cs, and 131I

    PubMed Central

    Sato, Tatsuhiko; Manabe, Kentaro; Hamada, Nobuyuki

    2014-01-01

    The risk of internal exposure to 137Cs, 134Cs, and 131I is of great public concern after the accident at the Fukushima-Daiichi nuclear power plant. The relative biological effectiveness (RBE, defined herein as effectiveness of internal exposure relative to the external exposure to γ-rays) is occasionally believed to be much greater than unity due to insufficient discussions on the difference of their microdosimetric profiles. We therefore performed a Monte Carlo particle transport simulation in ideally aligned cell systems to calculate the probability densities of absorbed doses in subcellular and intranuclear scales for internal exposures to electrons emitted from 137Cs, 134Cs, and 131I, as well as the external exposure to 662 keV photons. The RBE due to the inhomogeneous radioactive isotope (RI) distribution in subcellular structures and the high ionization density around the particle trajectories was then derived from the calculated microdosimetric probability density. The RBE for the bystander effect was also estimated from the probability density, considering its non-linear dose response. The RBE due to the high ionization density and that for the bystander effect were very close to 1, because the microdosimetric probability densities were nearly identical between the internal exposures and the external exposure from the 662 keV photons. On the other hand, the RBE due to the RI inhomogeneity largely depended on the intranuclear RI concentration and cell size, but their maximum possible RBE was only 1.04 even under conservative assumptions. Thus, it can be concluded from the microdosimetric viewpoint that the risk from internal exposures to 137Cs, 134Cs, and 131I should be nearly equivalent to that of external exposure to γ-rays at the same absorbed dose level, as suggested in the current recommendations of the International Commission on Radiological Protection. PMID:24919099

  4. 10th International Conference of Computational Methods in Sciences and Engineering

    DTIC Science & Technology

    2014-12-22

    Density Modulation ", in the 10th International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2014), April 4-7, 2014, Athens...ENGINEERING We organized the symposium, “Electronic Transport Properties in the Presence of Density Modulation ,” in the 10th International...Superlattices by Coplanar Waveguide Dr. Endo reported his recent experimental work on thermoelectric power of two-dimensional electron gases in the quantum

  5. Pseudolocal tomography

    DOEpatents

    Katsevich, Alexander J.; Ramm, Alexander G.

    1996-01-01

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density.

  6. Pseudolocal tomography

    DOEpatents

    Katsevich, A.J.; Ramm, A.G.

    1996-07-23

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density. 7 figs.

  7. Frustration-induced internal stresses are responsible for quasilocalized modes in structural glasses

    NASA Astrophysics Data System (ADS)

    Lerner, Edan; Bouchbinder, Eran

    2018-03-01

    It has been recently shown [E. Lerner, G. Düring, and E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016), 10.1103/PhysRevLett.117.035501] that the nonphononic vibrational modes of structural glasses at low frequencies ω are quasilocalized and follow a universal density of states D (ω ) ˜ω4 . Here we show that the gapless nature of the observed density of states depends on the existence of internal stresses that generically emerge in glasses due to frustration, thus elucidating a basic element underlying this universal behavior. Similarly to jammed particulate packings, low-frequency modes in structural glasses emerge from a balance between a local elasticity term and an internal stress term in the dynamical matrix, where the difference between them is orders of magnitude smaller than their typical magnitude. By artificially reducing the magnitude of internal stresses in a computer glass former in three dimensions, we show that a gap is formed in the density of states below which no vibrational modes exist, thus demonstrating the crucial importance of internal stresses. Finally, we show that while better annealing the glass upon cooling from the liquid state significantly reduces its internal stresses, the self-organizational processes during cooling render the gapless D (ω ) ˜ω4 density of state unaffected.

  8. Studies of uranium carbide targets of a high density

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Alyakrinskiy, O.; Barbui, M.; Barzakh, A. E.; Dubois, M.; Eleon, C.; Essabaa, S.; Fedorov, D. V.; Gaubert, G.; Ionan, A. M.; Ivanov, V. S.; Jardin, P.; Lau, C.; Leroy, R.; Lhersonneau, G.; Mezilev, K. A.; Mhamed, C.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Saint Laurent, M. G.; Stroe, L.; Tecchio, L. B.; Tonezzer, M.; Villari, A. C. C.; Volkov, Yu. M.

    2008-10-01

    Production of Cs and Fr isotopes from uranium carbide targets of a high density has been investigated at IRIS (Investigation Radioactive Isotopes at Synchrocyclotron), Gatchina. The UC target material with a density of 12 g/cm3 was prepared in a form of pellets. Two targets were tested on-line under the same temperature conditions: (a) a reference small target with a thickness of 4.5 g/cm2; (b) a heavier (so called intermediate) target with a thickness of 91 g/cm2. Yields and release efficiencies of nuclides with half-lives from some minutes to some milliseconds produced by 1 GeV protons in these targets are presented. It is remarkable that yields, even those of very short-lived isotopes such as 214Fr (T1/2 = 5 ms) and 219Fr (T1/2 = 20 ms), increase proportionally to the target thickness. A one month off-line heating test of the 91 g/cm2 target at a temperature of 2000 °C has been carried out successfully. The yields and release efficiencies of Cs and Fr measured on-line before and after the heating test coincided within the limits of measurement errors, thereby demonstrating the conservation of the target unit parameters. Based on these very promising results, a heavier target with a mass about 0.7 kg is prepared presently at IRIS.

  9. Fifth International Conference on High Energy Density Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, Farhat

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  10. A review of low density porous materials used in laser plasma experiments

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

    2018-03-01

    This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

  11. Copepod Behavior Response in an Internal Wave Apparatus

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Jung, S.; Haas, K. A.

    2017-11-01

    This study is motivated to understand the bio-physical forcing in zooplankton transport in and near internal waves, where high levels of zooplankton densities have been observed in situ. A laboratory-scale internal wave apparatus was designed to create a standing internal wave for various physical arrangements that mimic conditions observed in the field. A theoretical analysis of a standing internal wave inside a two-layer stratification system including non-linear wave effects was conducted to derive the expressions for the independent variables controlling the wave motion. Focusing on a case with a density jump of 1.0 σt, a standing internal wave was generated with a clean interface and minimal mixing across the pycnocline. Spatial and frequency domain measurements of the internal wave were evaluated in the context of the theoretical analysis. Behavioral assays with a mixed population of three marine copepods were conducted in control (stagnant homogeneous fluid), stagnant density jump interface, and internal wave flow configurations. In the internal wave treatment, the copepods showed an acrobatic, orbital-like motion in and around the internal wave region (bounded by the crests and the troughs of the waves). Trajectories of passive, neutrally-buoyant particles in the internal wave flow reveal that they generally oscillate back-and-forth along fixed paths. Thus, we conclude that the looping, orbital trajectories of copepods in the region near the internal wave interface are due to animal behavior rather than passive transport.

  12. Observation of Transonic Ionization Fronts in Low-Density Foam Targets

    NASA Astrophysics Data System (ADS)

    Hoarty, D.; Barringer, L.; Vickers, C.; Willi, O.; Nazarov, W.

    1999-04-01

    Transonic ionization fronts have been observed in low-density chlorinated foam targets using time-resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x rays produced by high-power laser irradiation of a thin foil. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions at a number of times. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.

  13. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1).

    PubMed

    Canuel, Maryssa; Sun, Xiaowei; Asselin, Marie-Claude; Paramithiotis, Eustache; Prat, Annik; Seidah, Nabil G

    2013-01-01

    Elevated LDL-cholesterol (LDLc) levels are a major risk factor for cardiovascular disease and atherosclerosis. LDLc is cleared from circulation by the LDL receptor (LDLR). Proprotein convertase subtilisin/kexin 9 (PCSK9) enhances the degradation of the LDLR in endosomes/lysosomes, resulting in increased circulating LDLc. PCSK9 can also mediate the degradation of LDLR lacking its cytosolic tail, suggesting the presence of as yet undefined lysosomal-targeting factor(s). Herein, we confirm this, and also eliminate a role for the transmembrane-domain of the LDLR in mediating its PCSK9-induced internalization and degradation. Recent findings from our laboratory also suggest a role for PCSK9 in enhancing tumor metastasis. We show herein that while the LDLR is insensitive to PCSK9 in murine B16F1 melanoma cells, PCSK9 is able to induce degradation of the low density lipoprotein receptor-related protein 1 (LRP-1), suggesting distinct targeting mechanisms for these receptors. Furthermore, PCSK9 is still capable of acting upon the LDLR in CHO 13-5-1 cells lacking LRP-1. Conversely, PCSK9 also acts on LRP-1 in the absence of the LDLR in CHO-A7 cells, where re-introduction of the LDLR leads to reduced PCSK9-mediated degradation of LRP-1. Thus, while PCSK9 is capable of inducing degradation of LRP-1, the latter is not an essential factor for LDLR regulation, but the LDLR effectively competes with LRP-1 for PCSK9 activity. Identification of PCSK9 targets should allow a better understanding of the consequences of PCSK9 inhibition for lowering LDLc and tumor metastasis.

  14. Common Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Epitopes Mediate Multiple Routes for Internalization and Function

    PubMed Central

    DeVay, Rachel M.; Yamamoto, Lynn; Shelton, David L.; Liang, Hong

    2015-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a soluble protein that directs membrane-bound receptors to lysosomes for degradation. In the most studied example of this, PCSK9 binding leads to the degradation of low density lipoprotein receptor (LDLR), significantly affecting circulating LDL-C levels. The mechanism mediating this degradation, however, is not completely understood. We show here that LDLR facilitates PCSK9 interactions with amyloid precursor like protein 2 (APLP2) at neutral pH leading to PCSK9 internalization, although direct binding between PCSK9 and LDLR is not required. Moreover, binding to APLP2 or LDLR is independently sufficient for PCSK9 endocytosis in hepatocytes, while LDL can compete with APLP2 for PCSK9 binding to indirectly mediate PCSK9 endocytosis. Finally, we show that APLP2 and LDLR are also required for the degradation of another PCSK9 target, APOER2, necessitating a general role for LDLR and APLP2 in PCSK9 function. Together, these findings provide evidence that PCSK9 has at least two endocytic epitopes that are utilized by a variety of internalization mechanisms and clarifies how PCSK9 may direct proteins to lysosomes. PMID:25905719

  15. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.

    2005-08-01

    Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.

  16. The high velocity, high adiabat, ``Bigfoot'' campaign and tests of indirect-drive implosion scaling

    NASA Astrophysics Data System (ADS)

    Casey, Daniel

    2017-10-01

    To achieve hotspot ignition, inertial confinement fusion (ICF) implosions must achieve high hotspot internal energy that is inertially confined by a dense shell of DT fuel. To accomplish this, implosions are designed to achieve high peak implosion velocity, good energy coupling between the hotspot and imploding shell, and high areal-density at stagnation. However, experiments have shown that achieving these simultaneously is extremely challenging, partly because of inherent tradeoffs between these three interrelated requirements. The Bigfoot approach is to intentionally trade off high convergence, and therefore areal-density, in favor of high implosion velocity and good coupling between the hotspot and shell. This is done by intentionally colliding the shocks in the DT ice layer. This results in a short laser pulse which improves hohlraum symmetry and predictability while the reduced compression improves hydrodynamic stability. The results of this campaign will be reviewed and include demonstrated low-mode symmetry control at two different hohlraum geometries (5.75 mm and 5.4 mm diameters) and at two different target scales (5.4 mm and 6.0 mm hohlraum diameters) spanning 300-430 TW in laser power and 0.8-1.7 MJ in laser energy. Results of the 10% scaling between these designs for the hohlraum and capsule will be presented. Hydrodynamic instability growth from engineering features like the capsule fill tube are currently thought to be a significant perturbation to the target performance and a major factor in reducing its performance compared to calculations. Evidence supporting this hypothesis as well as plans going forward will be presented. Ongoing experiments are attempting to measure the impact on target performance from increase in target scale, and the preliminary results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Internal combustion engine run on biogas is a potential solution to meet Indonesia emission target

    NASA Astrophysics Data System (ADS)

    Ambarita, Himsar

    2017-09-01

    Indonesia has released two different Greenhouse Gas (GHG) emissions reduction targets. The first target, released in 2009, is reduction GHG emissions 26% from Business-as-Usual (BAU) level using own budget and up 41% if supported international aids by 2020. The second target is reduction 29% and 41% from BAU by 2030 using own budget and with international support, respectively. In this paper, the BAU emissions and emissions reduction target of these two targets are elaborated. In addition, the characteristics of emissions from transportation sector are discussed. One of the potential mitigation actions is switching fuel in transportation sector. The results the most promising mitigation action in the transportation is switching oil fuel with biofuel. The Government of Indonesia (GoI) focuses on using biodiesel and bioethanol to run internal combustion engine in transportation sector and biogas is aimed to fuel power plant unit. However, there is very limited of success stories on using biogas in the power plant. The barriers and challenges will be discussed here. It is suggested to run internal combustion engine with biogas.

  18. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines.

    PubMed

    Porciani, David; Cardwell, Leah N; Tawiah, Kwaku D; Alam, Khalid K; Lange, Margaret J; Daniels, Mark A; Burke, Donald H

    2018-06-11

    Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19-21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50-80 kDa, 175-250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs.

  19. Comparison between Hydrogen, Methane and Ethylene Fuels in a 3-D Scramjet at Mach 8

    DTIC Science & Technology

    2016-06-24

    characteristics in air. The disadvantage of hydrogen is its low density, which is a particular problem for small vehicles with significant internal...characteristics in air. The disadvantage of hydrogen is its low density, which is a particular problem for small vehicles with significant internal volume...The low energy per unit volume of gaseous hydrogen, however, is a significant problem for small vehicles with internal volume constraints, in addition

  20. AM2 3-4 Alternate Lay Pattern Evaluation

    DTIC Science & Technology

    2014-09-01

    the target CBR of 6 was achieved. The results of the CBR, moisture, and density tests during construction ( pretest ) and after trafficking ( posttest ...lift to verify that the target CBR of 6 had been reasonably achieved. If the average pretest CBR of a lift differed from the target value by more...for both test items are shown in Table 3. The posttest in situ CBR, moisture, and density measurements were used to determine the depth of

  1. Effects of Ionization in a Laser Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.

    2010-11-04

    Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure.

  2. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  3. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.; McGuffey, C., E-mail: cmcguffey@ucsd.edu; Qiao, B.

    2016-04-15

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam depositionmore » profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.« less

  4. Does targeting key-containers effectively reduce Aedes aegypti population density?

    PubMed

    Maciel-de-Freitas, Rafael; Lourenço-de-Oliveira, Ricardo

    2011-08-01

    The elimination of Aedes aegypti breeding sites has been broadly adopted worldwide to keep vector population density below a critical threshold. We observed the effectiveness of targeting the most productive containers on adult A. aegypti females density, which was evaluated weekly. Adult mosquitoes were collected weekly over 55 weeks and pupal surveys were done in intervals of 4 months to determine container productivity and guidelines for interventions. Pupal surveys indicated that water tanks (72% of pupae in first survey) and metal drums (30.7% of pupae in second survey) were the most productive container types. We observed a dramatic but short-term decrease in weekly adult female A. aegypti density after covering 733 water tanks with nylon net. A long-term decrease in female adult population density was achieved only when we covered both water tanks and metal drums. Overall, pupae abundance and pupae standing crop diminished after netting water tanks and metal drums. Pupae per person, per hectare and per house decreased gradually between the first and the third pupal surveys, suggesting that targeting the most productive container types (water tanks and metal drums) produced a reduction in adult population density and infestation levels. Overall, targeting the most productive container types caused the adult mosquito density to decrease over time, supporting the assumption that this intervention is an effective tool for dengue control. However, this effect was observed only when both water tanks and metal drums were covered, possibly due to the functional similarity between these container types, which are large, often shaded, perennial water storage containers. © 2011 Blackwell Publishing Ltd.

  5. Dynamics of Different Bacterial Communities Are Capable of Generating Sustainable Electricity from Microbial Fuel Cells with Organic Waste

    PubMed Central

    Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki

    2014-01-01

    The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m−2. Polarization curve analyses revealed that the maximum power density was 7.4 W m−3 with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste. PMID:24789988

  6. Dynamics of different bacterial communities are capable of generating sustainable electricity from microbial fuel cells with organic waste.

    PubMed

    Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki

    2014-01-01

    The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m(-2). Polarization curve analyses revealed that the maximum power density was 7.4 W m(-3) with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste.

  7. Evaluation of the Immunoquick+4 malaria rapid diagnostic test in a non-endemic setting.

    PubMed

    van Dijk, D P J; Gillet, P; Vlieghe, E; Cnops, L; Van Esbroeck, M; Jacobs, J

    2010-05-01

    The aim of this retrospective study was to evaluate the Immunoquick+4 (BioSynex, Strasbourg, France), a three-band malaria rapid diagnostic test (MRDT) targeting histidine-rich protein-2 (HRP-2) and pan Plasmodium-specific parasite lactate dehydrogenase, in a non-endemic reference setting. Stored whole-blood samples (n = 613) from international travellers suspected of malaria were used, with microscopy corrected by polymerase chain reaction (PCR) as the reference method. Samples infected by P. falciparum (n = 323), P. vivax (n = 97), P. ovale (n = 73) and P. malariae (n = 25) were selected, as well as 95 malaria-negative samples. The overall sensitivities of the Immunoquick+4 for the diagnosis of P. falciparum, P. vivax, P. malariae and P. ovale were 88.9, 75.3, 56.0 and 19.2%, respectively. Sensitivity was significantly related to parasite density for P. falciparum (93.6% versus 71.4% at parasite densities >100/microl and 500/microl and

  8. 26 CFR 1.338-11 - Effect of section 338 election on insurance company targets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section is limited to the excess, if any, of— (i) The fair market value of old target's assets acquired by... company targets. 1.338-11 Section 1.338-11 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... section 338 election on insurance company targets. (a) In general. This section provides rules that apply...

  9. Experimental Study of Internal Waves and Vortices Past 2d Obstacles In A Continuously Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Mitkin, V.

    Experimental investigations of fine and macroscopic structures of density and veloc- ity disturbances generated by a towing cylinder or a vertical strip in a linearly strati- fied liquid are carried out in a rectangular tank. A density gradient field is visualised by different Schlieren methods (direct shadow, 'slit-knife', 'slit-thread', 'natural rain- bow') characterised by a high spatial resolution. Profiles of fluid velocity are visu- alised by density markers U wakes past a vertically descending sugar crystal or an ascending gas bubble. In a fluid at rest the density marker acts as a vertical linear source of internal oscillations, which allows us to measure buoyancy frequency over all depth by the Schlieren instrument directly or by a conductivity probe in a particular point. Sensitive methods reveal a set of high gradient interfaces inside and outside the downstream wake besides well-known large-scale elements: upstream disturbances, attached internal waves and vortices. High gradient interfaces bound compact vor- tices. Vortices moving with respect to environment emit their own systems of internal waves randomising a regular pattern of attached antisymmetric internal waves. But after a rather long time a wave recurrence occurs and a regular but symmetric struc- ture of the longest waves (similar to the pattern of initial attached internal waves) is observed again. Results of studying of the influence of obstacles shape on phase struc- ture and amplitudes of attached internal waves field, vortex formation, their structure and characteristics are presented.

  10. The Proposed 2 MeV Electron Cooler for COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Juergen; Parkhomchuk, Vasily V.; Reva, Vladimir B.

    2006-03-20

    The design, construction and installation of a 2 MeV electron cooling system for COSY is proposed to further boost the luminosity even with strong heating effects of high-density internal targets. In addition the design of the 2 MeV electron cooler for COSY is intended to test some new features of the high energy electron cooler for HESR at GSI. The design of the 2 MeV electron cooler will be accomplished in cooperation with the Budker Institute of Nuclear Physics in Novosibirsk, Russia. Starting with the boundary conditions of the existing electron cooler at COSY the requirements and a first generalmore » scheme of the 2 MeV electron cooler are described.« less

  11. Printed circuit board for a CCD camera head

    DOEpatents

    Conder, Alan D.

    2002-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  12. Photon beam dose distributions for patients with implanted temporary tissue expanders

    NASA Astrophysics Data System (ADS)

    Asena, A.; Kairn, T.; Crowe, S. B.; Trapp, J. V.

    2015-01-01

    This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.

  13. Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets

    NASA Astrophysics Data System (ADS)

    Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.

    2000-04-01

    The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.

  14. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  15. Use of zooming and pulseshaping for acceleration to high velocities and fusion neutron production on the Nike laser

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.

    2011-10-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al, Phys. Plasmas 17, 056317(2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ~ 1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is using the focal zoom capability of Nike and shaping the driving pulse to minimize shock heating of the accelerated target to achieve higher densities and velocities. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Work is supported by US DOE (NNSA) and Office of Naval Research. SAIC

  16. Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.

    The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less

  17. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases.

    PubMed

    Ta, Hang T; Truong, Nghia P; Whittaker, Andrew K; Davis, Thomas P; Peter, Karlheinz

    2018-01-01

    Vascular-targeted drug delivery is a promising approach for the treatment of atherosclerosis, due to the vast involvement of endothelium in the initiation and growth of plaque, a characteristic of atherosclerosis. One of the major challenges in carrier design for targeting cardiovascular diseases (CVD) is that carriers must be able to navigate the circulation system and efficiently marginate to the endothelium in order to interact with the target receptors. Areas covered: This review draws on studies that have focused on the role of particle size, shape, and density (along with flow hemodynamics and hemorheology) on the localization of the particles to activated endothelial cell surfaces and vascular walls under different flow conditions, especially those relevant to atherosclerosis. Expert opinion: Generally, the size, shape, and density of a particle affect its adhesion to vascular walls synergistically, and these three factors should be considered simultaneously when designing an optimal carrier for targeting CVD. Available preliminary data should encourage more studies to be conducted to investigate the use of nano-constructs, characterized by a sub-micrometer size, a non-spherical shape, and a high material density to maximize vascular wall margination and minimize capillary entrapment, as carriers for targeting CVD.

  18. Contrast-Enhanced Computed Tomography Evaluation of Hepatic Metastases in Breast Cancer Patients Before and After Cytotoxic Chemotherapy or Targeted Therapy.

    PubMed

    He, Hongying; Cai, Chunyan; Charnsangavej, Chusilp; Theriault, Richard L; Green, Marjorie; Quraishi, Mohammad A; Yang, Wei T

    2015-11-01

    To evaluate change in size vs computed tomography (CT) density of hepatic metastases in breast cancer patients before and after cytotoxic chemotherapy or targeted therapy. A database search in a single institution identified 48 breast cancer patients who had hepatic metastases treated with either cytotoxic chemotherapy alone or targeted therapy alone, and who had contrast-enhanced CT (CECT) scans of the abdomen at baseline and within 4 months of initiation of therapy in the past 10 years. Two radiologists retrospectively evaluated CT scans and identified up to 2 index lesions in each patient. The size (centimeters) of each lesion was measured according to Response Evaluation Criteria in Solid Tumors (RECIST) criteria, and CT density (Hounsfield units) was measured by drawing a region of interest around the margin of the entire lesion. The percent change in sum of lesion size and mean CT density on pre- and post-treatment scans was computed for each patient; results were compared within each treatment group. Thirty-nine patients with 68 lesions received cytotoxic chemotherapy only; 9 patients with 15 lesions received targeted therapy only. The mean percent changes in sum of lesion size and mean CT density were statistically significant within the cytotoxic chemotherapy group before and after treatment, but not significant in the targeted therapy group. The patients in the targeted therapy group tend to have better 2-year survival. The patients who survived at 2 years tend to have more decrease in tumour size in the cytotoxic chemotherapy group. Cytotoxic chemotherapy produced significant mean percent decrease in tumour size and mean CT density of hepatic metastases from breast cancer before and after treatment, whereas targeted therapy did not. Nonetheless, there is a trend that the patients in the targeted therapy group had better 2-year survival rate. This suggests that RECIST is potentially inadequate in evaluating tumour response in breast cancer liver metastases treated with targeted therapy alone, calling for an alternative marker for response evaluation in this subset of patients. Copyright © 2015 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  19. Synthetic lipoprotein as nano-material vehicle in the targeted drug delivery.

    PubMed

    Zhang, Xueqin; Huang, Gangliang

    2017-12-01

    High-density lipoprotein (HDL) and low-density lipoprotein (LDL), as human endogenous lipoprotein particles, have low toxicity, high selectivity, and good safety. They can avoid the recognition and clearance of human reticuloendothelial system. These synthetic lipoproteins (sLPs) have been attracted extensive attention as the nanovectors for tumor-targeted drug and gene delivery. Herein, recent advances in the field of anticancer based on these two lipid proteins and recombinant lipoproteins (rLPs) as target delivery vectors were analyzed and discussed.

  20. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, S.; Ohno, N.; Shibata, Y.

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less

  1. The National Ignition Facility: an experimental platform for studying behavior of matter under extreme conditions

    NASA Astrophysics Data System (ADS)

    Moses, Edward

    2011-11-01

    The National Ignition Facility (NIF), a 192-beam Nd-glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light, is now operational at Lawrence Livermore National Laboratory (LLNL). As the world's largest and most energetic laser system, NIF serves as the national center for the U.S. Department of Energy (DOE) and National Nuclear Security Administration to achieve thermonuclear burn in the laboratory and to explore the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from all of its 192 extremely energetic laser beams into a mm3-sized target, NIF can reach the conditions required to initiate fusion reactions. NIF can also provide access to extreme scientific environments: temperatures about 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure. These conditions have never been created before in a laboratory and exist naturally only in interiors of the planetary and stellar environments as well as in nuclear weapons. Since August 2009, the NIF team has been conducting experiments in support of the National Ignition Campaign (NIC)—a partnership among LLNL, Los Alamos National Laboratory, General Atomics, the University of Rochester, Sandia National Laboratories, as well as a number of universities and international collaborators. The results from these initial experiments show promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. Important national security and basic science experiments have also been conducted on NIF. This paper describes the unprecedented experimental capabilities of NIF and the results achieved so far on the path toward ignition, for stockpile stewardship, and the beginning of frontier science experiments. The paper will also address our plans to transition NIF to a national user facility, providing access to NIF for researchers from the DOE laboratories, as well as the national and international academic and fusion energy communities.

  2. Design and engineering of a target for x-ray Thomson scattering measurements on matter at extreme densities and gigabar pressures

    DOE PAGES

    Boehm, K. -J.; Hash, N.; Barker, D.; ...

    2016-06-24

    Reconciling the experimental and system requirements during the development of a new target system is one of the most challenging tasks in the design and engineering of targets used in the National Ignition Facility. Targets for the GigaBar 3 campaign were meant to allow the detection of extremely weak Thomson scattering from matter at extreme densities in the face of very bright backlighter and laser entry hole plasma emissions. The problem was to shield the detector sufficiently while maintaining beamline and view clearances, and observing target mass restrictions. A new construction process, based on a rapid prototype frame structure, wasmore » used to develop this target. As a result, details of the design process for these targets are described, and lessons from this development for production and target assembly teams are discussed.« less

  3. Surface Ligand Density of Antibiotic-Nanoparticle Conjugates Enhances Target Avidity and Membrane Permeabilization of Vancomycin-Resistant Bacteria.

    PubMed

    Hassan, Marwa M; Ranzoni, Andrea; Phetsang, Wanida; Blaskovich, Mark A T; Cooper, Matthew A

    2017-02-15

    Many bacterial pathogens have now acquired resistance toward commonly used antibiotics, such as the glycopeptide antibiotic vancomycin. In this study, we show that immobilization of vancomycin onto a nanometer-scale solid surface with controlled local density can potentiate antibiotic action and increase target affinity of the drug. Magnetic nanoparticles were conjugated with vancomycin and used as a model system to investigate the relationship between surface density and drug potency. We showed remarkable improvement in minimum inhibitory concentration against vancomycin-resistant strains with values of 13-28 μg/mL for conjugated vancomycin compared to 250-4000 μg/mL for unconjugated vancomycin. Higher surface densities resulted in enhanced affinity toward the bacterial target compared to that of unconjugated vancomycin, as measured by a competition experiment using a surrogate ligand for bacterial Lipid II, N-Acetyl-l-Lys-d-Ala-d-Ala. High density vancomycin nanoparticles required >64 times molar excess of ligand (relative to the vancomycin surface density) to abrogate antibacterial activity compared to only 2 molar excess for unconjugated vancomycin. Further, the drug-nanoparticle conjugates caused rapid permeabilization of the bacterial cell wall within 2 h, whereas no effect was seen with unconjugated vancomycin, suggesting additional modes of action for the nanoparticle-conjugated drug. Hence, immobilization of readily available antibiotics on nanocarriers may present a general strategy for repotentiating drugs that act on bacterial membranes or membrane-bound targets but have lost effectiveness against resistant bacterial strains.

  4. Targeting International Terrorism with the Law of Armed Conflict: An Alternative Strategy

    DTIC Science & Technology

    1991-02-11

    AD-A236 582 D TIC III IBII IH IH JUNI 1. 1991. (Unclassified Paper) NAVAL WAR COLLEGE Newport, R.I. TARGETING INTERNATIONAL TERRORISM WITH THE LAW OF...11. TITLE OWN11110 Secrty Ceu4ifction) TARGETING INTERNATIONAL TERRORISM WITH THE LAW OF ARMED CONFLICT: AN ALTERNATIVE STRATEGY (1.) 12, PERSONAL...lawegieforcoperatiosb re forcdaigwt nes.nItiofurther rorimmendgfral rbetos msesnt ofte thkede easuc-tresa en ocnrotadrsodttate-sponsored terrorism . Ti a

  5. Evolving targets for lipid-modifying therapy

    PubMed Central

    Do, Rose Q; Nicholls, Stephen J; Schwartz, Gregory G

    2014-01-01

    The pathogenesis and progression of atherosclerosis are integrally connected to the concentration and function of lipoproteins in various classes. This review examines existing and emerging approaches to modify low-density lipoprotein and lipoprotein (a), triglyceride-rich lipoproteins, and high-density lipoproteins, emphasizing approaches that have progressed to clinical evaluation. Targeting of nuclear receptors and phospholipases is also discussed. PMID:25172365

  6. Energy deposition and neutron flux study in a gravity-driven dense granular target (DGT) with GEANT4 toolkit

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Cui, Wenjuan; He, Zhiyong; Zhang, Xueying; Ma, Wenjing

    2018-07-01

    China initiative Accelerator Driven System (CiADS) has been approved as a strategic plan to build an ADS demonstration facility in the next few years. It proposed a new concept for a high-power spallation target: the gravity-driven dense granular target (DGT). As the same with a monolithic target (MT), both solid and liquid target, energy deposition and neutron flux are two critical issues. In this paper, we focus on these two issues and long for some valuable results for the project. Unlike a solid target, the internal geometry structure of a DGT is very complicated. To be as much as closer with the reality, we designed an algorithm and firstly packed the grains randomly in a cylindrical container in GEANT4 software. The packing result was in great agreement with the experimentally measured results. It shows that the algorithm is practicable. In the next step, all the simulations about energy deposition and neutron flux of a DGT were performed with the GEANT4 codes, and the results were compared with the data of a MT. Compared to a MT, a DGT has inarguable advantages in both terms of energy deposition and neutron flux. In addition, the simulations with different radius of grains were also performed. Finally, we found that both the energy deposition and neutron flux are nearly irrelevant to the radius of the grains in the range of 0.5 mm-5 mm when the packing density is same by analyzing the results meticulously.

  7. Weld defect identification in friction stir welding using power spectral density

    NASA Astrophysics Data System (ADS)

    Das, Bipul; Pal, Sukhomay; Bag, Swarup

    2018-04-01

    Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.

  8. Cholesterol target value attainment and lipid-lowering therapy in patients with stable or acute coronary heart disease: Results from the Dyslipidemia International Study II.

    PubMed

    Gitt, Anselm K; Lautsch, Dominik; Ferrières, Jean; De Ferrari, Gaetano M; Vyas, Ami; Baxter, Carl A; Bash, Lori D; Ashton, Veronica; Horack, Martin; Almahmeed, Wael; Chiang, Fu-Tien; Poh, Kian Keong; Brudi, Philippe; Ambegaonkar, Baishali

    2017-11-01

    Low-density lipoprotein cholesterol (LDL-C) is a major contributor to cardiovascular disease. In the Dyslipidemia International Study II (DYSIS II), we determined LDL-C target value attainment, use of lipid-lowering therapy (LLT), and cardiovascular outcomes in patients with stable coronary heart disease (CHD) and those suffering from an acute coronary syndrome (ACS). DYSIS II included patients from 18 countries. Patients with either stable CHD or an ACS were enrolled if they were ≥18 years old and had a full lipid profile available. Data were collected at a physician visit (CHD cohort) or at hospital admission and 120 days later (ACS cohort). A total of 10,661 patients were enrolled, 6794 with stable CHD and 3867 with an ACS. Mean LDL-C levels were low at 88 mg/dl and 108 mg/dl for the CHD and ACS cohorts respectively, with only 29.4% and 18.9% displaying a level below 70 mg/dl. LLT was utilized by 93.8% of the CHD cohort, with a mean daily statin dosage of 25 ± 18 mg. The proportion of the ACS cohort treated with LLT rose from 65.2% at admission to 95.6% at follow-up. LLT-treated patients, who were female, obese, or current smokers, were less likely to achieve an LDL-C level of <70 mg/dl, while those with type 2 diabetes, chronic kidney disease, or those taking a higher statin dosage were more likely. Few of these very high-risk patients achieved the LDL-C target, indicating huge potential for improving cardiovascular outcome by use of more intensive LLT. Copyright © 2017. Published by Elsevier B.V.

  9. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.

  10. Dense blocks of energetic ions driven by multi-petawatt lasers

    PubMed Central

    Weng, S. M.; Liu, M.; Sheng, Z. M.; Murakami, M.; Chen, M.; Yu, L. L.; Zhang, J.

    2016-01-01

    Laser-driven ion accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to simultaneously enhance the yield and quality of laser-driven ion beams for practical applications. Here we propose a scheme to address this challenge via the use of emerging multi-petawatt lasers and a density-modulated target. The density-modulated target permits its ions to be uniformly accelerated as a dense block by laser radiation pressure. In addition, the beam quality of the accelerated ions is remarkably improved by embedding the target in a thick enough substrate, which suppresses hot electron refluxing and thus alleviates plasma heating. Particle-in-cell simulations demonstrate that almost all ions in a solid-density plasma of a few microns can be uniformly accelerated to about 25% of the speed of light by a laser pulse at an intensity around 1022 W/cm2. The resulting dense block of energetic ions may drive fusion ignition and more generally create matter with unprecedented high energy density. PMID:26924793

  11. An innovative small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, Houyang

    2017-10-01

    A new Small Angle Slot (SAS) divertor is being developed in DIII-D to address the challenge of efficient divertor heat dispersal at the relatively low plasma density required for non-inductive current drive in future advanced tokamaks. SAS features a small incident angle near the plasma strike point on the divertor target plate with a progressively opening slot. SOLPS (B2-Eirene) edge code analysis finds that SAS can achieve strong plasma cooling when the strike point is placed near the small angle target plate in the slot, leading to low electron temperature Te across the entire divertor target. This is enabled by strong coupling between a gas tight slot and directed neutral recycling by the small angle target to enhance neutral buildup near the target. SOLPS analysis reveals a strong correlation between Te and D2 density at the target for various divertor configurations including the flat target, slanted target, and lower single null divertor. The strong correlation suggests that achievement of low Te may reduce essentially to identifying the divertor baffle geometry that achieves the highest target gas density at a given upstream condition. The SAS divertor concept has recently been tested in DIII-D for a range of plasma configurations and conditions with precise control of slot strike point location. In confirmation of SOLPS predictions, a sharp transition is observed when the strike point is moved to the critical outer corner of SAS. A set of Langmuir probes imbedded in SAS show that the Te radial profile, which is peaked at the strike point when it is located away from the SAS corner, becomes low across the target when the strike point is located near the corner. With further increase in density, deep-slot detachment occurs with Te 1 eV, measured by the unique DIII-D divertor Thomson Scattering diagnostic. Work supported by US DOE under DE-FC02-04ER54698.

  12. Tomographic diagnostic of the hydrogen beam from a negative ion source

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Brombin, M.; Serianni, G.; Pasqualotto, R.

    2011-10-01

    In this paper the tomographic diagnostic developed to characterize the 2D density distribution of a particle beam from a negative ion source is described. In particular, the reliability of this diagnostic has been tested by considering the geometry of the source for the production of ions of deuterium extracted from an rf plasma (SPIDER). SPIDER is a low energy prototype negative ion source for the international thermonuclear experimental reactor (ITER) neutral beam injector, aimed at demonstrating the capability to create and extract a current of D- (H-) ions up to 50 A (60 A) accelerated at 100 kV. The ions are extracted over a wide surface (1.52×0.56m2) with a uniform plasma density which is prescribed to remain within 10% of the mean value. The main target of the tomographic diagnostic is the measurement of the beam uniformity with sufficient spatial resolution and of its evolution throughout the pulse duration. To reach this target, a tomographic algorithm based on the simultaneous algebraic reconstruction technique is developed and the geometry of the lines of sight is optimized so as to cover the whole area of the beam. Phantoms that reproduce different experimental beam configurations are simulated and reconstructed, and the role of the noise in the signals is studied. The simulated phantoms are correctly reconstructed and their two-dimensional spatial nonuniformity is correctly estimated, up to a noise level of 10% with respect to the signal.

  13. Wavefront aberrations and retinal image quality in different lenticular opacity types and densities.

    PubMed

    Wu, Cheng-Zhe; Jin, Hua; Shen, Zhen-Nv; Li, Ying-Jun; Cui, Xun

    2017-11-10

    To investigate wavefront aberrations in the entire eye and in the internal optics (lens) and retinal image qualities according to different lenticular opacity types and densities. Forty-one eyes with nuclear cataract, 33 eyes with cortical cataract, and 29 eyes with posterior subcapsular cataract were examined. In each group, wavefront aberrations in the entire eye and in the internal optics and retinal image quality were measured using a raytracing aberrometer. Eyes with cortical cataracts showed significantly higher coma-like aberrations compared to the other two groups in both entire eye and internal optic aberrations (P = 0.012 and P = 0.007, respectively). Eyes with nuclear cataract had lower spherical-like aberrations than the other two groups in both entire eye and internal optics aberrations (P < 0.001 and P < 0.001, respectively). In the nuclear cataract group, nuclear lens density was negatively correlated with internal spherical aberrations (r = -0.527, P = 0.005). Wavefront technology is useful for objective and quantitative analysis of retinal image quality deterioration in eyes with different early lenticular opacity types and densities. Understanding the wavefront optical properties of different crystalline lens opacities may help ophthalmic surgeons determine the optimal time to perform cataract surgery.

  14. Mediating Effects of Social Support and Internalized Homonegativity on the Association Between Population Density and Mental Health Among Gay and Bisexual Men.

    PubMed

    Cain, Demetria N; Mirzayi, Chloe; Rendina, H Jonathon; Ventuneac, Ana; Grov, Christian; Parsons, Jeffrey T

    2017-10-01

    Depression negatively impacts the health and well-being of gay and bisexual men (GBM). However, little is known about the contexts in which rural GBM live relative to those living in urban areas and their overall mental health. The aim of this study was to examine associations between population density and depressive symptoms and the role of internalized homonegativity and social support as potential mediators. A nationally representative sample of 1071 GBM (mean age = 40.24) was enrolled. Participants provided their zip codes, which were categorized according to population density and rank-normalized. In a path analysis model adjusted for race/ethnicity, college education, age, and relationship status, higher population density was significantly associated with increased social support (B = 0.11, P = 0.002) and decreased internalized homonegativity (B = -0.06, P < 0.001). In turn, lower social support (B = -2.93, P < 0.001) and greater internalized homonegativity (B = 4.93, P < 0.001) were significantly associated with greater depressive symptoms. The indirect effects of population density on depression through social support (B = -0.33, P < 0.001) and internalized homonegativity (B = -0.31, P < 0.001) were statistically significant, suggesting evidence for mediation of the effects. These results indicate that living in less inhabited areas acts on depressive symptoms through mechanisms of lower social support and higher internalized homonegativity. These findings suggest that social contexts in which GBM live can affect mental health outcomes and indicate the need for further support and inclusion of GBM, especially in less inhabited areas.

  15. Mediating Effects of Social Support and Internalized Homonegativity on the Association Between Population Density and Mental Health Among Gay and Bisexual Men

    PubMed Central

    Cain, Demetria N.; Mirzayi, Chloe; Rendina, H. Jonathon; Ventuneac, Ana; Grov, Christian

    2017-01-01

    Abstract Purpose: Depression negatively impacts the health and well-being of gay and bisexual men (GBM). However, little is known about the contexts in which rural GBM live relative to those living in urban areas and their overall mental health. The aim of this study was to examine associations between population density and depressive symptoms and the role of internalized homonegativity and social support as potential mediators. Methods: A nationally representative sample of 1071 GBM (mean age = 40.24) was enrolled. Participants provided their zip codes, which were categorized according to population density and rank-normalized. Results: In a path analysis model adjusted for race/ethnicity, college education, age, and relationship status, higher population density was significantly associated with increased social support (B = 0.11, P = 0.002) and decreased internalized homonegativity (B = −0.06, P < 0.001). In turn, lower social support (B = −2.93, P < 0.001) and greater internalized homonegativity (B = 4.93, P < 0.001) were significantly associated with greater depressive symptoms. The indirect effects of population density on depression through social support (B = −0.33, P < 0.001) and internalized homonegativity (B = −0.31, P < 0.001) were statistically significant, suggesting evidence for mediation of the effects. Conclusions: These results indicate that living in less inhabited areas acts on depressive symptoms through mechanisms of lower social support and higher internalized homonegativity. These findings suggest that social contexts in which GBM live can affect mental health outcomes and indicate the need for further support and inclusion of GBM, especially in less inhabited areas. PMID:28792886

  16. Local ensemble transform Kalman filter for ionospheric data assimilation: Observation influence analysis during a geomagnetic storm event

    NASA Astrophysics Data System (ADS)

    Durazo, Juan A.; Kostelich, Eric J.; Mahalov, Alex

    2017-09-01

    We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%-80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.

  17. Glycolipid-Dependent, Protease Sensitive Internalization of Pseudomonas aeruginosa Into Cultured Human Respiratory Epithelial Cells

    PubMed Central

    Emam, Aufaugh; Carter, William G; Lingwood, Clifford

    2010-01-01

    Internalization of PAK strain Pseudomonas aeruginosa into human respiratory epithelial cell lines and HeLa cervical cancer cells in vitro was readily demonstrable via a gentamycin protection assay. Depletion of target cell glycosphingolipids (GSLs) using a glucosyl ceramide synthase inhibitor, P4, completely prevented P. aeruginosa internalization. In contrast, P4 treatment had no effect on the internalization of Salmonella typhimurium into HeLa cells. Internalized P. aeruginosa were within membrane vacuoles, often containing microvesicles, between the bacterium and the limiting membrane. P. aeruginosa internalization was markedly enhanced by target cell pretreatment with the exogenous GSL, deacetyl gangliotetraosyl ceramide (Gg4). Gg4 binds the lipid raft marker, GM1 ganglioside. Target cell pretreatment with TLCK, but not other (serine) protease inhibitors, prevented both P. aeruginosa host cell binding and internalization. NFkB inhibition also prevented internalization. A GSL-containing lipid-raft model of P. aeruginosa host cell binding/internalization is proposed PMID:21270937

  18. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Carter, Emily A.

    2018-01-01

    We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.

  19. Internal tidal currents in the Gaoping (Kaoping) Submarine Canyon

    USGS Publications Warehouse

    Lee, I.-H.; Wang, Y.-H.; Liu, J.T.; Chuang, W.-S.; Xu, Jie

    2009-01-01

    Data from five separate field experiments during 2000-2006 were used to study the internal tidal flow patterns in the Gaoping (formerly spelled Kaoping) Submarine Canyon. The internal tides are large with maximum interface displacements of about 200??m and maximum velocities of over 100cm/s. They are characterized by a first-mode velocity and density structure with zero crossing at about 100??m depth. In the lower layer, the currents increase with increasing depth. The density interface and the along-channel velocity are approximately 90?? out-of-phase, suggesting a predominant standing wave pattern. However, partial reflection is indicated as there is a consistent phase advance between sea level and density interface along the canyon axis. ?? 2008 Elsevier B.V. All rights reserved.

  20. Proceedings of the twelfth target fabrication specialists` meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of anmore » ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.« less

  1. 26 CFR 1.338-7 - Allocation of redetermined ADSP and AGUB among target assets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: Asset class Asset Fair market value V Building $ 100 V Stock of X (not a target) 200 Total 300 (B) T has... target assets. 1.338-7 Section 1.338-7 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... redetermined ADSP and AGUB among target assets. (a) Scope. ADSP and AGUB are redetermined at such time and in...

  2. Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.

    2016-10-01

    We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.

  3. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  4. Cryogenic Target-Implosion Experiments on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, D.R.; Meyerhofer, D.D.; Sangster, T.C.

    The University of Rochester’s Laboratory for Laser Energetics has been imploding thick cryogenic targets for six years. Improvements in the Cryogenic Target Handling System and the ability to accurately design laser pulse shapes that properly time shocks and minimize electron preheat, produced high fuel areal densities in deuterium cryogenic targets (202+/-7 mg/cm^2). The areal density was inferred from the energy loss of secondary protons in the fuel (D2) shell. Targets were driven on a low final adiabat (alpha = 2) employing techniques to radially grade the adiabat (the highest adiabat at the ablation surface). The ice layer meets the target-designmore » toughness specification for DT ice of 1-um rms (all modes), while D2 ice layers average 3.0-um-rms roughness. The implosion experiments and the improvements in the quality and understanding of cryogenic targets are presented.« less

  5. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    NASA Astrophysics Data System (ADS)

    Vašina, P; Hytková, T; Eliáš, M

    2009-05-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  6. Exploratory Study of 4D Versus 3D Robust Optimization in Intensity-Modulated Proton Therapy for Lung Cancer

    PubMed Central

    Liu, Wei; Schild, Steven E.; Chang, Joe Y.; Liao, Zhongxing; Chang, Yu-Hui; Wen, Zhifei; Shen, Jiajian; Stoker, Joshua B.; Ding, Xiaoning; Hu, Yanle; Sahoo, Narayan; Herman, Michael G.; Vargas, Carlos; Keole, Sameer; Wong, William; Bues, Martin

    2015-01-01

    Background To compare the impact of uncertainties and interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans for lung cancer in an exploratory methodology study. Methods IMPT plans were created for 11 non-randomly selected non-small-cell lung cancer (NSCLC) cases: 3D robustly optimized plans on average CTs with internal gross tumor volume density overridden to irradiate internal target volume, and 4D robustly optimized plans on 4D CTs to irradiate clinical target volume (CTV). Regular fractionation (66 Gy[RBE] in 33 fractions) were considered. In 4D optimization, the CTV of individual phases received non-uniform doses to achieve a uniform cumulative dose. The root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under the RVH curve (AUCs) were used to evaluate plan robustness. Dose evaluation software modeled time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Dose-volume histogram indices comparing CTV coverage, homogeneity, and normal tissue sparing were evaluated using Wilcoxon signed-rank test. Results 4D robust optimization plans led to smaller AUC for CTV (14.26 vs. 18.61 (p=0.001), better CTV coverage (Gy[RBE]) [D95% CTV: 60.6 vs 55.2 (p=0.001)], and better CTV homogeneity [D5%–D95% CTV: 10.3 vs 17.7 (p=0.002)] in the face of uncertainties. With interplay effect considered, 4D robust optimization produced plans with better target coverage [D95% CTV: 64.5 vs 63.8 (p=0.0068)], comparable target homogeneity, and comparable normal tissue protection. The benefits from 4D robust optimization were most obvious for the 2 typical stage III lung cancer patients. Conclusions Our exploratory methodology study showed that, compared to 3D robust optimization, 4D robust optimization produced significantly more robust and interplay-effect-resistant plans for targets with comparable dose distributions for normal tissues. A further study with a larger and more realistic patient population is warranted to generalize the conclusions. PMID:26725727

  7. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naïve patients.

    PubMed

    Washino, Satoshi; Okochi, Tomohisa; Saito, Kimitoshi; Konishi, Tsuzumi; Hirai, Masaru; Kobayashi, Yutaka; Miyagawa, Tomoaki

    2017-02-01

    To assess the value of the Prostate Imaging Reporting and Data System (PI-RADS) scoring system, for prostate multi-parametric magnetic resonance imaging (mpMRI) to detect prostate cancer, and classical parameters, such as prostate-specific antigen (PSA) level, prostate volume and PSA density, for predicting biopsy outcome in biopsy naïve patients who have suspected prostate cancer. Patients who underwent mpMRI at our hospital, and who had their first prostate biopsy between July 2010 and April 2014, were analysed retrospectively. The prostate biopsies were taken transperineally under transrectal ultrasonography guidance. In all, 14 cores were biopsied as a systematic biopsy in all patients. Two cognitive fusion-targeted biopsy cores were added for each lesion in patients who had suspicious or equivocal lesions on mpMRI. The PI-RADS scoring system version 2.0 (PI-RADS v2) was used to describe the MRI findings. Univariate and multivariate analyses were performed to determine significant predictors of prostate cancer and clinically significant prostate cancer. In all, 288 patients were analysed. The median patient age, PSA level, prostate volume and PSA density were 69 years, 7.5 ng/mL, 28.7 mL, and 0.26 ng/mL/mL, respectively. The biopsy results were benign, clinically insignificant, and clinically significant prostate cancer in 129 (45%), 18 (6%) and 141 (49%) patients, respectively. The multivariate analysis revealed that PI-RADS v2 score and PSA density were independent predictors for prostate cancer and clinically significant prostate cancer. When PI-RADS v2 score and PSA density were combined, a PI-RADS v2 score of ≥4 and PSA density ≥0.15 ng/mL/mL, or PI-RADS v2 score of 3 and PSA density of ≥0.30 ng/mL/mL, was associated with the highest clinically significant prostate cancer detection rates (76-97%) on the first biopsy. Of the patients in this group with negative biopsy results, 22% were subsequently diagnosed as prostate cancer. In contrast, a PI-RADS v2 score of ≤3 and PSA density of <0.15 ng/mL/mL yielded no clinically significant prostate cancer and no additional detection of prostate cancer on further biopsies. A combination of PI-RADS v2 score and PSA density can help in the decision-making process before prostate biopsy and in the follow-up strategy in biopsy naïve patients. Patients with a PI-RADS v2 score of ≤3 and PSA density of <0.15 ng/mL/mL may avoid unnecessary biopsies. © 2016 The Authors BJU International published by John Wiley & Sons Ltd on behalf of BJU International.

  8. Progress of the RERTR program in 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.

    2002-03-07

    This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of miniplates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm{sup 3} range. Qualificationmore » of the U-Mo dispersion fuels has been delayed by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm{sup 3} are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid-2005. U-Mo fuel with uranium density of 8-9 g/cm{sup 3} is expected to be qualified by mid-2007. Final irradiation tests of LEU {sup 99}Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO{sub 2} dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIINM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4,562 spent fuel assemblies from foreign research reactors had been received by that date by the U.S. under the FRR SNF acceptance policy. The RERTR program is aggressively pursuing qualification of high-density LEU U-Mo dispersion fuels, with the dual goal of enabling further conversions and of developing a substitute for LEU silicide fuels that can be more easily disposed of after expiration of the U.S. FRR SNF Acceptance Program. As in the past, the success of the RERTR program will depend on the international friendship and cooperation that has always been its trademark.« less

  9. Electron dynamics in high energy density plasma bunch generation driven by intense picosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.

    2018-05-01

    When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.

  10. Density-functional theory for internal magnetic fields

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  11. Foam encapsulated targets

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.; Dahlbacka, Glen H.

    1983-01-01

    Foam encapsulated laser-fusion targets wherein a quantity of thermonuclear fuel is embedded in low density, microcellular foam which serves as an electron conduction channel for symmetrical implosion of the fuel by illumination of the target by one or more laser beams. The fuel, such as DT, is contained within a hollow shell constructed of glass, for example, with the foam having a cell size of preferably no greater than 2 .mu.m, a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3, and external diameter of less than 200 .mu.m.

  12. Measurement of wave-front aberration in a small telescope remote imaging system using scene-based wave-front sensing

    DOEpatents

    Poyneer, Lisa A; Bauman, Brian J

    2015-03-31

    Reference-free compensated imaging makes an estimation of the Fourier phase of a series of images of a target. The Fourier magnitude of the series of images is obtained by dividing the power spectral density of the series of images by an estimate of the power spectral density of atmospheric turbulence from a series of scene based wave front sensor (SBWFS) measurements of the target. A high-resolution image of the target is recovered from the Fourier phase and the Fourier magnitude.

  13. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  14. Simple method for production of internal control DNA for Mycobacterium tuberculosis polymerase chain reaction assays.

    PubMed Central

    deWit, D; Wootton, M; Allan, B; Steyn, L

    1993-01-01

    A simple method for the production of internal control DNA for two well-established Mycobacterium tuberculosis polymerase chain reaction assays is described. The internal controls were produced from Mycobacterium kansasii DNA with the same primers but at a lower annealing temperature than that used in the standard assays. In both assays, therefore, the internal control DNA has the same primer-binding sequences at the target DNA. One-microgram quantities of internal control DNA which was not contaminated with target DNA could easily be produced by this method. The inclusion of the internal control in the reaction mixture did not affect the efficiency of amplification of the target DNA. The method is simple and rapid and should be adaptable to most M. tuberculosis polymerase chain reaction assays. Images PMID:8370752

  15. Internalized compartments encapsulated nanogels for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-01

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system. Electronic supplementary information (ESI) available: Synthesis of m-HA; synthesis of rhodamine-HA derivative; supplementary data on relative fluorescence intensity of DOX-EN-NGs on HeLa cells. See DOI: 10.1039/c5nr08895j

  16. Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy.

    PubMed

    Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter

    2017-02-10

    One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.

  17. Subliminal repetition primes help detection of phonemes in a picture: Evidence for a phonological level of the priming effects.

    PubMed

    Manoiloff, Laura; Segui, Juan; Hallé, Pierre

    2016-01-01

    In this research, we combine a cross-form word-picture visual masked priming procedure with an internal phoneme monitoring task to examine repetition priming effects. In this paradigm, participants have to respond to pictures whose names begin with a prespecified target phoneme. This task unambiguously requires retrieving the word-form of the target picture's name and implicitly orients participants' attention towards a phonological level of representation. The experiments were conducted within Spanish, whose highly transparent orthography presumably promotes fast and automatic phonological recoding of subliminal, masked visual word primes. Experiments 1 and 2 show that repetition primes speed up internal phoneme monitoring in the target, compared to primes beginning with a different phoneme from the target, or sharing only their first phoneme with the target. This suggests that repetition primes preactivate the phonological code of the entire target picture's name, hereby speeding up internal monitoring, which is necessarily based on such a code. To further qualify the nature of the phonological code underlying internal phoneme monitoring, a concurrent articulation task was used in Experiment 3. This task did not affect the repetition priming effect. We propose that internal phoneme monitoring is based on an abstract phonological code, prior to its translation into articulation.

  18. CNTNAP2 is a direct FoxP2 target in vitro and in vivo in zebra finches: complex regulation by age and activity.

    PubMed

    Adam, I; Mendoza, E; Kobalz, U; Wohlgemuth, S; Scharff, C

    2017-07-01

    Mutations of FOXP2 are associated with altered brain structure, including the striatal part of the basal ganglia, and cause a severe speech and language disorder. Songbirds serve as a tractable neurobiological model for speech and language research. Experimental downregulation of FoxP2 in zebra finch Area X, a nucleus of the striatal song control circuitry, affects synaptic transmission and spine densities. It also renders song learning and production inaccurate and imprecise, similar to the speech impairment of patients carrying FOXP2 mutations. Here we show that experimental downregulation of FoxP2 in Area X using lentiviral vectors leads to reduced expression of CNTNAP2, a FOXP2 target gene in humans. In addition, natural downregulation of FoxP2 by age or by singing also downregulated CNTNAP2 expression. Furthermore, we report that FoxP2 binds to and activates the avian CNTNAP2 promoter in vitro. Taken together these data establish CNTNAP2 as a direct FoxP2 target gene in songbirds, likely affecting synaptic function relevant for song learning and song maintenance. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  19. Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy.

    PubMed

    Wang, Yazhe; Wang, Cheng; Ding, Yang; Li, Jing; Li, Min; Liang, Xiao; Zhou, Jianping; Wang, Wei

    2016-12-01

    Photodynamic therapy has emerged as a promising strategy for cancer treatment. To ensure the efficient delivery of a photosensitizer to tumor for anticancer effect, a safe and tumor-specific delivery system is highly desirable. Herein, we introduce a novel biomimetic nanoparticle named rHDL/ICG (rHDL/I), by loading amphiphilic near-infrared (NIR) fluorescent dye indocyanine green (ICG) into reconstituted high density lipoproteins (rHDL). In this system, rHDL can mediate photoprotection effect and receptor-guided tumor-targeting transportation of cargos into cells. Upon NIR irradiation, ICG can generate fluorescent imaging signals for diagnosis and monitoring therapeutic activity, and produce singlet oxygen to trigger photodynamic therapy (PDT). Our studies demonstrated that rHDL/I exhibited excellent size and fluorescence stability, light-triggered controlled release feature, and neglectable hemolytic activity. It also showed equivalent NIR response compared to free ICG under laser irradiation. Importantly, the fluorescent signal of ICG loaded in rHDL/I could be visualized subcellularly in vitro and exhibited metabolic distribution in vivo, presenting superior tumor targeting and internalization. This NIR-triggered image-guided nanoparticle produced outstanding therapeutic outcomes against cancer cells, demonstrating great potential of biomimetic delivery vehicles in future clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. High-power, kilojoule laser interactions with near-critical density plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willingale, L.; Thomas, A. G. R.; Maksimchuk, A.

    Experiments were performed using the Omega EP laser, which provided pulses containing 1kJ of energy in 9ps and was used to investigate high-power, relativistic intensity laser interactions with near-critical density plasmas, created from foam targets with densities of 3-100 mg/cm{sup 3}. The effect of changing the plasma density on both the laser light transmitted through the targets and the proton beam accelerated from the interaction was investigated. Two-dimensional particle-in-cell simulations enabled the interaction dynamics and laser propagation to be studied in detail. The effect of the laser polarization and intensity in the two-dimensional simulations on the channel formation and electronmore » heating are discussed. In this regime, where the plasma density is above the critical density, but below the relativistic critical density, the channel formation speed and therefore length are inversely proportional to the plasma density, which is faster than the hole boring model prediction. A general model is developed to describe the channel length in this regime.« less

  1. Injector design for liner-on-target gas-puff experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  2. Injector design for liner-on-target gas-puff experiments.

    PubMed

    Valenzuela, J C; Krasheninnikov, I; Conti, F; Wessel, F; Fadeev, V; Narkis, J; Ross, M P; Rahman, H U; Ruskov, E; Beg, F N

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ∼1 cm radius gas profile that satisfies the theoretical requirement for best performance on ∼1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  3. Method for foam encapsulating laser targets

    DOEpatents

    Hendricks, Charles D.

    1977-01-01

    Foam encapsulated laser fusion targets are made by positioning a fusion fuel-filled sphere within a mold cavity of suitable configuration and dimensions, and then filling the cavity with a material capable of producing a low density, microcellular foam, such as cellulose acetate dissolved in an acetone-based solvent. The mold assembly is dipped into an ice water bath to gel the material and thereafter soaked in the water bath to leach out undesired components, after which the gel is frozen, then freeze-dried wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam, thereafter the resulting foam encapsulated target is removed from the mold cavity. The fuel-filled sphere is surrounded by foam having a thickness of about 10 to 100 .mu.m, a cell size of less than 2 .mu.m, and density of 0.065 to 0.6 .times. 10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by this encapsulation method are illustrated.

  4. Sensor Management for Fighter Applications

    DTIC Science & Technology

    2006-06-01

    has consistently shown that by directly estimating the prob- ability density of a target state using a track - before - detect scheme, weak and densely... track - before - detect nonlinear filter was constructed to estimate the joint density of all state variables. A simulation that emulates estimator...targets in clutter and noise from sensed kinematic and identity data. Among the most capable is track - before - detect (TBD), which delivers

  5. Spatio-Temporal Patterns of the International Merger and Acquisition Network.

    PubMed

    Dueñas, Marco; Mastrandrea, Rossana; Barigozzi, Matteo; Fagiolo, Giorgio

    2017-09-07

    This paper analyses the world web of mergers and acquisitions (M&As) using a complex network approach. We use data of M&As to build a temporal sequence of binary and weighted-directed networks for the period 1995-2010 and 224 countries (nodes) connected according to their M&As flows (links). We study different geographical and temporal aspects of the international M&A network (IMAN), building sequences of filtered sub-networks whose links belong to specific intervals of distance or time. Given that M&As and trade are complementary ways of reaching foreign markets, we perform our analysis using statistics employed for the study of the international trade network (ITN), highlighting the similarities and differences between the ITN and the IMAN. In contrast to the ITN, the IMAN is a low density network characterized by a persistent giant component with many external nodes and low reciprocity. Clustering patterns are very heterogeneous and dynamic. High-income economies are the main acquirers and are characterized by high connectivity, implying that most countries are targets of a few acquirers. Like in the ITN, geographical distance strongly impacts the structure of the IMAN: link-weights and node degrees have a non-linear relation with distance, and an assortative pattern is present at short distances.

  6. An Observational Assessment of Anesthesia Capacity in Madagascar as a Prerequisite to the Development of a National Surgical Plan.

    PubMed

    Baxter, Linden S; Ravelojaona, Vaonandianina A; Rakotoarison, Hasiniaina N; Herbert, Alison; Bruno, Emily; Close, Kristin L; Andean, Vanessa; Andriamanjato, Hery H; Shrime, Mark G; White, Michelle C

    2017-06-01

    The global lack of anesthesia capacity is well described, but country-specific data are needed to provide country-specific solutions. We aimed to assess anesthesia capacity in Madagascar as part of the development of a Ministry of Health national surgical plan. As part of a nationwide surgical safety quality improvement project, we surveyed 19 of 22 regional hospitals, representing surgical facilities caring for 75% of the total population. The assessment was divided into 3 areas: anesthesia workforce density, infrastructure and equipment, and medications. Data were obtained by semistructured interviews with Ministry of Health officials, hospital directors, technical directors, statisticians, pharmacists, and anesthesia providers and through on-site observations. Interview questions were adapted from the World Health Organization Situational Analysis Tool and the World Federation of Societies of Anaesthesiologists International Standards for Safe Practice of Anaesthesia. Additional data on workforce density were collected from the 3 remaining regions so that workforce density data are representative of all 22 regions. Anesthesia physician workforce density is 0.26 per 100,000 population and 0.19 per 100,000 outside of the capital region. Less than 50% of hospitals surveyed reported having a reliable electricity and oxygen supply. The majority of anesthesia providers work without pulse oximetry (52%) or a functioning vaporizer (52%). All the hospitals surveyed had very basic pediatric supplies, and none had a pediatric pulse oximetry probe. Ketamine is universally available but more than 50% of hospitals lack access to opioids. None of the 19 regional hospitals surveyed was able to completely meet the World Federation of Societies of Anaesthesiologists' standards for monitoring. Improving anesthesia care is complex. Capacity assessment is a first step that would enable progress to be tracked against specific targets. In Madagascar, scale-up of the anesthesia workforce, investment in infrastructure and equipment, and improvement in medication supply-chain management are needed to attain minimal international standards. Data from this study were presented to the Ministry of Health for inclusion in the development of a national surgical plan, together with recommendations for the needed improvements in the delivery of anesthesia.

  7. Optical display for radar sensing

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee

    2015-05-01

    Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.

  8. Silicon Nanotips Antireflection Surface for Micro Sun Sensor

    NASA Technical Reports Server (NTRS)

    Bae, Sam Y.; Lee, Choonsup; Mobasser, Sohrab; Manohara, Harish

    2006-01-01

    We have developed a new technique to fabricate antireflection surface using silicon nano-tips for use on a micro sun sensor for Mars rovers. We have achieved randomly distributed nano-tips of radius spanning from 20 nm to 100 nm and aspect ratio of 200 using a two-step dry etching process. The 30(deg) specular reflectance at the target wavelength of 1 (mu)m is only about 0.09 %, nearly three orders of magnitude lower than that of bare silicon, and the hemispherical reflectance is 8%. By changing the density and aspect ratio of these nanotips, the change in reflectance is demonstrated. Using surfaces covered with these nano-tips, the critical problem of ghost images that are caused by multiple internal reflections in a micro sun sensor was solved.

  9. Implementation of a High Explosive Equation of State into an Eulerian Hydrocode

    NASA Astrophysics Data System (ADS)

    Littlefield, David L.; Baker, Ernest L.

    2004-07-01

    The implementation of a high explosive equation of state into the Eulerian hydrocode CTH is described. The equation of state is an extension to JWL referred to as JWLB, and is intended to model the thermodynamic state of detonation products from a high explosive reaction. The EOS was originally cast in a form p = p(ρ, e), where p is the pressure, ρ is the density and e is the internal energy. However, the target application code requires an EOS of the form p = p(ρ, T), where T is the temperature, so it was necessary to reformulate the EOS in a thermodynamically consistent manner. A Helmholtz potential, developed from the original EOS, insures this consistency. Example calculations are shown that illustrate the veracity of this implementation.

  10. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  11. The use of segmented cathodes to determine the spoke current density distribution in high power impulse magnetron sputtering plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poolcharuansin, Phitsanu; The Technological Plasma Research Unit, Department of Physics, Mahasarakham University, Maha Sarakham 44150; Estrin, Francis Lockwood

    2015-04-28

    The localized target current density associated with quasi-periodic ionization zones (spokes) has been measured in a high power impulse magnetron sputtering (HiPIMS) discharge using an array of azimuthally separated and electrical isolated probes incorporated into a circular aluminum target. For a particular range of operating conditions (pulse energies up to 2.2 J and argon pressures from 0.2 to 1.9 Pa), strong oscillations in the probe current density are seen with amplitudes up to 52% above a base value. These perturbations, identified as spokes, travel around the discharge above the target in the E×B direction. Using phase information from the angularly separated probes,more » the spoke drift speeds, angular frequencies, and mode number have been determined. Generally, at low HiPIMS pulse energies E{sub p} < 0.8 J, spokes appear to be chaotic in nature (with random arrival times), however as E{sub p} increases, coherent spokes are observed with velocities between 6.5 and 10 km s{sup −1} and mode numbers m = 3 or above. At E{sub p} > 1.8 J, the plasma becomes spoke-free. The boundaries between chaotic, coherent, and no-spoke regions are weakly dependent on pressure. During each HiPIMS pulse, the spoke velocities increase by about 50%. Such an observation is explained by considering spoke velocities to be determined by the critical ionization velocity, which changes as the plasma composition changes during the pulse. From the shape of individual current density oscillations, it appears that the leading edge of the spoke is associated with a slow increase in local current density to the target and the rear with a more rapid decrease. The measurements show that the discharge current density associated with individual spokes is broadly spread over a wide region of the target.« less

  12. The transformation of targeted killing and international order.

    PubMed

    Senn, Martin; Troy, Jodok

    2017-05-04

    This article introduces the special issue's question of whether and how the current transformation of targeted killing is transforming the global international order and provides the conceptual ground for the individual contributions to the special issue. It develops a two-dimensional concept of political order and introduces a theoretical framework that conceives the maintenance and transformation of international order as a dynamic interplay between its behavioral dimension in the form of violence and discursive processes and its institutional dimension in the form of ideas, norms, and rules. The article also conceptualizes targeted killing and introduces a typology of targeted-killing acts on the basis of their legal and moral legitimacy. Building on this conceptual groundwork, the article takes stock of the current transformation of targeted killing and summarizes the individual contributions to this special issue.

  13. Experimental design to generate strong shear layers in a high-energy-density plasma

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Gillespie, R. S.; Grosskopf, M. J.; Weaver, J. L.; Velikovich, A. L.; Visco, A.; Ditmar, J. R.

    2010-06-01

    The development of a new experimental system for generating a strong shear flow in a high-energy-density plasma is described in detail. The targets were designed with the goal of producing a diagnosable Kelvin-Helmholtz (KH) instability, which plays an important role in the transition turbulence but remains relatively unexplored in the high-energy-density regime. To generate the shear flow the Nike laser was used to drive a flow of Al plasma over a low-density foam surface with an initial perturbation. The interaction of the Al and foam was captured with a spherical crystal imager using 1.86 keV X-rays. The selection of the individual targets components is discussed and results are presented.

  14. Microscopic few-body and Gaussian-shaped density distributions for the analysis of the 6He exotic nucleus with different target nuclei

    NASA Astrophysics Data System (ADS)

    Aygun, M.; Kucuk, Y.; Boztosun, I.; Ibraheem, Awad A.

    2010-12-01

    The elastic scattering angular distributions of 6He projectile on different medium and heavy mass target nuclei including 12C, 27Al, 58Ni, 64Zn, 65Cu, 197Au, 208Pb and 209Bi have been examined by using the few-body and Gaussian-shaped density distributions at various energies. The microscopic real parts of the complex nuclear optical potential have been obtained by using the double-folding model for each of the density distributions and the phenomenological imaginary potentials have been taken as the Woods-Saxon type. Comparative results of the few-body and Gaussian-shaped density distributions together with the experimental data are presented within the framework of the optical model.

  15. Use of internal references for assessing CT density measurements of the pelvis as replacement for use of an external phantom.

    PubMed

    Boomsma, Martijn F; Slouwerhof, Inge; van Dalen, Jorn A; Edens, Mireille A; Mueller, Dirk; Milles, Julien; Maas, Mario

    2015-11-01

    The purpose of this research is to study the use of an internal reference standard for fat- and muscle as a replacement for an external reference standard with a phantom. By using a phantomless internal reference standard, Hounsfield unit (HU) measurements of various tissues can potentially be assessed in patients with a CT scan of the pelvis without an added phantom at time of CT acquisition. This paves the way for development of a tool for quantification of the change in tissue density in one patient over time and between patients. This could make every CT scan made without contrast available for research purposes. Fifty patients with unilateral metal-on-metal total hip replacements, scanned together with a calibration reference phantom used in bone mineral density measurements, were included in this study. On computed tomography scans of the pelvis without the use of intravenous iodine contrast, reference values for fat and muscle were measured in the phantom as well as within the patient's body. The conformity between the references was examined with the intra-class correlation coefficient. The mean HU (± SD) of reference values for fat for the internal- and phantom references were -91.5 (±7.0) and -90.9 (±7.8), respectively. For muscle, the mean HU (± SD) for the internal- and phantom references were 59.2 (±6.2) and 60.0 (±7.2), respectively. The intra-class correlation coefficients for fat and muscle were 0.90 and 0.84 respectively and show excellent agreement between the phantom and internal references. Internal references can be used with similar accuracy as references from an external phantom. There is no need to use an external phantom to asses CT density measurements of body tissue.

  16. Appropriate targeting of artemisinin-based combination therapy by community health workers using malaria rapid diagnostic tests: findings from randomized trials in two contrasting areas of high and low malaria transmission in south-western Uganda.

    PubMed

    Ndyomugyenyi, Richard; Magnussen, Pascal; Lal, Sham; Hansen, Kristian; Clarke, Siân E

    2016-09-01

    To compare the impact of malaria rapid diagnostic tests (mRDTs), used by community health workers (CHWs), on the proportion of children <5 years of age receiving appropriately targeted treatment with artemisinin-based combination therapy (ACT), vs. presumptive treatment. Cluster-randomized trials were conducted in two contrasting areas of moderate-to-high and low malaria transmission in rural Uganda. Each trial examined the effectiveness of mRDTs in the management of malaria and targeting of ACTs by CHWs comparing two diagnostic approaches: (i) presumptive clinical diagnosis of malaria [control arm] and (ii) confirmatory diagnosis with mRDTs followed by ACT treatment for positive patients [intervention arm], with village as the unit of randomisation. Treatment decisions by CHWs were validated by microscopy on a reference blood slide collected at the time of consultation, to compare the proportion of children <5 years receiving appropriately targeted ACT treatment, defined as patients with microscopically-confirmed presence of parasites in a peripheral blood smear receiving artemether-lumefantrine or rectal artesunate, and patients with no malaria parasites not given ACT. In the moderate-to-high transmission area, ACT treatment was appropriately targeted in 79.3% (520/656) of children seen by CHWs using mRDTs to diagnose malaria, vs. 30.8% (215/699) of children seen by CHWs using presumptive diagnosis (P < 0.001). In the low transmission area, 90.1% (363/403) children seen by CHWs using mRDTs received appropriately targeted ACT treatment vs. 7.8% (64/817) seen by CHWs using presumptive diagnosis (P < 0.001). Low mRDT sensitivity in children with low-density parasitaemia (<200 parasites/μl) was identified as a potential concern. When equipped with mRDTs, ACT treatments delivered by CHWs are more accurately targeted to children with malaria parasites. mRDT use could play an important role in reducing overdiagnosis of malaria and improving fever case management within iCCM, in both moderate-to-high and low transmission areas. Nonetheless, missed treatments due to the low sensitivity of current mRDTs in patients with low parasite density are a concern. For community-based treatment in areas of low transmission and/or non-immune populations, presumptive treatment of all fevers as malaria may be advisable, until more sensitive diagnostic assays, suitable for routine use by CHWs in remote settings, become available. © 2016 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  17. Correlation between patients' reasons for encounters/health problems and population density in Japan: a systematic review of observational studies coded by the International Classification of Health Problems in Primary Care (ICHPPC) and the International Classification of Primary care (ICPC).

    PubMed

    Kaneko, Makoto; Ohta, Ryuichi; Nago, Naoki; Fukushi, Motoharu; Matsushima, Masato

    2017-09-13

    The Japanese health care system has yet to establish structured training for primary care physicians; therefore, physicians who received an internal medicine based training program continue to play a principal role in the primary care setting. To promote the development of a more efficient primary health care system, the assessment of its current status in regard to the spectrum of patients' reasons for encounters (RFEs) and health problems is an important step. Recognizing the proportions of patients' RFEs and health problems, which are not generally covered by an internist, can provide valuable information to promote the development of a primary care physician-centered system. We conducted a systematic review in which we searched six databases (PubMed, the Cochrane Library, Google Scholar, Ichushi-Web, JDreamIII and CiNii) for observational studies in Japan coded by International Classification of Health Problems in Primary Care (ICHPPC) and International Classification of Primary Care (ICPC) up to March 2015. We employed population density as index of accessibility. We calculated Spearman's rank correlation coefficient to examine the correlation between the proportion of "non-internal medicine-related" RFEs and health problems in each study area in consideration of the population density. We found 17 studies with diverse designs and settings. Among these studies, "non-internal medicine-related" RFEs, which was not thought to be covered by internists, ranged from about 4% to 40%. In addition, "non-internal medicine-related" health problems ranged from about 10% to 40%. However, no significant correlation was found between population density and the proportion of "non-internal medicine-related" RFEs and health problems. This is the first systematic review on RFEs and health problems coded by ICHPPC and ICPC undertaken to reveal the diversity of health problems in Japanese primary care. These results suggest that primary care physicians in some rural areas of Japan need to be able to deal with "non-internal-medicine-related" RFEs and health problems, and that curriculum including practical non-internal medicine-related training is likely to be important.

  18. Methods and limitations in radar target imagery

    NASA Astrophysics Data System (ADS)

    Bertrand, P.

    An analytical examination of the reflectivity of radar targets is presented for the two-dimensional case of flat targets. A complex backscattering coefficient is defined for the amplitude and phase of the received field in comparison with the emitted field. The coefficient is dependent on the frequency of the emitted signal and the orientation of the target with respect to the transmitter. The target reflection is modeled in terms of the density of illumined, colored points independent from one another. The target therefore is represented as an infinite family of densities indexed by the observational angle. Attention is given to the reflectivity parameters and their distribution function, and to the conjunct distribution function for the color, position, and the directivity of bright points. It is shown that a fundamental ambiguity exists between the localization of the illumined points and the determination of their directivity and color.

  19. Numerical modeling of laser-driven ion acceleration from near-critical gas targets

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; Vizman, Daniel; d’Humières, Emmanuel

    2018-06-01

    In the past two decades, laser-accelerated ion sources and their applications have been intensely researched. Recently, it has been shown through experiments that proton beams with characteristics comparable to those obtained with solid targets can be obtained from gaseous targets. By means of particle-in-cell simulations, this paper studies in detail the effects of a near-critical density gradient on ion and electron acceleration after the interaction with ultra high intensity lasers. We can observe that the peak density of the gas jet has a significant influence on the spectrum features. As the gas jet density increases, so does the peak energy of the central quasi-monoenergetic ion bunch due to the increase in laser absorption while at the same time having a broadening effect on the electron angular distribution.

  20. Fabrication of Low-Density Foam Liners in Hohlraums for NIF Targets

    DOE PAGES

    Bhandarkar, Suhas; Baumann, Ted; Alfonso, Noel; ...

    2018-01-15

    Low-density foam liners are seen as a means to mitigate hohlraum wall motion that can interfere with the inner set of beams that are pointed toward the middle section of the hohlraum. These liners need to meet several requirements, most notably the material choice and the maximum allowable solid fraction and thickness, which necessitate development of new processing capabilities. In this paper, we discuss our strategy and work on fabrication of a tantalum oxide foam liner and its assembly into targets for the National Ignition Facility (NIF). Finally, in particular, we discuss our approach to finding solutions to the uniquemore » challenges that come up in working with such low-density materials so as to be able establish a viable platform for production of cryogenic targets for NIF with foam-lined hohlraums.« less

  1. Fabrication of Low-Density Foam Liners in Hohlraums for NIF Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandarkar, Suhas; Baumann, Ted; Alfonso, Noel

    Low-density foam liners are seen as a means to mitigate hohlraum wall motion that can interfere with the inner set of beams that are pointed toward the middle section of the hohlraum. These liners need to meet several requirements, most notably the material choice and the maximum allowable solid fraction and thickness, which necessitate development of new processing capabilities. In this paper, we discuss our strategy and work on fabrication of a tantalum oxide foam liner and its assembly into targets for the National Ignition Facility (NIF). Finally, in particular, we discuss our approach to finding solutions to the uniquemore » challenges that come up in working with such low-density materials so as to be able establish a viable platform for production of cryogenic targets for NIF with foam-lined hohlraums.« less

  2. Target studies for the neutrino factory at the Rutherford Appleton laboratory

    NASA Astrophysics Data System (ADS)

    Drumm, Paul; Densham, Chris; Bennett, Roger

    2001-10-01

    Target studies at the Rutherford Appleton Laboratory have concentrated on studies of a solid heavy metal target. The suggestion to use a radiatively cooled target which rotates in beam was made shortly after the first NuFact workshop as a means of dissipating large amounts of power at a high temperature, and as an alternative to the proposed water-cooled rotating band and liquid metal jet targets. This paper examines the proposed drive scheme for the target ring, which uses induced currents and magnetic forces to both levitate and drive the target. Estimates of the power required to levitate and drive the target ring and the forces exerted on the moving ring as it enters the target capture solenoid are given. One of the principle concerns in the operation of a solid target is the severe shock stress experienced due to the impact of an intense energetic proton beam in a short time compared to the transit time of sound in the material. Calculations of the stresses induced in the target ring and their evolution with time as well as an initial estimation of the expected power densities and stresses in an existing high power density target are presented.

  3. Differential cellular internalization of anti-CD19 and -CD22 immunotoxins results in different cytotoxic activity.

    PubMed

    Du, Xing; Beers, Richard; Fitzgerald, David J; Pastan, Ira

    2008-08-01

    B-cell malignancies routinely express surface antigens CD19 and CD22. Immunotoxins against both antigens have been evaluated, and the immunotoxins targeting CD22 are more active. To understand this disparity in cytotoxicity and guide the screening of therapeutic targets, we compared two immunotoxins, FMC63(Fv)-PE38-targeting CD19 and RFB4(Fv)-PE38 (BL22)-targeting CD22. Six lymphoma cell lines have 4- to 9-fold more binding sites per cell for CD19 than for CD22, but BL22 is 4- to 140-fold more active than FMC63(Fv)-PE38, although they have a similar cell binding affinity (Kd, approximately 7 nmol/L). In 1 hour, large amounts of BL22 are internalized (2- to 3-fold more than the number of CD22 molecules on the cell surface), whereas only 5.2% to 16.6% of surface-bound FMC63(Fv)-PE38 is internalized. The intracellular reservoir of CD22 decreases greatly after immunotoxin internalization, indicating that it contributes to the uptake of BL22. Treatment of cells with cycloheximide does not reduce the internalization of BL22. Both internalized immunotoxins are located in the same vesicles. Our results show that the rapid internalization of large amounts of BL22 bound to CD22 makes CD22 a better therapeutic target than CD19 for immunotoxins and probably for other immunoconjugates that act inside cells.

  4. Characterization of CD44-Mediated Cancer Cell Uptake and Intracellular Distribution of Hyaluronan-Grafted Liposomes

    PubMed Central

    Qhattal, Hussaini Syed Sha; Liu, Xinli

    2011-01-01

    Hyaluronan (HA) is a biocompatible and biodegradable linear polysaccharide which is of interest for tumor targeting through cell surface CD44 receptors. HA binds with high affinity to CD44 receptors, which are overexpressed in many tumors and involved in cancer metastasis. In the present study, we investigated the impact of HA molecular weight (MW), grafting density, and CD44 receptor density on endocytosis of HA-grafted liposomes (HA-liposomes) by cancer cells. Additionally, the intracellular localization of the HA-liposomes was determined. HAs of different MWs (5-8, 10-12, 175-350, and 1600 kDa) were conjugated to liposomes with varying degrees of grafting density. HA surface density was quantified using the hexadecyltrimethylammonium bromide turbidimetric method. Cellular uptake and subcellular localization of HA-liposomes were evaluated by flow cytometry and fluorescence microscopy. Mean particle sizes of HA-liposomes ranged from 120 to 180 nm and increased with the bigger size of HA. HA-liposome uptake correlated with HA MW (5-8 < 10-12 < 175-350 kDa), grafting density, and CD44 receptor density and exceeded that obtained with unconjugated plain liposomes. HA-liposomes were taken up into cells via lipid raft-mediated endocytosis, which is both energy- and cholesterol-dependent. Once within cells, HA-liposomes localized primarily to endosomes and lysosomes. The results demonstrate that cellular targeting efficiency of HA-liposomes depends strongly upon HA MW, grafting density, and cell surface receptor CD44 density. The results support a role of HA-liposomes for targeted drug delivery. PMID:21696190

  5. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets*

    PubMed Central

    Rhoden, John J.; Dyas, Gregory L.

    2016-01-01

    Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022

  6. The Effects of Differing Densities of Glossing on Vocabulary Uptake and Reading Comprehension

    ERIC Educational Resources Information Center

    Majuddin, Elvenna

    2014-01-01

    This study investigated the effects of differing densities of glossing on the uptake of target words and the comprehension of idea units from a reading text. The focus was whether different densities of glossing would create trade-off effects. Thirty-three Malaysian ESL learners were assigned to three different conditions: high-density glossing,…

  7. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  8. Optimum hot electron production with low-density foams for laser fusion by fast ignition.

    PubMed

    Lei, A L; Tanaka, K A; Kodama, R; Kumar, G R; Nagai, K; Norimatsu, T; Yabuuchi, T; Mima, K

    2006-06-30

    We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.

  9. System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid

    DOEpatents

    Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.

    2000-01-01

    A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

  10. Determining mutation density using Restriction Enzyme Sequence Comparative Analysis (RESCAN)

    USDA-ARS?s Scientific Manuscript database

    The average mutation density of a mutant population is a major consideration when developing resources for the efficient, cost-effective implementation of reverse genetics methods such as Targeting of Induced Local Lesions in Genomes (TILLING). Reliable estimates of mutation density can be achieved ...

  11. Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function

    PubMed Central

    Socha, John J; Westneat, Mark W; Harrison, Jon F; Waters, James S; Lee, Wah-Keat

    2007-01-01

    Background Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage. Results We evaluated the tradeoff between image quality and harm to the animal by determining the impact of targeted synchrotron x-rays on insect physiology, behavior and survival. Using 25 keV x-rays at a flux density of 80 μW/mm-2, high quality video-rate images can be obtained without major detrimental effects on the insects for multiple minutes, a duration sufficient for many physiological studies. At this setting, insects do not heat up. Additionally, we demonstrate the range of uses of synchrotron phase-contrast imaging by showing high-resolution images of internal anatomy and observations of labeled food movement during ingestion and digestion. Conclusion Synchrotron x-ray phase contrast imaging has the potential to revolutionize the study of physiology and internal biomechanics in small animals. This is the only generally applicable technique that has the necessary spatial and temporal resolutions, penetrating power, and sensitivity to soft tissue that is required to visualize the internal physiology of living animals on the scale from millimeters to microns. PMID:17331247

  12. Dependence of optimal initial density on laser parameters for multi-keV x-ray radiators generated by nanosecond laser-produced underdense plasma

    NASA Astrophysics Data System (ADS)

    Tu, Shao-yong; Yuan, Yong-teng; Hu, Guang-yue; Miao, Wen-yong; Zhao, Bin; Zheng, Jian; Jiang, Shao-en; Ding, Yong-kun

    2016-01-01

    Efficient multi-keV x-ray sources can be produced using nanosecond laser pulse-heated middle-Z underdense plasmas generated using gas or foam. Previous experimental results show that an optimal initial target density exists for efficient multi-keV x-ray emission at which the laser ionization wave is supersonic. Here we explore the influence of the laser intensity and the pulse duration on this optimal initial target density via a one-dimensional radiation hydrodynamic simulation. The simulation shows that the optimal initial density is sensitive to both the laser intensity and the pulse duration. However, the speed of the supersonic ionization wave at the end of the laser irradiation is always maintained at 1.5 to 1.7 times that of the ion acoustic wave under the optimal initial density conditions.

  13. Influence of argon pressure and current density on substrate temperature during magnetron sputtering of hot titanium target

    NASA Astrophysics Data System (ADS)

    Komlev, Anton A.; Minzhulina, Ekaterina A.; Smirnov, Vladislav V.; Shapovalov, Viktor I.

    2018-01-01

    The paper describes physical characteristics of the hot target sputtering process, which have not been known before. To switch a magnetron over to the hot target regime, a titanium disk of 1 mm thick with a 1-mm-gap was attached on a 4-mm-thick copper plate cooled by running water. A thermocouple sensor was used to investigate the thermal processes occurring in substrates. The study was performed at the discharge current density of 20-40 mA/cm2 and argon pressure of 3-7 mTorr. The accuracy of temperature measurement appeared to be within ± 5%, due the application of a chromel-copel thermocouple. The study reveals that under these conditions the heating curves have the inflection points positioned proportionally to the discharge current density and argon pressure on a time axis. The inflection point appears in the kinetic curves due to the finite value of the target heating time constant. The study shows that the substrate fixed temperature and substrate heating time constant depend on the argon pressure and relate to the current density by the polynomials of the first and second degrees, respectively. The influence of a target on the substrate heating kinetics is considered in an analytical description by the introduction of a multiplier in the form of an exponential function of time. The results of the research make a novel contribution to the field of the sputtering process.

  14. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Adam K.; Gallagher, Molly; Usero, Antonio

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less

  15. The polarised internal target for the PAX experiment

    NASA Astrophysics Data System (ADS)

    Ciullo, G.; Barion, L.; Barschel, C.; Grigoriev, K.; Lenisa, P.; Nass, A.; Sarkadi, J.; Statera, M.; Steffens, E.; Tagliente, G.

    2011-05-01

    The PAX (Polarized Antiproton eXperiment) collaboration aims to polarise antiproton beams stored in ring by means of spin-filtering. The experimental setup is based on a polarised internal gas target, surrounded by a detection system for the measurement of spin observables. In this report, we present results from the commission of the PAX target (atomic beam source, openable cell, and polarimeter).

  16. [Development of pseudoviral competitive internal controls for RT-PCR detection of dengue virus].

    PubMed

    Hang, Xiao-Tong; Li, Jian-Dong; Zhang, Quan-Fu; Li, Chuan; Zhang, Shuo; Liang, Mi-Fang; Li, De-Xin

    2010-02-01

    Development of pseudoviral competitive internal controls for RT-PCR laboratory detection of dengue virus. The internal controls target gene were obtained by insertion of a 180 bp non-related DNA fragment into RT-PCR detection target of dengue virus between the forward and reverse PCR primer binding regions. A yellow florescence protein reporter gene was induced at downstream of internal controls target gene via internal ribosome entry site gene. HEK 293T cells were transfected with plasmid containing this whole cassette and lentiviral packaging support plasmid. Pseudoviral particle was recovered from the supernatant and analyzed quantitatively and qualitatively in simulated samples at the same tube under different experimental conditions. The established pseudoviral competitive internal controls can be used in the RT-PCR detection of different serotype dengue virus and the whole detection process can be monitored. The obtained fragment is easy to be differentiated in agarose electrophoresis. The pseudoviral competitive internal controls could be used for the quality control of the laboratory diagnosis process, simple to prepare, stable for storage, easy to be transformed into internal controls for other RNA virus.

  17. IGRT/ART phantom with programmable independent rib cage and tumor motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Olivier C. L., E-mail: o.haas@coventry.ac.uk; Mills, John A.; Land, Imke

    2014-02-15

    Purpose: This paper describes the design and experimental evaluation of the Methods and Advanced Equipment for Simulation and Treatment in Radiation Oncology (MAESTRO) thorax phantom, a new anthropomorphic moving ribcage combined with a 3D tumor positioning system to move target inserts within static lungs. Methods: The new rib cage design is described and its motion is evaluated using Vicon Nexus, a commercial 3D motion tracking system. CT studies at inhale and exhale position are used to study the effect of rib motion and tissue equivalence. Results: The 3D target positioning system and the rib cage have millimetre accuracy. Each axismore » of motion can reproduce given trajectories from files or individually programmed sinusoidal motion in terms of amplitude, period, and phase shift. The maximum rib motion ranges from 7 to 20 mm SI and from 0.3 to 3.7 mm AP with LR motion less than 1 mm. The repeatability between cycles is within 0.16 mm root mean square error. The agreement between CT electron and mass density for skin, ribcage, spine hard and inner bone as well as cartilage is within 3%. Conclusions: The MAESTRO phantom is a useful research tool that produces programmable 3D rib motions which can be synchronized with 3D internal target motion. The easily accessible static lungs enable the use of a wide range of inserts or can be filled with lung tissue equivalent and deformed using the target motion system.« less

  18. Interventions that involve parents to improve children's weight-related nutrition intake and activity patterns - what nutrition and activity targets and behaviour change techniques are associated with intervention effectiveness?

    PubMed

    Golley, R K; Hendrie, G A; Slater, A; Corsini, N

    2011-02-01

    Parent involvement is an important component of obesity prevention interventions. However, the best way to support parents remains unclear. This review identifies interventions targeting parents to improve children's weight status, dietary and/or activity patterns, examines whether intervention content and behaviour change techniques employed are associated with effectiveness. Seventeen studies, in English, 1998-2008, were included. Studies were evaluated by two reviewers for study quality, nutrition/activity content and behaviour change techniques using a validated quality assessment tool and behaviour change technique taxonomy. Study findings favoured intervention effectiveness in 11 of 17 studies. Interventions that were considered effective had similar features: better study quality, parents responsible for participation and implementation, greater parental involvement and inclusion of prompt barrier identification, restructure the home environment, prompt self-monitoring, prompt specific goal setting behaviour change techniques. Energy intake/density and food choices were more likely to be targeted in effective interventions. The number of lifestyle behaviours targeted did not appear to be associated with effectiveness. Intervention effectiveness was favoured when behaviour change techniques spanned the spectrum of behaviour change process. The review provides guidance for researchers to make informed decisions on how best to utilize resources in interventions to support and engage parents, and highlights a need for improvement in intervention content reporting practices. © 2010 The Authors. obesity reviews © 2010 International Association for the Study of Obesity.

  19. Optical Remote Sensing for Fence-Line Monitoring using Open-Path Quantum Cascade Laser (QCL) mono-static system for multiple target compounds in the Mid IR 7-13um (Fingerprint) region.

    NASA Astrophysics Data System (ADS)

    Zemek, P. G.

    2017-12-01

    Quantum Cascade Lasers (QCLs) are quickly replacing Tunable Diode Lasers (TDL) for multi-target species identification and quantification in both extractive and open-path (OP) Optical Remote Sensing (ORS) fence-line instrumentation. As was seen with TDL incorporation and pricing drops as the adoption by the telecommunications industry and its current scaling has improved robustness and pricing, the QCL is also, albiet more slowly, becoming a mature market. There are several advantages of QCLs over conventional TDLs such as improved brightness and beam density, high resolution, as well as the incorporation of external etalons or internal gratings to scan over wide spectral areas. QCLs typically operate in the Mid infra-red (MIR) as opposed to the Near-Infrared (NIR) region used with TDL. The MidIR is a target rich absorption band area where compounds have high absorbtivity coefficients resulting in better detection limits as compared to TDL instruments. The use of novel chemometrics and more sensitive non-cryo-cooled detectors has allowed some of the first QCL open-path instruments in both active and passive operation. Data and field studies of one of the newest QCL OP systems is presented that allows one system to measure multiple target compounds. Multiple QCL spectral regions may be stitched together to increase the capability of QCLs over TDL OP systems. A comparison of several ORS type systems will be presented.

  20. Neutral Orbital Altitude Density Effects on the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, O.E.; Adelfang, S. I.; Smith, R. E.

    1997-01-01

    One of the design requirements of the International Space Station (ISS) is that each year accelerations of one micro-g cannot be exceeded at the ISS internal payload location for 6 periods of not less than 30 consecutive days. Although there are other causes, this study deals only with the accelerations caused by atmospheric drag. The critical ambient neutral density, computed using the Marshall Engineering Thermosphere Model, required to produce accelerations of one micro-g on the ISS, is estimated using an atmospheric drag acceleration equation. Results show that the design requirements may be difficult to meet during periods of extremely high solar activity; the planned reboost and altitude strategies for the ISS may have to be revised to allow for the uncertainty in the prediction of neutral atmospheric density within the 100-day period established for orbital decay before reboost.

  1. The transformation of targeted killing and international order

    PubMed Central

    Senn, Martin; Troy, Jodok

    2017-01-01

    ABSTRACT This article introduces the special issue’s question of whether and how the current transformation of targeted killing is transforming the global international order and provides the conceptual ground for the individual contributions to the special issue. It develops a two-dimensional concept of political order and introduces a theoretical framework that conceives the maintenance and transformation of international order as a dynamic interplay between its behavioral dimension in the form of violence and discursive processes and its institutional dimension in the form of ideas, norms, and rules. The article also conceptualizes targeted killing and introduces a typology of targeted-killing acts on the basis of their legal and moral legitimacy. Building on this conceptual groundwork, the article takes stock of the current transformation of targeted killing and summarizes the individual contributions to this special issue. PMID:29097903

  2. Geostability of Didymos, the target of the AIDA mission

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier; Maurel, Clara; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald; Benner, Lance A. M.; Naidu, Shantanu P.

    2016-10-01

    As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission [1, 2], the near-Earth binary asteroid 65803 Didymos represents a special class of binary asteroid, those whose primaries are at risk of rotational disruption [3]. To support the AIDA mission and gain a better understanding of these binary systems, we investigate the structural stability and dynamic behavior of the Didymos primary and the orbital stability of the secondary using a Soft-Sphere Discrete Element Method (SSDEM) [4]. The primary and the secondary are modeled as granular assemblies. In the first step of this study, the primary is artificially spun up to the current spin period of 2.26 h using a quasi-static spin-up procedure without considering the secondary [5]. The effects of arrangement and size distribution of constituent particles, bulk density, spin-up path, interparticle friction, and cohesion strength on the dynamic behavior of self-gravitating aggregates are numerically explored. The results show that the strength and stability of a spinning self-gravitating aggregate depend strongly on its internal configuration and material parameters, while its failure mode and mechanism are affected by its internal configuration and the cohesion strength. When cohesion is not included, the Didymos primary rubble-pile model can maintain its shape at the current observed spin rate within the uncertainty of the observed bulk density (< 2.7 g/cc) using material parameters with friction angle of ~30°, which most cohesionless sands can sustain. In the second step, the effect of the secondary on the stability of the primary is studied. The secondary can stably orbit the primary without including cohesion. The results show that the presence of the secondary will slightly reduce the stability of the primary. Our study provides some constraints on the possible physical properties of the Didymos primary.References: [1] Michel et al. 2016, ASR 57, 2529; [2] Cheng et al. 2016, P&SS 127, 27; [3] Olivier et al. 2015, DPS 47; [4] Schwartz et al. 2012, Granul. Matter 14, 363; [5] Zhang et al. 2016, in preparation.

  3. Regolith evolution in the laboratory - Scaling dissimilar comminution experiments

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Horz, Friedrich

    1990-01-01

    Repeated impacts into fragmental targets simulating unconsolidated debris on planetary surfaces have provided empirical insight into the evolution of planetary regoliths. The techniques of dimensional analysis have been employed to quantify and examine the relationships between the more important variables in the evolution of these experimental regoliths. Application of this method to the results of 10 experimental series shows that the quantity of comminuted target mass is directly proportional to (1) the number of impacts, (2) the diameter of the projectile, (3) the mean size of the crystals, (4) the mean grain size of the evolving regolith, (5) the total target mass, (6) the impactor density, and (7) the ratio of the impact velocity to the velocity of sound in the target rock. The comminuted mass is inversely proportional to the density of the target rock and the sorting of the regolith.

  4. Small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  5. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  6. Simple model of surface roughness for binary collision sputtering simulations

    NASA Astrophysics Data System (ADS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  7. Experimental determination of drag coefficients in low-density polyurethane foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, M L

    2006-04-18

    We describe several experiments performed at the LLNL Site 300 firing range and on the LLNL 1/3 scale gun to investigate the deceleration of small projectiles (l {approx} 3-5 [mm]) in low-density foam ({rho} {approx} 0.08-0.32 [g/cm{sup 3}]). The experiments at the firing range researched a passive velocity diagnostic based on Faraday's law of induction, while experiments on the 1/3 scale gun investigated the effects of varying projectile surface area, projectile shape, and foam density on the drag coefficient c{sub d}. Analysis shows that the velocity diagnostic has an uncertainty on the order of 1 percent for projectiles with velocitymore » v {approx} 0.8-1.2 [km/s]. The 1/3 scale gun experiments, dubbed the Krispy Kreme series, included nine shots considering the combinations of 3 projectile surface areas with 3 target densities. The experiments used Tantalum square surface area block projectiles (with an initial velocity v{sub 0} {approx} 1.2 [km/s], a common thickness T = 2.67 [mm], and square side lengths of 3, 4, and 5 [mm]) decelerating in polyurethane foams (with densities {rho}{sub f} of 0.08, 0.16 and 0.32 [g/cm{sup 3}]). Standard fluid models of the Krispy Kreme experiments predict Reynolds numbers Re {approx} 10{sup 5} - 10{sup 6}, Mach numbers Ma {approx} 0.5-2.0, and drag coefficients c{sub d} {approx} 2-3. However, the data indicate that c{sub d} = 1.1-1.2 (c{sub d} = 1.7) for all three block projectiles in the 0.08 and 0.16 [g/cm{sup 3}] targets (0.32 [g/cm{sup 3}] target). First, we conclude that the drag force on projectiles in solid polyurethane foam is less than in fluids with equivalent dimensionless parameters. This result is also supported by an additional Krispy Kreme experiment that used a disk projectile (with diameter d = 4.51 [mm] and thickness T = 2.67 [mm]) penetrating a target with density {rho} = 0.16 [g/cm{sup 3}], i.e., the fluid-like c{sub d} = 1.15 while the measured c{sub d} = 0.63. Second, we conclude that the measured drag coefficient in the lower density foam targets is less than in the larger density foam target. This result is corroborated by firing range experiments with M855 NATO bullets (with diameter 5.56 [mm], mass 4.1 [g], and initial velocity {nu}{sub 0} {approx} 800 [m/s]) fired from an M16 rifle, i.e., c{sub d} = 0.3 (c{sub d} = 0.6) in the 0.16 [g/cm{sup 3}] (0.32 [g/cm{sup 3}]) target. We propose future 1/3 scale gun experiments using a passive velocity diagnostic with increased spatial resolution as well as simple spherical projectiles with 0.5 and 1.0 [cm] diameters.« less

  8. Scale invariant SURF detector and automatic clustering segmentation for infrared small targets detection

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying; Bai, Jiaojiao; Li, Zhengjie; Liu, Yan; Liu, Kunhong

    2017-06-01

    The detection and discrimination of infrared small dim targets is a challenge in automatic target recognition (ATR), because there is no salient information of size, shape and texture. Many researchers focus on mining more discriminative information of targets in temporal-spatial. However, such information may not be available with the change of imaging environments, and the targets size and intensity keep changing in different imaging distance. So in this paper, we propose a novel research scheme using density-based clustering and backtracking strategy. In this scheme, the speeded up robust feature (SURF) detector is applied to capture candidate targets in single frame at first. And then, these points are mapped into one frame, so that target traces form a local aggregation pattern. In order to isolate the targets from noises, a newly proposed density-based clustering algorithm, fast search and find of density peak (FSFDP for short), is employed to cluster targets by the spatial intensive distribution. Two important factors of the algorithm, percent and γ , are exploited fully to determine the clustering scale automatically, so as to extract the trace with highest clutter suppression ratio. And at the final step, a backtracking algorithm is designed to detect and discriminate target trace as well as to eliminate clutter. The consistence and continuity of the short-time target trajectory in temporal-spatial is incorporated into the bounding function to speed up the pruning. Compared with several state-of-arts methods, our algorithm is more effective for the dim targets with lower signal-to clutter ratio (SCR). Furthermore, it avoids constructing the candidate target trajectory searching space, so its time complexity is limited to a polynomial level. The extensive experimental results show that it has superior performance in probability of detection (Pd) and false alarm suppressing rate aiming at variety of complex backgrounds.

  9. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.

    2015-11-15

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement withmore » the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.« less

  10. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  11. Radiation Nanomedicine for EGFR-Positive Breast Cancer: Panitumumab-Modified Gold Nanoparticles Complexed to the β-Particle-Emitter, (177)Lu.

    PubMed

    Yook, Simmyung; Cai, Zhongli; Lu, Yijie; Winnik, Mitchell A; Pignol, Jean-Philippe; Reilly, Raymond M

    2015-11-02

    Our objective was to construct a novel radiation nanomedicine for treatment of breast cancer (BC) expressing epidermal growth factor receptors (EGFR), particularly triple-negative tumors (TNBC). Gold nanoparticles (AuNP; 30 nm) were modified with polyethylene glycol (PEG) chains (4 kDa) derivatized with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelators for complexing the β-emitter, (177)Lu and with PEG chains (5 kDa) linked to panitumumab for targeting BC cells expressing EGFR. The AuNP were further coated with PEG chains (2 kDa) to stabilize the particles to aggregation. The binding and internalization of EGFR-targeted AuNP ((177)Lu-T-AuNP) into BC cells was studied and compared to nontargeted (177)Lu-NT-AuNP. The cytotoxicity of (177)Lu-T-AuNP and (177)Lu-NT-AuNP was measured in clonogenic assays using BC cells with widely different EGFR densities: MDA-MB-468 (10(6) receptors/cell), MDA-MB-231 (10(5) receptors/cell), and MCF-7 cells (10(4) receptors/cell). Radiation absorbed doses to the cell nucleus of MDA-MB-468 cells were estimated based on subcellular distribution. Darkfield and fluorescence microscopy as well as radioligand binding assays revealed that (177)Lu-T-AuNP were specifically bound by BC cells dependent on their EGFR density whereas the binding and internalization of (177)Lu-NT-AuNP was significantly lower. The affinity of binding of (177)Lu-T-AuNP to MDA-MB-468 cells was reduced by 2-fold compared to (123)I-labeled panitumumab (KD = 1.3 ± 0.2 nM vs 0.7 ± 0.4 nM, respectively). The cytotoxicity of (177)Lu-T-AuNP was dependent on the amount of radioactivity incubated with BC cells, their EGFR density and the radiosensitivity of the cells. The clonogenic survival (CS) of MDA-MB-468 cells overexpressing EGFR was reduced to <0.001% at the highest amount of (177)Lu-T-AuNP tested (4.5 MBq; 6 × 10(11) AuNP per 2.5 × 10(4)-1.2 × 10(5) cells). (177)Lu-T-AuNP were less effective for killing MDA-MB-231 cells or MCF-7 cells with moderate or low EGFR density (CS = 33.8 ± 1.6% and 25.8 ± 1.2%, respectively). Because the β-particles emitted by (177)Lu have a 2 mm range, (177)Lu-NT-AuNP were also cytotoxic to BC cells due to a cross-fire effect but (177)Lu-T-AuNP were significantly more potent for killing MDA-MB-468 cells overexpressing EGFR than (177)Lu-NT-AuNP at all amounts tested. The cross-fire effect of the β-particles emitted by (177)Lu may be valuable for eradicating BC cells in tumors that have low or moderate EGFR expression or cells that are not targeted by (177)Lu-T-AuNP as a consequence of heterogeneous intratumoral distribution. The radiation dose to the nucleus of a single MDA-MB-468 cell was 73.2 ± 6.7 Gy, whereas (177)Lu-NT-AuNP delivered 5.6 ± 0.6 Gy. We conclude that (177)Lu-T-AuNP is a promising novel radiation nanomedicine with potential application for treatment of TNBC, in which EGFR are often overexpressed.

  12. Systems and methods for imaging using radiation from laser produced plasmas

    DOEpatents

    Renard-Le Galloudec, Nathalie; Cowan, Thomas E.; Sentoku, Yasuhiko; Rassuchine, Jennifer

    2009-06-30

    In particular embodiments, the present disclosure provides systems and methods for imaging a subject using radiation emitted from a laser produced plasma generating by irradiating a target with a laser. In particular examples, the target includes at least one radiation enhancing component, such as a fluor, cap, or wire. In further examples, the target has a metal layer and an internal surface defining an internal apex, the internal apex of less than about 15 .mu.m, such as less than about 1 .mu.m. The targets may take a variety of shapes, including cones, pyramids, and hemispheres. Certain aspects of the present disclosure provide improved imaging of a subject, such as improved medical images of a radiation dose than typical conventional methods and systems.

  13. How Actuated Particles Effectively Capture Biomolecular Targets

    PubMed Central

    2017-01-01

    Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude. PMID:28192952

  14. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in anmore » ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.« less

  15. High energy density physics issues related to Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2017-07-01

    A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.

  16. Polymeric micelles as a diagnostic tool for image-guided drug delivery and radiotherapy of HER2 overexpressing breast cancer

    NASA Astrophysics Data System (ADS)

    Hoang, Nu Bryan

    Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to microvessel density. Ultimately, the 111In-micelles could be used for such diverse applications as detection of malignancies, molecular characterization of tumors, improved therapy guidance and targeted anti-cancer treatment.

  17. The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection.

    PubMed

    Zhao, Jing-jing; Pan, Ke; Wang, Wei; Chen, Ju-gao; Wu, Yan-heng; Lv, Lin; Li, Jian-jun; Chen, Yi-bing; Wang, Dan-dan; Pan, Qiu-zhong; Li, Xiao-dong; Xia, Jian-chuan

    2012-01-01

    Several pieces of evidence indicate that tumor-infiltrating neutrophils (TINs) are correlated to tumor progression. In the current study, we explore the relationship between TINs and clinicopathological features of gastric adenocarcinoma patients. Furthermore, we investigated the prognostic value of TINs. The study was comprised of two groups, training group (115 patients) and test group (97 patients). Biomarkers (intratumoral CD15+ neutrophils) were assessed by immunohistochemistry. The relationship between clinicopathological features and patient outcome were evaluated using Cox regression and Kaplan-Meier analysis. Immunohistochemical detection showed that the tumor-infiltrating neutrophils (TINs) in the training group ranged from 0.00-115.70 cells/high-power microscopic field (HPF) and the median number was 21.60 cells/HPF. Based on the median number, the patients were divided into high and low TINs groups. Chi-square test analysis revealed that the density of CD15+ TINs was positively associated with lymph node metastasis (p = 0.024), distance metastasis (p = 0.004) and UICC (International Union Against Cancer) staging (p = 0.028). Kaplan-Meier analysis showed that patients with a lower density of TINs had a better prognosis than patients with a higher density of TINs (p = 0.002). Multivariate Cox's analysis showed that the density of CD15+ TINs was an independent prognostic factor for overall survival of gastric adenocarcinoma patients. Using another 97 patients as a test group and basing on the median number of TINs (21.60 cells/HPF) coming from the training group, Kaplan-Meier analysis also showed that patients with a lower density of TINs had a better prognosis than patients with a higher density of TINs (p = 0.032). The results verify that the number of CD15+ TINs can predict the survival of gastric adenocarcinoma surgical patients. The presence of CD15+ TINs is an independent and unfavorable factor in the prognosis of gastric adenocarcinoma patients. Targeting CD15+ TINs may be a potential intervenient therapy in the future.

  18. Optimising the application of multiple-capture traps for invasive species management using spatial simulation.

    PubMed

    Warburton, Bruce; Gormley, Andrew M

    2015-01-01

    Internationally, invasive vertebrate species pose a significant threat to biodiversity, agricultural production and human health. To manage these species a wide range of tools, including traps, are used. In New Zealand, brushtail possums (Trichosurus vulpecula), stoats (Mustela ermine), and ship rats (Rattus rattus) are invasive and there is an ongoing demand for cost-effective non-toxic methods for controlling these pests. Recently, traps with multiple-capture capability have been developed which, because they do not require regular operator-checking, are purported to be more cost-effective than traditional single-capture traps. However, when pest populations are being maintained at low densities (as is typical of orchestrated pest management programmes) it remains uncertain if it is more cost-effective to use fewer multiple-capture traps or more single-capture traps. To address this uncertainty, we used an individual-based spatially explicit modelling approach to determine the likely maximum animal-captures per trap, given stated pest densities and defined times traps are left between checks. In the simulation, single- or multiple-capture traps were spaced according to best practice pest-control guidelines. For possums with maintenance densities set at the lowest level (i.e. 0.5/ha), 98% of all simulated possums were captured with only a single capacity trap set at each site. When possum density was increased to moderate levels of 3/ha, having a capacity of three captures per trap caught 97% of all simulated possums. Results were similar for stoats, although only two potential captures per site were sufficient to capture 99% of simulated stoats. For rats, which were simulated at their typically higher densities, even a six-capture capacity per trap site only resulted in 80% kill. Depending on target species, prevailing density and extent of immigration, the most cost-effective strategy for pest control in New Zealand might be to deploy several single-capture traps rather than investing in fewer, but more expense, multiple-capture traps.

  19. Coronal gas in the galaxy. II. A statistical analysis of O VI absorptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, E.B.

    Results from the survey of interstellar O VI by Jenkins and by Jenkins and Meloy are analyzed to synthesize a global description of the properties of the coronal gas. Tests for correlations of column densities or velocities with properties of the target stars showed no evidence for a circumstellar origin for the absorption lines. An overall average density n (O VI) =2.8 x 10/sup -8/ cm/sup -3/ was found in the galactic plane, with a decrease which approximately follows exp (-z/300 pc) away from the plane.Fluctuations in column densities over various lines of sight suggest that existence of six hotmore » gas regions kpc/sup -/1, randomly distributed in space, each with an O VI column density of about 10/sup 13/ cm/sup -2/. These regions account for an average density n (O VI) =2.1 x 10/sup -8/ cm/sup -3/; the remaining 7 x 10/sup -9/ cm/sup -3/ is produced by more sparsely distributed but thicker parcels of hot gas which are seen toward 10% of the stars. The statistics of radial velocity centroids and widths support the interpretation of distinct domains; each region has an internal velocity dispersion consistent with a Doppler broadening of a plasma at T> or approx. =2 x 10/sup 5/ K (near the characteristic temperature for a maximum concentration of O VI in collisional equilibrium), while the regions themselves move about with a dispersion of radial velocities equal to 26 km s/sup -1/. Systematic motions of gas away from the galactic plane could not be seen, however.Excursions from the normal O VI per unit distance have no perceptible anicorrelation with deviations in reddening by cool interstellar coulds: a fact which suggests that the average filling factor of O VI gas is less than 20% if coronal gas really displaces the cooler material and does not have large variations in density and temperature.« less

  20. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The optical molecular probe AF750 BBN peptide exhibits optimal pharmacokinetic properties for targeting GRPr in mice. Fluorescent microscopic imaging of the molecular probe in PC-3 prostate and T-47D breast cancer cell lines indicated specific uptake, internalization, and receptor blocking of these probes. In vivo investigations in severely compromised immunodeficient (SCID) mice bearing xenografted PC-3 prostate and T47-D breast cancer lesions demonstrated the ability of this new molecular probe to specifically target tumor tissue with high selectively and affinity.

  1. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less

  2. Laser Beat-Wave Magnetization of a Dense Plasma

    NASA Astrophysics Data System (ADS)

    Yates, Kevin; Hsu, Scott; Montgomery, David; Dunn, John; Langendorf, Samuel; Pollock, Bradley; Johnson, Timothy; Welch, Dale; Thoma, Carsten

    2017-10-01

    We present results from the first of a series of experiments to demonstrate and characterize laser beat-wave magnetization of a dense plasma, motivated by the desire to create high-beta targets with standoff for magneto-inertial fusion. The experiments are being conducted at the Jupiter Laser Facility (JLF) at LLNL. The experiment uses the JLF Janus 1 ω (1053 nm) beam and a standalone Nd:YAG (1064 nm) to drive the beat wave, and the Janus 2 ω (526.5 nm) beam to ionize/heat a gas-jet target as well as to provide Thomson-scattering (TS) measurements of the target density/temperature and scattered light from the beat wave. Streaked TS data captured electron-plasma-wave and ion-acoustic-wave features utilizing either nitrogen or helium gas jets. Effects of initial gas density as well as laser intensity on target have been measured, with electron densities ranging from 1E18 to 1E19 cm-3 with temperatures of tens to hundreds of eV, near the desired range for optimal field generation. LSP simulations were run to aid experimental design and data interpretation. LANL LDRD Program.

  3. Targeting Apolipoproteins in Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Sriram, Renuka; Lagerstedt, Jens O.; Samardzic, Haris; Kreutzer, Ulrike; Petrolova, Jitka; Xie, Hongtao; Kaysen, George A.; Voss, John C.; Desreux, Jean F.; Jue, Thomas

    Maintaining normal physiological homeostasis depends upon a coordinated metabolism of both water-soluble and -insoluble substrates. In humans the body derives these molecules — such as glucose, amino acids, and fatty acids — from complex food matter. Water-soluble substrates can circulate readily in blood, while water-insoluble molecules — such as fatty acid, triacylglycerol, and cholesterol — require ampiphathic carriers to transport them from the site of biosynthesis (liver and intestine) to the target tissue. For fatty acid, albumin serves as the major transporter. For triacylglycerol and cholesterol, however, macromolecular complexes aggregate the hydrophobic molecules into the core and cover the surface with amphiphatic proteins and phospholipids to solubilize the particles in the lymphatic and circulatory systems. These macromolecules belong to a class of proteins, plasma lipoproteins, with specific functions and cellular targets. In the clinic these lipoproteins prognosticate the risk of cardiovascular disease (CVD). Lipoproteins divide usually into five major types: chylomicron, very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL). Each lipoprotein type exhibits characteristic density, size, and composition. As implied in the name, the density varies from the low-density chylomicron (<0.95 g/ml) to the high-density HDL (1.2 g/ml). Size also varies. The chylomicron has the largest diameter (75-1,200 nm), and HDL has the smallest (5-12 nm). The physical property variation arises from each lipoprotein's distinct composition. In a chylomicron, cholesterol, triacylglycerol, and phospholipid predominate and constitute about 90% of the particle. Protein constitutes only about 10%. In contrast, the smaller HDL has less cholesterol, triacylglycerol, and phospholipid (65% of the particle) but more protein (over 30%).

  4. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    NASA Astrophysics Data System (ADS)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  5. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    NASA Astrophysics Data System (ADS)

    Ross, Ryan D.; Cole, Lisa E.; Roeder, Ryan K.

    2012-10-01

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate ( l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  6. High-Content Surface and Total Expression siRNA Kinase Library Screen with VX-809 Treatment Reveals Kinase Targets that Enhance F508del-CFTR Rescue.

    PubMed

    Perkins, Lydia A; Fisher, Gregory W; Naganbabu, Matharishwan; Schmidt, Brigitte F; Mun, Frederick; Bruchez, Marcel P

    2018-03-05

    The most promising F508del-CFTR corrector, VX-809, has been unsuccessful as an effective, stand-alone treatment for CF patients, but the rescue effect in combination with other drugs may confer an acceptable level of therapeutic benefit. Targeting cellular factors that modify trafficking may act to enhance the cell surface density of F508-CFTR with VX-809 correction. Our goal is to identify druggable kinases that enhance F508del-CFTR rescue and stabilization at the cell surface beyond that achievable with the VX-809 corrector alone. To achieve this goal, we implemented a new high-throughput screening paradigm that quickly and quantitatively measures surface density and total protein in the same cells. This allowed for rapid screening for increased surface targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein (FAP) technology with cell excluded and cell permeant fluorogenic dyes in a quick, wash-free fluorescent plate reader format on live cells to first measure F508del-CFTR expressed on the surface and then the total amount of F508del-CFTR protein present. To screen for kinase targets, we used Dharmacon's ON-TARGET plus SMARTpool siRNA Kinase library (715 target kinases) with and without 10 μM VX-809 treatment in triplicate at 37 °C. We identified several targets that had a significant interaction with VX-809 treatment in enhancing surface density with siRNA knockdown. Select small-molecule inhibitors of the kinase targets demonstrated augmented surface expression with VX-809 treatment.

  7. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets.

    PubMed

    Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J

    2016-05-20

    Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-01-01

    New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  9. Measurement of turbulence decorrelation during transport barrier evolution in a high-temperature fusion plasma.

    PubMed

    Nazikian, R; Shinohara, K; Kramer, G J; Valeo, E; Hill, K; Hahm, T S; Rewoldt, G; Ide, S; Koide, Y; Oyama, Y; Shirai, H; Tang, W

    2005-04-08

    A low power polychromatic beam of microwaves is used to diagnose the behavior of turbulent fluctuations in the core of the JT-60U tokamak during the evolution of the internal transport barrier. A continuous reduction in the size of turbulent structures is observed concomitant with the reduction of the density scale length during the evolution of the internal transport barrier. The density correlation length decreases to the order of the ion gyroradius, in contrast with the much longer scale lengths observed earlier in the discharge, while the density fluctuation level remain similar to the level before transport barrier formation.

  10. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yuli. D.; Mitkin, Vladimir V.

    2001-10-01

    Experimental investigations of fine and macroscopic structures of density and velocity disturbances generated by a towing cylinder or a vertical strip in a linearly stratified liquid are carried out in a rectangular tank. A density gradient field is visualised by different Schlieren methods (direct shadow, 'slit-knife', 'slit-thread', 'natural rainbow') characterised by a high spatial resolution. Profiles of fluid velocity are visualised by density markers — wakes past a vertically descending sugar crystal or an ascending gas bubble. In a fluid at rest, the density marker acts as a vertical linear source of internal oscillations which allows us to measure buoyancy frequency over all depth by the Schlieren instrument directly or by a conductivity probe in a particular point. Sensitive methods reveal a set of high gradient interfaces inside and outside the downstream wake besides well-known large scale elements: upstream disturbances, attached internal waves and vortices. Solitary interfaces located inside the attached internal waves field have no features on their leading and trailing edges. A thickness of interfaces is defined by an appropriate diffusion coefficient and a buoyancy frequency. High gradient interfaces bound compact vortices. Vortices moving with respect to environment emit their own systems of internal waves randomising a regular pattern of attached antisymmetric internal waves. But after a rather long time a wave recurrence occurs and a regular but symmetric structure of the longest waves (similar to the pattern of initial attached internal waves) is observed again. High gradient interfaces and lines of their intersections act as collectors of a dye coming from a compact source or from a coloured liquid volume inside the tank and separate coloured and clear areas.

  11. Enhanced Laser-Driven Ion Acceleration by Superponderomotive Electrons Generated from Near-Critical-Density Plasma

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Yeung, M.; Gong, Z.; Wang, H. Y.; Kreuzer, C.; Zhou, M. L.; Streeter, M. J. V.; Foster, P. S.; Cousens, S.; Dromey, B.; Meyer-ter-Vehn, J.; Zepf, M.; Schreiber, J.

    2018-02-01

    We report on the experimental studies of laser driven ion acceleration from a double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer-thin diamondlike carbon foil. A significant enhancement of proton maximum energies from 12 to ˜30 MeV is observed when a relativistic laser pulse impinges on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.

  12. Cereal phytochromes: targets of selection, targets for manipulation?

    PubMed

    Sawers, Ruairidh J H; Sheehan, Moira J; Brutnell, Thomas P

    2005-03-01

    Plants respond to shading through an adaptive syndrome termed shade avoidance. In high-density crop plantings, shade avoidance generally increases extension growth at the expense of yield and can be at odds with the agronomic performance of the crop as a whole. Studies in Arabidopsis are beginning to reveal the essential role phytochromes play in regulating this process and to identify genes underlying the response. In this article, we focus on how phytochrome signaling networks have been targeted in cereal breeding programs in the past and discuss the potential to alter these pathways through breeding and transgenic manipulation to develop crops that perform better under typical high density conditions.

  13. First internal and external experiments at COSY Juelich

    NASA Astrophysics Data System (ADS)

    Prasuhn, D.; Maier, R.; Bechstedt, U.; Dietrich, J.; Hacker, U.; Martin, S.; Stockhorst, H.; Tölle, R.; Grzonka, D.; Nake, C.; Mosel, F.

    1995-02-01

    The inauguration of the cooler synchrotron COSY Jülich was celebrated on April 1st, 1993. After the first successful acceleration to proton momenta above 800 GeV/ c, beamtimes for experiments were scheduled in parallel to further machine development. The first experiment was the internal target experiment EDDA, which investigated the energy dependence of the p-p interaction. It makes use of a 3 × 4 μm 2 thin CH 2 fiber as an internal target. The thickness of the fiber is more than adequate to achieve high luminosities, so the intensity of the stored beam has to be reduced to 10 7 p. On the other hand, it is thin enough to achieve beam lifetimes of 3 s at 1.4 GeV/ c. Details of the target fabrication and the first experimental results will be discussed. Both external experimental facilities at COSY, the time-of-flight spectrometer, and the magnetic spectrometer BIG KARL use a liquid hydrogen (deuterium) target. The first experiments were carried out at proton energies between 300 MeV and 500 MeV. Also, these experimental data will be presented. Two further internal experiments are prepared for the installation into the COSY ring. The target for the first experiment is a gas-jet target, the second experiment uses ribbon targets for the interaction. The status of both experimental setups will be shown.

  14. Wald Sequential Probability Ratio Test for Space Object Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Markley, F Landis

    2014-01-01

    This paper shows how satellite owner/operators may use sequential estimates of collision probability, along with a prior assessment of the base risk of collision, in a compound hypothesis ratio test to inform decisions concerning collision risk mitigation maneuvers. The compound hypothesis test reduces to a simple probability ratio test, which appears to be a novel result. The test satisfies tolerances related to targeted false alarm and missed detection rates. This result is independent of the method one uses to compute the probability density that one integrates to compute collision probability. A well-established test case from the literature shows that this test yields acceptable results within the constraints of a typical operational conjunction assessment decision timeline. Another example illustrates the use of the test in a practical conjunction assessment scenario based on operations of the International Space Station.

  15. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage,more » and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.« less

  16. Deep magnetic capture of magnetically loaded cells for spatially targeted therapeutics.

    PubMed

    Huang, Zheyong; Pei, Ning; Wang, Yanyan; Xie, Xinxing; Sun, Aijun; Shen, Li; Zhang, Shuning; Liu, Xuebo; Zou, Yunzeng; Qian, Juying; Ge, Junbo

    2010-03-01

    Magnetic targeting has recently demonstrated potential in promoting magnetically loaded cell delivery to target lesion, but its application is limited by magnetic attenuation. For deep magnetic capture of cells for spatial targeting therapeutics, we designed a magnetic pole, in which the magnetic field density can be focused at a distance from the pole. As flowing through a tube served as a model of blood vessels, the magnetically loaded mesenchymal stem cells (MagMSCs) were highly enriched at the site distance from the magnetic pole. The cell capture efficiency was positively influenced by the magnetic flux density, and inversely influenced by the flow velocity, and well-fitted with the deductive value by theoretical considerations. It appeared to us that the spatially-focused property of the magnetic apparatus promises a new deep targeting strategy to promote homing and engraftment for cellular therapy. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  18. Refluxed electrons direct laser acceleration in ultrahigh laser and relativistic critical density plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Zhao, Z. Q.

    2015-01-15

    Refluxed electrons direct laser acceleration is proposed so as to generate a high-charge energetic electron beam. When a laser pulse is incident on a relativistic critical density target, the rising edge of the pulse heats the target and the sheath fields on the both sides of the target reflux some electrons inside the expanding target. These electrons can be trapped and accelerated due to the self-transparency and the negative longitudinal electrostatic field in the expanding target. Some of the electrons can be accelerated to energies exceeding the ponderomotive limit 1/2a{sub 0}{sup 2}mc{sup 2}. Effective temperature significantly above the ponderomotive scalingmore » is observed. Furthermore, due to the limited expanding length, the laser propagating instabilities are suppressed in the interaction. Thus, high collimated beams with tens of μC charge can be generated.« less

  19. Investigation of HMA compactability using GPR technique

    NASA Astrophysics Data System (ADS)

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2014-05-01

    In-situ field density is often regarded as one of the most important controls used to ensure that an asphalt pavement being placed is of high quality. The achieved density results from the effectiveness of the applied compaction mode on the Hot Mix Asphalt (HMA) layer. It is worthwhile mentioning that the proper compaction of HMA increases pavement fatigue life, decreases the amount of permanent deformation or rutting, reduces the amount of oxidation or aging, decreases moisture damage or stripping, increases strength and internal stability, and may decrease slightly the amount of low-temperature cracking that may occur in the mix. Conventionally, the HMA density in the field is assessed by direct destructive methods, including through the cutting of samples or drilling cores. These methods are characterized by a high accuracy, although they are intrusive and time consuming. In addition, they provide local information, i.e. information only for the exact test location. To overcome these limitations, the use of non-intrusive techniques is often recommended. The Ground Penetrating Radar (GPR) technique is an example of a non-intrusive technique that has been increasingly used for pavement investigations over the years. GPR technology is practical and application-oriented with the overall design concept, as well as the hardware, usually dependent on the target type and the material composing the target and its surroundings. As the sophistication of operating practices increases, the technology matures and GPR becomes an intelligent sensor system. The intelligent sensing deals with the expanded range of GPR applications in pavements such as determining layer thickness, detecting subsurface distresses, estimating moisture content, detecting voids and others. In addition, the practice of using GPR to predict in-situ field density of compacted asphalt mixture material is still under development and research; however the related research findings seem to be promising. Actually, the prediction is not regulated by any standards or specifications, although the practice is considered to be workable. In view of the above, an extensive experiment was carried out in both the laboratory and the field based on a trial asphalt pavement section under construction. In the laboratory, the study focused on the estimation of the density of HMA specimens achieved through three different roller compaction modes (static, vibratory and a combination of both) targeted to simulate field compaction and assess the asphalt mix compactability. In the field, the different compaction modes were successively implemented on three subsections of the trial pavement section. Along each subsection, GPR data was collected in order to determine the new material's dielectric properties and based on that, to predict its density using proper algorithm. Thus, cores were extracted to be used as ground truth data. The comparison of the new asphalt material compactability as obtained from the laboratory specimens, the predictions based on GPR data and the field cores provided useful information that facilitated the selection of the most effective compaction mode yielding the proper compaction degree in the field. This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."

  20. 39 CFR Appendix A to Subpart A of... - Mail Classification Schedule

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Density and Saturation Letters High Density and Saturation Flats/Parcels Carrier Route Letters Flats Not... Package Services Single-Piece Parcel Post Inbound Surface Parcel Post (at UPU rates) Bound Printed Matter... Single-Piece First-Class Mail International Standard Mail (Regular and Nonprofit) High Density and...

  1. Targets and processes for fabricating same

    DOEpatents

    Cowan, Thomas [Dresden, DE; Malekos, Steven [Reno, NV; Korgan, Grant [Reno, NV; Adams, Jesse [Reno, NV; Sentoku, Yasuhiko [Reno, NV; Le Galloudec, Nathalie [Reno, NV; Fuchs, Julien [Paris, FR

    2012-07-24

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  2. Targets and processes for fabricating same

    DOEpatents

    Adams, Jesse D; Malekos, Steven; Le Galloudec, Nathalie; Korgan, Grant; Cowan, Thomas; Sentoku, Yasuhiko

    2016-05-17

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  3. Targets and processes for fabricating same

    DOEpatents

    Cowna, Thomas; Malekos, Steven; Korgan, Grant; Adams, Jesse; Sentoku, Yasuhiko; LeGalloudec, Nathalie

    2014-06-10

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  4. Reconstruction of apparent orthotropic conductivity tensor image using magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Kim, Ji Eun; Jeong, Woo Chul; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-03-01

    Magnetic resonance electrical impedance tomography visualizes current density and/or conductivity distributions inside an electrically conductive object. Injecting currents into the imaging object along at least two different directions, induced magnetic flux density data can be measured using a magnetic resonance imaging scanner. Without rotating the object inside the scanner, we can measure only one component of the magnetic flux density denoted as Bz. Since the biological tissues such as skeletal muscle and brain white matter show strong anisotropic properties, the reconstruction of anisotropic conductivity tensor is indispensable for the accurate observations in the biological systems. In this paper, we propose a direct method to reconstruct an axial apparent orthotropic conductivity tensor by using multiple Bz data subject to multiple injection currents. To investigate the anisotropic conductivity properties, we first recover the internal current density from the measured Bz data. From the recovered internal current density and the curl-free condition of the electric field, we derive an over-determined matrix system for determining the internal absolute orthotropic conductivity tensor. The over-determined matrix system is designed to use a combination of two loops around each pixel. Numerical simulations and phantom experimental results demonstrate that the proposed algorithm stably determines the orthotropic conductivity tensor.

  5. Place and Child Health: The Interaction of Population Density and Sanitation in Developing Countries.

    PubMed

    Hathi, Payal; Haque, Sabrina; Pant, Lovey; Coffey, Diane; Spears, Dean

    2017-02-01

    A long literature in demography has debated the importance of place for health, especially children's health. In this study, we assess whether the importance of dense settlement for infant mortality and child height is moderated by exposure to local sanitation behavior. Is open defecation (i.e., without a toilet or latrine) worse for infant mortality and child height where population density is greater? Is poor sanitation is an important mechanism by which population density influences child health outcomes? We present two complementary analyses using newly assembled data sets, which represent two points in a trade-off between external and internal validity. First, we concentrate on external validity by studying infant mortality and child height in a large, international child-level data set of 172 Demographic and Health Surveys, matched to census population density data for 1,800 subnational regions. Second, we concentrate on internal validity by studying child height in Bangladeshi districts, using a new data set constructed with GIS techniques that allows us to control for fixed effects at a high level of geographic resolution. We find a statistically robust and quantitatively comparable interaction between sanitation and population density with both approaches: open defecation externalities are more important for child health outcomes where people live more closely together.

  6. High microvessel density determines a poor outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus chemotherapy

    PubMed Central

    Cardesa-Salzmann, Teresa M.; Colomo, Luis; Gutierrez, Gonzalo; Chan, Wing C.; Weisenburger, Dennis; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Arenillas, Leonor; Serrano, Sergio; Tubbs, Ray; Delabie, Jan; Gascoyne, Randy D.; Connors, Joseph M; Mate, Jose L.; Rimsza, Lisa; Braziel, Rita; Rosenwald, Andreas; Lenz, Georg; Wright, George; Jaffe, Elaine S.; Staudt, Louis; Jares, Pedro; López-Guillermo, Armando; Campo, Elias

    2011-01-01

    Background Diffuse large B-cell lymphoma is a clinically and molecularly heterogeneous disease. Gene expression profiling studies have shown that the tumor microenvironment affects survival and that the angiogenesis-related signature is prognostically unfavorable. The contribution of histopathological microvessel density to survival in diffuse large B-cell lymphomas treated with immunochemotherapy remains unknown. The purpose of this study is to assess the prognostic impact of histopathological microvessel density in two independent series of patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Design and Methods One hundred and forty-seven patients from the Leukemia Lymphoma Molecular Profiling Project (training series) and 118 patients from the Catalan Lymphoma-Study group-GELCAB (validation cohort) were included in the study. Microvessels were immunostained with CD31 and quantified with a computerized image analysis system. The stromal scores previously defined in 110 Leukemia Lymphoma Molecular Profiling Project cases were used to analyze correlations with microvessel density data. Results Microvessel density significantly correlated with the stromal score (r=0.3209; P<0.001). Patients with high microvessel density showed significantly poorer overall survival than those with low microvessel density both in the training series (4-year OS 54% vs. 78%; P=0.004) and in the validation cohort (57% vs. 81%; P=0.006). In multivariate analysis, in both groups high microvessel density was a statistically significant unfavorable prognostic factor independent of international prognostic index [training series: international prognostic index (relative risk 2.7; P=0.003); microvessel density (relative risk 1.96; P=0.002); validation cohort: international prognostic index (relative risk 4.74; P<0.001); microvessel density (relative risk 2.4; P=0.016)]. Conclusions These findings highlight the impact of angiogenesis in the outcome of patients with diffuse large B-cell lymphoma and the interest of evaluating antiangiogenic drugs in clinical trials. PMID:21546504

  7. Multiple model cardinalized probability hypothesis density filter

    NASA Astrophysics Data System (ADS)

    Georgescu, Ramona; Willett, Peter

    2011-09-01

    The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.

  8. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE PAGES

    Gauthier, M.; Kim, J. B.; Curry, C. B.; ...

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetitionmore » rate capability, this target is promising for future applications.« less

  9. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition ratemore » capability, this target is promising for future applications.« less

  10. Improving Robotic Assembly of Planar High Energy Density Targets

    NASA Astrophysics Data System (ADS)

    Dudt, D.; Carlson, L.; Alexander, N.; Boehm, K.

    2016-10-01

    Increased quantities of planar assemblies for high energy density targets are needed with higher shot rates being implemented at facilities such as the National Ignition Facility and the Matter in Extreme Conditions station of the Linac Coherent Light Source. To meet this growing demand, robotics are used to reduce assembly time. This project studies how machine vision and force feedback systems can be used to improve the quantity and quality of planar target assemblies. Vision-guided robotics can identify and locate parts, reducing laborious manual loading of parts into precision pallets and associated teaching of locations. On-board automated inspection can measure part pickup offsets to correct part drop-off placement into target assemblies. Force feedback systems can detect pickup locations and apply consistent force to produce more uniform glue bond thickness, thus improving the performance of the targets. System designs and performance evaluations will be presented. Work supported in part by the US DOE under the Science Undergraduate Laboratory Internships Program (SULI) and ICF Target Fabrication DE-NA0001808.

  11. Measurement of the photoneutron flux density distribution from cylindrical targets

    NASA Astrophysics Data System (ADS)

    Golovkov, V. M.; Basina, T. N.; Yakovlev, M. R.

    1989-09-01

    Measurements are performed of the density of photoneutron fluxes from cylindrical targets of2H2O (diameter 64 and height 86 mm), Be (outer diameter 70, inner diameter 40, height 100mm), and238U (diameter 44.5 mm, height 50 mm) under the action of braking radiation from electrons with energies of 4 to 8 MeV in order to determine the effect of target form and orientation relative to the detector upon the recorded photoneutron level. The fluxes were measured by an “all-wave” neutron detector based on an SNM-11 counter in a paraffin retarder at an angle of 90‡ to the axis of the braking radiation beam for various target orientations relative to the detector. Measurement results are compared to calculations. Photoneutron fluxes from heavy water and beryllium targets of the indicated dimensions were also measured for angles of 90, 135, and 167‡. An isotropic nature was noted in the photoneutron fluxes from both targets.

  12. Internal and External Triggering Mechanism of "Smart" Nanoparticle-Based DDSs in Targeted Tumor Therapy.

    PubMed

    Qiana, Xian-Ling; Li, Jun; Wei, Ran; Lin, Hui; Xiong, Li-Xia

    2018-05-09

    Anticancer chemotherapeutics have a lot of problems via conventional drug delivery systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: "passive", "active", and "smart" targeting. To summarize the mechanisms of various internal and external "smart" stimulating factors on the basis of findings from in vivo and in vitro studies. A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), "smart" DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. In this review article, we summarize and classify the internal and external triggering mechanism of "smart" nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Surrogate target cells expressing surface anti-idiotype antibody for the clinical evaluation of an internalizing CD22-specific antibody.

    PubMed

    Leung, Shui-On; Gao, Kai; Wang, Guang Yu; Cheung, Benny Ka-Wa; Lee, Kwan-Yeung; Zhao, Qi; Cheung, Wing-Tai; Wang, Jun Zhi

    2015-01-01

    SM03, a chimeric antibody that targets the B-cell restricted antigen CD22, is currently being clinically evaluated for the treatment of lymphomas and other autoimmune diseases in China. SM03 binding to surface CD22 leads to rapid internalization, making the development of an appropriate cell-based bioassay for monitoring changes in SM03 bioactivities during production, purification, storage, and clinical trials difficult. We report herein the development of an anti-idiotype antibody against SM03. Apart from its being used as a surrogate antigen for monitoring SM03 binding affinities, the anti-idiotype antibody was engineered to express as fusion proteins on cell surfaces in a non-internalizing manner, and the engineered cells were used as novel "surrogate target cells" for SM03. SM03-induced complement-mediated cytotoxicity (CMC) against these "surrogate target cells" proved to be an effective bioassay for monitoring changes in Fc functions, including those resulting from minor structural modifications borne within the Fc-appended carbohydrates. The approach can be generally applied for antibodies that target rapidly internalizing or non-surface bound antigens. The combined use of the anti-idiotype antibody and the surrogate target cells could help evaluate clinical parameters associated with safety and efficacies, and possibly the mechanisms of action of SM03.

  14. Improving food and fluid intake for older adults living in long-term care: a research agenda.

    PubMed

    Keller, Heather; Beck, Anne Marie; Namasivayam, Ashwini

    2015-02-01

    Poor food and fluid intake and malnutrition are endemic among older adults in long-term care (LTC), yet feasible and sustainable interventions that target key determinants and improve person-centered outcomes remain elusive. Without a comprehensive study addressing a range of determinants to identify those that are of greatest importance for targeting with interventions, expert consensus can be used to develop a research agenda. International experts and stakeholders convened for a 2-day meeting to participate in a nominal group process to identify and prioritize determinants of food and fluid intake for persons living in LTC. Top determinants to address with intervention research included social interactions of residents at mealtime; self-feeding ability; the dining environment; the attitudes, knowledge, and skills of staff; adequate time to eat/availability of staff to provide assistance; sensory properties of the food; hospitality and mealtime logistics; choice and variety in the dining experience; and nutrient density of food. Multimodal interventions that could target these prioritized determinants were also suggested. This consensus process has resulted in a prioritized research agenda for the development and testing of interventions to improve food and fluid intake of older adults living in LTC. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  15. The national ignition facility high-energy ultraviolet laser system

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2004-09-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10 8 K and 10 11 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  16. Cost-effectiveness of digital mammography breast cancer screening.

    PubMed

    Tosteson, Anna N A; Stout, Natasha K; Fryback, Dennis G; Acharyya, Suddhasatta; Herman, Benjamin A; Hannah, Lucy G; Pisano, Etta D

    2008-01-01

    The DMIST (Digital Mammography Imaging Screening Trial) reported improved breast cancer detection with digital mammography compared with film mammography in selected population subgroups, but it did not assess the economic value of digital relative to film mammography screening. To evaluate the cost-effectiveness of digital mammography screening for breast cancer. Validated, discrete-event simulation model. Data from DMIST and publicly available U.S. data. U.S. women age 40 years or older. Lifetime. Societal and Medicare. All-film mammography screening; all-digital mammography screening; and targeted digital mammography screening, which is age-targeted digital mammography (for women <50 years of age) and age- and density-targeted digital mammography (for women <50 years of age or women > or =50 years of age with dense breasts). Cost per quality-adjusted life-year (QALY) gained. All-digital mammography screening cost $331,000 (95% CI, $268,000 to $403,000) per QALY gained relative to all-film mammography screening but was more costly and less effective than targeted digital mammography screening. Targeted digital mammography screening resulted in more screen-detected cases of cancer and fewer deaths from cancer than either all-film or all-digital mammography screening, with cost-effectiveness estimates ranging from $26,500 (CI, $21,000 to $33,000) per QALY gained for age-targeted digital mammography to $84,500 (CI, $75,000 to $93,000) per QALY gained for age- and density-targeted digital mammography. In the Medicare population, the cost-effectiveness of density-targeted digital mammography screening varied from a base-case estimate of $97,000 (CI, $77,000 to $131,000) to $257,000 per QALY gained (CI, $91,000 to $536,000) in the alternative-case analyses, in which the sensitivity of film mammography was increased and the sensitivity of digital mammography in women with nondense breasts was decreased. Results were sensitive to the cost of digital mammography and to the prevalence of dense breasts. Results were dependent on model assumptions and DMIST findings. Relative to film mammography, screening for breast cancer by using all-digital mammography is not cost-effective. Age-targeted screening with digital mammography seems cost-effective, whereas density-targeted screening strategies are more costly and of uncertain value, particularly among women age 65 years or older.

  17. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  18. Ada Compiler Validation Summary Report: Certificate Number 880318W1. 09042, International Business Machines Corporation, IBM Development System for the Ada Language, Version 2.1.0, IBM 4381 under MVS/XA, Host and Target

    DTIC Science & Technology

    1988-03-28

    International Business Machines Corporation IBM Development System for the Ada Language, Version 2.1.0 IBM 4381 under MVS/XA, host and target Completion...Joint Program Office, AJPO 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) International Business Machines Corporation...in the compiler listed in this declaration. I declare that International Business Machines Corporation is the owner of record of the object code of

  19. First results on the measurements of the proton beam polarization at internal target at Nuclotron1

    NASA Astrophysics Data System (ADS)

    Ladygin, V. P.; Gurchin, Yu V.; Isupov, A. Yu; Janek, M.; Khrenov, A. N.; Kurilkin, P. K.; Livanov, A. N.; Piyadin, S. M.; Reznikov, S. G.; Skhomenko, Ya T.; Terekhin, A. A.; Tishevsky, A. V.; Averyanov, A. V.; Bazylev, S. N.; Belov, A. S.; Butenko, A. V.; Chernykh, E. V.; Filatov, Yu N.; Fimushkin, V. V.; Krivenkov, D. O.; Kondratenko, A. M.; Kondratenko, M. A.; Kovalenko, A. D.; Slepnev, I. V.; Slepnev, V. M.; Shutov, A. V.; Sidorin, A. O.; Vnukov, I. E.; Volkov, V. S.

    2017-12-01

    The spin program at NICA using SPD and MPD requires high intensity polarized proton beam with high value of the beam polarization. First results on the measurements of the proton beam polarization performed at internal target at Nuclotron are reported. The polarization of the proton beam provided by new source of polarized ions has been measured at 500 MeV using quasielastic proton-proton scattering and DSS setup at internal target. The obtained value of the vertical polarization of ∼35% is consistent with the calculations taking into account the current magnetic optics of the Nuclotron injection line.

  20. Filling of a Poisson trap by a population of random intermittent searchers.

    PubMed

    Bressloff, Paul C; Newby, Jay M

    2012-03-01

    We extend the continuum theory of random intermittent search processes to the case of N independent searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite track. Each searcher randomly switches between a stationary state and either a leftward or rightward constant velocity state. We assume that all of the particles start at one end of the track and realize sample trajectories independently generated from the same underlying stochastic process. The hidden target is treated as a partially absorbing trap in which a particle can only detect the target and deliver its cargo if it is stationary and within range of the target; the particle is removed from the system after delivering its cargo. As a further generalization of previous models, we assume that up to n successive particles can find the target and deliver its cargo. Assuming that the rate of target detection scales as 1/N, we show that there exists a well-defined mean-field limit N→∞, in which the stochastic model reduces to a deterministic system of linear reaction-hyperbolic equations for the concentrations of particles in each of the internal states. These equations decouple from the stochastic process associated with filling the target with cargo. The latter can be modeled as a Poisson process in which the time-dependent rate of filling λ(t) depends on the concentration of stationary particles within the target domain. Hence, we refer to the target as a Poisson trap. We analyze the efficiency of filling the Poisson trap with n particles in terms of the waiting time density f(n)(t). The latter is determined by the integrated Poisson rate μ(t)=∫(0)(t)λ(s)ds, which in turn depends on the solution to the reaction-hyperbolic equations. We obtain an approximate solution for the particle concentrations by reducing the system of reaction-hyperbolic equations to a scalar advection-diffusion equation using a quasisteady-state analysis. We compare our analytical results for the mean-field model with Monte Carlo simulations for finite N. We thus determine how the mean first passage time (MFPT) for filling the target depends on N and n.

  1. Calculation of x-ray spectra emerging from an x-ray tube. Part I. electron penetration characteristics in x-ray targets.

    PubMed

    Poludniowski, Gavin G; Evans, Philip M

    2007-06-01

    The penetration characteristics of electron beams into x-ray targets are investigated for incident electron kinetic energies in the range 50-150 keV. The frequency densities of electrons penetrating to a depth x in a target, with a fraction of initial kinetic energy, u, are calculated using Monte Carlo methods for beam energies of 50, 80, 100, 120 and 150 keV in a tungsten target. The frequency densities for 100 keV electrons in Al, Mo and Re targets are also calculated. A mixture of simple modeling with equations and interpolation from data is used to generalize the calculations in tungsten. Where possible, parameters derived from the Monte Carlo data are compared to experimental measurements. Previous electron transport approximations in the semiempirical models of other authors are discussed and related to this work. In particular, the crudity of the use of the Thomson-Whiddington law to describe electron penetration and energy loss is highlighted. The results presented here may be used towards calculating the target self-attenuation correction for bremsstrahlung photons emitted within a tungsten target.

  2. Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor

    PubMed Central

    Wan, Min; Zhang, Wenhua; Tian, Yangli; Xu, Chanjuan; Xu, Tao; Liu, Jianfeng; Zhang, Rongying

    2015-01-01

    Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors (mAChRs), the M4 mAChR undergoes CDE and recycling, whereas the M2 mAChR is internalized through CIE and targeted to lysosomes. Here we investigated the endocytosis and postendocytic trafficking of M2 mAChR based on a comparative analysis of the third cytoplasmic domain in M2 and M4 mAChRs. For the first time, we identified that the sequence 374KKKPPPS380 servers as a sorting signal for the clathrin-independent internalization of M2 mAChR. Switching 374KKKPPPS380 to the i3 loop of the M4 mAChR shifted the receptor into lysosomes through the CIE pathway; and therefore away from CDE and recycling. We also found another previously unidentified sequence that guides CDE of the M2 mAChR, 361VARKIVKMTKQPA373, which is normally masked in the presence of the downstream sequence 374KKKPPPS380. Taken together, our data indicate that endocytosis and postendocytic sorting of GPCRs that undergo CIE could be sequence-dependent. PMID:26094760

  3. Assessment of the Air Quality Improvement Potentials for Seoul Metropolitan Area using GAINS-Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Woo, J. H.; Ahn, Y. H.; Kim, J.; Bu, C.; Lee, Y.; Choi, K. C.; Amann, M.; Kim, S. K.

    2016-12-01

    Urban areas are very important places for climate change and air pollution because they have been emitting a significant amount of Green House Gases (GHGs) and air pollutants. Cause they have massive pollutant emissions and high population density with amount of vehicles. Korea's government has set the 2nd phase capital air quality improvement program called Seoul metropolitan area Air Quality Management Plan(SAQMP), targeting the year 2024. The air quality improvement targets are to achieve annual mean PM10 and pm2.5concentration for SMA Area 30 ug/m3 and 20 ug/m3, respectively. To achieve this target, emissions of PM10, PM2.5 are required to be decreased up to 35%, 45%, respectively, from their future baseline level. In this study, we found the emission level of some pollutants for the year 2030 will be decreased compare with the baseline level but the concentration cannot meet their target even with more stringent control measures. The more in-depth analysis of future PM concentration, estimated from Source-Receptor(S-R) relationship, were conducted for more accurate air quality improvement assessment. As the result, we found that secondary and transboundary pollution have been plying significant role in Seoul Metro air quality. Not only direct/in-region measures, therefore, but indirect measures/international cooperation have to be conducted to achieve target air quality. ** This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program". This work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea.

  4. Achievement of therapeutic targets in Mexican patients with diabetes mellitus.

    PubMed

    Lavalle-González, Fernando J; Chiquete, Erwin; de la Luz, Julieta; Ochoa-Guzmán, Ana; Sánchez-Orozco, Laura V; Godínez-Gutiérrez, Sergio A

    2012-12-01

    Complications of diabetes comprise the leading cause of death in Mexico. We aimed to describe the characteristics of management and achievement of therapeutic targets in Mexican patients with diabetes mellitus. We analyzed data from 2642 Mexican patients with type 1 (T1D, n=203, 7.7%) and type 2 diabetes (T2D, n=2439, 92.3%) included in the third wave of the International Diabetes Management Practices Study. Of T2D patients, 63% were on oral glucose-lowering drugs (OGLD) exclusively (mostly metformin), 11% on insulin, 22% on OGLD plus insulin, and 4% on diet and exercise exclusively. T2D patients on insulin were more likely to be trained on diabetes, but they were older, had worse control, longer disease duration and more chronic complications than patients on OGLD only. Glycated hemoglobin (HbA1c) <7% was achieved by 21% and 37% of T1D and T2D patients, respectively. Only 5% of T1D and 3% of T2D attained the composite target of HbA1c <7%, blood pressure <130/80 mmHg and low-density lipoprotein cholesterol <100 mg/dl. T1D patients had less macrovascular but more microvascular complications, compared with T2D patients. Late complications increased with disease duration, so that about 80% of patients after 20 years of diagnosis have at least one late complication. Reaching the target HbA1c <7% was associated with a reduced number of microvascular but not with less macrovascular complications. A great proportion of these Mexican patients with diabetes did not reach therapeutic targets. Insulin was used mostly in complicated cases with advanced disease. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.

  5. BODY SENSING SYSTEM

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor)

    2005-01-01

    System and method for performing one or more relevant measurements at a target site in an animal body, using a probe. One or more of a group of selected internal measurements is performed at the target site, is optionally combined with one or more selected external measurements, and is optionally combined with one or more selected heuristic information items, in order to reduce to a relatively small number the probable medical conditions associated with the target site. One or more of the internal measurements is optionally used to navigate the probe to the target site. Neural net information processing is performed to provide a reduced set of probable medical conditions associated with the target site.

  6. Effect of the Large Scale Environment on the Internal Dynamics of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Maubon, G.; Prugniel, Ph.

    We have studied the population-density relation in very sparse environments, from poor clusters to isolated galaxies, and we find that early-type galaxies with a young stellar population are preferably found in the lowest density environments. We show a marginal indication that this effect is due to an enhancement of the stellar formation independent of the morphological segregation, but we failed to find any effect from the internal dynamics.

  7. IERS Conventions (2003)

    DTIC Science & Technology

    2004-01-01

    International Earth Rotation and Reference Systems Service (IERS) Service International de la Rotation Terrestre et des Systèmes de Référence IERS...Equation for the determination of the density of moist air (1981/91),” Metrologia , 29, pp. 67–70. Giacomo, P., 1982, “Equation for the determination of...the density of moist air (1981),” Metrologia , 18, pp. 33–40. Herring, T. A., 1992, “Modeling Atmospheric Delays in the Analysis of Space Geodetic Data

  8. Electrical Conductivity of Dense Al, Ti, Fe, Ni, Cu, Mo, Ta, and W Plasmas

    DTIC Science & Technology

    2011-06-01

    for all but tantalum and titanium shows a minimum at approximately 0.01 times solid density, followed by an increase as the density decreases further...internal energy and specific volume. Conductivity is observed to fall as the plasma expands for fixed internal energy, and for all but tantalum and...plasmas formed from elemental metal wires heated rapidly in a water bath by the electric current from discharge of a charged capacitor . Electrical

  9. Reduction of MRI-targeted biopsies in men with low-risk prostate cancer on active surveillance by stratifying to PI-RADS and PSA-density, with different thresholds for significant disease.

    PubMed

    Schoots, Ivo G; Osses, Daniel F; Drost, Frank-Jan H; Verbeek, Jan F M; Remmers, Sebastiaan; van Leenders, Geert J L H; Bangma, Chris H; Roobol, Monique J

    2018-02-01

    The fear of undergrading prostate cancer (PCa) in men on active surveillance (AS) have led to strict criteria for monitoring, which have resulted in good long-term cancer-specific survival, proving the safety of this approach. Reducing undergrading, MRI-targeted biopsies are increasingly used in men with low-risk disease despite their undefined role yet. The objective of this study is to investigate the rate of upgrading using MRI-targeted biopsies in men with low-risk disease on AS, stratified on the basis of PI-RADS and PSA-density, with the aim to reduce potential unnecessary repeat biopsy procedures. A total of 331 men were prospectively enrolled following the MRI-PRIAS protocol. MR imaging was according to Prostate Imaging Reporting and Data System (PI-RADSv2) guidelines. Suspicious MRI lesions (PI-RADS 3-5) were additionally targeted by MRI-TRUS fusion biopsies. Outcome measure was upgrading to Gleason score (GS) ≥3+4 with MRI-targeted biopsies, stratified for PI-RADS and PSA-density. In total, 25% (82/331) of men on AS showed upgrading from GS 3+3. Only 3% (11/331) was upgraded to GS ≥8. In 60% (198/331) a suspicious MRI lesion was identified, but in only 41% (82/198) of men upgrading was confirmed. PI-RADS 3, 4 and 5 categorized index lesions, showed upgrading in 30%, 34% and 66% of men, respectively. Stratification to PI-RADS 4-5, instead of PI-RADS 3-5, would have missed a small number of high volume Gleason 4 PCa in PI-RADS 3 category. However, further stratification into PI-RADS 3 lesions and PSA-density <0.15 ng/mL 2 could result in a safe targeted biopsy reduction of 36% in this category, without missing any upgrades. Stratification with the combination of PI-RADS and PSA-density may reduce unnecessary additional MRI biopsy testing. Overall, the high rate of detected upgrading in men on AS may result in an unintended tightening of continuing in AS. Since patients, included under current AS criteria showed extremely favorable outcome, there might be no need to further restrict continuing on AS with MRI and targeted biopsies.

  10. Effects of target shape and impact speed on the outcome of catastrophic disruptions

    NASA Astrophysics Data System (ADS)

    Campo~Bagatin, A.; Durda, D.; Alemañ, R.; Flynn, G.; Strait, M.; Clayton, A.; Patmore, E.

    2014-07-01

    Because of the propensity of previous laboratory investigations to focus on idealized spherical targets, there is a bit of ambiguity in decoupling the relative importance/influence of low speed or spherical shape in producing the 'onion shell' fragment shape outcomes found in impacts into spherical targets [1,2]. If due primarily to impact speed/energy density as suggested by [3], this could play an important role in main-belt impacts due to the presence of non-spherical targets and non-negligible probability of low-speed (i.e., below about 3-4 km/s, subsonic in rock) impacts [4]. Also, [5] and [6] suggested that the shape of targets may affect the outcome of shattering processes, both in terms of fragment shape and mass distribution. To examine explicitly the effects of target shape in impact outcomes, we chose to conduct impact experiments on both spherical and naturally-occurring irregularly-shaped basalt targets. We impacted a total of six targets (two spheres and four irregular targets). We focused on shots with impact speeds in the ˜4 to 6 km/s range by 3/16th-inch diameter Al-sphere projectiles fired at the NASA AVGR. Following each shot, the debris were recovered (>95 %) and large fragments (>0.20 g) were individually weighed, allowing us to carefully measure the mass-frequency distribution from each impact experiment. The 36 largest fragments of each shot were photographed and their largest axes accurately measured by the program ''ImageJ''. Their shortest axes were measured by means of a digital caliber. High-speed video of each impact was obtained to aid interpretation of the fragmentation mode of the targets. Images clearly show that shell-like fragments can be produced in shattering events not in the target's surface. Instead, those fragments may form around the core, well inside the target structure, independently on the target shape itself. This is a feature not reported to date. In order to understand what the bulk macro-porosity of a non-coherent set of fragments is, we gathered randomly together the fragments with weighed mass mimicking the post-shattering gravitational re-accumulation of fragments into an asteroid rubble-pile. For each set, we wrapped the fragments in a thin plastic film and measured the bulk volume by hanging and plunging the assemblage into distilled water. The volume is calculated straightforward from the density of water at the given temperature. Cumulative mass distributions are derived and exponents 0.75<β <1.2 are found for the relationship N(>m)=A m^{-β} (m is the fragment mass, A is the corresponding constant) in the stationary part of the distribution. The exponent of each distribution and the mass of each largest fragment are found to be related to the corresponding specific energy of each impact as expected [3]. The mass distributions seem to show slightly larger values of β in the case of spherical targets when comparing two sets of close specific energy impacts. However, this feature needs further sets of impact experiments to be properly investigated. As for the shapes of fragments, b/a and c/a ratios were calculated along with the shape metrics Ψ=[ c^2/(ab)]^{1/3}, F=(a-b)/(a-c) for deviation from the spherical shape and relative flatness, respectively [7,8]. The average relationship between a, b, and c axes is 1:0.7:0.4, slightly different (flatter) than reported by former investigations (1:0.7:0.5) carried on in the 70s and 80s [7]. This result is quite stable and no differences are found in average shapes among spherical and irregular targets nor for different specific energy up to a factor of ˜3. This does not mean that fragments look like triaxial ellipsoids, instead they are quite irregular but their average relative sizes are distributed very nicely as described. Finally, the study of the macro-porosities of randomly aggregated fragments shows values in the 45 to 50 % range. This result may be useful in the interpretation of small asteroids' bulk densities and in the calibration of numerical modelling of internal structures.

  11. Tissue heterogeneity in the anterior chest wall and its influence on radiation therapy of the internal mammary lymph nodes.

    PubMed

    Lindskoug, B; Hultborn, A

    1976-04-01

    The density (g cm-3) and electron density (cm-3) of material from the anterior chest wall was determined. On the average, the difference in density between rib bone and intercostal soft tissue amounted to 17 per cent, while the difference in electron density was 7 per cent. The attenuation of high-energy electrons in specimens of rib bone, costal cartilage and sternum was determined by an experimental technique, using dosimeters of TLD material. The results of determinations of attenuation of 10 and 13 MeV electrons in fresh specimens are presented. It is concluded that electron radiation in the energy range of 10 to 13 MeV can be utilized for irradiation of lymph glands along the internal thoracic vessels without risk of underdosage.

  12. Optimization of a Nanomedicine-based Pc 4-PDT Strategy for Targeted Treatment of EGFR-Overexpressing Cancers

    PubMed Central

    Master, Alyssa M.; Livingston, Megan; Oleinick, Nancy L.; Gupta, Anirban Sen

    2012-01-01

    The current clinical mainstays for cancer treatment, namely, surgical resection, chemotherapy and radiotherapy, can cause significant trauma, systemic toxicity, and functional/cosmetic debilitation of tissue, especially if repetitive treatment becomes necessary due to tumor recurrence. Hence there is significant clinical interest in alternate treatment strategies like photodynamic therapy (PDT) which can effectively and selectively eradicate tumors and can be safely repeated if needed. We have previously demonstrated that the second-generation photosensitizer Pc 4 can be formulated within polymeric micelles, and these micelles can be specifically targeted to EGFR-overexpressing cancer cells using GE11 peptide ligands, to enhance cell-specific Pc 4 delivery and internalization. In the current study, we report on the in vitro optimization of the EGFR-targeting, Pc 4 loading of the micellar nanoformulation, along with optimization of the corresponding photoirradiation conditions to maximize Pc 4 delivery, internalization and subsequent PDT-induced cytotoxicity in EGFR-overexpressing cells in vitro. In our studies, absorption and fluorescence spectroscopy were used to monitor the cell-specific uptake of the GE11-decorated Pc 4-loaded micelles and the cytotoxic singlet oxygen production from the micelle-encapsulated Pc 4, to determine the optimum ligand density and Pc 4 loading. It was found that the micelle formulations bearing 10 mole% of GE11-modified polymer component resulted in the highest cellular uptake in EGFR-overexpressing A431 cells within the shortest incubation periods. Also, the loading of ~50 μg Pc 4 per mg of polymer in these micellar formulations resulted in the highest levels of singlet oxygen production. When formulations bearing these optimized parameters were tested in vitro on A431 cells for PDT effect, a formulation dose containing 400 nM Pc 4 and photoirradiation duration of 400 seconds at a fluence of 200 mJ/cm2 yielded close to 100% cell death. PMID:22775587

  13. Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei, E-mail: Liu.Wei@mayo.edu; Schild, Steven E.; Chang, Joe Y.

    Purpose: The purpose of this study was to compare the impact of uncertainties and interplay on 3-dimensional (3D) and 4D robustly optimized intensity modulated proton therapy (IMPT) plans for lung cancer in an exploratory methodology study. Methods and Materials: IMPT plans were created for 11 nonrandomly selected non-small cell lung cancer (NSCLC) cases: 3D robustly optimized plans on average CTs with internal gross tumor volume density overridden to irradiate internal target volume, and 4D robustly optimized plans on 4D computed tomography (CT) to irradiate clinical target volume (CTV). Regular fractionation (66 Gy [relative biological effectiveness; RBE] in 33 fractions) was considered.more » In 4D optimization, the CTV of individual phases received nonuniform doses to achieve a uniform cumulative dose. The root-mean-square dose-volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under the RVH curve (AUCs) were used to evaluate plan robustness. Dose evaluation software modeled time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Dose-volume histogram (DVH) indices comparing CTV coverage, homogeneity, and normal tissue sparing were evaluated using Wilcoxon signed rank test. Results: 4D robust optimization plans led to smaller AUC for CTV (14.26 vs 18.61, respectively; P=.001), better CTV coverage (Gy [RBE]) (D{sub 95%} CTV: 60.6 vs 55.2, respectively; P=.001), and better CTV homogeneity (D{sub 5%}-D{sub 95%} CTV: 10.3 vs 17.7, resspectively; P=.002) in the face of uncertainties. With interplay effect considered, 4D robust optimization produced plans with better target coverage (D{sub 95%} CTV: 64.5 vs 63.8, respectively; P=.0068), comparable target homogeneity, and comparable normal tissue protection. The benefits from 4D robust optimization were most obvious for the 2 typical stage III lung cancer patients. Conclusions: Our exploratory methodology study showed that, compared to 3D robust optimization, 4D robust optimization produced significantly more robust and interplay-effect-resistant plans for targets with comparable dose distributions for normal tissues. A further study with a larger and more realistic patient population is warranted to generalize the conclusions.« less

  14. Synthetic high-density lipoprotein nanoconjugate targets neuroblastoma stem cells, blocking migration and self-renewal.

    PubMed

    Subramanian, Chitra; White, Peter T; Kuai, Rui; Kalidindi, Avinaash; Castle, Valerie P; Moon, James J; Timmermann, Barbara N; Schwendeman, Anna; Cohen, Mark S

    2018-05-09

    Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. Synthetic high-density lipoprotein is a promising platform to improve the delivery of anticancer drug 4,19,27-triacetyl withalongolide A to neuroblastomas and neuroblastoma cancer stem cells through SR-B1 targeting in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Staging and laser acceleration of ions in underdense plasma

    NASA Astrophysics Data System (ADS)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  16. High-energy-density plasma jet generated by laser-cone interaction

    NASA Astrophysics Data System (ADS)

    Ke, Y. Z.; Yang, X. H.; Ma, Y. Y.; Xu, B. B.; Ge, Z. Y.; Gan, L. F.; Meng, L.; Wang, S. W.; Kawata, S.

    2018-04-01

    The generation of high-energy-density (HED) plasma jet from a laser ablating thin cone target is studied theoretically and by numerical simulations. Theoretical analysis and 1D simulations show that a maximum kinetic energy conversion efficiency (CE) of 26% can be achieved when nearly 80% of the foil is ablated by laser. A HED plasma jet is generated when an intense laser (˜1015 W/cm2) irradiates the cone target, inducing a great enhancement of energy density compared to that of the planar target, which is attributed to the cumulative effect of the cone shape and the new generation mechanism of jet, i.e., laser directly accelerating the cone wall onto the axis. The characteristic of jet is influenced by the cone geometry, i.e., thickness and cone angle. It is found that a cone with a half opening angle around 70 ° and the optimized thickness (˜5 μm) can induce a jet with a high CE and long duration, whose peak energy density can reach 3.5 × 1015 erg/cm3. The results can be beneficial for laser-driven novel neutron sources and other fusion related experiments, where HED plasma jet can be applied.

  17. Segmentation Algorithms for Detection of Targets in IR Imagery (Algorithmes de Segmentation pour la Detection de Cibles sur Images IR),

    DTIC Science & Technology

    1981-01-01

    This fact being established, leptokurtic and platykurtic density functions are defined in terms of deviations from the normal density function. Thus...the usual definitions (Ref. 6) are: Leptokurtic - A density function that is peaked, K > 0, [18] and Platykurtic - A density function that is flat, K...has long Deen accepted that a symmetrical platykurtic density function, with K<O, is characterized by a flatter top and more abrupt terminals than the

  18. Targeted Killing as an Element of U.S. Foreign Policy in the War On Terror

    DTIC Science & Technology

    2006-05-25

    terrorists. Given the level of secrecy and lack of transparency involved in this policy and its implementation, how can we judge the moral and legal ...killing’ morally justifiable and legal under both US domestic and international law? Can the United States maintain international legitimacy while...Rights Law and International Humanitarian Law to determine the legality of a policy of targeted killing. iii TABLE OF CONTENTS INTRODUCTION

  19. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    PubMed

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis

    PubMed Central

    Luo, Yongting; Duan, Hongxia; Qian, Yining; Feng, Liqun; Wu, Zhenzhen; Wang, Fei; Feng, Jing; Yang, Dongling; Qin, Zhihai; Yan, Xiyun

    2017-01-01

    The persistence of cholesterol-engorged macrophages (foam cells) in the artery wall fuels the development of atherosclerosis. However, the mechanism that regulates the formation of macrophage foam cells and impedes their emigration out of inflamed plaques is still elusive. Here, we report that adhesion receptor CD146 controls the formation of macrophage foam cells and their retention within the plaque during atherosclerosis exacerbation. CD146 is expressed on the macrophages in human and mouse atheroma and can be upregulated by oxidized low-density lipoprotein (oxLDL). CD146 triggers macrophage activation by driving the internalization of scavenger receptor CD36 during lipid uptake. In response to oxLDL, macrophages show reduced migratory capacity toward chemokines CCL19 and CCL21; this capacity can be restored by blocking CD146. Genetic deletion of macrophagic CD146 or targeting of CD146 with an antibody result in much less complex plaques in high-fat diet-fed ApoE−/− mice by causing lipid-loaded macrophages to leave plaques. Collectively, our findings identify CD146 as a novel retention signal that traps macrophages within the artery wall, and a promising therapeutic target in atherosclerosis treatment. PMID:28084332

  1. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees

    Treesearch

    Shan Gao; Xiping Wang; Michael C. Wiemann; Brian K. Brashaw; Robert J. Ross; Lihai Wang

    2017-01-01

    Key message Field methods for rapid determination of wood density in trees have evolved from increment borer, torsiometer, Pilodyn, and nail withdrawal into sophisticated electronic tools of resistance drilling measurement. A partial resistance drilling approach coupled with knowledge of internal tree density distribution may...

  2. HIGH-RESOLUTION FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF METHYL- AND DIMETHYLNAPTHALENES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnitzler, Elijah G.; Zenchyzen, Brandi L. M.; Jäger, Wolfgang, E-mail: wolfgang.jaeger@ualberta.ca

    High-resolution pure rotational spectra of four alkylnaphthalenes were measured in the range of 6–15 GHz using a molecular-beam Fourier-transform microwave spectrometer. Both a- and b-type transitions were observed for 1-methylnaphthalene (1-MN), 1,2-dimethylnaphthalene (1,2-DMN), and 1,3-dimethylnaphthalene (1,3-DMN); only a-type transitions were observed for 2-methylnaphthalene (2-MN). Geometry optimization and vibrational analysis calculations at the B3LYP/6-311++G(d,p) level of theory aided in the assignments of the spectra and the characterization of the structures. Differences between the experimental and predicted rotational constants are small, and they can be attributed in part to low-lying out-of-plane vibrations, which distort the alkylnaphthalenes out of their equilibrium geometries. Splittingsmore » of rotational lines due to methyl internal rotation were observed in the spectra of 2-MN, 1,2-DMN, and 1,3-DMN, and allowed for the determination of the barriers to methyl internal rotation, which are compared to values from density functional theory calculations. All four species are moderately polar, so they are candidate species for detection by radio astronomy, by targeting the transition frequencies reported here.« less

  3. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  4. Fields in laser-ablated plasmas generalized to degenerate electrons and to Fermi energy in nuclei with change to quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George H.; Osman, Frederick; Hammerling, Peter X.

    2004-09-01

    The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets, contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension of plasmas and to the internal dynamic electric fields in all inhomogeneous plasmas. The surface causes stabilization by short length surface waves smoothing the expanding plasma plume. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature, resulted in the surface tension of metals in agreement with measurements. Taking then the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well known nuclear density, and in the Debye length equal to Hofstadter's decay of the nuclear surface. Increasing the nuclear density by a factor of 6 leads to the change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark-gluon plasma. Expansion of this higher density at the big band or in a supernova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range limited to about uranium.

  5. Aerogel-Positronium Technology for the Detection of Small Quantities of Organic and/or Toxic Materials

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail P.; Jones, Steven M.

    2010-01-01

    The Ps-aerogel system [Ps is positronium (an electron-positron-hydrogen-like atom)] has been evaluated and optimized as a potential tool for planetary exploration missions. Different configurations of use were assessed, and the results provide a quantitative measure of the expected performance. The aerogel density is first optimized to attain maximum production of Ps that reaches the pores of the aerogel. This has been accomplished, and the optimum aerogel density is .70 mg/cm3. The aerogel is used as a concentrator for target volatile moieties, which accumulate in its open porosity over an extended period of time. For the detection of the accumulated materials, the use of Ps as a probe for the environment at the pore surface, has been proposed. This concept is based on two steps: (1) using aerogel to produce Ps and (2) using the propensity of Ps to interact differently with organic and inorganic matter. The active area of such a detector will comprise aerogel with a certain density, specific surface area, and gas permeability optimized for Ps production and gas diffusion and adsorption. The aerogel is a natural adsorber of organic molecules, which adhere to its internal surface, where their presence is detected by the Ps probe. Initial estimates indicate that, e.g., trace organic molecules in the Martian atmosphere, can be detected at the ppm level, which rivals current methods having significantly higher complexity, volume, mass, and power consumption (e.g. Raman, IR).

  6. Climate Change Impacts to North Pacific Pelagic Habitat Are Projected to Lower Carrying Capacity

    NASA Astrophysics Data System (ADS)

    Woodworth-Jefcoats, P. A.; Polovina, J. J.; Drazen, J.

    2016-02-01

    We use output from a suite of CMIP5 earth system models to explore the impacts of climate change on marine fisheries over the 21st century. Ocean temperatures from both the historical and RCP 8.5 projections are integrated over the upper 200 m of the water column to characterize thermal habitat in the epipelagic realm. We find that across all models the projected temperature increases lead to a redistribution of thermal habitat: temperatures that currently represent the majority of North Pacific pelagic habitat are replaced by temperatures several degrees warmer. Additionally, all models project the emergence of new thermal habitat that exceeds present-day maximum temperatures. Spatially, present-day thermal habitat retreats northward and contracts eastward as warmer habitat in the southern and western North Pacific expands. In addition to these changes in thermal habitat, zooplankton densities are projected to decline across much of the North Pacific. Taken together, warming temperatures and declining zooplankton densities create the potential for mismatches in metabolic demand and supply through the 21st century. We find that carrying capacity for tropical tunas and other commercially valuable pelagic fish may be especially vulnerable to the impacts of climate change. The waters projected to see the greatest redistribution of thermal habitat and greatest declines in zooplankton densities are primarily those targeted by the Hawaii-based and international longline fleets. Fishery managers around the North Pacific will need to incorporate these impacts of climate change into future management strategies.

  7. Enhancing Adoptive Cell Therapy of Cancer through Targeted Delivery of Small-Molecule Immunomodulators to Internalizing or Non-Internalizing Receptors

    PubMed Central

    Zheng, Yiran; Tang, Li; Mabardi, Llian; Kumari, Sudha; Irvine, Darrell J.

    2017-01-01

    Adoptive cell therapy (ACT) has achieved striking efficacy in B-cell leukemias, but less success treating other cancers, in part due to the rapid loss of ACT T-cell effector function in vivo due to immunosuppression in solid tumors. Transforming growth factor-β (TGF-β) signaling is an important mechanism of immune suppression in the tumor microenvironment, but systemic inhibition of TGF-β is toxic. Here we evaluated the potential of targeting a small molecule inhibitor of TGF-β to ACT T-cells using PEGylated immunoliposomes. Liposomes were prepared that released TGF-β inhibitor over ~3 days in vitro. We compared the impact of targeting these drug-loaded vesicles to T-cells via an internalizing receptor (CD90) or non-internalizing receptor (CD45). When lymphocytes were pre-loaded with immunoliposomes in vitro prior to adoptive therapy, vesicles targeted to both CD45 and CD90 promoted enhanced T-cell expression of granzymes relative to free systemic drug administration, but only targeting to CD45 enhanced accumulation of granzyme-expressing T-cells in tumors, which correlated with the greatest enhancement of T-cell anti-tumor activity. By contrast, when administered i.v. to target T-cells in vivo, only targeting of a CD90 isoform expressed exclusively by the donor T-cells led to greater tumor regression over equivalent doses of free systemic drug. These results suggest that in vivo, targeting of receptors uniquely expressed by donor T-cells is of paramount importance for maximal efficacy. This immunoliposome strategy should be broadly applicable to target exogenous or endogenous T-cells and defines parameters to optimize delivery of supporting (or suppressive) drugs to these important immune effectors. PMID:28231431

  8. International Test Comparisons: Reviewing Translation Error in Different Source Language-Target Language Combinations

    ERIC Educational Resources Information Center

    Zhao, Xueyu; Solano-Flores, Guillermo; Qian, Ming

    2018-01-01

    This article addresses test translation review in international test comparisons. We investigated the applicability of the theory of test translation error--a theory of the multidimensionality and inevitability of test translation error--across source language-target language combinations in the translation of PISA (Programme of International…

  9. Measuring the Density of Different Materials by Using the Collimated Fast Neutron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudac, D.; Nad, K.; Orlic, Z.

    It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the targetmore » position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays. Although the associated alpha particle technique/associate particle imaging (API) was used to discriminate the neutrons from the gamma rays, it is believed that the same results would be obtained by using the pulse shape discrimination method. In that way API technique can be avoided and the neutron generator which produces much higher beam intensity than 10{sup 8} n/s can be used. (authors)« less

  10. Relation between Intensity of Biocide Practice and Residues of Anticoagulant Rodenticides in Red Foxes (Vulpes vulpes)

    PubMed Central

    Geduhn, Anke; Jacob, Jens; Schenke, Detlef; Keller, Barbara; Kleinschmidt, Sven; Esther, Alexandra

    2015-01-01

    Anticoagulant rodenticides (ARs) are commonly used to control rodent infestations for biocidal and plant protection purposes. This can lead to AR exposure of non-target small mammals and their predators, which is known from several regions of the world. However, drivers of exposure variation are usually not known. To identify environmental drivers of AR exposure in non-targets we analyzed 331 liver samples of red foxes (Vulpes vulpes) for residues of eight ARs and used local parameters (percentage of urban area and livestock density) to test for associations to residue occurrence. 59.8% of samples collected across Germany contained at least one rodenticide, in 20.2% of cases at levels at which biological effects are suspected. Second generation anticoagulants (mainly brodifacoum and bromadiolone) occurred more often than first generation anticoagulants. Local livestock density and the percentage of urban area were good indicators for AR residue occurrence. There was a positive association between pooled ARs and brodifacoum occurrence with livestock density as well as of pooled ARs, brodifacoum and difenacoum occurrence with the percentage of urban area on administrative district level. Pig holding drove associations of livestock density to AR residue occurrence in foxes. Therefore, risk mitigation strategies should focus on areas of high pig density and on highly urbanized areas to minimize non-target risk. PMID:26418154

  11. Some characteristics of the international space channel

    NASA Technical Reports Server (NTRS)

    Noack, T. L.; Poland, W. B., Jr.

    1975-01-01

    Some physical characteristics of radio transmission links and the technology of PCM modulation combine with the Radio Regulations of the International Telecommunications Union to define a communications channel having a determinable channel capacity, error rate, and sensitivity to interference. These characteristics and the corresponding limitations on EIRP, power flux density, and power spectral density for space service applications are described. The ITU regulations create a critical height of 1027 km where some parameters of the limitation rules change. The nature of restraints on power spectral density are discussed and an approach to a standardized representation of Necessary Bandwidth for the Space Services is described. It is shown that, given the PFD (power flux density) and PSD (power spectral density) limitations of radio regulations, the channel performance is determined by the ratio of effective receiving antenna aperture to system noise temperature. Based on this approach, the method for a quantitative trade-off between spectrum spreading and system performance is presented. Finally, the effects of radio frequency interference between standard systems is analyzed.

  12. Ossicular density in golden moles (Chrysochloridae).

    PubMed

    Mason, Matthew J; Lucas, Sarah J; Wise, Erica R; Stein, Robin S; Duer, Melinda J

    2006-12-01

    The densities of middle ear ossicles of golden moles (family Chrysochloridae, order Afrosoricida) were measured using the buoyancy method. The internal structure of the malleus was examined by high-resolution computed tomography, and solid-state NMR was used to determine relative phosphorus content. The malleus density of the desert golden mole Eremitalpa granti (2.44 g/cm3) was found to be higher than that reported in the literature for any other terrestrial mammal, whereas the ossicles of other golden mole species are not unusually dense. The increased density in Eremitalpa mallei is apparently related both to a relative paucity of internal vascularization and to a high level of mineralization. This high density is expected to augment inertial bone conduction, used for the detection of seismic vibrations, while limiting the skull modifications needed to accommodate the disproportionately large malleus. The mallei of the two subspecies of E. granti, E. g. granti and E. g. namibensis, were found to differ considerably from one another in both size and shape.

  13. Imaging the Subsurface with Upgoing Muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Probabilistic prediction models for aggregate quarry siting

    USGS Publications Warehouse

    Robinson, G.R.; Larkins, P.M.

    2007-01-01

    Weights-of-evidence (WofE) and logistic regression techniques were used in a GIS framework to predict the spatial likelihood (prospectivity) of crushed-stone aggregate quarry development. The joint conditional probability models, based on geology, transportation network, and population density variables, were defined using quarry location and time of development data for the New England States, North Carolina, and South Carolina, USA. The Quarry Operation models describe the distribution of active aggregate quarries, independent of the date of opening. The New Quarry models describe the distribution of aggregate quarries when they open. Because of the small number of new quarries developed in the study areas during the last decade, independent New Quarry models have low parameter estimate reliability. The performance of parameter estimates derived for Quarry Operation models, defined by a larger number of active quarries in the study areas, were tested and evaluated to predict the spatial likelihood of new quarry development. Population density conditions at the time of new quarry development were used to modify the population density variable in the Quarry Operation models to apply to new quarry development sites. The Quarry Operation parameters derived for the New England study area, Carolina study area, and the combined New England and Carolina study areas were all similar in magnitude and relative strength. The Quarry Operation model parameters, using the modified population density variables, were found to be a good predictor of new quarry locations. Both the aggregate industry and the land management community can use the model approach to target areas for more detailed site evaluation for quarry location. The models can be revised easily to reflect actual or anticipated changes in transportation and population features. ?? International Association for Mathematical Geology 2007.

  15. Safety profile and long-term engraftment of human CD31+ blood progenitors in bone tissue engineering.

    PubMed

    Zigdon-Giladi, Hadar; Elimelech, Rina; Michaeli-Geller, Gal; Rudich, Utai; Machtei, Eli E

    2017-07-01

    Endothelial progenitor cells (EPCs) participate in angiogenesis and induce favorable micro-environments for tissue regeneration. The efficacy of EPCs in regenerative medicine is extensively studied; however, their safety profile remains unknown. Therefore, our aims were to evaluate the safety profile of human peripheral blood-derived EPCs (hEPCs) and to assess the long-term efficacy of hEPCs in bone tissue engineering. hEPCs were isolated from peripheral blood, cultured and characterized. β tricalcium phosphate scaffold (βTCP, control) or 10 6 hEPCs loaded onto βTCP were transplanted in a nude rat calvaria model. New bone formation and blood vessel density were analyzed using histomorphometry and micro-computed tomography (CT). Safety of hEPCs using karyotype analysis, tumorigenecity and biodistribution to target organs was evaluated. On the cellular level, hEPCs retained their karyotype during cell expansion (seven passages). Five months following local hEPC transplantation, on the tissue and organ level, no inflammatory reaction or dysplastic change was evident at the transplanted site or in distant organs. Direct engraftment was evident as CD31 human antigens were detected lining vessel walls in the transplanted site. In distant organs human antigens were absent, negating biodistribution. Bone area fraction and bone height were doubled by hEPC transplantation without affecting mineral density and bone architecture. Additionally, local transplantation of hEPCs increased blood vessel density by nine-fold. Local transplantation of hEPCs showed a positive safety profile. Furthermore, enhanced angiogenesis and osteogenesis without mineral density change was found. These results bring us one step closer to first-in-human trials using hEPCs for bone regeneration. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.

    2017-12-01

    We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical composition and mineral density, so that their profiles with respect to the core depth provide quick lithological information such as mineral identification and phase boundary etc. Moreover, X-ray CT images can be used for 3-D fabric analyses of the whole core even after core cutting into halves for individual analyses.

  17. A new target ligand Ser-Glu for PEPT1-overexpressing cancer imaging.

    PubMed

    Dai, Tongcheng; Li, Na; Zhang, Lingzhi; Zhang, Yuanxing; Liu, Qin

    2016-01-01

    Nanoparticles functionalized with active target ligands have been widely used for tumor-specific diagnosis and therapy. The target ligands include antibodies, peptides, proteins, small molecules, and nucleic acid aptamers. Here, we utilize dipeptide Ser-Glu (DIP) as a new ligand to functionalize polymer-based fluorescent nanoparticles (NPs) for pancreatic cancer target imaging. We demonstrate that in the first step, Ser-Glu-conjugated NPs (NPs-DIP) efficiently bind to AsPC-1 and in the following NPs-DIP are internalized into AsPC-1 in vitro. The peptide transporter 1 inhibition experiment reveals that the targeting effects mainly depend on the specific binding of DIP to peptide transporter 1, which is remarkably upregulated in pancreatic cancer cells compared with varied normal cells. Furthermore, NPs-DIP specifically accumulate in the site of pancreatic tumor xenograft and are further internalized into the tumor cells in vivo after intravenous administration, indicating that DIP successfully enhanced nanoparticles internalization efficacy into tumor cells in vivo. This work establishes Ser-Glu to be a new tumor-targeting ligand and provides a promising tool for future tumor diagnostic or therapeutic applications.

  18. X-ray imaging of fibers

    NASA Astrophysics Data System (ADS)

    Moosman, B.; Song, Y.; Weathers, L.; Wessel, F.

    1996-11-01

    A pulsed x-ray backlighter was developed to image exploding wires and cryogenic fibers. The x-ray pulse width is between 10-20 ns, with an output of 100-150 mJ, mostly in the Al k-shell (1.486 keV). The backlighter is located 50 cm from the 20-50 micron diameter target (typically, a copper wire). A 15 micron Al filter eliminates UV emission from the backlighter and target. It is placed 3 cm from the target with SB-5 film directly behind it. From the optical density of the film, target absorption and density can be calculated. The spatial resolution of this system is better than 40 microns. The wire is exploded using a 10 kA, 1 microsecond pulser. Analysis with simultaneous Moire imaging will also be presented. Supported by Los Alamos National Laboratories

  19. A polarized atomic-beam target for COSY-Jülich

    NASA Astrophysics Data System (ADS)

    Eversheim, P. D.; Altmeier, M.; Felden, O.; Glende, M.; Walker, M.; Hiemer, A.; Gebel, R.

    1998-01-01

    An atomic-beam target (ABT) for the EDDA experiment has been built in Bonn and was tested for the very first time at the cooler synchrotron COSY. The ABT differs from the polarized colliding-beams ion source for COSY in the DC-operation of the dissociator and the use of permanent 6-pole magnets. At present the beam optics of the ABT is set-up for maximum density in the interaction zone, but for target-cell operation it can be modified to give maximum intensity. The modular concept of this atomic ground-state target allows to provide all vector- (and tensor) polarizations for protons and deuterons, respectively. Up to now the polarization of the atomic-beam could be verified by the EDDA experiment to be ≳80% with a density in the interaction zone of ≳1011atoms/cm2.

  20. Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.

    2017-10-01

    We experimentally investigate the fast (< 1 {ps}) isochoric heating of multi-layer metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (< 1 {{J}}), the early-time high pressures and associated gradients launch inwards a strong compression wave developing over ≳ 10 ps into a ≈ 140 {Mbar} blast wave, according to hydrodynamic simulations, consistent with our measurements. These experimental and numerical findings pave the way to a short-pulse-laser-based platform dedicated to high-energy-density physics studies.

  1. Increased heat dissipation with the X-divertor geometry facilitating detachment onset at lower density in DIII-D

    NASA Astrophysics Data System (ADS)

    Covele, B.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Leonard, A.; Watkins, J.; Makowski, M.; Fenstermacher, M.; Si, H.

    2017-08-01

    The X-divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at 10-20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. However, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. The model also points to carbon radiation as the primary driver of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency for core operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.

  2. Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery with a Bifunctional Redox Mediator.

    PubMed

    Zhu, Yun Guang; Du, Yonghua; Jia, Chuankun; Zhou, Mingyue; Fan, Li; Wang, Xingzhu; Wang, Qing

    2017-05-10

    Redox flow batteries, despite great operation flexibility and scalability for large-scale energy storage, suffer from low energy density and relatively high cost as compared to the state-of-the-art Li-ion batteries. Here we report a redox flow lithium battery, which operates via the redox targeting reactions of LiFePO 4 with a bifunctional redox mediator, 2,3,5,6-tetramethyl-p-phenylenediamine, and presents superb energy density as the Li-ion battery and system flexibility as the redox flow battery. The battery has achieved a tank energy density as high as 1023 Wh/L, power density of 61 mW/cm 2 , and voltage efficiency of 91%. Operando X-ray absorption near-edge structure measurements were conducted to monitor the evolution of LiFePO 4 , which provides insightful information on the redox targeting process, critical to the device operation and optimization.

  3. Statistical Algorithms Accounting for Background Density in the Detection of UXO Target Areas at DoD Munitions Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzke, Brett D.; Wilson, John E.; Hathaway, J.

    2008-02-12

    Statistically defensible methods are presented for developing geophysical detector sampling plans and analyzing data for munitions response sites where unexploded ordnance (UXO) may exist. Detection methods for identifying areas of elevated anomaly density from background density are shown. Additionally, methods are described which aid in the choice of transect pattern and spacing to assure with degree of confidence that a target area (TA) of specific size, shape, and anomaly density will be identified using the detection methods. Methods for evaluating the sensitivity of designs to variation in certain parameters are also discussed. Methods presented have been incorporated into the Visualmore » Sample Plan (VSP) software (free at http://dqo.pnl.gov/vsp) and demonstrated at multiple sites in the United States. Application examples from actual transect designs and surveys from the previous two years are demonstrated.« less

  4. Shock front distortion and Richtmyer-Meshkov-type growth caused by a small preshock nonuniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Wouchuk, J. G.; Huete Ruiz de Lira, C.

    The response of a shock front to small preshock nonuniformities of density, pressure, and velocity is studied theoretically and numerically. These preshock nonuniformities emulate imperfections of a laser target, due either to its manufacturing, like joints or feeding tubes, or to preshock perturbation seeding/growth, as well as density fluctuations in foam targets, ''thermal layers'' near heated surfaces, etc. Similarly to the shock-wave interaction with a small nonuniformity localized at a material interface, which triggers a classical Richtmyer-Meshkov (RM) instability, interaction of a shock wave with periodic or localized preshock perturbations distributed in the volume distorts the shape of the shockmore » front and can cause a RM-type instability growth. Explicit asymptotic formulas describing distortion of the shock front and the rate of RM-type growth are presented. These formulas are favorably compared both to the exact solutions of the corresponding initial-boundary-value problem and to numerical simulations. It is demonstrated that a small density modulation localized sufficiently close to a flat target surface produces the same perturbation growth as an 'equivalent' ripple on the surface of a uniform target, characterized by the same initial areal mass modulation amplitude.« less

  5. Measuring the Density of Liquid Targets in the SeaQuest Experiment

    NASA Astrophysics Data System (ADS)

    Xi, Zhaojia; SeaQuest/E906 Collaboration

    2015-10-01

    The SeaQuest (E906) experiment, using the 120 GeV proton beam from the Main Injector at the Fermi National Accelerator Lab (FNAL), is studying the quark and antiquark structure of the nucleon using the Drell-Yan process. Based on the cross section ratios, σ (p + d) / σ (p + p) , SeaQuest will extract the Bjorken-x dependnce of the d / u ratio. The measurement will cover the large region (x > 0 . 25) with improved accuracy compared to the previous E866/Nusea experiment. Liquid D2 (LD2) and Liquid H2 (LH2) are the targets used in the SeaQuest experiment. The densities of LD2 and LH2 targets are two important quantities for the determination of the d / u ratio. We measure the pressure and temperature inside the flasks, from which the densities are calculated. The method, measurements and results of this study will be presented. This work is supported by U.S. DOE MENP Grant DE-FG02-03ER41243.

  6. HIV Target Cells in Schistosoma haematobium-Infected Female Genital Mucosa

    PubMed Central

    Jourdan, Peter Mark; Holmen, Sigve Dhondup; Gundersen, Svein Gunnar; Roald, Borghild; Kjetland, Eyrun Floerecke

    2011-01-01

    The parasite Schistosoma haematobium frequently causes genital lesions in women and could increase the risk of human immunodeficiency virus (HIV) transmission. This study quantifies the HIV target cells in schistosome-infected female genital mucosa. Cervicovaginal biopsies with and without schistosomiasis were immunostained for quantification of CD4+ T lymphocytes (CD3, CD8), macrophages (CD68), and dendritic Langerhans cells (S100 protein). We found significantly higher densities of genital mucosal CD4+ T lymphocytes and macrophages surrounding schistosome ova compared with cervicovaginal mucosa without ova (P = 0.034 and P = 0.018, respectively). We found no increased density of Langerhans cells (P = 0.25). This study indicates that S. haematobium may significantly increase the density of HIV target cells (CD4+ T lymphocytes and macrophages) in the female genitals, creating a beneficial setting for HIV transmission. Further studies are needed to confirm these findings and to evaluate the effect of anti-schistosomal treatment on female genital schistosomiasis. PMID:22144444

  7. [In vitro hepatic targeting tendency of galactosyl-anti CD3 McAb-TILS].

    PubMed

    Jiang, P; He, S; Zhang, C

    1999-03-01

    This study was undertaken to enhance the hepatic targeting tendency of tumor infiltrating lymphocytes (TILs) and hence to lower the recurrence rate of primary liver cancer after hepatectomy. Galactosyl-anti CD3McAb-TILs were prepared and then were incubated together with hepatocytes. Their interaction through asialoglycoprotein receptor-mediated mechanism was observed under the inverted phase contrast microscope. The carbohydrate density of galactosyl-anti CD3McAb and the combining rate of galactosyl-anti CD3McAb with TILs were measured. The results revealed that galactosyl-anti CD3 McAb-TIL obviously were adhered to hepatocytes. The carbohydrate density of galactosyl-anti CD3McAb was 62.18, and the combining rate of galactosyl-anti CD3McAb with TILs was 97.9%. The results suggested that in vitro hepatic targeting tendency of galactosyl-anti CD3McAb-TILs was satisfactory, and that the carbohydrate density of 62.18 and the combining rate of 97.9% ensured the effective use of TILs.

  8. Drugs targeting high-density lipoprotein cholesterol for coronary artery disease management.

    PubMed

    Katz, Pamela M; Leiter, Lawrence A

    2012-01-01

    Many patients remain at high risk for future cardiovascular events despite levels of low-density lipoprotein cholesterol (LDL-C) at, or below, target while taking statin therapy. Much effort is therefore being focused on strategies to reduce this residual risk. High-density lipoprotein cholesterol (HDL-C) is a strong, independent, inverse predictor of coronary heart disease risk and is therefore an attractive therapeutic target. Currently available agents that raise HDL-C have only modest effects and there is limited evidence of additional cardiovascular risk reduction on top of background statin therapy associated with their use. It was hoped that the use of cholesteryl ester transfer protein (CETP) inhibitors would provide additional benefit, but the results of clinical outcome studies to date have been disappointing. The results of ongoing trials with other CETP inhibitors that raise HDL-C to a greater degree and also lower LDL-C, as well as with other emerging therapies are awaited. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  9. Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import

    PubMed Central

    Banci, Lucia; Bertini, Ivano; Cefaro, Chiara; Cenacchi, Lucia; Ciofi-Baffoni, Simone; Felli, Isabella Caterina; Gallo, Angelo; Gonnelli, Leonardo; Luchinat, Enrico; Sideris, Dionisia; Tokatlidis, Kostas

    2010-01-01

    Several proteins of the mitochondrial intermembrane space are targeted by internal targeting signals. A class of such proteins with α-helical hairpin structure bridged by two intramolecular disulfides is trapped by a Mia40-dependent oxidative process. Here, we describe the oxidative folding mechanism underpinning this process by an exhaustive structural characterization of the protein in all stages and as a complex with Mia40. Two consecutive induced folding steps are at the basis of the protein-trapping process. In the first one, Mia40 functions as a molecular chaperone assisting α-helical folding of the internal targeting signal of the substrate. Subsequently, in a Mia40-independent manner, folding of the second substrate helix is induced by the folded targeting signal functioning as a folding scaffold. The Mia40-induced folding pathway provides a proof of principle for the general concept that internal targeting signals may operate as a folding nucleus upon compartment-specific activation. PMID:21059946

  10. Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequence-specific DNA detection in blood serum.

    PubMed

    Cash, Kevin J; Heeger, Alan J; Plaxco, Kevin W; Xiao, Yi

    2009-01-15

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem's loop forms part of the second stem, is modified with a methylene blue redox tag at its 3' terminus and covalently attached to a gold electrode via the 5' terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density ( approximately 1.8 x 10(13) molecules/cm(2) apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3' stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3' loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum.

  11. Optimization of a Reusable, DNA Pseudoknot-Based Electrochemical Sensor for Sequence-Specific DNA Detection in Blood Serum

    PubMed Central

    Cash, Kevin J.; Heeger, Alan J.; Plaxco, Kevin W.; Xiao, Yi

    2010-01-01

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem’s loop forms part of the second stem, is modified with a methylene blue redox tag at its 3′ terminus and covalently attached to a gold electrode via the 5′ terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density (~1.8 × 1013 molecules/cm2 apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3′ stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3′ loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum. PMID:19093760

  12. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  13. Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid--a position paper developed by the European Consensus Panel on HDL-C.

    PubMed

    Chapman, M John; Assmann, Gerd; Fruchart, Jean-Charles; Shepherd, James; Sirtori, Cesare

    2004-08-01

    Reduction of low-density lipoprotein cholesterol (LDL-C) is presently the primary focus of lipid-lowering therapy for prevention and treatment of coronary heart disease (CHD). However, the high level of residual risk among statin-treated patients in recent coronary prevention studies indicates the need for modification of other major components of the atherogenic lipid profile. There is overwhelming evidence that a low plasma level of high-density lipoprotein cholesterol (HDL-C) is an important independent risk factor for CHD. Moreover, a substantial proportion of patients with or at risk of developing premature CHD typically exhibit distinct lipid abnormalities, including low HDL-C levels. Thus, therapeutic intervention aimed at raising HDL-C, within the context of reducing global cardiovascular risk, would benefit such patients, a viewpoint increasingly adopted by international treatment guidelines. Therapeutic options for patients with low HDL-C include treatment with statins, fibrates and nicotinic acid, either as monotherapy or in combination. Of these options, nicotinic acid is not only the most potent agent for raising HDL-C but is also effective in reducing key atherogenic lipid components including triglyceride-rich lipoproteins (mainly very low-density lipoproteins [VLDL] and VLDL remnants), LDL-C, and lipoprotein(a). The principal features of the atherogenic lipid profile in type 2 diabetes and the metabolic syndrome make them logical targets for nicotinic acid therapy, either alone or in combination with a statin. The lack of comprehensive European data on the prevalence of low HDL-C levels highlights a critical need for education on the importance of raising HDL-C in CHD prevention and treatment. The development of a reliable and accurate assay for HDL-C, as well as clarification of criteria for low and optimal levels of HDL-C in both men and women, constitute critical factors in the reliable identification and treatment of patients at elevated risk of CHD due to low HDL-C. Based on the available evidence, the European Consensus Panel recommends that the minimum target for HDL-C should be 40 mg/dL (1.03 mmol/L) in patients with CHD or with a high level of risk for CHD, including patients at high global risk with type 2 diabetes or the metabolic syndrome.

  14. Method of synthesizing a low density material

    DOEpatents

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  15. Are condom-promotion interventions reaching internal migrants in China? Integrated evidence from two cross-sectional surveys.

    PubMed

    Liu, Xiaona; Erasmus, Vicki; van Genugten, Lenneke; Sun, Xinying; Tan, Jingguang; Richardus, Jan Hendrik

    2016-09-01

    Behavioral interventions containing behavior change techniques (BCTs) that do not reach the target populations sufficiently will fail to accomplish their desired outcome. To guide sexually transmitted infection prevention policy for internal migrants in China, this study examines the extent to which BCTs aiming at increasing condom use reach the migrants and investigates the preference of the target population for these techniques among 364 migrants and 44 healthcare workers (HCWs) in Shenzhen, China. The results show that condom-promotion techniques that had been offered by HCWs to internal migrants reached a limited proportion of the population (range of reach ratio: 17.6-55.0%), although there appears to be a good match between what is offered and what is preferred by Chinese internal migrants regarding condom-promotion techniques (rank difference ≤ 1). Our findings highlight the need to increase the reach of condom-promotion techniques among Chinese internal migrants, and suggest techniques that are likely to reach the target population and match their preferred health education approaches.

  16. Consensus clinical recommendations for the management of plasma lipid disorders in the Middle East.

    PubMed

    Al Sayed, Nasreen; Al Waili, Khalid; Alawadi, Fatheya; Al-Ghamdi, Saeed; Al Mahmeed, Wael; Al-Nouri, Fahad; Al Rukhaimi, Mona; Al-Rasadi, Khalid; Awan, Zuhier; Farghaly, Mohamed; Hassanein, Mohamed; Sabbour, Hani; Zubaid, Mohammad; Barter, Philip

    2016-12-15

    Plasma lipid disorders are key risk factors for the development of atherosclerotic cardiovascular disease (ASCVD) and are prevalent in the Middle East, with rates increasing in recent decades. Despite this, no region-specific guidelines for managing plasma lipids exist and there is a lack of use of guidelines developed in other regions. A multidisciplinary panel of regional experts was convened to develop consensus clinical recommendations for the management of plasma lipids in the Middle East. The panel considered existing international guidelines and regional clinical experience to develop recommendations. The panel's recommendations include plasma lipid screening, ASCVD risk calculation and treatment considerations. The panel recommend that plasma lipid levels should be measured in all at-risk patients and at regular intervals in all adults from the age of 20years. A scoring system should be used to calculate ASCVD risk that includes known lipid and non-lipid risk factors. Primary treatment targets include low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol. Lifestyle modifications should be first-line treatment for all patients; the first-line pharmacological treatment targeting plasma lipids in patients at moderate-to-high risk of ASCVD is statin therapy, with a number of adjunctive or second-line agents available. Guidance is also provided on the management of underlying conditions and special populations; of particular pertinence in the region are familial hypercholesterolaemia, diabetes and metabolic dyslipidaemia. These consensus clinical recommendations provide practicing clinicians with comprehensive, region-specific guidance to improve the detection and management of plasma lipid disorders in patients in the Middle East. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Development of internal models and predictive abilities for visual tracking during childhood

    PubMed Central

    Ego, Caroline; Yüksel, Demet

    2015-01-01

    The prediction of the consequences of our own actions through internal models is an essential component of motor control. Previous studies showed improvement of anticipatory behaviors with age for grasping, drawing, and postural control. Since these actions require visual and proprioceptive feedback, these improvements might reflect both the development of internal models and the feedback control. In contrast, visual tracking of a temporarily invisible target gives specific markers of prediction and internal models for eye movements. Therefore, we recorded eye movements in 50 children (aged 5–19 yr) and in 10 adults, who were asked to pursue a visual target that is temporarily blanked. Results show that the youngest children (5–7 yr) have a general oculomotor behavior in this task, qualitatively similar to the one observed in adults. However, the overall performance of older subjects in terms of accuracy at target reappearance and variability in their behavior was much better than the youngest children. This late maturation of predictive mechanisms with age was reflected into the development of the accuracy of the internal models governing the synergy between the saccadic and pursuit systems with age. Altogether, we hypothesize that the maturation of the interaction between smooth pursuit and saccades that relies on internal models of the eye and target displacement is related to the continuous maturation of the cerebellum. PMID:26510757

  18. Development of internal models and predictive abilities for visual tracking during childhood.

    PubMed

    Ego, Caroline; Yüksel, Demet; Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2016-01-01

    The prediction of the consequences of our own actions through internal models is an essential component of motor control. Previous studies showed improvement of anticipatory behaviors with age for grasping, drawing, and postural control. Since these actions require visual and proprioceptive feedback, these improvements might reflect both the development of internal models and the feedback control. In contrast, visual tracking of a temporarily invisible target gives specific markers of prediction and internal models for eye movements. Therefore, we recorded eye movements in 50 children (aged 5-19 yr) and in 10 adults, who were asked to pursue a visual target that is temporarily blanked. Results show that the youngest children (5-7 yr) have a general oculomotor behavior in this task, qualitatively similar to the one observed in adults. However, the overall performance of older subjects in terms of accuracy at target reappearance and variability in their behavior was much better than the youngest children. This late maturation of predictive mechanisms with age was reflected into the development of the accuracy of the internal models governing the synergy between the saccadic and pursuit systems with age. Altogether, we hypothesize that the maturation of the interaction between smooth pursuit and saccades that relies on internal models of the eye and target displacement is related to the continuous maturation of the cerebellum. Copyright © 2016 the American Physiological Society.

  19. Internal-illumination photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Mucong; Lan, Bangxin; Liu, Wei; Xia, Jun; Yao, Junjie

    2018-03-01

    We report a photoacoustic computed tomography (PACT) system using a customized optical fiber with a cylindrical diffuser to internally illuminate deep targets. The traditional external light illumination in PACT usually limits the penetration depth to a few centimeters from the tissue surface, mainly due to strong optical attenuation along the light propagation path from the outside in. By contrast, internal light illumination, with external ultrasound detection, can potentially detect much deeper targets. Different from previous internal illumination PACT implementations using forward-looking optical fibers, our internal-illumination PACT system uses a customized optical fiber with a 3-cm-long conoid needle diffuser attached to the fiber tip, which can homogeneously illuminate the surrounding space and substantially enlarge the field of view. We characterized the internal illumination distribution and PACT system performance. We performed tissue phantom and in vivo animal studies to further demonstrate the superior imaging depth using internal illumination over external illumination. We imaged a 7.5-cm-deep leaf target embedded in optically scattering medium and the beating heart of a mouse overlaid with 3.7-cm-thick chicken tissue. Our results have collectively demonstrated that the internal light illumination combined with external ultrasound detection might be a useful strategy to improve the penetration depth of PACT in imaging deep organs of large animals and humans.

  20. Design of the deformable mirror demonstration CubeSat (DeMi)

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Allan, Gregory; Barnes, Derek; Figura, Joseph S.; Haughwout, Christian A.; Gubner, Jennifer N.; Knoedler, Alex A.; LeClair, Sarah; Murphy, Thomas J.; Skouloudis, Nikolaos; Merck, John; Opperman, Roedolph A.; Cahoy, Kerri L.

    2017-09-01

    The Deformable Mirror Demonstration Mission (DeMi) was recently selected by DARPA to demonstrate in-space operation of a wavefront sensor and Microelectromechanical system (MEMS) deformable mirror (DM) payload on a 6U CubeSat. Space telescopes designed to make high-contrast observations using internal coronagraphs for direct characterization of exoplanets require the use of high-actuator density deformable mirrors. These DMs can correct image plane aberrations and speckles caused by imperfections, thermal distortions, and diffraction in the telescope and optics that would otherwise corrupt the wavefront and allow leaking starlight to contaminate coronagraphic images. DeMi is provide on-orbit demonstration and performance characterization of a MEMS deformable mirror and closed loop wavefront sensing. The DeMi payload has two operational modes, one mode that images an internal light source and another mode which uses an external aperture to images stars. Both the internal and external modes include image plane and pupil plane wavefront sensing. The objectives of the internal measurement of the 140-actuator MEMS DM actuator displacement are characterization of the mirror performance and demonstration of closed-loop correction of aberrations in the optical path. Using the external aperture to observe stars of magnitude 2 or brighter, assuming 3-axis stability with less than 0.1 degree of attitude knowledge and jitter below 10 arcsec RMSE, per observation, DeMi will also demonstrate closed loop wavefront control on an astrophysical target. We present an updated payload design, results from simulations and laboratory optical prototyping, as well as present our design for accommodating high-voltage multichannel drive electronics for the DM on a CubeSat.

  1. AACR-NCI-EORTC - 27th International Symposium - Molecular Targets and Cancer Therapeutics (November 5-9, 2015 - Boston, Massachusetts, USA).

    PubMed

    Carceller, V

    2015-11-01

    The 27th joint meeting of the European Organization for Research and Treatment of Cancer, National Cancer Institute and the American Association of Cancer Research (EORTC-NCI-AACR) International Conference on Molecular Targets and Cancer Therapeutics was held this year in Boston. Approximately 3,000 international academics, scientists and pharmaceutical industry representatives discussed new discoveries in the field of molecular biology of cancer and presented the latest information on drug discovery, preclinical research, clinical research and target selection in oncology. This report summarizes data on advances in cancer drug discovery. Copyright 2015 Prous Science, S.A.U. or its licensors. All rights reserved.

  2. Position statement : executive summary. The Writing Group for the International Society for Clinical Densitometry (ISCD) Position Development Conference.

    PubMed

    2004-01-01

    The International Society for Clinical Densitometry (ISCD) held a Position Development Conference in July 2003, at which time positions developed and researched by the organization's Scientific Advisory Committee were presented to a panel of international experts in the field of bone density testing. This panel reached agreement on a series of positions that were subsequently approved by the Board of Directors of the ISCD and are now official policy of the ISCD. These positions, which are outlined in this article and discussed in greater detail in subsequent articles in this journal, include (1) affirmation of the use of the World Health Organization classification for the diagnosis of osteoporosis in postmenopausal women; (2) the diagnosis of osteoporosis in men; (3) the diagnosis of osteoporosis in premenopausal women; (4) the diagnosis of osteoporosis in children; (5) technical standards for skeletal regions of interest by dual-energy X-ray absorptiometry (DXA); (6) the use of new technologies, such as vertebral fracture assessment; (7) technical standards for quality assurance, including phantom scanning and calibration; (8) technical standards for the performance of precision assessment at bone density testing centers, and for cross-calibration of DXA devices; (9) indications for bone density testing; (10) appropriate information for a bone density report; and (11) nomenclature and decimal places for bone density reporting.

  3. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization.

    PubMed

    Steinbach, Jill M; Seo, Young-Eun; Saltzman, W Mark

    2016-01-01

    The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2h, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE compared to Avidin NPs, both formulations resulted in similar internalization levels (48 and 64-fold, respectively) after 24h. Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Ada Compiler Validation Summary Report: Certificate Number: 880318W1. 09041, International Business Machines Corporation, IBM Development System for the Ada Language, Version 2.1.0, IBM 4381 under VM/HPO, Host and Target

    DTIC Science & Technology

    1988-03-28

    International Business Machines Corporation IBM Development System for the Ada Language, Version 2.1.0 IBM 4381 under VM/HPO, host and target DTIC...necessary and identify by block number) International Business Machines Corporation, IBM Development System for the Ada Language, Version 2.1.0, IBM...in the compiler listed in this declaration. I declare that International Business Machines Corporation is the owner of record of the object code of the

  5. Ada Compiler Validation Summary Report: Certificate Number: 880318W1. 09043 International Business Machines Corporation IBM Development System for the Ada Language, Version 2.1.0 IBM 4381 under VM/HPO, Host IBM 4381 under MVS/XA, Target

    DTIC Science & Technology

    1988-03-28

    International Business Machines Corporation IBM Development System for the Ada Language, Version 2.1.0 IBM 4381 under VM/HPO, host IBM 4381 under MVS/XA, target...Program Office, AJPO 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) International Business Machines Corporation, IBM...Standard ANSI/MIL-STD-1815A in the compiler listed in this declaration. I declare that International Business Machines Corporation is the owner of record

  6. Assessing the Age of an Asteroid's Surface with Data from the International Rosetta Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Juan Carlos

    2011-01-01

    Rosetta is an international mission led by the European Space Agency (ESA) with key support and instrumentation from the National Aeronautics and Space Administration (NASA). Rosetta is currently on a ten-year mission to catch comet 67P/Churyumov-Gerasimenko (C-G); throughout its voyage, the spacecraft has performed flybys of two main belt asteroids (MBA): Steins and Lutetia. Data on the physical, chemical, and geological properties of these asteroids are currently being processed and analyzed. Accurate interpretation of such data is fundamental in the success of Rosetta's mission and overall objectives. Post-flyby data analyses strive to correlate the size, shape, volume, and rotational rate of Lutetia, in addition to interpreting its multi-color imagining, albedo, and spectral mapping. Although advancements in science have contributed to the examination of celestial bodies, methods to analyze asteroids remain largely empirical, not semi-empirical, nor ab initio. This study aims to interpret and document the scientific methods currently utilized in the characterization of asteroid (21) Lutetia in order to render these processes and methods accessible to the public. Examples include a standardized technique for assessing the age of an asteroid surface, complete with clickable reference maps, methodology of grouping surface characteristics together, and a standardized power law equation for the age. Other examples include determining the density of an object. Context for what both density and age mean is a bi-product of this study. Results of the study will aid in the development of pedagogical material on asteroids for public use, and in creation of an academic database for selected targets that might be used as a reference.

  7. Sensitivity of coronal loop sausage mode frequencies and decay rates to radial and longitudinal density inhomogeneities: a spectral approach

    NASA Astrophysics Data System (ADS)

    Cally, Paul S.; Xiong, Ming

    2018-01-01

    Fast sausage modes in solar magnetic coronal loops are only fully contained in unrealistically short dense loops. Otherwise they are leaky, losing energy to their surrounds as outgoing waves. This causes any oscillation to decay exponentially in time. Simultaneous observations of both period and decay rate therefore reveal the eigenfrequency of the observed mode, and potentially insight into the tubes’ nonuniform internal structure. In this article, a global spectral description of the oscillations is presented that results in an implicit matrix eigenvalue equation where the eigenvalues are associated predominantly with the diagonal terms of the matrix. The off-diagonal terms vanish identically if the tube is uniform. A linearized perturbation approach, applied with respect to a uniform reference model, is developed that makes the eigenvalues explicit. The implicit eigenvalue problem is easily solved numerically though, and it is shown that knowledge of the real and imaginary parts of the eigenfrequency is sufficient to determine the width and density contrast of a boundary layer over which the tubes’ enhanced internal densities drop to ambient values. Linearized density kernels are developed that show sensitivity only to the extreme outside of the loops for radial fundamental modes, especially for small density enhancements, with no sensitivity to the core. Higher radial harmonics do show some internal sensitivity, but these will be more difficult to observe. Only kink modes are sensitive to the tube centres. Variation in internal and external Alfvén speed along the loop is shown to have little effect on the fundamental dimensionless eigenfrequency, though the associated eigenfunction becomes more compact at the loop apex as stratification increases, or may even displace from the apex.

  8. Predicting Large-scale Effects During Cookoff of Plastic-Bonded Explosives (PBX 9501 PBX 9502 and LX-14)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, Michael L.; Kaneshige, Michael J.; Erikson, William W.

    In this study, we have made reasonable cookoff predictions of large-scale explosive systems by using pressure-dependent kinetics determined from small-scale experiments. Scale-up is determined by properly accounting for pressure generated from gaseous decomposition products and the volume that these reactive gases occupy, e.g. trapped within the explosive, the system, or vented. The pressure effect on the decomposition rates has been determined for different explosives by using both vented and sealed experiments at low densities. Low-density explosives are usually permeable to decomposition gases and can be used in both vented and sealed configurations to determine pressure-dependent reaction rates. In contrast, explosivesmore » that are near the theoretical maximum density (TMD) are not as permeable to decomposition gases, and pressure-dependent kinetics are difficult to determine. Ignition in explosives at high densities can be predicted by using pressure-dependent rates determined from the low-density experiments as long as gas volume changes associated with bulk thermal expansion are also considered. In the current work, cookoff of the plastic-bonded explosives PBX 9501 and PBX 9502 is reviewed and new experimental work on LX-14 is presented. Reactive gases are formed inside these heated explosives causing large internal pressures. The pressure is released differently for each of these explosives. For PBX 9501, permeability is increased and internal pressure is relieved as the nitroplasticizer melts and decomposes. Internal pressure in PBX 9502 is relieved as the material is damaged by cracks and spalling. For LX-14, internal pressure is not relieved until the explosive thermally ignites. The current paper is an extension of work presented at the 26th ICDERS symposium [1].« less

  9. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1995-02-28

    A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.

  10. Nuclear structure and reaction properties of Ne, Mg and Si isotopes with RMF densities

    NASA Astrophysics Data System (ADS)

    Panda, R. N.; Sharma, Mahesh K.; Patra, S. K.

    2014-01-01

    We have studied nuclear structure and reaction properties of Ne, Mg and Si isotopes, using relativistic mean field (RMF) densities, in the framework of Glauber model. Total reaction cross-section σR for Ne isotopes on 12C target have been calculated at incident energy 240 MeV. The results are compared with the experimental data and with the recent theoretical study [W. Horiuchi et al., Phys. Rev. C 86, 024614 (2012)]. Study of σR using deformed densities have shown a good agreement with the data. We have also predicted total reaction cross-section σR for Ne, Mg and Si isotopes as projectiles and 12C as target at different incident energies.

  11. Laboratory tests of catastrophic disruption of rotating bodies

    NASA Astrophysics Data System (ADS)

    Morris, A. J. W.; Burchell, M. J.

    2017-11-01

    The results of catastrophic disruption experiments on static and rotating targets are reported. The experiments used cement spheres of diameter 10 cm as the targets. Impacts were by mm sized stainless steel spheres at speeds of between 1 and 7.75 km s-1. Energy densities (Q) in the targets ranged from 7 to 2613 J kg-1. The experiments covered both the cratering and catastrophic disruption regimes. For static, i.e. non-rotating targets the critical energy density for disruption (Q*, the value of Q when the largest surviving target fragment has a mass equal to one half of the pre-impact target mass) was Q* = 1447 ± 90 J kg-1. For rotating targets (median rotation frequency of 3.44 Hz) we found Q* = 987 ± 349 J kg-1, a reduction of 32% in the mean value. This lower value of Q* for rotating targets was also accompanied by a larger scatter on the data, hence the greater uncertainty. We suggest that in some cases the rotating targets behaved as static targets, i.e. broke up with the same catastrophic disruption threshold, but in other cases the rotation helped the break up causing a lower catastrophic disruption threshold, hence both the lower value of Q* and the larger scatter on the data. The fragment mass distributions after impact were similar in both the static and rotating target experiments with similar slopes.

  12. Effects of Spearfishing on Reef Fish Populations in a Multi-Use Conservation Area

    PubMed Central

    Frisch, Ashley J.; Cole, Andrew J.; Hobbs, Jean-Paul A.; Rizzari, Justin R.; Munkres, Katherine P.

    2012-01-01

    Although spearfishing is a popular method of capturing fish, its ecological effects on fish populations are poorly understood, which makes it difficult to assess the legitimacy and desirability of spearfishing in multi-use marine reserves. Recent management changes within the Great Barrier Reef Marine Park (GBRMP) fortuitously created a unique scenario by which to quantify the effects of spearfishing on fish populations. As such, we employed underwater visual surveys and a before-after-control-impact experimental design to investigate the effects of spearfishing on the density and size structure of target and non-target fishes in a multi-use conservation park zone (CPZ) within the GBRMP. Three years after spearfishing was first allowed in the CPZ, there was a 54% reduction in density and a 27% reduction in mean size of coral trout (Plectropomus spp.), the primary target species. These changes were attributed to spearfishing because benthic habitat characteristics and the density of non-target fishes were stable through time, and the density and mean size of coral trout in a nearby control zone (where spearfishing was prohibited) remained unchanged. We conclude that spearfishing, like other forms of fishing, can have rapid and substantial negative effects on target fish populations. Careful management of spearfishing is therefore needed to ensure that conservation obligations are achieved and that fishery resources are harvested sustainably. This is particularly important both for the GBRMP, due to its extraordinarily high conservation value and world heritage status, and for tropical island nations where people depend on spearfishing for food and income. To minimize the effects of spearfishing on target species and to enhance protection of functionally important fishes (herbivores), we recommend that fishery managers adjust output controls such as size- and catch-limits, rather than prohibit spearfishing altogether. This will preserve the cultural and social importance of spearfishing in coastal communities where it is practised. PMID:23251656

  13. Simulation study of 3-5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-01

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3-5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (˜nc/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using Hydra, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from Cretin, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3-5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ˜100-150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (˜20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3-5 keV x-ray source on NIF.

  14. Effect of compressibility on the hypervelocity penetration

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  15. Effects of surface displayed targeting ligand GE11 on liposome distribution and extravasation in tumor.

    PubMed

    Tang, Hailing; Chen, Xiaojing; Rui, Mengjie; Sun, Wenqiang; Chen, Jian; Peng, Jinliang; Xu, Yuhong

    2014-10-06

    Targeting ligands displayed on liposome surface had been used to mediate specific interactions and drug delivery to target cells. However, they also affect liposome distribution in vivo, as well as the tissue extravasation processes after IV injection. In this study, we incorporated an EGFR targeting peptide GE11 on liposome surfaces in addition to PEG at different densities and evaluated their targeting properties and antitumor effects. We found that the densities of surface ligand and PEG were critical to target cell binding in vitro as well as pharmacokinetic profiles in vivo. The inclusion of GE11-PEG-DSPE and PEG-DSPE at 2% and 4% mol ratios in the liposome formulation mediated a rapid accumulation of liposomes within 1 h after IV injection in the tumor tissues surrounding neovascular structures. This is in addition to the EPR effect that was most prominently described for surface PEG modified liposomes. Therefore, despite the fact that the distribution of liposomes into interior tumor tissues was still limited by diffusion, GE11 targeted doxorubicin loaded liposomes showed significantly better antitumor activity in tumor bearing mice as a result of the fast active-targeting efficiency. We anticipate these understandings can benefit further optimization of targeted drug delivery systems for improving efficacy in vivo.

  16. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics

    PubMed Central

    2011-01-01

    Background Intensive anti-malaria campaigns targeting the Anopheles population have demonstrated substantial reductions in adult mosquito density. Understanding the population dynamics of Anopheles mosquitoes throughout their whole lifecycle is important to assess the likely impact of vector control interventions alone and in combination as well as to aid the design of novel interventions. Methods An ecological model of Anopheles gambiae sensu lato populations incorporating a rainfall-dependent carrying capacity and density-dependent regulation of mosquito larvae in breeding sites is developed. The model is fitted to adult mosquito catch and rainfall data from 8 villages in the Garki District of Nigeria (the 'Garki Project') using Bayesian Markov Chain Monte Carlo methods and prior estimates of parameters derived from the literature. The model is used to compare the impact of vector control interventions directed against adult mosquito stages - long-lasting insecticide treated nets (LLIN), indoor residual spraying (IRS) - and directed against aquatic mosquito stages, alone and in combination on adult mosquito density. Results A model in which density-dependent regulation occurs in the larval stages via a linear association between larval density and larval death rates provided a good fit to seasonal adult mosquito catches. The effective mosquito reproduction number in the presence of density-dependent regulation is dependent on seasonal rainfall patterns and peaks at the start of the rainy season. In addition to killing adult mosquitoes during the extrinsic incubation period, LLINs and IRS also result in less eggs being oviposited in breeding sites leading to further reductions in adult mosquito density. Combining interventions such as the application of larvicidal or pupacidal agents that target the aquatic stages of the mosquito lifecycle with LLINs or IRS can lead to substantial reductions in adult mosquito density. Conclusions Density-dependent regulation of anopheline larvae in breeding sites ensures robust, stable mosquito populations that can persist in the face of intensive vector control interventions. Selecting combinations of interventions that target different stages in the vector's lifecycle will result in maximum reductions in mosquito density. PMID:21798055

  17. Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations

    NASA Technical Reports Server (NTRS)

    Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.

  18. CTEPP STANDARD OPERATING PROCEDURE FOR PREPARATION OF SURROGATE RECOVERY STANDARD AND INTERNAL STANDARD SOLUTIONS FOR POLAR TARGET ANALYTES (SOP-5.26)

    EPA Science Inventory

    This SOP describes the method used for preparing surrogate recovery standard and internal standard solutions for the analysis of polar target analytes. It also describes the method for preparing calibration standard solutions for polar analytes used for gas chromatography/mass sp...

  19. Progress on the Use of Internal Fins as Barriers to Reduce Magnetization on High Current Density Mono Element Internal Tin Conductors (MEIT)

    NASA Astrophysics Data System (ADS)

    Zeitlin, Bruce A.; Gregory, Eric; Pyon, Taeyoung; Scanlan, R. M.; Polyanskii, Anatolii A.; Lee, Peter J.

    2004-06-01

    A number of configurations of a mono element internal tin conductor (MEIT) were fabricated to explore the effect of internal fins on the effective filament size (Deff) and its effect on wire processing. A current density of 2.85 × 109 A/m2 (12 T) was achieved in a high tin, high Nb conductor. Wire lengths as long as 15.8 km at 0.254 mm diameter with breaks averaging 3 per unit length were achieved. Magnetization measurements and Magneto-Optical (MO) images were taken of the finned and non-fin conductor which indicated the fins appeared to be effective. The Deff achieved in the fin conductor was 80 μm compared with an equivalent conductor without a fin of 165 μm.

  20. Enhanced ion acceleration in transition from opaque to transparent plasmas

    NASA Astrophysics Data System (ADS)

    Mishra, R.; Fiuza, F.; Glenzer, S.

    2018-04-01

    Using particle-in-cell simulations, we investigate ion acceleration in the interaction of high intensity lasers with plasmas which transition from opaque to transparent during the interaction process. We show that the highest ion energies are achieved when the laser traverses the target around the peak intensity and re-heats the electron population responsible for the plasma expansion, enhancing the corresponding sheath electric field. This process can lead to an increase of up to 2x in ion energy when compared with the standard Target Normal Sheath Acceleration in opaque targets under the same laser conditions. A theoretical model is developed to predict the optimal target areal density as a function of laser intensity and pulse duration. A systematic parametric scan for a wide range of target densities and thicknesses is performed in 1D, 2D and 3D and shown consistent with the theory and with recent experimental results. These results open the way for a better optimization of the ion energy in future laser–solid experiments.

  1. LLE Review Quarterly Report (October - December 2007). Volume 113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuegel, Jonathan D.

    2007-12-01

    This volume of the LLE Review, covering October–December 2007, features “High-Intensity Laser–Plasma Interactions in the Refluxing Limit,” by P. M. Nilson, W. Theobald, J. Myatt, C. Stoeckl, M. Storm, O. V. Gotchev, J. D. Zuegel, R. Betti, D. D. Meyerhofer, and T. C. Sangster. In this article (p. 1), the authors report on target experiments using the Multi-Terawatt (MTW) Laser Facility to study isochoric heating of solid-density targets by fast electrons produced from intense, short-pulse laser irradiation. Electron refluxing occurs due to target-sheath field effects and contains most of the fast electrons within the target volume. This efficiently heats themore » solid-density plasma through collisions. X-ray spectroscopic measurements of absolute K α (x-radiation) photon yields and variations of the K β/K α b emission ratio both indicate that laser energy couples to fast electrons with a conversion efficiency of approximately 20%. Bulk electron temperatures of at least 200 eV are inferred for the smallest mass targets.« less

  2. Non-Maxwellian electron distributions by direct laser acceleration in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Toncian, T.; Wang, C.; Arefiev, A.; McCary, E.; Meadows, A.; Blakeney, J.; Chester, C.; Roycroft, R.; Fu, H.; Yan, X. Q.; Schreiber, J.; Pomerantz, I.; Quevedo, H.; Dyer, G.; Gaul, E.; Ditmire, T.; Hegelich, B. M.

    2015-11-01

    The irradiation of few nm thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets will decompress to near and lower than critical electron densities plasmas extending over lengths of few micrometers. The laser-matter interaction of the main pulse with such a highly localized but inhomogeneous the target leads to the generation of a channel and further self focussing of the laser beam. As measured in a experiment conducted with the GHOST laser system at UT Austin, 2D PIC simulations predict Direct Laser Acceleration of non-Maxwellian electron distribution in the laser propagation direction for such targets. The hereby high density electron bunches have potential applications as injector beams for a further wakefield acceleration stage. This work was supported by NNSA cooperative agreement DE-NA0002008, the DARPA's PULSE program (12-63-PULSE-FP014) and the AFOSR (FA9550-14-1-0045).

  3. Electromagnetic pulse (EMP) radiation by laser interaction with a solid H2 ribbon

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Krása, J.; Cikhardt, J.; Velyhan, A.; Pfeifer, M.; Dudžák, R.; Dostál, J.; Krouský, E.; Limpouch, J.; Pisarczyk, T.; Kalinowska, Z.; Chodukowski, T.; Ullschmied, J.; Giuffrida, L.; Chatain, D.; Perin, J.-P.; Margarone, D.

    2017-08-01

    The electromagnetic pulses (EMPs) generated during the interaction of a focused 1.315-μm sub-nanosecond laser pulse with a solid hydrogen ribbon were measured. The strength and temporal characteristics of EMPs were found to be dependent on the target density. If a low density target is ionized during the interaction with the laser, and the plasma does not physically touch the target holder, the EMP is weaker in strength and shorter in time duration. It is shown that during the H2 target experiment, the EMP does not strongly affect the response of fast electronic devices. The measurements of the EMP were carried out by Rohde&Schwarz B-Probes, particularly sensitive in the frequency range from 30 MHz and 1 GHz. Numerical simulations of resonant frequencies of the target chamber used in the experiment at the Prague Asterix Laser System kJ-class laser facility elucidate the peaked structure of EMP frequency spectra in the GHz domain.

  4. Performances of 250 Amp-hr lithium/thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Goualard, Jacques

    1991-01-01

    A 250 Ah lithium thionyl chloride battery is being developed for a booster rocket engine. Extensive cell testing is running to evaluate functional and safety performances. Some results are presented. The lithium/thionyl chloride batteries were selected for their high energy density (low weight) as compared to other sources. The temperature of a lower weight item will be more sensitive to variations of internal and external heat fluxes than a heavier one. The use of high energy density L/TC batteries is subjected to stringent thermal environments to have benefit of energy density and to stay safe in any conditions. The battery thermal environment and discharge rate have to be adjusted to obtain the right temperature range at cell level, to have the maximum performances. Voltage and capacity are very sensitive to temperature. This temperature is the cell internal actual temperature during discharge. This temperature is directed by external thermal environment and by cell internal heat dissipation, i.e., cell actual voltage.

  5. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images.

    PubMed

    Khang, Hyun Soo; Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Yoon, Jeong Rock; Seo, Jin Keun

    2002-06-01

    Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.

  6. 26 CFR 1.338-1 - General principles; status of old target and new target.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 4 2013-04-01 2013-04-01 false General principles; status of old target and new... principles; status of old target and new target. (a) In general—(1) Deemed transaction. Elections are..., old target and new target, generally are considered to exist for purposes of subtitle A of the...

  7. 26 CFR 1.338-1 - General principles; status of old target and new target.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 4 2012-04-01 2012-04-01 false General principles; status of old target and new... principles; status of old target and new target. (a) In general—(1) Deemed transaction. Elections are..., old target and new target, generally are considered to exist for purposes of subtitle A of the...

  8. 26 CFR 1.338-1 - General principles; status of old target and new target.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 4 2014-04-01 2014-04-01 false General principles; status of old target and new... principles; status of old target and new target. (a) In general—(1) Deemed transaction. Elections are..., old target and new target, generally are considered to exist for purposes of subtitle A of the...

  9. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE PAGES

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; ...

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  10. Organisation of biotechnological information into knowledge.

    PubMed

    Boh, B

    1996-09-01

    The success of biotechnological research, development and marketing depends to a large extent on the international transfer of information and on the ability to organise biotechnology information into knowledge. To increase the efficiency of information-based approaches, an information strategy has been developed and consists of the following stages: definition of the problem, its structure and sub-problems; acquisition of data by targeted processing of computer-supported bibliographic, numeric, textual and graphic databases; analysis of data and building of specialized in-house information systems; information processing for structuring data into systems, recognition of trends and patterns of knowledge, particularly by information synthesis using the concept of information density; design of research hypotheses; testing hypotheses in the laboratory and/or pilot plant; repeated evaluation and optimization of hypotheses by information methods and testing them by further laboratory work. The information approaches are illustrated by examples from the university-industry joint projects in biotechnology, biochemistry and agriculture.

  11. The open quantum Brownian motions

    NASA Astrophysics Data System (ADS)

    Bauer, Michel; Bernard, Denis; Tilloy, Antoine

    2014-09-01

    Using quantum parallelism on random walks as the original seed, we introduce new quantum stochastic processes, the open quantum Brownian motions. They describe the behaviors of quantum walkers—with internal degrees of freedom which serve as random gyroscopes—interacting with a series of probes which serve as quantum coins. These processes may also be viewed as the scaling limit of open quantum random walks and we develop this approach along three different lines: the quantum trajectory, the quantum dynamical map and the quantum stochastic differential equation. We also present a study of the simplest case, with a two level system as an internal gyroscope, illustrating the interplay between the ballistic and diffusive behaviors at work in these processes. Notation H_z : orbital (walker) Hilbert space, {C}^{{Z}} in the discrete, L^2({R}) in the continuum H_c : internal spin (or gyroscope) Hilbert space H_sys=H_z\\otimesH_c : system Hilbert space H_p : probe (or quantum coin) Hilbert space, H_p={C}^2 \\rho^tot_t : density matrix for the total system (walker + internal spin + quantum coins) \\bar \\rho_t : reduced density matrix on H_sys : \\bar\\rho_t=\\int dxdy\\, \\bar\\rho_t(x,y)\\otimes | x \\rangle _z\\langle y | \\hat \\rho_t : system density matrix in a quantum trajectory: \\hat\\rho_t=\\int dxdy\\, \\hat\\rho_t(x,y)\\otimes | x \\rangle _z\\langle y | . If diagonal and localized in position: \\hat \\rho_t=\\rho_t\\otimes| X_t \\rangle _z\\langle X_t | ρt: internal density matrix in a simple quantum trajectory Xt: walker position in a simple quantum trajectory Bt: normalized Brownian motion ξt, \\xi_t^\\dagger : quantum noises

  12. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung-waste paper mixtures.

    PubMed

    Unuofin, F O; Mnkeni, P N S

    2014-11-01

    Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung-paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg(-1) dry weight of cow dung-waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg(-1) resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg(-1) feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered. Copyright © 2014. Published by Elsevier Ltd.

  13. Alcohol outlet density and violence: a geospatial analysis.

    PubMed

    Zhu, L; Gorman, D M; Horel, S

    2004-01-01

    To examine the relationship between alcohol outlet density and violent crime controlling for neighbourhood sociostructural characteristics and the effects of spatially autocorrelated error. The sample for this ecologic study comprised 188 census tracts from the City of Austin, Texas and 263 tracts from the City of San Antonio, Texas. Data pertaining to neighbourhood social structure, alcohol density and violent crime were collected from archival sources, and analysed using bivariate, multivariate and geospatial analyses. Using ordinary least squares analysis, the neighbourhood sociostructural covariates explained close to 59% of the variability in violent crime rates in Austin and close to 39% in San Antonio. Adding alcohol outlet density in the target and adjacent census tracts improved the explanatory power of both models. Alcohol outlet density in the target census tract remained a significant predictor of violent crime rates in both cities when the effects of autocorrelated error were controlled for. In Austin, the effects of alcohol outlet density in the adjacent census tracts also remained significant. The final model explains 71% of the variance in violent crime in Austin and 56% in San Antonio. The findings show a clear association between alcohol outlet density and violence, and suggest that the issues of alcohol availability and access are fundamental to the prevention of alcohol-related problems within communities.

  14. Distribution-of-cut guides for thinning in Allegheny hardwoods: a review

    Treesearch

    Christopher A. Nowak; David A. Marquis

    1997-01-01

    Distribution-of-cut guidelines describe the amount of stand density to be removed from broad size classes of trees to attain a target residual stand density and stand structure. Current guides for thinning Allegheny hardwoods recommend that 75 percent of the cut relative stand density be taken from below the average stand diameter and 25 percent from above. These...

  15. Microcraters formed in glass by projectiles of various densities

    NASA Technical Reports Server (NTRS)

    Vedder, J. F.; Mandeville, J.-C.

    1974-01-01

    An experiment was conducted investigating the effect of projectile density on the structure and size of craters in soda lime glass and fused quartz. The projectiles were spheres of polystyrene-divinylbenzene (PS-DVB), aluminum, and iron with velocities between 0.5 and 15 km/sec and diameters between 0.4 and 5 microns. The projectile densities spanned the range expected for primary and secondary particles of micrometer size at the lunar surface, and the velocities spanned the lower range of micrometeoroid velocities and the upper range of secondary projectile velocities. There are changes in crater morphology as the impact velocity increases, and the transitions occur at lower velocities for the projectiles of higher density. The sequence of morphological features of the craters found for PS-DVB impacting soda lime glass for increasing impact velocity, described in a previous work (Mandeville and Vedder, 1971), also occurs in fused quartz and in both targets with the more dense aluminum and iron projectiles. Each transition in morphology occurs at impact velocities generating a certain pressure in the target. High density projectiles require a lower velocity than low-density projectiles to generate a given shock pressure.

  16. Poster — Thur Eve — 15: Improvements in the stability of the tomotherapy imaging beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belec, J

    2014-08-15

    Use of helical TomoTherapy based MVCT imaging for adaptive planning requires the image values (HU) to remain stable over the course of treatment. In the past, the image value stability was suboptimal, which required frequent change to the image value to density calibration curve to avoid dose errors on the order of 2–4%. The stability of the image values at our center was recently improved by stabilizing the dose rate of the machine (dose control servo) and performing daily MVCT calibration corrections. In this work, we quantify the stability of the image values over treatment time by comparing patient treatmentmore » image density derived using MVCT and KVCT. The analysis includes 1) MVCT - KVCT density difference histogram, 2) MVCT vs KVCT density spectrum, 3) multiple average profile density comparison and 4) density difference in homogeneous locations. Over two months, the imaging beam stability was compromised several times due to a combination of target wobbling, spectral calibration, target change and magnetron issues. The stability of the image values were analyzed over the same period. Results show that the impact on the patient dose calculation is 0.7% +− 0.6%.« less

  17. Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards.

    PubMed

    Yarita, Takashi; Aoyagi, Yoshie; Otake, Takamitsu

    2015-05-29

    The impact of the matrix effect in GC-MS quantification of pesticides in food using the corresponding isotope-labeled internal standards was evaluated. A spike-and-recovery study of nine target pesticides was first conducted using paste samples of corn, green soybean, carrot, and pumpkin. The observed analytical values using isotope-labeled internal standards were more accurate for most target pesticides than that obtained using the external calibration method, but were still biased from the spiked concentrations when a matrix-free calibration solution was used for calibration. The respective calibration curves for each target pesticide were also prepared using matrix-free calibration solutions and matrix-matched calibration solutions with blank soybean extract. The intensity ratio of the peaks of most target pesticides to that of the corresponding isotope-labeled internal standards was influenced by the presence of the matrix in the calibration solution; therefore, the observed slope varied. The ratio was also influenced by the type of injection method (splitless or on-column). These results indicated that matrix-matching of the calibration solution is required for very accurate quantification, even if isotope-labeled internal standards were used for calibration. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.

    2017-04-01

    UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C II] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C II] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C II λ2325 absorption data. We detect [C II] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position-velocity maps of [C II] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C II] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C II] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C II] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C II] intensities derive a mean thermal pressure in the range of ˜6100-7700 K cm-3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C I and CO. Our results demonstrate the richness of the far-IR [C II] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C II] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity structures.

  19. The performance of the progressive resolution optimizer (PRO) for RapidArc planning in targets with low-density media.

    PubMed

    Kan, Monica W K; Leung, Lucullus H T; Yu, Peter K N

    2013-11-04

    A new version of progressive resolution optimizer (PRO) with an option of air cavity correction has been implemented for RapidArc volumetric-modulated arc therapy (RA). The purpose of this study was to compare the performance of this new PRO with the use of air cavity correction option (PRO10_air) against the one without the use of the air cavity correction option (PRO10_no-air) for RapidArc planning in targets with low-density media of different sizes and complexities. The performance of PRO10_no-air and PRO10_air was initially compared using single-arc plans created for four different simple heterogeneous phantoms with virtual targets and organs at risk. Multiple-arc planning of 12 real patients having nasopharyngeal carcinomas (NPC) and ten patients having non-small cell lung cancer (NSCLC) were then performed using the above two options for further comparison. Dose calculations were performed using both the Acuros XB (AXB) algorithm with the dose to medium option and the analytical anisotropic algorithm (AAA). The effect of using intermediate dose option after the first optimization cycle in PRO10_air and PRO10_no-air was also investigated and compared. Plans were evaluated and compared using target dose coverage, critical organ sparing, conformity index, and dose homogeneity index. For NSCLC cases or cases for which large volumes of low-density media were present in or adjacent to the target volume, the use of the air cavity correction option in PRO10 was shown to be beneficial. For NPC cases or cases for which small volumes of both low- and high-density media existed in the target volume, the use of air cavity correction in PRO10 did not improve the plan quality. Based on the AXB dose calculation results, the use of PRO10_air could produce up to 18% less coverage to the bony structures of the planning target volumes for NPC cases. When the intermediate dose option in PRO10 was used, there was negligible difference observed in plan quality between optimizations with and without using the air cavity correction option.

  20. NDCX-II target experiments and simulations

    DOE PAGES

    Barnard, J. J.; More, R. M.; Terry, M.; ...

    2013-06-13

    The ion accelerator NDCX-II is undergoing commissioning at Lawrence Berkeley National Laboratory (LBNL). Its principal mission is to explore ion-driven High Energy Density Physics (HEDP) relevant to Inertial Fusion Energy (IFE) especially in the Warm Dense Matter (WDM) regime. We have carried out hydrodynamic simulations of beam-heated targets for parameters expected for the initial configuration of NDCX-II. For metal foils of order one micron thick (thin targets), the beam is predicted to heat the target in a timescale comparable to the hydrodynamic expansion time for experiments that infer material properties from measurements of the resulting rarefaction wave. We have alsomore » carried out hydrodynamic simulations of beam heating of metallic foam targets several tens of microns thick (thick targets) in which the ion range is shorter than the areal density of the material. In this case shock waves will form and we derive simple scaling laws for the efficiency of conversion of ion energy into kinetic energy of fluid flow. Geometries with a tamping layer may also be used to study the merging of a tamper shock with the end-of-range shock. As a result, this process can occur in tamped, direct drive IFE targets.« less

  1. 14 CFR 93.217 - Allocation of slots for international operations and applicable limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic Airports § 93... available, additional slots during the high density hours shall be allocated at Kennedy Airport for new...

  2. 75 FR 9017 - Orders Limiting Scheduled Operations at John F. Kennedy International Airport, LaGuardia Airport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ...; High Density Rule at Reagan National Airport AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... by February 16. Under the FAA's High Density Rule and orders limiting scheduled operations at the...

  3. 14 CFR 93.217 - Allocation of slots for international operations and applicable limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic Airports § 93... available, additional slots during the high density hours shall be allocated at Kennedy Airport for new...

  4. 14 CFR 93.217 - Allocation of slots for international operations and applicable limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic Airports § 93... available, additional slots during the high density hours shall be allocated at Kennedy Airport for new...

  5. 14 CFR 93.217 - Allocation of slots for international operations and applicable limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic Airports § 93... available, additional slots during the high density hours shall be allocated at Kennedy Airport for new...

  6. 14 CFR 93.217 - Allocation of slots for international operations and applicable limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic Airports § 93... available, additional slots during the high density hours shall be allocated at Kennedy Airport for new...

  7. Generation of sub-gigabar-pressure shocks by a hyper-velocity impact in the collider driven by laser-induced cavity pressure

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Kucharik, M.; Liska, R.

    2018-02-01

    The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.

  8. Method of making foam-encapsulated laser targets

    DOEpatents

    Rinde, James A.; Fulton, Fred J.

    1977-01-01

    Foam-encapsulated laser fusion targets are fabricated by suspending fusion fuel filled shells in a solution of cellulose acetate, extruding the suspension through a small orifice into a bath of ice water, soaking the thus formed shell containing cellulose acetate gel in the water to extract impurities, freezing the gel, and thereafter freeze-drying wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam containing one or more encapsulated fuel-filled shells. The thus formed material is thereafter cut and mounted on a support to provide laser fusion targets containing a fuel-filled shell surrounded by foam having a thickness of 10 to 60 .mu.m, a cell size of less than 2 .mu.m, and density of 0.08 to 0.6.times.10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by the encapsulation method are illustrated.

  9. Release from ISOLDE molten metal targets under pulsed proton beam conditions

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Catherall, R.; Cyvoct, G.; Evensen, A. H. M.; Lindroos, M.; Jonsson, O. C.; Kugler, E.; Schindl, K.; Ravn, H.; Wildner, E.; Drumm, P.; Obert, J.; Putaux, J. C.; Sauvage, J.

    1996-04-01

    By moving the ISOLDE mass separators from the 600 MeV Synchrocyclotron (SC) to the 1 GeV Proton-Synchrotron-Booster (PS) the instantaneous energy density of the proton beam went up by 3 orders of magnitude. The developments of the molten metal target units and the optimization of the PS proton beam to cope with the effects of the thermal shocks induced by the proton beam are described. The energy density of the PS proton beam was reduced by spatial defocusing and time staggered extraction of the four PS-accelerators. The release from lanthanum, lead and tin targets is discussed for different settings of the proton beam and compared to the release observed at ISOLDE-SC. The yields of Hg isotopes are presented.

  10. Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance of a Moving Target

    PubMed Central

    Tsukamoto, Kazuya; Ueda, Hirofumi; Tamura, Hitomi; Kawahara, Kenji; Oie, Yuji

    2009-01-01

    In this paper, we focus on the problem of tracking a moving target in a wireless sensor network (WSN), in which the capability of each sensor is relatively limited, to construct large-scale WSNs at a reasonable cost. We first propose two simple multi-point surveillance schemes for a moving target in a WSN and demonstrate that one of the schemes can achieve high tracking probability with low power consumption. In addition, we examine the relationship between tracking probability and sensor density through simulations, and then derive an approximate expression representing the relationship. As the results, we present guidelines for sensor density, tracking probability, and the number of monitoring sensors that satisfy a variety of application demands. PMID:22412326

  11. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  12. High-density fiber-optic DNA random microsphere array.

    PubMed

    Ferguson, J A; Steemers, F J; Walt, D R

    2000-11-15

    A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.

  13. Intercepting a moving target: On-line or model-based control?

    PubMed

    Zhao, Huaiyong; Warren, William H

    2017-05-01

    When walking to intercept a moving target, people take an interception path that appears to anticipate the target's trajectory. According to the constant bearing strategy, the observer holds the bearing direction of the target constant based on current visual information, consistent with on-line control. Alternatively, the interception path might be based on an internal model of the target's motion, known as model-based control. To investigate these two accounts, participants walked to intercept a moving target in a virtual environment. We degraded the target's visibility by blurring the target to varying degrees in the midst of a trial, in order to influence its perceived speed and position. Reduced levels of visibility progressively impaired interception accuracy and precision; total occlusion impaired performance most and yielded nonadaptive heading adjustments. Thus, performance strongly depended on current visual information and deteriorated qualitatively when it was withdrawn. The results imply that locomotor interception is normally guided by current information rather than an internal model of target motion, consistent with on-line control.

  14. Evaluating analytical approaches for estimating pelagic fish biomass using simulated fish communities

    USGS Publications Warehouse

    Yule, Daniel L.; Adams, Jean V.; Warner, David M.; Hrabik, Thomas R.; Kocovsky, Patrick M.; Weidel, Brian C.; Rudstam, Lars G.; Sullivan, Patrick J.

    2013-01-01

    Pelagic fish assessments often combine large amounts of acoustic-based fish density data and limited midwater trawl information to estimate species-specific biomass density. We compared the accuracy of five apportionment methods for estimating pelagic fish biomass density using simulated communities with known fish numbers that mimic Lakes Superior, Michigan, and Ontario, representing a range of fish community complexities. Across all apportionment methods, the error in the estimated biomass generally declined with increasing effort, but methods that accounted for community composition changes with water column depth performed best. Correlations between trawl catch and the true species composition were highest when more fish were caught, highlighting the benefits of targeted trawling in locations of high fish density. Pelagic fish surveys should incorporate geographic and water column depth stratification in the survey design, use apportionment methods that account for species-specific depth differences, target midwater trawling effort in areas of high fish density, and include at least 15 midwater trawls. With relatively basic biological information, simulations of fish communities and sampling programs can optimize effort allocation and reduce error in biomass estimates.

  15. Helicon wave field measurements in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Caneses, Juan Francisco; Piotrowicz, Pawel; Goulding, Richard; Caughman, John; Showers, Missy; Kafle, Nischal; Rapp, Juergen; Campbell, Ian; Proto-MPEX Team

    2016-10-01

    A high density Deuterium discharge (ne 5e19 m-3, Te 4 eV) has been recently observed in ProtoMPEX (Prototype Material Plasma Exposure eXperiment). The discharge (100 kW, 13.56 MHz, D2, 700 G at the source, 1e4 G at the Target) begins with a low density plasma with hollow Te profile and transitions in about 100 ms to a high density mode with flat Te profile. It is believed that the transition to the high density mode is produced by a ``helicon resonance'' as evidenced by the centrally-peaked power deposition profile observed with IR imaging on a 2 mm thick metallic target plate. In this work, we present b-dot probe measurements of the radial helicon wavefields 30 cm downstream of the antenna during both the low and high density modes. In addition, we compare the experimental results with full wave simulations. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  16. Shockwave compression of Ar gas at several initial densities

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana M.; Goodwin, Peter M.; Garcia, Daniel B.; Gustavsen, Richard L.; Lang, John M.; Aslam, Tariq D.; Sheffield, Stephen A.; Gibson, Lloyd L.; Morris, John S.

    2017-01-01

    Experimental data of the principal Hugoniot locus of variable density gas-phase noble and molecular gases are rare. The majority of shock Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of shock-driven ionization, and even dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target design for gas gun-driven plate impact experiments on noble gases at initial pressures between 200-1000 psi. Using optical velocimetry, we are able to directly determine both the shock and particle velocities of the gas on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. We describe the results of a series of plate impact experiments on Ar with starting densities between 0.02-0.05 g/cm3 at room temperature. Furthermore, by coupling optical fibers to the targets, we have measured the time-resolved optical emission from the shocked gas using a spectrometer coupled to an optical streak camera to spectrally-resolve the emission, and with a 5-color optical pyrometer for temperature determination.

  17. Know the Planet, Know the Star: Precise Stellar Densities from Kepler Transit Light Curves

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Kipping, David

    2017-12-01

    The properties of a transiting planet’s host star are written in its transit light curve. The light curve can reveal the stellar density ({ρ }* ) and the limb-darkening profile in addition to the characteristics of the planet and its orbit. For planets with strong prior constraints on orbital eccentricity, we may measure these stellar properties directly from the light curve; this method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA Transiting Exoplanet Survey Satellite mission and any long-period, singly transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb-darkening law, to 66 Kepler transiting planet hosts to measure their stellar properties. We present posterior distributions of ρ *, limb-darkening coefficients, and other system parameters for these stars. We measure densities to within 5% for the majority of our target stars, with the dominant precision-limiting factor being the signal-to-noise ratio of the transits. Of our measured stellar densities, 95% are in 3σ or better agreement with previously published literature values. We make posterior distributions for all of our target Kepler objects of interest available online at 10.5281/zenodo.1028515.

  18. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Hao, Xinfeng

    2008-10-01

    In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibert, Ivan, E-mail: gibert1993@mail.ru; Kiseleva, Svetlana, E-mail: kisielieva1946@mail.ru; Popova, Natalya, E-mail: natalya-popova-44@mail.ru

    The investigation of excess dislocation density accumulation in the deformed polycrystalline austenitic steel was carried out using transmission electron microscopy (TEM). The distributions of the excess dislocation density in the grains of the deformed austenitic steel with different bending types were obtained and plotted. It was established that in the austenitic polycrystalline steel at the deformation degrees ε = 14 and 25 % the distributions of the excess dislocation density are multimodal. In both cases the grain with compound bending is more stressed. The values of the average excess dislocation density in the grains with the compound and simple bendingmore » are less at ε = 25 % than that at ε = 14 %. This is explained by a significant relaxation of the internal stresses in steel with the increase of the deformation degree from 14 % to 25 %. The increase of the number of twinning systems and the material volume fraction covered by twinning leads to the internal stress relaxation and consequently to the increase of the excess dislocation density. The presence of microtwins in the deformed material has an influence on the distribution of the excess dislocation density. In the deformed polycrystalline austenitic steel the number of grains with compound bending is increased with the increase of the plastic deformation degree.« less

  20. Approach for computing 1D fracture density: application to fracture corridor characterization

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Chatelée, Sebastien; Akriche, Clement; Lamarche, Juliette

    2016-04-01

    Fracture density is an important parameter for characterizing fractured reservoirs. Many stochastic simulation algorithms that generate fracture networks indeed rely on the determination of a fracture density on volumes (P30) to populate the reservoir zones with individual fracture surfaces. However, only 1D fracture density (P10) are available from subsurface data and it is then important to be able to accurately estimate this entity. In this paper, a novel approach is proposed to estimate fracture density from scan-line or well data. This method relies on regression, hypothesis testing and clustering techniques. The objective of the proposed approach is to highlight zones where fracture density are statistically very different or similar. This technique has been applied on both synthetic and real case studies. These studies concern fracture corridors, which are particular tectonic features that are generally difficult to characterize from subsurface data. These tectonic features are still not well known and studies must be conducted to better understand their internal spatial organization and variability. The presented synthetic cases aim at showing the ability of the approach to extract known features. The real case study illustrates how this approach allows the internal spatial organization of fracture corridors to be characterized.

Top