Science.gov

Sample records for density lipoprotein binding

  1. Negatively Cooperative Binding of High Density Lipoprotein to the HDL Receptor SR-BI†

    PubMed Central

    Nieland, Thomas J.F.; Xu, Shangzhe; Penman, Marsha; Krieger, Monty

    2011-01-01

    Scavenger receptor class B, type I (SR-BI) is a high-density lipoprotein (HDL) receptor, which also binds low density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a co-receptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high affinity binding sites (one site model). We have re-investigated the ligand concentration dependence of 125I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [3H]CE from [3H]CE-HDL using an expanded range of ligand concentrations (<1 µg protein/ml, lower than previously reported). Scatchard and non-linear least squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites, or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects (‘ lattice model’). Similar results were observed for LDL. Application of the ‘infinite dilution’ dissociation rate method established that the binding of 125I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport and cell signaling. PMID:21254782

  2. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    PubMed

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  3. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 and the intravascular processing of triglyceride-rich lipoproteins.

    PubMed

    Adeyo, O; Goulbourne, C N; Bensadoun, A; Beigneux, A P; Fong, L G; Young, S G

    2012-12-01

    Lipoprotein lipase (LPL) is produced by parenchymal cells, mainly adipocytes and myocytes, but is involved in hydrolysing triglycerides in plasma lipoproteins at the capillary lumen. For decades, the mechanism by which LPL reaches its site of action in capillaries was unclear, but this mystery was recently solved. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), a glycosylphosphatidylinositol-anchored protein of capillary endothelial cells, 'picks up' LPL from the interstitial spaces and shuttles it across endothelial cells to the capillary lumen. When GPIHBP1 is absent, LPL is mislocalized to the interstitial spaces, leading to severe hypertriglyceridaemia. Some cases of hypertriglyceridaemia in humans are caused by GPIHBP1 mutations that interfere with the ability of GPIHBP1 to bind to LPL, and some are caused by LPL mutations that impair the ability of LPL to bind to GPIHBP1. Here, we review recent progress in understanding the role of GPIHBP1 in health and disease and discuss some of the remaining unresolved issues regarding the processing of triglyceride-rich lipoproteins. © 2012 The Association for the Publication of the Journal of Internal Medicine.

  4. Lipoprotein binding and endosomal itinerary of the low density lipoprotein receptor-related protein in rat liver

    SciTech Connect

    Lund, H.; Takahashi, K.; Hamilton, R.L.; Havel, R.J. )

    1989-12-01

    The high affinity of {sup 45}Ca binding to the low density lipoprotein receptor (LDL-R) and the LDL-R-related protein (LRP) was utilized to study the subcellar distribution of these two proteins in rat liver. Like the LDL-R, LRP was manyfold enriched in rat liver endosomal membranes with a relative distribution in early and late endosomal compartments consistent with recycling between endosomes and the cell surface. The high concentration of LRP in hepatic endosomal membranes greatly facilitated demonstration of Ca-dependent binding of apolipoprotein E- and B-containing lipoproteins in ligand blots. LRP was severalfold more abundant than the LDL-R in hepatic parenchymal cells, showed extensive degradation in hepatic endosomes, and was found in high concentrations in the Golgi apparatus and endoplasmic reticulum. These data suggest a high a rate of synthesis of LRP that appeared to be unaffected by treatment of rats with estradiol. The repeating cysteine-rich A-motif found in the ligand-binding domain of LRP appeared to be responsible for Ca binding by LRP, LDL-R, and complement factor C9 and accounted for immunological cross-reactivity among these proteins. The data suggest an extensive proteolytic processing of this protein and are consistent with a functional role of LRP in lipoprotein metabolism.

  5. One precursor, three apolipoproteins: the relationship between two crustacean lipoproteins, the large discoidal lipoprotein and the high density lipoprotein/β-glucan binding protein.

    PubMed

    Stieb, Stefanie; Roth, Ziv; Dal Magro, Christina; Fischer, Sabine; Butz, Eric; Sagi, Amir; Khalaila, Isam; Lieb, Bernhard; Schenk, Sven; Hoeger, Ulrich

    2014-12-01

    The novel discoidal lipoprotein (dLp) recently detected in the crayfish, differs from other crustacean lipoproteins in its large size, apoprotein composition and high lipid binding capacity, We identified the dLp sequence by transcriptome analyses of the hepatopancreas and mass spectrometry. Further de novo assembly of the NGS data followed by BLAST searches using the sequence of the high density lipoprotein/1-glucan binding protein (HDL-BGBP) of Astacus leptodactylus as query revealed a putative precursor molecule with an open reading frame of 14.7 kb and a deduced primary structure of 4889 amino acids. The presence of an N-terminal lipid bind- ing domain and a DUF 1943 domain suggests the relationship with the large lipid transfer proteins. Two-putative dibasic furin cleavage sites were identified bordering the sequence of the HDL-BGBP. When subjected to mass spectroscopic analyses, tryptic peptides of the large apoprotein of dLp matched the N-terminal part of the precursor, while the peptides obtained for its small apoprotein matched the C-terminal part. Repeating the analysis in the prawn Macrobrachium rosenbergii revealed a similar protein with identical domain architecture suggesting that our findings do not represent an isolated instance. Our results indicate that the above three apolipoproteins (i.e HDL-BGBP and both the large and the small subunit of dLp) are translated as a large precursor. Cleavage at the furin type sites releases two subunits forming a heterodimeric dLP particle, while the remaining part forms an HDL-BGBP whose relationship with other lipoproteins as well as specific functions are yet to be elucidated.

  6. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding.

    PubMed Central

    Innerarity, T L; Weisgraber, K H; Arnold, K S; Mahley, R W; Krauss, R M; Vega, G L; Grundy, S M

    1987-01-01

    Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity (approximately equal to 9.3 micrograms of G.R. LDL per ml were required to displace 50% of 125I-labeled normal LDL, vs. approximately equal to 3.0 micrograms of normal LDL per ml). Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, whereas a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated with an abnormal lipid composition or structure of the LDL: the chemical and physical properties of the particles were normal, and partial delipidation of the LDL did not alter receptor binding activity. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients. PMID:3477815

  7. Tailoring of Biomimetic High-Density Lipoprotein (HDL) Nanostructures Changes Cholesterol Binding and Efflux

    PubMed Central

    Luthi, Andrea J.; Zhang, Heng; Kim, Dongwoo; Giljohann, David A.; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Gold nanoparticles (Au NPs) were employed as templates to synthesize spherical, high-density lipoprotein (HDL) biomimics (HDL Au NPs) of different sizes and surface chemistries. The effect of size and surface chemistry on the cholesterol binding properties and the ability of the HDL Au NPs to efflux cholesterol from macrophage cells were measured. Results demonstrate that Au NPs may be utilized as templates to generate nanostructures with different physical characteristics that mimic natural HDL. Furthermore, the properties of the HDL Au NPs may be tailored to modulate the ability to bind cholesterol in solution and efflux cholesterol from macrophages. From the conjugates tested, the optimum size and surface chemistry for preparing functional Au NP-templated HDL biomimics were identified. PMID:22117189

  8. High-Density Lipoprotein Binds to Mycobacterium avium and Affects the Infection of THP-1 Macrophages

    PubMed Central

    Ichimura, Naoya; Sato, Megumi; Yoshimoto, Akira; Yano, Kouji; Ohkawa, Ryunosuke; Kasama, Takeshi

    2016-01-01

    High-density lipoprotein (HDL) is involved in innate immunity toward various infectious diseases. Concerning bacteria, HDL is known to bind to lipopolysaccharide (LPS) and to neutralize its physiological activity. On the other hand, cholesterol is known to play an important role in mycobacterial entry into host cells and in survival in the intracellular environment. However, the pathogenicity of Mycobacterium avium (M. avium) infection, which tends to increase worldwide, remains poorly studied. Here we report that HDL indicated a stronger interaction with M. avium than that with other Gram-negative bacteria containing abundant LPS. A binding of apolipoprotein (apo) A-I, the main protein component of HDL, with a specific lipid of M. avium might participate in this interaction. HDL did not have a direct bactericidal activity toward M. avium but attenuated the engulfment of M. avium by THP-1 macrophages. HDL also did not affect bacterial killing after ingestion of live M. avium by THP-1 macrophage. Furthermore, HDL strongly promoted the formation of lipid droplets in M. avium-infected THP-1 macrophages. These observations provide new insights into the relationship between M. avium infection and host lipoproteins, especially HDL. Thus, HDL may help M. avium to escape from host innate immunity. PMID:27516907

  9. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  10. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  11. Control of lipopolysaccharide-high density lipoprotein binding by acute phase protein(s).

    PubMed

    Tobias, P S; Ulevitch, R J

    1983-10-01

    When Salmonella minnesota R595 lipopolysaccharide (LPS) is mixed with serum, the LPS eventually forms a complex with high density lipoprotein (HDL). Complex formation is conveniently followed by CsCl equilibrium density gradient centrifugation. When mixing 10 micrograms LPS with normal rabbit serum (NRS) at 37 degrees C in the presence of 20 mM EDTA, the half-life for LPS binding to HDL is typically 2 to 3 min. When the same experiment is performed with the use of acute phase rabbit serum (APRS; collected 24 hr post-induction with silver nitrate), the half-life for LPS binding to HDL is typically 40 to 100 min. Thus LPS binding to HDL occurs some 20- to 40-fold slower in APRS than in NRS. Two other phenomena have been found, the time dependencies of which correlate well with the time dependency of LPS binding to HDL in APRS. If LPS-APRS reaction mixtures are cooled to 4 degrees C shortly after mixing and are dialyzed against 2.5 mM HEPES, 15 mM NaCl, pH 7.4 buffer, LPS is recovered in the washed precipitates ("euglobulin precipitate") if, and only if, the LPS-HDL binding reaction is not complete. The amount of LPS in the precipitate correlates well with the amount of LPS that has not bound to HDL. The second phenomenon we observe is that the LPS-containing euglobulin precipitate prepared from LPS-acute phase serum reaction mixtures shortly after mixing also contains a protein, gp60, the concentration of which in the euglobulin precipitate correlates well with the amount of LPS in the precipitate. Thus three phenomena are kinetically well correlated in APRS: the degree of binding of LPS to HDL, the degree of appearance of LPS in a euglobulin fraction, and the concentration of protein gp60 in the euglobulin fraction. We were unable to precipitate gp60 from APRS in the absence of LPS, from APRS after the LPS has fully bound to HDL, or from normal serum in the presence or absence of LPS. The known properties of gp60 are not reminiscent of any other known acute phase

  12. Monoclonal antibodies to human plasma low-density lipoproteins. I. Enhanced binding of 125I-labeled low-density lipoproteins by combined use of two monoclonal antibodies.

    PubMed

    Mao, S J; Patton, J G; Badimon, J J; Kottke, B A; Alley, M C; Cardin, A D

    1983-11-01

    Four monoclonal antibodies (IgG2b) to human plasma low-density lipoproteins (LDL) have been characterized. The binding affinities of each monoclonal antibody to 125I-labeled LDL were moderately high, ranging from 10(8) to 10(10) L/mol at 4 degrees C, but were reduced by at least 50-70% at 37 degrees C. The maximum binding of each monoclonal antibody was unique, ranging from 20 to 95% of total 125I-labeled LDL, suggesting that LDL particles were immunochemically heterogeneous. One antibody, LP-34, had both high and low binding affinities to LDL. Another, LP-47, exhibited high affinity for isolated LDL, yet reacted poorly with native LDL in plasma, indicating that the conformation of isolated LDL differs from that of native LDL in plasma. Unlike polyclonal serum antibodies, a mixture of four monoclonal antibodies failed to precipitate LDL, but did show a drastic increase in binding to LDL. We found that only two of our monoclonal antibodies were necessary for such synergistic enhancement. We propose that one of the monoclonal antibodies may serve as a catalytic reagent, and discuss the clinical significance of this finding.

  13. Specific high-affinity binding of high density lipoproteins to cultured human skin fibroblasts and arterial smooth muscle cells.

    PubMed

    Biesbroeck, R; Oram, J F; Albers, J J; Bierman, E L

    1983-03-01

    Binding of human high density lipoproteins (HDL, d = 1.063-1.21) to cultured human fibroblasts and human arterial smooth muscle cells was studied using HDL subjected to heparin-agarose affinity chromatography to remove apoprotein (apo) E and B. Saturation curves for binding of apo E-free 125I-HDL showed at least two components: low-affinity nonsaturable binding and high-affinity binding that saturated at approximately 20 micrograms HDL protein/ml. Scatchard analysis of high-affinity binding of apo E-free 125I-HDL to normal fibroblasts yielded plots that were significantly linear, indicative of a single class of binding sites. Saturation curves for binding of both 125I-HDL3 (d = 1.125-1.21) and apo E-free 125I-HDL to low density lipoprotein (LDL) receptor-negative fibroblasts also showed high-affinity binding that yielded linear Scatchard plots. On a total protein basis, HDL2 (d = 1.063-1.10), HDL3 and very high density lipoproteins (VHDL, d = 1.21-1.25) competed as effectively as apo E-free HDL for binding of apo E-free 125I-HDL to normal fibroblasts. Also, HDL2, HDL3, and VHDL competed similarly for binding of 125I-HDL3 to LDL receptor-negative fibroblasts. In contrast, LDL was a weak competitor for HDL binding. These results indicate that both human fibroblasts and arterial smooth muscle cells possess specific high affinity HDL binding sites. As indicated by enhanced LDL binding and degradation and increased sterol synthesis, apo E-free HDL3 promoted cholesterol efflux from fibroblasts. These effects also saturated at HDL3 concentrations of 20 micrograms/ml, suggesting that promotion of cholesterol efflux by HDL is mediated by binding to the high-affinity cell surface sites.

  14. Agonistic Human Antibodies Binding to Lecithin-Cholesterol Acyltransferase Modulate High Density Lipoprotein Metabolism*

    PubMed Central

    Gunawardane, Ruwanthi N.; Fordstrom, Preston; Piper, Derek E.; Masterman, Stephanie; Siu, Sophia; Liu, Dongming; Brown, Mike; Lu, Mei; Tang, Jie; Zhang, Richard; Cheng, Janet; Gates, Andrew; Meininger, David; Chan, Joyce; Carlson, Tim; Walker, Nigel; Schwarz, Margrit; Delaney, John; Zhou, Mingyue

    2016-01-01

    Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouseTM platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease. PMID:26644477

  15. Sterol regulatory element-binding protein-1 determines plasma remnant lipoproteins and accelerates atherosclerosis in low-density lipoprotein receptor-deficient mice.

    PubMed

    Karasawa, Tadayoshi; Takahashi, Akimitsu; Saito, Ryo; Sekiya, Motohiro; Igarashi, Masaki; Iwasaki, Hitoshi; Miyahara, Shoko; Koyasu, Saori; Nakagawa, Yoshimi; Ishii, Kiyoaki; Matsuzaka, Takashi; Kobayashi, Kazuto; Yahagi, Naoya; Takekoshi, Kazuhiro; Sone, Hirohito; Yatoh, Shigeru; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2011-08-01

    Sterol regulatory element-binding protein-1 (SREBP-1) is nutritionally regulated and is known to be a key transcription factor regulating lipogenic enzymes. The goal of this study was to evaluate the roles of SREBP-1 in dyslipidemia and atherosclerosis. Transgenic mice that overexpress SREBP-1c in the liver and SREBP-1-deficient mice were crossed with low-density lipoprotein receptor (LDLR)-deficient mice, and the plasma lipids and atherosclerosis were analyzed. Hepatic SREBP-1c overexpression in LDLR-deficient mice caused postprandial hypertriglyceridemia, increased very-low-density lipoprotein (VLDL) cholesterol, and decreased high-density lipoprotein cholesterol in plasma, which resulted in accelerated aortic atheroma formation. Conversely, absence of SREBP-1 suppressed Western diet-induced hyperlipidemia in LDLR-deficient mice and ameliorated atherosclerosis. In contrast, bone marrow-specific SREBP-1 deficiency did not alter the development of atherosclerosis. The size of nascent VLDL particles secreted from the liver was increased in SREBP-1c transgenic mice and reduced in SREBP-1-deficient mice, accompanied by upregulation and downregulation of phospholipid transfer protein expression, respectively. Hepatic SREBP-1c determines plasma triglycerides and remnant cholesterol and contributes to atherosclerosis in hyperlipidemic states. Hepatic SREBP-1c also regulates the size of nascent VLDL particles.

  16. Lipoprotein binding to cultured human hepatoma cells.

    PubMed Central

    Krempler, F; Kostner, G M; Friedl, W; Paulweber, B; Bauer, H; Sandhofer, F

    1987-01-01

    Binding of various 125I-lipoproteins to hepatic receptors was studied on cultured human hepatoma cells (Hep G2). Chylomicrons, isolated from a chylothorax, chylomicron remnants, hypertriglyceridemic very low-density lipoproteins, normotriglyceridemic very low-density lipoproteins (NTG-VLDL), their remnants, low-density lipoproteins (LDL), and HDL-E (an Apo E-rich high-density lipoprotein isolated from the plasma of a patient with primary biliary cirrhosis) were bound by high-affinity receptors. Chylomicron remnants and HDL-E were bound with the highest affinity. The results, obtained from competitive binding experiments, are consistent with the existence of two distinct receptors on Hep G2 cells: (a) a remnant receptor capable of high-affinity binding of triglyceride-rich lipoproteins and HDL-E, but not of Apo E free LDL, and (b) a LDL receptor capable of high-affinity binding of LDL, NTG-VLDL, and HDL-E. Specific binding of Apo E-free LDL was completely abolished in the presence of 3 mM EDTA, indicating that binding to the LDL receptor is calcium dependent. Specific binding of chylomicron remnants was not inhibited by the presence of even 10 mM EDTA. Preincubation of the Hep G2 cells in lipoprotein-containing medium resulted in complete suppression of LDL receptors but did not affect the remnant receptors. Hep G2 cells seem to be a suitable model for the study of hepatic receptors for lipoprotein in man. Images PMID:3038957

  17. Characterization of the role of EGF-A of low density lipoprotein receptor in PCSK9 binding

    PubMed Central

    Gu, Hong-mei; Adijiang, Ayinuer; Mah, Matthew; Zhang, Da-wei

    2013-01-01

    Proprotein convertase subtilisin kexin-like 9 (PCSK9) promotes the degradation of low density lipoprotein receptor (LDLR) and plays an important role in regulating plasma LDL-cholesterol levels. We have shown that the epidermal growth factor precursor homology domain A (EGF-A) of the LDLR is critical for PCSK9 binding at the cell surface (pH 7.4). Here, we further characterized the role of EGF-A in binding of PCSK9 to the LDLR. We found that PCSK9 efficiently bound to the LDLR but not to other LDLR family members. Replacement of EGF-A in the very low density lipoprotein receptor (VLDLR) with EGF-A of the LDLR promoted the degradation of the mutant VLDLR induced by PCSK9. Furthermore, we found that PCSK9 bound to recombinant EGF-A in a pH-dependent manner with stronger binding at pH 6.0. We also identified amino acid residues in EGF-A of the LDLR important for PCSK9 binding. Mutations G293H, D299V, L318D, and L318H reduced PCSK9 binding to the LDLR at neutral pH without effect at pH 6.0, while mutations R329P and E332G reduced PCSK9 binding at both pH values. Thus, our findings reveal that EGF-A of the LDLR is critical for PCSK9 binding at the cell surface (neutral pH) and at the acidic endosomal environment (pH 6.0), but different determinants contribute to efficient PCSK9 binding in different pH environments. PMID:24103783

  18. Characterization of the role of EGF-A of low density lipoprotein receptor in PCSK9 binding.

    PubMed

    Gu, Hong-mei; Adijiang, Ayinuer; Mah, Matthew; Zhang, Da-wei

    2013-12-01

    Proprotein convertase subtilisin kexin-like 9 (PCSK9) promotes the degradation of low density lipoprotein receptor (LDLR) and plays an important role in regulating plasma LDL-cholesterol levels. We have shown that the epidermal growth factor precursor homology domain A (EGF-A) of the LDLR is critical for PCSK9 binding at the cell surface (pH 7.4). Here, we further characterized the role of EGF-A in binding of PCSK9 to the LDLR. We found that PCSK9 efficiently bound to the LDLR but not to other LDLR family members. Replacement of EGF-A in the very low density lipoprotein receptor (VLDLR) with EGF-A of the LDLR promoted the degradation of the mutant VLDLR induced by PCSK9. Furthermore, we found that PCSK9 bound to recombinant EGF-A in a pH-dependent manner with stronger binding at pH 6.0. We also identified amino acid residues in EGF-A of the LDLR important for PCSK9 binding. Mutations G293H, D299V, L318D, and L318H reduced PCSK9 binding to the LDLR at neutral pH without effect at pH 6.0, while mutations R329P and E332G reduced PCSK9 binding at both pH values. Thus, our findings reveal that EGF-A of the LDLR is critical for PCSK9 binding at the cell surface (neutral pH) and at the acidic endosomal environment (pH 6.0), but different determinants contribute to efficient PCSK9 binding in different pH environments.

  19. The binding of human low-density lipoproteins to the surface of schistosomula of Schistosoma mansoni is inhibited by polyanions and reduces the binding of anti-schistosomal antibodies.

    PubMed Central

    Chiang, C. P.; Caulfield, J. P.

    1989-01-01

    Host molecules such as serum lipoproteins, blood group glycolipids, and histocompatibility antigens may bind to schistosomes and thereby prevent immune recognition of the parasite. This study examines the kinetics of lipoprotein binding, the ability of polyanions to inhibit lipoprotein binding, the binding of anti-schistosomal antibodies to worms that have previously bound low-density lipoprotein (LDL), and the distribution of lipoproteins bound to the parasites. Lipoproteins in human serum (HS) and purified LDL, very low-density lipoprotein (VLDL), and apolipoprotein B (apo B) in defined media were demonstrated on the surface of schistosomula of Schistosoma mansoni by fluorescence and immunoelectron microscopy using a polyclonal goat anti-human apolipoprotein B antibody (anti-apo B). By fluorophotometric microscopy, lipoprotein binding began within 15 minutes and was largely completed within 3 hours of exposure. Lipoprotein binding saturated at 10% HS or 20 micrograms protein/300 microliters of purified LDL. Suramin inhibited LDL binding by 59% in a dose-dependent fashion. In the absence of LDL in the medium, 2 mM suramin dissociated 41% of bound LDL from the worm surface within 15 minutes and 10 mg/ml heparin dissociated 36%. The binding of human anti-schistosomal antibodies to schistosomula was inhibited by bound LDL. By fluorescence microscopy, serum or purified lipoproteins were distributed over the entire surface of the parasite with focal areas of high intensity. Ultrastructurally, reaction product was seen on the outer leaflet of the outer tegumental membrane and in aggregates and surrounding vesicular structures varying in diameter from 13 to 83 nm. These studies demonstrate that lipoproteins bind to the surface of schistosomula. The binding of lipoproteins is partially inhibited by polyanions, reduces the binding of human anti-schistosomal antibodies, and may help the parasite escape the immune response. Images Figure 1 Figure 9 Figure 10 PMID:2719071

  20. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4

    PubMed Central

    Jen, Angela; Parkyn, Celia J.; Mootoosamy, Roy C.; Ford, Melanie J.; Warley, Alice; Liu, Qiang; Bu, Guojun; Baskakov, Ilia V.; Moestrup, Søren; McGuinness, Lindsay; Emptage, Nigel; Morris, Roger J.

    2010-01-01

    For infectious prion protein (designated PrPSc) to act as a template to convert normal cellular protein (PrPC) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrPC is the low-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor clusters 2 and 4, PrPC and PrPSc fibrils bind only to receptor cluster 4. PrPSc fibrils out-compete PrPC for internalization. When endocytosed, PrPSc fibrils are routed to lysosomes, rather than recycled to the cell surface with PrPC. Thus, although LRP1 binds both forms of PrP, it traffics them to separate fates within sensory neurons. The binding of both to ligand cluster 4 should enable genetic modification of PrP binding without disrupting other roles of LRP1 essential to neuronal viability and function, thereby enabling in vivo analysis of the role of this interaction in controlling both prion and LRP1 biology. PMID:20048341

  1. Major proteins of bovine seminal plasma bind to the low-density lipoprotein fraction of hen's egg yolk.

    PubMed

    Manjunath, Puttaswamy; Nauc, Veronica; Bergeron, Annick; Ménard, Martin

    2002-10-01

    Over the past 60 years, egg yolk (EY) has been routinely used in both liquid semen extenders and those used to cryopreserve sperm. However, the mechanism by which EY protects sperm during liquid storage or from freezing damage is unknown. Bovine seminal plasma contains a family of proteins designated BSP-A1/-A2, BSP-A3, and BSP-30-kDa (collectively called BSP proteins). These proteins are secretory products of seminal vesicles that are acquired by sperm at ejaculation, modifying the sperm membrane by inducing cholesterol efflux. Because cholesterol efflux is time and concentration dependent, continuous exposure to seminal plasma (SP) that contains BSP proteins may be detrimental to the sperm membrane, which may adversely affect the ability of sperm to be preserved. In this article, we show that the BSP proteins bind to the low-density fraction (LDF), a lipoprotein component of the EY extender. The binding is rapid, specific, saturable, and stable even after freeze-thawing of semen. Furthermore, LDF has a very high capacity for BSP protein binding. The binding of BSP proteins to LDF may prevent their detrimental effect on sperm membrane, and this may be crucial for sperm storage. Thus, we propose that the sequestration of BSP proteins of SP by LDF may represent the major mechanism of sperm protection by EY.

  2. Effects of retinoids on differentiation, lipid metabolism, epidermal growth factor, and low-density lipoprotein binding in squamous carcinoma cells

    SciTech Connect

    Ponec, M.; Weerheim, A. ); Havekes, L. ); Boonstra, J. )

    1987-08-01

    The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisone stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity.

  3. Familial defective apolipoprotein B-100: enhanced binding of monoclonal antibody MB47 to abnormal low density lipoproteins.

    PubMed Central

    Weisgraber, K H; Innerarity, T L; Newhouse, Y M; Young, S G; Arnold, K S; Krauss, R M; Vega, G L; Grundy, S M; Mahley, R W

    1988-01-01

    Familial defective apolipoprotein (apo) B-100 is a recently described genetic disorder that appears to result from a mutation in the apoB-100 gene. This disorder is characterized by hypercholesterolemia resulting from elevated plasma concentrations of low density lipoprotein LDL. The disorder was first detected in three members of one family. The LDL from affected subjects binds defectively (approximately 30% of normal) to LDL receptors, retarding the clearance of LDL from plasma. In the present study, two other members of the affected family were found to possess abnormal LDL. In addition, abnormal LDL with a similar binding defect were found in a second, unrelated family. In both families, the defect is transmitted over three generations as an autosomal codominant trait and all affected members are heterozygotes. Since there is only one apoB-100 molecule per LDL particle, the abnormal LDL in heterozygous subjects is made up of two populations of particles: one that has normal binding activity to receptors and one that binds defectively. To localize the mutation in apoB-100, the binding of five apoB-100-specific monoclonal antibodies to abnormal LDL was assessed in a solid-phase RIA. Only antibody MB47, whose epitope is between residues 3350 and 3506, distinguished abnormal LDL from normal LDL isolated from control subjects with normal lipid levels; MB47 bound with a higher affinity (by approximately 60%) to abnormal LDL. In every individual with abnormal LDL, the MB47 antibody bound with a higher affinity. The convenience of this assay will facilitate screening of large populations to determine the frequency of this disorder. PMID:3200853

  4. A two-step binding model of PCSK9 interaction with the low density lipoprotein receptor.

    PubMed

    Yamamoto, Taichi; Lu, Christine; Ryan, Robert O

    2011-02-18

    PCSK9 (proprotein convertase subtilisin-like/kexin type 9) is an emerging target for pharmaceutical intervention. This multidomain protein interacts with the LDL receptor (LDLR), promoting receptor degradation. Insofar as PCSK9 inhibition induces a decrease in plasma cholesterol levels, understanding the nature of the binding interaction between PCSK9 and the LDLR is of critical importance. In this study, the ability of PCSK9 to compete with apoE3 N-terminal domain-containing reconstituted HDL for receptor binding was examined. Whereas full-length PCSK9 was an effective competitor, the N-terminal domain (composed of the prodomain and catalytic domain) was not. Surprisingly, the C-terminal domain (CT domain) of PCSK9 was able to compete. Using a direct binding interaction assay, we show that the PCSK9 CT domain bound to the LDLR in a calcium-dependent manner and that co-incubation with the prodomain and catalytic domain had no effect on this binding. To further characterize this interaction, two LDLR fragments, the classical ligand-binding domain (LBD) and the EGF precursor homology domain, were expressed in stably transfected HEK 293 cells and isolated. Binding assays showed that the PCSK9 CT domain bound to the LBD at pH 5.4. Thus, CT domain interaction with the LBD of the LDLR at endosomal pH constitutes a second step in the PCSK9-mediated LDLR binding that leads to receptor degradation.

  5. [Binding of glycoprotein β₂-GPI with oxidized low density lipoprotein].

    PubMed

    Zhang, He; Li, Jingda; Chen, Amei; Liu, Qingping

    2017-01-25

    We analyzed the binding of P.rβ₂-GPI-DV with ox-LDL by fluorescence, molecular simulation and circular dichroism. We used SDS-PAGE and Western blotting to identify the purity of P.rβ₂-GPI-DV, fluorescence, circular dichroism spectroscopy and molecular docking simulation to analyze the binding between P.rβ₂-GPI-DV and oxLDL. P.rβ₂-GPI-DV was specifically recognized by anti-His antibody at 12 kDa position. The chromophoric groups, the changes of secondary structure and the molecular docking simulations revealed that the active pocket formed by Cys281-Lys-Asn-Lys-Glu-Lys-Lys287 and Leu313-Ala-Phe-Trp316 of P.rβ₂-GPI-DV and the -COOH carboxyl of oxLig-1 were the key for binding. P.rβ₂-GPI combined with ox-LDL via the fifth functional domain and the -COOH group. Our findings provide theoretical basis to further study the binding between β₂-GPI and ox-LDL in serum.

  6. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels.

    PubMed

    Mayer, Gaétan; Poirier, Steve; Seidah, Nabil G

    2008-11-14

    The proprotein convertase subtilisin/kexin-type 9 (PCSK9), which promotes degradation of the hepatic low density lipoprotein receptor (LDLR), is now recognized as a major player in plasma cholesterol metabolism. Several gain-of-function mutations in PCSK9 cause hypercholesterolemia and premature atherosclerosis, and thus, inhibition of PCSK9-induced degradation of the LDLR may be used to treat this deadly disease. Herein, we discovered an endogenous PCSK9 binding partner by Far Western blotting, co-immunoprecipitation, and pull-down assays. Following two-dimensional gel electrophoresis and mass spectrometry analysis, we demonstrated that PCSK9 binds to a approximately 33-kDa protein identified as annexin A2 (AnxA2) but not to the closely related annexin A1. Furthermore, our functional LDLR assays and small hairpin RNA studies show that AnxA2 and the AnxA2.p11 complex could prevent PCSK9-directed LDLR degradation in HuH7, HepG2, and Chinese hamster ovary cells. Immunocytochemistry revealed that PCSK9 and AnxA2 co-localize at the cell surface, indicating a possible competition with the LDLR. Structure-function analyses demonstrated that the C-terminal cysteine-histidine-rich domain of PCSK9 interacts specifically with the N-terminal repeat R1 of AnxA2. Mutational analysis of this 70-amino acid-long repeat indicated that the RRTKK81 sequence of AnxA2 is implicated in this binding because its mutation to AATAA81 prevents its interaction with PCSK9. To our knowledge, this work constitutes the first to show that PCSK9 activity on LDLR can be regulated by an endogenous inhibitor. The identification of the minimal inhibitory sequence of AnxA2 should pave the way toward the development of PCSK9 inhibitory lead molecules for the treatment of hypercholesterolemia.

  7. Binding of anthracycline derivatives to human serum lipoproteins.

    PubMed

    Chassany, O; Urien, S; Claudepierre, P; Bastian, G; Tillement, J P

    1994-01-01

    The binding of eight anthracycline analogues (including mitoxantrone) to isolated serum lipoproteins (high, low and very low density lipoproteins) was studied in order to elucidate some determinants of their interaction with lipidic structures. Serum lipoproteins were isolated by ultracentrifugation. Drug binding experiments were run by ultrafiltration at 37 degrees C and pH 7.4. Anthracycline concentrations (total and free) were determined by HPLC with fluorometric detection. All the ligands were significantly bound to the three lipoprotein classes, and for each ligand the binding increased as the lipidic fraction of lipoprotein increased. From doxorubicin to iododoxorubicin, there was a tenfold increase in lipoprotein binding (doxorubicin < mitoxantrone < epirubicin < daunorubicin < pirarubicin < aclarubicin < zorubicin < iododoxorubicin). For all the ligands studied, the extent of lipoprotein binding appears to be related to chemical determinants of lipophilicity.

  8. Phosphoethanolamine-complexed C-reactive protein: A pharmacological-like macromolecule that binds to native low-density lipoprotein in human serum

    PubMed Central

    Singh, Sanjay K.; Suresh, Madathilparambil V.; Prayther, Deborah C.; Moorman, Jonathan P.; Rusiñol, Antonio E.; Agrawal, Alok

    2008-01-01

    Background C-reactive protein (CRP) is an acute phase plasma protein. An important binding specificity of CRP is for the modified forms of low-density lipoprotein (LDL) in which the phosphocholine-binding sites of CRP participate. CRP, however, does not bind to native LDL. Methods We investigated the interaction of CRP with native LDL using sucrose density gradient ultracentrifugation. Results We found that the blocking of the phosphocholine-binding sites of CRP with phosphoethanolamine (PEt) converted CRP into a potent molecule for binding to native LDL. In the presence of PEt, CRP acquired the ability to bind to fluid-phase purified native LDL. Because purified native LDL may undergo subtle modifications, we also used whole human serum as the source of native LDL. In the presence of PEt, CRP bound to native LDL in serum also. The effect of PEt on CRP was selective for LDL because PEt-complexed CRP did not bind to high-density lipoprotein in the serum. Conclusions The pharmacologic intervention of endogenous CRP by PEt-based compounds, or the use of exogenously prepared CRP-PEt complexes, may turn out to be an effective approach to capture native LDL cholesterol in vivo to prevent the development of atherosclerosis. PMID:18486609

  9. Baculovirus-mediated expression of human apolipoprotein E in Manduca sexta larvae generates particles that bind to the low density lipoprotein receptor.

    PubMed Central

    Gretch, D G; Sturley, S L; Friesen, P D; Beckage, N E; Attie, A D

    1991-01-01

    Human apolipoprotein E (apoE) is a ligand for the low density lipoprotein (LDL) receptor and mediates the catabolism of several classes of lipoprotein particles. Binding of apoE to the LDL receptor requires association of apoE with lipid in a vesicle or a lipoprotein particle. Because of this requirement, purified apoE or apoE derived directly from bacterial expression systems does not bind to the LDL receptor. To overcome this problem and to facilitate analysis of apoE structure, recombinant baculoviruses containing the human apoE cDNA fused to the polyhedrin promoter of Autographa californica nuclear polyhedrosis virus were constructed. The recombinant viruses were used to infect larvae of the tobacco hornworm Manduca sexta in vivo. High levels of lipoprotein particles containing human apoE were present in the hemolymph of infected larvae. In contrast to apoE produced by recombinant baculovirus-infected insect cells in vitro, these particles were excellent ligands for the LDL receptor. Images PMID:1924311

  10. Purification, crystallization and preliminary X-ray analysis of the ligand-binding domain of human lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1)

    SciTech Connect

    Ishigaki, Tomoko; Ohki, Izuru; Oyama, Takuji; Machida, Sachiko; Morikawa, Kousuke; Tate, Shin-ichi

    2005-05-01

    Two different fragments of the ligand-binding domain of LOX-1, the major receptor for oxidized low-density lipoprotein (LDL) on endothelial cells, have been crystallized in different forms. Two different fragments of the ligand-binding domain of LOX-1, the major receptor for oxidized low-density lipoprotein (LDL) on endothelial cells, have been crystallized in different forms. One crystal form contains the disulfide-linked dimer, which is the form of the molecule present on the cell surface; the other contains a monomeric form of the receptor that lacks the cysteine residue necessary to form disulfide-linked homodimers. The crystal of the monomeric ligand-binding domain belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 56.79, b = 67.57, c = 79.02 Å. The crystal of the dimeric form belongs to space group C2, with unit-cell parameters a = 70.86, b = 49.56, c = 76.73 Å, β = 98.59°. Data for the dimeric form of the LOX-1 ligand-binding domain have been collected to 2.4 Å. For the monomeric form of the ligand-binding domain, native, heavy-atom derivative and SeMet-derivative crystals have been obtained; their diffraction data have been measured to 3.0, 2.4 and 1.8 Å resolution, respectively.

  11. The role of apoproteins AI and AII in binding of high-density lipoprotein3 to membranes derived from bovine aortic endothelial cells.

    PubMed Central

    Vadiveloo, P K; Fidge, N H

    1992-01-01

    Although binding of high-density lipoproteins (HDL) to a variety of cells in culture has been widely reported, the mechanism of this binding has yet to be fully elucidated. The aim of the current studies was to explore the roles of apoproteins (apo) AI and AII in HDL3 binding to membranes derived from bovine aortic endothelial cells. Binding studies showed that HDL3 (which contains both apo AI and apo AII) and AII-HDL3 (which contain only apo AII) bound to membranes with similar affinity (44 +/- 6 and 41 +/- 9 micrograms/ml respectively) and capacity (673 +/- 97 and 969 +/- 101 ng bound/mg of membrane protein respectively). In contrast with these results, HDL3 [AI w/o AII] (which contain apo AI, but not apo AII) bound to the membranes with a significantly higher capacity (2228 +/- 206 ng bound/mg of membrane protein) and lower affinity (65 +/- 3 micrograms/ml) as compared with HDL3 or AII-HDL3. Therefore, although both apo AI and apo AII appear capable of facilitating HDL3 binding, the mechanisms involved probably differ. A model which fits the data postulates that a common receptor exists which binds both apo AI and apo AII, and that a particle containing AII can occupy up to four receptors (partly owing to each AII molecule containing two binding domains), whereas an HDL3 [AI w/o AII] particle can occupy only one. Images Fig. 3. PMID:1599393

  12. Low density lipoprotein receptor-binding activity in human tissues: Quantitative importance of hepatic receptors and evidence for regulation of their expression in vivo

    SciTech Connect

    Rudling, M.J. Karolinska Institutet, Stockholm ); Reihner, E.; Einarsson, K.; Ewerth, S.; Angelin, B. )

    1990-05-01

    The heparin-sensitive binding of {sup 125}I-labeled low-density lipoprotein (LDL) to homogenates from 18 different normal human tissues and some solid tumors was determined. The binding to adrenal and liver homogenates fulfilled criteria established for the binding of LDL to its receptor--namely, (i) saturability, (ii) sensitivity to proteolytic destruction, (iii) inhibition by EDTA, and (iv) heat sensitivity. When the binding of {sup 125}I-labeled LDL was assayed at a constant concentration, the adrenal gland and the ovary had the highest binding of normal tissues. The highest binding per g of tissue overall was obtained in homogenates of a gastric carcinoma and a parotid adenoma. When the weights of the parenchymatous organs were considered, the major amount of LDL receptors was contained in the liver. To study the possible regulation of hepatic LDL-receptor expression, 11 patients were pretreated with cholestyramine. Increased binding activity was obtained in homogenates from liver biopsies from the cholestyramine-treated patients as compared with 12 untreated controls. It is concluded that the liver is the most important organ for LDL catabolism in humans and that the receptor activity in this organ can be regulated upon pharmacologic intervention. Further studies are needed to confirm the possibility that certain solid tumors can exhibit high numbers of LDL receptors.

  13. Binding of the monomeric form of C-reactive protein to enzymatically-modified low-density lipoprotein: effects of phosphoethanolamine

    PubMed Central

    Singh, Sanjay K.; Suresh, Madathilparambil V.; Hammond, David J.; Rusiñol, Antonio E.; Potempa, Lawrence A.; Agrawal, Alok

    2009-01-01

    Background The 5 subunits of native pentameric C-reactive protein (CRP) are dissociated to generate monomeric form of CRP (mCRP) in some in vitro conditions, both physiological and non-physiological, and also in vivo. Many bioactivities of mCRP generated by urea-treatment of CRP and of mCRP generated by mutating the primary structure of CRP have been reported. The bioactivities of mCRP generated by spontaneous dissociation of CRP are largely unexplored. Methods We purified mCRP generated by spontaneous dissociation of CRP and investigated the binding of mCRP to enzymatically-modified low-density lipoprotein (E-LDL). Results mCRP was approximately 60 times more potent than CRP in binding to E-LDL. In the presence of the small-molecule compound phosphoethanolamine (PEt), at 37°C, the binding of mCRP to E-LDL was enhanced <2-fold, while the binding of CRP to E-LDL was enhanced >10-fold. In contrast, PEt inhibited the binding of both CRP and mCRP to pneumococcal C-polysaccharide, another phosphocholine-containing ligand to which CRP and mCRP were found to bind. We have not investigated yet whether PEt alters the structure of CRP at 37°C. Conclusions Combined data suggest that the targeting of CRP with the aim to monomerize CRP in vivo may be an effective approach to capture modified forms of LDL. PMID:19545552

  14. IMMUNOLOGIC STUDIES OF HUMAN HIGH DENSITY LIPOPROTEINS

    PubMed Central

    DeLalla, Louis; Levine, Lawrence; Brown, Ray K.

    1957-01-01

    High density serum lipoprotein underwent serologic and physicochemical alterations on aging during storage at 0°C. for 1 month, as judged by decrease of diffusion coefficient and increase of C' fixation. Ultracentrifugation, dialysis, and high concentrations of sodium chloride did not cause these changes. A protein sedimenting at density 1.24 in the ultracentrifuge reacted with antiserum to high density lipoprotein. Probably it was the protein portion of α lipoprotein dissociated from the lipide during ultracentrifugation. Although the antiserum to high density lipoprotein did not react with low density lipoprotein prepared from normal serum, it reacted with similarly prepared lipoproteins from the serum of a patient with biliary cirrhosis. PMID:13449236

  15. Low-Density Lipoprotein Apheresis

    PubMed Central

    2007-01-01

    Executive Summary Objective To assess the effectiveness and safety of low-density lipoprotein (LDL) apheresis performed with the heparin-induced extracorporeal LDL precipitation (HELP) system for the treatment of patients with refractory homozygous (HMZ) and heterozygous (HTZ) familial hypercholesterolemia (FH). Background on Familial Hypercholesterolemia Familial hypercholesterolemia is a genetic autosomal dominant disorder that is caused by several mutations in the LDL-receptor gene. The reduced number or absence of functional LDL receptors results in impaired hepatic clearance of circulating low-density lipoprotein cholesterol (LDL-C) particles, which results in extremely high levels of LDL-C in the bloodstream. Familial hypercholesterolemia is characterized by excess LDL-C deposits in tendons and arterial walls, early onset of atherosclerotic disease, and premature cardiac death. Familial hypercholesterolemia occurs in both HTZ and HMZ forms. Heterozygous FH is one of the most common monogenic metabolic disorders in the general population, occurring in approximately 1 in 500 individuals1. Nevertheless, HTZ FH is largely undiagnosed and an accurate diagnosis occurs in only about 15% of affected patients in Canada. Thus, it is estimated that there are approximately 3,800 diagnosed and 21,680 undiagnosed cases of HTZ FH in Ontario. In HTZ FH patients, half of the LDL receptors do not work properly or are absent, resulting in plasma LDL-C levels 2- to 3-fold higher than normal (range 7-15mmol/L or 300-500mg/dL). Most HTZ FH patients are not diagnosed until middle age when either they or one of their siblings present with symptomatic coronary artery disease (CAD). Without lipid-lowering treatment, 50% of males die before the age of 50 and 25% of females die before the age of 60, from myocardial infarction or sudden death. In contrast to the HTZ form, HMZ FH is rare (occurring in 1 case per million persons) and more severe, with a 6- to 8-fold elevation in plasma LDL

  16. A mutation in the first ligand-binding repeat of the human very-low-density lipoprotein receptor results in high-affinity binding of the single V1 module to human rhinovirus 2.

    PubMed

    Nizet, Stephane; Wruss, Juergen; Landstetter, Nathalie; Snyers, Luc; Blaas, Dieter

    2005-12-01

    Minor group human rhinoviruses (HRVs) bind members of the low-density lipoprotein receptor family for cell entry. The ligand-binding domains of these membrane proteins are composed of various numbers of direct repeats of about 40 amino acids in length. Residues involved in binding of module 3 (V3) of the very-low-density lipoprotein receptor (VLDLR) to HRV2 have been identified by X-ray crystallography (N. Verdaguer, I. Fita, M. Reithmayer, R. Moser, and D. Blaas, Nat. Struct. Mol. Biol. 11:429-434, 2004). Sequence comparisons of the eight repeats of VLDLR with respect to the residues implicated in the interaction between V3 and HRV2 suggested that (in addition to V3) V1, V2, V5, and V6 also fulfill the requirements for interacting with the virus. Using a highly sensitive binding assay employing phage display, we demonstrate that single modules V2, V3, and V5 indeed bind HRV2. However, V1 does not. A single mutation from threonine 17 to proline converted the nonbinding wild-type form of V1 into a very strong binder. We interpret the dramatic increase in affinity by the generation of a hydrophobic patch between virus and receptor; in the presence of threonine, the contact area might be disturbed. This demonstrates that the interaction between virus and its natural receptors can be strongly enhanced by mutation.

  17. Starvation and diet composition affect mRNA levels of the high density-lipoprotein-beta glucan binding protein in the shrimp Litopenaeus vannamei.

    PubMed

    Muhlia-Almazán, Adriana; Sánchez-Paz, Arturo; García-Carreño, Fernando; Peregrino-Uriarte, Alma Beatriz; Yepiz-Plascencia, Gloria

    2005-10-01

    A high density lipoprotein-beta glucan binding protein (HDL-BGBP) is synthesized in the hepatopancreas of the white shrimp Litopenaeus vannamei and secreted to the hemolymph. Recently, we reported the HDL-BGBP full length cDNA sequence and found that the predicted polypeptide is larger than the mature protein and also, that it contains a long 5'- and 3'-UTRs that may be involved in transcript level regulation. To test whether starvation and feeding may play a role in regulating HDL-BGBP mRNA levels, two different stimuli were evaluated: starvation and composition of diets. After 24 h, the steady state HDL-BGBP mRNA levels of starved shrimp decreased, suggesting that synthesis of the lipoprotein is less required in the absence of food. When shrimp were fed with diets containing different concentrations of protein and lipids, changes in HDL-BGBP mRNA levels were also detected. Shrimp fed the lower concentration of protein and lipid feed accumulated higher levels of HDL-BGBP mRNA. These results indicate that feeding influences HDL-BGBP transcript levels in the hepatopancreas.

  18. Simultaneous binding of the anti-cancer IgM monoclonal antibody PAT-SM6 to low density lipoproteins and GRP78.

    PubMed

    Rosenes, Zachary; Mok, Yee-Foong; Yang, Shuo; Griffin, Michael D W; Mulhern, Terrence D; Hatters, Danny M; Hensel, Frank; Howlett, Geoffrey J

    2013-01-01

    The tumour-derived monoclonal IgM antibody PAT-SM6 specifically kills malignant cells by an apoptotic mechanism linked to the excessive uptake of plasma lipids. The mechanism is postulated to occur via the multi-point attachment of PAT-SM6 to the unfolded protein response regulator GRP78, located on the surface of tumour cells, coupled to the simultaneous binding of plasma low density lipoprotein (LDL). We prepared and characterised LDL and oxidized LDL using sedimentation velocity and small-angle X-ray scattering (SAXS) analysis. Enzyme-linked immunosorbent (ELISA) techniques indicated apparent dissociation constants of approximately 20 nM for the binding of LDL or oxidized LDL to PAT-SM6. ELISA experiments showed cross competition with LDL inhibiting PAT-SM6 binding to immobilised GRP78, while, in the reverse experiment, GRP78 inhibited PAT-SM6 binding to immobilized LDL. In contrast to the results of the ELISA experiments, sedimentation velocity experiments indicated relatively weak interactions between LDL and PAT-SM6, suggesting immunoabsorbance to the microtiter plate is driven by an avidity-based binding mechanism. The importance of avidity and the multipoint attachment of antigens to PAT-SM6 was further investigated using antigen-coated polystyrene beads. Absorption of GRP78 or LDL to polystyrene microspheres led to an increase in the inhibition of PAT-SM6 binding to microtiter plates coated with GRP78 or LDL, respectively. These results support the hypothesis that the biological action of PAT-SM6 in tumour cell apoptosis depends on the multivalent nature of PAT-SM6 and the ability to interact simultaneously with LDL and multiple GRP78 molecules clustered on the tumour cell surface.

  19. Up-regulation of ATP Binding Cassette Transporter A1 Expression by Very Low Density Lipoprotein Receptor and Apolipoprotein E Receptor 2*

    PubMed Central

    Chen, Xinping; Guo, Zhongmao; Okoro, Emmanuel U.; Zhang, Hongfeng; Zhou, LiChun; Lin, Xinhua; Rollins, Allman T.; Yang, Hong

    2012-01-01

    Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells. Treatment of these mouse macrophages with reelin or human apoE3 significantly increased ABCA1 mRNA and protein levels, and apoAI-mediated cholesterol efflux. In addition, both reelin and apoE3 significantly increased phosphorylated disabled-1 (Dab1), phosphatidylinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ), and specificity protein 1 (Sp1). This reelin- or apoER2-mediated up-regulation of ABCA1 expression was suppressed by 1) knockdown of Dab1, VLDLR, and apoER2 with small interfering RNAs (siRNAs), 2) inhibition of PI3K and PKC with kinase inhibitors, 3) overexpression of kinase-dead PKCζ, and 4) inhibition of Sp1 DNA binding with mithramycin A. Activation of the Dab1-PI3K signaling pathway has been implicated in VLDLR- and apoER2-mediated cellular functions, whereas the PI3K-PKCζ-Sp1 signaling cascade has been implicated in the regulation of ABCA1 expression induced by apoE/apoB-carrying lipoproteins. Taken together, these data support a model in which activation of VLDLR and apoER2 by reelin and apoE induces ABCA1 expression and cholesterol efflux via a Dab1-PI3K-PKCζ-Sp1 signaling cascade. PMID:22170052

  20. Development and application of a nonradioactive binding assay of oxidized low-density lipoprotein to macrophage scavenger receptors

    PubMed Central

    Montano, Erica N.; Boullier, Agnès; Almazan, Felicidad; Binder, Christoph J.; Witztum, Joseph L.; Hartvigsen, Karsten

    2013-01-01

    Macrophages play a key role in atherogenesis in part through excessive uptake of oxidized LDL (OxLDL) via scavenger receptors. Binding of OxLDL to macrophages has traditionally been assessed using radiolabeled OxLDL. To allow more efficient and convenient measurements, we developed a nonradioactive binding assay in which biotinylated OxLDL (Bt-OxLDL) is added to macrophages in 96-well microtiter culture plates under various conditions and the extent of binding is determined using solid phase chemiluminescent immunoassay techniques. As examples, we show that Bt-OxLDL displayed high and saturable binding to macrophages in contrast to Bt-LDL, which showed very low binding. In competition assays, unlabeled OxLDL and the anti-OxLDL monoclonal antibody E06 inhibited Bt-OxLDL binding to macrophages in a dose-dependent manner. Specific binding of Bt-OxLDL to ApoE/SR-A/CD36 triple knockout macrophages was reduced by 80% as compared with binding to macrophages from ApoE knockout mice. Binding of Bt-OxLDL to CD36 transfected COS-7 cells showed enhanced saturable binding compared with mock-transfected cells. This assay avoids the use of radioactivity and uses small amounts of materials. It can be used to study binding of OxLDL to macrophages and factors that influence this binding. The techniques described should be readily adaptable to study of other ligands, receptors, and cell types. PMID:23997238

  1. Binding of thyroglobulin (Tg) to the low-density lipoprotein receptor-associated protein (RAP) during the biosynthetic pathway prevents premature Tg interactions with sortilin.

    PubMed

    Botta, R; Lisi, S; Rotondo Dottore, G; Vitti, P; Marinò, M

    2017-04-05

    Sortilin, a Vps10p family member, is expressed by thyroid epithelial cells (TEC), where it binds to internalized thyroglobulin (Tg) molecules. Premature binding of Tg to sortilin during biosynthesis may cause intracellular retention of Tg. Such a premature interaction may be prevented by one or more inhibitor/s. Because both sortilin and Tg bind to the low-density lipoprotein receptor-associated protein (RAP), we investigated whether RAP serves such a function. Immunofluorescence staining for sortilin, Tg, and RAP was performed in FRTL-5 cells. Co-immunoprecipitation experiments were performed in extracts from FRTL-5 or COS-7 cells, the former co-transfected with Tg and/or RAP and/or sortilin, or in thyroid extracts from RAP KO mice. Tg and sortilin did not co-localize in FRTL-5 cells following inhibition of protein synthesis, suggesting that newly synthesized, endogenous sortilin and Tg do not interact, in confirmation of which an anti-sortilin antibody did not co-precipitate Tg in FRTL-5 cells. In contrast, Tg co-localized with RAP in FRTL-5 cells. Co-immunoprecipitation of Tg with an anti-sortilin antibody in COS-7 cells transfected with sortilin and Tg was abolished when cells were co-transfected with RAP, indicating that RAP prevents binding of Tg to sortilin during biosynthesis, in confirmation of which an anti-sortilin antibody co-precipitated Tg in thyroid extracts from RAP KO mice to a greater extent than in thyroid extracts from WT mice. Tg does not bind prematurely to sortilin because of its interaction with RAP during protein biosynthesis. These findings add new information to the knowledge of thyroid physiology.

  2. The ATP-binding cassette transporter-2 (ABCA2) regulates cholesterol homeostasis and low-density lipoprotein receptor metabolism in N2a neuroblastoma cells.

    PubMed

    Davis, Warren

    2011-12-01

    The ATP-binding cassette transporter-2 (ABCA2) has been identified as a possible regulator of lipid metabolism. ABCA2 is most highly expressed in the brain but its effects on cholesterol homeostasis in neuronal-type cells have not been characterized. It is important to study the role of ABCA2 in regulating cholesterol homeostasis in neuronal-type cells because ABCA2 has been identified as a possible genetic risk factor for Alzheimer's disease. In this study, the effects of ABCA2 expression on cholesterol homeostasis were examined in mouse N2a neuroblastoma cells. ABCA2 reduced total, free- and esterified cholesterol levels as well as membrane cholesterol but did not perturb cholesterol distribution in organelle or lipid raft compartments. ABCA2 did not modulate de novo cholesterol biosynthesis from acetate. Cholesterol trafficking to the plasma membrane was not affected by ABCA2 but efflux to the physiological acceptor ApoE3 and mobilization of plasma membrane cholesterol to the endoplasmic reticulum for esterification were reduced by ABCA2. ABCA2 reduced esterification of serum and low-density lipoprotein-derived cholesterol but not 25-hydroxycholesterol. ABCA2 decreased low-density lipoprotein receptor (LDLR) mRNA and protein levels and increased its turnover rate. The surface expression of LDLR as well as the uptake of fluroresecent DiI-LDL was also reduced by ABCA2. Reduction of endogenous ABCA2 expression by RNAi treatment of N2a cells and rat primary cortical neurons produced the opposite effects of over-expression of ABCA2, increasing LDLR protein levels. This report identifies ABCA2 as a key regulator of cholesterol homeostasis and LDLR metabolism in neuronal cells.

  3. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor.

    PubMed

    de Aguiar Vallim, Thomas Q; Tarling, Elizabeth J; Kim, Tammy; Civelek, Mete; Baldán, Ángel; Esau, Christine; Edwards, Peter A

    2013-06-07

    The bile acid receptor farnesoid X receptor (FXR) regulates many aspects of lipid metabolism by variouscomplex and incompletely understood molecular mechanisms. We set out to investigate the molecular mechanisms for FXR-dependent regulation of lipid and lipoprotein metabolism. To identify FXR-regulated microRNAs that were subsequently involved in regulating lipid metabolism. ATP binding cassette transporter A1 (ABCA1) is a major determinant of plasma high-density lipoprotein (HDL)-cholesterol levels. Here, we show that activation of the nuclear receptor FXR in vivo increases hepatic levels of miR-144, which in turn lowers hepatic ABCA1 and plasma HDL levels. We identified 2 complementary sequences to miR-144 in the 3' untranslated region of ABCA1 mRNA that are necessary for miR-144-dependent regulation. Overexpression of miR-144 in vitro decreased both cellular ABCA1 protein and cholesterol efflux to lipid-poor apolipoprotein A-I protein, whereas overexpression in vivo reduced hepatic ABCA1 protein and plasma HDL-cholesterol. Conversely, silencing miR-144 in mice increased hepatic ABCA1 protein and HDL-cholesterol. In addition, we used tissue-specific FXR-deficient mice to show that induction of miR-144 and FXR-dependent hypolipidemia requires hepatic, but not intestinal, FXR. Finally, we identified functional FXR response elements upstream of the miR-144 locus, consistent with direct FXR regulation. We have identified a novel pathway involving FXR, miR-144, and ABCA1 that together regulate plasma HDL-cholesterol.

  4. Surface plasmon resonance analysis of the mechanism of binding of apoA-I to high density lipoprotein particles

    PubMed Central

    Lund-Katz, Sissel; Nguyen, David; Dhanasekaran, Padmaja; Kono, Momoe; Nickel, Margaret; Saito, Hiroyuki; Phillips, Michael C.

    2010-01-01

    The partitioning of apolipoprotein A-I (apoA-I) molecules in plasma between HDL-bound and -unbound states is an integral part of HDL metabolism. We used the surface plasmon resonance (SPR) technique to monitor in real time the reversible binding of apoA-I to HDL. Biotinylated human HDL2 and HDL3 were immobilized on a streptavidin-coated SPR sensor chip, and apoA-I solutions at different concentrations were flowed across the surface. The wild-type (WT) human and mouse apoA-I/HDL interaction involves a two-step process; apoA-I initially binds to HDL with fast association and dissociation rates, followed by a step exhibiting slower kinetics. The isolated N-terminal helix bundle domains of human and mouse apoA-I also exhibit a two-step binding process, consistent with the second slower step involving opening of the helix bundle domain. The results of fluorescence experiments with pyrene-labeled apoA-I are consistent with the N-terminal helix bundle domain interacting with proteins resident on the HDL particle surface. Dissociation constants (Kd) measured for WT human apoA-I interactions with HDL2 and HDL3 are about 10 µM, indicating that the binding is low affinity. This Kd value does not apply to all of the apoA-I molecules on the HDL particle but only to a relatively small, labile pool. PMID:19786567

  5. Complement Factor H Binds to Human Serum Apolipoprotein E and Mediates Complement Regulation on High Density Lipoprotein Particles.

    PubMed

    Haapasalo, Karita; van Kessel, Kok; Nissilä, Eija; Metso, Jari; Johansson, Tiira; Miettinen, Sini; Varjosalo, Markku; Kirveskari, Juha; Kuusela, Pentti; Chroni, Angelika; Jauhiainen, Matti; van Strijp, Jos; Jokiranta, T Sakari

    2015-11-27

    The alternative pathway of complement is an important part of the innate immunity response against foreign particles invading the human body. To avoid damage to host cells, it needs to be efficiently down-regulated by plasma factor H (FH) as exemplified by various diseases caused by mutations in its domains 19-20 (FH19-20) and 5-7 (FH5-7). These regions are also the main interaction sites for microbial pathogens that bind host FH to evade complement attack. We previously showed that inhibition of FH binding by a recombinant FH5-7 construct impairs survival of FH binding pathogens in human blood. In this study we found that upon exposure to full blood, the addition of FH5-7 reduces survival of, surprisingly, also those microbes that are not able to bind FH. This effect was mediated by inhibition of complement regulation and subsequently enhanced neutrophil phagocytosis by FH5-7. We found that although FH5-7 does not reduce complement regulation in the actual fluid phase of plasma, it reduces regulation on HDL particles in plasma. Using affinity chromatography and mass spectrometry we revealed that FH interacts with serum apolipoprotein E (apoE) via FH5-7 domains. Furthermore, binding of FH5-7 to HDL was dependent on the concentration of apoE on the HDL particles. These findings explain why the addition of FH5-7 to plasma leads to excessive complement activation and phagocytosis of microbes in full anticoagulated blood. In conclusion, our data show how FH interacts with apoE molecules via domains 5-7 and regulates alternative pathway activation on plasma HDL particles.

  6. Plasma triglycerides determine low density lipoprotein composition, physical properties, and cell-specific binding in cultured cells.

    PubMed Central

    McKeone, B J; Patsch, J R; Pownall, H J

    1993-01-01

    The relationship between the plasma triglycerides and the LDL triglycerides of 30 normal and 48 hypertriglyceridemic subjects has been quantified; the data fit a simple adsorption isotherm, LDL triglyceride/(LDL triglyceride+LDL cholesterol ester) = 0.65 plasma triglyceride/(464 + plasma triglyceride). In vitro transfer of triglyceride from concentrated VLDL to VLDL-depleted plasma produced triglyceride-rich LDL that had similar properties. LDL uptake by HepG2 cells increased with LDL triglyceride content whereas the reverse was found with skin fibroblasts. At 37 degrees C, the cores of both normal and hypertriglyceridemic LDL were isotropic liquids. Circular dichroic spectra revealed no difference in the secondary structure of normal and triglyceride-rich LDL. The affinity of monoclonal antibody MB47, which binds to the receptor ligand of apo B-100 was independent of LDL triglyceride content. MB3, which binds near residue 1022 of apo B-100, showed a triglyceride-dependent decrease in affinity for LDL from hypertriglyceridemic subjects and from in vitro incubations. LDL with an elevated triglyceride content formed in vitro had reduced proteolytic cleavage of apo B-100 by Staphylococcus aureus V8 protease. From these data, we infer that (a) LDL triglyceride is a predictable function of plasma triglyceride, (b) triglyceride induces subtle changes in apo B-100 structure at a site that is remote from the putative receptor binding ligand, and (c) the triglyceride-dependent receptor-binding determinants of apo B-100 are recognized differently by fibroblasts and HepG2 cells. Images PMID:8387537

  7. Inhibition of lectin-like oxidized low-density lipoprotein receptor-1 reduces cardiac fibroblast proliferation by suppressing GATA Binding Protein 4

    SciTech Connect

    Liu, Bin; Liu, Ning-Ning; Liu, Wei-Hua; Zhang, Shuang-Wei; Zhang, Jing-Zhi; Li, Ai-Qun; Liu, Shi-Ming

    2016-07-08

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and GATA Binding Protein 4 (GATA4) are important for the growth of cardiac fibroblasts (CFs). When deregulated, LOX-1 and GATA4 can cause cardiac remodeling. In the present study, we found novel evidence that GATA4 was required for the LOX-1 regulation of CF proliferation. The inhibition of LOX-1 by RNA interference LOX-1 lentivirus resulted in the loss of PI3K/Akt activation and GATA4 protein expression. The overexpression of LOX-1 by lentivirus rescued CF proliferation, PI3K/Akt activation, and GATA4 protein expression. Moreover, GATA4 overexpression enhanced CF proliferation with LOX-1 inhibition. We also found that the inhibition of PI3K/Akt activation by LY294002, a PI3K inhibitor, reduced cell proliferation and protein level of GATA4. In summary, GATA4 may play an important role in the LOX-1 and PI3K/Akt regulation of CF proliferation. -- Highlights: •GATA4 is regulated by LOX-1 signaling in CFs. •GATA4 is involved in LOX-1 regulating CF proliferation. •GATA4 is regulated by PI3K/Akt signaling in CFs.

  8. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor.

    PubMed

    Zhang, Yingnan; Eigenbrot, Charles; Zhou, Lijuan; Shia, Steven; Li, Wei; Quan, Clifford; Tom, Jeffrey; Moran, Paul; Di Lello, Paola; Skelton, Nicholas J; Kong-Beltran, Monica; Peterson, Andrew; Kirchhofer, Daniel

    2014-01-10

    PCSK9 (proprotein convertase subtilisin/kexin type 9) is a negative regulator of the hepatic LDL receptor, and clinical studies with PCSK9-inhibiting antibodies have demonstrated strong LDL-c-lowering effects. Here we screened phage-displayed peptide libraries and identified the 13-amino acid linear peptide Pep2-8 as the smallest PCSK9 inhibitor with a clearly defined mechanism of inhibition that has been described. Pep2-8 bound to PCSK9 with a KD of 0.7 μm but did not bind to other proprotein convertases. It fully restored LDL receptor surface levels and LDL particle uptake in PCSK9-treated HepG2 cells. The crystal structure of Pep2-8 bound to C-terminally truncated PCSK9 at 1.85 Å resolution showed that the peptide adopted a strand-turn-helix conformation, which is remarkably similar to its solution structure determined by NMR. Consistent with the functional binding site identified by an Ala scan of PCSK9, the structural Pep2-8 contact region of about 400 Å(2) largely overlapped with that contacted by the EGF(A) domain of the LDL receptor, suggesting a competitive inhibition mechanism. Consistent with this, Pep2-8 inhibited LDL receptor and EGF(A) domain binding to PCSK9 with IC50 values of 0.8 and 0.4 μm, respectively. Remarkably, Pep2-8 mimicked secondary structural elements of the EGF(A) domain that interact with PCSK9, notably the β-strand and a discontinuous short α-helix, and it engaged in the same β-sheet hydrogen bonds as EGF(A) does. Although Pep2-8 itself may not be amenable to therapeutic applications, this study demonstrates the feasibility of developing peptidic inhibitors to functionally relevant sites on PCSK9.

  9. The ligand-binding profile of HARE: hyaluronan and chondroitin sulfates A, C, and D bind to overlapping sites distinct from the sites for heparin, acetylated low-density lipoprotein, dermatan sulfate, and CS-E

    PubMed Central

    Harris, Edward N.; Weigel, Paul H.

    2008-01-01

    The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341–17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. 125I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE. PMID:18499864

  10. Apolipoprotein AI tertiary structures determine stability and phospholipid-binding activity of discoidal high-density lipoprotein particles of different sizes

    SciTech Connect

    Chen, Bin; Ren, Xuefeng; Neville, Tracey; Jerome, W. Gray; Hoyt, David W.; Sparks, Daniel L.; Ren, Gang; Wang, Jianjun

    2009-05-18

    Human high-density lipoprotein (HDL) plays a key role in the reverse cholesterol transport pathway that delivers excess cholesterol back to the liver for clearance. In vivo, HDL particles vary in size, shape and biological function. The discoidal HDL is a 140-240 kDa, disk-shaped intermediate of mature HDL. During mature spherical HDL formation, discoidal HDLs play a key role in loading cholesterol ester onto the HDL particles by activating the enzyme, lecithin:cholesterol acyltransferase (LCAT). One of the major problems for high-resolution structural studies of discoidal HDL is the difficulty in obtaining pure and, foremost, homogenous sample. We demonstrate here that the commonly used cholate dialysis method for discoidal HDL preparation usually contains 5-10% lipid-poor apoAI that significantly interferes with the high-resolution structural analysis of discoidal HDL using biophysical methods. Using an ultracentrifugation method, we quickly removed lipid-poor apoAI. We also purified discoidal reconstituted HDL (rHDL) into two pure discoidal HDL species of different sizes that are amendable for high-resolution structural studies. A small rHDL has a diameter of 7.6 nm, and a large rHDL has a diameter of 9.8 nm. We show that these two different sizes of discoidal HDL particles display different stability and phospholipid-binding activity. Interestingly, these property/functional differences are independent from the apoAI -helical secondary structure, but are determined by the tertiary structural difference of apoAI on different discoidal rHDL particles, as evidenced by two-dimensional NMR and negative stain electron microscopy data. Our result further provides the first high-resolution NMR data, demonstrating a promise of structural determination of discoidal HDL at atomic resolution using a combination of NMR and other biophysical techniques.

  11. Protein Phosphatase 2A (PP2A) Regulates Low Density Lipoprotein Uptake through Regulating Sterol Response Element-binding Protein-2 (SREBP-2) DNA Binding*

    PubMed Central

    Rice, Lyndi M.; Donigan, Melissa; Yang, Muhua; Liu, Weidong; Pandya, Devanshi; Joseph, Biny K.; Sodi, Valerie; Gearhart, Tricia L.; Yip, Jenny; Bouchard, Michael; Nickels, Joseph T.

    2014-01-01

    LDL-cholesterol (LDL-C) uptake by Ldlr is regulated at the transcriptional level by the cleavage-dependent activation of membrane-associated sterol response element-binding protein (SREBP-2). Activated SREBP-2 translocates to the nucleus, where it binds to an LDLR promoter sterol response element (SRE), increasing LDLR gene expression and LDL-C uptake. SREBP-2 cleavage and translocation steps are well established. Several SREBP-2 phosphorylation sites have been mapped and functionally characterized. The phosphatases dephosphorylating these sites remain elusive. The phosphatase(s) regulating SREBP-2 represents a novel pharmacological target for treating hypercholesterolemia. Here we show that protein phosphatase 2A (PP2A) promotes SREBP-2 LDLR promoter binding in response to cholesterol depletion. No binding to an LDLR SRE was observed in the presence of the HMG-CoA reductase inhibitor, lovastatin, when PP2A activity was inhibited by okadaic acid or depleted by siRNA methods. SREBP-2 cleavage and nuclear translocation were not affected by loss of PP2A. PP2A activity was required for SREBP-2 DNA binding. In response to cholesterol depletion, PP2A directly interacted with SREBP-2 and altered its phosphorylation state, causing an increase in SREBP-2 binding to an LDLR SRE site. Increased binding resulted in induced LDLR gene expression and increased LDL uptake. We conclude that PP2A activity regulates cholesterol homeostasis and LDL-C uptake. PMID:24770487

  12. Excessive centrifugal fields damage high density lipoprotein[S

    PubMed Central

    Munroe, William H.; Phillips, Martin L.; Schumaker, Verne N.

    2015-01-01

    HDL is typically isolated ultracentrifugally at 40,000 rpm or greater, however, such high centrifugal forces are responsible for altering the recovered HDL particle. We demonstrate that this damage to HDL begins at approximately 30,000 rpm and the magnitude of loss increases in a rotor speed-dependent manner. The HDL is affected by elevated ultracentrifugal fields resulting in a lower particle density due to the shedding of associated proteins. To circumvent the alteration of the recovered HDL, we utilize a KBr-containing density gradient and a lowered rotor speed of 15,000 rpm to separate the lipoproteins using a single 96 h centrifugation step. This recovers the HDL at two density ranges; the bulk of the material has a density of about 1.115 g/ml, while lessor amounts of material are recovered at >1.2 g/ml. Thus, demonstrating the isolation of intact HDL is possible utilizing lower centrifuge rotor speeds. PMID:25910941

  13. Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein

    PubMed Central

    1995-01-01

    We have recently shown that lipopolysaccharide (LPS)-binding protein (LBP) is a lipid transfer protein that catalyzes two distinct reactions: movement of bacterial LPS (endotoxin) from LPS micelles to soluble CD14 (sCD14) and movement of LPS from micelles to reconstituted high density lipoprotein (R-HDL) particles. Here we show that LBP facilitates a third lipid transfer reaction: movement of LPS from LPS- sCD14 complexes to R-HDL particles. This action of LBP is catalytic, with one molecule of LBP enabling the movement of multiple LPS molecules into R-HDL. LBP-catalyzed movement of LPS from LPS-sCD14 complexes to R-HDL neutralizes the capacity of LPS to stimulate polymorphonuclear leukocytes. Our findings show that LPS may be transferred to R-HDL either by the direct action of LBP or by a two- step reaction in which LPS is first transferred to sCD14 and subsequently to R-HDL. We have observed that the two-step pathway of LPS transfer to R-HDL is strongly favored over direct transfer. Neutralization of LPS by LBP and R-HDL was accelerated more than 30- fold by addition of sCD14. Several observations suggest that sCD14 accelerates this reaction by serving as a shuttle for LPS: addition of LBP and sCD14 to LPS micelles resulted in LPS-sCD14 complexes that could diffuse through a 100-kD cutoff filter; LPS-sCD14 complexes appeared transiently during movement of LPS to R-HDL facilitated by purified LBP; and sCD14 could facilitate transfer of LPS to R-HDL without becoming part of the final LPS-R-HDL complex. Complexes of LPS and sCD14 were formed transiently when LPS was incubated in plasma, suggesting that these complexes may play a role as intermediates in the neutralization of LPS under physiological conditions. These findings detail a new activity for sCD14 and suggest a novel mechanism for lipid transfer by LBP. PMID:7536794

  14. Low-density lipoprotein density determination by electric conductivity.

    PubMed

    Fernández-Higuero, José A; Salvador, Ana M; Arrondo, José L R; Milicua, José Carlos G

    2011-10-15

    The predominance of small dense low-density lipoprotein (LDL) particles is associated with an increased risk of coronary heart disease. A simple but precise method has been developed, based on electrical conductivity of an isopycnic gradient of KBr, to obtain density values of human LDL fraction. The results obtained can distinguish LDL density populations and their subfractions from different patients. These data were corroborated by Fourier transform infrared spectroscopy (FTIR) (structure) and light-scattering analyses (size).

  15. Low density lipoprotein and very low density lipoprotein are selectively bound by aggregated C-reactive protein.

    PubMed

    de Beer, F C; Soutar, A K; Baltz, M L; Trayner, I M; Feinstein, A; Pepys, M B

    1982-07-01

    C-reactive protein (CRP), the classical acute-phase protein, can bind phospholipids by virtue of its specific, calcium-dependent reactivity with phosphorylcholine residues. However, analysis of acute-phase serum by gel filtration and by density gradient ultracentrifugation showed that the CRP was in a free, uncomplexed form, despite the coexistent presence of the various classes of serum lipoproteins, all of which contain phospholipids. In contrast, when isolated CRP was aggregated by immobilization at a sufficient density on a solid phase and then exposed to normal human serum, it selectively bound low density lipoprotein (LDL) and traces of very low density lipoprotein. The reaction was calcium dependent and reversible by free phosphorylcholine but not by heparin. LDL isolated from normal plasma was also bound by aggregated CRP. CRP reacts in vitro with a wide variety of different ligands both of extrinsic and of autogenous origin, e.g., microbial products and damaged cell membranes, respectively. If CRP aggregated in vivo by complexing with these ligands than acquires the capacity to selectively bind LDL, the phenomenon may have significant implications for the function of CRP and for the metabolism, clearance, and deposition of LDL.

  16. Specific binding and uptake of apolipoprotein E-free high density lipoproteins (apo E-free HDL) by cultured liver parenchymal cells of copper-deficient rats

    SciTech Connect

    Zhang, J.; Carr, T.P.; Lei, K.Y. )

    1989-02-09

    Weanling male Sprague-Dawley rats were assigned to two dietary treatments; copper-deficient (CD, 1.0 ppm) and adequate (CA, 6.7 ppm). After 8 weeks, plasma apo E-free HDL were isolated by a combination of ultracentrifugation, gel filtration, and heparin-Sepharose affinity chromatography. Liver parenchymal cells obtained by collagenase perfusion and Percoll gradient centrifugation were cultured for 16 hr. Cells were then incubated with {sup 125}I-apo E-free HDL, either from the same treatment group or in a crossover design, in order to establish if treatment differences were associated with cells and/or lipoproteins. Cells were incubate with apo E-free HDL for 2, 6, 12, and 24 hr in the presence or absence of excess unlabeled apo E-free HDL. Binding studies at 4{degree}C indicated a small but significant increases in specific binding in CD cells regardless of the source of apo E-free HDL. In cell association studies at 37{degree}C, CD cells demonstrated similar marked increases of apo E-free HDL uptake from both treatment groups. The increase in uptake may be associated with an increased expression of HDL binding sites in CD cells. These findings are consistent with recent in vivo studies which indicate plasma clearance and tissue uptake of total HDL are increased in copper-deficient rats.

  17. Low-density lipoprotein apheresis: an overview.

    PubMed

    Bambauer, Rolf; Schiel, Ralf; Latza, Reinhard

    2003-08-01

    Atherosclerosis with myocardial infarction, stroke, and peripheral cellular disease still maintains its position at the top of morbidity and mortality statistics in industrialized nations. Established risk factors widely accepted are smoking, arterial hypertension, diabetes mellitus, and central obesity. Furthermore, there is a strong correlation between hyperlipidemia and atherosclerosis. The prognosis of patients suffering from severe hyperlipidemia, sometimes combined with elevated lipoprotein (a) (Lpa) levels, and coronary heart disease (CHD) refractory to diet and lipid-lowering drugs is poor. For such patients, regular treatment with low-density lipoprotein (LDL) apheresis is the therapeutic option. Today, there are four different LDL apheresis systems available: immunoadsorption, heparin-induced extracorporeal LDL/fibrinogen precipitation, dextran sulfate LDL adsorption and LDL hemoperfusion. Regarding the different LDL apheresis systems used, there is no significant difference with respect to the clinical outcome or concerning total cholesterol, LDL, high-density lipoprotein (HDL), or triglyceride concentrations. With respect to elevated Lpa levels, however, the immunoadsorption method seems to be the most effective. In 45 patients (25 women, 20 men) suffering from familial hypercholesterolemia resistant to diet and lipid lowering drugs, low-density lipoprotein (LDL) apheresis was performed over 95.6 +/- 44.7 months. Four different systems (Liposorber, 32 of 45, Kaneka, Osaka, Japan; Therasorb, 6 of 45, Baxter, Munich, Germany; Lipopak, 2 of 45, Pocard, Moscow, Russia; and Dali, 5 of 45, Fresenius, St. Wendel, Germany) were used. With all methods, average reductions of 57% for total cholesterol, 55.9% for LDL, 75.8% for lipoprotein a (Lpa), and 45.9% for triglycerides, and an average increase of 14.3% for HDL were reached. Severe side-effects such as shock or allergic reactions were very rare (0.3%) in all methods. In the course of treatment, an improvement

  18. Amphotericin B toxicity as related to the formation of oxidatively modified low-density lipoproteins.

    PubMed

    Barwicz, J; Dumont, I; Ouellet, C; Gruda, I

    1998-01-01

    The effect of amphotericin B on the oxidation and degradation of low- and high-density lipoproteins was investigated by UV-vis spectroscopy, electron microscopy, electrophoresis, and size-exclusion chromatography. Two formulations of the drug were used: the commercial Fungizone and a new, less toxic, liposomal formulation, AmBisome. It was shown that Fungizone strongly enhanced the oxidative deformation of low-density lipoprotein structure while AmBisome did not bind to this lipoprotein fraction and did not affect its oxidation. It was shown that amphotericin B contained in Fungizone extracted cholesterol from low-density lipoproteins which sensitized them to oxidation. Both formulations of amphotericin B studied here did not bind to high-density lipoprotein and did not affect the process of its oxidation.

  19. Allotypy of High Density Lipoprotein of Rabbit Serum

    PubMed Central

    Berg, Kåre; Boman, Helge; Torsvik, Harald; Walker, Suzanne M.

    1971-01-01

    A common antigenic polymorphism of high density lipoprotein (HDL) in rabbit serum is described. The presence or absence of an antigen termed Hl 1 appears to be controlled by autosomal dominant inheritance. The polymorphism should be a useful tool in the study of serum lipoproteins, particularly since genetic polymorphisms within the low density lipoprotein are already known in several species. The Hl polymorphism may make the rabbit more useful for model studies of serum lipoproteins in health and disease. Images PMID:4995822

  20. Human Serum Amyloid A3 (SAA3) Protein, Expressed as a Fusion Protein with SAA2, Binds the Oxidized Low Density Lipoprotein Receptor

    PubMed Central

    Tomita, Takeshi; Ieguchi, Katsuaki; Sawamura, Tatsuya; Maru, Yoshiro

    2015-01-01

    Serum amyloid A3 (SAA3) possesses characteristics distinct from the other serum amyloid A isoforms, SAA1, SAA2, and SAA4. High density lipoprotein contains the latter three isoforms, but not SAA3. The expression of mouse SAA3 (mSAA3) is known to be up-regulated extrahepatically in inflammatory responses, and acts as an endogenous ligand for the toll-like receptor 4/MD-2 complex. We previously reported that mSAA3 plays an important role in facilitating tumor metastasis by attracting circulating tumor cells and enhancing hyperpermeability in the lungs. On the other hand, human SAA3 (hSAA3) has long been regarded as a pseudogene, which is in contrast to the abundant expression levels of the other isoforms. Although the nucleotide sequence of hSAA3 is very similar to that of the other SAAs, a single oligonucleotide insertion in exon 2 causes a frame-shift to generate a unique amino acid sequence. In the present study, we identified that hSAA3 was transcribed in the hSAA2-SAA3 fusion transcripts of several human cell lines. In the fusion transcript, hSAA2 exon 3 was connected to hSAA3 exon 1 or hSAA3 exon 2, located approximately 130kb downstream from hSAA2 exon 3 in the genome, which suggested that it is produced by alternative splicing. Furthermore, we succeeded in detecting and isolating hSAA3 protein for the first time by an immunoprecipitation-enzyme linked immune assay system using monoclonal and polyclonal antibodies that recognize the hSAA3 unique amino acid sequence. We also demonstrated that hSAA3 bound oxidized low density lipoprotein receptor (oxLDL receptor, LOX-1) and elevated the phosphorylation of ERK, the intracellular MAP-kinase signaling protein. PMID:25738827

  1. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans

    USDA-ARS?s Scientific Manuscript database

    Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol are risk factors for cardiovascular disease and blood triglycerides reflect key metabolic processes including sensitivity to insulin. Blood lipoprotein and lipid concentrations are heritable. To date, the identification o...

  2. Regulation of high density lipoprotein levels

    SciTech Connect

    Krauss, R.M.

    1982-03-01

    An increasing awareness of the physiologic and pathologic importance of serum high density lipoproteins (HDL) has led to a large number of observations regarding factors which influence their concentrations. HDL consists of a heterogeneous collection of macromolecules with diverse physical properties and chemical constituents. While laboratory techniques have made it possible to measure HDL and their individual components, there are as yet large gaps in our knowledge of the biochemical mechanisms and clinical significance of changes in these laboratory parameters. In this review, current concepts of the structure and metabolism of HDL will be briefly summarized, and the factors influencing their levels in humans will be surveyed. 313 references.

  3. Specificity of binding of the low density lipoprotein receptor-related protein to different conformational states of the clade E serpins plasminogen activator inhibitor-1 and proteinase nexin-1.

    PubMed

    Jensen, Jan K; Dolmer, Klavs; Gettins, Peter G W

    2009-07-03

    The low density lipoprotein receptor-related protein (LRP) is the principal clearance receptor for serpins and serpin-proteinase complexes. The ligand binding regions of LRP consist of clusters of cysteine-rich approximately 40-residue complement-like repeats (CR), with cluster II being the principal ligand-binding region. To better understand the specificity of binding at different sites within the cluster and the ability of LRP to discriminate in vivo between uncomplexed and proteinase-complexed serpins, we have systematically examined the affinities of plasminogen activator inhibitor-1 (PAI-1) and proteinase nexin-1 (PN-1) in their native, cleaved, and proteinase-complexed states to (CR)(2) and (CR)(3) fragments of LRP cluster II. A consistent blue shift of the CR domain tryptophan fluorescence suggested a common mode of serpin binding, involving lysines on the serpin engaging the acidic region around the calcium binding site of the CR domain. High affinity binding of non-proteinase-complexed PAI-1 and PN-1 occurred to all fragments containing three CR domains (3-59 nm) and most that contain only two CR domains, although binding energies to different (CR)(3) fragments differed by up to 18% for PAI-1 and 9% for PN-1. No detectable difference in affinity was seen between native and cleaved serpin. However, the presence of proteinase in complex with the serpin enhanced affinity modestly and presumably nonspecifically. This may be sufficient to give preferential binding of such complexes in vivo at the relevant physiological concentrations.

  4. The High Affinity Binding Site on Plasminogen Activator Inhibitor-1 (PAI-1) for the Low Density Lipoprotein Receptor-related Protein (LRP1) Is Composed of Four Basic Residues*

    PubMed Central

    Gettins, Peter G. W.; Dolmer, Klavs

    2016-01-01

    Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13–800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association. PMID:26555266

  5. Molecular cloning and partial characterization of an ovarian receptor with seven ligand binding repeats, an orthologue of low-density lipoprotein receptor, in the cutthroat trout (Oncorhynchus clarki).

    PubMed

    Luo, Wenshu; Ito, Yuta; Mizuta, Hiroko; Massaki, Kiyohiro; Hiramatsu, Naoshi; Todo, Takashi; Reading, Benjamin J; Sullivan, Craig V; Hara, Akihiko

    2013-10-01

    Teleost fish eggs contain a substantial yolk mass consisting of lipids and proteins that provides essential nutrients for embryonic and larval development. The polar lipid and protein components of the yolk are delivered to oocytes by circulating vitellogenins, however the source(s) of the neutral lipid remains unknown. We cloned a cDNA encoding an orthologue of low-density-lipoprotein receptor (LDLR) from the ovary of cutthroat trout, Oncorhynchus clarki (ct-Ldlr). Predominant expression of ct-ldlr mRNA was observed in the ovary and moderate expression was detected in intestine, gill and brain. The relative abundance of ct-ldlr transcripts was highest in early pre-vitellogenic ovaries and significantly decreased during vitellogenesis, followed by a slight increase during final maturation and in post-ovulatory follicles. In situ hybridization revealed an intense and evenly distributed localization of ct-ldlr transcripts in the ooplasm of pre-vitellogenic oocytes and these signals disappeared in vitellogenic follicles. Collectively, these results suggest that the Ldlr is involved in deposition of yolk lipids in cutthroat trout oocytes. The ct-ldlr transcripts also were detected in theca and granulosa cells, suggesting that this receptor may be involved in cholesterol uptake for ovarian steroidogenesis. This is the first report on partial characterization of an ldlr orthologue in any fish species.

  6. Nanotechnology for Synthetic High Density Lipoproteins

    PubMed Central

    Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901

  7. Receptor-associated protein (RAP) has two high-affinity binding sites for the low-density lipoprotein receptor-related protein (LRP): consequences for the chaperone functions of RAP.

    PubMed

    Jensen, Jan K; Dolmer, Klavs; Schar, Christine; Gettins, Peter G W

    2009-06-26

    RAP (receptor-associated protein) is a three domain 38 kDa ER (endoplasmic reticulum)-resident protein that is a chaperone for the LRP (low-density lipoprotein receptor-related protein). Whereas RAP is known to compete for binding of all known LRP ligands, neither the location, the number of binding sites on LRP, nor the domains of RAP involved in binding is known with certainty. We have systematically examined the binding of each of the three RAP domains (D1, D2 and D3) to tandem and triple CRs (complement-like repeats) that span the principal ligand-binding region, cluster II, of LRP. We found that D3 binds with low nanomolar affinity to all (CR)2 species examined. Addition of a third CR domain increases the affinity for D3 slightly. A pH change from 7.4 to 5.5 gave only a 6-fold increase in Kd for D3 at 37 degrees C, whereas temperature change from 22 degrees C to 37 degrees C has a similar small effect on affinity, raising questions about the recently proposed D3-destabilization mechanism of RAP release from LRP. Surprisingly, and in contrast to literature suggestions, D1 and D2 also bind to most (CR)2 and (CR)3 constructs with nanomolar affinity. Although this suggested that there might be three high-affinity binding sites in RAP for LRP, studies with intact RAP showed that only two binding sites are available in the intact chaperone. These findings suggest a new model for RAP to function as a folding chaperone and also for the involvement of YWTD domains in RAP release from LRP in the Golgi.

  8. [Reducing low density lipoprotein-cholesterol levels by apheresis].

    PubMed

    Reiber, I; Gógl, A

    1994-03-13

    The predominate number of homozygote familial hypercholesterolemic and approximately 20% of heterozygotes are resistant to low cholesterol diet and lipid lowering pharmacological treatment even in combination of 2 or more drugs. In such cases, the selective lipoprotein apheresis has become a promising alternative and indicated absolute (homozygotes) or relative (heterozygotes). The combination of low density lipoprotein apheresis, together with diet and drugs, should allow a maximal lowering of low density lipoprotein-cholesterol (-60-70%). Besides low density lipoprotein, various apheresis procedures may also eliminate other potentially atherogenic factors, such as lipoprotein(a) and fibrinogen and acutely improve the haemo-rheological status of the patient. The authors review several lipoprotein apheresis procedures with varying degrees of selectivity, those have and furthermore analysis the advantages and disadvantages and cost of each procedure.

  9. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low-density lipoprotein immunological test system....5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein...

  10. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low-density lipoprotein immunological test system....5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein...

  11. Low-density-lipoprotein receptors in different rabbit liver cells.

    PubMed Central

    Nenseter, M S; Myklebost, O; Blomhoff, R; Drevon, C A; Nilsson, A; Norum, K R; Berg, T

    1989-01-01

    Receptor-dependent uptake mechanisms for low-density lipoprotein (LDL) were studied in rabbit liver parenchymal and non-parenchymal cells. Hybridization studies with a cDNA probe revealed that mRNA for the apo (apolipoprotein) B,E receptor was present in endothelial and Kupffer cells as well as in parenchymal cells. By ligand-blotting experiments we showed that apo B,E-receptor protein was present in both parenchymal and non-parenchymal cells. Studies of binding of homologous LDL in cultured rabbit parenchymal cells suggested that about 63% of the specific LDL binding was mediated via the apo B,E receptor. Approx. 47% of the specific LDL binding was dependent on Ca2+, suggesting that specific Ca2+-dependent as well as Ca2+-independent LDL-binding sites exist in liver parenchymal cells. Methylated LDL bound to the parenchymal cells in a saturable manner. Taken together, our results showed that apo B,E receptors are present in rabbit liver endothelial and Kupffer cells as well as in the parenchymal cells, and that an additional saturable binding activity for LDL may exist on rabbit liver parenchymal cells. This binding activity was not inhibited by EGTA or reductive methylation of lysine residues in apo B. LDL degradation in parenchymal cells was mainly mediated via the apo B,E receptor. Images Fig. 1. Fig. 2. PMID:2549976

  12. Particulate Matter Promotes In Vitro Receptor-Recognizable Low-Density Lipoprotein Oxidation and Dysfunction of Lipid Receptors

    PubMed Central

    Manzano-León, Natalia; Mas-Oliva, Jaime; Sevilla-Tapia, Laura; Morales-Bárcenas, Rocío; Serrano, Jesús; O’Neill, Marie S.; García-Cuellar, Claudia M.; Quintana, Raúl; Vázquez-López, Inés

    2015-01-01

    Particulate matter may promote cardiovascular disease, possibly as a consequence of its oxidative potential. Studies using susceptible animals indicate that particulate matter aggravates atherosclerosis by increasing lipid/macrophage content in plaques. Macrophage lipid uptake requires oxidized low-density lipoprotein and scavenger receptors; same receptors are involved in particulate matter uptake. We studied in vitro particulate matter potential to oxidize low-density lipoproteins and subsequent cell uptake through scavenger receptors. Particulate matter-induced low-density lipoproteins oxidation was evaluated by the thiobarbituric acid assay. Binding/internalization was tested in wild type and scavenger receptor–transfected Chinese hamster ovary cells, and in RAW264.7 cells using fluorescently labeled low-density lipoproteins. Dose-dependent binding/internalization only occurred in scavenger receptor–transfected Chinese hamster ovary cells and RAW264.7 cells. Competition binding/internalization using particles showed that particulate matter induced decreased binding (~50%) and internalization (~70%) of particle-oxidized low-density lipoproteins and native low-density lipoproteins. Results indicate that particulate matter was capable of oxidizing low-density lipoproteins, favoring macrophage internalization, and also altered scavenger and low-density lipoproteins receptor function. PMID:23297186

  13. Low density lipoprotein misfolding and amyloidogenesis.

    PubMed

    Parasassi, Tiziana; De Spirito, Marco; Mei, Giampiero; Brunelli, Roberto; Greco, Giulia; Lenzi, Laura; Maulucci, Giuseppe; Nicolai, Eleonora; Papi, Massimiliano; Arcovito, Giuseppe; Tosatto, Silvio C E; Ursini, Fulvio

    2008-07-01

    In early atherogenesis, subendothelial retention of lipidic droplets is associated with an inflammatory response-to-injury, culminating in the formation of foam cells and plaque. Low density lipoprotein (LDL) is the main constituent of subendothelial lipidic droplets. The process is believed to occur following LDL modification. Searching for a modified LDL in plasma, electronegative LDL [LDL(-)] was identified and found to be associated with major risk biomarkers. The apoprotein in LDL(-) is misfolded, and we show here that this modification primes the aggregation of native LDL, conforming to the typical pattern of protein amyloidogenesis. After a lag phase, whose length depends on LDL(-) concentration, light scattering and atomic force microscopy reveal early exponential growth of intermediate globules, which evolve into fibrils. These globules are remarkably similar to subendothelial droplets in atheromatous lesions and different from those produced by oxidation or biochemical manipulation. During aggregation, ellipticity and tryptophan fluorescence measurements reveal a domino-style spread of apoprotein misfolding from LDL(-) to all of the LDL. Computational analysis of the apoprotein primary sequence predicts an unstable, aggregation-prone domain in the regulatory alpha2 region. Apoprotein misfolding well represents an LDL modification able to transform this cholesterol carrier into a trigger for a response-to-injury in the artery wall.

  14. Low-density lipoproteins oxidation and endometriosis.

    PubMed

    Polak, Grzegorz; Barczyński, Bartłomiej; Kwaśniewski, Wojciech; Bednarek, Wiesława; Wertel, Iwona; Derewianka-Polak, Magdalena; Kotarski, Jan

    2013-01-01

    The etiopathogenesis of endometriosis still remains unknown. Recent data provide new valuable information concerning the role of oxidative stress in the pathophysiology of the disease. It has been proved that levels of different lipid peroxidation end products are increased in both peritoneal fluid (PF) and serum of endometriotic patients. We assessed the concentration of oxidized low-density lipoproteins (oxLDL) in PF of 110 women with different stages of endometriosis and 119 women with serous (n = 78) or dermoid (n = 41) ovarian cysts, as the reference groups. PF oxLDL levels were evaluated by ELISA. We found that concentrations of oxLDL in PF of endometriotic women were significantly higher compared to women with serous but not dermoid ovarian cysts. Interestingly, by analyzing concentrations of oxLDL in women with different stages of the disease, it was noted that they are significantly higher only in the subgroup of patients with stage IV endometriosis as compared to women with ovarian serous cysts. In case of minimal, mild, and moderate disease, PF oxLDL levels were similar to those noted in reference groups. Our results indicate that disrupted oxidative status in the peritoneal cavity of women with endometriosis may play a role in the pathogenesis of advanced stages of the disease.

  15. High-density lipoprotein cholesterol: current perspective for clinicians.

    PubMed

    Whayne, Thomas F

    2009-01-01

    High-density lipoproteins are regarded as ''good guys'' but not always. Situations involving high-density lipoproteins are discussed and medication results are considered. Clinicians usually consider high-density lipoprotein cholesterol. Nicotinic acid is the best available medication to elevate high-density lipoprotein cholesterol and this appears beneficial for cardiovascular risk. The major problem with nicotinic acid is that many patients do not tolerate the associated flushing. Laropiprant decreases this flushing and has an approval in Europe but not in the United States. The most potent medications for increasing high-density lipoprotein cholesterol are cholesteryl ester transfer protein inhibitors. The initial drug in this class, torcetrapib, was eliminated by excess cardiovascular problems. Two newer cholesteryl ester transfer protein inhibitors, R1658 and anacetrapib, initially appear promising. High-density lipoprotein cholesterol may play an important role in improving cardiovascular risk in the 60% of patients who do not receive cardiovascular mortality/morbidity benefit from low-density lipoproteins reduction by statins.

  16. Binding of an antibody mimetic of the human low density lipoprotein receptor to apolipoprotein E is governed through electrostatic forces. Studies using site-directed mutagenesis and molecular modeling.

    PubMed

    Raffaï, R; Weisgraber, K H; MacKenzie, R; Rupp, B; Rassart, E; Hirama, T; Innerarity, T L; Milne, R

    2000-03-10

    Monoclonal antibody 2E8 is specific for an epitope that coincides with the binding site of the low density lipoprotein receptor (LDLR) on human apoE. Its reactivity with apoE variants resembles that of the LDLR: it binds well with apoE3 and poorly with apoE2. The heavy chain complementarity-determining region (CDRH) 2 of 2E8 shows homology to the ligand-binding domain of the LDLR. To define better the structural basis of the 2E8/apoE interaction and particularly the role of electrostatic interactions, we generated and characterized a panel of 2E8 variants. Replacement of acidic residues in the 2E8 CDRHs showed that Asp(52), Glu(53), and Asp(56) are essential for high-affinity binding. Although Asp(31) (CDRH1), Glu(58) (CDRH2), and Asp(97) (CDRH3) did not appear to be critical, the Asp(97) --> Ala variant acquired reactivity with apoE2. A Thr(57) --> Glu substitution increased affinity for both apoE3 and apoE2. The affinities of wild-type 2E8 and variants for apoE varied inversely with ionic strength, suggesting that electrostatic forces contribute to both antigen binding and isoform specificity. We propose a model of the 2E8.apoE immune complex that is based on the 2E8 and apoE crystal structures and that is consistent with the apoE-binding properties of wild-type 2E8 and its variants. Given the similarity between the LDLR and 2E8 in terms of specificity, the LDLR/ligand interaction may also have an important electrostatic component.

  17. The aggressive low density lipoprotein lowering controversy.

    PubMed

    Forrester, J S; Bairey-Merz, C N; Kaul, S

    2000-10-01

    Recent clinical trials have provided unequivocal evidence of major cardiovascular benefits from low density lipoprotein (LDL) lowering with statins. However, the three critical unresolved questions about aggressive LDL lowering are the shape of the curve relating cardiac events to LDL, the best surrogate measurement for assessing therapeutic efficacy and the best target for LDL therapy. The relation between cardiac events and LDL is curvilinear, both epidemiologically and during therapy. The benefit of lipid lowering diminishes progressively and becomes difficult to detect at lower LDL levels without a very large sample size. Assessment of the benefits of lipid lowering is further confounded by differences in the level of pretreatment LDL and by the non-LDL lowering effects of statins. Both epidemiologic studies and large randomized clinical trials have produced conflicting results concerning the best LDL target. Failure to reduce the event rate in patients with pretreatment LDL <125 mg (Cholesterol And Recurrent Events [CARE] trial) alerts us to the risk of extrapolating epidemiologic data to clinical practice, yet subset analysis of some clinical trials suggests the greatest benefit appears in those patients with the lowest on-treatment LDL levels (Scandinavian Simvastatin Survival Study [4S]). This controversy should be resolved in the next few years by several important on-going trials. In the face of seemingly contradictory data from current clinical trials, we can only speculate that very aggressive LDL lowering to <80 mg/dl could be accompanied by a modest therapeutic benefit beyond the current recommendations of the National Cholesterol Education Program. If any benefit is observed, it will have to be balanced against a small potential for increased adverse events.

  18. Phagocytosis of aggregated lipoprotein by macrophages: Low density lipoprotein receptor-dependent foam-cell formation

    SciTech Connect

    Suits, A.G.; Chait, A.; Aviram, M.; Heinecke, J.W. )

    1989-04-01

    Low density lipoprotein (LDL) modified by incubation with phospholipase C (PLC-LDL) aggregates in solution and is rapidly taken up and degraded by human and mouse macrophages, producing foam cells in vitro. Human, mouse, and rabbit macrophages degraded {sup 125}I-labeled PLC-LDL ({sup 125}I-PLC-LDL) more rapidly than native {sup 125}I-labeled LDL ({sup 125}I-LDL), while nonphagocytic cells such as human fibroblasts and bovine aortic endothelial cells degraded {sup 125}I-PLC-LDL more slowly than {sup 125}I-LDL. This suggested the mechanism for internalization of PLC-LDL was phagocytosis. When examined by electron microscopy, mouse peritoneal macrophages appeared to be phagocytosing PLC-LDL. The uptake and degradation of {sup 125}I-PLC-LDL by human macrophages was inhibited >80% by the monoclonal antibody C7 (IgG2b) produced by hybridoma C7, which blocks the ligand binding domain of the LDL receptor. Similarly, methylation of {sup 125}I-LDL ({sup 125}I-MeLDL) prior to treatment with phospholipase C decreased its subsequent uptake and degradation by human macrophages by >90%. The uptake and degradation of phospholipase C-modified {sup 125}I-MeLDL by macrophages could be restored by incubation of the methylated lipoprotein with apoprotein E, a ligand recognized by the LDL receptor. These results indicate that macrophages internalize PLC-LDL by LDL receptor-dependent phagocytosis.

  19. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake.

    PubMed

    Ni, Yan G; Condra, Jon H; Orsatti, Laura; Shen, Xun; Di Marco, Stefania; Pandit, Shilpa; Bottomley, Matthew J; Ruggeri, Lionello; Cummings, Richard T; Cubbon, Rose M; Santoro, Joseph C; Ehrhardt, Anka; Lewis, Dale; Fisher, Timothy S; Ha, Sookhee; Njimoluh, Leila; Wood, Dana D; Hammond, Holly A; Wisniewski, Douglas; Volpari, Cinzia; Noto, Alessia; Lo Surdo, Paola; Hubbard, Brian; Carfí, Andrea; Sitlani, Ayesha

    2010-04-23

    PCSK9 binds to the low density lipoprotein receptor (LDLR) and leads to LDLR degradation and inhibition of plasma LDL cholesterol clearance. Consequently, the role of PCSK9 in modulating circulating LDL makes it a promising therapeutic target for treating hypercholesterolemia and coronary heart disease. Although the C-terminal domain of PCSK9 is not involved in LDLR binding, the location of several naturally occurring mutations within this region suggests that it has an important role for PCSK9 function. Using a phage display library, we identified an anti-PCSK9 Fab (fragment antigen binding), 1G08, with subnanomolar affinity for PCSK9. In an assay measuring LDL uptake in HEK293 and HepG2 cells, 1G08 Fab reduced 50% the PCSK9-dependent inhibitory effects on LDL uptake. Importantly, we found that 1G08 did not affect the PCSK9-LDLR interaction but inhibited the internalization of PCSK9 in these cells. Furthermore, proteolysis and site-directed mutagenesis studies demonstrated that 1G08 Fab binds a region of beta-strands encompassing Arg-549, Arg-580, Arg-582, Glu-607, Lys-609, and Glu-612 in the PCSK9 C-terminal domain. Consistent with these results, 1G08 fails to bind PCSK9DeltaC, a truncated form of PCSK9 lacking the C-terminal domain. Additional studies revealed that lack of the C-terminal domain compromised the ability of PCSK9 to internalize into cells, and to inhibit LDL uptake. Together, the present study demonstrate that the PCSK9 C-terminal domain contribute to its inhibition of LDLR function mainly through its role in the cellular uptake of PCSK9 and LDLR complex. 1G08 Fab represents a useful new tool for delineating the mechanism of PCSK9 uptake and LDLR degradation.

  20. Mycoplasmal lipoprotein p37 binds human protein HER2.

    PubMed

    Wu, Jun; Wu, Lijuan; Fang, Cheng; Nie, Rong; Wang, Jiamou; Wang, Xuan; Liu, Wenbin

    2016-11-01

    Mycoplasmas are a group of microbes that can cause human diseases. The mycoplasmal lipoprotein p37 promotes cancer metastasis, at least in part, by interacting with EGFR. In this study, we show that the p37 lipoprotein binds another member of the EGFR family, HER2, through the HER2 extracellular domain. The binding of p37-HER2 promotes phosphorylation of HER2 and activates the downstream signaling molecule Erk1/2. Because the HER2 signaling pathway contributes to breast tumor metastasis, our results imply that the mycoplasmal lipoprotein p37 may also be involved in breast cancer metastasis. This study contributes to our understanding of mycoplasmal lipoprotein p37 function and its potential involvement in tumorigenesis. Copyright © 2016. Published by Elsevier GmbH.

  1. Giardia lamblia low-density lipoprotein receptor-related protein is involved in selective lipoprotein endocytosis and parasite replication.

    PubMed

    Rivero, Maria R; Miras, Silvana L; Quiroga, Rodrigo; Rópolo, Andrea S; Touz, Maria C

    2011-03-01

    As Giardia lamblia is unable to synthesize cholesterol de novo, this steroid might be obtained from the host's intestinal milieu by endocytosis of lipoproteins. In this work, we identified a putative Giardia lamblia low-density lipoprotein receptor-related proteins (GlLRP), a type I membrane protein, which shares the substrate N-terminal binding domain and a FXNPXY-type endocytic motif with human LRPs. Expression of tagged GlLRP showed that it was localized predominantly in the endoplasmic reticulum, lysosomal-like peripheral vacuoles and plasma membrane. However, the FXNPXY-deleted GlLRP was retained at the plasma membrane suggesting that it is abnormally transported and processed. The low-density lipoprotein and chylomicrons interacted with GlLRP, with this interaction being necessary for lipoprotein internalization and cell proliferation. Finally, we show that GlLRP binds directly to the medium subunit of Giardia adaptor protein 2, indicating that receptor-mediated internalization occurs through an adaptin mechanism.

  2. Purification of a sarcoplasmic reticulum protein that binds Ca2+ and plasma lipoproteins

    SciTech Connect

    Hofmann, S.L.; Brown, M.S.; Lee, E.; Pathak, R.K.; Anderson, R.G.; Goldstein, J.L. )

    1989-05-15

    A protein in the sarcoplasmic reticulum of rabbit skeletal and cardiac muscle was identified because of its ability to bind 125I-labeled low density lipoprotein (LDL) with high affinity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein, referred to as the 165-kDa protein, is restricted to striated muscle. It was not detected in 14 other tissues, including several that contain smooth muscle, but it appears in rat L6 myoblasts when they differentiate into myocytes. Immunofluorescence and immunoelectron microscopic studies revealed that the protein is present throughout the sarcoplasmic reticulum and the terminal cisternae. It binds 45Ca2+ on nitrocellulose blots and stains metachromatically with Stains-all, a cationic dye that stains Ca2+-binding proteins. It does not appear to be a glycoprotein, and it appears slightly larger than the 160-kDa glycoprotein previously described in sarcoplasmic reticulum. The 165-kDa protein binds LDL, beta-migrating very low density lipoprotein, and a cholesterol-induced high density lipoprotein particle that contains apoprotein E as its sole apoprotein with much higher affinity than it binds high density lipoprotein. The protein is stable to boiling and to treatment with sodium dodecyl sulfate, but it becomes sensitive to these treatments when its cystine residues are reduced and alkylated. The protein was purified 1300-fold to apparent homogeneity from rabbit skeletal muscle membranes. It differs from the cell surface LDL receptor in that (1) its apparent molecular weight is not changed by reduction and alkylation; (2) it is present in Watanabe-heritable hyperlipidemic rabbits, which lack functional LDL receptors; (3) binding of lipoproteins is not inhibited by EDTA; and (4) it is located within the lumen of the sarcoplasmic reticulum where it has no access to plasma lipoproteins.

  3. Effect of proteolysis of low-density serum lipoproteins on their interaction with macrophages

    SciTech Connect

    Karmanskii, I.M.; Kovaleva, G.G.; Viktorova, L.N.; Shpikiter, V.O.

    1987-01-01

    The authors previously postulated, on the basis of changes observed in the structural stability of low-density lipoproteins during treatment with pepsin or aortic cathepsin, that enzymatic modifications may lead to potentiation of the atherogenic properties of the lipoproteins. They also reported that treatment of lipoproteins with trypsin causes an increase in their binding with aortic glycosaminoglycans and to increased degradation by fibroblasts of patients with hereditary hypercholesterolemia. Limited proteolysis of lipoproteins with pepsin facilitated their binding with fibronectin. In this paper the authors investigate the uptake and degradation of low-density lipoproteins by macrophages after their limited hydrolysis by pepsin, an analog of tissue cathepsin D. The lipoproteins were isolated from the serum of healthy blood donors by ultracentrifugation. Iodination of the proteins with I 125 was carried out by the iodine monochloride method. Uptake and retention of the labelled lipoprotein were measured with a gamma counter. The increased uptake of the proteins, partially hydrolized by pepsin, was accompanied by their more intense degradation by macrophages.

  4. High Density Lipoprotein Metabolism in Man

    PubMed Central

    Blum, Conrad B.; Levy, Robert I.; Eisenberg, Shlomo; Hall, Marshall; Goebel, Robert H.; Berman, Mones

    1977-01-01

    The turnover of 125I-high density lipoprotein (HDL) was examined in a total of 14 studies in eight normal volunteers in an attempt to determine the metabolic relationship between apolipoproteins A-I (apoA-I) and A-II (apoA-II) of HDL and to define further some of the determinants of HDL metabolism. All subjects were first studied under conditions of an isocaloric balanced diet (40% fat, 40% carbohydrate). Four were then studied with an 80% carbohydrate diet, and two were studied while receiving nicotinic acid (1 g three times daily) and ingesting the same isocaloric balanced diet. The decay of autologous 125I-HDL and the appearance of urinary radioactivity were followed for at least 2 wk in each study. ApoA-I and apoA-II were isolated by Sephadex G-200 chromatography from serial plasma samples in each study. The specific activities of these peptides were then measured directly. It was found that the decay of specific activity of apoA-I and apoA-II were parallel to one another in all studies. The mean half-life of the terminal portion of decay was 5.8 days during the studies with a balanced diet. Mathematical modeling of the decay of plasma radioactivity and appearance of urinary radioactivity was most consistent with a two-compartment model. One compartment is within the plasma and exchanges with a nonplasma component. Catabolism occurs from both of these compartments. With a balanced isocaloric diet, the mean synthetic rate for HDL protein was 8.51 mg/kg per day. HDL synthesis was not altered by the high carbohydrate diet and was only slightly decreased by nicotinic acid treatment. These perturbations had effects on HDL catabolic pathways that were reciprocal in many respects. With an 80% carbohydrate diet, the rate of catabolism from the plasma compartment rose by a mean of 39.1%; with nicotinic acid treatment, it fell by 42.2%. Changes in the rate of catabolism from the second compartment were generally opposite those in the rate of catabolism from the plasma

  5. Development of an integrated model for analysis of the kinetics of apolipoprotein B in plasma very low density lipoproteins, intermediate density lipoproteins, and low density lipoproteins.

    PubMed Central

    Beltz, W F; Kesäniemi, Y A; Howard, B V; Grundy, S M

    1985-01-01

    To quantify more precisely the metabolism of apolipoprotein B (apo B) in human beings, an integrated model was developed for the analysis of the isotope kinetics of apo B in very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL). The experimental basis for model development was a series of 30 triple-isotope studies in which patients received autologous 131I-VLDL, 125I-IDL, and [3H]glycerol as a precursor of VLDL triglycerides. The currently proposed model contains the following components: (a) a VLDL delipidation cascade that has a variable number of subcompartments, (b) a slowly catabolized pool of VLDL, (c) an IDL compartment consisting of two closely connected subcompartments, one of which is outside the immediate circulation, and (d) a two-compartment subsystem for LDL. Because mass data indicate that not all VLDL were converted to LDL, the model allows for irreversible removal of apo B from VLDL (or IDL) subsystems. It accounts for apparent "direct" input of LDL by postulating an early, rapidly metabolized compartment of VLDL that is converted directly to IDL. The model appears to be consistent with specific activity curves from the current triple-isotope studies and with present concepts of lipoprotein physiology; it also can be used to quantify pathways of lipoprotein apo B transport in normal and abnormal states. PMID:4031063

  6. The effect of endurance training on the relationships between sex hormone binding globulin, high density lipoprotein cholesterol, apoprotein A1 and physical fitness in pre-menopausal women with mild obesity.

    PubMed

    Kumagai, S; Shono, N; Kondo, Y; Nishizumi, M

    1994-04-01

    The purpose of the present study was to investigate the relationships of change in high density lipoprotein cholesterol (HDL-C) with changes in sex hormone binding globulin (SHBG), physical fitness and spontaneous dietary intake before and after endurance training. Ten pre-menopausal obese women (32 to 49 years) who had never smoked or regularly drunk alcohol participated in this study. Physical training at an intensity of lactate threshold was performed for six months at a frequency of three times per week for 60 minutes using a cycle ergometer. Together with a reduction in body weight (-4.1 kg; P < 0.05) and with increases in maximal oxygen uptake (VO2max = +3.4 ml/kg/min or +0.09 l/min; P < 0.05), the training induced some changes in both plasma lipid and lipoprotein. Although the total cholesterol (total-C), triglyceride, HDL2-C and apoprotein A1 (Apo A1) levels did not change, significant increases in HDL-C and HDL3-C, and significant reductions in Apo B, total-C/HDL-C ratio and fasting insulin concentrations were found after training. SHBG levels tended to increase after endurance training, but the changes were not significant. No alteration was observed in spontaneous dietary intake after training. A significant correlation (r = 0.648) was observed between the change in VO2 max(l/min) and the change in SHBG. In addition, changes in both VO2 max(l/min) and SHBG were significantly associated with changes in HDL-C, HDL2-C and Apo A1. The changes in dietary intake did not correlate with the changes in SHBG, VO2max, HDL-C, HDL2-C and Apo A1.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Expression of recombinant human serum amyloid A in mammalian cells and demonstration of the region necessary for high-density lipoprotein binding and amyloid fibril formation by site-directed mutagenesis.

    PubMed Central

    Patel, H; Bramall, J; Waters, H; De Beer, M C; Woo, P

    1996-01-01

    Site-directed mutagenesis of the acute-phase human serum amyloid A (SAA1 alpha) protein was used to evaluate the importance of the N-terminal amino acid residues, namely RSFFSFLGEAF The full-length cDNA clone of SAA1 alpha (pA1.mod.) was used to create two mutations, namely Gly-8 to Asp-8 and an 11 amino acid truncation between Arg-1 and Phe-11 respectively. Wild-type and mutant cDNAs were expressed in Chinese hamster ovary (CHO) cells under the control of the human cytomegalovirus promoter, which resulted in the secretion of the processed proteins into the culture media. Wild-type recombinant human SAA (rSAA) protein was shown to have pI values of 6.0 and 6.4, similar to the human SAA isoform SAA1 alpha and SAA1 alpha desArg found in acute-phase plasma. N-terminal sequencing of 56 residues confirmed its identity with human SAA1 alpha. The total yield of wild-type rSAA measured by ELISA was between 3.5 and 30 mg/l. The two mutations resulted in reduced expression levels of the mutant SAA proteins (3-10 mg/l). Further measurements of rSAA concentration in lipid fractions of culture medium collected at a density of 1.21 g/ml (high-density liporotein; HDL) and 1.063-1.18 g/ml (very-low-density lipoprotein/low-density lipoprotein; VLDL/LDL) showed that 76% of the wild-type protein was found in the HDL fraction and the remaining 24% in the infranatant non-lipid fraction. In contrast the relative concentration of mutant rSAA in HDL and infranatant fractions was reversed. This is consistent with the previously proposed involvement of the 11 amino acid peptide in anchoring. SAA protein on to HDL3 [Turnell, Sarra, Glover, Baum, Caspi, Baltz and Pepys (1986) Mol. Biol. Med. 3, 387-407]. Wild-type rSAA protein was shown to from amyloid fibrils in vitro under acidic conditions as shown by electron microscopy, and stained positive with Congo Red and exhibited apple-green birefringence when viewed under polarized light. Under the same conditions mutSAA(G8D) and mutSAA delta 1

  8. Quantitative dissection of the binding contributions of ligand lysines of the receptor-associated protein (RAP) to the low density lipoprotein receptor-related protein (LRP1).

    PubMed

    Dolmer, Klavs; Campos, Andres; Gettins, Peter G W

    2013-08-16

    Although lysines are known to be critical for ligand binding to LDL receptor family receptors, relatively small reductions in affinity have been found when such lysines have been mutated. To resolve this paradox, we have examined the specific binding contributions of four lysines, Lys-253, Lys-256, Lys-270, and Lys-289, in the third domain (D3) of receptor-associated protein (RAP), by eliminating all other lysine residues. Using D3 variants containing lysine subsets, we examined binding to the high affinity fragment CR56 from LRP1. With this simplification, we found that elimination of the lysine pairs Lys-253/Lys-256 and Lys-270/Lys-289 resulted in increases in Kd of 1240- and 100,000-fold, respectively. Each pair contributed additively to overall affinity, with 61% from Lys-270/Lys-289 and 39% from Lys-253/Lys-256. Furthermore, the Lys-270/Lys-289 pair alone could bind different single CR domains with similar affinity. Within the pairs, binding contributions of Lys-270 ≫ Lys-256 > Lys-253 ∼ Lys-289 were deduced. Importantly, however, Lys-289 could significantly compensate for the loss of Lys-270, thus explaining how previous studies have underestimated the importance of Lys-270. Calorimetry showed that favorable enthalpy, from Lys-256 and Lys-270, overwhelmingly drives binding, offset by unfavorable entropy. Our findings support a mode of ligand binding in which a proximal pair of lysines engages the negatively charged pocket of a CR domain, with two such pairs of interactions (requiring two CR domains), appropriately separated, being alone sufficient to provide the low nanomolar affinity found for most protein ligands of LDL receptor family members.

  9. L-4F Inhibits Oxidized Low-density Lipoprotein-induced Inflammatory Adipokine Secretion via Cyclic AMP/Protein Kinase A-CCAAT/Enhancer Binding Protein β Signaling Pathway in 3T3-L1 Adipocytes.

    PubMed

    Xie, Xiang-Zhu; Huang, Xin; Zhao, Shui-Ping; Yu, Bi-Lian; Zhong, Qiao-Qing; Cao, Jian

    2016-05-05

    Adipocytes behave like a rich source of pro-inflammatory cytokines including monocyte chemoattractant protein-1 (MCP-1). Oxidized low-density lipoprotein (oxLDL) participates in the local chronic inflammatory response, and high-density lipoprotein could counterbalance the proinflammatory function of oxLDL, but the underlying mechanism is not completely understood. This study aimed to evaluate the effect of apolipoprotein A-I mimetic peptide L-4F on the secretion and expression of MCP-1 in fully differentiated 3T3-L1 adipocytes induced by oxLDL and to elucidate the possible mechanisms. Fully differentiated 3T3-L1 adipocytes were incubated in the medium containing various concentration of L-4F (0-50 μg/ml) with oxLDL (50 μg/ml) stimulated, with/without protein kinase A (PKA) inhibitor H-89 (10 μmol/L) preincubated. The concentrations of MCP-1 in the supernatant, the mRNA expression of MCP-1, the levels of CCAAT/enhancer binding protein α (C/EBPα), and CCAAT/enhancer binding protein β (C/EBPβ) were evaluated. The monocyte chemotaxis assay was performed by micropore filter method using a modified Boyden chamber. OxLDL stimulation induced a significant increase of MCP-1 expression and secretion in 3T3-L1 adipocytes, which were inhibited by L-4F preincubation in a dose-dependent manner. PKA inhibitor H-89 markedly reduced the oxLDL-induced MCP-1 expression, but no further decrease was observed when H-89 was used in combination with L-4F (50 μg/ml) (P > 0.05). OxLDL stimulation showed no significant effect on C/EBPα protein level but increased C/EBPβ protein level in a time-dependent manner. H-89 and L-4F both attenuated C/EBPβ protein level in oxLDL-induced 3T3-L1 adipocytes. OxLDL induces C/EBPβ protein synthesis in a time-dependent manner and enhances MCP-1 secretion and expression in 3T3-L1 adipocytes. L-4F dose-dependently counterbalances the pro-inflammatory effect of oxLDL, and cyclic AMP/PKA-C/EBPβ signaling pathway may participate in it.

  10. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  11. Metabolism of a Lipid Nanoemulsion Resembling Low-Density Lipoprotein in Patients with Grade III Obesity

    PubMed Central

    Dantas, Simone Alves; Ficker, Elisabeth Salvatori; Vinagre, Carmen G. C.; Ianni, Barbara Maria; Maranhão, Raul Cavalcante; Mady, Charles

    2010-01-01

    INTRODUCTION: Obesity increases triglyceride levels and decreases high-density lipoprotein concentrations in plasma. Artificial emulsions resembling lipidic plasma lipoprotein structures have been used to evaluate low-density lipoprotein metabolism. In grade III obesity, low density lipoprotein metabolism is poorly understood. OBJECTIVE: To evaluate the kinetics with which a cholesterol-rich emulsion (called a low-density emulsion) binds to low-density lipoprotein receptors in a group of patients with grade III obesity by the fractional clearance rate. METHODS: A low-density emulsion was labeled with [14C]-cholesterol ester and [3H]-triglycerides and injected intravenously into ten normolipidemic non-diabetic patients with grade III obesity [body mass index higher than 40 kg/m2] and into ten non-obese healthy controls. Blood samples were collected over 24 hours to determine the plasma decay curve and to calculate the fractional clearance rate. RESULTS: There was no difference regarding plasma levels of total cholesterol or low-density lipoprotein cholesterol between the two groups. The fractional clearance rate of triglycerides was 0.086 ± 0.044 in the obese group and 0.122 ± 0.026 in the controls (p = 0.040), and the fractional clearance rate of cholesterol ester (h−1) was 0.052 ± 0.021 in the obese subjects and 0.058 ± 0.015 (p = 0.971) in the controls. CONCLUSION: Grade III obese subjects exhibited normal low-density lipoprotein removal from plasma as tested by the nanoemulsion method, but triglyceride removal was slower. PMID:20126342

  12. High transcript level of fatty acid-binding protein 11 but not of very low-density lipoprotein receptor is correlated to ovarian follicle atresia in a teleost fish (Solea senegalensis).

    PubMed

    Agulleiro, Maria J; André, Michèle; Morais, Sofia; Cerdà, Joan; Babin, Patrick J

    2007-09-01

    Transcripts encoding a fatty acid-binding protein (FABP), Fabp11, and two isoforms of very low-density lipoprotein receptor (Vldlr; vitellogenin receptor) were characterized from the ovary of Senegalese sole (Solea senegalensis). Phylogenetic analyses of vertebrate FABPs demonstrated that Senegalese sole Fabp11, as zebrafish (Danio rerio) homologous sequences, is part of a newly defined teleost fish FABP subfamily that is a sister clade of tetrapod FABP4/FABP5/FABP8/FABP9. RT-PCR revealed high levels of vldlr transcript splicing variants in the ovaries and, to a lesser extent, in somatic tissues, whereas fabp11 was highly expressed in the ovaries, liver, and adipose tissue. In situ hybridization analysis showed vldlr and fabp11 mRNAs in previtellogenic oocytes, whereas no hybridization signals were detected in the larger vitellogenic oocytes. Transcript expression of fabp11 was strongly upregulated in somatic cells surrounding atretic follicles. Real-time quantitative RT-PCR demonstrated that ovarian transcript levels of vldlr and fabp11 had a significant positive correlation with the percentage of follicles in previtellogenesis and atresia, respectively. These results suggest that the expression level of vldlr transcripts may be used as a precocious functional marker to quantify the number of oocytes recruited for vitellogenesis and that fabp11 mRNA may be a very useful molecular marker for determining cellular events and environmental factors that regulate follicular atresia in fish.

  13. Troglitazone inhibits long-term glycation and oxidation of low-density lipoprotein.

    PubMed

    Sobal, Grazyna; Menzel, E J; Sinzinger, H

    2005-11-01

    Troglitazone (T) is a member of a new class of antidiabetic drugs termed thiazolidinediones (TZDs), which has previously been used as an anti-diabetic agent. In this study we investigated the influence of T, a ligand for PPAR-gamma receptor, on copper-catalyzed or cell-mediated oxidation of native, glycated, and glycoxidated low-density lipoprotein (LDL). A dose-dependent inhibition of copper-mediated low-density lipoprotein-oxidation, as monitored by the formation of oxidation-specific fluorescence, was observed for both native and glycated low-density lipoprotein. At the concentration of 20 microg/mL the inhibition amounted from 14.7% to 64.7% by all low-density lipoprotein forms. For glycated low-density lipoprotein we obtained the highest oxidation rate, but the most pronounced inhibition by T was found for glycoxidated low-density lipoprotein (goLDL). Inhibitory effects of T were also investigated by measurement of relative electrophoretic mobility (REM) in the concentration range of 0 to 20 microg/mL. The inhibition of 4h oxidation of native low-density lipoprotein was found in the entire concentration range, but significance was seen at 10 microg/mL. The long-term glycation and glycoxidation of low-density lipoprotein as measured by 5-hydroxymethyl-2-furaldehyde (5-HMF) formation and binding of fructosamine was found to be inhibited by T. In endothelial cell-mediated oxidation of low-density lipoprotein cytotoxicity of T in the concentration range of 0 to 160 microg/mL during 2 to 24 h oxidation was investigated. In the non-cytotoxic concentration range of 5 to 20 microg/mL, a significantly reduced liberation of isoprostane 8-epi-PGF2alpha during 24 h cell-mediated oxidation of low-density lipoprotein and its modifications was found. This inhibitory action of T was most significant in the case of goLDL and amounted to approximately 20% to 60% inhibition at 5 to 20 microg/mL T, respectively. In the concentration range of 40 to 160 microg/mL, however, T showed

  14. [Intermediate-density lipoproteins and liver lipase in postmenopausal women].

    PubMed

    Halperin, H; Berg, G; Aisemberg, L; Brites, F; Siseles, N; Wikinski, R

    1992-01-01

    In order to evaluate atherogenic lipoproteins in post-menopause, we studied 73 healthy women, 49 to 65 years old (Post-menopausal Group), with 1 to 10 years of amenorrhea and body mass index below 27 Kg/m2, and 20 young women (Control Group). We have determined plasma cholesterol concentration in the lipoproteins of intermediate density in addition to the classical lipoprotein parameters: total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides and fractionation of lipoproteins by electrophoresis. In 63 women from the Post-menopausal Group and 16 from the Control Group we studied the activity of hepatic lipase. Among these patients we selected at random 25 post-menopausal women and 13 controls to add measurements of triglycerides in the lipoproteins of intermediate density. Table 1 shows that the average plasma concentration of total cholesterol in the Post-menopausal Group was higher than that of the Controls (p < 0.001). The same was found for LDL-cholesterol (p < 0.001) and for triglycerides (p < 0.001) whereas the average concentration of HDL-cholesterol did not show significant differences. The Post-menopausal Group had high values of plasma lipoproteins of intermediate density, even with normal phenotypes (Table 2). Cholesterol but also triglycerides (Fig. 1) were responsible for this increase. A triglyceride rich lipoprotein subspecies of intermediate density was predominant in 73% of Post-menopausal women vs 23% of the Controls (p < 0.01, Table 3). No differences in hepatic lipase activity were seen between the two groups (Table 4), and non statistic correlation between the enzyme activity and IDL-triglycerides or HDL-cholesterol.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Emerging strategies for increasing high-density lipoprotein.

    PubMed

    Forrester, James S; Shah, Prediman K

    2006-12-01

    High-density lipoprotein cholesterol is a potent and independent epidemiologic risk factor and is a proved antiatherosclerotic agent in animal models of atherosclerosis, acting through the principal mechanisms of accelerating cholesterol efflux and inhibiting oxidation and inflammation. Lifestyle modification increases serum levels by 5% to 15%, whereas niacin, the drug most widely used to increase high-density lipoprotein cholesterol, increases it by 25% to 35% at the highest doses. This review examines the potent methods of increasing high-density lipoprotein and/or enhancing reverse cholesterol transport, including cholesterol ester transfer protein inhibitors, apolipoprotein A-I Milano, D4F, the dual peroxisome proliferator-activated receptor agonists, and rimonabant, that are now in clinical trials. In conclusion, these new agents, used alone or in combination with existing therapies, carry the potential to markedly reduce the incidence of new coronary disease and cardiac events in this decade.

  16. Is the oxidation of high-density lipoprotein lipids different than the oxidation of low-density lipoprotein lipids?

    PubMed

    Thomas, M J; Chen, Q; Zabalawi, M; Anderson, R; Wilson, M; Weinberg, R; Sorci-Thomas, M G; Rudel, L L

    2001-02-13

    This article gives detailed insight into the kinetics of high-density lipoprotein (HDL) oxidation catalyzed by azobis(2-amidinopropane).dihydrochloride (ABAP) or by copper. ABAP initialized oxidation of human HDL 3-4 times faster than non-human primate HDL with a similar composition. The oxidizability of non-human primate HDL was 1000 times lower than the oxidizability calculated from rate constants derived from liposome oxidation, suggesting that there is a slow step in HDL oxidation not present in liposomes. Saturable binding of copper to HDL was a significant feature of copper-catalyzed oxidation. Binding constants (K(m)) for non-human primate HDL were 2-3-fold lower than those for human HDL. Copper-catalyzed oxidation of non-human primate HDL was slower than that of human HDL, but human HDL(2) and HDL(3) oxidized at about the same rate. Overall, the kinetics describing the oxidation of HDL were mechanistically similar to those reported for LDL, suggesting that HDL lipids were as easily oxidized as LDL lipids and that HDL will be easily oxidized in vivo when exposed to agents that oxidize LDL.

  17. Chromatofocusing of human high density lipoproteins and isolation of lipoproteins A and A-I.

    PubMed

    Nestruck, A C; Niedmann, P D; Wieland, H; Seidel, D

    1983-08-29

    Using chromatofocusing, a column chromatography method with an internally generated pH gradient and focusing effects, human plasma high density lipoproteins (HDL) were fractionated into six subclasses within an interval of less than 1 pH unit (pH 5.1-4.2). All fractions floated in the ultracentrifuge at density = 1.21 g X ml-1, retained a typical HDL electron micrographic morphology and as a single band, alpha-migration on agarose electrophoresis. Compositional analysis of the subclasses revealed an inverse relationship between cholesterol ester and cholesterol on a molar basis. Distinct differences in the distribution of the apolipoproteins between the fractions were found. Two of the subclasses contained only apolipoprotein A-I and were therefore considered to be two forms of the lipid-combined form of apolipoprotein A-I, i.e., lipoprotein A-I. One subclass contained only apolipoproteins A-I + A-II and was, therefore, lipoprotein A. One subclass contained apolipoproteins A-I + A-II + D, and the two remaining contained additionally apolipoproteins C and E. Lipoprotein A-I was also demonstrated after immunoabsorption of apolipoprotein A-II-containing lipoproteins from whole serum. It is suggested that this method, which allows the fractionation of HDL into subclasses with distinct differences in apolipoprotein composition, offers new avenues for the study of the structural and metabolic heterogeneity of HDL.

  18. Non-oxidative modification of native low-density lipoprotein by oxidized low-density lipoprotein.

    PubMed Central

    Yang, M; Leake, D S; Rice-Evans, C A

    1996-01-01

    The oxidative modification of low-density lipoprotein (LDL) has been implicated in the pathogenesis of atherosclerosis, although little is known as yet about the precise mechanism of oxidation in vivo. The studies presented here demonstrate that, in the absence of cells or transition metals, oxidized LDL can modify native LDL through co-incubation in vitro such as to increase its net negative charge, in a concentration-dependent manner. The interaction is not inhibited by peroxyl radical scavengers or metal chelators, precluding the possibility that the modification of native LDL by oxidized LDL is through an oxidative process. Studies with radioiodinated oxidized LDL showed no transfer of radioactivity to the native LDL, demonstrating that fragmentation of protein and the transfer of some of the fragments does not account for the modified charge on the native LDL particle. The adjacency of native to oxidized LDL in the arterial wall may be a potential mechanism by which the altered recognition properties of the apolipoprotein B-100 may arise rapidly without oxidation or extensive modification of the native LDL lipid itself. PMID:8687375

  19. Membrane binding sites for plasma lipoproteins on endosomes from rat liver.

    PubMed Central

    Jaeckle, S; Brady, S E; Havel, R J

    1989-01-01

    Highly purified endosomal membranes from rat liver, enriched in receptors for a number of macromolecules taken up into hepatocytes via the coated pit/endosome/lysosome pathway [including the receptor for low density lipoproteins (LDL)], were used to characterize binding sites for lipoproteins containing apolipoprotein E. In endosomal membranes from livers of estradiol-treated rats, in which LDL receptors are induced manyfold, two high-affinity binding sites were found for two apolipoprotein E-rich lipoproteins: very low density beta-lipoproteins (beta-VLDL) from cholesterol-fed rabbits and rat chylomicron remnants. One of these sites, binding to which is inhibited by 30 mM EDTA, appears identical to the LDL receptor by ligand and immunoblotting and other characteristics. The other site, highly resistant to EDTA, does not bind LDL. Binding to the EDTA-resistant site, however, is readily inhibited by heparin (as is the LDL receptor) and also by antisera prepared against rat or bovine LDL receptor. The distribution of the EDTA-resistant site among early endosomes, late endosomes, and endosome-derived receptor-recycling membranes is similar to that of the LDL receptor and other recycling receptors. The LDL receptor was present in endosomal membranes from livers of untreated rats at about 10% of the level found in membranes from estradiol-treated rats, but the EDTA-resistant site was barely detectable. No saturable binding of beta-VLDL that could not be inhibited by antisera to the LDL receptor could be detected in endosomal membranes from livers of either untreated or estradiol-treated rats. The EDTA-resistant site may be a modified form of the LDL receptor that recognizes apolipoprotein E but not the B apolipoprotein of LDL. Alternatively, it may be a distinct receptor sharing immunological determinants with the LDL receptor, specialized for the endocytosis of certain lipoproteins containing apolipoprotein E, including chylomicron remnants. Images PMID:2538819

  20. Dissection of LolB function--lipoprotein binding, membrane targeting and incorporation of lipoproteins into lipid bilayers.

    PubMed

    Tsukahara, Jun; Mukaiyama, Keita; Okuda, Suguru; Narita, Shin-ichiro; Tokuda, Hajime

    2009-08-01

    Escherichia coli cells express at least 90 species of lipoprotein. LolB is one of the essential outer membrane lipoproteins, being involved in the last step of lipoprotein sorting. It accepts lipoproteins from a periplasmic molecular chaperone, LolA, and mediates the outer membrane anchoring of lipoproteins through a largely unknown mechanism. It has been shown previously that a LolB derivative, mLolB, lacking an N-terminal acyl chain, can bind lipoproteins. We examined how the lack of an N-terminal anchor affects the outer membrane anchoring of lipoproteins. Surprisingly, mLolB compensates for LolB function and supports E. coli growth, indicating that the N-terminal anchor is not essential for its function. Indeed, mLolB correctly localizes lipoproteins to either the inner or outer membrane depending on the sorting signal at the steady state. Furthermore, periplasmic mLolB enables the dissection of LolB function, namely lipoprotein binding, membrane targeting and lipoprotein anchoring. It mediates the transfer of lipoproteins from LolA to the outer membrane, but also the inner membrane and liposomes, indicating that mLolB exhibits no membrane preference and targets to phospholipids. Consequently, an outer membrane-specific lipoprotein is transiently mislocalized to the inner membrane when cells express only mLolB. LolB anchored to the outer membrane does not cause such mislocalization and is more active than mLolB. Phosphatidylethanolamine has been found to stimulate the mLolB-dependent membrane anchoring of lipoproteins. Taken together, these results indicate that lipoprotein binding, membrane targeting and membrane incorporation of lipoproteins are intrinsic functions of LolB.

  1. Lipolytic degradation of human very low density lipoproteins by human milk lipoprotein lipase: the identification of lipoprotein B as the main lipoprotein degradation product.

    PubMed

    Alaupovic, P; Wang, C S; McConathy, W J; Weiser, D; Downs, D

    1986-01-01

    Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol

  2. Characterization of chick serum lipoproteins isolated by density gradient ultracentrifugation.

    PubMed

    Rodriguez-Vico, F; Lopez, J M; Castillo, M; Zafra, M F; Garcia-Peregrin, E

    1992-01-01

    Serum lipoproteins from 12h fasted male chicks (15-day-old) were separated into 20 fractions by isopycnic density gradient ultracentrifugation. A new procedure was described by collecting the different fractions from the bottom of tube instead of by aspiration from the meniscus of each tube. Analyses of chemical composition of serum lipoproteins have permitted to reevaluate the density limits of major classes: VHDL, d greater than 1.132 g/ml; HDL, d 1.132-1.084 g/ml; LDL, d 1.084-1.038; IDL, d 1.038-1.022; and VLDL d less than 1.022. HDL fractions clearly predominated (approx. 77% of total lipoproteins) while IDL and VLDL were present at low percentage. LDL was the fraction richest in cholesterol; triacylglycerol content clearly increased from HDL to VLDL, while protein content decreased. All the chemical components of chick serum lipoproteins were accumulated in HDL, although triacylglycerol was relatively distributed in all the lipoprotein classes.

  3. Low density lipoproteins mediated nanoplatforms for cancer targeting

    NASA Astrophysics Data System (ADS)

    Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant; Jain, Narendra K.

    2013-09-01

    Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body's defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature's method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL-drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier.

  4. Intracellular retention of thyroglobulin in the absence of the low-density lipoprotein receptor-associated protein (RAP) is likely due to premature binding to megalin in the biosynthetic pathway.

    PubMed

    Lisi, S; Botta, R; Rotondo Dottore, G; Leo, M; Latrofa, F; Vitti, P; Marinò, M

    2016-09-01

    The low-density lipoprotein receptor associated protein (RAP) is expressed by thyroid epithelial cells (TEC) in a TSH-dependent manner. In the thyroid RAP functions as a molecular chaperone for the thyroglobulin (Tg) endocytic receptor megalin/LRP2, which is retained intracellularly in RAP KO mice rather than being expressed on the apical membrane of TEC, its usual location. RAP binds also to Tg, which is also retained intracellularly in RAP KO mice, thereby suggesting a role of RAP in Tg secretion. Here we investigated whether Tg intracellular retention in the absence of RAP is due to premature Tg-megalin interactions during the biosynthetic pathway or to a direct action of RAP on Tg secretion. We performed immunoprecipitation experiments in thyroid extracts from RAP KO and WT mice. In addition, we investigated Tg secretion in COS-7 cells co-transfected with human RAP (hRAP) and mouse Tg (mTg). An anti-megalin megalin precipitated greater amounts of Tg in thyroid extracts from RAP KO than from WT mice, suggesting increased intracellular interactions between megalin and Tg in the absence of RAP. COS-7 cells transiently transfected with hRAP, mTg or both, expressed the two proteins accordingly. RAP was found almost exclusively in cell extracts, whereas Tg was found both in extracts and media, as expected from the knowledge that RAP is ER-resident and that Tg is secreted. Regardless of whether cells were transfected with mTg alone or were co-transfected with hRAP, similar proportions of the total Tg synthesized were detected in cell extracts and media. The intracellular retention of Tg in the absence of RAP is likely due to its premature interaction with megalin, whereas RAP does not seem to affect Tg secretion directly.

  5. Interaction of Fibrin with the Very Low-Density Lipoprotein (VLDL) Receptor: Further Characterization and Localization of the VLDL Receptor-Binding Site in Fibrin βN-Domains.

    PubMed

    Yakovlev, Sergiy; Medved, Leonid

    2017-05-16

    Our recent study revealed that fibrin and the very low-density lipoprotein receptor (VLDLR) interact with each other through a pair of fibrin βN-domains and CR domains of the receptor and this interaction promotes transendothelial migration of leukocytes and thereby inflammation. The major objectives of this study were to further clarify the molecular mechanism of fibrin-VLDLR interaction and to identify amino acid residues in the βN-domains involved in this interaction. Our binding experiments with the (β15-66)2 fragment, which corresponds to a pair of fibrin βN-domains, and the VLDLR(1-8) fragment, consisting of eight CR domains of VLDLR, revealed that interaction between them strongly depends on ionic strength and chemical modification of all Lys or Arg residues in (β15-66)2 results in abrogation of this interaction. To identify which of these residues are involved in the interaction, we mutated all Lys or Arg residues in each of the three positively charged Lys/Arg clusters of the (β15-66)2 fragment, as well as single Arg17 and Arg30, and tested the affinity of the mutants obtained for VLDLR(1-8) by an enzyme-linked immunosorbent assay and surface plasmon resonance. The experiments revealed that the second and third Lys/Arg clusters make the major contribution to this interaction while the contribution of the first cluster is moderate. The results obtained suggest that interaction between fibrin and the VLDL receptor employs the "double-Lys/Arg" recognition mode previously proposed for the interaction of the LDL receptor family members with their ligands. They also provide valuable information for the development of highly specific peptide-based inhibitors of fibrin-VLDLR interaction.

  6. Effect of drugs on high-density lipoprotein.

    PubMed

    McKenney, James M

    2007-03-01

    The National Cholesterol Education Program Adult Treatment Panel III found evidence for raising high-density lipoprotein cholesterol (HDL-C) to reduce coronary artery disease (CAD) events supports use of HDL-C to help modify low-density lipoprotein cholesterol (LDL-C)-lowering goals, but not to establish new HDL-C-focused treatment recommendations. However, the HDL-C-raising clinical trials provide important lessons to help guide clinical management of dyslipidemic patients. The fibrate outcome trials demonstrate that these drugs reduce CAD events, but not death. Their greatest benefit is in patients with atherogenic dyslipidemia characterized by high triglycerides, small LDL particles, and low HDL-C. Unfortunately, there is no information on whether these drugs extend risk reduction when added to a statin. The niacin outcome trials also demonstrate a reduction in CAD events, both with niacin monotherapy and in combination with a statin. Unfortunately, most of the trials are too small to address the impact of niacin on mortality. In the clinic, statins are most useful for their LDL-C-lowering efficacy, although their modest HDL-C-raising effects can be important in CAD risk reduction. In most cases, other therapies will need to be added to a statin to augment HDL-C-raising, and the most effective drug for achieving this is niacin. The greatest challenge with the use of niacin is managing the vasodilatory side effects, but this can be effectively done in the majority of patients. Fibrates can also be added to a statin for management of atherogenic dyslipidemia. These drugs are among the most effective triglyceride-lowering drugs, and they also increase HDL-C levels, but not as much as niacin. The biggest concern with combining a fibrate with a statin is the enhanced risk of severe muscle toxicity, but this appears to be a problem unique to gemfibrozil, and not fenofibrate. In the research center, new approaches are under development for enhancing the availability of

  7. Short-term cooling increases serum triglycerides and small high-density lipoprotein levels in humans.

    PubMed

    Hoeke, Geerte; Nahon, Kimberly J; Bakker, Leontine E H; Norkauer, Sabine S C; Dinnes, Donna L M; Kockx, Maaike; Lichtenstein, Laeticia; Drettwan, Diana; Reifel-Miller, Anne; Coskun, Tamer; Pagel, Philipp; Romijn, Fred P H T M; Cobbaert, Christa M; Jazet, Ingrid M; Martinez, Laurent O; Kritharides, Leonard; Berbée, Jimmy F P; Boon, Mariëtte R; Rensen, Patrick C N

    Cold exposure and β3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by (1)H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [(3)H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  8. Low density lipoprotein uptake by an endothelial-smooth muscle cell bilayer

    SciTech Connect

    Alexander, J.J.; Miguel, R.; Graham, D. )

    1991-03-01

    To study the interaction of endothelial and smooth muscle cells, and the means by which such interaction may affect lipid permeability of the arterial wall, cell bilayers were established by use of a transwell culture system. After confluent growth of both cell types had been achieved, iodine 125 bound to low-density lipoprotein (10 ng protein/ml) was added to the media of the upper well. After a 3-hour incubation period, the iodine 125-bound low-density lipoprotein content of the upper and lower media demonstrated an impedance to lipoprotein movement across the endothelial cell monolayer as compared to the bare porous polycarbonate filter of the transwell (p less than 10(-6)). The presence of smooth muscle cells in the bottom well significantly enhanced the permeability of the endothelial cell layer (p less than 10(-60)). This effect remained unchanged over a 9-day time course. Membrane binding and cellular uptake of low-density lipoprotein by endothelial cells was not altered by smooth muscle cells, indicating that this change in permeability could not be easily attributed to changes in receptor-mediated transport or transcytosis. Membrane binding (p less than 0.02) and cellular uptake (p less than 10(-6)) of low-density lipoprotein by smooth muscle cells in the bilayer, when adjusted for counts available in the smooth muscle cell media, were both reduced in the early incubation period as compared to isolated smooth muscle cells. The disproportionate reduction in uptake as compared to binding would suggest that this was not entirely a receptor-dependent process.

  9. Structural Stability and Functional Remodeling of High-Density Lipoproteins

    PubMed Central

    Gursky, Olga

    2015-01-01

    Lipoproteins are protein-lipid nanoparticles that transport lipids in circulation and are central in atherosclerosis and other disorders of lipid metabolism. Apolipoproteins form flexible structural scaffolds and important functional ligands on the particle surface and direct lipoprotein metabolism. Lipoproteins undergo multiple rounds of metabolic remodeling that is crucial to lipid transport. Important aspects of this remodeling, including apolipoprotein dissociation and particle fusion, are mimicked in thermal or chemical denaturation and are modulated by free energy barriers. Here we review our biophysical studies that revealed kinetic mechanism of lipoprotein stabilization and unraveled its structural basis. The main focus is on high-density lipoprotein (HDL). An inverse correlation between stability and functions of various HDLs in cholesterol transport suggests functional role of structural disorder. A mechanism for conformational adaptation of the major HDL proteins, apoA-I and apoA-II, to the increasing lipid load is proposed. Together, these studies help understand why HDL form discrete subclasses separated by kinetic barriers, which have distinct composition, conformation and functional properties. Understanding these properties may help improve HDL quality and develop novel therapies for cardiovascular disease. PMID:25749369

  10. [Residual risk: The roles of triglycerides and high density lipoproteins].

    PubMed

    Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried

    2016-06-01

    In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target.

  11. [Very low density lipoproteins and subclasses of intermediate density lipoproteins in postmenopausal women].

    PubMed

    Berg, G; Halperín, H; Siseles, N; Wikinski, R

    1996-01-01

    Post menopausal women present an increase of cardiovascular risk associated with the atherogenic plasma lipoproteins IDL and LDL. Our purpose was to study the composition of VLDL, IDL and the subfractions IDL-1 and IDL-2, and the Lipoprotein Lipase and Hepatic Lipase activities in a group of twelve healthy post menopausal women as compared with eleven fertile controls. The mean values of total cholesterol and LDL cholesterol were significantly increased in the post menopausal group compared to the controls (p < 0.005 and p < 0.001 respectively). The contribution of the HDL-cholesterol plasma concentration to total cholesterol was lower in the postmenopausal women (p < 0.02) although no one had HDL-cholesterol lower than 35 mg/dl and the mean value was 50 mg/dl. Postmenopausal women had increased concentrations of VLDL, total IDL and IDL-2 compared to controls (p < 0.05, p < 0.005 and p < 0.001 respectively). Plasma concentrations of total IDL was increased in postmenopausal women (33.6 +/- 3.4 vs 22.6 +/- 0.8 mg/dl, p < 0.005). The increase in total IDL was due to IDL-2 (19.9 +/- 1.7 vs 11.5 +/- 0.8 mg/dl, p < 0.001, in postmenopausal women vs controls). The IDL-2 subfraction was 60 +/- 2.6% of total IDL in postmenopausal women and 51 +/- 2.0% in controls (p < 0.02). In postmenopausal women and in controls the ratio triglyceride/protein (which indicates particles size) was significantly higher in IDL-1 than in IDL-2 (p < 0.005 and p < 0.01 respectively), but this ratio did not show differences when VLDL, total IDL and IDL-2 were compared between postmenopausal and control women. Then, the increased plasma concentration of these lipoproteins would show an increased number of particles in the postmenopausal women vs controls. There were no differences in the Lipoprotein Lipase and Hepatic Lipase activities between both groups. Lipoprotein Lipase vs total IDL-triglycerides and IDL-2-triglycerides showed a significant inverse correlation in controls (p < 0.05) but not

  12. Effects of oxidation on the structure and stability of human low-density lipoprotein.

    PubMed

    Jayaraman, Shobini; Gantz, Donald L; Gursky, Olga

    2007-05-15

    Oxidation of low-density lipoprotein (LDL), the major cholesterol carrier in plasma, is thought to promote atherogenesis via several mechanisms. One proposed mechanism involves fusion of oxidized LDL in the arterial wall; another involves oxidation-induced amyloid formation by LDL apolipoprotein B. To test these mechanisms and to determine the effects of oxidation on the protein secondary structure and lipoprotein fusion in vitro, we analyzed LDL oxidized by nonenzymatic (Cu2+, H2O2, and HOCl) or enzymatic methods (myeloperoxidase/H2O2/Cl- and myeloperoxidase/H2O2/NO2-). Far-UV circular dichroism spectra showed that LDL oxidation induces partial unfolding of the secondary structure rather than folding into cross-beta amyloid conformation. This unfolding correlates with increased negative charge of oxidized LDL and with a moderate increase in thioflavin T fluorescence that may result from electrostatic attraction between the cationic dye and electronegative LDL rather than from dye binding to amyloid. These and other spectroscopic studies of low- and high-density lipoproteins, which encompass amyloid-promoting conditions (high protein concentrations, high temperatures, acidic pH), demonstrate that in vitro lipoprotein oxidation does not induce amyloid formation. Surprisingly, turbidity, near-UV circular dichroism, and electron microscopic data demonstrate that advanced oxidation inhibits heat-induced LDL fusion that is characteristic of native lipoproteins. Such fusion inhibition may result from the accumulation of anionic lipids and lysophospholipids on the particle surface and/or from protein cross-linking upon advanced lipoprotein oxidation. Consequently, oxidation alone may prevent rather than promote LDL fusion, suggesting that additional factors, such as albumin-mediated removal of lipid peroxidation products and/or LDL binding to arterial proteoglycans, facilitate fusion of oxidized LDL in vivo.

  13. [THE BECOMING IN PHYLOGENESIS OF TRANSFER IN INTERCELLULAR MEDIUM AND ACTIVE ABSORPTION OF POLYENOIC FATTY ACIDS BY CELLS SEQUENTIALLY OF HIGH DENSITY LIPOPROTEINS, LOW DENSITY LIPOPROTEINS AND HIGH DENSITY APOE-LIPOPROTEINS].

    PubMed

    Titov, V N

    2015-06-01

    After more than half-century of different conceptions, the theory of general pathology was used to substantiate that all lipoproteins are bi-layer:lipid by their structure. The main function of high density lipoproteins as of all lipoproteins is transfer of fatty acids to cells and only in second turn taking away of spirit cholesterol from cells. At the stages of phylogenesis high density lipoproteins, low density lipoproteins and very low density lipoproteins began to function in a subsequent way. The fatty acids were transferred by low density lipoproteins in polar lipids at passive absorption by cells. Later on, lipoproteins transfer fatty acids in non-polar ethers with spirits glycerin and spirit cholesterol. The cells absorb them by receptor endocytosis. The hepatocytes secret in blood palmitic, oleic, linoleic and linoleic very low density lipoproteins. The palmitic and oleic very low density lipoproteins absorb physiologically insulin-dependent cells apoE/B-100 = endocytosis. The linoleic and linoleic very low density lipoproteins after transition of polyethers cholesterol from high density lipoproteins turn into low density lipoproteins. The cells absorb them by apoB-100 = endocytosis. The formation of chylomicrons occurs in blood and hepatocytes absorb them by the way of apoB/E-48 = endocytosis. The absorption of poly-unsaturated fatty acids by cells with apoB-100 = endocytosis form sensitivity of animals to exogenous hyper spirit cholesterol and absorption of poly-unsaturated fatty acids by apoE/A-I = receptors form corresponding resistance. The ApoE in lipoproteins form cooperative ligands--apoE/B-48 for chylomicrons, apoE/B-100 for very low density lipoproteins and apoE/A-I for high density lipoproteins. The chylomicrons in blood form apoB-48 from complexes of triglycerides secreted by enterocytes. These views change conceptions of pathogenesis and prevention of atherosclerosis, metabolic syndrome and resistance to insulin whose pathogenesis is unified

  14. Influence of copper deficiency on binding and uptake of apolipoprotein E-free high density lipoproteins (APO E-free HDL) by isolated rat liver parenchymal and Kupffer cells

    SciTech Connect

    Lei, K.Y.; Hendriks, H.F.J.; Brouwer, A.; Bock, I.; De Ruiter, C.S.J.; Knook, D.L. )

    1989-02-01

    Weanling male Sprague-Dawley rats were assigned to two dietary treatments; copper-deficient (CD, 0.7 ppm) and adequate (CA, 7.0 ppm). After 8 weeks, plasma apo E-free HDL were isolated by a combination of ultracentrifugation, gel filtration, and heparin-Sepharose affinity chromatography. Liver parenchymal (P) and Kupffer (K) cells were obtained by collagenase perfusion and purified by elutriation. Freshly isolated cells were then incubated with {sup 125}I-apo E-free HDL, either from the same treatment group or in a crossover design, in order to establish if treatment differences were associated with cells and/or lipoproteins. Binding studies performed at 4{degree}C with increasing apo E-free HDL concentration indicated an increase in specific binding in P cells from CD rats. In cell association studies at 37{degree}C, P cells from CD rats demonstrated increased in trypsin releasable (surface-bound) and total cell-associated apo E-free HDL. In contrast, K cells from CD rats demonstrated a reduction in apo E-free HDL uptake (internalized). These findings confirm data obtained from cultured P cells and indicated that copper deficiency may exert different effects on lipoprotein metabolism in rat liver parenchymal and Kupffer cells.

  15. High density lipoproteins-based therapies for cardiovascular disease

    PubMed Central

    Gao, Xuan; Yuan, Shujun

    2010-01-01

    Atherosclerosis is the leading cause of death in developed countries. High density lipoproteins (HDL) cholesterol level correlates inversely with the risk of cardiovascular diseases. Thus, HDL has obtained lots of interest for drug development. In this review, we summarized the mechanisms for the antiatherogenic function of HDL, current HDL-based drugs in clinical use and the future direction for HDL-based therapy development. PMID:21187875

  16. ANALYSIS OF DRUG INTERACTIONS WITH VERY LOW DENSITY LIPOPROTEIN BY HIGH PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Sobansky, Matthew R.; Hage, David S.

    2014-01-01

    High-performance affinity chromatography (HPAC) was utilized to examine the binding of very low density lipoprotein (VLDL) with drugs, using R/S-propranolol as a model. These studies indicated that two mechanisms existed for the binding of R- and S-propranolol with VLDL. The first mechanism involved non-saturable partitioning of these drugs with VLDL, which probably occurred with the lipoprotein's non-polar core. This partitioning was described by overall affinity constants of 1.2 (± 0.3) × 106 M-1 for R-propranolol and 2.4 (± 0.6) × 106 M-1 for S-propranolol at pH 7.4 and 37 °C. The second mechanism occurred through saturable binding by these drugs at fixed sites on VLDL, such as represented by apolipoproteins on the surface of the lipoprotein. The association equilibrium constants for this saturable binding at 37 °C were 7.0 (± 2.3) × 104 M-1 for R-propranolol and 9.6 (± 2.2) × 104 M-1 for S-propranolol. Comparable results were obtained at 20 °C and 27 °C for the propranolol enantiomers. This work provided fundamental information on the processes involved in the binding of R- and S-propranolol to VLDL, while also illustrating how HPAC can be used to evaluate relatively complex interactions between agents such as VLDL and drugs or other solutes. PMID:25103529

  17. Purification of very high density lipoproteins by differential density gradient ultracentrifugation.

    PubMed

    Haunerland, N H; Ryan, R O; Law, J H; Bowers, W S

    1987-03-01

    Differential density gradient ultracentrifugation procedures, utilizing a vertical rotor, were developed for the preparative purification of very high density lipoproteins (VHDL, density greater than 1.21 g/ml). The VHDLs of several insect species were purified as follows. An initial density gradient ultracentrifugation step removed lipoproteins of lower density from the VHDL-fraction, which partially separated from the nonlipoproteins present in the infranatant. A complete separation was achieved by a second centrifugation step employing a modified gradient system. The use of a vertical rotor and specially designed discontinuous gradients allows a relatively fast, efficient, and economical isolation of the class of very high density lipoproteins. Similar gradient systems should be useful for the detection and purification of VHDLs from other sources.

  18. Oxidized low-density lipoprotein in postmenopausal women.

    PubMed

    Kork, Felix; Jankowski, Vera; Just, Alexander R; Pfeilschifter, Johannes; Tepel, Martin; Zidek, Walter; Jankowski, Joachim

    2014-07-01

    Oxidized low-density lipoprotein (oxLDL) leads to atherosclerosis and cardiovascular disease, the most frequent causes of death worldwide. After menopause, lipid and lipoprotein metabolism changes and women are at greater risk of cardiovascular disease compared to fertile women. The aim of this study was to determine the prevalence of serum oxLDL in postmenopausal women and to identify possible associations of clinical and laboratory features with oxLDL in these patients. After clinical examination and completing a clinical questionnaire, an ultrasound examination of both carotid arteries was conducted and blood was drawn from 533 postmenopausal women. oxLDL concentration was determined using proton NMR spectroscopy. Oxidized LDL was detected in 12.4% (95% confidence interval 9.7-15.5) of postmenopausal women with a median of 0.18 mg/dl (interquartile range 0.10-0.43). Although intima-media thickness did not differ, postmenopausal women with serous oxLDL had more often atherosclerotic plaques compared to women without oxLDL (6/66 vs. 0/467; P < 0.01). Higher concentrations of high-density lipoprotein, impaired glucose intolerance, and DBP were independently associated with the occurrence of oxLDL. If oxLDL was present, higher high-density lipoprotein and glucose intolerance were associated with higher concentrations of oxLDL. In contrast, higher blood urea concentrations were associated with lower concentrations of oxLDL. This study presents the prevalence and concentration of oxLDL in postmenopausal women and demonstrates that oxLDL concentration can be quantified by proton NMR spectroscopy in large patient samples. The data suggest that oxLDL may be a biomarker for incipient atherosclerotic changes in postmenopausal women. In contrary to the association of dyslipoproteinemia and diabetes, higher blood urea concentrations were associated with lower concentrations of oxLDL.

  19. Relation Between Cigarette Smoking, Body Fat Distribution and Density of Lipoprotein Cholesterol in Women.

    DTIC Science & Technology

    1992-08-01

    Cholesterol in Women Linda R. Beson, Major AFIT Student Attending: University of Florida AFIT/CI/CIA-92-085 DTIC Wright-Patterson AFB OH 45433-6583 ELECTE 1...CIGARETTE SMOKING, BODY FAT DISTRIBUTION AND DENSITY OF LIPOPROTEIN CHOLESTEROL IN WOMEN By W: , LINDA R. BESON " Di t A THESIS PRESENTED TO THE GRADUATE...12 Cholesterol and Serum Lipoproteins ......... .. 14 Low Density Lipoprotein (LDL) Cholesterol . . . 18 High Density Lipoprotein (HDL

  20. Linkage of low-density lipoprotein size to the lipoprotein lipase gene in heterozygous lipoprotein lipase deficiency.

    PubMed Central

    Hokanson, J E; Brunzell, J D; Jarvik, G P; Wijsman, E M; Austin, M A

    1999-01-01

    Small low-density lipoprotein (LDL) particles are a genetically influenced coronary disease risk factor. Lipoprotein lipase (LpL) is a rate-limiting enzyme in the formation of LDL particles. The current study examined genetic linkage of LDL particle size to the LpL gene in five families with structural mutations in the LpL gene. LDL particle size was smaller among the heterozygous subjects, compared with controls. Among heterozygous subjects, 44% were classified as affected by LDL subclass phenotype B, compared with 8% of normal family members. Plasma triglyceride levels were significantly higher, and high-density lipoprotein cholesterol (HDL-C) levels were lower, in heterozygous subjects, compared with normal subjects, after age and sex adjustment. A highly significant LOD score of 6.24 at straight theta=0 was obtained for linkage of LDL particle size to the LpL gene, after adjustment of LDL particle size for within-genotype variance resulting from triglyceride and HDL-C. Failure to adjust for this variance led to only a modest positive LOD score of 1.54 at straight theta=0. Classifying small LDL particles as a qualitative trait (LDL subclass phenotype B) provided only suggestive evidence for linkage to the LpL gene (LOD=1. 65 at straight theta=0). Thus, use of the quantitative trait adjusted for within-genotype variance, resulting from physiologic covariates, was crucial for detection of significant evidence of linkage in this study. These results indicate that heterozygous LpL deficiency may be one cause of small LDL particles and may provide a potential mechanism for the increase in coronary disease seen in heterozygous LpL deficiency. This study also demonstrates a successful strategy of genotypic specific adjustment of complex traits in mapping a quantitative trait locus. PMID:9973300

  1. MCP-1 binds to oxidized LDL and is carried by lipoprotein(a) in human plasma

    PubMed Central

    Wiesner, Philipp; Tafelmeier, Maria; Chittka, Dominik; Choi, Soo-Ho; Zhang, Li; Byun, Young Sup; Almazan, Felicidad; Yang, Xiaohong; Iqbal, Navaid; Chowdhury, Punam; Maisel, Alan; Witztum, Joseph L.; Handel, Tracy M.; Tsimikas, Sotirios; Miller, Yury I.

    2013-01-01

    Lipoprotein oxidation plays an important role in pathogenesis of atherosclerosis. Oxidized low density lipoprotein (OxLDL) induces profound inflammatory responses in vascular cells, such as production of monocyte chemoattractant protein-1 (MCP-1) [chemokine (C-C motif) ligand 2], a key chemokine in the initiation and progression of vascular inflammation. Here we demonstrate that OxLDL also binds MCP-1 and that the OxLDL-bound MCP-1 retains its ability to recruit monocytes. A human MCP-1 mutant in which basic amino acids Arg-18 and Lys-19 were replaced with Ala did not bind to OxLDL. The MCP-1 binding to OxLDL was inhibited by the monoclonal antibody E06, which binds oxidized phospholipids (OxPLs) in OxLDL. Because OxPLs are carried by lipoprotein(a) [Lp(a)] in human plasma, we tested to determine whether Lp(a) binds MCP-1. Recombinant wild-type but not mutant MCP-1 added to human plasma bound to Lp(a), and its binding was inhibited by E06. Lp(a) captured from human plasma contained MCP-1 and the Lp(a)-associated endogenous MCP-1 induced monocyte migration. These results demonstrate that OxLDL and Lp(a) bind MCP-1 in vitro and in vivo and that OxPLs are major determinants of the MCP-1 binding. The association of MCP-1 with OxLDL and Lp(a) may play a role in modulating monocyte trafficking during atherogenesis. PMID:23667177

  2. Comparative Studies of Vertebrate Lipoprotein Lipase: A Key Enzyme of Very Low Density Lipoprotein Metabolism

    PubMed Central

    Holmes, Roger S; Vandeberg, John L; Cox, Laura A

    2011-01-01

    Lipoprotein lipase (LIPL or LPL; E.C.3.1.1.34) serves a dual function as a triglyceride lipase of circulating chylomicrons and very-low-density lipoproteins (VLDL) and facilitates receptor-mediated lipoprotein uptake into heart, muscle and adipose tissue. Comparative LPL amino acid sequences and protein structures and LPL gene locations were examined using data from several vertebrate genome projects. Mammalian LPL genes usually contained 9 coding exons on the positive strand. Vertebrate LPL sequences shared 58–99% identity as compared with 33–49% sequence identities with other vascular triglyceride lipases, hepatic lipase (HL) and endothelial lipase (EL). Two human LPL N-glycosylation sites were conserved among seven predicted sites for the vertebrate LPL sequences examined. Sequence alignments, key amino acid residues and conserved predicted secondary and tertiary structures were also studied. A CpG island was identified within the 5'-untranslated region of the human LPL gene which may contribute to the higher than average (x4.5 times) level of expression reported. Phylogenetic analyses examined the relationships and potential evolutionary origins of vertebrate lipase genes, LPL, LIPG (encoding EL) and LIPC (encoding HL) which suggested that these have been derived from gene duplication events of an ancestral neutral lipase gene, prior to the appearance of fish during vertebrate evolution. Comparative divergence rates for these vertebrate sequences indicated that LPL is evolving more slowly (2–3 times) than for LIPC and LIPG genes and proteins. PMID:21561822

  3. SR-BI mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages.

    PubMed

    Song, Gyun Jee; Kim, Seong-Min; Park, Ki-Hoon; Kim, Jihoe; Choi, Inho; Cho, Kyung-Hyun

    2015-01-30

    High density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), mediates selective cholesteryl ester uptake from lipoproteins into the liver as well as cholesterol efflux from macrophages to HDL. Recently, strong evidence has demonstrated the anti-inflammatory effect of HDL, although the mechanism of action is not fully understood. In this study, we showed that the anti-inflammatory effects of HDL are dependent on SR-BI expression in THP-1 macrophages. Consistent with earlier findings, pretreatment of macrophages with HDL abolished LPS-induced TNFα production. HDL also inhibited LPS-induced NF-κB activation. In addition, knockdown of SR-BI or inhibition of SR-BI ligand binding abolished the anti-inflammatory effect of HDL. SR-BI is a multi-ligand receptor that binds to modified lipoproteins as well as native HDL. Since modified lipoproteins have pro-inflammatory properties, it is unclear whether SR-BI activated by modified HDL has an anti- or pro-inflammatory effect. Glycated HDL induced NF-κB activation and cytokine production in macrophages in vitro, suggesting a pro-inflammatory effect for modified HDL. Moreover, inhibition of SR-BI function or expression potentiated glycated HDL-induced TNF-α production, suggesting an anti-inflammatory effect for SR-BI. In conclusion, SR-BI plays an important function in regulating HDL-mediated anti-inflammatory response in macrophages.

  4. Kinetics of in vitro lipolysis of human very low-density lipoprotein by lipoprotein lipase.

    PubMed

    Schreier, L; Berg, G; Zago, V; Gonzalez, A I; Wikinski, R

    2002-02-01

    An initial step in the catabolism of triglyceride-rich lipoprotein involves the hydrolysis of the triglyceride moiety by lipoprotein lipase (LPL). As differences in the lipolytic behaviour of very low-density lipoprotein (VLDL) particles have been observed, it is possible that different VLDL particles have a different affinity to the enzyme, which means that their fate may partially depend on the LPL-mediated hydrolysis of their triglyceride content. Our aim was to determine whether variation in VLDL chemical composition affects their properties as a substrate for LPL. Isolated VLDL was incubated in vitro with bovine LPL to determine substrate affinity. Under optimal assay conditions, free fatty acids were measured and the kinetic indicators for in vitro triglyceride hydrolysis (Km and Vmax) were calculated. VLDL cholesterol (VLDL-C), VLDL-apoB and the cholesterol/triglyceride ratio were assessed and the triglyceride/protein and triglyceride/apoB ratios were calculated as lipoprotein size estimators. VLDL-C, VLDL-apoB and the VLDL-C/triglyceride ratio positively correlated with Km: r = 0.52, p < 0.01; r = 0.52, p < 0.03; r = 0.69, p < 0.001 respectively. No correlation was found between the VLDL-triglyceride/protein or the VLDL-triglyceride/apoB ratios and Km (r = -0.20, and -0.06 respectively, p = not significant). Of the subjects' anthropometric characteristics, only the waist/hip ratio significantly correlated with Km: r = 0.63, p < 0.01. In the present study, we investigated the substrate function of VLDL particles in vitro. Enzyme affinity seems to be associated with cholesterol-triglyceride content or the number of VLDL particles rather than particle size. It may be expected that VLDL with a low cholesterol/triglyceride ratio will be efficiently lypolised by LPL, thus leading to the formation of a smaller particle with atherogenic potential.

  5. Multimerization of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) and familial chylomicronemia from a serine-to-cysteine substitution in GPIHBP1 Ly6 domain.

    PubMed

    Plengpanich, Wanee; Young, Stephen G; Khovidhunkit, Weerapan; Bensadoun, André; Karnman, Hirankorn; Ploug, Michael; Gårdsvoll, Henrik; Leung, Calvin S; Adeyo, Oludotun; Larsson, Mikael; Muanpetch, Suwanna; Charoen, Supannika; Fong, Loren G; Niramitmahapanya, Sathit; Beigneux, Anne P

    2014-07-11

    GPIHBP1, a glycosylphosphatidylinositol-anchored glycoprotein of microvascular endothelial cells, binds lipoprotein lipase (LPL) within the interstitial spaces and transports it across endothelial cells to the capillary lumen. The ability of GPIHBP1 to bind LPL depends on the Ly6 domain, a three-fingered structure containing 10 cysteines and a conserved pattern of disulfide bond formation. Here, we report a patient with severe hypertriglyceridemia who was homozygous for a GPIHBP1 point mutation that converted a serine in the GPIHBP1 Ly6 domain (Ser-107) to a cysteine. Two hypertriglyceridemic siblings were homozygous for the same mutation. All three homozygotes had very low levels of LPL in the preheparin plasma. We suspected that the extra cysteine in GPIHBP1-S107C might prevent the trafficking of the protein to the cell surface, but this was not the case. However, nearly all of the GPIHBP1-S107C on the cell surface was in the form of disulfide-linked dimers and multimers, whereas wild-type GPIHBP1 was predominantly monomeric. An insect cell GPIHBP1 expression system confirmed the propensity of GPIHBP1-S107C to form disulfide-linked dimers and to form multimers. Functional studies showed that only GPIHBP1 monomers bind LPL. In keeping with that finding, there was no binding of LPL to GPIHBP1-S107C in either cell-based or cell-free binding assays. We conclude that an extra cysteine in the GPIHBP1 Ly6 motif results in multimerization of GPIHBP1, defective LPL binding, and severe hypertriglyceridemia. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery.

    PubMed

    McMahon, Kaylin M; Mutharasan, R Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K; Luthi, Andrea J; Helfand, Brian T; Ardehali, Hossein; Mirkin, Chad A; Volpert, Olga; Thaxton, C Shad

    2011-03-09

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy that combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy, and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery.

  7. Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery

    PubMed Central

    McMahon, Kaylin M.; Mutharasan, R. Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K.; Luthi, Andrea J.; Helfand, Brian T.; Ardehali, Hossein; Mirkin, Chad A.; Volpert, Olga; Thaxton, C. Shad

    2014-01-01

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy which combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy (TEM), and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery. PMID:21319839

  8. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  9. A Mediterranean-style, low-glycemic-load diet decreases atherogenic lipoproteins and reduces lipoprotein (a) and oxidized low-density lipoprotein in women with metabolic syndrome.

    PubMed

    Jones, Jennifer L; Comperatore, Michael; Barona, Jacqueline; Calle, Mariana C; Andersen, Catherine; McIntosh, Mark; Najm, Wadie; Lerman, Robert H; Fernandez, Maria Luz

    2012-03-01

    The objective was to assess the impact of a Mediterranean-style, low-glycemic-load diet (control group, n = 41) and the same diet plus a medical food (MF) containing phytosterols, soy protein, and extracts from hops and Acacia (MF group, n = 42) on lipoprotein atherogenicity in women with metabolic syndrome. Plasma lipids, apolipoproteins (apos), lipoprotein subfractions and particle size, low-density lipoprotein (LDL) oxidation, and lipoprotein (a) were measured at baseline, week 8, and week 12 of the intervention. Three-day dietary records were collected at the same time points to assess compliance. Compared with baseline, women decreased energy intake from carbohydrate (P < .001) and fat (P < .001), whereas they increased energy intake from protein (P < .001). A significant increase in energy from monounsaturated fatty acids was also observed as well as increases in eicosapentaenoic acid and docosahexaenoic acid, whereas trans-fatty acid intake was reduced (P < .00001). The atherogenic lipoproteins, large very low-density lipoprotein (P < .0001) and small LDL (P < .0001), were reduced, whereas the ratio of large high-density lipoprotein to smaller high-density lipoprotein particles was increased (P < .0001). Apolipoprotein B was reduced for all women (P < .0001), with a greater reduction in the MF group (P < .025). Oxidized LDL (P < .05) and lipoprotein (a) (P < .001) were reduced in both groups at the end of the intervention. Consumption of a Mediterranean-style diet reduces the risk for cardiovascular disease by decreasing atherogenic lipoproteins, oxidized LDL, and apo B. Inclusion of an MF may have an additional effect in reducing apo B. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Thermal stability of human plasma electronegative low-density lipoprotein: A paradoxical behavior of low-density lipoprotein aggregation

    PubMed Central

    Rull, Anna; Jayaraman, Shobini; Gantz, Donald L.; Rivas-Urbina, Andrea; Pérez-Cuellar, Montserrat; Ordóñez-Llanos, Jordi; Sánchez-Quesada, Jose Luis; Gursky, Olga

    2017-01-01

    Low-density lipoprotein (LDL) aggregation is central in triggering atherogenesis. A minor fraction of electronegative plasma LDL, termed LDL(−), plays a special role in atherogenesis. To better understand this role, we analyzed the kinetics of aggregation, fusion and disintegration of human LDL and its fractions, LDL(+) and LDL(−). Thermal denaturation of LDL was monitored by spectroscopy and electron microscopy. Initially, LDL(−) aggregated and fused faster than LDL(+), but later the order reversed. Most LDL(+) disintegrated and precipitated upon prolonged heating. In contrast, LDL(−) partially retained lipoprotein morphology and formed soluble aggregates. Biochemical analysis of all fractions showed no significant degradation of major lipids, mild phospholipid oxidation, and anincrease in non-esterified fatty acid (NEFA) upon thermal denaturation. The main baseline difference between LDL subfractions was higher content of NEFA in LDL(−). Since NEFA promote lipoprotein fusion, increased NEFA content can explain rapid initial aggregation and fusion of LDL(−) but not its resistance to extensive disintegration. Partial hydrolysis of apoB upon heating was similar in LDL subfractions, suggesting that minor proteins importantly modulate LDL disintegration. Unlike LDL(+), LDL(−) contains small amounts of apoA-I and apoJ. Addition of exogenous apoA-I to LDL(+) hampered lipoprotein aggregation, fusion and precipitation, while depletion of endogenous apoJ had an opposite effect. Therefore, the initial rapid aggregation of LDL(−) is apparently counterbalanced by the stabilizing effects of minor proteins such as apoA-I and apoJ. These results help identify key determinants for LDL aggregation, fusion and coalescence into lipid droplets in vivo. PMID:27233433

  11. An evaluation of serum high density lipoproteins-phospholipids.

    PubMed

    Ide, H; Tsuji, M; Shimada, M; Kondo, T; Fujiya, S; Asanuma, Y; Agishi, Y

    1988-07-01

    Phospholipids in high density lipoproteins (HDL) is being used as a negative risk indicator of atherosclerosis. Phospholipids in HDL may not demonstrate the actual level of HDL-phospholipids when determined by the precipitation or ultracentrifugal methods, because HDL fractions contain very high density lipoproteins (VHDL) and albumin. In the present study, the true level of phospholipids in HDL was estimated using high performance liquid chromatography (HPLC), and it was compared with the level of phospholipids in HDL determined by the precipitation method. Sera from 18 healthy subjects were used as materials. In the HPLC method, the HDL fraction was extracted making sure that it contained no free albumin, which is albumin not bound to phospholipids. The HDL fraction was separated into subfractions. It was found that phospholipids in the VHDL fraction make a 20.2 +/- 7.3% (mean +/- S.D.) part of the total HDL-phospholipids. A large part of the VHDL fraction was constituted of albumin-bound phospholipids. A significant correlation was observed between HDL-phospholipids determined by the precipitation method, which contain albumin, and the actual HDL fraction phospholipids determined by HPLC, which do not contain VHDL (r = 0.903, p less than 0.01). These results suggest that HDL-phospholipids values determined by the precipitation method give useful clinical data.

  12. High-density lipoprotein-raising strategies: update 2010.

    PubMed

    Spillmann, Frank; Schultheiss, Heinz-Peter; Tschöpe, Carsten; Van Linthout, Sophie

    2010-05-01

    Population studies have consistently shown that high-density lipoprotein (HDL) cholesterol levels are a strong, independent inverse predictor of cardiovascular disease. Every 1 mg/dl increase in HDL cholesterol is associated with a 2% to 3% decrease in coronary artery disease risk, independent of low-density lipoprotein (LDL) cholesterol and triglyceride levels. The primary mechanism for this protective effect is believed to be reverse cholesterol transport, but several other anti-inflammatory, anti-apoptotic, anti-oxidative functions for HDL have also been identified. Low HDL cholesterol is predictive of cardiovascular events in statin-treated patients with low LDL cholesterol, indicating that intensive lipid lowering strategies with statins alone are not sufficient to prevent cardiovascular events, and merging for additional effective HDL-raising therapy. This review focuses at giving an overview of current established HDL-raising pharmaca, including statins, fibrates, thiazolidinediones, and nicotinic acids, and of novel therapies including cholesterol ester transfer protein-inhibitors, liver X receptor agonists, reconstituted HDL, and apolipoprotein A-I mimetics. Working mechanisms are described and results from clinical trials of monotherapy and combination therapy are discussed.

  13. Low total, low-density lipoprotein, high-density lipoprotein, and non-high-density lipoprotein cholesterol levels in patients with complex congenital heart disease after Fontan palliation.

    PubMed

    Whiteside, Wendy; Tan, Meng; Yu, Sunkyung; Rocchini, Albert

    2013-06-01

    To test the hypothesis that patients with complex congenital heart disease who have undergone Fontan palliation have low total cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels. We retrospectively reviewed the random serum lipid profiles obtained at cardiology clinic visits between May 2010 and November 2011 in patients who had undergone the Fontan procedure. We compared these serum lipid levels against age- and sex-matched established normal data from the Third National Health and Nutrition Examination Survey. Eighty-eight patients who had undergone the Fontan procedure also had laboratory test data obtained during their visits. Median total cholesterol level in the Fontan group was 127 mg/dL (IQR, 116-144 mg/dL), median HDL-C was 40 mg/dL (IQR, 33-45 mg/dL), median non-HDL-C was 86 mg/dL (IQR, 76-109 mg/dL), and median LDL-C was 66 mg/dL (IQR, 57-83 mg/dL). Total cholesterol, LDL-C, non-HDL-C, and HDL-C levels were significantly lower in patients who had undergone a Fontan procedure compared with age- and sex-matched normal individuals (mean z-score, -1.4, -1.2, -1.0, and -1.0 respectively; all P<.0001). Cholesterol levels were below the 25th percentile for age and sex for total cholesterol in 82% of patients, for LDL-C in 76%, for non-HDL-C in 67%, and for HDL-C in 57%. Patients who have undergone the Fontan procedure have significantly lower serum total cholesterol, LDL-C, HDL-C and non-HDL-C levels than age- and sex-matched normal individuals. Although the implications of this finding are unknown, it raises the possibility of abnormalities in cholesterol absorption, synthesis, or catabolism in this patient population. Copyright © 2013 Mosby, Inc. All rights reserved.

  14. Relative atherogenicity and predictive value of non-high-density lipoprotein cholesterol for coronary heart disease

    USDA-ARS?s Scientific Manuscript database

    Although low-density lipoprotein cholesterol (LDL-C) is a well-established atherogenic factor for coronary heart disease, it does not completely represent the risk associated with atherogenic lipoproteins in the presence of high triglyceride (TG) levels. Constituent lipoproteins constituting non–hig...

  15. LIPOPROTEIN LIPASE RELEASES ESTERIFIED OXYLIPINS FROM VERY LOW-DENSITY LIPOPROTEINS.

    USDA-ARS?s Scientific Manuscript database

    Defects in lipoprotein metabolism alter the lipoprotein distribution of oxidized PUFAs, and we speculate that lipoprotein lipase (LpL) is a determinant in the release of VLDL-associated oxylipins. Here, using 12 wk old normolipidemic (lean) and hyperlipidemic (obese) Zucker-rats, we measured PUFA al...

  16. Managing to low-density lipoprotein particles compared with low-density lipoprotein cholesterol: a cost-effectiveness analysis.

    PubMed

    Rizzo, John A; Mallow, Peter J; Waters, Heidi C; Pokrywka, Gregory S

    2013-01-01

    Meta-analyses of clinical trials have shown that using statins to lower low-density lipoprotein cholesterol (LDL-C) reduces cardiovascular events, and more intensive lowering of LDL-C further decreases the risk of occlusive vascular events. Lipoprotein studies suggest treating patients more aggressively when low-density lipoprotein particle (LDL-P) number is discordantly high in the presence of normal LDL-C levels. Failure to manage LDL-P numbers may lead to additional direct and indirect costs. This analysis modeled direct and indirect costs associated with cardiovascular events due to suboptimal treatment resulting from discordance between LDL-C and LDL-P levels. The analysis was conducted from the payer perspective and the employer perspective, respectively, over a 3-year time period. Clinical data were obtained from the Multi-Ethnic Study of Atherosclerosis, a community-based population study. The employer perspective included indirect costs and quality-adjusted life years in addition to the direct costs and cardiovascular disease events considered in the payer analysis. All costs are reported in 2011 dollars. From the payer perspective, managing LDL-C and LDL-P in comparison with LDL-C alone reduced costs ($21,212) and cardiovascular events (9 events). Similar patterns were observed for managing LDL-P alone in comparison with LDL-C. From the employer perspective, managing both LDL-P alone or in combination with LDL-C also resulted in lower costs, fewer cardiovascular disease events, and increased quality-adjusted life years in comparison with LDL-C. This analysis indicates that the benefits of additional testing to optimally manage LDL-P levels outweigh the costs of more aggressive treatment. These favorable results depended on the cost of drug therapy. Copyright © 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  17. Plasma high density lipoprotein is increased in man when low density lipoprotein (LDL) is lowered by LDL-pheresis.

    PubMed Central

    Parker, T S; Gordon, B R; Saal, S D; Rubin, A L; Ahrens, E H

    1986-01-01

    Plasma high density lipoprotein (HDL) concentrations were increased in five hypercholesterolemic normoglyceridemic patients after removal of plasma low density lipoprotein (LDL) by LDL-pheresis. In each patient up to 80% of circulating LDL was removed by passing plasma through immunoadsorption columns containing antibody to apolipoprotein B immobilized to Sepharose. Rebound of LDL was slow after the procedure: 5-7 days in four non-familial hypercholesterolemic patients and greater than 14 days in one patient with homozygous familial hypercholesterolemia. Plasma HDL rose above the pretreatment baseline during the interval between treatments in four of the five patients. When treatments were repeated weekly, time-averaged plasma LDL was lowered by 40-70%, while plasma HDL cholesterol and apolipoprotein AI were increased up to 2-fold, depending on the degree of LDL lowering. Plasma HDL concentrations fell back to their baseline values when LDL-pheresis was stopped and rose again when treatment was restarted. Thus, LDL-pheresis may augment the therapeutic effectiveness of LDL lowering by raising plasma HDL levels and the concentration of HDL relative to LDL. PMID:3511474

  18. Cryoelectron microscopy of low density lipoprotein in vitreous ice.

    PubMed Central

    Spin, J M; Atkinson, D

    1995-01-01

    In this report, images of low density lipoprotein (LDL) in vitreous ice at approximately 30 A resolution are presented. These images show that LDL is a quasi-spherical particle, approximately 220-240 A in diameter, with a region of low density (lipid) surrounded by a ring (in projection) of high density believed to represent apolipoprotein B-100. This ring is seen to be composed of four or five (depending on view) large regions of high density material that may represent protein superdomains. Analysis of LDL images obtained at slightly higher magnification reveals that areas of somewhat lower density connect these regions, in some cases crossing the projectional interiors of the LDL particles. Preliminary image analysis of LDL covalently labeled at Cys3734 and Cys4190 with 1.4-nm Nanogold clusters demonstrates that this methodology will provide an important site-specific marker in studies designed to map the organization of apoB at the surface of LDL. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:7612855

  19. Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro

    PubMed Central

    Marsche, Gunther; Furtmüller, Paul G.; Obinger, Christian; Sattler, Wolfgang; Malle, Ernst

    2014-01-01

    Aims Myeloperoxidase (MPO), a cardiovascular risk factor in humans, is an in vivo catalyst for lipoprotein modification via intermediate formation of reactive chlorinating species. Among the different lipoprotein classes, anti-atherogenic high-density lipoprotein (HDL) represents a major target for modification by hypochlorous acid (HOCl), generated from H2O2 by MPO in the presence of physiological chloride concentrations. As MPO was identified as an HDL-associated protein that could facilitate selective oxidative modification of its physiological carrier, the aim of the present study was to investigate whether and to what extent modification of HDL by HOCl affects the binding affinity of MPO in vitro. Methods and results We show that binding affinity of 125I-labelled MPO to HDL markedly increases as a function of increasing extent of HOCl modification of HDL. In contrast to native HDL, HOCl–HDL potently inhibits MPO binding/uptake by endothelial cells and effectively attenuates metabolism of MPO by macrophages. Reduction of HDL-associated chloramines with methionine strongly impaired binding affinity of MPO towards HOCl–HDL. This indicates that N-chloramines generated by HOCl are regulators of the high-affinity interaction between HOCl–HDL and positively charged MPO. Most importantly, the presence of HOCl–HDL is almost without effect on the halogenating activity of MPO. Conclusion We propose that MPO-dependent modification of HDL and concomitant increase in the binding affinity for MPO could generate a vicious cycle of MPO transport to and MPO-dependent modification at sites of chronic inflammation. PMID:18296711

  20. Synthetic Nano-Low Density Lipoprotein as Targeted Drug DeliveryVehicle for Glioblastoma Multiforme

    SciTech Connect

    Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu,Xiao; Budinger, Thomas F.; Forte, Trudy M.

    2006-06-14

    This paper discribes a synthetic low density lipoprotein(LDL) made by complexing a 29 amino acid that consists of a lipid bindingdomain and the LDL receptor binding domain with a lipid microemulsion.The nano-LDL particles were intermdiate in size between LDL and HDL andbound to LDL receptors on GBM brain tumor cells. Synthetic nano-LDLuptake by GBM cells was LDL receptor specific and dependent on cellreceptor number. It is suggested that these synthetic particles can serveas a delivery vehicle for hydophobic anti-tumor drugs by targeting theLDL receptor.

  1. Isolation of high density lipoproteins from rat intestinal epithelial cells.

    PubMed Central

    Magun, A M; Brasitus, T A; Glickman, R M

    1985-01-01

    Previous studies have defined forms of high density lipoproteins (HDL) in rat mesenteric lymph, suggesting that they have a secretory origin. This study describes the isolation and characterization of intestinal intracellular HDL. Two preparations were made as follows: (a) Rat enterocytes were isolated and a Golgi organelle fraction was prepared. (b) Cell homogenates were subjected to nitrogen cavitation and a cytoplasmic fraction was prepared. Lipoproteins were isolated from both preparations by sequential ultracentrifugation. When the HDL fraction (1.07-1.21 g/ml) was subjected to isopyknic density gradient ultracentrifugation, a peak of apoproteins A-I and B (apoA-I and apoB, respectively) was found at a density of 1.11-1.14 g/ml. Electron microscopy of the fraction showed spherical particles ranging in size from 6 to 13 nm. Immunoelectrophoresis revealed a precipitin arc in the alpha region against apoA-I which extended into the pre-beta region where a precipitin arc against apoB was also seen. ApoB antisera depleted the pre-beta particles whereas the alpha migrating particles remained. Lipid analysis of the whole HDL fraction revealed phospholipid, cholesteryl ester, and triglyceride as the major lipids. [3H]leucine was then administered into the duodenum and a radiolabeled intracellular HDL fraction was isolated. The newly synthesized apoproteins of the HDL fraction, as determined by gel electrophoresis, were apoB, apoA-I, and apolipoprotein A-IV (ApoA-IV). Immunoprecipitation of the apoB particles revealed apoA-I and apoA-IV in the supernatant. These data demonstrate that there are at least two intracellular intestinal forms of HDL particles, one of which contains apoB. The other particle contains apoA-I and apoA-IV, has alpha mobility, is spherical, and resembles a particle found in the lymph. Images PMID:3965504

  2. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis

    PubMed Central

    Ossoli, Alice; Pavanello, Chiara

    2016-01-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  3. Cholesterol transfer from normal and atherogenic low density lipoproteins to Mycoplasma membranes

    SciTech Connect

    Mitschelen, J.J.; St. Clair, R.W.; Hester, S.H.

    1981-01-01

    The purpose of this study was to determine whether the free cholesterol of hypercholesterolemic low density lipoprotein from cholesterol-fed nonhuman primates has a greater potential for surface transfer to cell membranes than does the free cholesterol of normal low density lipoprotein. The low density lipoproteins were isolated from normal and hypercholesterolemic rhesus and cynomolgus monkeys, incubated with membranes from Acholeplasma laidlawii, a mycoplasma species devoid of cholesterol in its membranes, and the mass transfer of free cholesterol determined by measuring membrane cholesterol content. Since these membranes neither synthesize nor esterify cholesterol, nor degrade the protein or cholesterol ester moieties of low density lipoprotein, they are an ideal model with which to study differences in the cholesterol transfer potential of low density lipoprotein independent of the uptake of the intact low density lipoprotein particle. These studies indicate that, even though there are marked differences in the cholesterol composition of normal and hypercholesterolemic low density lipoproteins, this does not result in a greater chemical potential for surface transfer of free cholesterol. Consequently, if a difference in the surface transfer of free cholesterol is responsible for the enhanced ability of hypercholesterolemic low density lipoprotein to promote cellular cholesterol accumulation and, perhaps, also atherosclerosis, it must be the result of differences in the interaction to the hypercholesterolemic low density lipoprotein with the more complicated mammalian cell membranes, rather than differences in the chemical potential for cholesterol transfer.

  4. ANALYSIS OF DRUG INTERACTIONS WITH HIGH DENSITY LIPOPROTEIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Chen, Sike; Sobansky, Matthew R.; Hage, David S.

    2009-01-01

    Columns containing immobilized lipoproteins were prepared for the analysis of drug interactions with these particles by high-performance affinity chromatography. This approach was evaluated by using it to examine the binding of high density lipoprotein (HDL) to the drugs propranolol or verapamil. HDL was immobilized by the Schiff base method onto silica and gave HPLC columns with reproducible binding to propranolol over four to five days of continuous operation at pH 7.4. Frontal analysis experiments indicated that two types of interactions were occurring between R/S-propranolol and HDL at 37°C: saturable binding with an association equilibrium constant (Ka) of 1.1–1.9 × 105 M−1, and non-saturable binding with an overall affinity constant (n Ka) of 3.7–4.1 × 104 M−1. Similar results were found at 4 and 27°C. Verapamil also gave similar behavior, with a Ka of 6.0 × 104 M−1 at 37°C for the saturable sites and a n Ka value for the non-saturable sites of 2.5 × 104 M−1. These measured affinities gave good agreement with solution-phase values. The results indicated HPAC can be used to study drug interactions with HDL, providing information that should be valuable in obtaining a better description of how drugs are transported within the body. PMID:19833090

  5. LDL receptor/lipoprotein recognition: endosomal weakening of ApoB and ApoE binding to the convex face of the LR5 repeat.

    PubMed

    Martínez-Oliván, Juan; Arias-Moreno, Xabier; Velazquez-Campoy, Adrián; Millet, Oscar; Sancho, Javier

    2014-03-01

    The molecular mechanism of lipoprotein binding by the low-density lipoprotein (LDL) receptor (LDLR) is poorly understood, one reason being that structures of lipoprotein-receptor complexes are not available. LDLR uses calcium-binding repeats (LRs) to interact with apolipoprotein B and apolipoprotein E (ApoB and ApoE). We have used NMR and SPR to characterize the complexes formed by LR5 and three peptides encompassing the putative binding regions of ApoB (site A and site B) and ApoE. The three peptides bind at the hydrophilic convex face of LR5, forming complexes that are weakened at low [Ca(2+) ] and low pH. Thus, endosomal conditions favour dissociation of LDLR/lipoprotein complexes regardless of whether active displacement of bound lipoproteins by the β-propeller in LDLR takes place. The multiple ApoE copies in β very low density lipoproteins (β-VLDLs), and the presence of two competent binding sites (A and B) in LDLs, suggest that LDLR chelates lipoproteins and enhances complex affinity by using more than one LR.

  6. Moderate Exercise Increases Affinity of Large Very Low-Density Lipoproteins for Hydrolysis by Lipoprotein Lipase.

    PubMed

    Ghafouri, Khloud; Cooney, Josephine; Bedford, Dorothy K; Wilson, John; Caslake, Muriel J; Gill, Jason M R

    2015-06-01

    Postprandial triglyceride (TG) concentration is independently associated with cardiovascular disease risk. Exercise reduces postprandial TG concentrations, but the mechanisms responsible are unclear. The objective was to determine the effects of exercise on affinity of chylomicrons, large very low-density lipoproteins (VLDL1), and smaller VLDL (VLDL2) for lipoprotein lipase (LPL)-mediated TG hydrolysis. This was designed as a within-participant crossover study. The setting was a university metabolic investigation unit. Participants were 10 overweight/obese men. Participants undertook two oral fat tolerance tests, separated by 7-14 days, in which they had blood taken while fasting and for 4 hours after a high-fat mixed meal. On the afternoon before one test, they performed a 90-minute treadmill walk at 50% maximal oxygen uptake (exercise trial [EX]); no exercise was performed before the control trial (CON). We measured circulating TG-rich lipoprotein concentrations and affinity of chylomicrons, VLDL1, and VLDL2 for LPL-mediated TG hydrolysis. Exercise significantly reduced fasting VLDL1-TG concentration (CON, 0.49 [0.33-0.72] mmol.L(-1); EX, 0.36 [0.22-0.59] mmol.L(-1); geometric means [95% confidence interval]; P = .04). Time-averaged postprandial chylomicron-TG (CON, 0.55 ± 0.10 mmol.L(-1); EX, 0.39 ± 0.08 mmol.L(-1); mean ± SEM; P = .03) and VLDL1-TG (CON, 0.85 ± 0.13 mmol.L(-1); EX, 0.66 ± 0.10 mmol.L(-1); P = .01) concentrations were both lower in EX than CON. Affinity of VLDL1 for LPL-mediated TG hydrolysis increased by 2.2 (1.3-3.7)-fold [geometric mean (95% confidence interval)] (P = .02) in the fasted state and 2.6 (1.8-2.6)-fold (P = .001) postprandially. Affinity of chylomicrons and VLDL2 was not significantly different between trials. Exercise increases affinity of VLDL1 for LPL-mediated TG hydrolysis both fasting and postprandially. This mechanism is likely to contribute to the TG-lowering effect of exercise.

  7. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol.

    PubMed

    Tosheska Trajkovska, Katerina; Topuzovska, Sonja

    2017-08-01

    A key to effective treatment of cardiovascular disease is to understand the body's complex lipoprotein transport system. Reverse cholesterol transport (RCT) is the process of cholesterol movement from the extrahepatic tissues back to the liver. Lipoproteins containing apoA-I [highdensity lipoprotein (HDL)] are key mediators in RCT, whereas non-high-density lipoproteins (non-HDL, lipoproteins containing apoB) are involved in the lipid delivery pathway. HDL particles are heterogeneous; they differ in proportion of proteins and lipids, size, shape, and charge. HDL heterogeneity is the result of the activity of several factors that assemble and remodel HDL particles in plasma: ATP-binding cassette transporter A1 (ABCA1), lecithin cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), hepatic lipase (HL), phospholipid transfer protein (PLTP), endothelial lipase (EL), and scavenger receptor class B type I (SR-BI). The RCT pathway consists of the following steps: 1. Cholesterol efflux from peripheral tissues to plasma, 2. LCAT-mediated esterification of cholesterol and remodeling of HDL particles, 3. direct pathway of HDL cholesterol delivery to the liver, and 4. indirect pathway of HDL cholesterol delivery to the liver via CETP-mediated transfer There are several established strategies for raising HDL cholesterol in humans, such as lifestyle changes; use of drugs including fibrates, statins, and niacin; and new therapeutic approaches. The therapeutic approaches include CETP inhibition, peroxisome proliferator-activated receptor (PPAR) agonists, synthetic farnesoid X receptor agonists, and gene therapy. Results of clinical trials should be awaited before further clinical management of atherosclerotic cardiovascular disease.

  8. High-Density Lipoprotein and Prostate Cancer: An Overview

    PubMed Central

    Kotani, Kazuhiko; Sekine, Yoshitaka; Ishikawa, Shizukiyo; Ikpot, Imoh Z.; Suzuki, Kazuhiro; Remaley, Alan T.

    2013-01-01

    Prostate cancer is a common disease in modern, developed societies and has a high incidence and mortality. High-density lipoprotein cholesterol (HDL-C) has recently received much attention as a possible risk marker of prostate cancer development and prognosis. In the present article, we summarized findings from epidemiologic studies of the association between HDL-C and prostate cancer. Low HDL-C level was found to be a risk and prognostic factor of prostate cancer in several epidemiologic studies, although the overall linkage between HDL and prostate cancer has not been definitively established. The mechanisms for this association remain uncertain; however, limited data from experimental studies imply a possible role of HDL in the pathophysiology of prostate cancer. More epidemiologic research, in combination with experimental studies, is needed in this field. PMID:23985823

  9. Can phosphatidylserine enhance atheroprotective activities of high-density lipoprotein?

    PubMed

    Darabi, Maryam; Kontush, Anatol

    2016-01-01

    Although high-density lipoprotein (HDL) is well known to be protective against atherosclerotic cardiovascular disease, therapeutic interventions to raise HDL-cholesterol levels do not translate into reduction in cardiovascular risk. Due to the compositional complexity of HDL particles, molecular determinants of their atheroprotective function still remain to be clarified. Recent structural and functional data identify phospholipid as a major bioactive component of HDL. Such a role has recently been specifically evidenced for phosphatidylserine (PS); indeed, HDL content of PS displayed positive correlations with all metrics of HDL functionality assessed. This review summarizes current knowledge about HDL-associated PS; possible mechanisms for its atheroprotective role are discussed and potential applications of PS to HDL-based therapies are highlighted.

  10. Distribution of High-Density Lipoprotein Subfractions and Hypertensive Status

    PubMed Central

    Zhang, Yan; Li, Sha; Xu, Rui-Xia; Guo, Yuan-Lin; Wu, Na-Qiong; Zhu, Cheng-Gang; Gao, Ying; Dong, Qian; Liu, Geng; Sun, Jing; Li, Jian-Jun

    2015-01-01

    Abstract The exact mechanisms of hypertension contributing to atherosclerosis have not been fully elucidated. Although multiple studies have clarified the association with low-density lipoprotein (LDL) subfractions, uncertainty remains about its relationship with high-density lipoprotein (HDL) subfractions. Therefore, we aimed to comprehensively determine the relationship between distribution of HDL subfractions and hypertensive status. A total of 953 consecutive subjects without previous lipid-lowering drug treatment were enrolled and were categorized based on hypertension history (with hypertension [n = 550] or without hypertension [n = 403]). Baseline clinical and laboratory data were collected. HDL separation was performed using the Lipoprint System. Plasma large HDL-cholesterol (HDL-C) and large HDL percentage were dramatically lower whereas the small HDL-C and small HDL percentage were higher in patients with hypertension (all P < 0.05). The antihypertensive drug therapy was not associated with large or small HDL subfractions (on treatment vs not on treatment, P > 0.05; combination vs single drug therapy, P > 0.05). However, the blood pressure well-controlled patients have significantly lower small HDL subfraction (P < 0.05). Moreover, large HDL-C and percentage were inversely whereas small HDL percentage was positively associated with incident hypertension after adjusting potential confounders (all P < 0.05). In the multivariate model conducted in patients with and without hypertension separately, the cardio-protective value of large HDL-C was disappeared in patients with hypertension (OR 95%CI: 1.011 [0.974–1.049]). The distribution of HDL subfractions is closely associated with hypertensive status and hypertension may potentially impact the cardio-protective value of large HDL subfraction. PMID:26512616

  11. Analysis of beta-carotene absorbance for studying structural properties of human plasma low-density lipoproteins.

    PubMed

    Krisko, Anita; Piantanida, Ivo; Kveder, Marina; Pifat, Greta

    2004-08-01

    A novel spectrophotometric assay for monitoring structural rearrangements of native low-density lipoproteins (LDL) is proposed. The approach is based on the analysis of the visible light absorbance maximum of lipoproteins at approximately 461 nm assigned to beta-carotene situated in the hydrophobic parts of LDL. It offers a direct method to study the surface-interior coupling of the lipoprotein particle under physiological conditions. The detected signal is intrinsic to LDL and responsible for the most of the beta-carotene signal from the whole plasma. The negligible interference of beta-carotene absorbance due to the high-density lipoproteins is experimentally verified. Since beta-carotene absorbance belongs to the visible spectral region, no spectral overlapping/artifacts in plasma are expected. The signal sensitivity has been studied through conformational changes of LDL induced by ionic strength, by temperature, and by ligand binding. The results of caffeine binding to LDL indicate that there could be only one dominant type of binding site for caffeine on LDL particles. It can be concluded that visible spectrum characteristics of beta-carotene molecules offer advantages in LDL ligand binding studies which can possibly be extended to monitor the interactions of LDL directly in plasma.

  12. [Study of low density lipoproteins in hyperlipoproteinemia by the method of double immunodiffusion].

    PubMed

    Nikitina, N A; Perova, N V; Proskuriakova, T V; Suchkova, S N; Kutateladze, N V

    1977-06-01

    By way of gel double immunodiffusion a certain heterogeneity of low density lipoproteins was observed to manifest itself in an additional band of immunoprecipitation. The incidence of this additional band does not exceed 1/3 of the cases of low density lipoproteins studies in normal individuals, while in those with ischaemic heart disease the additional band is found twice-thrice as often, the highest incidence being noted in patients with ischaemic heart disease and Type IIb hyperlipoproteinemia (93% of cases). The revealed immunochemical heterogeneity of low density lipoproteins was shown to be not connected with the appearance of any new, additional antigen in their structure. Most probably it is attributable to the presence of lipoprotein particles with a quantitatively different protein and lipid composition, probably of intermediate lipoprotein metabolites in blood plasma, or conformation changes in the structure of low density lipoproteins.

  13. Effects of high-density lipoproteins on storage at 4 degrees C of fowl spermatozoa.

    PubMed

    Blesbois, E; Hermier, D

    1990-11-01

    Qualitative and quantitative characterization of lipoproteins found in seminal plasma from domestic cocks was performed after isolation by density gradient ultracentrifugation. Trigyceride-rich lipoproteins (very low, intermediate- and low density lipoproteins) were not detectable in seminal plasma. High-density lipoproteins (HDL), identified on the basis of size, chemical composition and protein moiety, were present at a concentration of 66 micrograms/ml. A fraction possibly corresponding to VHDL (very high density lipoproteins, 77% protein, 23% lipid) was also detected but appeared contaminated by a protein-rich opalescent material. Since HDL contains mostly phospholipid and cholesterol, the physiological role of these lipoproteins on the storage of fowl spermatozoa was studied. Replacing seminal plasma with a solution containing chicken HDL at physiological concentration (66 micrograms/ml) had no effect on fertilizing ability of spermatozoa stored at 4 degrees C for 24 h. However, higher concentrations of HDL (560 micrograms/ml) had deleterious effects on spermatozoa stored in vitro.

  14. Distinct Hepatic Receptors for Low Density Lipoprotein and Apolipoprotein E in Humans

    NASA Astrophysics Data System (ADS)

    Hoeg, Jeffrey M.; Demosky, Stephen J.; Gregg, Richard E.; Schaefer, Ernst J.; Brewer, H. Bryan

    1985-02-01

    Since the liver is a central organ for lipid and lipoprotein synthesis and catabolism, hepatic receptors for specific apolipoproteins on plasma lipoproteins would be expected to modulate lipid and lipoprotein metabolism. The role of hepatic receptors for low density lipoproteins and apolipoprotein E-containing lipoproteins was evaluated in patients with complementary disorders in lipoprotein metabolism: abetalipoproteinemia and homozygous familial hypercholesterolemia. In addition, hepatic membranes from a patient with familial hypercholesterolemia were studied and compared before and after portacaval shunt surgery. The results establish that the human liver has receptors for apolipoproteins B and E. Furthermore, in the human, hepatic receptors for low density lipoproteins and apolipoprotein E are genetically distinct and can undergo independent control.

  15. Low-Density Lipoprotein Receptor-Dependent and Low-Density Lipoprotein Receptor-Independent Mechanisms of Cyclosporin A-Induced Dyslipidemia.

    PubMed

    Kockx, Maaike; Glaros, Elias; Leung, Betty; Ng, Theodore W; Berbée, Jimmy F P; Deswaerte, Virginie; Nawara, Diana; Quinn, Carmel; Rye, Kerry-Anne; Jessup, Wendy; Rensen, Patrick C N; Meikle, Peter J; Kritharides, Leonard

    2016-07-01

    Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is associated with hyperlipidemia and an increased risk of cardiovascular disease. Although studies suggest that CsA-induced hyperlipidemia is mediated by inhibition of low-density lipoprotein receptor (LDLr)-mediated lipoprotein clearance, the data supporting this are inconclusive. We therefore sought to investigate the role of the LDLr in CsA-induced hyperlipidemia by using Ldlr-knockout mice (Ldlr(-/-)). Ldlr(-/-) and wild-type (wt) C57Bl/6 mice were treated with 20 mg/kg per d CsA for 4 weeks. On a chow diet, CsA caused marked dyslipidemia in Ldlr(-/-) but not in wt mice. Hyperlipidemia was characterized by a prominent increase in plasma very low-density lipoprotein and intermediate-density lipoprotein/LDL with unchanged plasma high-density lipoprotein levels, thus mimicking the dyslipidemic profile observed in humans. Analysis of specific lipid species by liquid chromatography-tandem mass spectrometry suggested a predominant effect of CsA on increased very low-density lipoprotein-IDL/LDL lipoprotein number rather than composition. Mechanistic studies indicated that CsA did not alter hepatic lipoprotein production but did inhibit plasma clearance and hepatic uptake of [(14)C]cholesteryl oleate and glycerol tri[(3)H]oleate-double-labeled very low-density lipoprotein-like particles. Further studies showed that CsA inhibited plasma lipoprotein lipase activity and increased levels of apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9. We demonstrate that CsA does not cause hyperlipidemia via direct effects on the LDLr. Rather, LDLr deficiency plays an important permissive role for CsA-induced hyperlipidemia, which is associated with abnormal lipoprotein clearance, decreased lipoprotein lipase activity, and increased levels of apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9. Enhancing LDLr and lipoprotein lipase activity and decreasing

  16. High density lipoprotein level is negatively associated with the increase of oxidized low density lipoprotein lipids after a fatty meal.

    PubMed

    Tiainen, Sanna; Ahotupa, Markku; Ylinen, Petteri; Vasankari, Tommi

    2014-12-01

    Recent reports show that a fatty meal can substantially increase the concentration of oxidized lipids in low density lipoprotein (LDL). Knowing the LDL-specific antioxidant effects of high density lipoprotein (HDL), we aimed to investigate whether HDL can modify the postprandial oxidative stress after a fatty meal. Subjects of the study (n = 71) consumed a test meal (a standard hamburger meal) rich in lipid peroxides, and blood samples were taken before, 120, 240, and 360 min after the meal. The study subjects were divided into four subgroups according to the pre-meal HDL cholesterol value (HDL subgroup 1, 0.66-0.91; subgroup 2, 0.93-1.13; subgroup 3, 1.16-1.35; subgroup 4, 1.40-2.65 mmol/L). The test meal induced a marked postprandial increase in the concentration of oxidized LDL lipids in all four subgroups. The pre-meal HDL level was associated with the extent of the postprandial rise in oxidized LDL lipids. From baseline to 6 h after the meal, the concentration of ox-LDL increased by 48, 31, 24, and 16% in the HDL subgroup 1, 2, 3, and 4, respectively, and the increase was higher in subgroup 1 compared to subgroup 3 (p = 0.028) and subgroup 4 (p = 0.0081), respectively. The pre-meal HDL correlated with both the amount and the rate of increase of oxidized LDL lipids. Results of the present study show that HDL is associated with the postprandial appearance of lipid peroxides in LDL. It is therefore likely that the sequestration and transport of atherogenic lipid peroxides is another significant mechanism contributing to cardioprotection by HDL.

  17. Proprotein convertases in high-density lipoprotein metabolism.

    PubMed

    Choi, Seungbum; Korstanje, Ron

    2013-09-18

    The proprotein convertase subtilisin/kexins (PCSKs) are a serine endopeptidase family. PCSK members cleave amino acid residues and modulate the activity of precursor proteins. Evidence from patients and animal models carrying genetic alterations in PCSK members show that PCSK members are involved in various metabolic processes. These studies further revealed the molecular mechanism by which genetic alteration of some PCSK members impairs normal molecular and physiological functions, which in turn lead to cardiovascular disease. High-density lipoprotein (HDL) is anti-atherogenic as it removes excessive amount of cholesterol from blood and peripheral tissues. Several PCSK members are involved in HDL metabolism. PCSK3, PCSK5, and PCSK6 process two triglyceride lipase family members, endothelial lipase and lipoprotein lipase, which are important for HDL remodeling. Recent studies in our lab found evidence that PCSK1 and PCSK9 are also involved in HDL metabolism. A mouse model carrying an amino acid substitution in PCSK1 showed an increase in serum apolipoprotein A1 (APOA1) level. Another mouse model lacking PCSK9 showed a decrease in APOE-containing HDL. In this review, we summarize the role of the five PCSK members in lipid, glucose, and bile acid (BA) metabolism, each of which can influence HDL metabolism. We propose an integrative model in which PCSK members regulate HDL metabolism through various molecular mechanisms and metabolic processes and genetic variation in some PCSK members may affect the efficiency of reverse cholesterol transport. PCSK members are considered as attractive therapeutic targets. A greater understanding of the molecular and physiological functions of PCSK members will improve therapeutic strategies and drug efficacy for cardiovascular disease where PCSK members play critical role, with fewer adverse effects.

  18. Effect of obesity on high-density lipoprotein metabolism.

    PubMed

    Rashid, Shirya; Genest, Jacques

    2007-12-01

    Reduced levels of high-density lipoproteins (HDL) in non-obese and obese states are associated with increased risk for the development of coronary artery disease. Therefore, it is imperative to determine the mechanisms responsible for reduced HDL in obese states and, conversely, to examine therapies aimed at increasing HDL levels in these individuals. This paper examines the multiple causes for reduced HDL in obese states and the effect of exercise and diet--two non-pharmacologic therapies--on HDL metabolism in humans. In general, the concentration of HDL-cholesterol is adversely altered in obesity, with HDL-cholesterol levels associated with both the degree and distribution of obesity. More specifically, intra-abdominal visceral fat deposition is an important negative correlate of HDL-cholesterol. The specific subfractions of HDL that are altered in obese states include the HDL2, apolipoprotein A-I, and pre-beta1 subfractions. Decreased HDL levels in obesity have been attributed to both an enhancement in the uptake of HDL2 by adipocytes and an increase in the catabolism of apolipoprotein A-I on HDL particles. In addition, there is a decrease in the conversion of the pre-beta1 subfraction, the initial acceptor of cholesterol from peripheral cells, to pre-beta2 particles. Conversely, as a means of reversing the decrease in HDL levels in obesity, sustained weight loss is an effective method. More specifically, weight loss achieved through exercise is more effective at raising HDL levels than dieting. Exercise mediates positive effects on HDL levels at least partly through changes in enzymes of HDL metabolism. Increased lipid transfer to HDL by lipoprotein lipase and reduced HDL clearance by hepatic triglyceride lipase as a result of endurance training are two important mechanisms for increases in HDL observed from exercise.

  19. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in serum may aid in the diagnosis of disorders of lipid (fat) metabolism and help to identify young persons at risk from cardiovascular diseases. (b) Classification. Class II (performance standards)....

  20. Fitness, Heart Disease, and High-Density Lipoproteins: A Look at the Relationships.

    ERIC Educational Resources Information Center

    McCunney, Robert J.

    1987-01-01

    The role of fitness in preventing coronary heart disease is explored. Research on high-density lipoprotein, which has been found to be one of the most critical determinants of risk, is reviewed. The relationship between fitness, high-density lipoprotein, and coronary heart disease is assessed, and clinical implications are spelled out. (MT)

  1. Fitness, Heart Disease, and High-Density Lipoproteins: A Look at the Relationships.

    ERIC Educational Resources Information Center

    McCunney, Robert J.

    1987-01-01

    The role of fitness in preventing coronary heart disease is explored. Research on high-density lipoprotein, which has been found to be one of the most critical determinants of risk, is reviewed. The relationship between fitness, high-density lipoprotein, and coronary heart disease is assessed, and clinical implications are spelled out. (MT)

  2. Alcohol alters low density lipoprotein composition and metabolism

    SciTech Connect

    Hoinacki, J.; Brown, J.; Dawson, M.; Deschenes, R.; Mulligan, J. )

    1991-03-11

    Two separate studies were conducted to examine the effect of ethanol (EtOH) dose on atherogenic low density lipoprotein (LDL) subfractions and LDL metabolism in vivo. In the first study, male, atherosclerosis-susceptible squirrel monkeys were divided in three treatments: controls fed liquid diet, and low and high alcohol groups given liquid diet with vodka substituted for carbohydrate at 12% and 24% of calories, respectively. After 6 months, LDL subclasses (LDL{sub 1a}, LDL{sub 1b} and LDL{sub 2}) were isolated by density gradient ultracentrifugation and polyacrylamide gradient gel electrophoresis, and their lipid and protein composition was determined. Low dose EtOH had no effect on LDL subfraction distribution while 24% EtOH resulted in an increase in the larger (LDL{sub 1a} and LDL{sub 1b}), buoyant subspecies without affecting the level of the more atherogenic, smaller, denser LDL{sub 2} particles. In the second study, {sup 125}I-LDL apolipoprotein B (apo B) was injected intravenously into Control and High EtOH monkeys and kinetic analyses were performed. Although the absolute catabolic rate (LDL production) was not altered, High EtOH primates showed a reduction in the fractional catabolic rate and a longer LDL apoB residence time.

  3. Native low density lipoprotein promotes lipid raft formation in macrophages

    PubMed Central

    SONG, JIAN; PING, LING-YAN; DUONG, DUC M.; GAO, XIAO-YAN; HE, CHUN-YAN; WEI, LEI; WU, JUN-ZHU

    2016-01-01

    Oxidized low-density lipoprotein (LDL) has an important role in atherogenesis; however, the mechanisms underlying cell-mediated LDL oxidation remain to be elucidated. The present study investigated whether native-LDL induced lipid raft formation, in order to gain further insight into LDL oxidation. Confocal microscopic analysis revealed that lipid rafts were aggregated or clustered in the membrane, which were colocalized with myeloperoxidase (MPO) upon native LDL stimulation; however, in the presence of methyl-β-cyclodextrin (MβCD), LDL-stimulated aggregation, translocation, and colocalization of lipid rafts components was abolished.. In addition, lipid raft disruptors MβCD and filipin decreased malondialdehyde expression levels. Density gradient centrifugation coupled to label-free quantitative proteomic analysis identified 1,449 individual proteins, of which 203 were significantly upregulated following native-LDL stimulation. Functional classification of the proteins identified in the lipid rafts revealed that the expression levels of translocation proteins were upregulated. In conclusion, the results of the present study indicated that native-LDL induced lipid raft clustering in macrophages, and the expression levels of several proteins were altered in the stimulated macrophages, which provided novel insights into the mechanism underlying LDL oxidation. PMID:26781977

  4. Regulation of low-density lipoprotein subfractions by carbohydrates.

    PubMed

    Gerber, Philipp A; Berneis, Kaspar

    2012-07-01

    This article aims at reviewing the recent findings that have been made concerning the crosstalk of carbohydrate metabolism with the generation of small, dense low-density lipoprotein (LDL) particles, which are known to be associated with an adverse cardiovascular risk profile. Studies conducted during the past few years have quite unanimously shown that the quantity of carbohydrates ingested is associated with a decrease of LDL particle size and an increase in its density. Conversely, diets that aim at a reduction of carbohydrate intake are able to improve LDL quality. Furthermore, a reduction of the glycaemic index without changing the amount of carbohydrates ingested has similar effects. Diseases with altered carbohydrate metabolism, for example, type 2 diabetes, are associated with small, dense LDL particles. Finally, even the kind of monosaccharide the carbohydrate intake consists of is important concerning LDL particle size: fructose has been shown to alter the LDL particle subclass profile more adversely than glucose in many recent studies. LDL particle quality, rather than its quantity, is affected by carbohydrate metabolism, which is of clinical importance, in particular, in the light of increased carbohydrate consumption in today's world.

  5. Native low density lipoprotein promotes lipid raft formation in macrophages.

    PubMed

    Song, Jian; Ping, Ling-Yan; Duong, Duc M; Gao, Xiao-Yan; He, Chun-Yan; Wei, Lei; Wu, Jun-Zhu

    2016-03-01

    Oxidized low‑density lipoprotein (LDL) has an important role in atherogenesis; however, the mechanisms underlying cell‑mediated LDL oxidation remain to be elucidated. The present study investigated whether native‑LDL induced lipid raft formation, in order to gain further insight into LDL oxidation. Confocal microscopic analysis revealed that lipid rafts were aggregated or clustered in the membrane, which were colocalized with myeloperoxidase (MPO) upon native LDL stimulation; however, in the presence of methyl‑β‑cyclodextrin (MβCD), LDL‑stimulated aggregation, translocation, and colocalization of lipid rafts components was abolished.. In addition, lipid raft disruptors MβCD and filipin decreased malondialdehyde expression levels. Density gradient centrifugation coupled to label‑free quantitative proteomic analysis identified 1,449 individual proteins, of which 203 were significantly upregulated following native‑LDL stimulation. Functional classification of the proteins identified in the lipid rafts revealed that the expression levels of translocation proteins were upregulated. In conclusion, the results of the present study indicated that native‑LDL induced lipid raft clustering in macrophages, and the expression levels of several proteins were altered in the stimulated macrophages, which provided novel insights into the mechanism underlying LDL oxidation.

  6. Transport of beta-very low density lipoproteins and chylomicron remnants by macrophages is mediated by the low density lipoprotein receptor pathway.

    PubMed

    Ellsworth, J L; Kraemer, F B; Cooper, A D

    1987-02-15

    The receptor-mediated uptake of rat hypercholesterolemic very low density lipoproteins (beta VLDL) and rat chylomicron remnants was studied in monolayer cultures of the J774 and P388D1 macrophage cell lines and in primary cultures of mouse peritoneal macrophages. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was reduced 80-90% in the presence of high concentrations of unlabeled human low density lipoproteins (LDL). Human acetyl-LDL did not significantly compete at any concentration tested. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was also competitively inhibited by specific polyclonal antibodies directed against the estrogen-induced LDL receptor of rat liver. Incubation in the presence of anti-LDL receptor IgG, but not nonimmune IgG, reduced specific uptake greater than 80%. Anti-LDL receptor IgG, 125I-beta VLDL, and 125I-chylomicron remnants bound to two protein components of apparent molecular weights 125,000 and 111,000 on nitrocellulose blots of detergent-solubilized macrophage membranes. Between 70-90% of 125I-lipoprotein binding was confined to the 125,000-Da peptide. Binding of 125I-beta VLDL and 125I-chylomicron remnants to these proteins was competitively inhibited by anti-LDL receptor antibodies. Comparison of anti-LDL receptor IgG immunoblot profiles of detergent-solubilized membranes from mouse macrophages, fibroblasts, and liver, and normal and estrogen-induced rat liver demonstrated that the immunoreactive LDL receptor of mouse cells is of a lower molecular weight than that of rat liver. Incubation of J774 cells with 1.0 micrograms of 25-hydroxycholesterol/ml plus 20 micrograms of cholesterol/ml for 48 h decreased 125I-beta VLDL uptake and immuno- and ligand blotting to the 125,000- and 111,000-Da peptides by only 25%. Taken together, these data demonstrate that uptake of beta VLDL and chylomicron remnants by macrophages is mediated by an LDL receptor that is immunologically related to the LDL receptor of rat liver.

  7. Identification of Critical Paraoxonase 1 Residues Involved in High Density Lipoprotein Interaction.

    PubMed

    Gu, Xiaodong; Huang, Ying; Levison, Bruce S; Gerstenecker, Gary; DiDonato, Anthony J; Hazen, Leah B; Lee, Joonsue; Gogonea, Valentin; DiDonato, Joseph A; Hazen, Stanley L

    2016-01-22

    Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated protein with atherosclerosis-protective and systemic anti-oxidant functions. We recently showed that PON1, myeloperoxidase, and HDL bind to one another in vivo forming a functional ternary complex (Huang, Y., Wu, Z., Riwanto, M., Gao, S., Levison, B. S., Gu, X., Fu, X., Wagner, M. A., Besler, C., Gerstenecker, G., Zhang, R., Li, X. M., Didonato, A. J., Gogonea, V., Tang, W. H., et al. (2013) J. Clin. Invest. 123, 3815-3828). However, specific residues on PON1 involved in the HDL-PON1 interaction remain unclear. Unambiguous identification of protein residues involved in docking interactions to lipid surfaces poses considerable methodological challenges. Here we describe a new strategy that uses a novel synthetic photoactivatable and click chemistry-taggable phospholipid probe, which, when incorporated into HDL, was used to identify amino acid residues on PON1 that directly interact with the lipoprotein phospholipid surface. Several specific PON1 residues (Leu-9, Tyr-185, and Tyr-293) were identified through covalent cross-links with the lipid probes using affinity isolation coupled to liquid chromatography with on-line tandem mass spectrometry. Based upon the crystal structure for PON1, the identified residues are all localized in relatively close proximity on the surface of PON1, defining a domain that binds to the HDL lipid surface. Site-specific mutagenesis of the identified PON1 residues (Leu-9, Tyr-185, and Tyr-293), coupled with functional studies, reveals their importance in PON1 binding to HDL and both PON1 catalytic activity and stability. Specifically, the residues identified on PON1 provide important structural insights into the PON1-HDL interaction. More generally, the new photoactivatable and affinity-tagged lipid probe developed herein should prove to be a valuable tool for identifying contact sites supporting protein interactions with lipid interfaces such as found on cell membranes

  8. Identification of Critical Paraoxonase 1 Residues Involved in High Density Lipoprotein Interaction*

    PubMed Central

    Gu, Xiaodong; Huang, Ying; Levison, Bruce S.; Gerstenecker, Gary; DiDonato, Anthony J.; Hazen, Leah B.; Lee, Joonsue; Gogonea, Valentin; DiDonato, Joseph A.; Hazen, Stanley L.

    2016-01-01

    Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated protein with atherosclerosis-protective and systemic anti-oxidant functions. We recently showed that PON1, myeloperoxidase, and HDL bind to one another in vivo forming a functional ternary complex (Huang, Y., Wu, Z., Riwanto, M., Gao, S., Levison, B. S., Gu, X., Fu, X., Wagner, M. A., Besler, C., Gerstenecker, G., Zhang, R., Li, X. M., Didonato, A. J., Gogonea, V., Tang, W. H., et al. (2013) J. Clin. Invest. 123, 3815–3828). However, specific residues on PON1 involved in the HDL-PON1 interaction remain unclear. Unambiguous identification of protein residues involved in docking interactions to lipid surfaces poses considerable methodological challenges. Here we describe a new strategy that uses a novel synthetic photoactivatable and click chemistry-taggable phospholipid probe, which, when incorporated into HDL, was used to identify amino acid residues on PON1 that directly interact with the lipoprotein phospholipid surface. Several specific PON1 residues (Leu-9, Tyr-185, and Tyr-293) were identified through covalent cross-links with the lipid probes using affinity isolation coupled to liquid chromatography with on-line tandem mass spectrometry. Based upon the crystal structure for PON1, the identified residues are all localized in relatively close proximity on the surface of PON1, defining a domain that binds to the HDL lipid surface. Site-specific mutagenesis of the identified PON1 residues (Leu-9, Tyr-185, and Tyr-293), coupled with functional studies, reveals their importance in PON1 binding to HDL and both PON1 catalytic activity and stability. Specifically, the residues identified on PON1 provide important structural insights into the PON1-HDL interaction. More generally, the new photoactivatable and affinity-tagged lipid probe developed herein should prove to be a valuable tool for identifying contact sites supporting protein interactions with lipid interfaces such as found on cell membranes

  9. Stability of serum high-density lipoprotein-microRNAs for preanalytical conditions.

    PubMed

    Ishikawa, Hiroaki; Yamada, Hiroya; Taromaru, Nao; Kondo, Kanako; Nagura, Ayuri; Yamazaki, Mirai; Ando, Yoshitaka; Munetsuna, Eiji; Suzuki, Koji; Ohashi, Koji; Teradaira, Ryoji

    2017-01-01

    Background Recently, several studies have shown that microRNAs are present in high-density lipoprotein, and high-density lipoprotein-microRNA may be a promising disease biomarker. We investigated the stability of high-density lipoprotein-microRNAs in different storage conditions as this is an important issue for its application to the field of clinical research. Methods microRNAs were extracted from the high-density lipoprotein fraction that was purified from the serum. miR-135 a and miR-223, which are known to be present in high-density lipoprotein, were quantified by quantitative real-time PCR. The influence of preanalytical parameters on the analysis of high-density lipoprotein-miRNAs was examined by the effect of RNase, storage conditions, and freezing and thawing. Results The concentrations of microRNA in high-density lipoprotein were not altered by RNase A treatment (0-100 U/mL). No significant change in these microRNAs was observed after storing serum at room temperature or 4℃ for 0-24 h, and there was a similar result in the cryopreservation for up to two weeks. Also, high-density lipoprotein-microRNAs were stable for, at least, up to five freeze-thaw cycles. Conclusions These results demonstrated that high-density lipoprotein-microRNAs are relatively resistant to various storage conditions. This study provides new and important information on the stability of high-density lipoprotein-microRNAs.

  10. Triglyceride, high density lipoprotein, and coronary heart disease.

    PubMed

    The National Institutes of Health Consensus Development Conference on Triglyceride, High Density Lipoprotein, and Coronary Heart Disease brought together experts in lipid metabolism, epidemiologists, and clinicians as well as other health care professionals and the public to address the following questions: (1) is the relationship of high triglyceride and/or low HDL cholesterol with coronary heart disease causal? (2) Will reduction of high triglyceride and/or elevation of HDL cholesterol help prevent coronary heart disease? (3) Under what circumstances should triglycerides and HDL cholesterol be measured? (4) Under what circumstances should active intervention to lower triglyceride and/or raise HDL cholesterol be considered in high risk individuals and the general population? (5) What can be accomplished by dietary, other hygienic, and drug treatments? (6) What are the significant questions for future research? Following two days of presentations by experts and discussion by the audience, a consensus panel weighed the evidence and prepared their consensus statement. Among their findings, the panel concluded that (1) existing data provide considerable support for a causal relationship between low HDL and CHD; however, with respect to TG data are mixed and the evidence on a causal relationship is incomplete; (2) initial TG and/or HDL levels modify benefit achieved by lowering low density lipoprotein cholesterol (LDL-C); however, evidence from clinical trials is insufficient to draw conclusions about specific benefits of TG and/or HDL altering therapy; (3) HDL-C measurement should be added to total cholesterol measurement when evaluating CHD risk in healthy individuals provided accuracy of measurement, appropriate counseling, and followup can be assured; (4) there is general agreement with the Adult Treatment Panel (ATP) guidelines that LDL-C is essential in cardiovascular risk assessment, as well as that persons with elevations of LDL-C greater than 150 mg

  11. Nonpharmacological approaches for reducing serum low-density lipoprotein cholesterol.

    PubMed

    Griffin, Bruce A

    2014-07-01

    To reinforce the key role of diet and lifestyle modification as the first-line treatment for the reduction of raised serum low-density lipoprotein cholesterol (LDL-C) and prevention of cardiovascular disease. Also, to counter recent claims that the current dietary guidelines for the treatment of cardiovascular disease have misplaced emphasis on the importance of removing dietary saturated fat instead of sugar. This review provides new insight into the effects of diet and lifestyle factors with established efficacy in lowering serum LDL-C. This includes energy-restricted weight loss and new findings on the effects of alternative day fasting; novel metabolic and molecular effects of replacing palmitic acid with oleic acid; evidence for a dose-response relationship between the intake of dietary stanols and LDL-C; and identification of a unique metabolic pathway for the excretion of cholesterol. The review reports new evidence for the efficacy of alternate day fasting, reassurance that the current dietary guidelines are not misguided by recommending removal of saturated fat, that a high intake of dietary stanols can achieve a reduction in LDL-C of up to 18%, and describes a pathway of cholesterol excretion that may help to explain variation in the response of serum LDL-C to dietary fat and cholesterol.

  12. High-density lipoprotein exerts vasculoprotection via endothelial progenitor cells

    PubMed Central

    Petoumenos, Vasileios; Nickenig, Georg; Werner, Nikos

    2009-01-01

    Endothelial progenitor cells (EPC) enhance endothelial cell repair, improve endothelial dysfunction and are a predictor for cardiovascular mortality. High-density lipoprotein (HDL) cholesterol levels inversely correlate with cardiovascular events and have vasculoprotective effects. Here we postulate that HDL influences EPC biology. HDL and EPC were isolated according to standard procedures. Differentiation of mononuclear cells into DiLDL/lectin positive cells was enhanced after HDL treatment compared to vehicle. HDL was able to inhibit apoptosis (TUNEL assay, annexin V staining) while proliferation (BrdU incorporation) of early outgrowth colonies after extended cell cultivation (14 days) was increased. Flow chamber experiments revealed an improved adhesion of HDL pre-incubated EPC on human coronary artery endothelial cells (HCAEC) compared to vehicle while HDL treatment of HCAEC prevented adhesion of inflammatory cells. Flow cytometry demonstrated an up-regulation of β2- and α4-integrins on HDL pre-incubated EPC. Blocking experiments revealed a unique role of β2-integrin in EPC adhesion. Treatment of wild-type mice with recombinant HDL after endothelial denudation resulted in enhanced re-endothelialization compared to vehicle. Finally, in patients with coronary artery disease a correlation between circulating EPC and HDL concentrations was demonstrated. We provide evidence that HDL mediates important vasculoprotective action via the improvement of function of circulating EPC. PMID:18705697

  13. Fast protein chromatofocusing of human very-low-density lipoproteins.

    PubMed

    Weisweiler, P; Friedl, C; Schwandt, P

    1986-01-03

    Using fast protein chromatofocusing, a high-efficiency column chromatography method with a self-generated pH gradient and focusing effects, soluble human very-low-density lipoprotein (VLDL) apolipoproteins were fractionated between pH 6.3 and 4.0. In the presence of 6 mol/l urea and with a flow rate of 1 ml/min, one run (up to 10 mg of protein) took 30 min. VLDL apolipoproteins were separated in seven peaks. As revealed by SDS-polyacrylamide gel electrophoresis, isoelectric focusing and double-immunodiffusion against mono-specific antisera, fractions corresponded to the following proteins: apolipoprotein C-I, albumin, apolipoproteins A-I, E, C-II plus C-III0, C-III1 and C-III2, respectively. Apolipoproteins were eluted in sharp, well-resolved peaks. The recovery of proteins was 78% of the starting material. With fast protein chromatofocusing, an efficient isolation of single apolipoproteins is possible from small amounts of VLDL apolipoprotein preparations. This technique is superior to the commonly used, time-consuming methods for apolipoprotein isolation.

  14. High-density lipoprotein (HDL) metabolism and bone mass.

    PubMed

    Papachristou, Nicholaos I; Blair, Harry C; Kypreos, Kyriakos E; Papachristou, Dionysios J

    2017-05-01

    It is well appreciated that high-density lipoprotein (HDL) and bone physiology and pathology are tightly linked. Studies, primarily in mouse models, have shown that dysfunctional and/or disturbed HDL can affect bone mass through many different ways. Specifically, reduced HDL levels have been associated with the development of an inflammatory microenvironment that affects the differentiation and function of osteoblasts. In addition, perturbation in metabolic pathways of HDL favors adipoblastic differentiation and restrains osteoblastic differentiation through, among others, the modification of specific bone-related chemokines and signaling cascades. Increased bone marrow adiposity also deteriorates bone osteoblastic function and thus bone synthesis, leading to reduced bone mass. In this review, we present the current knowledge and the future directions with regard to the HDL-bone mass connection. Unraveling the molecular phenomena that underline this connection will promote the deeper understanding of the pathophysiology of bone-related pathologies, such as osteoporosis or bone metastasis, and pave the way toward the development of novel and more effective therapies against these conditions. © 2017 Society for Endocrinology.

  15. Synthetic high-density lipoproteins for delivery of 10-hydroxycamptothecin

    PubMed Central

    Yuan, Yue; Wen, Jian; Tang, Jie; Kan, Qiming; Ackermann, Rose; Olsen, Karl; Schwendeman, Anna

    2016-01-01

    The purpose of this study was to develop a novel synthetic high-density lipoprotein (sHDL) nanoparticle delivery system for 10-hydroxycamptothecin (HCPT) for treatment of colon carcinoma. HDL is recognized by scavenger receptor B-I (SR-BI) over-expressed in colon carcinomas 5- to 35-fold relative to the human fibroblasts. The sHDL nanoparticles were composed of apolipoprotein A-I mimic peptide (5A) and contained 0.5%–1.5% (w/w) of HCPT. An optimized HCPT-sHDL formulation exhibited 0.7% HCPT loading with 70% efficiency with an average size of 10–12 nm. Partitioning of HCPT in the sHDL lipid membrane enhanced drug stability in its active lactone form, increased solubilization, and enabled slow release. Cytotoxicity studies in HT29 colon carcinoma cells revealed that the IC50 of HCPT-sHDL was approximately 3-fold lower than that of free HCPT. Pharmacokinetics in rats following intravenous administration showed that the area under the serum concentration-time curve (AUC0−t) and Cmax of HCPT-HDL were 2.7- and 6.5-fold higher relative to the values for the free HCPT, respectively. These results suggest that sHDL-based formulations of hydrophobic drugs are useful for future evaluation in treatment of SR-BI-positive tumors. PMID:27920529

  16. Iatrogenic severe depression of high-density lipoprotein cholesterol.

    PubMed

    Mymin, D; Dembinski, T; Friesen, M H

    2009-07-01

    The authors present 5 cases of paradoxical depression of high-density lipoprotein (HDL) cholesterol induced by fibrate drugs. In a 24-month review of all cases seen in one physician's practice at the Winnipeg Health Sciences Centre Lipid Clinic, 492 patients made a total of 1187 visits. Sixty-eight of them were given a fibrate drug (14%). Ten patients had HDL cholesterol levels that were less than 0.5 mmol/L (2%), and of these, 5 cases were due to exposure to fenofibrate (1%). These 5 cases comprised 7.4% of the 68 patients who were given any fibrate drug during that period. Mean levels were as follows: HDL cholesterol on fenofibrate 0.27, off fenofibrate 1.0 mmol/L and apo A1 on fenofibrate 0.41, off fenofibrate 1.17 g/L. A literature review revealed documented cases in 37 patients involving fibrates alone or in combination with other drugs known to cause decreased HDL cholesterol levels. In 13 patients, exposure was to fibrate therapy alone; in those exposed to combinations, the effect was clearly attributable to fibrates in 9; in 14, the nonfibrates (mostly rosiglitazone) were the attributable drugs; and in 1, it was impossible to tell. Thus, fibrate therapy should always be suspected as a cause of profoundly depressed HDL cholesterol.

  17. Acrolein impairs the cholesterol transport functions of high density lipoproteins.

    PubMed

    Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.

  18. Stability of discoidal high-density lipoprotein particles

    NASA Astrophysics Data System (ADS)

    Maleki, Mohsen; Fried, Eliot

    Motivated by experimental and numerical studies revealing that discoidal high-density lipoprotein (HDL) particles may adopt flat elliptical and nonplanar saddle-like configurations, it is hypothesized that these might represent stabilized configurations of initially unstable flat circular particles. A variational description is developed to explore the stability of a flat circular discoidal HDL particle. While the lipid bilayer is modeled as two-dimensional fluid film endowed with surface tension and bending elasticity, the apoA-I belt is modeled as one-dimensional inextensible twist-free chain endowed with bending elasticity. Stability is investigated using the second variation of the underlying energy functional. Various planar and nonplanar instability modes are predicted and corresponding nondimensional critical values of salient dimensionless parameters are obtained. The results predict that the first planar and nonplanar unstable modes occur due to in-plane elliptical and transverse saddle-like perturbations. Based on available data, detailed stability diagrams indicate the range of input parameters for which a flat circular discoidal HDL particle is linearly stable or unstable.

  19. Tiliroside and gnaphaliin inhibit human low density lipoprotein oxidation.

    PubMed

    Schinella, Guillermo R; Tournier, Horacio A; Máñez, Salvador; de Buschiazzo, Perla M; Del Carmen Recio, María; Ríos, José Luis

    2007-01-01

    Two flavonoids, gnaphaliin and tiliroside, isolated from Helichrysum italicum, were studied in vitro for their capacity to inhibit Cu(2+)-induced human low density lipoprotein (LDL) and diluted plasma oxidation. LDL oxidation was monitored by conjugated diene, thiobarbituric acid-reactive substances (TBARS) formation and electrophoretic mobility on agarose gel. Gnaphaliin and tiliroside increased the lag-phase for diene conjugate production in a dose-dependent manner. The reduction of TBARS production confirmed the antioxidant activity of gnaphaliin and tiliroside with 50% inhibitory concentration (IC(50)) values of 8.0+/-3.9 microM and 7.0+/-2.6 microM respectively. Furthermore, the flavonoids negated the Cu(2+)-induced increase in electrophoretic mobility of LDL. Antioxidant activity of gnaphaliin and tiliroside was significantly different when diluted plasma was oxidised by adding 1 mM CuSO(4). Although both flavonoids again reduced the TBARS production, tiliroside showed higher activity than gnaphaliin (IC(50)=10.6+/-2.5 microM vs. IC(50)>50 microM). In conclusion, tiliroside and gnaphaliin are antioxidants against in vitro Cu(2+)-induced LDL oxidation in the same order of magnitude compared to that of the reference drug, probucol.

  20. Oxidized low-density lipoprotein alters endothelial progenitor cell populations.

    PubMed

    Cui, Yuqi; Narasimhulu, Chandrakala A; Liu, Lingjuan; Li, Xin; Xiao, Yuan; Zhang, Jia; Xie, Xiaoyun; Hao, Hong; Liu, Jason Z; He, Guanglong; Cowan, Peter J; Cui, Lianqun; Zhu, Hua; Parthasarathy, Sampath; Liu, Zhenguo

    2015-06-01

    Oxidized low-density lipoprotein (ox-LDL) is critical to atherosclerosis in hyperlipidemia. Bone marrow (BM)-derived endothelial progenitor cells (EPCs) are important to preventing atherosclerosis, and significantly decreased in hyperlipidemia. This study was to demonstrate ox-LDL and hyperlipidemia could exhibit similar effect on EPC population and the role of reactive oxygen species (ROS). ROS production in BM and blood was significantly increased in male C57BL/6 mice with intravenous ox-LDL treatment, and in hyperlipidemic LDL receptor knockout mice with 4-month high-fat diet. ROS formation was effectively blocked with overexpression of antioxidant enzymes or N-acetylcysteine treatment. In hyperlipidemic and ox-LDL-treated mice, c-Kit(+)/CD31(+) cell number in BM and blood, and Sca-1(+)/Flk-1(+) cell number in blood, not in BM, were significantly decreased, which were not affected by inhibiting ROS production, while blood CD34(+)/Flk-1(+) cell number was significantly increased that was prevented with reduced ROS formation. However, blood CD34(+)/CD133(+) cell number increased in ox-LDL-treated mice, while decreased in hyperlipidemic mice. These data suggested that ox-LDL produced significant changes in BM and blood EPC populations similar (but not identical) to chronic hyperlipidemia with predominantly ROS-independent mechanism(s).

  1. Diagnosis and Treatment of High Density Lipoprotein Deficiency

    PubMed Central

    Schaefer, Ernst J.; Anthanont, Pimjai; Diffenderfer, Margaret R.; Polisecki, Eliana; Asztalos, Bela F.

    2017-01-01

    Low serum high density lipoprotein cholesterol level (HDL-C) < 40 mg/dL in men and < 50 mg/dL in women are a significant independent risk factor for cardiovascular disease (CVD), and are often observed in patients with hypertriglyceridemia, obesity, insulin resistance, and diabetes. Patients with marked deficiency of HDL-C (< 20 mg/dL) in the absence of secondary causes are much less common (< 1% of the population). These patients may have homozygous, compound heterozygous, or heterozygous defects involving the apolipoprotein (APO)AI, ABCA1, or lecithin:cholesterol acyl transferase genes, associated with Apo A-I Deficiency, ApoA-I Variants, Tangier Disease, Familial Lecithin:Cholesteryl Ester Acyltransferase Deficiency, and Fish Eye Disease. There is marked variability in laboratory and clinical presentation, and DNA analysis is necessary for diagnosis. These patients can develop premature CVD, neuropathy, kidney failure, neuropathy, hepatosplenomegaly and anemia. Treatment should be directed at optimizing all non-HDL risk factors. PMID:27565770

  2. Bidirectional flux of cholesterol between cells and lipoproteins. Effects of phospholipid depletion of high density lipoprotein

    SciTech Connect

    Johnson, W.J.; Bamberger, M.J.; Latta, R.A.; Rapp, P.E.; Phillips, M.C.; Rothblat, G.H.

    1986-05-05

    The bidirectional surface transfer of free cholesterol (FC) between Fu5AH rat hepatoma cells and human high density lipoprotein (HDL) was studied. Cells and HDL were prelabeled with (4-/sup 14/C)FC and (7-/sup 3/H)FC, respectively. Influx and efflux of FC were measured simultaneously from the appearance of /sup 3/H counts in cells and /sup 14/C counts in medium. Results were analyzed by a computerized procedure which fitted sets of kinetic data to a model assuming that cell and HDL FC populations each formed a single homogeneous pool and that together the pools formed a closed system. This analysis yielded values for the first-order rate constants of FC influx and efflux (ki and ke), from which influx and efflux of FC mass (Fi and Fe) could be calculated. With normal HDL, the uptake and release of FC tracers conformed well to the above-described model; Fi and Fe were approximately equal, suggesting an exchange of FC between cells and HDL. HDL was depleted of phospholipid (PL) by treatment with either phospholipase A2 or heparin-releasable rat hepatic lipase, followed by incubation with bovine serum albumin. PL depletion of HDL had little or no effect on ki, but reduced ke, indicating that PL-deficient HDL is a relatively poor acceptor of cell cholesterol. The reduction in ke resulted in initial Fi greater than Fe and, thus, in net uptake of FC by the cells. This result explained previous results demonstrating net uptake of FC from PL-depleted HDL. In the presence of an inhibitor of acyl coenzyme A:cholesterol acyltransferase, the steady state distribution of FC mass between cells and HDL was accurately predicted by the ratio of rate constants for FC flux. This result provided additional validation for describing FC flux in terms of first-order rate constants and homogeneous cell and HDL FC pools.

  3. Low-Density Lipoprotein Receptor Signaling Mediates the Triglyceride-Lowering Action of Akkermansia muciniphila in Genetic-Induced Hyperlipidemia.

    PubMed

    Shen, Jing; Tong, Xuedong; Sud, Neetu; Khound, Rituraj; Song, Yongyan; Maldonado-Gomez, Maria X; Walter, Jens; Su, Qiaozhu

    2016-07-01

    Akkermansia muciniphila (A muciniphila) is a mucin-degrading bacterium that resides in the mucus layer whose abundance inversely correlates with body weight and the development of diabetes mellitus in mice and humans. The objective of this study was to explore the regulatory effect of A muciniphila on host lipoprotein metabolism, insulin sensitivity, and hepatic metabolic inflammation. By establishing a novel mouse model that colonized the A muciniphila in the gastrointestinal tract of the cAMP-responsive binding protein H (CREBH)-deficient mouse and in vivo chylomicron assay, we found that increased colonization of A muciniphila in the gastrointestinal tract of wild-type mice protected mice from an acute fat load-induced hyperlipidemia compared with vehicle-treated mice. A muciniphila administration also significantly ameliorated chronic hypertriglyceridemia, improved insulin sensitivity, and prevented overproduction of postprandial chylomicrons in CREBH-null mice. Mechanistic studies revealed that increased A muciniphila colonization induced expression of low-density lipoprotein receptors and apolipoprotein E in the hepatocytes of CREBH-null mice, which facilitated the uptake of intermediate-density lipoprotein via the mediation of apolipoprotein B100 and apolipoprotein E, leading to the increased clearance of triglyceride-rich lipoprotein remnants, chylomicron remnants, and intermediate-density lipoproteins, from the circulation. Treatment with A muciniphila further improved hepatic endoplasmic reticulum stress and metabolic inflammation in CREBH-null mice. Increased colonization of the disease-protective gut bacteria A muciniphila protected the host from acute and chronic hyperlipidemia by enhancing the low-density lipoprotein receptor expression and alleviating hepatic endoplasmic reticulum stress and the inflammatory response in CREBH-null mice. © 2016 American Heart Association, Inc.

  4. Phosphatidylinositol turnover in mitogen-activated lymphocytes. Suppression by low-density lipoproteins

    PubMed Central

    Hui, David Y.; Harmony, Judith A. K.

    1980-01-01

    Low-density (LD) lipoproteins inhibit phytohaemagglutinin-enhanced turnover of phosphatidylinositol in human peripheral lymphocytes. Turnover was assessed by 32P incorporation into phospholipids and by loss of 32P from [32P]phosphatidylinositol. Inhibition of lipid turnover by LD lipoproteins is not the result of a change in the amount of phytohaemagglutinin required for maximum cellular response. Neither phytohaemagglutinin nor LD lipoproteins influence 32P incorporation into phosphatidylethanolamine and phosphatidylcholine during the first 60min after mitogenic challenge. The extent of inhibition of phosphatidylinositol turnover by LD lipoproteins depends on the concentration of LD lipoproteins present in the incubation medium: 50% of maximum inhibition occurs at a low-density-lipoprotein protein concentration of 33μg/ml and maximum inhibition occurs at low-density-lipoprotein protein concentrations above 100μg/ml. Phytohaemagglutinin stimulates 32P incorporation into phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. However, LD lipoproteins abolish 32P incorporation into phosphatidylinositol without affecting incorporation into phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. The ability of LD lipoproteins to inhibit phytohaemagglutinin-induced phosphatidylinositol turnover is mimicked by EGTA. Furthermore, inhibition of LD lipoproteins by phytohaemagglutinin-induced 32P incorporation into phosphatidylinositol correlates directly with inhibition by LD lipoproteins of Ca2+ accumulation. These results suggest that Ca2+ accumulation and turnover of phosphatidylinositol are coupled responses in lymphocytes challenged by mitogens. The step in phosphatidylinositol metabolism that is sensitive to LD lipoproteins and, by inference, that is coupled to Ca2+ accumulation is release of [32P]phosphoinositol from phosphatidylinositol. PMID:6796039

  5. A Potential Neuroprotective Role of Apolipoprotein E-containing Lipoproteins through Low Density Lipoprotein Receptor-related Protein 1 in Normal Tension Glaucoma*

    PubMed Central

    Hayashi, Hideki; Eguchi, Yuko; Fukuchi-Nakaishi, Yuko; Takeya, Motohiro; Nakagata, Naomi; Tanaka, Kohichi; Vance, Jean E.; Tanihara, Hidenobu

    2012-01-01

    Glaucoma is an optic neuropathy and the second major cause of blindness worldwide next to cataracts. The protection from retinal ganglion cell (RGC) loss, one of the main characteristics of glaucoma, would be a straightforward treatment for this disorder. However, the clinical application of neuroprotection has not, so far, been successful. Here, we report that apolipoprotein E-containing lipoproteins (E-LPs) protect primary cultured RGCs from Ca2+-dependent, and mitochondrion-mediated, apoptosis induced by glutamate. Binding of E-LPs to the low density lipoprotein receptor-related protein 1 recruited the N-methyl-d-aspartate receptor, blocked intracellular Ca2+ elevation, and inactivated glycogen synthase kinase 3β, thereby inhibiting apoptosis. When compared with contralateral eyes treated with phosphate-buffered saline, intravitreal administration of E-LPs protected against RGC loss in glutamate aspartate transporter-deficient mice, a model of normal tension glaucoma that causes glaucomatous optic neuropathy without elevation of intraocular pressure. Although the presence of α2-macroglobulin, another ligand of the low density lipoprotein receptor-related protein 1, interfered with the neuroprotective effect of E-LPs against glutamate-induced neurotoxicity, the addition of E-LPs overcame the inhibitory effect of α2-macroglobulin. These findings may provide a potential therapeutic strategy for normal tension glaucoma by an LRP1-mediated pathway. PMID:22674573

  6. Novel Changes in Discoidal High Density Lipoprotein Morphology: A Molecular Dynamics Study

    PubMed Central

    Catte, Andrea; Patterson, James C.; Jones, Martin K.; Jerome, W. Gray; Bashtovyy, Denys; Su, Zhengchang; Gu, Feifei; Chen, Jianguo; Aliste, Marcela P.; Harvey, Stephen C.; Li, Ling; Weinstein, Gilbert; Segrest, Jere P.

    2006-01-01

    ApoA-I is a uniquely flexible lipid-scavenging protein capable of incorporating phospholipids into stable particles. Here we report molecular dynamics simulations on a series of progressively smaller discoidal high density lipoprotein particles produced by incremental removal of palmitoyloleoylphosphatidylcholine via four different pathways. The starting model contained 160 palmitoyloleoylphosphatidylcholines and a belt of two antiparallel amphipathic helical lipid-associating domains of apolipoprotein (apo) A-I. The results are particularly compelling. After a few nanoseconds of molecular dynamics simulation, independent of the starting particle and method of size reduction, all simulated double belts of the four lipidated apoA-I particles have helical domains that impressively approximate the x-ray crystal structure of lipid-free apoA-I, particularly between residues 88 and 186. These results provide atomic resolution models for two of the particles produced by in vitro reconstitution of nascent high density lipoprotein particles. These particles, measuring 95 Å and 78 Å by nondenaturing gradient gel electrophoresis, correspond in composition and in size/shape (by negative stain electron microscopy) to the simulated particles with molar ratios of 100:2 and 50:2, respectively. The lipids of the 100:2 particle family form minimal surfaces at their monolayer-monolayer interface, whereas the 50:2 particle family displays a lipid pocket capable of binding a dynamic range of phospholipid molecules. PMID:16581834

  7. A green tea catechin extract upregulates the hepatic low-density lipoprotein receptor in rats.

    PubMed

    Bursill, Christina A; Roach, Paul D

    2007-07-01

    Green tea extracts have hypocholesterolaemic properties in epidemiological and animal intervention studies. Upregulation of the low-density lipoprotein (LDL) receptor may be one mechanism to explain this as it is the main way cholesterol is removed from the circulation. This study aimed to determine if a green tea extract could upregulate the hepatic LDL receptor in vivo in the rat. A green tea extract (GTE) enriched in its anti-oxidant constituents, the catechins, was fed to rats (n = 6) at concentrations of either 0, 0.5, 1.0 or 2.0% (w/w) mixed in with their normal chow along with 0.25% (w/w) cholesterol for 12 days. Administration of the GTE had no effect on plasma total or LDL cholesterol concentrations but high-density lipoprotein significantly increased (41%; p < 0.05). Interestingly, there was a significant increase in LDL receptor binding activity (2.7-fold) and LDL receptor protein (3.4-fold) in the 2% (w/w) treatment group compared to controls. There were also significant reductions in liver total and unesterified cholesterol (40%). Administration of the GTE significantly reduced cholesterol absorption (24%) but did not affect cholesterol synthesis. These results show that, despite no effect on plasma cholesterol, the GTE upregulated the LDL receptor in vivo. This appears to be via a reduction in liver cholesterol concentration and suggests that the green tea extract was able to increase the efflux of cholesterol from liver cells.

  8. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans.

    PubMed

    Suzuki-Sugihara, Norie; Kishimoto, Yoshimi; Saita, Emi; Taguchi, Chie; Kobayashi, Makoto; Ichitani, Masaki; Ukawa, Yuuichi; Sagesaka, Yuko M; Suzuki, Emiko; Kondo, Kazuo

    2016-01-01

    Green tea is rich in polyphenols, including catechins which have antioxidant activities and are considered to have beneficial effects on cardiovascular health. In the present study, we investigated the effects of green tea catechins on low-density lipoprotein (LDL) oxidation in vitro and in human studies to test the hypothesis that catechins are incorporated into LDL particles and exert antioxidant properties. In a randomized, placebo-controlled, double-blind, crossover trial, 19 healthy men ingested green tea extract (GTE) in the form of capsules at a dose of 1 g total catechin, of which most (>99%) was the gallated type. At 1 hour after ingestion, marked increases of the plasma concentrations of (-)-epigallocatechin gallate and (-)-epicatechin gallate were observed. Accordingly, the plasma total antioxidant capacity was increased, and the LDL oxidizability was significantly reduced by the ingestion of GTE. We found that gallated catechins were incorporated into LDL particles in nonconjugated forms after the incubation of GTE with plasma in vitro. Moreover, the catechin-incorporated LDL was highly resistant to radical-induced oxidation in vitro. An additional human study with 5 healthy women confirmed that GTE intake sufficiently increased the concentration of gallated catechins, mainly in nonconjugated forms in LDL particles, and reduced the oxidizability of LDL. In conclusion, green tea catechins are rapidly incorporated into LDL particles and play a role in reducing LDL oxidation in humans, which suggests that taking green tea catechins is effective in reducing atherosclerosis risk associated with oxidative stress.

  9. Constitutive androstane receptor activation decreases plasma apolipoprotein B-containing lipoproteins and atherosclerosis in low-density lipoprotein receptor-deficient mice.

    PubMed

    Sberna, Anne-Laure; Assem, Mahfoud; Xiao, Rui; Ayers, Steve; Gautier, Thomas; Guiu, Boris; Deckert, Valérie; Chevriaux, Angélique; Grober, Jacques; Le Guern, Naig; Pais de Barros, Jean-Paul; Moore, David D; Lagrost, Laurent; Masson, David

    2011-10-01

    The goal of this study was to determine the impact of the nuclear receptor constitutive androstane receptor (CAR) on lipoprotein metabolism and atherosclerosis in hyperlipidemic mice. Low-density lipoprotein receptor-deficient (Ldlr(-/-)) and apolipoprotein E-deficient (ApoE(-/-)) mice fed a Western-type diet were treated weekly with the Car agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or the vehicle only for 8 weeks. In Ldlr(-/-) mice, treatment with TCPOBOP induced a decrease in plasma triglyceride and intermediate-density lipoprotein/low-density lipoprotein cholesterol levels (≈30% decrease in both cases after 2 months, P<0.01). These mice also showed a significant reduction in the production of very-low-density lipoproteins associated with a decrease in hepatic triglyceride content and the repression of several genes involved in lipogenesis. TCPOBOP treatment also induced a marked increase in the very-low-density lipoprotein receptor in the liver, which probably contributed to the decrease in intermediate-density lipoprotein/low-density lipoprotein levels. Atherosclerotic lesions in the aortic valves of TCPOBOP-treated Ldlr(-/-) mice were also reduced (-60%, P<0.001). In ApoE(-/-) mice, which lack the physiological apoE ligand for the very-low-density lipoprotein receptor, the effect of TCPOBOP on plasma cholesterol levels and the development of atherosclerotic lesions was markedly attenuated. CAR is a potential target in the prevention and treatment of hypercholesterolemia and atherosclerosis.

  10. High-density lipoprotein cholesterol on a roller coaster: where will the ride end?

    PubMed

    Kronenberg, Florian

    2016-04-01

    Bowe et al. report an association between low high-density lipoprotein cholesterol concentrations and various incident chronic kidney disease end points in a cohort of almost 2 million US veterans followed for 9 years. These impressive data should be a starting point for further investigations including genetic epidemiologic investigations as well as post hoc analyses of interventional trials that target high-density lipoprotein cholesterol and, finally, studies that focus on the functionality of high-density lipoprotein particles. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Interaction of high-density and low-density lipoproteins to solid surfaces coated with cholesterol as determined by an optical fiber-based biosensor

    NASA Astrophysics Data System (ADS)

    Singh, Bal R.; Poirier, Michelle A.

    1993-05-01

    In recent years, the use of fiber optics has become an important tool in biomedicine and biotechnology. We are involved in developing and employing a new system which, through the use of fiber optics, may be capable of measuring the content of cholesterol and lipoproteins in blood samples in real time. In the optical fiber-based biosensor, a laser beam having a wavelength of 512 nm (green light) is launched into an optical fiber, which transmits the light to its distal end. An evanescent wave (travelling just outside the fiber core) is used to excite rhodamine-labelled HDL or LDL which become bound to the fiber or to fiber-bound molecules. The fluorescence (red light) is coupled back into the fiber and detected with a photodiode. Preliminary work has involved testing of high density lipoprotein (HDL) binding to a cholesterol-coated fiber and to a bare fiber and low density lipoprotein (LDL) binding to a cholesterol-coated fiber. A significant difference was observed in the binding rate of HDL (5 (mu) g/mL and lower) to a bare fiber as opposed to a cholesterol-coated fiber. The binding rate of HDL (5 (mu) g/mL) to a bare fiber was 7.5 (mu) V/sec and to a cholesterol-coated fiber was 3.5 (mu) V/sec. We have calculated the binding affinity of LDL to a cholesterol- coated fiber as 1.4 (mu) M-1. These preliminary results suggest that the optical fiber-based biosensor can provide a unique and promising approach to the analysis of lipoprotein interaction with solid surfaces and with cholesterol. More importantly, the results suggest that this technique may be used to assess the binding of blood proteins to artificial organs/tissues, and to measure the amount of cholesterol, HDL and LDL in less than a minute.

  12. Aggregation and fusion of modified low density lipoprotein.

    PubMed

    Pentikäinen, M O; Lehtonen, E M; Kovanen, P T

    1996-12-01

    In atherogenesis, low density lipoprotein (LDL, diameter 22 nm) accumulates in the extracellular space of the arterial intima in the form of aggregates of lipid droplets (droplet diameter up to 400 nm). Here we studied the effects of various established in vitro LDL modifications on LDL aggregation and fusion. LDL was subjected to vortexing, oxidation by copper ions, proteolysis by alpha-chymotrypsin, lipolysis by sphingomyelinase, and nonenzymatic glycosylation, and was induced to form adducts with malondialdehyde or complexes with anti-apoB-100 antibodies. To assess the amount of enlarged LDL-derived structures formed (due to aggregation or fusion), we measured the turbidity of solutions containing modified LDL, and quantified the proportion of modified LDL that 1) sedimented at low-speed centrifugation (14,000 g), 2) floated at an increased rate at high-speed centrifugation (rate zonal flotation at 285,000 gmax), 3) were excluded in size-exclusion column chromatography (exclusion limit 40 MDa), or 4) failed to enter into 0.5%. Fast Lane agarose gel during electrophoresis. To detect whether particle fusion had contributed to the formation of the enlarged LDL-derived structures, particle morphology was examined using negative staining and thin-section transmission electron microscopy. We found that 1) aggregation was induced by the formation of LDL-antibody complexes, malondialdehyde treatment, and glycosylation of LDL; 2) fusion of LDL was induced by proteolysis of LDL by alpha-chymotrypsin; and 3) aggregation and fusion of LDL were induced by vortexing, oxidation by copper ions, and lipolysis by sphingomyclinase of LDL. The various modifications of LDL differed in their ability to induce aggregation and fusion.

  13. Biomimetic High-Density Lipoproteins from a Gold Nanoparticle Template

    NASA Astrophysics Data System (ADS)

    Luthi, Andrea Jane

    For hundreds of years the field of chemistry has looked to nature for inspiration and insight to develop novel solutions for the treatment of human diseases. The ability of chemists to identify, mimic, and modifiy small molecules found in nature has led to the discovery and development of many important therapeutics. Chemistry on the nanoscale has made it possible to mimic natural, macromolecular structures that may also be useful for understanding and treating diseases. One example of such a structure is high-density lipoprotein (HDL). The goal of this work is to use a gold nanoparticle (Au NP) as a template to synthesize functional mimics of HDL and characterize their structure and function. Chapter 1 details the structure and function of natural HDL and how chemistry on the nanoscale provides new strategies for mimicking HDL. This Chapter also describes the first examples of using nanoparticles to mimic HDL. Chapter 2 reports the synthesis and characterization of biomimetic HDL using different sizes of Au NPs and different surface chemistries and how these variables can be used to tailor the properties of biomimetic HDL. From these studies the optimal strategy for synthesizing biomimetic HDL was determined. In Chapter 3, the optimization of the synthesis of biomimetic HDL is discussed as well as a full characterization of its structure. In addition, the work in this chapter shows that biomimetic HDL can be synthesized on a large scale without alterations to its structure or function. Chapter 4 focuses on understanding the pathways by which biomimetic HDL accepts cholesterol from macrophage cells. The results of these studies demonstrate that biomimetic HDL is able to accept cholesterol by both active and passive pathways of cholesterol efflux. In Chapter 5 the preliminary results of in vivo studies to characterize the pharmacokinetics and pharmacodynamics of biomimetic HDL are presented. These studies suggest that biomimetic HDL traffics through tissues prone to

  14. Purification and properties of the very high density lipoprotein from the hemolymph of adult Triatoma infestans.

    PubMed

    Rimoldi, O J; Soulages, J L; González, S M; Peluffo, R O; Brenner, R R

    1989-06-01

    The very high density lipoprotein (VHDL) of Triatoma infestans hemolymph from adult males has been isolated and purified by two-step density gradient ultracentrifugation. It appears to be homogeneous as judged by native polyacrylamide gel electrophoresis. The content of VHDL in hemolymph was estimated to be 8 mg protein/ml. The purified protein has a molecular weight (Mr) of 450,000, is composed of six subunits of Mr approximately equal to 77,000, and possesses a high content of aromatic amino acids. This protein is glycosylated and contains 3% of lipids by weight with a remarkable amount of free fatty acids (25% of total lipids). The T. infestans VHDL has a different lipid and amino acid composition from lipophorin. The lipid composition and the spectroscopic studies using cis-parinaric acid indicated a high fatty acid binding affinity. It has nine binding sites per mol of VHDL. Competence studies revealed that VHDL has its highest affinity for the binding of palmitic acid followed by stearic and arachidonic acids.

  15. Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice.

    PubMed Central

    Harris, H W; Grunfeld, C; Feingold, K R; Rapp, J H

    1990-01-01

    Endotoxemia stimulates many physiologic responses including disturbances in lipid metabolism. We hypothesized that this lipemia may be part of a defensive mechanism by which the body combats the toxic effects of circulating endotoxin. We tested the effects of mixtures of endotoxin, lipoproteins, and lipoprotein-free plasma and determined the ability of varying concentrations of human very low density lipoproteins (VLDL) and chylomicrons, as well as low density lipoproteins (LDL) and high density lipoproteins (HDL), and of the synthetic lipid emulsion SOYACAL to prevent endotoxin-induced death in mice. This study demonstrates that the triglyceride-rich VLDL and chylomicrons, as well as cholesterol-rich LDL and HDL, and cholesterol-free SOYACAL can protect against endotoxin-induced death. Protection required small amounts of lipoprotein-free plasma, and depended on the incubation time and the concentration of lipoprotein lipid. Despite stringent techniques to prevent exogenous endotoxin contamination eight of ten duplicate VLDL preparations contained endotoxin (5,755 +/- 3,514 ng endotoxin/mg triglyceride, mean +/- SEM) making the isolation of endotoxin-free VLDL difficult. In contrast, simultaneous preparations of LDL and HDL were relatively free of endotoxin contamination (3 +/- 3 and 320 +/- 319 ng/mg total cholesterol, respectively), suggesting that the contamination of VLDL occurs in vivo and not during the isolation procedure. These observations suggest a possible role for increased triglyceride-rich lipoproteins in the host's defense against endotoxemia and infection. Images PMID:2394827

  16. Chitosan oligosaccharide decreases very-low-density lipoprotein triglyceride and increases high-density lipoprotein cholesterol in high-fat-diet-fed rats.

    PubMed

    Wang, Daxin; Han, Jiju; Yu, Yang; Li, Xueping; Wang, Yun; Tian, Hua; Guo, Shoudong; Jin, Shiguang; Luo, Tian; Qin, Shucun

    2011-09-01

    It is well known that chitosan has beneficial lipid-regulating effects, but it remains unknown whether chitosan oligosaccharide (COS), the chitosan degradation product, has the same lipid benefits. High-fat-diet-fed Wistar rats were administrated with COS by gastric gavage for three weeks. The effects of COS on lipids, lipoprotein components and lipid metabolism related protein activities were investigated. Plasma lipids level assays by an enzyme method showed that COS decreased triglyceride (TG) by 29-31%, and increased high-density lipoprotein (HDL) cholesterol by 8-11%, but did not affect low-density lipoprotein (LDL) cholesterol. Lipid distribution analysis through fast protein liquid chromatography indicated that COS significantly decreased TG content distributed in very-low-density lipoprotein (VLDL)/LDL fractions but increased cholesterol content in HDL fractions. Apolipoprotein analysis through plasma ultracentrifugation and sodium dodecyl sulfate polyacrylamide gel electrophoresis displayed that COS decreased apolipoprotein B-100 of LDL and increased apolipoprotein E of LDL and apolipoprotein B-100 of VLDL, but did not change apoA-I content of HDL particles. Lipoprotein formation associated protein determination showed that COS also increased plasma activity of lecithin cholesterol acyl transferase but not phospholipid transfer protein. The present study suggests that COS may play a beneficial role in plasma lipid regulation of rats with dyslipidemia induced by high-fat diet. The COS-decreased VLDL/LDL TG and -enhanced HDL cholesterol may be related to the upregulated activity of lecithin cholesterol acyl transferase.

  17. [Effect of metal cations on the copper induced peroxidation of the low density lipoproteins].

    PubMed

    Dremina, E S; Vlasova, I I; Vakhrusheva, T V; Sharov, V S; Azizova, O A

    1997-01-01

    The effect of metal cations on copper-catalyzed lipid peroxidation (LPO) of low density lipoproteins (LDL) was examined. The presence of metal cations in the incubation media containing LDL (0.8 mg protein/ml) and CuSO4 (0-80 microM) influenced on LPO of LDL as evident by the measurement of TBARS. With the concentrations of CuSO4 less than 10 microM, the metal cations caused an increase in LDL peroxidation. Zn2+ appeared to be the most effective inductor, Mn2+ was less effective, and the influence of Ca2+ and Mg2+ was insignificant. With greater CuSO4 concentrations Mg2+ showed no effect on TBARS formation in LDL while the addition of other nontransition metal cations to the incubation mixture led to the inhibition of LDL peroxidation. The capacity for inhibition decreased in the row Mn2+ > Zn2+ > Ca2+ > Mg2+. The possible mechanism explaining these results may be in the competition of metal ions for copper binding sites on LDL. Our results allow to suggest the existence of two types of copper binding sites on LDL, tight-binding sites which are non-effective in LPO and effective weak-binding sites.

  18. Purification and Characterization of a Bovine Acetyl Low Density Lipoprotein Receptor

    NASA Astrophysics Data System (ADS)

    Kodama, Tatsuhiko; Reddy, Pranhitha; Kishimoto, Chiharu; Krieger, Monty

    1988-12-01

    The acetyl low density lipoprotein (LDL) receptor is expressed on macrophages and some endothelial cells and mediates macrophage--foam cell formation in culture. A 220-kDa acetyl LDL binding protein was partially purified from bovine liver membranes and was used to make a specific monoclonal antibody. The 220-kDa protein immunoprecipitated by this antibody retained binding activity, and the antibody was used to detect this protein in cells lining bovine liver sinusoids and on the surface of cultured bovine alveolar macrophages. In the human monocytic cell line THP-1, the expression of both acetyl LDL receptor activity and a 220-kDa acetyl LDL binding protein were dramatically induced in parallel after differentiation to a macrophage-like state induced by phorbol ester. The ligand specificity, tissue and cell-type specificity, and coinduction data indicated that this 220-kDa cell-surface binding protein is probably a receptor that mediates acetyl LDL endocytosis. The 220-kDa protein, which was purified 238,000-fold from bovine lung membranes to near homogeneity using monoclonal antibody affinity chromatography, is a trimer of 77-kDa subunits that contain asparagine-linked carbohydrate chains.

  19. Serum amyloid P component prevents high-density lipoprotein-mediated neutralization of lipopolysaccharide.

    PubMed

    de Haas, C J; Poppelier, M J; van Kessel, K P; van Strijp, J A

    2000-09-01

    Lipopolysaccharide (LPS) is an amphipathic macromolecule that is highly aggregated in aqueous preparations. LPS-binding protein (LBP) catalyzes the transfer of single LPS molecules, segregated from an LPS aggregate, to high-density lipoproteins (HDL), which results in the neutralization of LPS. When fluorescein isothiocyanate-labeled LPS (FITC-LPS) is used, this transfer of LPS monomers to HDL can be measured as an increase in fluorescence due to dequenching of FITC-LPS. Recently, serum amyloid P component (SAP) was shown to neutralize LPS in vitro, although only in the presence of low concentrations of LBP. In this study, we show that SAP prevented HDL-mediated dequenching of FITC-LPS, even in the presence of high concentrations of LBP. Human bactericidal/permeability-increasing protein (BPI), a very potent LPS-binding and -neutralizing protein, also prevented HDL-mediated dequenching of FITC-LPS. Furthermore, SAP inhibited HDL-mediated neutralization of both rough and smooth LPS in a chemiluminescence assay quantifying the LPS-induced priming of neutrophils in human blood. SAP bound both isolated HDL and HDL in serum. Using HDL-coated magnetic beads prebound with SAP, we demonstrated that HDL-bound SAP prevented the binding of LPS to HDL. We suggest that SAP, by preventing LPS binding to HDL, plays a regulatory role, balancing the amount of LPS that, via HDL, is directed to the adrenal glands.

  20. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function

    PubMed Central

    Landowski, Lila M.; Young, Kaylene M.

    2016-01-01

    The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions. PMID:26949399

  1. Assembly and secretion of hepatic very-low-density lipoprotein.

    PubMed Central

    Gibbons, G F

    1990-01-01

    In contrast to water-soluble fuels such as glucose or ketone bodies, the use of lipids as an energy source for tissues has required the development of complex structures for their transport through the aqueous plasma. In the case of endogenously synthesized triacylglycerol this is achieved by the assembly and secretion of hepatic VLDL which provides the necessary stability in an aqueous medium. An essential component of this assembly process is apo B. Dietary changes which require an increase in hepatic VLDL secretion appear to be accompanied by increases in the availability of functional apo B. Interesting questions relate to: (a) the intracellular site(s) of triacylglycerol association with apo B, and (b) the mechanism(s) by which the availability of functional apo B at this site responds to metabolic and hormonal signals which reflect dietary status and, thus, the need to secrete triacylglycerol. As regards the latter, although in some cases changes in apo B synthesis occur in response to VLDL secretion hepatic apo B mRNA levels appear to be quite stable in vitro. Intracellular switching of apo B between the secretory and degradative pathways may be important in controlling VLDL assembly and post-translational modifications of the apoprotein may also play a role by influencing its ability to bind to triacylglycerol. Transport is not the only problem associated with the utilization of a concentrated energy source such as triacylglycerol and the complex problems of waste product disposal and recycling have to be dealt with. In the case of triacylglycerol, potentially toxic waste products include atherogenic remnants and LDL. The overall problem, then, in the long-term, involves the development of a 'safe' means of utilizing triacylglycerol and this requirement accounts for much of the complexity of plasma lipoprotein metabolism. In this area, the rat could teach the human a few tricks. One of these appears to be the utilization of hepatic apo B48 rather than apo B

  2. Surface Plasmon Resonance Assay of Binding Properties of Antisense Oligonucleotides to Serum Albumins and Lipoproteins.

    PubMed

    Onishi, Reina; Watanabe, Ayahisa; Nakajima, Mado; Sekiguchi, Mitsuaki; Kugimiya, Akira; Kinouchi, Hiroki; Nihashi, Yoichiro; Kamimori, Hiroshi

    2015-01-01

    In the present study, we developed an assay to evaluate the kinetic binding properties of the unconjugated antisense oligonucleotide (ASO) and lipophilic and hydrophilic ligands conjugated ASOs to mouse and human serum albumin, and lipoproteins using surface plasmon resonance (SPR). The lipophilic ligands conjugated ASOs showed clear affinity to the albumins and lipoproteins, while the unconjugated and hydrophilic ligand conjugated ASOs showed no interaction. The SPR method showed reproducible immobilization of albumins and lipoproteins as ligands on the sensor chip, and reproducible affinity kinetic parameters of interaction of ASOs conjugated with the ligands could be obtained. The kinetic binding data of these ASOs to albumin and lipoproteins by SPR were related with the distributions in the whole liver in mice after administration of these conjugated ASOs. The results demonstrated that our SPR method could be a valuable tool for predicting the mechanism of the properties of delivery of conjugated ASOs to the organs.

  3. Effects of acute exercise on high density lipoprotein cholesterol and high density lipoprotein subfractions in moderately trained females

    PubMed Central

    Gordon, P. M.; Fowler, S.; Warty, V.; Danduran, M.; Visich, P.; Keteyian, S.

    1998-01-01

    Increases in high density lipoprotein cholesterol (HDL-C) levels have previously been reported after moderate exercise bouts lasting less than two hours in men. Little information exists, however, on HDL-C responses after moderate duration exercise in women. Post-exercise HDL- C modifications may appear differently in women because of higher baseline HDL-C concentrations and differences in lipolytic activity. To determine the influence of exercise on acute HDL-C responses in women, 12 trained premenopausal women (22 (4) years old; mean (SD)) who ran 24- 48 km a week exercised on a motor driven treadmill at 75% VO2MAX until 3.34 MJ (800 kcal) were expended (72 (9) min). Subjects were all tested during the early follicular phase of their menstrual cycle. Fasting blood samples were obtained before exercise (baseline), immediately after (IPE), one hour after (1 h PE), 24 hours after (24 h PE), and 48 hours after (48 h PE) exercise. Plasma was analysed for HDL-C, HDL2-C, and HDL3-C. A significant increase in HDL-C was observed 48 h PE (p<0.05). HDL3-C increased IPE (p<0.01) but returned to baseline at 1 h PE. In contrast, HDL2-C was not significantly different from baseline at any time point. The rise in HDL-C, however, was attributed to an increase in both HDL2 and HDL3. Moreover, at 48 h PE, the increase in HDL-C correlated highly with changes in HDL2-C (r = 0.92). Thus it appears that exercise of moderate duration can elicit similar post- exercise increases in HDL-C in women to those previously reported in men. However, the changes in HDL subfractions leading to the rise in HDL-C may be different in women. 


 PMID:9562167

  4. Total cholesterol, high density lipoprotein cholesterol and choline esterase in overseas and Japanese university students.

    PubMed

    Nakamura, S

    1985-04-01

    Serum lipids were studied in 97 overseas and 282 Japanese university students. As compared with Japanese, serum total cholesterol levels were low and high density lipoprotein/total cholesterol ratio was high in the overseas students, especially in Chinese and Korean students. 30-39-year-old Chinese students, moreover, showed elevated high density lipoprotein levels. Choline esterase levels were significantly lower in 30-39-year-old Chinese and Korean students than in Japanese and Taiwanese.

  5. Effect of Helicobacter pylori eradication on high-density lipoprotein cholesterol.

    PubMed

    Scharnagl, Hubert; Kist, Manfred; Grawitz, Andrea Busse; Koenig, Wolfgang; Wieland, Heinrich; März, Winfried

    2004-01-15

    We examined the effect of Helicobacter pylori (H. pylori) eradication on lipids and apolipoproteins in 87 patients with duodenal ulcers. A significant increase was observed in high-density lipoprotein (HDL) cholesterol (+24.7%, p <0.001), apolipoprotein AI (+9.0%, p <0.001), and apolipoprotein AII (+11.7%, p <0.001) after eradication. Minor increases occurred in total cholesterol, triglycerides, and apolipoprotein B, whereas low-density lipoprotein cholesterol remained unchanged. Our results suggest that chronic H. pylori infection reduces plasma levels of HDL cholesterol and that eradication improves the lipoprotein pattern.

  6. [Protective role of high density lipoproteins in sepsis: basic issues and clinical implications].

    PubMed

    Contreras-Duarte, Susana; Varas, Pablo; Awad, Fernanda; Busso, Dolores; Rigotti, Attilio

    2014-02-01

    High density lipoproteins (HDL) are responsible of reverse cholesterol transport and play an important antiatherogenic role. In recent years, several studies suggest that HDL have additional functions, including a possible anti-inflammatory activity in infectious conditions. Furthermore, available evidence indicates that the presence of lipopolysaccharide (LPS) within the circulation during infectious states induced by gram-negative bacteria may be involved in the decrease in HDL cholesterol levels and changes in lipoprotein composition, which have been associated with a higher mortality due to sepsis in animal models and in humans. In this article, we review this subject and also discuss possible mechanisms that explain the positive impact achieved by native HDL, reconstituted HDL, or HDL apolipoprotein peptides on the inflammatory response and mortality in models of endotoxemia. In this regard, it has been proposed that one of the mechanisms by which HDL protect against sepsis may be mediated by its binding ability and/or neutralizing capacity on LPS, avoiding an excessive response of the immune system. Thus, increasing blood levels of HDL and/or parenteral HDL administration may represent a new anti-inflammatory tool for managing septic states in humans.

  7. Role of high density lipoproteins in the biodistribution of two radioiodinated probes in the rat

    SciTech Connect

    Pohland, R.C.; Counsell, R.E.

    1985-01-01

    Two radioiodinated probes, /sup 125/I-cholesteryl oleate (/sup 125/I-CO), a derivative of a natural constituent of lipoproteins, and 1-(2-chlorophenyl)-1-(4(/sup 125/I)iodophenyl)-2,2-dichlorethane (/sup 125/I-DDD), an analog of the adrenolytic drug o,p'-DDD (mitotane), were selected to study the role of lipoproteins in drug disposition and to examine the ability of these vehicles to direct foreign molecules to specific tissues. In vivo and in vitro techniques were utilized to associate these probes with rat high density lipoproteins (HDL). Tissue distribution studies indicated that prior incorporation of /sup 125/I-CO into rat HDL increased the uptake of /sup 125/I-CO by rat adrenal, which was dramatically enhanced when this preparation was administered to animals made hypolipidemic with 4-aminopyrazolo(3,4-d)-pyrimidine (4-APP). Acetylation of HDL labeled with /sup 125/I-CO provided evidence that the observed uptake into the adrenal was via a receptor-mediated process. In contrast with these results, prior association of /sup 125/I-DDD with rat HDL failed to alter the ability of this compound to accumulate in adrenal tissue of normal or hypolipidemic animals. Polyacrylamide gel electrophoresis (PAGE) was utilized to examine the stability of the association of /sup 125/I-CO and /sup 125/I-DDD with rat HDL. These results suggested that /sup 125/I-CO was associated with the lipophilic core of HDL, whereas /sup 125/I-DDD appeared to be partially associated with the surface components of HDL. Saturation of surface components with stable o,p'-DDD offered data to suggest that this binding to apoproteins may disrupt the normal receptor-mediated uptake process.

  8. [In vitro immunosuppressive effect of low density lipoproteins].

    PubMed

    González, M; Sanz, I; Rojas, N; Silva, V; Kirsten, L; Bustamante, M

    1999-11-01

    Immune cells participate in the formation of atheromatous plate, however little is known about the effects of native or oxidatively modified lipoproteins on these cells. To study the effects of lipoproteins on in vitro mononuclear cell proliferation. Peripheral blood mononuclear cells were obtained from 10 patients with type 2 diabetes mellitus (aged 52 +/- 9 years old with a disease duration of 8.2 +/- 5.7 years and a mean glycosilated hemoglobin of 9.3 +/- 2.2%) and 10 non diabetic healthy controls (aged 50.3 +/- 7.1 years old). These were stimulated with phytohemagglutinin (PHA) alone or in the presence of native LDLS, malondialdehyde modified LDLs or glycated LDLs. Proliferation was measured as 3H-thymidine incorporation and expressed as Stimulation Index (SI). SI of patients and healthy subjects, after PHA stimulation were similar: (57.5 +/- 29.8 and 61.1 +/- 23.5) respectively LDLs did not induce proliferation in neither group. Native LDLs produced a 98% inhibition of PHA induced proliferation. Malondialdehyde modified and glycated LDLs caused a 50% inhibition. The suppressive effect was maintained when lipoproteins were incorporated to culture media 60 min prior or after PHA stimulation. Lipoproteins inhibit in vitro PHA induced peripheral blood mononuclear cell proliferation both in diabetic and in non diabetic subjects.

  9. Characterization of Two Metal Binding Lipoproteins as Vaccine Candidates for Enterococcal Infections

    PubMed Central

    Romero-Saavedra, Felipe; Laverde, Diana; Budin-Verneuil, Aurélie; Muller, Cécile; Bernay, Benoit; Benachour, Abdellah; Hartke, Axel; Huebner, Johannes

    2015-01-01

    Background Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens. Results We extrapolate the transcriptomic data from a mice peritonitis infection model in E. faecalis to identify putative up-regulated surface proteins under infection conditions in E. faecium. After the bionformatic analyses two metal binding lipoproteins were identified to have a high homology (>72%) between the two species, the manganese ABC transporter substrate-binding lipoprotein (PsaAfm,) and the zinc ABC transporter substrate-binding lipoprotein (AdcAfm). These candidate lipoproteins were overexpressed in Escherichia coli and purified. The recombinant proteins were used to produce rabbit polyclonal antibodies that were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Mice were passively immunized with the antibodies raised against recombinant lipoproteins, showing significant reduction of colony counts in mice livers after the bacterial challenge and demonstrating the efficacy of these metal binding lipoproteins as promising vaccine candidates to treat infections caused by these enterococcal pathogens. Conclusion Overall, our results demonstrate that these two metal binding lipoproteins elicited specific, opsonic and protective antibodies, with an extensive cross-reactivity and serotype-independent coverage among these two important nocosomial pathogens. Pointing these two protein antigens as promising immunogens, that can be used as single

  10. Characterization of Two Metal Binding Lipoproteins as Vaccine Candidates for Enterococcal Infections.

    PubMed

    Romero-Saavedra, Felipe; Laverde, Diana; Budin-Verneuil, Aurélie; Muller, Cécile; Bernay, Benoit; Benachour, Abdellah; Hartke, Axel; Huebner, Johannes

    2015-01-01

    Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens. We extrapolate the transcriptomic data from a mice peritonitis infection model in E. faecalis to identify putative up-regulated surface proteins under infection conditions in E. faecium. After the bionformatic analyses two metal binding lipoproteins were identified to have a high homology (>72%) between the two species, the manganese ABC transporter substrate-binding lipoprotein (PsaAfm,) and the zinc ABC transporter substrate-binding lipoprotein (AdcAfm). These candidate lipoproteins were overexpressed in Escherichia coli and purified. The recombinant proteins were used to produce rabbit polyclonal antibodies that were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Mice were passively immunized with the antibodies raised against recombinant lipoproteins, showing significant reduction of colony counts in mice livers after the bacterial challenge and demonstrating the efficacy of these metal binding lipoproteins as promising vaccine candidates to treat infections caused by these enterococcal pathogens. Overall, our results demonstrate that these two metal binding lipoproteins elicited specific, opsonic and protective antibodies, with an extensive cross-reactivity and serotype-independent coverage among these two important nocosomial pathogens. Pointing these two protein antigens as promising immunogens, that can be used as single components or as carrier proteins

  11. Increased Very Low Density Lipoprotein Secretion, Hepatic Steatosis, and Insulin Resistance

    PubMed Central

    Choi, Sung Hee; Ginsberg, Henry N

    2011-01-01

    Insulin resistance (IR) not only affects regulation of carbohydrate metabolism, but all aspects of lipid and lipoprotein metabolism. IR is associated with increased secretion of very low density lipoproteins (VLDL) and increased plasma triglycerides, as well as hepatic steatosis, despite the increased VLDL secretion. Here, we link IR with increased VLDL secretion and hepatic steatosis at both the physiologic and molecular levels. Increased VLDL secretion, together with the downstream effects on high density lipoprotein cholesterol and low density lipoprotein size is pro-atherogenic. Hepatic steatosis is a risk for steatohepatitis and cirrhosis. Understanding the complex inter-relationship between IR and these abnormalities of liver lipid homeostasis may provide insights relevant to new therapies for these increasing clinical problems. PMID:21616678

  12. The effects of glibenclamide and insulin on plasma high density lipoprotein in diabetics.

    PubMed

    Tamai, T; Nakai, T; Yamada, S; Kobayashi, T; Hayashi, T; Kutsumi, Y; Oida, K; Takeda, R

    1981-01-01

    The purpose of the present study was to investigate the effects of various types of treatment such as glibenclamide and insulin on plasma lipids and lipoprotein concentration in diabetics. Treatment of diabetes mellitus was reevaluated from the standpoint of high density lipoprotein (HDL) metabolism. Twenty-one diabetic patients (6 men and 15 women) who have been admitted in the hospital and kept on Japanese standard diet for diabetes mellitus, have been studied. Changes of plasma lipoprotein in diabetic patients were followed up before and after treatment with glibenclamide or insulin. Very low density lipoprotein (VLDL) and low density lipoprotein (LDL) were decreased and HDL was increased with insulin treatment. However, glibenclamide induced a significant decrease in HDL- cholesterol (Ch). Relationship between triglyceride (TG)-rich lipoproteins and HDL metabolism was studied. A significant negative correlation was found between pretreatment VLDL-TG and changes of VLDL-TG with insulin treatment, indicating an accelerated catabolism of VLDL-TG with possible increase of triglyceride lipases. There was a significant negative correlation between VLDL-TG and HDL-Ch before insulin treatment, but not after treatment. There was no negative correlation between changes of VLDL-TG and changes of HDL-Ch with insulin therapy. These results indicate that an increment of HDL with insulin treatment can not be explained solely by increased HDL formation from TG-rich lipoprotein and that insulin might increase synthesis and secretion of HDL in liver and/or intestine.

  13. Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition.

    PubMed

    Coetzee, G A; Strachan, A F; van der Westhuyzen, D R; Hoppe, H C; Jeenah, M S; de Beer, F C

    1986-07-25

    Serum amyloid A protein (apo-SAA), an acute phase reactant, is an apolipoprotein of high density lipoproteins (HDL), in particular the denser subpopulation HDL3. The structure of HDL3 isolated from humans affected by a variety of severe disease states was investigated with respect to density, size, and apolipoprotein composition, using density gradient ultracentrifugation, gradient gel electrophoresis, gel filtration, and solid phase immunoadsorption. Apo-SAA was present in HDL particles in increasing amounts as particle density increased. Apo-SAA-containing HDL3 had bigger radii than normal HDL3 of comparable density. Purified apo-SAA associated readily with normal HDL3 in vitro, giving rise to particles containing up to 80% of their apoproteins as apo-SAA. The addition of apo-SAA resulted in a displacement of apo-A-I and an increase in particle size. Acute phase HDL3 represented a mixture of particles, polydisperse with respect to apolipoprotein content; for example, some particles were isolated that contained apo-A-I, apo-A-II, and apo-SAA, whereas others contained apo-A-I and apo-SAA but no apo-A-II. We conclude that apo-SAA probably associates in the circulation of acute phase patients with existing HDL particles, causing the remodeling of the HDL shell to yield particles of bigger size and higher density that are relatively depleted of apo-A-I.

  14. Liver-specific inactivation of the abetalipoproteinemia gene completely abrogates very low density lipoprotein/low density lipoprotein production in a viable conditional knockout mouse.

    PubMed

    Chang, B H; Liao, W; Li, L; Nakamuta, M; Mack, D; Chan, L

    1999-03-05

    Conventional knockout of the microsomal triglyceride transfer protein large subunit (lMTP) gene is embryonic lethal in the homozygous state in mice. We have produced a conditional lMTP knockout mouse by inserting loxP sequences flanking exons 5 and 6 by gene targeting. Homozygous floxed mice were born live with normal plasma lipids. Intravenous injection of an adenovirus harboring Cre recombinase (AdCre1) produced deletion of exons 5 and 6 and disappearance of lMTP mRNA and immunoreactive protein in a liver-specific manner. There was also disappearance of plasma apolipoprotein (apo) B-100 and marked reduction in apoB-48 levels. Wild-type mice showed no response, and heterozygous mice, an intermediate response, to AdCre1. Wild-type mice doubled their plasma cholesterol level following a high cholesterol diet. This hypercholesterolemia was abolished in AdCre1-treated lMTP-/- mice, the result of a complete absence of very low/intermediate/low density lipoproteins and a slight reduction in high density lipoprotein. Heterozygous mice showed an intermediate lipoprotein phenotype. The rate of accumulation of plasma triglyceride following Triton WR1339 treatment in lMTP-/- mice was <10% that in wild-type animals, indicating a failure of triglyceride-rich lipoprotein production. Pulse-chase experiments using hepatocytes isolated from wild-type and lMTP-/- mice revealed a failure of apoB secretion in lMTP-/- animals. Therefore, the liver-specific inactivation of the lMTP gene completely abrogates apoB-100 and very low/intermediate/low density lipoprotein production. These conditional knockout mice are a useful in vivo model for studying the role of MTP in apoB biosynthesis and the biogenesis of apoB-containing lipoproteins.

  15. Cost Effectiveness of Achieving Targets of Low-Density Lipoprotein Particle Number Versus Low-Density Lipoprotein Cholesterol Level.

    PubMed

    Grabner, Michael; Winegar, Deborah A; Punekar, Rajeshwari S; Quimbo, Ralph A; Cziraky, Mark J; Cromwell, William C

    2017-02-01

    A recent analysis of a commercially insured US population found fewer cardiovascular disease (CVD) events in high-risk patients attaining low levels of low-density lipoprotein (LDL), as measured by LDL particle number (LDL-P) versus low LDL cholesterol (LDL-C). Here, we investigated the cost effectiveness of LDL-lowering therapy guided by LDL-P. Patients were selected from the HealthCore Integrated Research Database and followed for 12 to 36 months. Patients who achieved LDL-P <1,000 nmol/l were placed into the LDL-P cohort, whereas those without LDL-P tests, but who achieved LDL-C <100 mg/dl, were placed into the LDL-C cohort. CVD-related costs included all health plan paid amounts related to CVD events or lipid management. Cost effectiveness was assessed through incremental cost-effectiveness ratios, defined as difference in total costs across the cohorts divided by difference in CVD events, measured over follow-up. Each cohort included 2,094, 1,242, and 705 patients over 12-, 24-, and 36-month follow-up. Patients in the LDL-P cohort received more aggressive lipid-lowering therapy and had fewer CVD events during follow-up compared to patients in the LDL-C cohort. This led to greater pharmacy costs and lower medical costs over time. Incremental cost-effectiveness ratio estimates ranged from $23,131 per CVD event avoided at 12 months to $3,439 and -$4,555 at 24- and 36-month follow-up, suggesting a high likelihood that achieving LDL-P <1,000 nmol/l is cost effective. In conclusion, LDL-lowering therapy guided by LDL-P was demonstrated to be cost effective, with greater clinical and economic benefit seen over longer time horizons and with the increased use of generic statins. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Softness of atherogenic lipoproteins: a comparison of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) using elastic incoherent neutron scattering (EINS).

    PubMed

    Mikl, Christian; Peters, Judith; Trapp, Marcus; Kornmueller, Karin; Schneider, Wolfgang J; Prassl, Ruth

    2011-08-31

    Apolipoprotein B100 (apoB100)-containing plasma lipoproteins (LDL and VLDL) supply tissues and cells with cholesterol and fat. During lipolytic conversion from VLDL to LDL the size and chemical composition of the particles change, but the apoB100 molecule remains bound to the lipids and regulates the receptor mediated uptake. The molecular physical parameters which control lipoprotein remodeling and enable particle stabilization by apoB100 are largely unknown. Here, we have compared the molecular dynamics and elasticities of VLDL and LDL derived by elastic neutron scattering temperature scans. We have determined thermal motions, dynamical transitions, and molecular fluctuations, which reflect the temperature-dependent motional coupling between lipid and protein. Our results revealed that lipoprotein particles are extremely soft and flexible. We found substantial differences in the molecular resiliences of lipoproteins, especially at higher temperatures. These discrepancies not only can be explained in terms of lipid composition and mobility but also suggest that apoB100 displays different dynamics dependent on the lipoprotein it is bound to. Hence, we suppose that the inherent conformational flexibility of apoB100 permits particle stabilization upon lipid exchange, whereas the dynamic coupling between protein and lipids might be a key determinant for lipoprotein conversion and atherogenicity.

  17. Glycosaminoglycan-lipoprotein interaction.

    PubMed

    Olsson, U; Ostergren-Lundén, G; Moses, J

    2001-10-01

    Glycosaminoglycans (GAGs) bound to various proteoglycans (PGs) present in the cardiovascular system have been proposed to perform a wide range of functions. These include conferring viscoelastic properties; interacting with and modulating growth factors and enzymes; and as receptors and co-receptors in lipoprotein metabolism. Binding of apoB-100 lipoproteins, particularly low density lipoproteins (LDL), to GAGs of extracellular matrix PGs in arteries has been proposed to be an initiating event in development of atherosclerosis. This study was initiated with the aim of getting an overview of the binding patterns of different lipoprotein subclasses with individual GAG categories. We thus evaluated the interaction of lipoproteins with GAGs commonly found in the cardiovascular system using a gel mobility-shift assay developed for this purpose. The same procedure was used to measure lipoproteins binding to metabolically [(35)S]-labeled whole PGs prepared from three cell types, arterial smooth muscle cells, THP-1 macrophages and from HepG2 cells. The effect of GAG composition on PGs on lipoprotein binding was evaluated by enzymatic degradation of the carbohydrate chains. Heparan sulfate was found to bind beta very low density lipoproteins (beta-VLDL) and a chylomicron remnant model (beta-VLDL+apoE), but not LDL. Dermatan sulfate was found to bind LDL, but not beta-VLDL or the chylomicron remnant model. Chondroitin sulfate and heparin were found to bind all lipoproteins tested (LDL, beta-VLDL and beta-VLDL+apoE) although with different affinities. We can conclude that each lipoprotein subclass tested binds a specific assortment of the GAGs tested. The observations made contribute to the understanding of new and complex mechanisms by which carbohydrate and lipid metabolism may be linked.

  18. Antibodies against oxidized low density lipoproteins in pregnant women.

    PubMed

    Fialová, L; Mikulíková, L; Malbohan, I; Benesová, O; Stípek, S; Zima, T; Zwinger, A

    2002-01-01

    Oxidized low density lipoproteins (oxLDL) formed in vivo induce a humoral immune response. Oxidative modification of LDL renders it immunogenic and a heterogeneous population of specific anti-oxLDL antibodies is produced. These antibodies could represent a biological marker of oxidative stress and serve as markers of atherosclerosis. Autoantibodies against oxLDL (oLAb) have been detected in human subjects practically of every age. oLAb also appear in the blood of pregnant women. Some studies have shown that the levels of antibodies to oxLDL were elevated in women with established preeclampsia. The present study was aimed to estimate the oLAb IgG levels in the first and second trimester of pregnancy. Furthermore, we estimated the correlation between maternal serum (MS) levels of oLAb and alpha-1-fetoprotein (MS AFP), human chorionic gonadotrophin (MS HCG) and trophoblast-specific-beta-1-glycoprotein (MS SP1), because these proteins are determined as a part of prenatal biochemical screening for fetal congenital abnormalities. Our study deals with the oLAb changes in women with pregnancy-induced hypertension. We also investigated the correlation between oLAb IgG and anticardiolipin antibodies IgG (ACA) in the serum of pregnant women. We examined 40 pregnant women attending Institute for Mother and Child Care for their antenatal care as outpatients. Routine blood samplings between the 9-13th week of pregnancy and 16-18th week of pregnancy were performed as a part of biochemical prenatal screening for fetal congenital abnormalities (Group 1). Their mean age was 27 +/- 4.1 years. Furthermore, we examined 26 women in the second or third trimester with pregnancy-induced hypertension (Group 2). Group 2 was compared with 49 pregnant women in the second or third trimester who were normotensive (Group 3). We used commercial standardized ELISA kits for determination of oLAb IgG, ACA IgG, MS AFP and MS HCG, MS SP1 was analyzed by single radial immunodiffusion. We did not find

  19. Thermal transitions in the low-density lipoprotein and lipids of the egg yolk of hens.

    PubMed

    Smith, M B; Back, J F

    1975-05-22

    1. Differential sanning calorimetry and light-scattering have been used to investigate temperature-dependent transitions in low-density lipoprotein and in lipids from hens' egg yolk. Yolks of different fatty acid composition were obtained by varying the dietary lipid and by adding methyl sterculate to the hen's diet. 2. Lipoprotein solutions in 50 percent glycerol/water gave characteristic melting curves between -25 degrees C and 50 degrees C, and on cooling showed increases in light-scattering between 10 degrees C and -20 degrees C. The temperatures at which major changes occurred depended on the proportions of saturated and unsaturated fatty acids. 3. The thermal transitions in the intact lipoprotein in glycerol solution were reversible, but with marked hysteresis. Lipid extracted from the lipoprotein did not show temperature hystersis but the transition heats and melting curves similar to those of the intact lipoprotein. The results support the hypothesis of a "lipid-core" structure for low-density lipoproteins. 4. Scanning calorimetry of egg-yolk lecithins indicated a strong dependence of transition temperature on water content in the rane 3 percent-20 percent water. A rise in the mid-temperature of the liquid-crystalline to gel transition as the water content is lowered on freezing may be the primary event in the irreversible gelation of egg yolk and aggregation of lipoprotein.

  20. Correction of Apolipoprotein A-I-mediated Lipid Efflux and High Density Lipoprotein Particle Formation in Human Niemann-Pick Type C Disease Fibroblasts

    USDA-ARS?s Scientific Manuscript database

    Impaired cell cholesterol trafficking in Niemann-Pick type C (NPC) disease results in the first known instance of impaired regulation of the ATP-binding cassette transporter A1 (ABCA1), a lipid transporter mediating the rate-limiting step in high density lipoprotein (HDL) formation, as a cause of lo...

  1. Novel fluorescent probe for low density lipoprotein, based on the enhancement of Europium emission band

    NASA Astrophysics Data System (ADS)

    Courrol, L. C.; Monteiro, A. M.; Silva, F. R. O.; Gomes, L.; Vieira, N. D., Jr.; Gidlund, M. A.; Figueiredo Neto, A. M.

    2007-05-01

    We report here the observation of the enhancement of Europium-tetracycline complex emission in Low Density Lipoprotein (LDL) solutions. Europium emission band of tetracycline solution containing Europium (III) chloride hexahydrate was tested to obtain effective enhancement in the presence of native LDL and oxidized LDL. Europium emission lifetime in the presence of lipoproteins was measured, resulting in a simple method to measure the lipoproteins quantity in an aqueous solution at physiological pH. This method shows that the complex can be used as a sensor to determine the different states of native and oxidized LDL in biological fluids.

  2. Obstructive jaundice leads to accumulation of oxidized low density lipoprotein in human liver tissue.

    PubMed

    Comert, Mustafa; Ustundag, Yucel; Tekin, Ishak Ozel; Gun, Banu Dogan; Barut, Figen

    2006-08-21

    Oxidized low density lipoprotein (ox-LDL) molecule is one of the most important modified lipoproteins produced during the oxidative stress. Modified lipoproteins have been defined as being part of the immune inflammatory mechanisms in association with oxidant stress. We have reported the accumulation of ox-LDL in Balb/c mice liver after bile duct ligation previously. Here, we investigated this finding in human beings with obstructive jaundice. Our study demonstrates that obstructive jaundice results in tremendous accumulation of ox-LDL in the liver tissue of patients.

  3. Optical Properties of Europium Tetracycline Complexes in the Presence of High-Density Lipoproteins (HDL) Subfractions.

    PubMed

    Sicchieri, Letícia Bonfante; Monteiro, Andrea Moreira; Figueiredo Neto, Antônio Martins; Gomes, Laércio; Courrol, Lilia Coronato

    2016-12-12

    Standard lipoprotein measurements of triglycerides, total cholesterol, low-density lipoproteins (LDL), and high-density lipoproteins (HDL) fail to identify many lipoprotein abnormalities that contribute to cardiovascular heart diseases (CHD). Studies suggested that the presence of CHD is more strongly associated with the HDL subspecies than with total HDL cholesterol levels. The HDL particles can be collected in at least three subfractions, the HDL2b, HDL2a, and HDL3. More specifically, atherosclerosis is associated with low levels of HDL2. In this work, the optical spectroscopic properties of europium tetracycline (EuTc) complex in the presence of different HDL subspecies was studied. The results show that the europium spectroscopic properties in the EuTc complex are influenced by sizes and concentrations of subclasses. Eu(3+) emission intensity and lifetime can discriminate the subfractions HDL3 and HDL2b.

  4. Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination.

    PubMed Central

    Chen, Q; Esterbauer, H; Jürgens, G

    1992-01-01

    Oxidation of human low-density lipoprotein (LDL) was found to be accompanied by the generation of various reactive aldehydes. One of them, 4-hydroxynonenal (HNE), was shown to modify LDL to a form which represents a good model of oxidized LDL (ox-LDL). In order to investigate the epitopes newly formed on HNE-modified LDL, a polyvalent antiserum to HNE-LDL [anti-(HNE-LDL)] was raised in rabbits and the non-specific components were removed with native LDL coupled to CNBr-Sepharose 4B. Competitive fluorescence immunoassay analysis showed that anti-(HNE-LDL) recognized HNE-LDL, copper-oxidized LDL, HNE-albumin and to a lower extent HNE-modified high-density lipoprotein 3 (HNE-HDL3) and ox-HDL3 but not native LDL. A certain degree of cross-reactivity of the antibody with LDLs modified by either hexanal or 2,4-heptadienal was found. No reaction was obtained with LDL labelled with malondialdehyde. From the abilities of HNE-modified poly(L-amino acids) to compete with HNE-LDL for binding to anti-(HNE-LDL), it is postulated that lysine, tyrosine, arginine and histidine are involved in the formation of HNE-derived epitopes on apolipoprotein B (apo B). Using a double-sandwich fluorescence immunoassay [capture antibody: anti-(apo B); detection antibody: anti-(HNE-LDL)] we found that the HNE-derived epitopes were expressed at a far higher degree in ox-LDL and HNE-LDL than in native LDL. PMID:1280111

  5. Rhesus positivity and low high-density lipoprotein cholesterol: a new link?

    PubMed

    Kanbay, Mehmet; Yildirir, Aylin; Ulus, Taner; Bilgi, Muhammet; Kucuk, Alparslan; Muderrisoglu, Haldun

    2006-04-01

    The aim of the study was to investigate the relationship of ABO and Rh blood groups with lipid profile in patients with established multivessel coronary artery disease in a population with low levels of high-density lipoprotein cholesterol. The records of 978 patients with multivessel coronary artery disease, in whom coronary bypass surgery was performed, were investigated. Coronary risk factors including diabetes, hypertension, smoking, and obesity were noted for each patient. Serum lipid profiles: total cholesterol, low-density and high-density lipoprotein cholesterol, and triglyceride levels, were also recorded. The mean age of the patients was 59.3 +/- 9.7 years (range, 25-84 years) and 80% were male. The risk factors and lipid profiles of ABO blood types were similar. Rh-negative patients had higher levels of high-density lipoprotein cholesterol (46.9 +/- 9.9 vs. 41.6 +/- 10.4 mg.dL(-1), p = 0.001) and a lower total/high-density lipoprotein cholesterol ratio (4.8 +/- 1.3 vs. 5.2 +/- 1.6, p = 0.029) compared to Rh-positive patients. The other lipid levels and risk factors had no association with Rh typing. These results indicate a significant association between rhesus positivity and low levels of high-density lipoprotein cholesterol in patients with multivessel coronary artery disease.

  6. Glucose-regulated protein 78 inhibits scavenger receptor A-mediated internalization of acetylated low density lipoprotein.

    PubMed

    Ben, Jingjing; Gao, Song; Zhu, Xudong; Zheng, Yuan; Zhuang, Yan; Bai, Hui; Xu, Yong; Ji, Yong; Sha, Jiahao; He, Zhigang; Chen, Qi

    2009-11-01

    Class A scavenger receptor (SR-A) plays an important role in foam cell formation. However, the mechanism underlying the internalization of the receptor-ligand complexes remains unclear. The aim of the present study was to investigate the molecular mechanism to regulate SR-A-mediated intracellular lipid accumulation in macrophages. A pull-down assay was performed and glucose-regulated protein 78 (GRP78) was identified to bind with the cytoplasmic domain of SR-A (CSR-A). Immunoprecipitation and artificially expressed protein binding assay demonstrated the direct specific binding of GRP78 with SR-A in cells. Indirect immunofluorescence assay and western blot analysis showed their co-localization in membrane and cytoplasm. Over-expression of GRP78 specifically inhibited SR-A-mediated uptake of fluorescent acetylated low-density lipoprotein, a specific ligand for SR-A, without altering cellular SR-A expression and binding ability, and significantly inhibited cholesterol ester accumulation in cells, which can be partly attributed to the suppression of c-Jun-NH2-terminal kinase signaling pathway. These results suggest that GRP78 may act as an inhibitor of SR-A-mediated internalization of modified low-density lipoprotein into macrophages.

  7. High-density lipoprotein cholesterol, obesity, and mammographic density in Korean women: the Healthy Twin study.

    PubMed

    Sung, Joohon; Song, Yun-Mi; Stone, Jennifer; Lee, Kayoung; Kim, Sun-Young

    2011-01-01

    High-density lipoprotein cholesterol (HDL-C) is reported to be associated with breast cancer risk. To better understand this association, we examined the relationship between HDL-C and mammographic density, a putative intermediate risk factor for breast cancer. The study subjects were 711 Korean women from the Healthy Twin study. Lipid parameters were assayed enzymatically in fresh sera, and percent dense area (PDA) and absolute dense area were measured from digital mammograms using a computer-assisted method. PDA was positively associated with HDL-C in both premenopausal and postmenopausal women in a multivariable-adjusted linear mixed model, but the association did not persist when the model was additionally adjusted for body mass index (BMI). BMI was inversely associated with PDA, and this association did not change after additional adjustment for any lipid parameter. Multivariable-adjusted analysis showed that there were significant additive genetic cross-trait correlations between PDA and both HDL-C (coefficient, 0.175) and triglyceride (coefficient, -0.262). However, those correlations disappeared after additional adjustment for BMI. HDL-C alone is unlikely to increase the risk of breast cancer in Korean women, particularly through changes in breast parenchyma that are apparent in mammographic density. BMI should be included in studies using analytical models where mammographic density is used as an intermediate risk factor for breast cancer.

  8. Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma.

    PubMed Central

    Fan, J; Ji, Z S; Huang, Y; de Silva, H; Sanan, D; Mahley, R W; Innerarity, T L; Taylor, J M

    1998-01-01

    Transgenic rabbits expressing human apo E3 were generated to investigate mechanisms by which apo E modulates plasma lipoprotein metabolism. Compared with nontransgenic littermates expressing approximately 3 mg/dl of endogenous rabbit apo E, male transgenic rabbits expressing approximately 13 mg/dl of human apo E had a 35% decrease in total plasma triglycerides that was due to a reduction in VLDL levels and an absence of large VLDL. With its greater content of apo E, transgenic VLDL had an increased binding affinity for the LDL receptor in vitro, and injected chylomicrons were cleared more rapidly by the liver in transgenic rabbits. In contrast to triglyceride changes, transgenic rabbits had a 70% increase in plasma cholesterol levels due to an accumulation of LDL and apo E-rich HDL. Transgenic and control LDL had the same binding affinity for the LDL receptor. Both transgenic and control rabbits had similar LDL receptor levels, but intravenously injected human LDL were cleared more slowly in transgenic rabbits than in controls. Changes in lipoprotein lipolysis did not contribute to the accumulation of LDL or the reduction in VLDL levels. These observations suggest that the increased content of apo E3 on triglyceride-rich remnant lipoproteins in transgenic rabbits confers a greater affinity for cell surface receptors, thereby increasing remnant clearance from plasma. The apo E-rich large remnants appear to compete more effectively than LDL for receptor-mediated binding and clearance, resulting in delayed clearance and the accumulation of LDL in plasma. PMID:9593771

  9. High Affinity Binding of the Receptor-associated Protein D1D2 Domains with the Low Density Lipoprotein Receptor-related Protein (LRP1) Involves Bivalent Complex Formation

    PubMed Central

    Prasad, Joni M.; Young, Patricia A.; Strickland, Dudley K.

    2016-01-01

    The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that binds and mediates the endocytosis of numerous structurally diverse ligands. Currently, the basis for ligand recognition by LRP1 is not well understood. LRP1 requires a molecular chaperone, termed the receptor-associated protein (RAP), to escort the newly synthesized receptor from the endoplasmic reticulum to the Golgi. RAP is a three-domain protein that contains the following two high affinity binding sites for LRP1: one is located within domains 1 and 2, and one is located in its third domain. Studies on the interaction of the RAP third domain with LRP1 reveal critical contributions by lysine 256 and lysine 270 for this interaction. From these studies, a model for ligand recognition by this class of receptors has been proposed. Here, we employed surface plasmon resonance to investigate the binding of RAP D1D2 to LRP1. Our results reveal that the high affinity of D1D2 for LRP1 results from avidity effects mediated by the simultaneous interactions of lysine 60 in D1 and lysine 191 in D2 with sites on LRP1 to form a bivalent D1D2-LRP1 complex. When lysine 60 and 191 are both mutated to alanine, the binding of D1D2 to LRP1 is ablated. Our data also reveal that D1D2 is able to bind to a second distinct site on LRP1 to form a monovalent complex. The studies confirm the canonical model for ligand recognition by this class of receptors, which is initiated by pairs of lysine residues that dock into acidic pockets on the receptor. PMID:27402839

  10. Binding of α2ML1 to the Low Density Lipoprotein Receptor-Related Protein 1 (LRP1) Reveals a New Role for LRP1 in the Human Epidermis

    PubMed Central

    Galliano, Marie-Florence; Toulza, Eve; Jonca, Nathalie; Gonias, Steven L.; Serre, Guy; Guerrin, Marina

    2008-01-01

    Background The multifunctional receptor LRP1 has been shown to bind and internalize a large number of protein ligands with biological importance such as the pan-protease inhibitor α2-macroglobulin (α2M). We recently identified Α2ML1, a new member of the α2M gene family, expressed in epidermis. α2ML1 might contribute to the regulation of desquamation through its inhibitory activity towards proteases of the chymotrypsin family, notably KLK7. The expression of LRP1 in epidermis as well as its ability to internalize α2ML1 was investigated. Methods and Principal Findings In human epidermis, LRP1 is mainly expressed within the granular layer of the epidermis, which gathers the most differentiated keratinocytes, as shown by immunohistochemistry and immunofluorescence using two different antibodies. By using various experimental approaches, we show that the receptor binding domain of α2ML1 (RBDl) is specifically internalized into the macrophage-like cell line RAW and colocalizes with LRP1 upon internalization. Coimmunoprecipitation assays demonstrate that RBDl binds LRP1 at the cell surface. Addition of RAP, a universal inhibitor of ligand binding to LRP1, prevents RBDl binding at the cell surface as well as internalization into RAW cells. Silencing Lrp1 expression with specific siRNA strongly reduces RBDl internalization. Conclusions and Significance Keratinocytes of the upper differentiated layers of epidermis express LRP1 as well as α2ML1. Our study also reveals that α2ML1 is a new ligand for LRP1. Our findings are consistent with endocytosis by LRP1 of complexes formed between α2ML1 and proteases. LRP1 may thus control desquamation by regulating the biodisponibility of extracellular proteases. PMID:18648652

  11. Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.

    PubMed

    Dashty, M; Motazacker, M M; Levels, J; de Vries, M; Mahmoudi, M; Peppelenbosch, M P; Rezaee, F

    2014-03-03

    Apart from transporting lipids through the body, the human plasma lipoproteins very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) are also thought to serve as a modality for intra-organismal protein transfer, shipping proteins with important roles in inflammation and thrombosis from the site of synthesis to effector locations. To better understand the role of VLDL and LDL in the transport of proteins, we applied a combination of LTQ ORBITRAP-XL (nLC-MS/MS) with both in-SDS-PAGE gel and in-solution tryptic digestion of pure and defined VLDL and LDL fractions. We identified the presence of 95 VLDL- and 51 LDL-associated proteins including all known apolipoproteins and lipid transport proteins, and intriguingly a set of coagulation proteins, complement system and anti- microbial proteins. Prothrombin, protein S, fibrinogen γ, PLTP, CETP, CD14 and LBP were present on VLDL but not on LDL. Prenylcysteine oxidase 1, dermcidin, cathelicidin antimicrobial peptide, TFPI-1 and fibrinogen α chain were associated with both VLDL and LDL. Apo A-V is only present on VLDL and not on LDL. Collectively, this study provides a wealth of knowledge on the protein constituents of the human plasma lipoprotein system and strongly supports the notion that protein shuttling through this system is involved in the regulation of biological processes. Human diseases related to proteins carried by VLDL and LDL can be divided in three major categories: 1 - dyslipidaemia, 2 - atherosclerosis and vascular disease, and 3 - coagulation disorders.

  12. Effect of improving glycemic control in patients with type 2 diabetes mellitus on low-density lipoprotein size, electronegative low-density lipoprotein and lipoprotein-associated phospholipase A2 distribution.

    PubMed

    Sánchez-Quesada, José L; Vinagre, Irene; de Juan-Franco, Elena; Sánchez-Hernández, Juan; Blanco-Vaca, Francisco; Ordóñez-Llanos, Jordi; Pérez, Antonio

    2012-07-01

    The aim of this study was to determine the effect of intensified hypoglycemic therapy in patients with type 2 diabetes mellitus on the distribution of lipoprotein-associated phospholipase A2 (Lp-PLA2) activity between high-density lipoprotein and low-density lipoprotein (LDL) and its relation with the lipid profile and other qualitative properties of LDL. Forty-two patients with type 2 diabetes on the basis of poor glycemic control and normal or near normal LDL cholesterol were recruited. Lifestyle counseling and pharmacologic hypoglycemic therapy were intensified to improve glycemic control, but lipid-lowering therapy was unchanged. At 4 ± 2 months, glycosylated hemoglobin had decreased by a mean of 2.1%, but the only effect on the lipid profile were statistically significant decreases in nonesterified fatty acids and apolipoprotein B concentration. LDL size increased and the proportion of electronegative LDL decreased significantly. In parallel, total Lp-PLA2 activity decreased significantly, promoting a redistribution of Lp-PLA2 activity toward a higher proportion in high-density lipoprotein. Improvements in glycemic control led to more marked changes in Lp-PLA2 activity and distribution in patients with diabetes who had not received previous lipid-lowering therapy. In conclusion, optimizing glycemic control in patients with type 2 diabetes promotes atheroprotective changes, including larger LDL size, decreased electronegative LDL, and a higher proportion of Lp-PLA2 activity in high-density lipoprotein.

  13. Lipolysis Produces Changes in the Immunoreactivity and Cell Reactivity of Very Low Density Lipoproteins

    PubMed Central

    Schonfeld, G.; Patsch, W.; Pfleger, B.; Witztum, J. L.; Weidman, S. W.

    1979-01-01

    Smaller very low density lipoprotein (VLDL) remnants interact more readily with tissues than do larger “intact” VLDL. This may be related to changes in the availability of VLDL apoproteins on the surface of the lipoproteins. To test this hypothesis VLDL were incubated at 37°C with bovine milk lipase (LPL), and the abilities of LPL-treated VLDL preparations to compete with 125I-low density lipoproteins (LDL) for interaction with cultured normal human fibroblasts were measured. At the same time, the immunologic activities of these preparations were also tested by double antibody radioimmunoassay. Triglyceride (TG) contents of VLDL fell by 30-90% during incubation with LPL and, on zonal ultracentrifugation, VLDL of faster Svedberg unit of flotation (Sf1.063) rates (>150) were gradually converted to smaller VLDL with lower Sf rates (21-60). LPL-treated VLDL competed two to five times more effectively with 125I-LDL for binding to cellular receptors than did control VLDL. Control VLDL incubated with heat-inactivated LPL at 37°C, or with active LPL at 4°C had unaltered cell reactivities and TG contents compared with VLDL incubated without any enzyme. The direct uptake and degradation of LPL-treated VLDL was also assessed by using VLDL 125I-labeled in apoprotein (Apo)B. LPL-treated VLDL-125I-ApoB were taken up and degraded by fibroblast at greater rates than were control VLDL-125I-ApoB. Thus, hydrolysis of VLDL lipids was accompanied by an increased ability of VLDL to interact with fibroblasts. The immunoreactivity of ApoB in the same VLDL preparations, expressed as the “apparent ApoB contents” of LPL-treated VLDL, increased by 10-50% (P < 0.02) in those assays that contained anti-LDL antisera, but the ApoB of control VLDL remained constant. However, assays that contained antisera directed against ApoB isolated from VLDL did not distinguish between LPL-treated and control VLDL. Thus, VLDL lipid hydrolysis was accompanied by changes in the immunoreactivity of

  14. Action of lecithin:cholesterol acyltransferase on model lipoproteins. Preparation and characterization of model nascent high density lipoprotein.

    PubMed

    Pownall, H J; Van Winkle, W B; Pao, Q; Rohde, M; Gotto, A M

    1982-12-13

    Apolipoprotein A-I, the major protein of human plasma high density lipoprotein, is the primary activator of plasma lecithin:cholesterol acyltransferase. In vitro, the association of apolipoprotein A-I with physiological phosphatidylcholines can be catalyzed by mixing the protein and lipid with sodium cholate, which is removed by chromatography. The apolipoprotein A-I/phospholipid complex has the physical properties of an HDL, and when cholesterol is present the complex is a highly reactive substrate in the lecithin:cholesterol acyltransferase-catalyzed reaction. The relative reactivity of this complex compared with a number of other lipid-protein complexes is presented and discussed.

  15. Cigarette smoking, exercise and high density lipoprotein cholesterol.

    PubMed

    Stamford, B A; Matter, S; Fell, R D; Sady, S; Papanek, P; Cresanta, M

    1984-07-01

    Cigarette smoking is associated with depressed levels of HDL-C, whereas exercise is associated with elevated levels of HDL-C. The purpose was to determine effects of smoking and exercise on blood lipids and lipoproteins in middle-aged males. It was hypothesized that smoking may attenuate the effects of exercise to elevate HDL-C. A total of 269 males (70 smokers) met all criteria for inclusion in the study population. Age, height, weight, body fatness via hydrostatic weighing, daily caloric consumption and alcohol intake, and smoking habits and history were determined. Interviews concerning physical activity patterns were conducted and cardiovascular responses to treadmill exercise were determined. Subjects were grouped as sedentary (low activity), participants in vigorous recreational activities (moderate activity) and joggers/runners (high activity). Analysis of covariance with adjustments for factors which may affect blood lipids and lipoproteins was employed. Smokers demonstrated lower HDL-C and higher total cholesterol levels than nonsmokers. High activity subjects demonstrated significantly higher HDL-C levels than the low and moderate groups which did not differ. High activity smokers did not differ from low activity nonsmokers with respect to HDL-C. This supports the proposed hypothesis. Nonsmokers were higher in weight and body fatness than smokers even though smokers consumed 288 more calories per day on the average. This suggests that smoking may account for a significant number of calories through altered metabolism or some other means.

  16. Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins.

    PubMed

    Hammad, S M; Barth, J L; Knaak, C; Argraves, W S

    2000-04-21

    Cubilin has recently been shown to function as an endocytic receptor for high density lipoproteins (HDL). The lack of apparent transmembrane and cytoplasmic domains in cubilin raises questions as to the means by which it can mediate endocytosis. Since cubilin has been reported to bind the endocytic receptor megalin, we explored the possibility that megalin acts in conjunction with cubilin to mediate HDL endocytosis. While megalin did not bind to HDL, delipidated HDL, or apoA-I, it was found to copurify with cubilin isolated by HDL-Sepharose affinity chromatography. Cubilin and megalin exhibited coincident patterns of mRNA expression in mouse tissues including the kidney, ileum, thymus, placenta, and yolk sac endoderm. The expression of both receptors in yolk sac endoderm-like cells was inducible by retinoic acid treatment but not by conditions of sterol depletion. Suppression of megalin activity or expression by treatment with either megalin antibodies or megalin antisense oligodeoxynucleotides resulted in inhibition of cubilin-mediated endocytosis of HDL. Furthermore, megalin antisense oligodeoxynucleotide treatment resulted in reduced cell surface expression of cubilin. These data demonstrate that megalin acts together with cubilin to mediate HDL endocytosis and further suggest that megalin may play a role in the intracellular trafficking of cubilin.

  17. Angiotensin II induces the aggregation of native and oxidized low-density lipoprotein.

    PubMed

    Sato, Akira; Ueda, Chiemi; Kimura, Ryu; Kobayashi, Chisato; Yamazaki, Yoji; Ebina, Keiichi

    2017-04-11

    Modifications of low-density lipoprotein (LDL), such as oxidation and aggregation, and angiotensin (Ang) peptides are involved in the pathogenesis of atherosclerosis. Here, we investigated the relationship between one of the Ang peptides, AngII, and two LDL modifications, oxidation and aggregation. Using polyacrylamide gel electrophoresis and aggregation assays, we noted that AngII markedly induced the aggregation of LDL and oxidized LDL (Ox-LDL), and bound to both the aggregated and non-aggregated forms. In contrast, a peptide (AngIII) formed by deletion of N-terminal Asp of AngII induced the aggregation of Ox-LDL but not LDL. From tyrosine fluorescence measurements, we noted that AngII interacted with two major lipid components in LDL and Ox-LDL, phosphatidylcholine (PC) and oxidized PC, while AngIII interacted with oxidized PC, but not with PC and lysophosphatidylcholine. Moreover, results from thiobarbituric acid-reactive substances assay proved that AngII did not induce oxidation of LDL. These results suggest that AngII can be involved in the pathogenesis of atherosclerosis by binding to LDL and Ox-LDL-especially to the major lipid components, PC and oxidized PC-followed by inducing the aggregation of LDL and Ox-LDL and that the N-terminal Asp of AngII is important for the binding and aggregation specificity of LDL and Ox-LDL.

  18. Targeting low-density lipoprotein receptors with protein-only nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Zhikun; Céspedes, María Virtudes; Unzueta, Ugutz; Álamo, Patricia; Pesarrodona, Mireia; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio; Ferrer-Miralles, Neus

    2015-03-01

    Low-density lipoprotein receptors (LDLR) are appealing cell surface targets in drug delivery, as they are expressed in the blood-brain barrier (BBB) endothelium and are able to mediate transcytosis of functionalized drugs for molecular therapies of the central nervous system (CNS). On the other hand, brain-targeted drug delivery is currently limited, among others, by the poor availability of biocompatible vehicles, as most of the nanoparticles under development as drug carriers pose severe toxicity issues. In this context, protein nanoparticles offer functional versatility, easy and cost-effective bioproduction, and full biocompatibility. In this study, we have designed and characterized several chimerical proteins containing different LDLR ligands, regarding their ability to bind and internalize target cells and to self-organize as viral mimetic nanoparticles of about 18 nm in diameter. While the self-assembling of LDLR-binding proteins as nanoparticles positively influences cell penetration in vitro, the nanoparticulate architecture might be not favoring BBB crossing in vivo. These findings are discussed in the context of the use of nanostructured materials as vehicles for the systemic treatment of CNS diseases.

  19. Changes in the distribution and composition of plasma high density lipoproteins after ingestion of fat.

    PubMed

    Tall, A R; Blum, C B; Forester, G P; Nelson, C A

    1982-01-10

    Following ingestion of a fatty meal there is an increase in concentration of phospholipids and proteins in the plasma high density lipoproteins (HDL). To evaluate the resulting changes in HDL subclasses, the plasma HDL of six subjects were analyzed 4 to 8 h after ingestion of 100 ml of corn oil or 80 ml of corn oil with four eggs. Isopycnic density gradient ultracentrifugation of fasting plasma showed two broad components of HDL: a major peak of density (d) 1.11 to 1.17 g/ml (HDL3) and a smaller peak of d 1.07 to 1.11 g/ml (HDL2). Following ingestion of either type of fatty meal, there was an increase in lipoprotein mass in both peaks of HDL and their centers of mass were shifted to lower density (1.140 leads to 1.120 to 1.130 g/ml; 1.095 leads to 1.090 g/ml). Calculation of changes in HDL concentration (lipemic minus fasting) showed that the alterations in density gradient profile were due to a major increase in lipoproteins of d 1.102 to 1.137 g/ml, a smaller increase in a separate lipoprotein peak of 1.080 to 1.102 g/ml, and a small decrease in lipoproteins of d 1.137 to 1.165 g/ml. Redistribution of HDL mass into larger, less dense lipoproteins was also demonstrated by agarose gel chromatography or by minimal spin density gradient ultracentrifugation in a vertical rotor. The increase in mass of 1.080 to 1.102 lipoproteins was largely due to increased concentrations of phospholipid, cholesterol ester, and apoA-I, while the increase in 1.102 to 1.137 lipoproteins was due to increased concentrations of apoA-I, apoA-II, phospholipids, cholesterol, and cholesterol esters. Analytical ultracentrifugation of representative samples within these density intervals showed lipoprotein species with molecular weights and sedimentation coefficients, respectively, of 378,000, 5.8 (d 1.080 to 1.095); 248,000, 3.5 (d 1.110 to 1.120); and 173,000, 1.6 (d 1.135 to 1.150). Polyacrylamide gradient gel electrophoresis showed that the 1.080 to 1.102 lipoproteins contained a single

  20. Evaluation of monoclonal antibodies to human plasma low density lipoproteins. A requirement for lipids to maintain antigenic structure.

    PubMed

    Patton, J G; Alley, M C; Mao, S J

    1982-12-17

    Human plasma low density lipoproteins (LDL) are composed of approximately 25% apoproteins and 75% lipids (w/w). Immunochemical properties of LDL were studied using monoclonal antibodies. BALB/c mice were immunized with LDL and the spleen cells from these mice were then fused with a non-immunoglobulin secreting myeloma cell line (F0). The clones producing desirable antibodies were selected to study the antigenic properties of LDL by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay. First, it was found that the maximal binding of 125I-labeled LDL to polyvinyl chloride microtiter dishes was not temperature dependent. The binding affinity was high with a Ka value of approximately 1.9 X 10(10) M-1 while the monoclonal antibodies possessed an affinity to LDL of 5 X 10(8) M-1 which was 2 orders less than the affinity of LDL to the dishes. The former binding, once established, was irreversible as judged by a subsequent incubation with an excess of unlabeled LDL. The latter binding could be displaced by unlabeled LDL. Therefore, the ELISA technique offered a satisfactory approach to study the interaction between LDL and monoclonal antibodies. Removal of lipids from bound LDL by organic extraction resulted in a 50% loss of immunoreactivity, suggesting that the lipids of LDL are important in maintaining the antigenic structure of LDL. Since the apoprotein of LDL also constitutes approximately 40% of the mass (w/w) of very low density lipoproteins (VLDL), the immunoreactivity of VLDL assessed by LDL-monoclonal antibodies was also carried out. Removal of triglycerides from VLDL by lipoprotein lipase resulted in a substantial loss of immunoreactivity as determined by radioimmunoassay. These findings are consistent with the concept that lipids play a role in maintaining the integrity of the antigenic structure of LDL.

  1. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS

    PubMed Central

    1994-01-01

    Lipoproteins isolated from normal human plasma can bind and neutralize bacterial lipopolysaccharide (LPS) and may represent an important mechanism in host defense against gram-negative septic shock. Recent studies have shown that experimentally elevating the levels of circulating high-density lipoproteins (HDL) provides protection against death in animal models of endotoxic shock. We sought to define the components of HDL that are required for neutralization of LPS. To accomplish this we have studied the functional neutralization of LPS by native and reconstituted HDL using a rapid assay that measures the CD14- dependent activation of leukocyte integrins on human neutrophils. We report here that reconstituted HDL particles (R-HDL), prepared from purified apolipoprotein A-I (apoA-I) combined with phospholipid and free cholesterol, are not sufficient to neutralize the biologic activity of LPS. However, addition of recombinant LPS binding protein (LBP), a protein known to transfer LPS to CD14 and enhance responses of cells to LPS, enabled prompt binding and neutralization of LPS by R- HDL. Thus, LBP appears capable of transferring LPS not only to CD14 but also to lipoprotein particles. In contrast with R-HDL, apoA-I containing lipoproteins (LpA-I) isolated from plasma by selected affinity immunosorption (SAIS) on an anti-apoA-I column, neutralized LPS without addition of exogenous LBP. Several lines of evidence demonstrated that LBP is a constituent of LpA-I in plasma. Passage of plasma over an anti-apoA-I column removed more than 99% of the LBP detectable by ELISA, whereas 31% of the LBP was recovered by elution of the column. Similarly, the ability of plasma to enable activation of neutrophils by LPS (LBP/Septin activity) was depleted and recovered by the same process. Furthermore, an immobilized anti-LBP monoclonal antibody coprecipitated apoA-I. The results described here suggest that in addition to its ability to transfer LPS to CD14, LBP may also transfer LPS to

  2. Arachnid lipoproteins: comparative aspects.

    PubMed

    Cunningham, Mónica; Garcia, Fernando; Pollero, Ricardo J

    2007-01-01

    Findings on hemolymph lipoproteins in the class Arachnida are reviewed in relation to their lipid and protein compositions, hydrated densities, the capacity of apoproteins to bind lipids, and the influence of xenobiotics on their structures and functionality. The occurrence of hemolymphatic lipoproteins in arachnids has been reported in species belonging to the orders Araneida, Scorpionida, Solpugida and Acarina. However, lipoproteins were properly characterized in only three species, Eurypelma californicum, Polybetes pythagoricus and Latrodectus mirabilis. Like insect and crustaceans the arachnids examined contain high density lipoproteins (HDLs) as predominant circulating lipoproteins. Although in most arachnids these particles resemble those of insect HDLs called "lipophorins", in two arachnid species they differ from lipophorins in their apoproteins, total mass and lipid composition. The hemolymph of P. pythagoricus and L. mirabilis contains another HDL of higher density, while P. pythagoricus and E. californicum hemolymph contain a third lipoprotein of very high density (VHDL). Composition of arachnid lipoproteins regarding apoprotein classes as well as lipid classes differ among species. Hemocyanin, in addition to the classical role of this protein as respiratory pigment, is presented here performing the function of apolipoprotein in some arachnid species. Reports on experiments demonstrating the capacity of hemocyanin to bind neutral and polar lipid classes, including ecdysteroids, are commented. Recent works about the changes evoked by a phosphorous pesticide on the structures and functionality of spider lipoproteins are also reviewed.

  3. Oxidation-labile subfraction of human plasma low density lipoprotein isolated by ion-exchange chromatography.

    PubMed

    Shimano, H; Yamada, N; Ishibashi, S; Mokuno, H; Mori, N; Gotoda, T; Harada, K; Akanuma, Y; Murase, T; Yazaki, Y

    1991-05-01

    We isolated subfractions of human plasma low density lipoprotein (LDL) using ion-exchange chromatography. Plasma LDL from normolipidemic subjects were applied to a DEAE Sepharose 6B column. After elution of the bulk of LDL at 150 mM NaCl (the major fraction), the residual LDL was eluted at 500 mM NaCl and designated as the minor fraction. The minor fraction, only less than 1% of total LDL, tended to be somewhat similar in certain properties to oxidized LDL, e.g., an increased negative charge, higher protein/cholesterol ratio, and a higher flotation density than native LDL. These results were consistent with data reported by Avogaro et al. (1988. Arteriosclerosis. 8: 79-87). However, assays of 125I-labeled LDL binding activity for LDL receptors equal to that of the major fraction. Incorporation of [14C]oleate into cholesteryl ester [acyl-CoA:cholesterol acyltransferase (ACAT) activity] in mouse peritoneal macrophages incubated with the minor fraction was only slightly greater than that with the major fraction. Incubation of the minor fraction with 0.5 microM Cu2+ caused a remarkable stimulation of ACAT activity, while stimulation by the major fraction required incubation with 5 microM Cu2+, suggesting that the minor fraction was relatively labile to oxidation. The minor but definite presence of a plasma LDL subfraction more negative and susceptible to oxidation implicates the possibility of its association with atherogenesis.

  4. Triglycerides and high-density lipoprotein cholesterol are associated with insulinemia in adolescents.

    PubMed

    Ramírez-López, Guadalupe; González-Villalpando, Clicerio; Salmerón, Jorge; González-Ortiz, Manuel; Valles-Sánchez, Victoria

    2006-01-01

    The aim of this study was to evaluate the association between lipids and insulin concentration in adolescents. A cross-sectional study of 350 adolescents aged 14-19 years old from a public high school in Guadalajara, in the state of Jalisco, Mexico, was conducted. Fasting insulin concentration was determined using microparticle enzyme immunoassay; total cholesterol and triglycerides were detected by standard enzymatic procedures;and low- and high-density lipoproteins were found using standard precipitation methods. Statistical analysis included linear multivariate regression. Serum triglycerides were associated positively with insulin fasting (beta = 0.003, p = 0.0001) and high-density lipoprotein cholesterol was negatively associated with insulin fasting in male adolescents 18-19 years old (beta = -0.03, p = 0.012). The relationships between triglycerides and insulin and between high-density lipoprotein cholesterol and insulin are already present in adolescence.

  5. Pharmacogenomics of high-density lipoprotein-cholesterol-raising therapies

    PubMed Central

    Aslibekyan, Stella; Straka, Robert J.; Irvin, Marguerite R.; Claas, Steven A.; Arnett, Donna K.

    2017-01-01

    High levels of HDL cholesterol (HDL-C) have traditionally been linked to lower incidence of cardiovascular disease, prompting the search for effective and safe HDL-C raising pharmaceutical agents. Although drugs such as niacin and fibrates represent established therapeutic approaches, HDL-C response to such therapies is variable and heritable, suggesting a role for pharmacogenomic determinants. Multiple genetic polymorphisms, located primarily in genes encoding lipoproteins, cholesteryl ester transfer protein, transporters and CYP450 genes have been shown to associate with HDL-C drug response in vitro and in epidemiologic studies. However, few of the pharmacogenomic findings have been independently validated, precluding the development of clinical tools that can be used to predict HDL-C response and leaving the goal of personalized medicine to future efforts. PMID:23469915

  6. Modification and clearance of low density lipoproteins during the formation of endotoxin-lipoprotein complexes.

    PubMed

    Schvartz, Ya Sh; Polyakov, L M; Dushkin, M I; Pivovarova, E N

    2008-04-01

    Changes in electrical charge and clearance rate of LDL after the formation of their complexes with bacterial LPS were studied in experiments on Wistar rats. It was found that binding of S. minnesota R595 LPS with (125)I-LDL sharply accelerated clearance of the greater part of LDL complexes, but on the other hand induced the appearance of an LDL-LPS subfraction with slower elimination rate compared to free LDL. Electrophoresis showed that after binding of LPS, LDL acquired a negative charge. These data suggest that the formation of LDL-LPS complexes is accompanied by modification of LDL due to which they acquire atherogenic properties.

  7. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    SciTech Connect

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  8. Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells.

    PubMed

    McNutt, Markey C; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R; Horton, Jay D; Lagace, Thomas A

    2009-04-17

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  9. Analysis by enzyme-linked immunosorbent assay and 2-dimensional electrophoresis of haptoglobin in the high-density lipoprotein fraction in cows.

    PubMed

    Kanno, H; Katoh, N

    2001-01-01

    Haptoglobin (Hp) is a hemoglobin (Hb)-binding acute-phase protein. Besides its relevance in inflammation, Hp is involved in the regulation of lipid metabolism. In cattle, in addition to the lipoprotein-deficient fraction, Hp is distributed in high-density lipoprotein (HDL) and very high-density lipoprotein (VHDL) fractions. The purpose of this study was to determine Hp concentrations in the lipoprotein fractions using an enzyme-linked immunosorbent assay (ELISA) based on the affinity with Hb, and also to detect structural differences of HDL Hp from that in the lipoprotein-deficient fraction using 2-dimensional electrophoresis. When purified Hp was used as the antigen for the ELISA, the detection limit was 7.4 ng/ml and linearity was obtained from 14.8 to 475 ng/ml. The correlation coefficient between the ELISA and single radial immunodiffusion was 0.884. The ELISA was shown to be applicable to evaluate Hp concentrations in the lipoprotein fractions. Hp concentrations in the lipoprotein fractions were in the range of 0.94 to 8.77 microg of Hp/ml (n = 4), and concentration ratios were 0.2 to 0.3% of whole serum Hp. Of the lipoprotein fractions, Hp was most abundant in HDL, moderate in VHDL and faint in chylomicrons, the very low-density lipoprotein fraction and low-density lipoprotein fraction. By 2-dimensional electrophoresis, alpha- and beta-chains of serum Hp were each separated into 5 spots, and their isoelectric point (pI) values were from 5.05 to 6.28 in the alpha-chain and from 5.92 to 6.95 in the beta-chain. The pI values of HDL Hp were indistinguishable from those of serum Hp. These results indicate that the ELISA based on the affinity with Hb is useful for evaluating Hp concentrations in lipoprotein fractions, and also suggest that HDL Hp is structurally similar to that in the lipoprotein-deficient fraction.

  10. APOL1 nephropathy risk variants are associated with altered high-density lipoprotein profiles in African Americans

    PubMed Central

    Gutiérrez, Orlando M.; Judd, Suzanne E.; Irvin, Marguerite R.; Zhi, Degui; Limdi, Nita; Palmer, Nicholette D.; Rich, Stephen S.; Sale, Michèle M.; Freedman, Barry I.

    2016-01-01

    Background Two independent coding variants in the apolipoprotein L1 gene (APOL1), G1 and G2, strongly associate with nephropathy in African Americans; associations with cardiovascular disease are more controversial. Although APOL1 binds plasma high-density lipoproteins (HDLs), data on APOL1 risk variant associations with HDL subfractions are sparse. Methods Two APOL1 G1 single nucleotide polymorphisms and the G2 insertion/deletion polymorphism were genotyped in 2010 Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study participants with nuclear magnetic resonance spectroscopy-based lipoprotein subfraction measurements. Linear regression was used to model associations between numbers of APOL1 G1/G2 risk variants and HDL subfractions, adjusting for demographic, clinical and ancestral covariates. Results Female sex and higher percentage of African ancestry were positively associated with the number of APOL1 G1/G2 risk alleles. In the unadjusted analysis, mean (standard error) small HDL concentrations (μmol/L) for participants with zero, one and two G1/G2 risk alleles were 19.0 (0.2), 19.7 (0.2) and 19.9 (0.4), respectively (P = 0.02). Adjustment for age, sex, diabetes and African ancestry did not change the results but strengthened the statistical significance (P = 0.004). No significant differences in large or medium HDL, very low-density lipoprotein or low-density lipoprotein particle concentrations were observed by APOL1 genotype. Conclusions Greater numbers of APOL1 G1/G2 risk alleles were associated with higher small HDL particle concentrations in African Americans. These results may suggest novel areas of investigation to uncover reasons for the association between APOL1 risk variants with adverse outcomes in African Americans. PMID:26152403

  11. Social Inclusion Predicts Lower Blood Glucose and Low-Density Lipoproteins in Healthy Adults.

    PubMed

    Floyd, Kory; Veksler, Alice E; McEwan, Bree; Hesse, Colin; Boren, Justin P; Dinsmore, Dana R; Pavlich, Corey A

    2016-07-27

    Loneliness has been shown to have direct effects on one's personal well-being. Specifically, a greater feeling of loneliness is associated with negative mental health outcomes, negative health behaviors, and an increased likelihood of premature mortality. Using the neuroendocrine hypothesis, we expected social inclusion to predict decreases in both blood glucose levels and low-density lipoproteins (LDLs) and increases in high-density lipoproteins (HDLs). Fifty-two healthy adults provided self-report data for social inclusion and blood samples for hematological tests. Results indicated that higher social inclusion predicted lower levels of blood glucose and LDL, but had no effect on HDL. Implications for theory and practice are discussed.

  12. [Effect of high-density lipoproteins on cholesterol biosynthesis in rat liver].

    PubMed

    Rudnev, V I; Titov, V N

    1984-01-01

    Under the conditions of long-term intravenous perfusion to recipient rats of a solution of rat high density lipoproteins at a concentration exceeding the physiological one and in the absence of stressor components, the animals' liver tissue manifested a significant decrease in free cholesterol. Since the rate of the label incorporation in liver cholesterol increased concurrently, it is suggested that a considerable rise in the content of high density lipoproteins in the blood of rats under the physiological conditions may lead to a fall in liver cholesterol because of which the developing hypocholesterolemia gives rise to the activation of the synthesis of this sterol.

  13. The Acidic Domain of GPIHBP1 Is Important for the Binding of Lipoprotein Lipase and Chylomicrons*

    PubMed Central

    Gin, Peter; Yin, Liya; Davies, Brandon S. J.; Weinstein, Michael M.; Ryan, Robert O.; Bensadoun, André; Fong, Loren G.; Young, Stephen G.; Beigneux, Anne P.

    2008-01-01

    GPIHBP1, a glycosylphosphatidylinositol-anchored endothelial cell protein of the lymphocyte antigen 6 (Ly6) family, plays a key role in the lipolysis of triglyceride-rich lipoproteins (e.g. chylomicrons). GPIHBP1 is expressed along the luminal surface of endothelial cells of heart, skeletal muscle, and adipose tissue, and GPIHBP1-expressing cells bind lipoprotein lipase (LPL) and chylomicrons avidly. GPIHBP1 contains an amino-terminal acidic domain (amino acids 24-48) that is enriched in aspartate and glutamate residues, and we previously speculated that this domain might be important in binding ligands. To explore the functional importance of the acidic domain, we tested the ability of polyaspartate or polyglutamate peptides to block the binding of ligands to pgsA-745 Chinese hamster ovary cells that overexpress GPIHBP1. Both polyaspartate and polyglutamate blocked LPL and chylomicron binding to GPIHBP1. Also, a rabbit antiserum against the acidic domain of GPIHBP1 blocked LPL and chylomicron binding to GPIHBP1-expressing cells. Replacing the acidic amino acids within GPIHBP1 residues 38-48 with alanine eliminated the ability of GPIHBP1 to bind LPL and chylomicrons. Finally, mutation of the positively charged heparin-binding domains within LPL and apolipoprotein AV abolished the ability of these proteins to bind to GPIHBP1. These studies indicate that the acidic domain of GPIHBP1 is important and that electrostatic interactions play a key role in ligand binding. PMID:18713736

  14. The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons.

    PubMed

    Gin, Peter; Yin, Liya; Davies, Brandon S J; Weinstein, Michael M; Ryan, Robert O; Bensadoun, André; Fong, Loren G; Young, Stephen G; Beigneux, Anne P

    2008-10-24

    GPIHBP1, a glycosylphosphatidylinositol-anchored endothelial cell protein of the lymphocyte antigen 6 (Ly6) family, plays a key role in the lipolysis of triglyceride-rich lipoproteins (e.g. chylomicrons). GPIHBP1 is expressed along the luminal surface of endothelial cells of heart, skeletal muscle, and adipose tissue, and GPIHBP1-expressing cells bind lipoprotein lipase (LPL) and chylomicrons avidly. GPIHBP1 contains an amino-terminal acidic domain (amino acids 24-48) that is enriched in aspartate and glutamate residues, and we previously speculated that this domain might be important in binding ligands. To explore the functional importance of the acidic domain, we tested the ability of polyaspartate or polyglutamate peptides to block the binding of ligands to pgsA-745 Chinese hamster ovary cells that overexpress GPIHBP1. Both polyaspartate and polyglutamate blocked LPL and chylomicron binding to GPIHBP1. Also, a rabbit antiserum against the acidic domain of GPIHBP1 blocked LPL and chylomicron binding to GPIHBP1-expressing cells. Replacing the acidic amino acids within GPIHBP1 residues 38-48 with alanine eliminated the ability of GPIHBP1 to bind LPL and chylomicrons. Finally, mutation of the positively charged heparin-binding domains within LPL and apolipoprotein AV abolished the ability of these proteins to bind to GPIHBP1. These studies indicate that the acidic domain of GPIHBP1 is important and that electrostatic interactions play a key role in ligand binding.

  15. Comparison of apoprotein B of low density lipoproteins of human interstitial fluid and plasma.

    PubMed

    Hong, J L; Pflug, J; Reichl, D

    1984-08-15

    Virtually all apoprotein B (apoB)-containing lipoproteins of the peripheral interstitial fluid of subjects with primary lymphoedema float in the ultracentrifugal field in the density interval 1.019-1.063 g/ml; in this respect they are similar to plasma low-density lipoproteins (LDL). 2. Virtually all apo-B-containing lipoproteins of interstitial fluid migrate in the electrophoretic field with pre-beta mobility; in this respect they are similar to plasma very-low-density lipoproteins. 3. The apoB of lipoproteins of interstitial fluid does not differ in terms of Mr from apoB-100 of human plasma [Kane, Hardman & Paulus (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2465-2469] as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 4. Both apoB of interstitial fluid and plasma are heterogenous in terms of their charge as determined by isoelectric focusing of their complexes with the nonionic detergent Nonidet P40. ApoB of plasma LDL focuses between pH5.9 and 6.65, and that of interstitial fluid LDL between pH 5.9 and 6.1. Thus the overall charge of apoB of interstitial fluid is more negative than that of its plasma LDL counterpart.

  16. High-density lipoprotein acts as an opsonin to enhance phagocytosis of group A streptococcus by U937 cells.

    PubMed

    Liu, Ling; Zhou, Lulei; Li, Yuxin; Bai, Wencheng; Liu, Na; Li, Wenlong; Gao, Yumin; Liu, Zhi; Han, Runlin

    2015-07-01

    We have previously demonstrated that high-density lipoprotein (HDL) can specifically bind to streptococcal collagen-like protein 1 (Scl1) of M41-type group A Streptococcus (GAS). However, the pathological or physiological significance of Scl1-HDL interaction is unknown. Here, the hypothesis that HDL acts as an opsonin to enhance phagocytosis of HDL-bound GAS by monocytes given that some scavenger receptors can mediate the endocytosis of HDL was tested by using FITC-labeled bacteria, human U937 monocytes and HDL for phagocytic assays. HDL (10 µg/mL) was found to significantly enhance internalization of M41-type (ATCC 12373) GAS by U937 cells after 60 min incubation, compared with an HDL-free group. The internalized GAS were dead after 60 min incubation with U937 cells regardless of presence and absence of HDL. Although very-low-density lipoprotein (VLDL) could specifically bind to ATCC 12373 strain, it did not promote phagocytosis of GAS. Additionally, LDL, HDL and VLDL did not enhance phagocytosis of CMCC 32198 strain because this strain did not bind to these lipoproteins. A physiological concentration of HDL (1000 µg/mL) had a similar effect. Anti-CD36 antibody completely abolished opsonic phagocytosis whereas anti-CD4 antibody did not, indicating that CD36 is the major scavenger receptor mediating the uptake of HDL-opsonized GAS by U937 cells. Furthermore, because rScl1 competitively blocked the interaction of ATCC 12373 strain with HDL recombinant Scl1 (rScl1) derived from M41-type GAS, it significantly decreased opsonophagocytosis of ATCC 12373 strain but not of CMCC 32198 strain. Therefore, our findings suggest that HDL may be an opsonin that enhances CD36-dependent opsonophagocytosis of GAS by U937 cells. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  17. Subfractions of high-density lipoprotein (HDL) and dysfunctional HDL in chronic kidney disease patients.

    PubMed

    Rysz-Górzyńska, Magdalena; Banach, Maciej

    2016-08-01

    A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD.

  18. Subfractions of high-density lipoprotein (HDL) and dysfunctional HDL in chronic kidney disease patients

    PubMed Central

    Banach, Maciej

    2016-01-01

    A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD. PMID:27478466

  19. Utility of non-high-density lipoprotein cholesterol in hemodialyzed patients.

    PubMed

    Schreier, Laura; González, Ana I; Elbert, Alicia; Berg, Gabriela; Wikinski, Regina

    2004-08-01

    Non-high-density lipoprotein-cholesterol (HDL-C) is proposed as a strong predictor of cardiovascular disease (CVD). Measuring non-HDL-C, as total cholesterol minus HDL-C, is convenient for routine practice because, among other advantages, fasting is not required. There are limited data of non-HDL-C in end-stage renal disease patients. We applied non-HDL-C calculation to 50 chronic renal patients receiving maintenance hemodialysis (HD) and 20 healthy subjects, apart from measurement of low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL) HDL, intermediate-density lipoprotein-cholesterol (IDL-C), apoprotein (apo) B, and triglycerides. HD patients presented higher plasma triglycerides and IDL-C and lower HDL-C than the control group, even after adjustment for age (P < .05). VLDL-C increased in HD patients (P < .001) while differences in non-HDL-C did not reach significance (P = .08). To detect which parameter constitutes a better marker of CVD risk among HD patients, a receiver-operating characteristic (ROC) analysis was performed considering HD patients in the highest risk group for CVD. In the ROC graphic, the plots of VLDL and IDL-C exhibited the greater observed accuracy and the best performance, while non-HDL-C showed a curve close to the 45 degrees line indicating that this parameter is a poor discriminator for evaluating CVD risk among HD patients. Non-HDL-C calculation, expressing all apo B-containing lipoproteins, may miss the significant contribution of each atherogenic lipoprotein, such as increase in IDL. This observation would not be in agreement with the currently proposed application of non-HDL-C a useful tool for risk assessment among HD patients. Copyright 2004 Elsevier Inc.

  20. Low density lipoprotein fraction assay for cardiac disease risk

    DOEpatents

    Krauss, Ronald M.; Blanche, Patricia J.; Orr, Joseph

    1999-01-01

    A variable rate density gradient electrophoric gel is described which separate LDL subfractions with the precision of ultracentrifugation techniques. Also, an innovative bottom inlet mixing chamber particularly useful for producing these gels is described.

  1. Low density lipoprotein fraction assay for cardiac disease risk

    DOEpatents

    Krauss, R.M.; Blanche, P.J.; Orr, J.

    1999-07-20

    A variable rate density gradient electrophoric gel is described which separates LDL subfractions with the precision of ultracentrifugation techniques. Also, an innovative bottom inlet mixing chamber particularly useful for producing these gels is described. 8 figs.

  2. Marked effects of extreme levels of lipoprotein(a) on estimation of low-density lipoprotein cholesterol.

    PubMed

    Saeedi, Ramesh; Li, Min; Allard, Matt; Frohlich, Jiri

    2014-08-01

    Low-density lipoprotein cholesterol (LDL-C) is usually calculated using the Friedewald equation. However, this calculation method does not account for the cholesterol associated with lipoprotein(a) [Lp(a)]. Using the Dahlen equation, Li et al. have shown a strong positive correlation between serum Lp(a) levels and overestimation of LDL-C levels. To determine how the extreme levels of Lp(a) influence the LDL-C calculation. We performed a retrospective chart review of the lipid profile and Lp(a) of 223 patients (men and women). LDL-C was calculated using the Friedewald equation. Lp(a) concentrations were measured by an ELISA. Other serum lipids were measured enzymatically by standard methodology. Corrected LDL-C was calculated using the Dahlen equation. We found that this overestimation is very significant in individuals with extreme levels of Lp(a) (mean overestimation of 40% at Lp(a) >1200mg/L). Calculated LDL-C is markedly overestimated in patients with extreme levels of Lp(a). Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein.

    PubMed Central

    Yokode, M; Kita, T; Kikawa, Y; Ogorochi, T; Narumiya, S; Kawai, C

    1988-01-01

    Changes in arachidonate metabolism were examined in mouse peritoneal macrophages incubated with various types of lipoproteins. Oxidized low density lipoprotein (LDL) was incorporated by macrophages and stimulated macrophage prostaglandin E2 (PGE2) and leukotriene C4 syntheses, respectively, 10.8- and 10.7-fold higher than by the control. Production of 6-keto-PGF1 alpha, a stable metabolite of prostacyclin, was also stimulated. No stimulation was found with native LDL, which was minimally incorporated by the cells. Acetylated LDL and beta-migrating very low density lipoprotein (beta-VLDL), though incorporated more efficiently than oxidized LDL, also had no stimulatory effect. When oxidized LDL was separated into the lipoprotein-lipid peroxide complex and free lipid peroxides, most of the stimulatory activity was found in the former fraction, indicating that stimulation of arachidonate metabolism in the cell is associated with uptake of the lipoprotein-lipid peroxide complex. These results suggest that peroxidative modification of LDL could contribute to the progression of atheroma by stimulating arachidonate metabolism during incorporation into macrophages. Images PMID:3125226

  4. Effect of genistein against copper-induced lipid peroxidation of human high density lipoproteins (HDL).

    PubMed

    Ferretti, G; Bacchetti, T; Menanno, F; Curatola, G

    2004-01-01

    Several studies have demonstrated that the isoflavone genistein exerts a protective effect against lipid peroxidation of low density lipoproteins (LDL). Aim of our study was to investigate whether genistein protects high density lipoproteins (HDL), isolated from normolipemic subjects, against Cu(++)-induced lipid peroxidation. Our results demonstrated that genistein exerts an inhibitory effect against Cu(++)-induced lipid peroxidation of HDL, as shown by the lower increase in the levels of conjugated dienes in lipoproteins oxidized after preincubation with different concentrations of genistein (0.5-2.5microM). Moreover the analysis of fluorescence emission spectra of tryptophan (Trp) and Laurdan (6-dodecanoyl-2-dimethyl-aminonaphthalene) demonstrated that genistein prevents the alterations of apoprotein structure and physico-chemical properties, associated with Cu(++)-triggered lipid peroxidation of lipoproteins. The protective effect exerted by genistein against oxidative damage of lipoproteins was realized at concentrations similar to those observed in plasma of human subjects consuming a traditional soy diet or receiving a soy supplement. Therefore, we suggested that antioxidant activity exerted by genistein against lipid peroxidation of HDL in vitro could be of physiological relevance.

  5. Expression of scavenger receptor-BI and low-density lipoprotein receptor and differential use of lipoproteins to support early steroidogenesis in luteinizing macaque granulosa cells.

    PubMed

    Cherian-Shaw, Mary; Puttabyatappa, Muraly; Greason, Erin; Rodriguez, Annabelle; VandeVoort, Catherine A; Chaffin, Charles L

    2009-02-01

    An ovulatory hCG stimulus to rhesus macaques undergoing controlled ovarian stimulation protocols results in a rapid and sustained increase in progesterone synthesis. The use of lipoproteins as a substrate for progesterone synthesis remains unclear, and the expression of lipoprotein receptors [very-low-density lipoprotein receptor (VLDLR), low-density lipoprotein receptor (LDLR), and scavenger receptor-BI (SR-BI)] soon after human chorionic gonadotropin (hCG) (<12 h) has not been characterized. This study investigated lipoprotein receptor expression and lipoprotein (VLDL, LDL, and HDL) support of steroidogenesis during luteinization of macaque granulosa cells. Granulosa cells were aspirated from rhesus monkeys undergoing controlled ovarian stimulation before or up to 24 h after an ovulatory hCG stimulus. The expression of VLDLR decreased within 3 h of hCG, whereas LDLR and SR-BI increased at 3 and 12 h, respectively. Granulosa cells isolated before hCG were cultured for 24 h in the presence of FSH or FSH plus hCG with or without VLDL, LDL, or HDL. Progesterone levels increased in the presence of hCG regardless of lipoprotein addition, although LDL, but not HDL, further augmented hCG-induced progesterone. Other cells were cultured with FSH or FSH plus hCG without an exogenous source of lipoprotein for 24 h, followed by an additional 24 h culture with or without lipoproteins. Cells treated with hCG in the absence of any lipoprotein were unable to maintain progesterone levels through 48 h, whereas LDL (but not HDL) sustained progesterone synthesis. These data suggest that an ovulatory stimulus rapidly mobilizes stored cholesterol esters for use as a progesterone substrate and that as these are depleted, new cholesterol esters are obtained through an LDLR- and/or SR-BI-mediated mechanism.

  6. Macrophage uptake of low-density lipoprotein modified by 4-hydroxynonenal. An ultrastructural study

    SciTech Connect

    Hoff, H.F.; Cole, T.B. )

    1991-02-01

    We have documented the ultrastructural characteristics of the uptake and processing by mouse peritoneal macrophages (MPM) of low-density lipoprotein (LDL) modified with 4-hydroxynonenal (HNE), an intermediate of lipid peroxidation. This was performed as part of a larger biochemical study assessing the role of LDL oxidation in lipid loading of macrophages during atherogenesis. Gold-labeled LDL that was modified with HNE leading to particle aggregation represented the morphologic probe used. When incubated with MPM, the probe became associated with short segments of cell membrane, probably derived from blebs or from lysed cells. At 37 degrees C there was a time-dependent increase in uptake by MPM, and at 4 hours the increase paralleled the degradation by MPM of 125I-labeled HNE-LDL-cAu. Clathrin-coated pits on the cell surface were consistently associated with probe. Uptake of probe appeared to occur via phagocytosis, because pseudopods frequently surrounded probe, and cytochalasin D quantitatively prevented probe uptake. A time-dependent increase was found in the number of gold particles per unit area within vacuoles, some of which were secondary lysosomes, based on acid phosphatase-positive staining. Thus, HNE-induced aggregation of LDL during oxidation, binding of aggregates to clathrin-coated pits on MPM, and subsequent phagocytosis may represent one of the ways lipid-laden foam cells are formed in vivo.

  7. Rspo2 suppresses CD36-mediated apoptosis in oxidized low density lipoprotein-induced macrophages

    PubMed Central

    Yan, Hui; Wang, Shuai; Li, Zhenwei; Sun, Zewei; Zan, Jie; Zhao, Wenting; Pan, Yanyun; Wang, Zhen; Wu, Mingjie; Zhu, Jianhua

    2016-01-01

    Oxidized low density lipoprotein (oxLDL)-induced apoptosis of macrophages contributes to the formation of atherosclerotic plaques. R-spondin 2 (Rspo2), a member of the cysteine-rich secreted proteins, has been shown to be involved in the oncogenesis of several types of cancer. It has also been found to be abundantly expressed among the four R-spondin members in macrophages. The present study was performed to determine whether Rspo2 is involved in the ox-LDL-induced apoptosis of macrophages. It was identified that Rspo2 inhibited oxLDL-induced apoptosis in the presence of endoplasmic reticulum (ER) stress activator using flow cytometry. In addition, Rspo2 was observed to suppress oxLDL-induced ER stress and reactive oxygen species production as demonstrated by western blotting. Furthermore, analysis of the role of Rspo2 in macrophage lipid uptake identified that Rspo2 negatively regulated the Dil-oxLDL uptake by inhibiting the expression of cluster of differentiation (CD)36, through the transcription factor, peroxisome proliferator-activated receptor (PPAR)-γ. The manipulation of Rspo2 had a direct effect on PPAR-γ nuclear translocation. In addition, chromatin immunoprecipitation analysis revealed that Rspo2 manipulation led to regulation of the direct binding between PPAR-γ and CD36. In conclusion, Rspo2 was found to have a negative regulatory effect during oxLDL-induced macrophage apoptosis by regulating lipid uptake. PMID:27571704

  8. Low-Density Lipoprotein Nanoparticles as Magnetic Resonance Imaging Contrast Agents1

    PubMed Central

    Corbin, Ian R; Li, Hui; Chen, Juan; Lund-Katz, Sissel; Zhou, Rong; Glickson, Jerry D; Zheng, Gang

    2006-01-01

    Abstract Low-density lipoproteins (LDLs) are a naturally occurring endogenous nanoplatform in mammalian systems. These nanoparticles (22 nm) specifically transport cholesterol to cells expressing the LDL receptor (LDLR). Several tumors overexpress LDLRs presumably to provide cholesterol to sustain a high rate of membrane synthesis. Amphiphilic gadolinium (Gd)-diethylenetria-minepentaacetic acid chelates have been incorporated into the LDL to produce a novel LDLR-targeted magnetic resonance imaging (MRI) contrast agent. The number of Gd chelates per LDL particle ranged between 150 and 496 Gd(III). In vitro studies demonstrated that Gd-labeled LDL retained a similar diameter and surface charge as the native LDL particle. In addition, Gd-labeled LDL retained selective cellular binding and uptake through LDLR-mediated endocytosis. Finally, Gd-labeled LDLs exhibited significant contrast enhancement 24 hours after administration in nude mice with human hepatoblastoma G2 xenografts. Thus, Gd-labeled LDL demonstrates potential use as a targeted MRI contrast agent for in vivo tumor detection. PMID:16820095

  9. [New mutations in low-density lipoprotein receptor gene in familial hypercholesterolemia patients from Petrozavodsk].

    PubMed

    Komarova, T Yu; Golovina, A S; Grudinina, N A; Zakharova, F M; Korneva, V A; Lipovetsky, B M; Serebrenitskaya, M P; Konstantinov, V O; Vasilyev, V B; Mandelshtam, M Yu

    2013-06-01

    Using an automated fluorescent single-strand conformation polymorphism (SSCP) analysis of the entire coding region, promoter zone, and exon-intron junctions of the low-density lipoprotein (LDL) receptor gene, we examined 80 DNA samples of patients with familial hypercholesterolemia (FH) from Petrozavodsk. We revealed mutations that might cause FH in five probands, including FH-North Karelia (c.925-931del7) mutation and four previously unknown mutations. These novel mutations included a transversion (c.618T>G (p.S206R), one nucleotide insertion c.195_196insT (p.FsV66:D129X), a complex gene rearrangement c.192del10/ins8 (p.FsS65:D129X), and a single nucleotide deletion c.2191delG (p.FsV731:V736X). Three out of four novel mutations produce an open reading frame shift and the premature termination of translation. An analysis of the cDNA sequence of the LDL receptor showed that this might result in the formation of a transmembrane-domain-deficient receptor that is unable to bind and internalize the ligand. Our results suggest the absence of a strong founder effect associated with FH in the Petrozavodsk population.

  10. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein

    NASA Astrophysics Data System (ADS)

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L.; Varughese, Kottayil I.

    2015-11-01

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential.

  11. Modulating reconstituted high density lipoprotein functionality to target the Pseudomonas aeruginosa quorum sensing system.

    PubMed

    Deakin, Sara P; Ducret, Véréna; Bioletto, Silvana; Perron, Karl; James, Richard W

    2014-09-01

    The synthetic counterparts of serum high density lipoproteins (HDL; reconstituted HDL, reHDL) are assuming increasing importance as a therapeutic vector. They circulate not only in blood, but also outside the vascular compartment giving access to all body tissues. Presently, the therapeutic use of reHDL exploits inherent HDL functions. Our aim was to determine if HDL functionality could be modulated by attaching peptides not normally associated with the complex. A peptide chimera was designed by linking the signal peptide of the HDL-associated enzyme paraoxonase-1 (PON1) to the coding region for the intracellular enzyme paraoxonase-2 (PON2). The signal peptide modified the properties of PON2, promoting its secretion from cells and binding to HDL. Enzyme activity of the chimera protein was highly stable. Conditioned HDL showed the functions of PON2 in its ability to hydrolyse typical PON2 substrates, namely homoserine lactones. Further in vitro studies showed that conditioned HDL was able to reduce the virulence of Pseudomonas aeruginosa. Both biofilm formation and the activation of the quorum sensing systems las and rhl, responsible for bacterial virulence, were significantly reduced. The study provides proof of principal that the signal peptide of PON1 can be used to attach peptides to HDL and thus modulate HDL function. They may provide a vector that is ubiquitously distributed in extracellular body fluids for designing therapeutic strategies to address different pathophysiological states. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Phospholipase A2-modified low-density lipoprotein activates macrophage peroxisome proliferator-activated receptors.

    PubMed

    Namgaladze, Dmitry; Morbitzer, Daniel; von Knethen, Andreas; Brüne, Bernhard

    2010-02-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors modulating metabolic and inflammatory responses of phagocytes to stimuli such as fatty acids and their metabolites. We studied the role of PPARs in macrophages exposed to low-density lipoprotein (LDL) modified by secretory phospholipase A(2) (PLA). By analyzing PPAR ligand-binding domain luciferase reporter activation, we observed that PLA-LDL transactivates PPARalpha and PPARdelta, but not PPARgamma. We confirmed that PLA-LDL induced PPAR response element reporter activation by endogenous PPARalpha and PPARdelta in human THP-1 macrophages. By using THP-1 cells with a stable knockdown of PPARalpha and PPARdelta, we showed that PLA-LDL-activated PPARdelta altered macrophage gene expression related to lipid metabolism and lipid droplet formation. Although PPARalpha/delta silencing did not affect cholesterol and triglyceride accumulation in PLA-LDL-treated macrophages, PPARdelta activation by PLA-LDL attenuated macrophage inflammatory gene expression induced by interferon gamma and lipopolysaccharide. PPARdelta activation by PLA-LDL does not influence lipid accumulation in PLA-LDL-treated macrophages. However, it attenuates macrophage inflammatory responses, thus contributing to an anti-inflammatory cell phenotype.

  13. Novel fluorescently labeled peptide compounds for detection of oxidized low-density lipoprotein at high specificity.

    PubMed

    Sato, Akira; Yamanaka, Hikaru; Oe, Keitaro; Yamazaki, Yoji; Ebina, Keiichi

    2014-10-01

    The probes for specific detection of oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques are expected to be useful for the identification, diagnosis, prevention, and treatment for atherosclerosis. In this study, to develop a fluorescent peptide probe for specific detection of ox-LDL, we investigated the interaction of fluorescein isothiocyanate (FITC)-labeled peptides with ox-LDL using polyacrylamide gel electrophoresis. Two heptapeptides (KWYKDGD and KP6) coupled through the ε-amino group of K at the N-terminus to FITC in the presence/absence of 6-amino-n-caproic acid (AC) linker to FITC--(FITC-AC)KP6 and (FITC)KP6--both bound with high specificity to ox-LDL in a dose-dependent manner. In contrast, a tetrapeptide (YKDG) labeled with FITC at the N-terminus and a pentapeptide (YKDGK) coupled through the ε-amino group of K at the C-terminus to FITC did not bind selectively to ox-LDL. Furthermore, (FITC)KP6 and (FITC-AC)KP6 bound with high specificity to the protein in mouse plasma (probably ox-LDL fraction). These findings strongly suggest that (FITC)KP6 and (FITC-AC)KP6 may be effective novel fluorescent probes for specific detection of ox-LDL.

  14. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein.

    PubMed

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L; Varughese, Kottayil I

    2015-11-18

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential.

  15. Aggregation and fusion of low-density lipoproteins in vivo and in vitro

    PubMed Central

    Gursky, Olga

    2014-01-01

    Low-density lipoproteins (LDLs, also known as ‘bad cholesterol’) are the major carriers of circulating cholesterol and the main causative risk factor of atherosclerosis. Plasma LDLs are 20- to 25-nm nanoparticles containing a core of cholesterol esters surrounded by a phospholipid monolayer and a single copy of apolipoprotein B (550 kDa). An early sign of atherosclerosis is the accumulation of LDL-derived lipid droplets in the arterial wall. According to the widely accepted ‘response-to-retention hypothesis’, LDL binding to the extracellular matrix proteoglycans in the arterial intima induces hydrolytic and oxidative modifications that promote LDL aggregation and fusion. This enhances LDL uptake by the arterial macrophages and triggers a cascade of pathogenic responses that culminate in the development of atherosclerotic lesions. Hence, LDL aggregation, fusion, and lipid droplet formation are important early steps in atherogenesis. In vitro, a variety of enzymatic and nonenzymatic modifications of LDL can induce these reactions and thereby provide useful models for their detailed analysis. Here, we summarize current knowledge of the in vivo and in vitro modifications of LDLs leading to their aggregation, fusion, and lipid droplet formation; outline the techniques used to study these reactions; and propose a molecular mechanism that underlies these pro-atherogenic processes. Such knowledge is essential in identifying endogenous and exogenous factors that can promote or prevent LDL aggregation and fusion in vivo and to help establish new potential therapeutic targets to decelerate or even block these pathogenic reactions. PMID:25197325

  16. High-Density Lipoprotein-Mediated Transcellular Cholesterol Transport in Mouse Aortic Endothelial Cells

    PubMed Central

    Miao, LiXia; Okoro, Emmanuel U.; Cao, ZhiJan; Yang, Hong; Motley-Johnson, Evangeline; Guo, Zhongmao

    2015-01-01

    Accumulation of unesterified cholesterol-rich lipid vesicles in the subendothelial space contributes to atherogenesis. Transport of cholesterol from the subendothelial intima back to the circulating blood inhibits atherosclerosis development; however, the mechanism for this process has not been fully defined. Using cultured mouse aortic endothelial cells (MAECs), we observed that unesterified cholesterol can be transported across the endothelial cell monolayer from the basolateral to the apical compartment. Administration of high-density lipoprotein (HDL) or apolipoprotein AI (apoAI) to the apical compartment enhanced transendothelial cholesterol transport in a concentration-dependent manner. Knockdown of ATP-binding cassette transporter G1 (ABCG1) or scavenger receptor class B type I (SR-B1), or inhibition of SR-B1 diminished HDL-induced transendothelial cholesterol transport; while knockdown of ABCA1 reduced apoAI-mediated cholesterol transport. HDL enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt in MAECs. However, inhibition PI3K or Akt did not reduce HDL-induced transendothelial cholesterol transport. These results suggest that HDL enhances transendothelial cholesterol transport by activation of a mechanism involving ABCA1, ABCA1 and SR-B1 but not involving PI3K and Akt. PMID:26255968

  17. High-density lipoprotein-mediated transcellular cholesterol transport in mouse aortic endothelial cells.

    PubMed

    Miao, LiXia; Okoro, Emmanuel U; Cao, ZhiJan; Yang, Hong; Motley-Johnson, Evangeline; Guo, Zhongmao

    2015-09-18

    Accumulation of unesterified cholesterol-rich lipid vesicles in the subendothelial space contributes to atherogenesis. Transport of cholesterol from the subendothelial intima back to the circulating blood inhibits atherosclerosis development; however, the mechanism for this process has not been fully defined. Using cultured mouse aortic endothelial cells (MAECs), we observed that unesterified cholesterol can be transported across the endothelial cell monolayer from the basolateral to the apical compartment. Administration of high-density lipoprotein (HDL) or apolipoprotein AI (apoAI) to the apical compartment enhanced transendothelial cholesterol transport in a concentration-dependent manner. Knockdown of ATP-binding cassette transporter G1 (ABCG1) or scavenger receptor class B type I (SR-B1), or inhibition of SR-B1 diminished HDL-induced transendothelial cholesterol transport; while knockdown of ABCA1 reduced apoAI-mediated cholesterol transport. HDL enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt in MAECs. However, inhibition of PI3K or Akt did not reduce HDL-induced transendothelial cholesterol transport. These results suggest that HDL enhances transendothelial cholesterol transport by activation of a mechanism involving ABCA1, ABCG1 and SR-B1 but not involving PI3K and Akt.

  18. Low density lipoprotein receptor related protein 1 variant interacts with saturated fatty acids in Puerto Ricans

    USDA-ARS?s Scientific Manuscript database

    Low density lipoprotein related receptor protein 1 (LRP1) is a multi-functional endocytic receptor that is highly expressed in adipocytes and the hypothalamus. Animal models and in vitro studies support a role for LRP1 in adipocyte metabolism and leptin signaling, but genetic polymorphisms have not ...

  19. Glycated albumin and direct low density lipoprotein cholesterol levels in type 2 diabetes mellitus

    USDA-ARS?s Scientific Manuscript database

    Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) has been associated with a decreased risk of these complications. We evaluated the ut...

  20. The mushroom Pleurotus ostreatus accelerates plasma very-low-density lipoprotein clearance in hypercholesterolemic rat.

    PubMed

    Bobek, P; Ozdín, L

    1994-01-01

    The administration of a diet containing 5% of dried oyster mushroom to male Wistar rats fed a cholesterol diet (0.3%) shortly after weaning for 8 weeks reduced cholesterol levels in the serum and liver by 27 and 33%, respectively and increased the fractional turnover rate of 125I-very-low-density lipoproteins (VLDL) by more than 30%.

  1. Direct Low Density Lipoprotein Cholesterol and Glycated Albumin Levels in Type 2 Diabetes Mellitus

    USDA-ARS?s Scientific Manuscript database

    Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) have been associated with a decreased risk of these complications. The aim in this st...

  2. Total and High-Density Lipoprotein Cholesterol in Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Rimmer, James H.; Kelly, Luke E.

    1990-01-01

    The study evaluated the total cholesterol and high density lipoprotein cholesterol of 40 adults (mean age 37.5 years) with mental retardation residing at an intermediate care facility. Results indicated that 59 percent of the males and 68 percent of the females were at moderate to high risk for coronary heart disease. (DB)

  3. Separation of apolipoproteins of human very low density lipoproteins by chromatofocusing.

    PubMed

    März, W; Gross, W

    1983-07-01

    Chromatofocusing represents a new chromatographic procedure for the separation of proteins according to their isoelectric points. We describe the application of this method for the fractionation of the urea-soluble apolipoproteins of very low density lipoproteins. They were separated into five peaks, four of which were homogeneous as judged by polyacrylamide gel electrophoresis in the presence of 7 mol/l urea.

  4. Total and High-Density Lipoprotein Cholesterol in Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Rimmer, James H.; Kelly, Luke E.

    1990-01-01

    The study evaluated the total cholesterol and high density lipoprotein cholesterol of 40 adults (mean age 37.5 years) with mental retardation residing at an intermediate care facility. Results indicated that 59 percent of the males and 68 percent of the females were at moderate to high risk for coronary heart disease. (DB)

  5. In vitro incorporation of radiolabeled cholesteryl esters into high and low density lipoproteins

    SciTech Connect

    Terpstra, A.H.; Nicolosi, R.J.; Herbert, P.N. )

    1989-11-01

    We have developed and validated a method for in vitro incorporation of radiolabeled cholesteryl esters into low density (LDL) and high density lipoproteins (HDL). Radiolabeled cholesteryl esters dissolved in absolute ethanol were mixed with LDL or HDL in the presence of lipoprotein-deficient serum (LPDS) as a source of core lipid transfer activity. The efficiency of incorporation was dependent on: (a) the core lipid transfer activity and quantity of LPDS, (b) the mass of added radiolabeled cholesteryl esters, (c) the length of incubation, and (d) the amount of acceptor lipoprotein cholesterol. The tracer incorporation was documented by repeat density gradient ultracentrifugation, agarose gel electrophoresis, and precipitation with heparin-MnCl2. The radiolabeling conditions did not affect the following properties of the lipoproteins: (1) chemical composition, (2) electrophoretic mobility on agarose gels, (3) hydrated density, (4) distribution of apoproteins on SDS gels, (5) plasma clearance rates, and (6) immunoprecipitability of HDL apoproteins A-I and A-II. Rat HDL containing radiolabeled cholesteryl esters incorporated in vitro had plasma disappearance rates identical to HDL radiolabeled in vivo.

  6. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  7. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  8. New roles of low density lipoproteins and vitamin E in the pathogenesis of atherosclerosis.

    PubMed

    Ozer, N K; Boscoboinik, D; Azzi, A

    1995-01-01

    Accumulation of oxidized low density lipoproteins in macrophages and smooth muscle cells causes foam cell formation, an initial step in atherosclerosis. Active oxygen species are considered important in the pathogenesis of the disease. Antioxidants, such as tocopherols and tocotrienols have been considered to prevent the deleterious effects of active oxygen species. We found native low density lipoproteins can stimulate directly smooth muscle cell proliferation, it is associated with an increase of protein kinase C activity. d-alpha-Tocopherol, biologically most active form of vitamin E, inhibits both cell proliferation and protein kinase C activity. The effect of d-alpha-tocopherol is not related to its radical scavenging properties. Transforming growth factor-beta secreted by smooth muscle cells as growth inhibitor. Low density lipoproteins decrease the release of transforming growth factor-beta from smooth muscle cells thus activating growth. d-alpha-Tocopherol activates the cellular release of transforming growth factor-beta. These new aspects explain the important role of low density lipoproteins and vitamin E in increasing and decreasing the risk of atherosclerosis, respectively.

  9. Protein interactions among Fe65, the low-density lipoprotein receptor-related protein, and the amyloid precursor protein.

    PubMed

    Mulvihill, Melinda M; Guttman, Miklos; Komives, Elizabeth A

    2011-07-19

    The adapter protein Fe65 has been proposed to be the link between the intracellular domains of the amyloid precursor protein, APP (AICD), and the low-density lipoprotein receptor-related protein (LRP-CT). Functional linkage between these two proteins has been established, and mutations within LRP-CT affect the amount of Aβ produced from APP. Previous work showed that AICD binds to protein interaction domain 2 (PID2) of Fe65. Although the structure of PID1 was determined recently, all attempts to demonstrate LRP-CT binding to this domain failed. We used biophysical experiments and binding studies to investigate the binding among these three proteins. Full-length Fe65 bound more weakly to AICD than did N-terminally truncated forms; however, the intramolecular domain-domain interactions that had been proposed to inhibit binding could not be observed using amide H-D exchange. Surprisingly, when LRP-CT is phosphorylated at Tyr4507, it bound to Fe65 PID1 despite the fact that this domain belongs to the Dab-like subclass of PIDs that are not supposed to be phosphorylation-dependent. Mutation of a critical arginine abolished binding, providing further proof of the phosphorylation dependence. Fe65 PID1 thus provides a link between the Dab-like class and the IRS-like class of PIDs and is the first Dab-like family member to show phosphorylation-dependent binding.

  10. Genome-wide association studies identified novel loci for non-high-density lipoprotein cholesterol and its postprandial lipemic response

    USDA-ARS?s Scientific Manuscript database

    Non-high-density lipoprotein cholesterol (NHDL) is an independent and superior predictor of CVD risk as compared to low-density lipoprotein alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) t...

  11. Inhibitory effects of in vivo oxidized high-density lipoproteins on platelet aggregation: evidence from patients with abetalipoproteinemia.

    PubMed

    Calzada, Catherine; Véricel, Evelyne; Colas, Romain; Guillot, Nicolas; El Khoury, Graziella; Drai, Jocelyne; Sassolas, Agnès; Peretti, Noël; Ponsin, Gabriel; Lagarde, Michel; Moulin, Philippe

    2013-07-01

    There is evidence that high-density lipoproteins (HDLs) may regulate platelet function, but disparate results exist regarding the effects of oxidized HDLs on platelets. The objective of our study was to determine the role of in vivo oxidized HDLs on platelet aggregation. Platelet aggregation and redox status were investigated in 5 patients with abetalipoproteinemia (ABLP) or homozygous hypobetalipoproteinemia, two rare metabolic diseases characterized by the absence of apolipoprotein B-containing lipoproteins, compared to 5 control subjects. Platelets isolated from plasma of patients with ABLP aggregated 4 to 10 times more than control platelets, depending on the agonist. By contrast, no differences in the extent of platelet aggregation were observed between ABLP platelet-rich plasma (PRP) and control PRP, suggesting the presence of a protective factor in ABLP plasma. ABLP HDLs inhibited agonist-induced platelet aggregation by binding to SR-BI, while control HDLs had no effect. On the other hand, lipoprotein-deficient plasma from patients with ABLP did not inhibit platelet aggregation. Severe oxidative stress was evidenced in patients with ABLP. Compared to control HDLs, ABLP HDLs showed a 40% decrease of α-tocopherol and an 11-fold increased malondialdehyde concentration. These results demonstrate that in vivo oxidized HDLs do not lose their antiaggregatory properties despite oxidation.

  12. A very-high-density lipoprotein with clotting ability from hemolymph of sand crayfish, Ibacus ciliatus.

    PubMed

    Komatsu, M; Ando, S

    1998-03-01

    A very-high-density lipoprotein (VHDL) with a density of 1.27-1.29 g/ml was the most abundant lipoprotein in the hemolymph of the sand crayfish Ibacus ciliatus. The VHDL isolated by a density gradient ultracentrifugation consisted of 94% protein and 6% lipid reflecting its high density, and phospholipid was a predominant lipid component. The VHDL had an apolipoprotein of molecular mass 195 kDa and its N-terminal amino acid sequence was identified as follows: LQPGLEYQYRYNGRVAA. This sequence was similar to those of clotting proteins from the spiny lobster Panulirus interruptus and the freshwater crayfish Pacifastacus leniusculus. Transglutaminase and Ca2+ also induced the VHDL to clot. Considering large amounts of VHDL in the hemolymph of sand crayfish, the VHDL not only functions as lipid carrier but plays an important role in the defense process of crustacea.

  13. Enzymatic Modification of Plasma Low Density Lipoproteins in Rabbits: A Potential Treatment for Hypercholesterolemia

    NASA Astrophysics Data System (ADS)

    Labeque, Regine; Mullon, Claudy J. P.; Ferreira, Joao Paulo M.; Lees, Robert S.; Langer, Robert

    1993-04-01

    Phospholipase A_2 (EC 3.1.1.4) hydrolyzes certain phospholipids of low density lipoprotein (LDL). Plasma clearance of phospholipase A_2-modified human LDL is up to 17 times faster than that of native human LDL in hypercholesterolemic rabbits. Modification of blood lipoproteins of hypercholesterolemic rabbits was performed by using an extracorporeal circuit containing immobilized phospholipase A_2. After 90-min treatments, nearly 30% decreases in plasma cholesterol concentrations were observed. Erythrocyte, leukocyte, and platelet counts showed no net change after treatment. This technique does not require any fluid replacement or sorbent regeneration and offers a potential approach for lowering serum cholesterol and LDL levels.

  14. IDENTIFICATION AND ANALYSIS OF STEREOSELECTIVE DRUG INTERACTIONS WITH LOW DENSITY LIPOPROTEIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Sobansky, Matthew R.; Hage, David S.

    2012-01-01

    Columns containing immobilized low density lipoprotein (LDL) were prepared for the analysis of drug interactions with this agent by high-performance affinity chromatography (HPAC). R/S-Propranolol was used as a model drug for this study. The LDL columns gave reproducible binding to propranolol over 60 h of continuous use in the presence of pH 7.4, 0.067 M potassium phosphate buffer. Experiments conducted with this type of column through frontal analysis indicated that two types of interactions were occurring between R-propranolol and LDL, while only a single type of interaction was observed between S-propranolol and LDL. The first type of interaction, which was seen for both enantiomers, involved non-saturable binding; this interaction had an overall affinity (nKa) of 1.9 (± 0.1) × 105 M-1 for R-propranolol and 2.7 (± 0.2) × 105 M-1 for S-propranolol at 37 °C. The second type of interaction was observed only for R-propranolol and involved saturable binding that had an association equilibrium constant (Ka) of 5.2 (± 2.3) × 105 M-1 at 37 °C. Similar differences in binding behavior were found for the two enantiomers at 20 °C and 27 °C. This is the first known example of stereoselective binding of drugs by LDL or other lipoproteins. This work also illustrates the ability of HPAC to be used as a tool for characterizing mixed-mode interactions that involve LDL and related binding agents. PMID:22354572

  15. Use of monoclonal antibodies to investigate the immunochemical heterogeneity of human plasma high density lipoproteins

    SciTech Connect

    Krul, E.S.; Keller, J.; Melton, M.; Schonfeld, G.

    1986-03-01

    Immunoaffinity chromatography of high density lipoproteins (HDL) on columns prepared with seven different anti-apoAI monoclonal antibodies (MAbs) was used to investigate the nature of HDL particle heterogeneity. Using subsaturating amounts of /sup 125/I-HDL, the MAbs coupled to the affinity columns could be divided into 2 groups: Group A, those MAbs that retained approx.75% of the total radioactive counts applied and Group B, those MAbs that retained approx.40% of the counts. The percent of total counts retained correlated (r/sup 2/ = 0.93) with the AI/AII molar ratios of the retained HDL fractions. The HDL particles retained by Group A had high AI/AII ratios, whereas the particles retained by Group B had AI/AII ratios similar to the starting HDL population. These results are consistent with the concept that HDL consists of two types of particles, namely Lp(AI without AII) and Lp(AI with AII). Group A MAbs preferentially bind Lp(AI without AII) but may bind some Lp(AI with AII). These MAbs are directed towards the COOH terminal half of apoAI. Group B MAbs recognize an epitope on apoAI that is expressed on HDL particles also containing apoAII. The specificities of some of these MAbs are towards the NH/sub 2/ terminal half of apoAI is similar on HDL particles containing or not containing apoAII. Heterogeneity of apoAI epitope expression on HDL would appear to be due to interactions with the apoAII molecule that probably occur towards the NH/sub 2/ end of apoAI.

  16. Chylomicron remnant cholesteryl esters as the major constituent of very low density lipoproteins in plasma of cholesterol-fed rabbits.

    PubMed

    Ross, A C; Zilversmit, D B

    1977-03-01

    Feeding rabbits 500 mg of cholesterol daily for 4 to 15 days greatly increased the concentration of esterified cholesterol in lipoproteins of d less than 1.006 g/ml. The origin of hypercholesterolemic very low density lipoproteins was investigated by monitoring the degradation of labeled lymph chyomicrons administered to normal and cholesterol-fed rabbits. Chylomicrons were labeled in vivo by feeding either 1) [3H]cholesterol and [14C]oleic acid or 2) [14C]cholesterol and [3H]retinyl acetate. After intravenous injection of labeled chylomicrons to recipient rabbits, [14C]triglyceride hydrolysis was equally rapid in normal and cholesterol-fed animals. Normal rabbits rapidly removed from plasma both labeled cholesteryl and retinyl esters, whereas cholesterol-fed rabbits retained nearly 50% of doubly labeled remnants in plasma 25 min after chylomicron injection. Ultracentrifugal separation of plasma into subfractions of very low density lipoproteins showed that chylomicron remnants in cholesterol-fed animals are found among all subclasses of very low density lipoproteins. Analysis of cholesteryl ester specific activity-time curves for the very low density lipoproteins subfraction from hypercholesterolemic plasma showed that nearly all esterified cholesterol in large very low density lipoproteins and approximately 30% of esterified cholesterol in small very low density lipoproteins was derived from chylomicron degradation. Apparently, nearly two-thirds of the esterified cholesterol in total very low density lipoproteins from moderately hypercholesterolemic rabbits is of dietary origin.

  17. Unidirectional transfer in vivo of high-density lipoprotein cholesteryl esters to lower-density lipoproteins in the pig, an animal species without plasma cholesteryl ester transfer activity.

    PubMed

    Terpstra, A H; Stucchi, A F; Foxall, T L; Shwaery, G T; Vespa, D B; Nicolosi, R J

    1993-12-01

    The metabolism of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesteryl esters (CE) was studied in the pig, an animal species without plasma cholesteryl ester transfer activity (CETA). In the first series of experiments, LDL and HDL from normocholesterolemic pigs were radiolabeled with cholesteryl (1-14C)oleate and intravenously administered to two groups of four normocholesterolemic pigs. Radioactive tracer in LDL remained associated with the LDL fraction, and there was no transfer of LDL-CE to HDL. The transport rate (which represents the production and disposal rate) of LDL-CE in normocholesterolemic pigs was 39 mumol CE/h/L. However, radiolabeled HDL-CE were transferred to LDL (25%), and 36% of the LDL-CE mass was derived from the HDL. The transport rate of HDL-CE was 54 mumol CE/h/L, and the flux of HDL-CE to LDL was 14 mumol CE/h/L. There was no accumulation of radiolabeled HDL-CE in very-low-density lipoprotein (VLDL), which suggests that there was no transfer to VLDL. However, this does not rule out the possibility that either the very low levels of VLDL-CE (< 0.09 mmol/L) or the rapid turnover rate of the VLDL pool might have prevented the accumulation of substantial amounts of tracer in VLDL. Therefore, in a second set of experiments, the kinetics of HDL-CE were studied in high-fat-and high-cholesterol-fed pigs with elevated VLDL-CE concentrations (1.92 mmol/L). Hypercholesterolemia was associated with increased transport rates of LDL-CE (165 mumol/h/L) and HDL-CE (78 mumol/h/L) and with an increased flux of HDL-CE to LDL (78 mumol/h/L).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Association between moderately oxidized low-density lipoprotein and high-density lipoprotein particle subclass distribution in hemodialyzed and post-renal transplant patients.

    PubMed

    Kimak, Elżbieta; Hałabiś, Magdalena; Baranowicz-Gąszczyk, Iwona; Solski, Janusz; Książek, Andrzej

    2011-05-01

    Disturbances in the metabolism of lipoprotein profiles and oxidative stress in hemodialyzed (HD) and post-renal transplant (Tx) patients are proatherogenic, but elevated concentrations of plasma high-density lipoprotein (HDL) reduce the risk of cardiovascular disease. We investigated the concentrations of lipid, lipoprotein, HDL particle, oxidized low-density lipoprotein (ox-LDL) and anti-ox-LDL, and paraoxonase-1 (PON-1) activity in HD (n=33) and Tx (n=71) patients who were non-smokers without active inflammatory disease, liver disease, diabetes, or malignancy. HD patients had moderate hypertriglyceridemia, normocholesterolemia, low HDL-C, apolipoprotein A-I (apoA-I) and HDL particle concentrations as well as PON-1 activity, and increased ox-LDL and anti-ox-LDL levels. Tx patients had hypertriglyceridemia, hypercholesterolemia, moderately decreased HDL-C and HDL particle concentrations and PON-1 activity, and moderately increased ox-LDL and anti-ox-LDL levels as compared to the reference, but ox-LDL and anti-ox-LDL levels and PON-1 activity were more disturbed in HD patients. However, in both patient groups, lipid and lipoprotein ratios (total cholesterol (TC)/HDL-C, LDL-C/HDL-C, triglyceride (TG)/HDL-C, HDL-C/non-HDL-C, apoA-I/apoB, HDL-C/apoA-I, TG/HDL) were atherogenic. The Spearman's rank coefficient test showed that the concentration of ox-LDL correlated positively with HDL particle level (R=0.363, P=0.004), and negatively with TC (R=-0.306, P=0.012), LDL-C (R=-0.283, P=0.020), and non-HDL-C (R=-0.263, P=0.030) levels in Tx patients. Multiple stepwise forward regression analysis in Tx patients demonstrated that ox-LDL concentration, as an independent variable, was associated significantly positively with HDL particle level. The results indicated that ox-LDL and decreased PON-1 activity in Tx patients may give rise to more mildly-oxidized HDLs, which are less stable, easily undergo metabolic remodeling, generate a greater number of smaller pre-β-HDL particles

  19. Direct effects of fatty meals and adiposity on oxidised low-density lipoprotein.

    PubMed

    Laguna-Camacho, Antonio; Alonso-Barreto, Arely S; Mendieta-Zerón, Hugo

    2015-01-01

    High-fat intake and high adiposity contribute to hyperlipaemia. In a hyperlipaemic state, lipoproteins infiltrate arterial wall where they are modified and cause an immune response characteristic of atherosclerosis. A small fraction of modified lipoproteins including oxidised low-density lipoprotein (ox-LDL) returns to circulation. The present study tracked high-fat meals during four weeks as to find effects of sustained frequency change on adiposity and ox-LDL. The findings indicated that changes in frequency of consumption of high-fat eating episodes correlated directly with changes in adiposity and ox-LDL. Hence the number of fatty meals consumed by people with overweight or obesity in few weeks could affect the atherogenic process.

  20. The Mycoplasma gallisepticum Virulence Factor Lipoprotein MslA Is a Novel Polynucleotide Binding Protein

    PubMed Central

    Masukagami, Yumiko; Tivendale, Kelly A.; Mardani, Karim; Ben-Barak, Idan; Markham, Philip F.

    2013-01-01

    Although lipoproteins of mycoplasmas are thought to play a crucial role in interactions with their hosts, very few have had their biochemical function defined. The gene encoding the lipoprotein MslA in Mycoplasma gallisepticum has recently been shown to be required for virulence, but the biochemical function of this gene is not known. Although this gene has no significant sequence similarity to any gene of known function, it is located within an operon in M. gallisepticum that contains a homolog of a gene previously shown to be a nonspecific exonuclease. We mutagenized both genes to facilitate expression in Escherichia coli and then examined the functions of the recombinant proteins. The capacity of MslA to bind polynucleotides was examined, and we found that the protein bound single- and double-stranded DNA, as well as single-stranded RNA, with a predicted binding site of greater than 1 nucleotide but less than or equal to 5 nucleotides in length. Recombinant MslA cleaved into two fragments in vitro, both of which were able to bind oligonucleotides. These findings suggest that the role of MslA may be to act in concert with the lipoprotein nuclease to generate nucleotides for transport into the mycoplasma cell, as the remaining genes in the operon are predicted to encode an ABC transporter. PMID:23798535

  1. Low-density lipoprotein receptor-related protein-1 facilitates heme scavenging after intracerebral hemorrhage in mice.

    PubMed

    Wang, Gaiqing; Manaenko, Anatol; Shao, Anwen; Ou, Yibo; Yang, Peng; Budbazar, Enkhjargal; Nowrangi, Derek; Zhang, John H; Tang, Jiping

    2017-04-01

    Heme-degradation after erythrocyte lysis plays an important role in the pathophysiology of intracerebral hemorrhage. Low-density lipoprotein receptor-related protein-1 is a receptor expressed predominately at the neurovascular interface, which facilitates the clearance of the hemopexin and heme complex. In the present study, we investigated the role of low-density lipoprotein receptor-related protein-1 in heme removal and neuroprotection in a mouse model of intracerebral hemorrhage. Endogenous low-density lipoprotein receptor-related protein-1 and hemopexin were increased in ipsilateral brain after intracerebral hemorrhage, accompanied by increased hemoglobin levels, brain water content, blood-brain barrier permeability and neurological deficits. Exogenous human recombinant low-density lipoprotein receptor-related protein-1 protein reduced hematoma volume, brain water content surrounding hematoma, blood-brain barrier permeability and improved neurological function three days after intracerebral hemorrhage. The expression of malondialdehyde, fluoro-Jade C positive cells and cleaved caspase 3 was increased three days after intracerebral hemorrhage in the ipsilateral brain tissues and decreased with recombinant low-density lipoprotein receptor-related protein-1. Intracerebral hemorrhage decreased and recombinant low-density lipoprotein receptor-related protein-1 increased the levels of superoxide dismutase 1. Low-density lipoprotein receptor-related protein-1 siRNA reduced the effect of human recombinant low-density lipoprotein receptor-related protein-1 on all outcomes measured. Collectively, our findings suggest that low-density lipoprotein receptor-related protein-1 contributed to heme clearance and blood-brain barrier protection after intracerebral hemorrhage. The use of low-density lipoprotein receptor-related protein-1 as supplement provides a novel approach to ameliorating intracerebral hemorrhage brain injury via its pleiotropic neuroprotective effects.

  2. Remnant lipoproteins induced proliferation of human prostate cancer cell, PC-3 but not LNCaP, via low density lipoprotein receptor.

    PubMed

    Sekine, Yoshitaka; Koike, Hidekazu; Nakano, Takamitsu; Nakajima, Katsuyuki; Takahashi, Sadao; Suzuki, Kazuhiro

    2009-07-01

    Hypertriglyceridemia has been shown to be one of the risk factors for prostate cancer. In this study, we investigated the effect of remnant lipoproteins on cell growth in prostate cancer cell lines. Remnant lipoproteins were isolated as remnant like particles (RLP) from human plasma. We used RLP for TG-rich lipoproteins and low density lipoproteins (LDL) for cholesterol-rich lipoproteins respectively and examined the effect of lipoproteins on proliferation of PC-3 and LNCaP cells using MTS assays. Moreover, we studied the effect of RLP and LDL treatment on the regulation of lipoprotein receptors in prostate cancer cells to investigate the relationship between lipoprotein-induced cell proliferation and lipoprotein receptor expression using real-time PCR, Western blotting assays and siRNA. RLP effectively induced PC-3 cell proliferation more than LDL, whereas both RLP and LDL could not induce LNCaP cell proliferation except at a higher concentration of RLP. LDL receptor (LDLr) was expressed in both prostate cancer cells but there was a sharp difference of sterol regulation between two cells. In PC-3 cells, LDL decreased the LDLr expression in some degree, but RLP did not. Meanwhile LDLr expression in LNCaP was easily downregulated by RLP and LDL. Blocking LDLr function significantly inhibited both RLP- and LDL-induced PC-3 cell proliferation. This study demonstrated that RLP-induced PC-3 cell proliferation more than LDL; however, both RLP and LDL hardly induced LNCaP cell proliferation. The differences of proliferation by lipoproteins might be involved in the regulation of LDLr expression.

  3. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes.

    PubMed Central

    Weinstock, P H; Bisgaier, C L; Aalto-Setälä, K; Radner, H; Ramakrishnan, R; Levak-Frank, S; Essenburg, A D; Zechner, R; Breslow, J L

    1995-01-01

    Lipoprotein lipase (LPL)-deficient mice have been created by gene targeting in embryonic stem cells. At birth, homozygous knockout pups have threefold higher triglycerides and sevenfold higher VLDL cholesterol levels than controls. When permitted to suckle, LPL-deficient mice become pale, then cyanotic, and finally die at approximately 18 h of age. Before death, triglyceride levels are severely elevated (15,087 +/- 3,805 vs 188 +/- 71 mg/dl in controls). Capillaries in tissues of homozygous knockout mice are engorged with chylomicrons. This is especially significant in the lung where marginated chylomicrons prevent red cell contact with the endothelium, a phenomenon which is presumably the cause of cyanosis and death in these mice. Homozygous knockout mice also have diminished adipose tissue stores as well as decreased intracellular fat droplets. By crossbreeding with transgenic mice expressing human LPL driven by a muscle-specific promoter, mouse lines were generated that express LPL exclusively in muscle but not in any other tissue. This tissue-specific LPL expression rescued the LPL knockout mice and normalized their lipoprotein pattern. This supports the contention that hypertriglyceridemia caused the death of these mice and that LPL expression in a single tissue was sufficient for rescue. Heterozygous LPL knockout mice survive to adulthood and have mild hypertriglyceridemia, with 1.5-2-fold elevated triglyceride levels compared with controls in both the fed and fasted states on chow, Western-type, or 10% sucrose diets. In vivo turnover studies revealed that heterozygous knockout mice had impaired VLDL clearance (fractional catabolic rate) but no increase in transport rate. In summary, total LPL deficiency in the mouse prevents triglyceride removal from plasma, causing death in the neonatal period, and expression of LPL in a single tissue alleviates this problem. Furthermore, half-normal levels of LPL cause a decrease in VLDL fractional catabolic rate and mild

  4. Platelet high-density lipoprotein activates transferrin-derived phagocytosis activators, MAPPs, following thrombin digestion.

    PubMed

    Sakamoto, Haruhiko; Wu, Bin; Nagai, Yumiko; Tanaka, Sumiko; Onodera, Masayuki; Ogawa, Takafumi; Ueno, Masaki

    2011-01-01

    Macromolecular activators of phagocytosis from platelets (MAPPs), transferrin-derived phagocytosis activators released from platelets, activate leukocytic phagocytosis via Fcγ receptors. It has been found that MAPPs can be prepared using stored platelets or their lysate. Using this artificial MAPP production system, it has been found that they can be produced from precursors (tetrameric and dimeric transferrins) following reaction with a low-molecular-weight (LMW) activator of MAPPs, which is liberated from a high-molecular-weight activator of MAPP (HMW activator) by reaction with thrombin. In this study, the HMW activator in platelet lysate was characterized by assaying phagocytosis of washed neutrophils. In an ultracentrifugation study of the platelet lysate, HMW activator activity was observed in the fraction corresponding to the density of high-density lipoprotein (HDL). The activity was observed in the apolipoproteins obtained from the HDL fraction. Among the apolipoproteins tested only apolipoprotein CIII showed the activity to produce MAPP in vitro. Affinity chromatography of the apolipoproteins from the HDL fraction of the platelet lysate using an anti-apolipoprotein CIII column revealed that the substance that binds with the antibody showed MAPP-forming activity. In a gel filtration study of thrombin-treated apolipoprotein CIII, a peak of LMW activator activity was observed for fractions with a molecular size smaller than that of apolipoprotein CIII. Finally, MAPP-forming activity of HDL obtained from the plasma was examined. MAPP was formed only when delipidized HDL was used. In conclusion, it is suggested that platelet HDL is the HMW activator and that this activation is achieved via apolipoprotein CIII after thrombin reaction in platelets.

  5. [PCSK9: Structure and function. PCSK9 and low-density lipoprotein receptor. Mutations and their effects].

    PubMed

    Pedro-Botet, Juan; Badimón, Lina

    2016-05-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLr) and then targets it for lysosomal degradation in cells, thus preventing LDLr from recycling back to the hepatocyte surface, with a consequent decrease in LDLr density and clearance of LDL-cholesterol (LDLc). There have been reports of both gain-of-function mutations in the PCSK9 gene that cause a marked increase in LDLc conentrations and loss-of-function mutations, which lead to modest reductions in LDLc and low rates of coronary heart disease. The PCSK9 gene has become a promising therapeutic target to reduce blood cholesterol levels. This review discusses the most interesting recent data on PCSK9 regulation and its molecular function in cholesterol homeostasis.

  6. [THE LIPOLYSIS IN PHYLOGENETICALLY EARLY LIPOPROTEINS OF LOW DENSITY AND MORE LATER LIPOPROTEINS OF VERY LOW DENSITY: FUNCTION AND DIAGNOSTIC VALUE OF APOE AND APOC-III].

    PubMed

    Rozhkova, T A; Titov, V N; Amelyushkina, V A; Kaba, S I; Kukhartchuk, V V

    2015-12-01

    According to phylogenetic theory of general pathology, the function of low density lipoproteins (LDL) and hydrolysis of triglycerides (TG) in them under the effect of hepatic glycerol hydrolase apoC-III (HGH) developed at much earlier stages of phylogenesis than functioning of insulin-dependent phylogenetically late very low density lipoproteins (VLDL). For millions ofyears, lipolysis and HGH+apoC-III have activated transfer of polyenic fatty acids (FA) in the form of cholesteryl polyesters (CLE) from high density lipoproteins (HDL) to linoleic and linolenic LDL under the effect of cholesteryl ester transfer protein. It is reasonable to suggest that hepatocytes physiologically secrete oleic and palmitic VLDL and linoleic and linolenic LDL. Cells uptake ligand oleic and palmitic VLVL by apoE/B-100 receptor-mediated endocytosis. Physiologically, VLDL are not converted to LDL. If hepatocytes secrete palmitic VLDL in greater amounts than oleic VLDL upon slow hydrolysis ofpalmitic TG and under the effect of postheparinic lipoprotein lipase+apoC-II, only some proportion of palmitic TG is uptaken by cells as VLDL, and the rest is converted in ligand-free palmitic LDL These LDL increase plasma contents of TG and LDL-cholesterol and form small dense palmitic LDL. Expression of HGH+apoC-III synthesis compensates TG hydrolysis in nonphysiological palmitic LDL. In vivo, apoC-III is neither physiological no pathological inhibitor of lipolysis. Increase in plasma apoC-III content is an indicator of accumulation of non-physiological palmitic LDL and atherosclerosis-atheromatosis risk factor ApoE content ofpalmitic LDL increases together with apoC-III, i.e., apoE in ligand VLDL is not internalized via apoE/B-100 endocytosis. An increase in apoC-III and apoE contents are reliable in vivo tests for the rise inpalmitic FA, palmitic TG and excessive secretion of palmitic VLDL by hepatocytes. ApoC-III and apoE contents in LDL are additional tests to evaluate the efficiency of

  7. Orange juice decreases low-density lipoprotein cholesterol in hypercholesterolemic subjects and improves lipid transfer to high-density lipoprotein in normal and hypercholesterolemic subjects.

    PubMed

    Cesar, Thais B; Aptekmann, Nancy P; Araujo, Milena P; Vinagre, Carmen C; Maranhão, Raul C

    2010-10-01

    Orange juice (OJ) is regularly consumed worldwide, but its effects on plasma lipids have rarely been explored. This study hypothesized that consumption of OJ concentrate would improve lipid levels and lipid metabolism, which are important in high-density lipoprotein (HDL) function in normolipidemic (NC) and hypercholesterolemic (HCH) subjects. Fourteen HCH and 31 NC adults consumed 750 mL/day OJ concentrate (1:6 OJ/water) for 60 days. Eight control subjects did not consume OJ for 60 days. Plasma was collected before and on the last day for biochemical analysis and an in vitro assay of transfers of radioactively labeled free-cholesterol, cholesteryl esters, phospholipids, and triglycerides from lipoprotein-like nanoemulsions to HDL. Orange juice consumption decreased low-density lipoprotein cholesterol (160 ± 17 to 141 ± 26 mg/dL, P < .01) in the HCH group but not in the NC group. HDL-cholesterol and triglycerides remained unchanged in both groups. Free-cholesterol transfer to HDL increased (HCH: 4.4 ± 2 to 5.6 ± 1%, NC: 3.2 ± 2 to 6.2 ± 1%, P< .05) whereas triglyceride (HCH 4.9 ± 1 to 3.1 ± 1%, NC 4.4 ± 1 to 3.4 ± 1%, P< .05) and phospholipid (HCH 21.6 ± 2 to 18.6 ± 3%, NC 20.2 ± 2 to 18.4 ± 2%, P < .05) transfers decreased in both groups. Cholesteryl-ester transfer decreased only in HCH (3.6 ± 1 to 3.1 ± 1%, P < .05), but not in NC. In control subjects, plasma lipids and transfers were unaltered for 60 days. Thus, by decreasing atherogenic low-density lipoprotein cholesterol in HCH and increasing HDL ability to take up free cholesterol in HCH and NC, OJ may be beneficial to both groups as free-cholesterol transfer to HDL is crucial for cholesterol esterification and reverse cholesterol transport.

  8. Site-directed lipid modification of IgG-binding protein by intracellular bacterial lipoprotein process.

    PubMed

    Shigematsu, H; Ebihara, T; Yanagida, Y; Haruyama, T; Kobatake, E; Aizawa, M

    1999-09-24

    IgG-binding protein was genetically expressed and lipid-modified in a site-directed manner in Escherichia coli. The DNA sequence encoding the signal peptide and the nine N-terminal amino acid residues of the major lipoprotein of E. coli (lpp) was fused to the sequence of B-domain which was one of the IgG binding domains of Staphylococcal Protein A (SpA). The N-terminal cysteine residue of the resulting protein was enzymatically linked with lipids in the bacterial membrane. The lipid-modified protein was translocated at the bacterial membrane in a manner similar to native bacterial lipoprotein, and it was purified with IgG-Sepharose by affinity chromatography. The lipid modified proteins (lppB1 and lppB5) showed a similar IgG binding activity to unmodified proteins, which was estimated by competitive ELISA. Proteoliposomes of lipid modified proteins were prepared in an elegant fashion so that the IgG binding site should be properly oriented on the surface of an individual liposome by anchoring the lipid-tail into the hydrophobic layer of the liposome membrane. As compared with the unmodified one, the lipid modified protein incorporated into the proteoliposome exhibited higher IgG binding activity.

  9. Normalisation of the composition of very low density lipoprotein in hypertriglyceridemia by nicotinic acid.

    PubMed

    Tornvall, P; Hamsten, A; Johansson, J; Carlson, L A

    1990-10-01

    Large (Sf greater than 100) and small (Sf 100-20) very low density lipoprotein (VLDL) particles were isolated by density gradient ultracentrifugation and characterized chemically in 8 patients with primary hypertriglyceridemia before and after 6 weeks treatment with 4 grammes daily of nicotinic acid (NA). Concomitant changes in high density lipoprotein (HDL) subclass distribution were determined by gradient gel electrophoresis. Small VLDL was subjected to lipolysis in vitro by incubation with bovine lipoprotein lipase before and after NA, and the change in the lipolytic end-product isolated in the low density lipoprotein (LDL) fraction was investigated. Reductions were achieved in the plasma levels of triglycerides, free and esterified cholesterol, phospholipids and proteins in the two VLDL subfractions. In all, the composition of both large and small VLDL particles changed towards potentially less atherogenic particles that were poorer in cholesteryl esters. The HDL cholesterol concentration increased and the HDL protein distribution on gradient gel electrophoresis changed towards larger particles. The mechanism behind the change in cholesterol distribution between VLDL and HDL after NA treatment is unclear, but it could possibly relate to decreased lipid transfer activity. NA reduced the content of apolipoprotein B in both VLDL subclasses and did not decrease the calculated particle size or the number of triglyceride molecules per particle, indicating a reduction of VLDL particle number rather than of particle size. The LDL density fraction isolated after lipolysis in vitro of small VLDL contained less total cholesterol and phospholipids and had a density profile more similar to native LDL after the patients had been treated with NA.

  10. Protein components of very low density lipoproteins from hen's egg yolk.

    PubMed

    Bengtsson, G; Marklung, S E; Olivecrona, T

    1977-09-15

    Egg yolk lipoproteins of very low density were found to contain proteins with cofactor activity for lipoprotein lipase. When delipidated very low density lipoproteins were dissolved in 10 mM HCl and fractionated by gel filtration about two thirds of the protein were in several components with estimated molecular weights of 60000 to more than 170000. The major low-molecular-weight proteins were the dimeric and monomeric forms of a previously characterized 9000-dalton peptide. The cofactor activity was not associated with any of these major proteins. A large-scale fractionation method was developed by which two proteins fractions with cofactor activity for lipoprotein lipase were purified more than thousand-fold. One fraction had a molecular size of about 9000 daltons and the other had a size of about 5000 daltons. Both these fractions could be further separated on the basis of charge into several fractions with cofactor activity. The cofactor proteins were relatively soluble both at high and at low pH. The retained their cofactor activity after denaturation in guanidinium hydrochloride and after reduction. During the initial steps in the purification of the cofactor proteins another low-molecular-weight protein followed the cofactors. It had a single 17500-dalton peptide chain and was present in four variants, three of which contained carbohydrate.

  11. Low-density lipoprotein cholesterol and the risk of dementia with stroke.

    PubMed

    Moroney, J T; Tang, M X; Berglund, L; Small, S; Merchant, C; Bell, K; Stern, Y; Mayeux, R

    1999-07-21

    Next to Alzheimer disease, vascular dementia is the second most common form of dementia in the elderly, yet few specific risk factors have been identified. To investigate the relationship of plasma lipids and lipoproteins to dementia with stroke. Prospective longitudinal community-based study over a 7-year period (1991-1998). A total of 1111 nondemented participants (mean [SD] age, 75.0 [5.9] years) were followed up for an average of 2.1 years (range, 1-7.8 years). Incident dementia with stroke according to standardized criteria, by baseline levels of total plasma cholesterol and triglycerides, low-density lipoprotein (LDL) cholesterol, LDL levels corrected for lipoprotein(a), high-density lipoprotein cholesterol, lipoprotein(a), and apolipoprotein E genotype. Two hundred eighty-six (25.7%) of the 1111 subjects developed dementia during follow-up; 61 (21.3%) were classified as having dementia with stroke and 225 (78.7%) as having probable Alzheimer disease. Levels of LDL cholesterol were significantly associated with an increased risk of dementia with stroke. Compared with the lowest quartile, the highest quartile of LDL cholesterol was associated with an approximately 3-fold increase in risk of dementia with stroke, adjusting for vascular risk factors and demographic variables (relative risk [RR], 3.1; 95% confidence interval [CI], 1.5-6.1). Levels of LDL corrected for lipoprotein(a) were an even stronger predictor of dementia with stroke in the adjusted multivariate analysis. Compared with the lowest quartile, the RR of dementia with stroke for the highest quartile of lipoprotein(a)-corrected LDL cholesterol was 4.1 (95% CI, 1.8-9.6) after adjusting for vascular factors and demographic variables. Lipid or lipoprotein levels were not associated with the development of Alzheimer disease in our cohort. Elevated levels of LDL cholesterol were associated with the risk of dementia with stroke in elderly patients. Further study is needed to determine whether treatment

  12. [Beta amyloid in blood and cerebrospinal fluid is associated with high density lipoproteins].

    PubMed

    Kudinova, N V; Kudinov, A R; Berezov, T T

    1996-01-01

    Cerebrovascular and parenchymal amyloid deposits found in brains of Alzheimer's disease, Down's syndrome and normal aging are mainly composed of aggregated amyloid beta protein (A beta), a unique peptide 39 to 44 amino acids long. A similar but soluble A beta (s A beta) has been identified in plasma, cerebrospinal fluid (CSF) and cell supernatants, indicating that it is a normal protein. We report here that s A beta in normal human plasma and CSF is complexed to high density lipoprotein (HDL) 3 and very high density lipoprotein (VHDL). Biotinylated synthetic peptide A beta 1-40 was traced in normal human plasma in in vitro experiments. Both tracer biotin-labeled A beta 1-40 and native s A beta were specifically recovered in HDL3 and VHDL as it was assessed in immunoprecipitation experiments of purified plasma lipoproteins and lipoprotein depleted plasma. This fact prompted us to ascertain whether the interaction of s A beta with HDL does occur in normal human CSF in vivo. For this purpose normals human CSF was fractionated by means of sequential flotation ultracentrifugation. The presence of s A beta in the resulting lipoprotein fractions as well as in the lipoprotein depleted CSF was analysed by immunoblot analysis, electron and immune-electron microscopy and native size exclusion chromatography. Immunoblot analysis with 6E10 monoclonal anti-A beta antibodies revealed s A beta association with all HDL subspecies of CSF, primarily HDL3 and VHDL and immunoelectron microscopy confirmed an association of s A beta with CSF-HDL particles of 16.8 + 3.2 nm. Native size exclusion chromatography followed by immunoblot analysis with antibodies against A beta and different apoliproproteins indicated an association of s A beta with HDL complexes of approximately 200 kDa molecular weight. Soluble A beta association with HDL3 and VHDL may be involved in maintaining the solubility of A beta in biological fluids and points to a possible role of lipoproteins and lipoprotein lipid

  13. Apolipoprotein E mediates enhanced plasma high-density lipoprotein cholesterol clearance by low-dose streptococcal serum opacity factor via hepatic low-density lipoprotein receptors in vivo.

    PubMed

    Rosales, Corina; Tang, Daming; Gillard, Baiba K; Courtney, Harry S; Pownall, Henry J

    2011-08-01

    Recombinant streptococcal serum opacity factor (rSOF) mediates the in vitro disassembly of human plasma high-density lipoprotein (HDL) into lipid-free apolipoprotein (apo) A-I, a neo-HDL that is cholesterol poor, and a cholesteryl ester-rich microemulsion (CERM) containing apoE. Given the occurrence of apoE on the CERM, we tested the hypothesis that rSOF injection into mice would reduce total plasma cholesterol clearance via apoE-dependent hepatic low-density lipoprotein receptors (LDLR). rSOF (4 μg) injection into wild-type C57BL/6J mice formed neo-HDL, CERM, and lipid-free apoA-I, as observed in vitro, and reduced plasma total cholesterol (-43%, t(1/2)=44±18 minutes) whereas control saline injections had a negligible effect. Similar experiments with apoE(-/-) and LDLR(-/-) mice reduced plasma total cholesterol ≈0% and 20%, respectively. rSOF was potent; injection of 0.18 μg of rSOF produced 50% of maximum reduction of plasma cholesterol 3 hours postinjection, corresponding to a ≈0.5-mg human dose. Most cholesterol was cleared hepatically (>99%), with rSOF treatment increasing clearance by 65%. rSOF injection into mice formed a CERM that was cleared via hepatic LDLR that recognize apoE. This reaction could provide an alternative mechanism for reverse cholesterol transport.

  14. Detection of haptoglobin in the high-density lipoprotein and the very high-density lipoprotein fractions from sera of calves with experimental pneumonia and cows with naturally occurring fatty liver.

    PubMed

    Katoh, N; Nakagawa, H

    1999-02-01

    In addition to the lipoprotein-deficient d > 1.25 fraction, haptoglobin was detected in the high-density lipoprotein (HDL) and the very high-density lipoprotein (VHDL) fractions from sera of calves with experimental pneumonia and cows with naturally occurring fatty liver. It was not found in the chylomicrons, very low-density lipoprotein and low-density lipoprotein fractions. Washing of the HDL fraction did not decrease the haptoglobin concentration. Transferrin and immunoglobulin G were immunoblotted to examine the possibility of contamination of the lipoprotein fractions by the d > 1.25 fraction. The two serum proteins were detected only in the d > 1.25 fraction, not in any lipoprotein fractions. The distribution pattern of haptoglobin in the lipoprotein fractions was distinct from that of serum albumin. Concentrations of haptoglobin in the HDL fractions from pneumonic sera were largely proportional to those in whole sera. Cholesteryl ester concentrations were decreased in sera from calves with pneumonia, as in cows with fatty liver. A protein immunologically related to hemoglobin was also detected in particular in the VHDL fractions from sera of both groups. These results suggest that haptoglobin or a complex with the hemoglobin-like protein may have a role or roles related to the lipid metabolism.

  15. Effect of phytosterols on copper lipid peroxidation of human low-density lipoproteins.

    PubMed

    Ferretti, Gianna; Bacchetti, Tiziana; Masciangelo, Simona; Bicchiega, Virginia

    2010-03-01

    Phytosterols and stanols have received much attention in the past several years because of their cholesterol-lowering properties, and several studies have shown a protective effect against cardiovascular disease and colon and breast cancer development. A significant decrease of plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B has been demonstrated in subjects whose diet was supplemented with 2g/d of plant sterols. Changes in plasma lipoprotein levels were associated with a decrease of oxidized LDL, suggesting that plant sterols could exert an antioxidant effect. The aim of the present study was to further investigate the interaction between the major dietary phytosterols and plasma lipoproteins. Moreover, their antioxidant effect against in vitro-induced lipid peroxidation of human LDL was investigated. Susceptibility to copper-induced lipid peroxidation was investigated in LDLs isolated from plasma of normolipemic subjects. Concentrations of beta-sitosterol, campesterol, and stigmasterol ranging from 5 to 50 microM were studied. Analyses of the emission fluorescence spectra of tryptophan and of the probe 6-dodecanoyl-2-dimethyl-aminoaphthalene were used to investigate the effect of phytosterols on apoprotein structure and physicochemical properties of LDL. Our results demonstrated that phytosterols exert an inhibitory effect against copper-induced lipid peroxidation of LDLs, as shown by the lowered levels of conjugated dienes in oxidized lipoproteins incubated with different concentrations of plant sterols (5-50 microM). Moreover, analysis of fluorescence emission spectra of tryptophan and 6-dodecanoyl-2-dimethyl-aminoaphthalene demonstrated that phytosterols prevent the alterations of apoprotein structure and physicochemical properties associated with copper-triggered lipid peroxidation of lipoproteins. We suggest that the effect exerted by beta-sitosterol, stigmasterol, and campesterol against lipid peroxidation of LDL possibly related to

  16. Association of High-Density Lipoprotein Subclasses with Chronic Kidney Disease Progression, Atherosclerosis, and Klotho

    PubMed Central

    2016-01-01

    Background Atherosclerosis is often a complication of chronic kidney disease (CKD) because of dyslipidemia and CKD-mineral and bone disorder. High-density lipoproteins (HDLs) are grouped into various subclasses composed of multiple proteins and lipids, and their transformation is altered in CKD. We investigated the roles of lipoprotein subclasses in CKD progression, and atherosclerosis, and the relationships with Klotho and fibroblast growth factor (FGF) 23. Methods Seventy-one CKD patients were enrolled in this prospective cohort study in Japan. The proportions of cholesterol level to total cholesterol level (cholesterol proportion) and lipoprotein particle numbers in 20 lipoprotein fractions were measured by a newly developed high-performance gel permeation chromatography. Results Diabetic nephropathy was observed in 23.9% of the patients. The mean age was 75.0 years and estimated glomerular filtration rate (eGFR) was 17.2 ml/min./1.73m2. The lipoprotein particle numbers in small HDLs were higher in Stage 4 group than in Stage 5 group (p = 0.002). Multivariate regression analysis adjusted for baseline characteristics showed that the cholesterol proportions in very small HDLs were associated with eGFR change rate [F19 β = -17.63, p = 0.036] and ABI [F19 β = 0.047, p = 0.047] in Stage 4 group, and that serum soluble α-Klotho level was associated with the lipoprotein particle numbers in very small HDLs [F19 β = 0.00026, p = 0.012; F20 β = 0.00041, p = 0.036] in Stage 5 group. Conclusions This study showed that HDL subclasses are associated with CKD progression, ABI, and Klotho level in CKD-stage-specific manner. PMID:27861640

  17. Effect of oxidation on the structure of human low- and high-density lipoproteins.

    PubMed

    Oliveira, Cristiano L P; Santos, Priscila R; Monteiro, Andrea M; Figueiredo Neto, Antonio M

    2014-06-17

    This work presents a controlled study of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) structural changes due to in vitro oxidation with copper ions. The changes were studied by small-angle x-ray scattering (SAXS) and dynamic light scattering (DLS) techniques in the case of LDL and by SAXS, DLS, and Z-scan (ZS) techniques in the case of HDL. SAXS data were analyzed with a to our knowledge new deconvolution method. This method provides the electron density profile of the samples directly from the intensity scattering of the monomers. Results show that LDL particles oxidized for 18 h show significant structural changes when compared to nonoxidized particles. Changes were observed in the electrical density profile, in size polydispersity, and in the degree of flexibility of the APO-B protein on the particle. HDL optical results obtained with the ZS technique showed a decrease of the amplitude of the nonlinear optical signal as a function of oxidation time. In contrast to LDL results reported in the literature, the HDL ZS signal does not lead to a complete loss of nonlinear optical signal after 18 h of copper oxidation. Also, the SAXS results did not indicate significant structural changes due to oxidation of HDL particles, and DLS results showed that a small number of oligomers formed in the sample oxidized for 18 h. All experimental results for the HDL samples indicate that this lipoprotein is more resistant to the oxidation process than are LDL particles.

  18. Patients with Rheumatoid Arthritis Show Altered Lipoprotein Profiles with Dysfunctional High-Density Lipoproteins that Can Exacerbate Inflammatory and Atherogenic Process

    PubMed Central

    Kim, Jae-Yong; Lee, Eun-Young; Park, Jin Kyun; Song, Yeong Wook; Kim, Jae-Ryong; Cho, Kyung-Hyun

    2016-01-01

    Objective In order to identify putative biomarkers in lipoprotein, we compared lipid and lipoprotein properties between rheumatoid arthritis (RA) patients and control with similar age. Methods We analyzed four classes of lipoproteins (VLDL, LDL, HDL2, HDL3) from both male (n = 8, 69±4 year-old) and female (n = 25, 53±7 year-old) rheumatoid arthritis (RA) patients as well as controls with similar age (n = 13). Results Although RA group showed normal levels of total cholesterol (TC), low-density lipoprotein (LDL)-cholesterol, and glucose, however, the RA group showed significantly reduced high-density lipoprotein (HDL)-C level and ratio of HDL-C/TC. The RA group showed significantly elevated levels of blood triglyceride (TG), uric acid, and cholesteryl ester transfer protein (CETP) activity. The RA group also showed elevated levels of advanced glycated end (AGE) products in all lipoproteins and severe aggregation of apoA-I in HDL. As CETP activity and TG contents were 2-fold increased in HDL from RA group, paraoxonase activity was reduced upto 20%. Electron microscopy revealed that RA group showed much less HDL2 particle number than control. LDL from the RA group was severely oxidized and glycated with greater fragmentation of apo-B, especially in female group, it was more atherogenic via phagocytosis. Conclusion Lipoproteins from the RA patients showed severely altered structure with impaired functionality, which is very similar to that observed in coronary heart patients. These dysfunctional properties in lipoproteins from the RA patients might be associated with high incidence of cardiovascular events in RA patients. PMID:27736980

  19. Patients with Rheumatoid Arthritis Show Altered Lipoprotein Profiles with Dysfunctional High-Density Lipoproteins that Can Exacerbate Inflammatory and Atherogenic Process.

    PubMed

    Kim, Jae-Yong; Lee, Eun-Young; Park, Jin Kyun; Song, Yeong Wook; Kim, Jae-Ryong; Cho, Kyung-Hyun

    2016-01-01

    In order to identify putative biomarkers in lipoprotein, we compared lipid and lipoprotein properties between rheumatoid arthritis (RA) patients and control with similar age. We analyzed four classes of lipoproteins (VLDL, LDL, HDL2, HDL3) from both male (n = 8, 69±4 year-old) and female (n = 25, 53±7 year-old) rheumatoid arthritis (RA) patients as well as controls with similar age (n = 13). Although RA group showed normal levels of total cholesterol (TC), low-density lipoprotein (LDL)-cholesterol, and glucose, however, the RA group showed significantly reduced high-density lipoprotein (HDL)-C level and ratio of HDL-C/TC. The RA group showed significantly elevated levels of blood triglyceride (TG), uric acid, and cholesteryl ester transfer protein (CETP) activity. The RA group also showed elevated levels of advanced glycated end (AGE) products in all lipoproteins and severe aggregation of apoA-I in HDL. As CETP activity and TG contents were 2-fold increased in HDL from RA group, paraoxonase activity was reduced upto 20%. Electron microscopy revealed that RA group showed much less HDL2 particle number than control. LDL from the RA group was severely oxidized and glycated with greater fragmentation of apo-B, especially in female group, it was more atherogenic via phagocytosis. Lipoproteins from the RA patients showed severely altered structure with impaired functionality, which is very similar to that observed in coronary heart patients. These dysfunctional properties in lipoproteins from the RA patients might be associated with high incidence of cardiovascular events in RA patients.

  20. Beta very low density lipoprotein and clathrin-coated vesicles co-localize to microvilli in pigeon monocyte-derived macrophages.

    PubMed Central

    Landers, S. C.; Jones, N. L.; Williams, A. S.; Lewis, J. C.

    1993-01-01

    Macrophages derived from blood monocytes are key in the development of atherosclerosis, as monocyte migration into the intima and accumulation of cholesterol leads to foam cell formation. To investigate the relationship between lipoprotein binding and the distribution of clathrin-coated endocytic vesicles, monocyte-derived macrophages were exposed in vitro to beta very low density lipoprotein (beta VLDL), conjugated to colloidal gold, and later were processed for immuno-electron microscopy to localize clathrin-coated vesicles. The immunolocalization was done in conjunction with either cryosectioning or whole mount intermediate voltage electron microscopy. Preferential binding of beta VLDL on small membrane ruffles and microvilli was quantitatively verified. Clathrin-coated vesicles were distributed throughout the cell; however, clusters of microvilli were associated with both a high concentration of coated vesicles and lipoprotein. Small membrane ruffles were not associated with clathrin-coated vesicles. These data support our hypothesis that endocytosis of beta VLDL near microvilli involves coated vesicles, whereas endocytosis of beta VLDL near ruffles is not mediated by coated endocytic vesicles. Furthermore, the association of coated vesicles with microvilli but not membrane ruffles may be important in understanding ligand trafficking within the cell. Given the distribution of coated vesicles within the cell, it is possible that the site of lipoprotein binding may determine the mechanism of entry into the cell and the metabolic effects of the internalized ligand. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8494058

  1. Synthetic low-density lipoprotein (sLDL) selectively delivers paclitaxel to tumor with low systemic toxicity

    PubMed Central

    Su, Hai-Tao; Li, Xin; Liang, De-Sheng; Qi, Xian-Rong

    2016-01-01

    Low density lipoprotein (LDL), which is a principal carrier for the delivery of cholesterol, has been used as a great candidate for the delivery of drugs to tumor based on the great requirements for cholesterol of many cancer cells. Mimicking the structure and composition of LDL, we designed a synthetic low-density lipoprotein (sLDL) to encapsulate paclitaxel-alpha linolenic acid (PALA) for tumor therapy. The PALA loaded sLDL (PALA-sLDL) and PALA-loaded microemulsion (PALA-ME, without the binding domain for LDLR) displayed uniform sizes with high drug loading efficiency (> 90%). In vitro studies demonstrated PALA-sLDL exhibited enhanced cellular uptake capacity and better cytotoxicity to LDLR over-expressed U87 MG cells as compared to PALA-ME. The uptake mechanisms of PALA-sLDL were involved in a receptor mediated endocytosis and macropinocytosis. Furthermore, the in vivo biodistribution and tumor growth inhibition studies of PALA-sLDL were investigated in xenograft U87 MG tumor-bearing mice. The results showed that PALA-sLDL exhibited higher tumor accumulation than PALA-ME and superior tumor inhibition efficiency (72.1%) compared to Taxol® (51.2%) and PALA-ME (58.8%) but with lower toxicity. These studies suggested that sLDL is potential to be used as a valuable carrier for the selective delivery of anticancer drugs to tumor with low systemic toxicity. PMID:27409176

  2. Low-density lipoprotein and apolipoprotein B: clinical use in patients with coronary heart disease.

    PubMed

    Cromwell, William C; Barringer, Thomas A

    2009-11-01

    Managing low-density lipoprotein (LDL) is an integral part of clinical practice. What remains controversial is whether we are using the best measure of LDL quantity for this purpose. Historically, the cholesterol content of LDL particles (LDLC) has been used to express LDL quantity. However, because of variability in the cholesterol carried in LDL particles, frequent disagreement occurs between LDLC and particle measures of LDL quantity, including apolipoprotein B-100 (apo B) or nuclear magnetic resonance (NMR) LDL particle number (LDL-P). Studies consistently demonstrate apo B and LDL-P are superior predictors of coronary heart disease (CHD) risk and superior indicators of low CHD risk on lipid-lowering therapy. Recent recommendations advocate that, in addition to LDLC and non-high-density lipoprotein cholesterol, apo B (or NMR LDL-P) be used as a target of therapy. This article reviews the rationale supporting these recommendations and provides a model for integrating LDL particle measures in clinical practice.

  3. A dietary portfolio: maximal reduction of low-density lipoprotein cholesterol with diet.

    PubMed

    Kendall, Cyril W C; Jenkins, David J A

    2004-11-01

    Over the past two decades, cholesterol-lowering drugs have proven to be effective and have been found to significantly reduce the risk of coronary heart disease (CHD). However, diet and lifestyle factors are still recognized as the first line of intervention for CHD risk reduction by the National Cholesterol Education Program and the American Heart Association, which now advocate use of viscous fibers and plant sterols, and soy protein and nuts, respectively. In a series of metabolically controlled studies, we have combined these four cholesterol-lowering dietary components in the same diet (ie, a dietary portfolio of cholesterol-lowering foods) in an attempt to maximize low-density lipoprotein cholesterol reduction. We have found that the portfolio diet reduced low-density lipoprotein cholesterol by approximately 30% and produced clinically significant reductions in CHD risk. These reductions were the same as found with a starting dose of a first-generation statin drug.

  4. High-density lipoprotein cholesterol (HDL-C) in cardiovascular disease: effect of exercise training.

    PubMed

    Ahn, Nayoung; Kim, Kijin

    2016-09-01

    Decreases in high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of coronary artery disease (CAD), whereas increased HDL-C levels are related to a decreased risk of CAD and myocardial infarction. Although HDL prevents the oxidation of low-density lipoprotein under normal conditions, it triggers a structural change, inhibiting antiarteriosclerotic and anti-inflammatory functions, under pathological conditions such as oxidative stress, inflammation, and diabetes. HDL can transform into various structures based on the quantitative reduction and deformation of apolipoprotein A1 and is the primary cause of increased levels of dysfunctional HDL, which can lead to an increased risk of CAD. Therefore, analyzing the structure and components of HDL rather than HDL-C after the application of an exercise training program may be useful for understanding the effects of HDL.

  5. Structural investigation of reconstituted high density lipoproteins by scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Culot, C.; Durant, F.; Lazarescu, S.; Thiry, P. A.; Vanloo, B.; Rosseneu, M. Y.; Lins, L.; Brasseur, R.

    2004-05-01

    Being able to participate in the reverse cholesterol transport (RCT), high density lipoproteins (HDL) are known to be anti-atherogenic. In order to understand such a process, it is thus essential to have a detailed knowledge of the structure and molecular organisation of HDL. Reconstituted nascent high density lipoproteins (r-HDL), consisting of synthetic phospholipids together with different apolipoproteins (apo A-I, A-IV and E), were thus analysed by scanning tunnelling microscopy (STM). Both shape and dimensions of the discoidal HDL particles measured by this technique were found in good agreement with the data available from the literature. The accuracy of the STM pictures presented in this paper enables for the first time the visualisation of the molecular organisation of such macromolecules. The arrangement of the protein as antiparallel helical segments, is consistent with the general mode of organisation of apolipoprotein/phospholipid discoidal particles previously reported.

  6. Functionalizing low-density lipoprotein nanoparticles for in vivo near-infrared optical imaging of cancer

    NASA Astrophysics Data System (ADS)

    Corbin, Ian R.; Chen, Juan; Li, Hui; Cao, Weiguo; Zheng, Gang

    2007-07-01

    Low density lipoproteins (LDL) have long been recognized as a potential delivery system for exogenous agents. Imaging agents or drugs can be attached to LDL through surface loading, protein loading or core loading methods. The LDL delivery system has received considerable attention particularly among cancer biologists as it was observed that numerous cancers over-express the low density lipoprotein receptor (LDLR). In this paper we investigate the utility of LDL to transport optical imaging contrast agents for caner detection. The method of loading fluorophores into the core of LDL is attractive as it behaves like an activatable contrast agent. Surface and protein labeled methods also prove to be effective strategies for tracing LDL nanoparticle activity. The strengths and limitations of the LDL carrier system are discussed and novel approaches for imaging cancer with LDL nanoparticles are highlighted.

  7. Low density lipoprotein receptor-related protein 1 dependent endosomal trapping and recycling of apolipoprotein E.

    PubMed

    Laatsch, Alexander; Panteli, Malamatenia; Sornsakrin, Marijke; Hoffzimmer, Britta; Grewal, Thomas; Heeren, Joerg

    2012-01-01

    Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction with apolipoprotein E (apoE). In contrast to the classical LDL degradation pathway, TRL disintegrate in peripheral endosomes, and core lipids and apoB are targeted along the endocytic pathway for lysosomal degradation. Notably, TRL-derived apoE remains within recycling endosomes and is then mobilized by high density lipoproteins (HDL) for re-secretion. The aim of this study is to investigate the involvement of LRP1 in the regulation of apoE recycling. Immunofluorescence studies indicate the LRP1-dependent trapping of apoE in EEA1-positive endosomes in human hepatoma cells. This processing is distinct from other LRP1 ligands such as RAP which is efficiently targeted to lysosomal compartments. Upon stimulation of HDL-induced recycling, apoE is released from LRP1-positive endosomes but is targeted to another, distinct population of early endosomes that contain HDL, but not LRP1. For subsequent analysis of the recycling capacity, we expressed the full-length human LRP1 and used an RNA interference approach to manipulate the expression levels of LRP1. In support of LRP1 determining the intracellular fate of apoE, overexpression of LRP1 significantly stimulated HDL-induced apoE recycling. Vice versa LRP1 knockdown in HEK293 cells and primary hepatocytes strongly reduced the efficiency of HDL to stimulate apoE secretion. We conclude that LRP1 enables apoE to accumulate in an early endosomal recycling compartment that serves as a pool for the intracellular formation and subsequent re-secretion of apoE-enriched HDL particles.

  8. Low Density Lipoprotein Receptor-Related Protein 1 Dependent Endosomal Trapping and Recycling of Apolipoprotein E

    PubMed Central

    Laatsch, Alexander; Panteli, Malamatenia; Sornsakrin, Marijke; Hoffzimmer, Britta; Grewal, Thomas; Heeren, Joerg

    2012-01-01

    Background Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction with apolipoprotein E (apoE). In contrast to the classical LDL degradation pathway, TRL disintegrate in peripheral endosomes, and core lipids and apoB are targeted along the endocytic pathway for lysosomal degradation. Notably, TRL-derived apoE remains within recycling endosomes and is then mobilized by high density lipoproteins (HDL) for re-secretion. The aim of this study is to investigate the involvement of LRP1 in the regulation of apoE recycling. Principal Findings Immunofluorescence studies indicate the LRP1-dependent trapping of apoE in EEA1-positive endosomes in human hepatoma cells. This processing is distinct from other LRP1 ligands such as RAP which is efficiently targeted to lysosomal compartments. Upon stimulation of HDL-induced recycling, apoE is released from LRP1-positive endosomes but is targeted to another, distinct population of early endosomes that contain HDL, but not LRP1. For subsequent analysis of the recycling capacity, we expressed the full-length human LRP1 and used an RNA interference approach to manipulate the expression levels of LRP1. In support of LRP1 determining the intracellular fate of apoE, overexpression of LRP1 significantly stimulated HDL-induced apoE recycling. Vice versa LRP1 knockdown in HEK293 cells and primary hepatocytes strongly reduced the efficiency of HDL to stimulate apoE secretion. Conclusion We conclude that LRP1 enables apoE to accumulate in an early endosomal recycling compartment that serves as a pool for the intracellular formation and subsequent re-secretion of apoE-enriched HDL particles. PMID:22238606

  9. Apolipoprotein AII Is a Regulator of Very Low Density Lipoprotein Metabolism and Insulin Resistance*

    PubMed Central

    Castellani, Lawrence W.; Nguyen, Cara N.; Charugundla, Sarada; Weinstein, Michael M.; Doan, Chau X.; Blaner, William S.; Wongsiriroj, Nuttaporn; Lusis, Aldons J.

    2008-01-01

    Apolipoprotein AII (apoAII) transgenic (apoAIItg) mice exhibit several traits associated with the insulin resistance (IR) syndrome, including IR, obesity, and a marked hypertriglyceridemia. Because treatment of the apoAIItg mice with rosiglitazone ameliorated the IR and hypertriglyceridemia, we hypothesized that the hypertriglyceridemia was due largely to overproduction of very low density lipoprotein (VLDL) by the liver, a normal response to chronically elevated insulin and glucose. We now report in vivo and in vitro studies that indicate that hepatic fatty acid oxidation was reduced and lipogenesis increased, resulting in a 25% increase in triglyceride secretion in the apoAIItg mice. In addition, we observed that hydrolysis of triglycerides from both chylomicrons and VLDL was significantly reduced in the apoAIItg mice, further contributing to the hypertriglyceridemia. This is a direct, acute effect, because when mouse apoAII was injected into mice, plasma triglyceride concentrations were significantly increased within 4 h. VLDL from both control and apoAIItg mice contained significant amounts of apoAII, with ∼4 times more apoAII on apoAIItg VLDL. ApoAII was shown to transfer spontaneously from high density lipoprotein (HDL) to VLDL in vitro, resulting in VLDL that was a poorer substrate for hydrolysis by lipoprotein lipase. These results indicate that one function of apoAII is to regulate the metabolism of triglyceride-rich lipoproteins, with HDL serving as a plasma reservoir of apoAII that is transferred to the triglyceride-rich lipoproteins in much the same way as VLDL and chylomicrons acquire most of their apoCs from HDL. PMID:18160395

  10. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels

    PubMed Central

    Jiang, Xian-cheng; Bruce, Can; Mar, Jefferson; Lin, Min; Ji, Yong; Francone, Omar L.; Tall, Alan R.

    1999-01-01

    It has been proposed that the plasma phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids and cholesterol from triglyceride-rich lipoproteins (TRL) into high-density lipoproteins (HDL). To evaluate the in vivo role of PLTP in lipoprotein metabolism, we used homologous recombination in embryonic stem cells and produced mice with no PLTP gene expression. Analysis of plasma of F2 homozygous PLTP–/– mice showed complete loss of phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, sphingomyelin, and partial loss of free cholesterol transfer activities. Moreover, the in vivo transfer of [3H]phosphatidylcholine ether from very-low-density proteins (VLDL) to HDL was abolished in PLTP–/– mice. On a chow diet, PLTP–/– mice showed marked decreases in HDL phospholipid (60%), cholesterol (65%), and apo AI (85%), but no significant change in non-HDL lipid or apo B levels, compared with wild-type littermates. On a high-fat diet, HDL levels were similarly decreased, but there was also an increase in VLDL and LDL phospholipids (210%), free cholesterol (60%), and cholesteryl ester (40%) without change in apo B levels, suggesting accumulation of surface components of TRL. Vesicular lipoproteins were shown by negative-stain electron microscopy of the free cholesterol– and phospholipid-enriched IDL/LDL fraction. Thus, PLTP is the major factor facilitating transfer of VLDL phospholipid into HDL. Reduced plasma PLTP activity causes markedly decreased HDL lipid and apoprotein, demonstrating the importance of transfer of surface components of TRL in the maintenance of HDL levels. Vesicular lipoproteins accumulating in PLTP–/– mice on a high-fat diet could influence the development of atherosclerosis. PMID:10079112

  11. Immunoregulation by low density lipoproteins in man. Inhibition of mitogen-induced T lymphocyte proliferation by interference with transferrin metabolism.

    PubMed Central

    Cuthbert, J A; Lipsky, P E

    1984-01-01

    Human low density lipoprotein (LDL, d = 1.020-1.050 g/ml) inhibits mitogen-stimulated T lymphocyte DNA synthesis. Because both LDL and transferrin bind to specific cell surface receptors and enter cells by the similar means of receptor-mediated endocytosis, and because transferrin is necessary for lymphocyte DNA synthesis, we investigated the possibility that LDL may inhibit mitogen-stimulated lymphocyte responses by interfering with transferrin metabolism. LDL inhibited mitogen-stimulated lymphocyte [3H]thymidine incorporation in a concentration-dependent manner. The degree of inhibition was most marked in serum-free cultures, but was also observed in serum-containing cultures. The addition of transferrin not only augmented mitogen-induced lymphocyte [3H]thymidine incorporation in serum-free medium but also completely reversed the inhibitory effect of LDL in both serum-free and serum-containing media. Similar results were obtained when lymphocyte proliferation was assayed by counting the number of cells in culture. Transferrin also reversed the inhibition of lymphocyte responses caused by very low density lipoproteins and by cholesterol. The ability of transferrin to reverse the inhibitory effect of lipoproteins was specific, in that native but not denatured transferrin was effective whereas a variety of other proteins were ineffective. These results indicate that LDL inhibits mitogen-stimulated lymphocyte responses by interfering with transferrin metabolism. LDL only inhibited lymphocyte responses after a 48-h incubation if present from the initiation of the culture. By contrast, transferrin reversed inhibition when added after 24 h of the 48-h incubation. LDL did not inhibit lymphocyte responses by nonspecifically associating with transferrin. In addition, the acquisition of specific lymphocyte transferrin receptors was not blocked by LDL. Moreover, transferrin did not prevent the binding and uptake of fluorescent-labeled LDL by activated lymphocytes

  12. Peroxisome proliferator-activated receptor-γ regulates the expression and function of very-low-density lipoprotein receptor

    PubMed Central

    Tao, Huan; Aakula, Srikanth; Abumrad, Naji N.

    2010-01-01

    Very-low-density lipoprotein receptor (VLDLR) is a member of the low-density receptor family, highly expressed in adipose tissue, heart, and skeletal muscle. It binds apolipoprotein E-triglyceride-rich lipoproteins and plays a significant role in triglyceride metabolism. PPARγ is a primary regulator of lipid metabolism in adipocytes and controls the expression of an array of genes involved in lipid trafficking in adipocytes. However, it is not known whether VLDLR is also under the control of PPARγ. In this study, we investigated the role of PPARγ in the regulation of VLDLR expression and function in vivo and in vitro. During the differentiation of 3T3-L1 preadipocytes, the levels of VLDLR protein and mRNA increased in parallel with the induction of PPARγ expression and reached maximum in mature adipocytes. Treatment of differentiated adipocytes with PPARγ agonist pioglitazone upregulated VLDLR expression in dose- and time-dependent manners. In contrast, specific inhibition of PPARγ significantly downregulated the protein level of VLDLR. Induction of VLDLR is also demonstrated in vivo in adipose tissue of wild-type (WT) mice treated with pioglitazone. In addition, pioglitazone increased plasma triglyceride-rich lipoprotein clearance and increased epididymal fat mass in WT mice but failed to induce similar effects in vldlr−/− mice. These results were further corroborated by the finding that pioglitazone treatment enhanced adipogenesis and lipid deposition in preadipocytes of WT mice, while its effect in VLDLR-null preadipocytes was significantly blunted. These findings provide direct evidence that VLDLR expression is regulated by PPARγ and contributes in lipid uptake and adipogenesis. PMID:19861583

  13. Core lipid structure is a major determinant of the oxidative resistance of low density lipoprotein.

    PubMed Central

    Schuster, B; Prassl, R; Nigon, F; Chapman, M J; Laggner, P

    1995-01-01

    The influence of thermally induced changes in the lipid core structure on the oxidative resistance of discrete, homogeneous low density lipoprotein (LDL) subspecies (d, 1.0297-1.0327 and 1.0327-1.0358 g/ml) has been evaluated. The thermotropic transition of the LDL lipid core at temperatures between 15 degrees C and 37 degrees C, determined by differential scanning calorimetry, exerted significant effects on the kinetics of copper-mediated LDL oxidation expressed in terms of intrinsic antioxidant efficiency (lag time) and diene production rate. Thus, the temperature coefficients of oxidative resistance and maximum oxidation rate showed break points at the core transition temperature. Temperature-induced changes in copper binding were excluded as the molecular basis of such effects, as the saturation of LDL with copper was identical below and above the core transition. At temperatures below the transition, the elevation in lag time indicated a greater resistance to oxidation, reflecting a higher degree of antioxidant protection. This effect can be explained by higher motional constraints and local antioxidant concentrations, the latter resulting from the freezing out of antioxidants from crystalline domains of cholesteryl esters and triglycerides. Below the transition temperature, the conjugated diene production rate was decreased, a finding that correlated positively with the average size of the cooperative units of neutral lipids estimated from the calorimetric transition width. The reduced accessibility and structural hindrance in the cluster organization of the core lipids therefore inhibits peroxidation. Our findings provide evidence for a distinct effect of the dynamic state of the core lipids on the oxidative susceptibility of LDL and are therefore relevant to the atherogenicity of these cholesterol-rich particles. PMID:7708675

  14. High-density lipoproteins induce a rapid and transient release of Ca2+ in cultured fibroblasts.

    PubMed

    Pörn, M I; Akerman, K E; Slotte, J P

    1991-10-01

    Several different cell types showed increased rates of proliferation and cholesterol mobilization in response to treatment with high-density lipoprotein (HDL). This would suggest that one main function of HDL is the activation of signal pathways in cells. In the current study we have used the fluorescent indicator fura-2 to monitor the level of cytosolic Ca2+ ([Ca2+]i) in human skin fibroblasts. Exposure of subconfluent as well as confluent fibroblasts to HDL3 (20-60 micrograms/ml) resulted in a rapid and transient increase in [Ca2+]i. Sequential additions of HDL3 resulted in diminished rises in [Ca2+]i. The transient rise in [Ca2+]i was observed with HDL prepared from plasma either by conventional ultracentrifugation or by precipitation with dextran sulphate. Chelation of the extracellular Ca2+ with EGTA prior to the addition of HDL3 did not prevent the HDL3-induced rise in [Ca2+]i, suggesting that the mobilized Ca2+ was derived mainly from intracellular stores. Covalent modification of the apoproteins of HDL3 with dimethyl suberimidate or tetranitromethane did not inhibit the HDL3-induced rise in [Ca2+]i. This indicates that the binding of HDL3 to cell surface receptors may not be necessary for the mobilization of intracellular Ca2+. Moreover, the Ca(2+)-releasing effect of HDL3 was not inhibited by the presence of albumin (1%, w/v) in the extracellular medium, suggesting that non-esterified fatty acids were not the cause of the increased [Ca2+]i. The exposure of fibroblasts to lysophosphatidic acid, a potent mitogen and Ca(2+)-releasing agent, before addition of HDL3 completely inhibited the HDL3-induced rise in [Ca2+]i. Furthermore, phorbol 12-myristate 13-acetate blocked the HDL3-induced rise in [Ca2+]i. The results of this study imply that exposure of cells to HDL generates an intracellular signal which is induced by a component of the lipid fraction.

  15. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis.

    PubMed

    Qian, Yue-Wei; Schmidt, Robert J; Zhang, Youyan; Chu, Shaoyou; Lin, Aimin; Wang, He; Wang, Xiliang; Beyer, Thomas P; Bensch, William R; Li, Weiming; Ehsani, Mariam E; Lu, Deshun; Konrad, Robert J; Eacho, Patrick I; Moller, David E; Karathanasis, Sotirios K; Cao, Guoqing

    2007-07-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease that regulates low density lipoprotein receptor (LDLR) protein levels. The mechanisms of this action, however, remain to be defined. We show here that recombinant human PCSK9 expressed in HEK293 cells was readily secreted into the medium, with the prosegment associated with the C-terminal domain. Secreted PCSK9 mediated cell surface LDLR degradation in a concentration- and time-dependent manner when added to HEK293 cells. Accordingly, cellular LDL uptake was significantly reduced as well. When infused directly into C57B6 mice, purified human PCSK9 substantially reduced hepatic LDLR protein levels and resulted in increased plasma LDL cholesterol. When added to culture medium, fluorescently labeled PCSK9 was endocytosed and displayed endosomal-lysosomal intracellular localization in HepG2 cells, as was demonstrated by colocalization with DiI-LDL. PCSK9 endocytosis was mediated by LDLR as LDLR deficiency (hepatocytes from LDLR null mice), or RNA interference-mediated knockdown of LDLR markedly reduced PCSK9 endocytosis. In addition, RNA interference knockdown of the autosomal recessive hypercholesterolemia (ARH) gene product also significantly reduced PCSK9 endocytosis. Biochemical analysis revealed that the LDLR extracellular domain interacted directly with secreted PCSK9; thus, overexpression of the LDLR extracellular domain was able to attenuate the reduction of cell surface LDLR levels by secreted PCSK9. Together, these results reveal that secreted PCSK9 retains biological activity, is able to bind directly to the LDLR extracellular domain, and undergoes LDLR-ARH-mediated endocytosis, leading to accelerated intracellular degradation of the LDLR.

  16. Direct Measurement of the Structure of Reconstituted High-Density Lipoproteins by Cryo-EM

    PubMed Central

    Murray, Stephen C.; Gillard, Baiba K.; Ludtke, Steven J.; Pownall, Henry J.

    2016-01-01

    Early forms of high-density lipoproteins (HDL), nascent HDL, are formed by the interaction of apolipoprotein AI with macrophage and hepatic ATP-binding cassette transporter member 1. Various plasma activities convert nascent to mature HDL, comprising phosphatidylcholine (PC) and cholesterol, which are selectively removed by hepatic receptors. This process is important in reducing the cholesterol burden of arterial wall macrophages, an important cell type in all stages of atherosclerosis. Interaction of apolipoprotein AI with dimyristoyl (DM)PC forms reconstituted (r)HDL, which is a good model of nascent HDL. rHDL have been used as an antiathersclerosis therapy that enhances reverse cholesterol transport in humans and animal models. Thus, identification of the structure of rHDL would inform about that of nascent HDL and how rHDL improves reverse cholesterol transport in an atheroprotective way. Early studies of rHDL suggested a discoidal structure, which included pairs of antiparallel helices of apolipoprotein AI circumscribing a phospholipid bilayer. Another rHDL model based on small angle neutron scattering supported a double superhelical structure. Herein, we report a cryo-electron microscopy-based model of a large rHDL formed spontaneously from apolipoprotein AI, cholesterol, and excess DMPC and isolated to near homogeneity. After reconstruction we obtained an rHDL structure comprising DMPC, cholesterol, and apolipoprotein AI (423:74:1 mol/mol) forming a discoidal particle 360 Å in diameter and 45 Å thick; these dimensions are consistent with the stoichiometry of the particles. Given that cryo-electron microscopy directly observes projections of individual rHDL particles in different orientations, we can unambiguously state that rHDL particles are protein bounded discoidal bilayers. PMID:26743047

  17. [Interaction of very low density lipoproteins (VLDL) with macrophages and their triboluminescence in hypercholesterolemia].

    PubMed

    Voziian, P A; Orel, V E; Baraboĭ, V A; Korniets, G V; Kholodova, Iu D

    1991-01-01

    Accumulation of cholesterol esters and triglycerides in peritoneal mice macrophages in the course of their interaction with lipoproteins of very low density (VLDL) is shown to grow considerably under conditions of hypercholesterolemia. A decrease of triboluminescence intensity characterizing the surface charge has been revealed at hypercholesterolemia both in VLDL and in the blood plasma. It is supposed that the triboluminescence method may be used for testing of the atherosclerotic process development.

  18. Identification of low density lipoprotein as a regulator of Fc receptor-mediated phagocytosis.

    PubMed Central

    Bigler, R D; Khoo, M; Lund-Katz, S; Scerbo, L; Esfahani, M

    1990-01-01

    Optimal expression of the high-affinity Fc receptor for IgG (FcRI) by the human monocyte cell line U-937 requires the presence of low density lipoprotein (LDL), and neither cholesterol nor high density lipoprotein can provide the component necessary for optimal FcRI expression. Here we show that FcR-mediated phagocytosis also requires LDL. U-937 cells were cultured in medium containing interferon gamma and either fetal calf serum (FCS) or delipidated FCS (DLFCS). The phagocytosis of IgG-coated erythrocytes was measured by a colorimetric assay. U-937 cells cultured in DLFCS medium had less than 16% of the phagocytic activity of cells cultured in normal FCS medium. Phagocytosis of IgG-coated erythrocytes could be inhibited 85% by the addition of murine IgG2a myeloma protein (5 micrograms/ml). U-937 cells cultured in DLFCS medium supplemented with pure cholesterol in ethanol (10 micrograms/ml) had only 30% of the phagocytic activity of cells grown in FCS medium. Addition of very low density lipoprotein (0.2 mg of protein per ml) to DLFCS medium also failed to increase phagocytosis. However, the addition of LDL (0.2 mg of protein per ml) to DLFCS medium restored 90% of the phagocytic activity. Since neither pure cholesterol nor very low density lipoprotein restored normal phagocytic function to U-937 cells despite a normalization of cellular cholesterol content, the restoration of phagocytosis observed with LDL replacement cannot be explained by mere delivery of cholesterol by LDL. Thus, LDL is required for the expression of FcRI and FcR-mediated phagocytosis by U-937 cells and may be an important regulator of phagocytic activity of monocytes and macrophages in vivo. PMID:2367519

  19. The Effects of Low Density Lipoproteins on Endothelial Mediated Vasoactivity in the Coronary Circulation in Swine

    DTIC Science & Technology

    1998-03-27

    low density lipoproteins ( LDL ), alters normal endothelial function in patients with atherosclerosis. The aim of this study was to investigate the...coronary artery. Significance was set at the pS;O.05 level. LDL cholesterol was significantly higher in the high cholesterol (1 16±23 mg/dl) and high...linear relationship was found between the LDL concentration and diastolic blood pressure. Acetylcholine, substance P, adenosine, and nitroglycerin

  20. Lipid and apolipoprotein distribution as a function of density in equine plasma lipoprotein.

    PubMed

    Le Goff, D; Pastier, D; Hannan, Y; Petit, E; Ayrault-Jarrier, M; Nouvelot, A

    1989-01-01

    1. Equine lipoproteins were isolated from plasma by density gradient ultracentrifugation and apolipoprotein composition determined by SDS-polyacrylamide gel electrophoresis. 2. VLDL and IDL were present at low concentration (0.2 mg/ml). Two apoB components of Mr corresponding to human apoB-100 and one apoB-48-like component were represented in VLDL fraction. 3. LDL-1 and LDL-2 subfractions have displayed an almost equal concentration (0.4 mg/ml). Two apoB-100-like components were the major apolipoproteins in each fraction. Small amounts of apoB-48-like component were detectable in LDL-1 and LDL-2. 4. HDL-2 represented a major class of equine lipoproteins (1.8 mg/ml). ApoA-1-like component was the dominant protein in HDL-1, HDL-2 and HDL-3. Dimeric apoA-II-like components were slightly represented in HDL subfractions. 5. HDL-3 displayed the same apolipoprotein pattern as HDL-1 and HDL-2, but two further minor proteins of Mr 20,000 and 14,000 were detected. 6. VHDL represented a minor class of lipoprotein (0.2 mg/ml). ApoA-I-like component was the major apolipoprotein of VHDL. Small amounts of apoA-IV-like, apoE-like, and Mr 55,000 protein were detectable. 7. ApoC-like of Mr lower than 10,000 was represented in all equine lipoprotein classes.

  1. Low-Density Lipoprotein Receptor Contributes to β-Carotene Uptake in the Maternal Liver

    PubMed Central

    Shete, Varsha; Costabile, Brianna K.; Kim, Youn-Kyung; Quadro, Loredana

    2016-01-01

    Vitamin A regulates many essential mammalian biological processes, including embryonic development. β-carotene is the main source of vitamin A in the human diet. Once ingested, it is packaged into lipoproteins, predominantly low-density lipoproteins (LDL), and transported to different sites within the body, including the liver and developing tissues, where it can either be stored or metabolized to retinoids (vitamin A and its derivatives). The molecular mechanisms of β-carotene uptake by the liver or developing tissues remain elusive. Here, we investigated the role of the LDL receptor (LDLr) in β-carotene uptake by maternal liver, placenta and embryo. We administered a single dose of β-carotene to Ldlr+/− and Ldlr−/− pregnant mice via intraperitoneal injection at mid-gestation and monitored the changes in β-carotene content among maternal lipoproteins and the liver, as well as the accumulation of β-carotene in the placental–fetal unit. We showed an abnormal β-carotene distribution among serum lipoproteins and reduced hepatic β-carotene uptake in Ldlr−/− dams. These data strongly imply that LDLr significantly contributes to β-carotene uptake in the adult mouse liver. In contrast, LDLr does not seem to mediate acquisition of β-carotene by the placental–fetal unit. PMID:27916814

  2. Low-density lipoprotein cholesterol level and statin use among Medicare beneficiaries with diabetes mellitus.

    PubMed

    Qualls, Laura G; Hammill, Bradley G; Maciejewski, Matthew L; Curtis, Lesley H; Jones, W Schuyler

    2016-05-01

    At the time of this study, guidelines recommended a primary goal of low-density lipoprotein cholesterol level less than 100 mg/dL for all patients, an optional goal of low-density lipoprotein cholesterol less than 70 mg/dL for patients with overt cardiovascular disease and statins for patients with diabetes and overt cardiovascular disease and patients 40 years and older with diabetes and at least one risk factor for cardiovascular disease. This study examined statin use and achievement of lipid goals among 111,730 Medicare fee-for-service beneficiaries 65 years and older in 2011. Three-quarters of patients met the low-density lipoprotein cholesterol goal of less than 100 mg/dL. Patients with cardiovascular disease were more likely to meet the goal than those without, not controlling for other differences. Patients on a statin were more likely to meet the goal. There is considerable opportunity for improvement in cholesterol management in high-risk patients with diabetes mellitus. © The Author(s) 2016.

  3. Practical technique to quantify small, dense low-density lipoprotein cholesterol using dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Trirongjitmoah, Suchin; Iinaga, Kazuya; Sakurai, Toshihiro; Chiba, Hitoshi; Sriyudthsak, Mana; Shimizu, Koichi

    2016-04-01

    Quantification of small, dense low-density lipoprotein (sdLDL) cholesterol is clinically significant. We propose a practical technique to estimate the amount of sdLDL cholesterol using dynamic light scattering (DLS). An analytical solution in a closed form has newly been obtained to estimate the weight fraction of one species of scatterers in the DLS measurement of two species of scatterers. Using this solution, we can quantify the sdLDL cholesterol amount from the amounts of the low-density lipoprotein cholesterol and the high-density lipoprotein (HDL) cholesterol, which are commonly obtained through clinical tests. The accuracy of the proposed technique was confirmed experimentally using latex spheres with known size distributions. The applicability of the proposed technique was examined using samples of human blood serum. The possibility of estimating the sdLDL amount using the HDL data was demonstrated. These results suggest that the quantitative estimation of sdLDL amounts using DLS is feasible for point-of-care testing in clinical practice.

  4. High density lipoprotein cholesterol in male relatives of patients with coronary heart disease.

    PubMed

    Micheli, H; Pometta, D; Jornot, C; Scherrer, J R

    1979-03-01

    To study factors that play a role in the familial occurrence of coronary heart disease, very low density lipoprotein (VLDL) triglycerides, low density lipoprotein (LDL) cholesterol and high density lipoprotein (HDL) cholesterol were measured after preparative ultracentrifugation in first degree male relatives of coronary patients and in control subjects. The HDL cholesterol concentration was significantly lower in relatives of 20--71 years old than in controls. No increase of serum and LDL cholesterol was found. A low level of HDL cholesterol was observed even in the younger relatives who are less likely to have cardiovascualr disease. In older relatives low HDL cholesterol was found in the presence or absence of clinical evidence of coronary artery disease. The HDL-cholesterol concentration was inversely related to the VLDL triglycerides both in relatives and controls, but the regression lines were different ((P less than 0.001) for the relative (y = --0.166x + 0.43) and for the controls (y = 0.191x + 0.49). A low HDL cholesterol level appears to be a marker of relatives of coronary patients.

  5. [Study on the selective removal of plasma low-density lipoprotein and fibrinogen by degraded carrageenan].

    PubMed

    Cong, Haixia; Yin, Liang; Fang, Bo; Du, Longbing; Zhao, Hui; Chen, Jingling; You, Chao

    2010-08-01

    The selective removal of low density lipoprotein (LDL) and fibrinogen (Fib) by degraded carrageenan was studied by the present authors. Degraded carrageenan was prepared by acid with carrageenan as the main material. The effects of acid conditions on the molecular weight were investigated, and the proper reaction conditions were ascertained. The results of infrared spectrometry indicated that the degraded carrageenan is a heparin-like polysaccharide. Then the selective removal of LDL/Fibrinogen by degraded carrageenan was studied. When molecular weight was about 10,000, pH was 5.10 and the concentration of degraded carrageenan was 800 mg/L, the average reduction percentages were 60.0% for total cholesterol(TC), 79.4% for LDL and very low-density lipoprotein (VLDL), and 93.8% for fibrinogen. There were no significant changes with relation to the level of high-density lipoprotein (HDL) and total protein (TP). So, degraded carrageenan was shown to be of good selectivity on plasma LDL/Fibrinogen apheresis.

  6. Alpha slow-moving high-density-lipoprotein subfraction in serum of a patient with radiation enteritis and peritoneal carcinosis

    SciTech Connect

    Peynet, J.; Legrand, A.; Messing, B.; Thuillier, F.; Rousselet, F.

    1989-04-01

    An alpha slow-moving high-density-lipoprotein (HDL) subfraction was seen in a patient presenting with radiation enteritis and peritoneal carcinosis, who was given long-term cyclic parenteral nutrition. This subfraction, observed in addition to normal HDL, was precipitated with low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) by sodium phosphotungstate-magnesium chloride. The patient's serum lipoproteins were analyzed after fractionation by density gradient ultracentrifugation. The alpha slow-moving HDL floated in the ultracentrifugation subfractions with densities ranging from 1.028 to 1.084 kg/L, and their main apolipoproteins included apolipoprotein E in addition to apolipoprotein A-I. These HDL were larger than HDL2. The pathogenesis of this unusual HDL subfraction is hypothesized.

  7. Metabolism of lipoproteins by human fetal hepatocytes

    SciTech Connect

    Carr, B.R.

    1987-12-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of (/sup 125/I)iodo-LDL and (/sup 125/I)iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. (/sup 125/I)Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas (/sup 125/I)iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues.

  8. Human pericoronary adipose tissue as storage and possible supply site for oxidized low-density lipoprotein and high-density lipoprotein in coronary artery.

    PubMed

    Uchida, Yasumi; Uchida, Yasuto; Shimoyama, Ei; Hiruta, Nobuyuki; Kishimoto, Toshihoko; Watanabe, Soichiro

    2017-01-01

    Thickening of the pericoronary adipose tissue (PCAT) is a proven risk factor for coronary artery disease, but it is poorly understood whether PCAT stores pro-atherogenic substances with oxidized low-density lipoprotein (oxLDL) and low-density lipoprotein (LDL), and an anti-atherogenic substance with high-density lipoprotein (HDL) and supply them to the coronary intima. Using immunohistochemical techniques, the localization of oxLDL, LDL and HDL in PCAT and its adjacent coronary segments was examined in 30 epicardial coronary arteries excised from 11 human autopsy cases. PCAT stored oxLDL and HDL in all, but LDL rarely, in 77 specimens examined, irrespective of the presence or absence of coronary plaques and underlying disease. The percentage (%) incidence of oxLDL, HDL and LDL deposits in intima was, respectively, 28, 10, 35 in 29 normal segments, 80 (p<0.05 vs. normal segments), 12, 75 in 19 white plaques (growth stage), 57, 36, 90 in 15 yellow plaques without necrotic core (NC; mature stage), and 40, 21, 100 (p<0.05 vs. normal segments) in 14 yellow plaques with NC (end-stage of maturation) as classified by angioscopy and histology. In coronary intima, oxLDL deposited in either a dotted or diffuse pattern whereas HDL and LDL showed diffuse patterns. Dotted oxLDL deposits were contained in CD68(+)-macrophages traversing the border of PCAT and adventitia, external and internal elastic laminae. Diffuse oxLDL and HDL deposits colocalized with intimal vasa vasorum. The results suggested that, as a hitherto unrecognized supplying route, the human PCAT stores oxLDL and HDL and oxLDL is supplied to coronary intima either by CD68(+)-macrophages or vasa vasorum and HDL by vasa vasorum, and that deposition of oxLDL and HDL in the intima increased with plaque growth but the former decreased while the latter increased further with plaque maturation. Molecular therapy targeting PCAT before plaque maturation could be effective in preventing atherosclerosis. Copyright © 2016

  9. Different zonal distribution of the asialoglycoprotein receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein and the lipoprotein-remnant receptor of rat liver parenchymal cells.

    PubMed

    Voorschuur, A H; Kuiper, J; Neelissen, J A; Boers, W; Van Berkel, T J

    1994-11-01

    Periportal and perivenous parenchymal cells were isolated by the digitonin-pulse perfusion method. The digitonin-pulse perfusion was shown to lead to selective lysis of the correct zone with a straight and sharp border of two to three cells. The mean ratios of alanine aminotransferase activity (a marker for periportal parenchymal cells) and glutamine synthetase activity (a perivenous marker) of periportal to perivenous parenchymal cells were 1.76 and 0.025 respectively. Cells were incubated in vitro with 125I-asialo-orosomucoid (ASOR), 125I-trypsin-activated alpha 2-macroglobulin (alpha 2M-T) or 125I-beta-migrating very-low-density lipoprotein (beta-VLDL), in order to determine the zonal distribution of the asialoglycoprotein receptor (ASGPr), the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein (alpha 2Mr/LRP) and the lipoprotein-remnant receptor, respectively. Maximum binding capacity for 125I-ASOR on parenchymal cells showed a periportal/perivenous ratio of 0.70. The periportal/perivenous ratio of Bmax. values of binding of 125I-alpha 2M-T to parenchymal cells was 1.51. The Bmax. values of binding of 125I-beta-VLDL, however, were about equal for both cell populations. It is concluded that the maximum binding capacity of the ASGPr on isolated periportal parenchymal cells is 0.70 times that of perivenous parenchymal cells. The 1.51-fold higher expression of the alpha 2Mr/LRP on periportal cells, compared with perivenous parenchymal cells, indicates a zonal specialization for the uptake of the suggested multiple ligands. In contrast, the observed homogeneous distribution of the lipoprotein-remnant receptor is in accordance with the suggestion that lipoprotein remnants bind to a specific receptor, which is different from the alpha 2Mr/LRP. The zonal heterogeneity in the expression of receptors suggests that receptor-dependent uptake pathways are under zonal control, leading to intrahepatic heterogeneity in the removal of ligands from

  10. Proposed mechanisms for binding of apo[a] kringle type 9 to apo B-100 in human lipoprotein[a].

    PubMed Central

    Guevara, J; Spurlino, J; Jan, A Y; Yang, C Y; Tulinsky, A; Prasad, B V; Gaubatz, J W; Morrisett, J D

    1993-01-01

    The protein component of human lipoprotein[a] consists primarily of two apolipoproteins, apo[a] and apo B-100, linked through a cystine disulfide(s). In the amino acid sequence of apo bd, Cys4057 located within a plasminogen kringle 4-like repeat sequence (3991-4068) is believed to form a disulfide bond with a specific cysteine residue in apo B-100. Our fluorescence-labeling experiments and molecular modeling studies have provided evidence for possible interactions between this apo[a] kringle type and apo B-100. The fluorescent probe, fluorescein-5-maleimide, was used in parallel experiments to label free sulfhydryl moieties in lipoprotein[a] and low-density lipoprotein (LDL). In apo B-100 of LDL, Cys3734 was labeled with the probe, but this site was not labeled in autologous lipoprotein[a]. The result strongly implicates Cys3734 of apo B-100 as the residue forming the disulfide linkage with Cys4057 of apo[a]. To explore possible noncovalent interactions between apo B-100 and apo[a], the crystallographic coordinates for plasminogen kringle 4 were used to generate molecular models of the apo[a] kringle-repeat sequence (3991-4068, LPaK9), the only plasminogen kringle 4 type repeat in apo[a] having an extra cysteine residue not involved in an intramolecular disulfide bond. The Cys4057 residue (henceforth designated as Cys67 in the LPaK9 sequence) is believed to form an intermolecular disulfide bond with a cysteine of apo B-100. In computer graphics molecular models of LPaK9, Cys67 is located on the surface of the kringle near the lysine ligand binding site. Selected segments of the LDL apo B-100 sequence that contain free sulfhydryl cysteines were subjected to energy minimization and docking with the ligand binding site and adjacent regions of the LPaK9 model. In the docking experiments, apo B-100 segment 3732-3745 (PSCKLDFREIQIYK) displayed the best fit and the largest number of van der Waals contacts with models of LPaK9. Other apo B-100 peptides with sulfhydryl

  11. Targeted deletion of hepatic CTP:phosphocholine cytidylyltransferase alpha in mice decreases plasma high density and very low density lipoproteins.

    PubMed

    Jacobs, René L; Devlin, Cecilia; Tabas, Ira; Vance, Dennis E

    2004-11-05

    CTP:phosphocholine cytidylyltransferase (CT) is the key regulatory enzyme in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. Hepatic cells express both an alpha and a beta2 isoform of CT and can also synthesize phosphatidylcholine via the sequential methylation of phosphatidylethanolamine catalyzed by phosphatidylethanolamine N-methyltransferase. To ascertain the functional importance of CTalpha, we created a mouse in which the hepatic CTalpha gene was specifically inactivated by the Cre/LoxP procedure. In CTalpha knockout mice, hepatic CT activity (due to residual CTbeta2 activity as well as activity in nonhepatic cells) was 15% of normal, whereas phosphatidylethanolamine N-methyltransferase activity was elevated 2-fold compared with controls. Lipid analyses of the liver indicated that female knockout mice had reduced phosphatidylcholine levels and accumulated triacylglycerols. The plasma phosphatidylcholine concentration was reduced in the CTalpha knockout (independent of gender), as were levels of high density lipoproteins (cholesterol and apoAI) and very low density lipoproteins (triacylglycerols and apoB100). Experiments in which mice were injected with Triton WR1339 indicated that apoB secretion was decreased in hepatic-specific CTalpha knockout mice compared with controls. These results suggest an important role for hepatic CTalpha in regulating both hepatic and systemic lipid and lipoprotein metabolism.

  12. Structural and Biochemical Basis for Polyamine Binding to the Tp0655 Lipoprotein of Treponema pallidum

    PubMed Central

    Machius, Mischa; Brautigam, Chad A.; Tomchick, Diana R.; Ward, Patrick; Otwinowski, Zbyszek; Blevins, Jon S.; Deka, Ranjit K.; Norgard, Michael V.

    2007-01-01

    Tp0655 of Treponema pallidum, the causative agent of syphilis, is predicted to be a 40-kDa membrane lipoprotein. Previous sequence analysis of Tp0655 noted its homology to polyamine-binding proteins of the bacterial PotD family, which serve as periplasmic ligand-binding proteins of ATP-binding-cassette (ABC) transport systems. In the current study, the 1.8-Å crystal structure of Tp0655 demonstrated structural homology to E. coli PotD and PotF. The latter two proteins preferentially bind spermidine and putrescine, respectively. All of these proteins contain two domains that sandwich the ligand between them. The ligand-binding site of Tp0655 can be occupied by 2-(N-morpholino)ethanesulfanoic acid, a component of the crystallization medium. To discern the polyamine binding preferences of Tp0655, the protein was subjected to isothermal titration calorimetric experiments. The titrations established that Tp0655 binds polyamines avidly, with a marked preference for putrescine (Kd = 10 nM) over spermidine (Kd = 430 nM), but the related compounds cadaverine and spermine did not bind. Structural comparisons and structure-based sequence analyses provide insights into how polyamine-binding proteins recognize their ligands. In particular, these comparisons allow the derivation of rules that may be used to predict the function of other members of the PotD family. The sequential, structural, and functional homology of Tp0655 to PotD and PotF prompt the conclusion that the former likely is the polyamine-binding component of an ABC-type polyamine transport system in T. pallidum. We thus rename Tp0655 as TpPotD. The ramifications of TpPotD as a polyamine-binding protein to the parasitic strategy of T. pallidum are discussed. PMID:17868688

  13. Catalytic stimulation by restrained active-site floppiness--the case of high density lipoprotein-bound serum paraoxonase-1.

    PubMed

    Ben-David, Moshe; Sussman, Joel L; Maxwell, Christopher I; Szeler, Klaudia; Kamerlin, Shina C L; Tawfik, Dan S

    2015-03-27

    Despite the abundance of membrane-associated enzymes, the mechanism by which membrane binding stabilizes these enzymes and stimulates their catalysis remains largely unknown. Serum paraoxonase-1 (PON1) is a lipophilic lactonase whose stability and enzymatic activity are dramatically stimulated when associated with high-density lipoprotein (HDL) particles. Our mutational and structural analyses, combined with empirical valence bond simulations, reveal a network of hydrogen bonds that connect HDL binding residues with Asn168--a key catalytic residue residing >15Å from the HDL contacting interface. This network ensures precise alignment of N168, which, in turn, ligates PON1's catalytic calcium and aligns the lactone substrate for catalysis. HDL binding restrains the overall motion of the active site and particularly of N168, thus reducing the catalytic activation energy barrier. We demonstrate herein that disturbance of this network, even at its most far-reaching periphery, undermines PON1's activity. Membrane binding thus immobilizes long-range interactions via second- and third-shell residues that reduce the active site's floppiness and pre-organize the catalytic residues. Although this network is critical for efficient catalysis, as demonstrated here, unraveling these long-rage interaction networks is challenging, let alone their implementation in artificial enzyme design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Detrimental Effect of Hypercholesterolemia on High-Density Lipoprotein Particle Remodeling in Pigs.

    PubMed

    Padró, Teresa; Cubedo, Judit; Camino, Sandra; Béjar, Maria Teresa; Ben-Aicha, Soumaya; Mendieta, Guiomar; Escolà-Gil, Joan Carles; Escate, Rafael; Gutiérrez, Manuel; Casani, Laura; Badimon, Lina; Vilahur, Gemma

    2017-07-11

    Beneficial effects of high-density lipoproteins (HDL) seem altered in patients with symptomatic cardiovascular disease. We recently demonstrated in a swine model of ischemia-reperfusion (IR) that hypercholesterolemia abolishes HDL-related cardioprotection. This study sought to investigate, using the same animal model, whether the reported impairment of HDL cardioprotective function was associated with alterations in HDL remodeling and functionality. Pigs were fed a normocholesterolemic (NC) or hypercholesterolemic (HL) diet for 10 days, reaching non-HDL cholesterol concentrations of 38.2 ± 3.5 mg/dl and 218.6 ± 27.6 mg/dl, respectively (p < 0.0001). HDLs were isolated, and lipidomics and differential proteomics tests were performed to determine HDL molecular changes. HDL functionality and particle size were determined. Using principal component analysis, we identified 255 molecular lipid species differentially clustered in NC-HDL and HL-HDL. Ninety lipid metabolites were differentially expressed, and 50 showed at least 1.5-fold variation (false discovery rate adjustment q value <0.05). HL-HDLs presented a core enriched in cholesteryl esters and a surface depleted of phosphatidylcholine species containing polyunsaturated and long-chain fatty acids, indicating the presence of mature HDL particles with low surface fluidity. Hypercholesterolemia induced an important change in HDL-transported proteins (576 spots in HL-HDL vs. 621 spots in NC-HDL). HL-HDLs showed a reduced content of lipocalin retinol binding protein 4 and apolipoprotein M and in the retinoic acid-transporter cellular retinoic acid binding protein 1 (p < 0.05 vs. NC-HDL). No changes were observed in apolipoprotein A-I content and profile. Functionally, HL-HDL showed lower antioxidant activity (-35%) and a reduced capacity to efflux cholesterol (-60%) compared to NC-HDL (p < 0.05). Hypercholesterolemia induced larger HDL particles. We demonstrate that hypercholesterolemia induces HDL lipidomic

  15. Multiple mechanisms for inhibition of low density lipoprotein oxidation by novel cyclic nitrone spin traps.

    PubMed

    Thomas, C E; Ohlweiler, D F; Kalyanaraman, B

    1994-11-11

    Oxidation of low density lipoproteins (LDL) may be a critical atherogenic event owing to the diverse array of biologic effects attributed to modified LDL. Recently, we and others have demonstrated that the lipophilic nitrone spin trap alpha-phenyl-N-tert-butyl nitrone (PBN) can inhibit Cu(2+)-dependent LDL oxidation while the related, more hydrophilic analog alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone is ineffective. Because the inhibitory activity of PBN is relatively weak as compared to hydrophobic phenolic antioxidants, we have synthesized a number of cyclic analogues of PBN that encompass a wide range of hydrophobicity and examined their ability to inhibit LDL oxidation in vitro. Formation of a six-membered ring by a bond formed from one methyl of the tert-butyl group to the aromatic ring yielded MDL 101,002, which was 3- and 24-fold more active than PBN against Cu2+ and 2,2'-azobis-2-amidinopropane hydrochloride-dependent oxidation, respectively. The effect of aromatic substituents was examined and, in general, activity positively correlated with hydrophobicity, particularly with Cu2+. Electron spin resonance (ESR) spectroscopy demonstrated that the PBN adduct in oxidized LDL is composed of a mobile component (exposed to the LDL aqueous phase) and an immobilized component, localized in the lipid-protein interface or in the bulk lipid. The most active cyclic nitrones exhibited only highly immobilized adducts, suggesting they are buried within the particle. Studies with MDL 105,185 (which is a chloro-substituted nitrone containing a seven-membered ring rather than six-membered as for MDL 101,002) demonstrated radical trapping in both the lipid and apoprotein fractions. Compounds in which a spirocyclohexyl ring was substituted for the gem-dimethyl methylene (MDL 102,832 and 101,694) formed hydrophobic Cu2+ complexes that were observed in the lipid fraction by ESR. This result was confirmed by fractionation of LDL oxidation reaction mixtures and

  16. Heparan sulfate dissociates serum amyloid A (SAA) from acute-phase high-density lipoprotein, promoting SAA aggregation.

    PubMed

    Noborn, Fredrik; Ancsin, John B; Ubhayasekera, Wimal; Kisilevsky, Robert; Li, Jin-Ping

    2012-07-20

    Inflammation-related (AA) amyloidosis is a severe clinical disorder characterized by the systemic deposition of the acute-phase reactant serum amyloid A (SAA). SAA is normally associated with the high-density lipoprotein (HDL) fraction in plasma, but under yet unclear circumstances, the apolipoprotein is converted into amyloid fibrils. AA amyloid and heparan sulfate (HS) display an intimate relationship in situ, suggesting a role for HS in the pathogenic process. This study reports that HS dissociates SAA from HDLs isolated from inflamed mouse plasma. Application of surface plasmon resonance spectroscopy and molecular modeling suggests that HS simultaneously binds to two apolipoproteins of HDL, SAA and ApoA-I, and thereby induce SAA dissociation. The activity requires a minimum chain length of 12-14 sugar units, proposing an explanation to previous findings that short HS fragments preclude AA amyloidosis. The results address the initial events in the pathogenesis of AA amyloidosis.

  17. Heparan Sulfate Dissociates Serum Amyloid A (SAA) from Acute-phase High-density Lipoprotein, Promoting SAA Aggregation*

    PubMed Central

    Noborn, Fredrik; Ancsin, John B.; Ubhayasekera, Wimal; Kisilevsky, Robert; Li, Jin-Ping

    2012-01-01

    Inflammation-related (AA) amyloidosis is a severe clinical disorder characterized by the systemic deposition of the acute-phase reactant serum amyloid A (SAA). SAA is normally associated with the high-density lipoprotein (HDL) fraction in plasma, but under yet unclear circumstances, the apolipoprotein is converted into amyloid fibrils. AA amyloid and heparan sulfate (HS) display an intimate relationship in situ, suggesting a role for HS in the pathogenic process. This study reports that HS dissociates SAA from HDLs isolated from inflamed mouse plasma. Application of surface plasmon resonance spectroscopy and molecular modeling suggests that HS simultaneously binds to two apolipoproteins of HDL, SAA and ApoA-I, and thereby induce SAA dissociation. The activity requires a minimum chain length of 12–14 sugar units, proposing an explanation to previous findings that short HS fragments preclude AA amyloidosis. The results address the initial events in the pathogenesis of AA amyloidosis. PMID:22654109

  18. Pectin isolated from prickly pear (Opuntia sp.) modifies low density lipoprotein metabolism in cholesterol-fed guinea pigs.

    PubMed

    Fernandez, M L; Trejo, A; McNamara, D J

    1990-11-01

    The effect of prickly pear soluble fiber on low density lipoprotein (LDL) metabolism was investigated by feeding male guinea pigs either a nonpurified diet containing 0.25% cholesterol (HC diet) or the HC diet + 1% prickly pear pectin (HC-P diet). Plasma cholesterol levels were significantly decreased by the HC-P diet, with a 33% decrease in LDL levels (p less than 0.02) and an increase in LDL density. Hepatic free and esterified cholesterol levels were reduced 40 and 85%, respectively (p less than 0.002), by the HC-P diet. Hepatic microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase levels were not different. 125I-LDL binding to hepatic membranes was increased 1.7-fold by the HC-P diet (p less than 0.001), with receptor affinity (Kd) being unaltered and receptor number (Bmax) being significantly increased (p less than 0.001). These data suggest that prickly pear pectin may act by a mechanism similar to that of bile acid-binding resins in lowering plasma cholesterol levels. The observed reduction in LDL and hepatic cholesterol levels and increase in LDL density and hepatic apolipoprotein B/E receptors are responses suggesting an increased demand on hepatic cholesterol from increased excretion of bile acids and interruption of the enterohepatic circulation.

  19. Total and High-Density Lipoprotein Cholesterol in Adults: National Health and Nutrition Examination Survey, 2011-2012

    MedlinePlus

    ... density Lipoprotein Cholesterol in Adults: National Health and Nutrition Examination Survey, 2011–2012 Recommend on Facebook Tweet ... Associate Director for Science Division of Health and Nutrition Examination Surveys Kathryn S. Porter, M.D., M.S., Director ...

  20. Current status and future directions in lipid management: emphasizing low-density lipoproteins, high-density lipoproteins, and triglycerides as targets for therapy.

    PubMed

    Lin, Yun; Mousa, Shaymaa S; Elshourbagy, Nabil; Mousa, Shaker A

    2010-03-03

    Current lipid management guidelines are focused on decreasing low-density lipoprotein (LDL-C) levels as the primary target for reducing coronary heart disease (CHD) risk. Yet, many recent studies suggest that low levels of high-density lipoprotein (HDL-C) are a major independent risk factor for cardiovascular diseases. According to several clinical trials, a 1% increase in HDL-C is associated with a 0.7%-3% decrease in CHD events. The direct link between high levels of triglycerides (TG) and CHD, on the other hand, is less well defined. A large reduction in TG is needed to show a difference in CHD events, especially in men. Evidence for a shift in lipid management toward targeting both LDL-C and HDL-C as primary targets for therapy is presented. Currently, the 3-hydroxy-3-methylgutaryl coenzyme A reductase inhibitors (HMG-CoA reductase inhibitors) have proven to significantly decrease LDL-C levels, reduce CHD morbidity/mortality and improve overall survival. However, improvement of survival with statins may be due to other pleiotropic effects beyond LDL-C lowering. Fibric acid derivatives and niacin are primarily used to increase HDL-C levels, although with side effects. Future therapies targeting HDL-C may have profound results on reducing CHD morbidity and mortality. This article highlights existing and future targets in lipid management and is based on available clinical data. There is an urgent need for new treatments using a combination of drugs targeting both LDL-C and HDL-C. Such treatments are expected to have a superior outcome for dyslipidemia therapy, along with TG management.

  1. Joint effect of high-density lipoprotein cholesterol and low-density lipoprotein cholesterol on the risk of coronary heart disease.

    PubMed

    Hu, Gang; Cui, Yadong; Jousilahti, Pekka; Sundvall, Jouko; Girman, Cynthia J; Antikainen, Riitta; Laatikainen, Tiina; Tuomilehto, Jaakko

    2013-02-01

    To evaluate the single and joint associations of serum high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol with coronary heart disease (CHD) risk. Study cohorts included 21,375 Finnish participants who were 25-74 years of age and free of CHD and stroke at baseline. During a median follow-up period of 10.8 years, 437 participants developed CHD. The sex- and multivariable-adjusted hazard ratios (HRs) of CHD at different levels of HDL cholesterol [<40 (reference), 40-49, 50-59, 60-69, and ≥ 70 mg/dL] were 1.00, 1.00, 0.74, 0.58, and 0.69 (p (trend) = 0.006), respectively. The sex- and multivariable-adjusted HRs of CHD at different levels of LDL cholesterol [<100 (reference), 100-129, 130-159, and ≥ 160 mg/dL] were 1.00, 1.25, 1.92, and 2.65 (p (trend) < 0.001), respectively. In joint analyses, a decreased trend in the incidence rate of CHD with an increasing HDL cholesterol level was consistent in people with any level of LDL cholesterol. Likewise, an increasing trend in incidence of CHD with an increase in the LDL cholesterol level was consistent in subjects with any level of HDL cholesterol. These results suggest an inverse association between HDL cholesterol and CHD risk and a direct association between LDL cholesterol and CHD risk, independent of other risk factors. The protective effect of HDL cholesterol on CHD risk is observed at all levels of LDL cholesterol.

  2. The role of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) in comparison with whole egg yolk for sperm cryopreservation in rhesus monkeys.

    PubMed

    Dong, Qiao-Xiang; Rodenburg, Sarah E; Hill, Dana; Vandevoort, Catherine A

    2011-05-01

    Low-density lipoprotein (LDL) extracted from hen egg yolk has recently been considered to be superior to whole egg yolk in sperm cryopreservation of various animal species. Meanwhile, there was a notion that high-density lipoprotein (HDL) in egg yolk may have a negative effect on post-thaw survival. The role of LDL and HDL in sperm cryopreservation of rhesus monkeys has not been explored. The present study evaluates their effect in comparison with egg yolk with or without the addition of permeable cryoprotectant (glycerol) on sperm cryopreservation of rhesus macaques. In addition, various additives intended to change the lipid composition of LDL-sperm membrane complex have also been tested for their effectiveness in preserving post-thaw viability. Our findings indicated that LDL is the main component in egg yolk that is responsible for its protective role for sperm cryopreservation in rhesus monkeys. Regardless of the presence or absence of glycerol, the protective role of LDL is similar to that of egg yolk and we did not observe any superiority in post-thaw survival with LDL when compared to egg yolk. Modifying the lipid composition of LDL-sperm membrane complex with the addition of cholesterol, cholesterol loaded cyclodextrin and phosphatidylcholine also did not yield any improvements in post-thaw survival; while addition of methyl-β-cyclodextrin reduced post-thaw motility. HDL plays a neutral role in sperm cryopreservation of rhesus monkeys. The present study suggests that egg yolk may still hold advantages when compared with LDL as effective components in extenders for sperm cryopreservation in rhesus monkeys.

  3. Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics

    PubMed Central

    Kim, YongTae; Fay, Francois; Cormode, David P.; Sanchez-Gaytan, Brenda L.; Tang, Jun; Hennessy, Elizabeth J.; Ma, Mingming; Moore, Kathryn; Farokhzad, Omid C.; Fisher, Edward Allen; Mulder, Willem J. M.; Langer, Robert; Fayad, Zahi A.

    2014-01-01

    High-density lipoprotein (HDL) is a natural nanoparticle that transports peripheral cholesterol to the liver. Reconstituted high-density lipoprotein (rHDL) exhibits antiatherothrombotic properties and is being considered as a natural treatment for cardiovascular diseases. Furthermore, HDL nanoparticle platforms have been created for targeted delivery of therapeutic and diagnostic agents. The current methods for HDL reconstitution involve lengthy procedures that are challenging to scale up. A central need in the synthesis of rHDL, and multifunctional nanomaterials in general, is to establish large-scale production of reproducible and homogeneous batches in a simple and efficient fashion. Here, we present a large-scale microfluidics-based manufacturing method for single-step synthesis of HDL-mimicking nanomaterials (µHDL). µHDL is shown to have the same properties (e.g., size, morphology, bioactivity) as conventionally reconstituted HDL and native HDL. In addition, we were able to incorporate simvastatin (a hydrophobic drug) into µHDL, as well as gold, iron oxide, quantum dot nanocrystals or fluorophores to enable its detection by computed tomography (CT), magnetic resonance imaging (MRI), or fluorescence microscopy, respectively. Our approach may contribute to effective development and optimization of lipoprotein-based nanomaterials for medical imaging and drug delivery. PMID:24079940

  4. Unique features of high-density lipoproteins in the Japanese: in population and in genetic factors.

    PubMed

    Yokoyama, Shinji

    2015-04-02

    Despite its gradual increase in the past several decades, the prevalence of atherosclerotic vascular disease is low in Japan. This is largely attributed to difference in lifestyle, especially food and dietary habits, and it may be reflected in certain clinical parameters. Plasma high-density lipoprotein (HDL) levels, a strong counter risk for atherosclerosis, are indeed high among the Japanese. Accordingly, lower HDL seems to contribute more to the development of coronary heart disease (CHD) than an increase in non-HDL lipoproteins at a population level in Japan. Interestingly, average HDL levels in Japan have increased further in the past two decades, and are markedly higher than in Western populations. The reasons and consequences for public health of this increase are still unknown. Simulation for the efficacy of raising HDL cholesterol predicts a decrease in CHD of 70% in Japan, greater than the extent by reducing low-density lipoprotein cholesterol predicted by simulation or achieved in a statin trial. On the other hand, a substantial portion of hyperalphalipoproteinemic population in Japan is accounted for by genetic deficiency of cholesteryl ester transfer protein (CETP), which is also commonly unique in East Asian populations. It is still controversial whether CETP mutations are antiatherogenic. Hepatic Schistosomiasis is proposed as a potential screening factor for historic accumulation of CETP deficiency in East Asia.

  5. Unique Features of High-Density Lipoproteins in the Japanese: In Population and in Genetic Factors

    PubMed Central

    Yokoyama, Shinji

    2015-01-01

    Despite its gradual increase in the past several decades, the prevalence of atherosclerotic vascular disease is low in Japan. This is largely attributed to difference in lifestyle, especially food and dietary habits, and it may be reflected in certain clinical parameters. Plasma high-density lipoprotein (HDL) levels, a strong counter risk for atherosclerosis, are indeed high among the Japanese. Accordingly, lower HDL seems to contribute more to the development of coronary heart disease (CHD) than an increase in non-HDL lipoproteins at a population level in Japan. Interestingly, average HDL levels in Japan have increased further in the past two decades, and are markedly higher than in Western populations. The reasons and consequences for public health of this increase are still unknown. Simulation for the efficacy of raising HDL cholesterol predicts a decrease in CHD of 70% in Japan, greater than the extent by reducing low-density lipoprotein cholesterol predicted by simulation or achieved in a statin trial. On the other hand, a substantial portion of hyperalphalipoproteinemic population in Japan is accounted for by genetic deficiency of cholesteryl ester transfer protein (CETP), which is also commonly unique in East Asian populations. It is still controversial whether CETP mutations are antiatherogenic. Hepatic Schistosomiasis is proposed as a potential screening factor for historic accumulation of CETP deficiency in East Asia. PMID:25849946

  6. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    SciTech Connect

    Frei, B. )

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  7. Immunohistochemical detection of a very high density lipoprotein (VHDL) in ovarian follicles of Triatoma infestans.

    PubMed

    González, M S; Ronderos, J R; Rimoldi, O J; Brenner, R R

    2001-04-01

    The ability of Triatoma infestans ovarian follicles to synthesize a very high-density lipoprotein (VHDL) has been examined by immunohistochemical methods. This kind of lipoprotein can be envisaged as a storage hexameric protein present in the hemolymph of some insect species. VHDL immunoreactivity is observed in oocytes at different stages of maturation. The antigen is present in the oocyte cytoplasm as well as in the follicular epithelial cells. The immunopositive reaction in the apical surface of follicle cells suggests both a VHDL synthesis and a secretion process. Furthermore, VHDL seems to be stored into oocyte in yolk granules. On the contrary, no immunopositive reaction is observed in the intracellular spaces between follicle cells, suggesting that VHDL is not incorporated from hemolymph into the oocyte.

  8. The low-density lipoprotein receptor gene family: a cellular Swiss army knife?

    PubMed

    Nykjaer, Anders; Willnow, Thomas E

    2002-06-01

    The low-density lipoprotein receptor gene family is an evolutionarily conserved group of cell-surface receptors produced by mammals and other organisms. Initially thought to be endocytic receptors that mediate the uptake of lipoproteins, recent findings have shown that these receptors have other roles in a range of cellular processes. Among other activities, members of this family act as signal transducers in neuronal migration processes, regulate synaptic plasticity or control vitamin homeostasis. Such multifunctionality is achieved by interaction with diverse cell-surface proteins including glycolipid-anchored receptors, G-protein-coupled receptors and ion channels. Here, we review the molecular interactions of this protein family with other cell-surface proteins that provide specificity and versatility - a versatility that may be reminiscent of a cellular Swiss army knife.

  9. The low density lipoprotein receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies

    PubMed Central

    Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.

    2008-01-01

    The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063

  10. Nerve growth factor induces rapid increases in functional cell surface low density lipoprotein receptor-related protein.

    PubMed

    Bu, G; Sun, Y; Schwartz, A L; Holtzman, D M

    1998-05-22

    The low density lipoprotein receptor-related protein (LRP) is a large endocytic receptor that binds multiple ligands and is highly expressed in neurons. Several LRP ligands, including apolipoprotein E/lipoproteins and amyloid precursor protein, have been shown to participate either in Alzheimer's disease pathogenesis or pathology. However, factors that regulate LRP expression in neurons are unknown. In the current study, we analyzed the effects of nerve growth factor (NGF) treatment on LRP expression, distribution, and function within neurons in two neuronal cell lines. Our results show that NGF induces a rapid increase of cell surface LRP expression in a central nervous system-derived neuronal cell line, GT1-1 Trk, which was seen within 10 min and reached a maximum at about 1 h of NGF treatment. This increase of cell surface LRP expression is concomitant with an increase in the endocytic activity of LRP as measured via ligand uptake and degradation assays. We also found that the cytoplasmic tail of LRP is phosphorylated and that NGF rapidly increases the amount of phosphorylation. Furthermore, we detected a significant increase of LRP expression at the messenger RNA level following 24 h of NGF treatment. Both rapid and long term induction of LRP expression were also detected in peripheral nervous system-derived PC12 cells following NGF treatment. Taken together, our results demonstrate that NGF regulates LRP expression in neuronal cells.

  11. Low-density lipoprotein, its susceptibility to oxidation and the role of lipoprotein-associated phospholipase A2 and carboxyl ester lipase lipases in atherosclerotic plaque formation.

    PubMed

    Burchardt, Paweł; Zurawski, Jakub; Zuchowski, Bartosz; Kubacki, Tomasz; Murawa, Dawid; Wiktorowicz, Krzysztof; Wysocki, Henryk

    2013-02-21

    An increased level of low-density lipoprotein (LDL) is a very well established risk factor of coronary artery disease (CAD). Unoxidized LDL is an inert transport vehicle of cholesterol and other lipids in the body and is thought to be atherogenic. Recently it has been appreciated that oxidized products of LDL are responsible for plaque formation properties previously attributed to the intact particle. The goal of this article is to review the recent understanding of the LDL oxidation pathway. The role of oxidized products and key enzymes (lipoprotein-associated phospholipase A2 and carboxyl ester lipase) are also extensively discussed in the context of clinical conditions.

  12. Effect of Oxidation on the Structure of Human Low- and High-Density Lipoproteins

    PubMed Central

    Oliveira, Cristiano L.P.; Santos, Priscila R.; Monteiro, Andrea M.; Figueiredo Neto, Antonio M.

    2014-01-01

    This work presents a controlled study of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) structural changes due to in vitro oxidation with copper ions. The changes were studied by small-angle x-ray scattering (SAXS) and dynamic light scattering (DLS) techniques in the case of LDL and by SAXS, DLS, and Z-scan (ZS) techniques in the case of HDL. SAXS data were analyzed with a to our knowledge new deconvolution method. This method provides the electron density profile of the samples directly from the intensity scattering of the monomers. Results show that LDL particles oxidized for 18 h show significant structural changes when compared to nonoxidized particles. Changes were observed in the electrical density profile, in size polydispersity, and in the degree of flexibility of the APO-B protein on the particle. HDL optical results obtained with the ZS technique showed a decrease of the amplitude of the nonlinear optical signal as a function of oxidation time. In contrast to LDL results reported in the literature, the HDL ZS signal does not lead to a complete loss of nonlinear optical signal after 18 h of copper oxidation. Also, the SAXS results did not indicate significant structural changes due to oxidation of HDL particles, and DLS results showed that a small number of oligomers formed in the sample oxidized for 18 h. All experimental results for the HDL samples indicate that this lipoprotein is more resistant to the oxidation process than are LDL particles. PMID:24940777

  13. Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection.

    PubMed

    Brinck, Jonas W; Thomas, Aurélien; Lauer, Estelle; Jornayvaz, François R; Brulhart-Meynet, Marie-Claude; Prost, Jean-Christophe; Pataky, Zoltan; Löfgren, Patrik; Hoffstedt, Johan; Eriksson, Mats; Pramfalk, Camilla; Morel, Sandrine; Kwak, Brenda R; van Eck, Miranda; James, Richard W; Frias, Miguel A

    2016-05-01

    The dyslipidemia of type 2 diabetes mellitus has multiple etiologies and impairs lipoprotein functionality, thereby increasing risk for cardiovascular disease. High-density lipoproteins (HDLs) have several beneficial effects, notably protecting the heart from myocardial ischemia. We hypothesized that glycation of HDL could compromise this cardioprotective effect. We used in vitro (cardiomyocytes) and ex vivo (whole heart) models subjected to oxidative stress together with HDL isolated from diabetic patients and nondiabetic HDL glycated in vitro (methylglyoxal). Diabetic and in vitro glycated HDL were less effective (P<0.05) than control HDL in protecting from oxidative stress. Protection was significantly, inversely correlated with the degree of in vitro glycation (P<0.001) and the levels of hemoglobin A1c in diabetic patients (P<0.007). The ability to activate protective, intracellular survival pathways involving Akt, Stat3, and Erk1/2 was significantly reduced (P<0.05) using glycated HDL. Glycation reduced the sphingosine-1-phosphate (S1P) content of HDL, whereas the S1P concentrations of diabetic HDL were inversely correlated with hemoglobin A1c (P<0.005). The S1P contents of in vitro glycated and diabetic HDL were significantly, positively correlated (both <0.01) with cardiomyocyte survival during oxidative stress. Adding S1P to diabetic HDL increased its S1P content and restored its cardioprotective function. Our data demonstrate that glycation can reduce the S1P content of HDL, leading to increased cardiomyocyte cell death because of less effective activation of intracellular survival pathways. It has important implications for the functionality of HDL in diabetes mellitus because HDL-S1P has several beneficial effects on the vasculature. © 2016 American Heart Association, Inc.

  14. Folded functional lipid-poor apolipoprotein A-I obtained by heating of high-density lipoproteins: relevance to high-density lipoprotein biogenesis.

    PubMed

    Jayaraman, Shobini; Cavigiolio, Giorgio; Gursky, Olga

    2012-03-15

    HDL (high-density lipoproteins) remove cell cholesterol and protect from atherosclerosis. The major HDL protein is apoA-I (apolipoprotein A-I). Most plasma apoA-I circulates in lipoproteins, yet ~5% forms monomeric lipid-poor/free species. This metabolically active species is a primary cholesterol acceptor and is central to HDL biogenesis. Structural properties of lipid-poor apoA-I are unclear due to difficulties in isolating this transient species. We used thermal denaturation of human HDL to produce lipid-poor apoA-I. Analysis of the isolated lipid-poor fraction showed a protein/lipid weight ratio of 3:1, with apoA-I, PC (phosphatidylcholine) and CE (cholesterol ester) at approximate molar ratios of 1:8:1. Compared with lipid-free apoA-I, lipid-poor apoA-I showed slightly altered secondary structure and aromatic packing, reduced thermodynamic stability, lower self-associating propensity, increased adsorption to phospholipid surface and comparable ability to remodel phospholipids and form reconstituted HDL. Lipid-poor apoA-I can be formed by heating of either plasma or reconstituted HDL. We propose the first structural model of lipid-poor apoA-I which corroborates its distinct biophysical properties and postulates the lipid-induced ordering of the labile C-terminal region. In summary, HDL heating produces folded functional monomolecular lipid-poor apoA-I that is distinct from lipid-free apoA-I. Increased adsorption to phospholipid surface and reduced C-terminal disorder may help direct lipid-poor apoA-I towards HDL biogenesis.

  15. Very low-density lipoprotein/lipo-viro particles reverse lipoprotein lipase-mediated inhibition of hepatitis C virus infection via apolipoprotein C-III.

    PubMed

    Sun, Hung-Yu; Lin, Chun-Chieh; Lee, Jin-Ching; Wang, Shainn-Wei; Cheng, Pin-Nan; Wu, I-Chin; Chang, Ting-Tsung; Lai, Ming-Derg; Shieh, Dar-Bin; Young, Kung-Chia

    2013-08-01

    Circulating hepatitis C virus (HCV) virions are associated with triglyceride-rich lipoproteins, including very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL), designated as lipo-viro-particles (LVPs). Previous studies showed that lipoprotein lipase (LPL), a key enzyme for hydrolysing the triglyceride in VLDL to finally become LDL, may suppress HCV infection. This investigation considers the regulation of LPL by lipoproteins and LVPs, and their roles in the LPL-mediated anti-HCV function. The lipoproteins were fractionated from normolipidemic blood samples using iodixanol gradients. Subsequent immunoglobulin-affinity purification from the canonical VLDL and LDL yielded the corresponding VLDL-LVP and LDL-LVP. Apolipoprotein (apo) Cs, LPL activity and HCV infection were quantified. A higher triglyceride/cholesterol ratio of LDL was found more in HCV-infected donors than in healthy volunteers, and the triglyceride/cholesterol ratio of LDL-LVP was much increased, suggesting that the LPL hydrolysis of triglyceride may be impaired. VLDL, VLDL-LVP, LDL-LVP, but not LDL, suppressed LPL lipolytic activity, which was restored by antibodies that recognised apoC-III/-IV and correlated with the steadily abundant apoC-III/-IV quantities in those particles. In a cell-based system, treatment with VLDL and LVPs reversed the LPL-mediated inhibition of HCV infection in apoC-III/-IV-dependent manners. A multivariate logistic regression revealed that plasma HCV viral loads correlated negatively with LPL lipolytic activity, but positively with the apoC-III content of VLDL. Additionally, apoC-III in VLDL was associated with a higher proportion of HCV-RNA than was IgG. This study reveals that LPL is an anti-HCV factor, and that apoC-III in VLDL and LVPs reduces the LPL-mediated inhibition of HCV infection.

  16. The relationship between retinol-binding protein 4 and apolipoprotein B-containing lipoproteins is attenuated in patients with very high serum triglycerides: A pilot study.

    PubMed

    Christou, Georgios A; Tellis, Constantinos C; Elisaf, Moses S; Tselepis, Alexandros D; Kiortsis, Dimitrios N

    2016-01-01

    The investigation of the association between retinol-binding protein 4 (RBP4) and lipoproteins in subjects with hypertriglyceridemia. Forty-six obese or overweight hypertriglyceridemic patients were studied at baseline and 20 of them underwent a hypocaloric low-fat diet for 3 months. Plasma RBP4 levels were positively correlated with serum triglycerides (TG) in the subgroup of patients with TG <200 mg/dL (r=0.453, p=0.039) and negatively correlated with TG in patients with TG ≥200 mg/dL (r=-0.487, p=0.019). In the subgroup with TG <200 mg/ dL, subjects with circulating RBP4 above the median 46 mg/L had higher levels of intermediate density lipoprotein-cholesterol (IDL-C), low-density lipoprotein-cholesterol (LDL-C) and apolipoprotein B (ApoB), while these differences were absent in patients with TG ≥200 mg/dL. The associations of percentage changes of circulating RBP4 with the percentage changes of LDL-C, very low-density lipoprotein-cholesterol (VLDL-C) and ApoB were positive after the first month and 3 months of diet for patients with baseline TG <200 mg/dL, while no correlations existed for patients with TG ≥200 mg/dL. The positive association between circulating RBP4 and ApoB-containing lipoproteins in a steady metabolic state, as well as during a hypocaloric diet, appears to be attenuated in patients with very high TG.

  17. The biological properties of iron oxide core high-density lipoprotein in experimental atherosclerosis

    PubMed Central

    Skajaa, Torjus; Cormode, David P.; Jarzyna, Peter A.; Delshad, Amanda; Blachford, Courtney; Barazza, Alessandra; Fisher, Edward A.; Gordon, Ronald E.; Fayad, Zahi A.; Mulder, Willem J.M.

    2013-01-01

    Lipoproteins are a family of plasma nanoparticles responsible for the transportation of lipids throughout the body. High-density lipoprotein (HDL), the smallest of the lipoprotein family, measures 7–13 nm in diameter and consists of a cholesteryl ester and triglyceride core that is covered with a monolayer of phospholipids and apolipoproteins. We have developed an iron oxide core HDL nanoparticle (FeO-HDL), which has a lipid based fluorophore incorporated in the phospholipid layer. This nanoparticle provides contrast for optical imaging, magnetic resonance imaging (MRI) and transmission electron microscopy (TEM). Consequently, FeO-HDL can be visualized on the anatomical, cellular and sub-cellular level. In the current study we show that the biophysical features of FeO-HDL closely resemble those of native HDL and that FeO-HDL possess the ability to mimic HDL characteristics both in vitro as well as in vivo. We demonstrate that FeO-HDL can be applied to image HDL interactions and to investigate disease settings where HDL plays a key function. More generally, we have demonstrated a multimodal approach to study the behavior of biomaterials in vitro as well as in vivo. The approach allowed us to study nanoparticle dynamics in circulation, as well as nanoparticle targeting and uptake by tissues and cells of interest. Moreover, we were able to qualitatively assess nanoparticle excretion, critical for translating nanotechnologies to the clinic. PMID:20926130

  18. Prenylcysteine oxidase 1, a pro-oxidant enzyme of low density lipoproteins.

    PubMed

    Herrera-Marcos, Luis V; Lou-Bonafonte, Jose M; Martinez-Gracia, Maria V; Arnal, Carmen; Navarro, María A; Osada, Jesus

    2018-01-01

    Elevated levels of low density lipoproteins (LDLs) cause atherosclerotic disease, and proteomic analyses have found that these lipoproteins are endowed with prenylcysteine lyase. This systematic review summarizes current understanding of this enzyme, now known as prenylcysteine oxidase 1 (PCYOX1), which hydrolyzes the thioether bond of prenylcysteines in the final step in the degradation of prenylated proteins, releasing hydrogen peroxide, cysteine and the isoprenoid aldehyde. Despite the high variability of the PCYOX1 gene, no polymorphism has yet been associated with any disease. The liver, which is responsible for vehiculization of the enzyme in lipoproteins, is one of the main organs responsible for its expression, together with the gastrointestinal tract, kidney, male reproductive tissue and muscle. Moreover, although hepatic mRNA expression is sensitive to diet and hormones, the repercussion of these changes in LDLs containing PCYOX1 has not been addressed. One consequence of its elevated activity could be an increase in hydrogen peroxide, which might help to propagate the oxidative burden of LDLs, thus making PCYOX1 a potential pharmacological target and a new biomarker in cardiovascular disease.

  19. Cholesterol lowering in low density lipoprotein receptor knockout mice overexpressing apolipoprotein E.

    PubMed Central

    Osuga, J; Yonemoto, M; Yamada, N; Shimano, H; Yagyu, H; Ohashi, K; Harada, K; Kamei, T; Yazaki, Y; Ishibashi, S

    1998-01-01

    Apo E is a key molecule in the lipoprotein metabolism; thus, genetic manipulation of apo E may prove useful in the treatment of hypercholesterolemia. To test the feasibility of this idea, we have generated low density lipoprotein receptor (LDLR) knockout mice that overexpress the rat apo E transgene (ETg+/+:LDLRKO), and compared their plasma lipoprotein profiles with those of nonexpressing LDLR knockout mice (ETg-/-:LDLRKO). On a normal chow diet, the mean plasma cholesterol level of ETg+/+:LDLRKO mice was significantly lower than that of ETg-/-:LDLRKO mice (189 versus 240 mg/dl, P < 0. 01). The LDL fraction was selectively reduced in the ETg+/+:LDLRKO mice. Despite the challenge with an atherogenic diet, cholesterol lowering was persistently observed and fatty streak lesions in the aortic sinus were significantly suppressed in the mice overexpressing apo E. These results imply that stimulation of hepatic production of apo E may be used as a promising adjunctive therapy for homozygous familial hypercholesterolemia. PMID:9664080

  20. Low-density lipoprotein oxidation and its prevention by amidothionophosphate antioxidants.

    PubMed

    Tirosh, O; Katzhendler, J; Barenholz, Y; Kohen, R

    1999-01-01

    Amidothionophosphates (AMTPs) are a novel group of antioxidants that are lacking in pro-oxidant activity. In this paper, we compare two different amidothionophosphates: 2-hydroxy-ethyl amido, diethyl thionophosphate (AMTP-B), which contains a single primary amido group, and N,N',N-tripropylamidothionophosphate (AMTP-3A), which contains three primary amido groups. The lipoprotein/medium partition coefficients of AMTP-3A and AMTP-B are 74 and 38, respectively. Both protected isolated human low density lipoprotein (LDL) against oxidative damage induced by copper sulfate. Oxidative damage to polyunsaturated acyl chains was determined by gas chromatography (GC), and oxidation kinetics were monitored by following the accumulation of conjugated dienes spectrophotometrically at 234 nm. The AMTP antioxidants significantly protected the LDL against Cu2+-induced oxidation. However, if the LDLs were already partially oxidized, protection against oxidation by the AMTPs was reduced. AMTP-3A was more effective in protecting LDL than was AMTP-B. The difference in antioxidant activity was attributed to the 15-fold higher reactivity of AMTP-3A toward peroxides. Oxidizability of plasma lipoproteins from guinea pigs injected with AMTPs was strongly reduced.

  1. Immobilization of sodium alginate sulfates on polysulfone ultrafiltration membranes for selective adsorption of low-density lipoprotein.

    PubMed

    Wang, Wei; Huang, Xiao-Jun; Cao, Jian-Da; Lan, Ping; Wu, Wen

    2014-01-01

    A novel method for the immobilization of sodium alginate sulfates (SAS) on polysulfone (PSu) ultrafiltration membranes to achieve selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylamide on the membrane and the Hofmann rearrangement reaction of grafted acrylamide followed by chemical binding of SAS with glutaraldehyde. The surface modification processes were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy characterization. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes. An enzyme-linked immunosorbent assay was used to measure the binding of LDL on plain and modified PSu membranes. It was found that the PSu membrane immobilized with sodium alginate sulfates (PSu-SAS) greatly enhanced the selective adsorption of LDL from protein solutions and the absorbed LDL could be easily eluted with sodium chloride solution, indicating a specific and reversible binding of LDL to SAS, mainly driven by electrostatic forces. Furthermore, the PSu-SAS membrane showed good blood compatibility as examined by platelet adhesion. The results suggest that the PSu-SAS membranes are promising for application in simultaneous hemodialysis and LDL apheresis therapy.

  2. A Retained Secretory Signal Peptide Mediates High Density Lipoprotein (HDL) Assembly and Function of Haptoglobin-related Protein*

    PubMed Central

    Harrington, John M.; Nishanova, Tuiumkan; Pena, Savannah Rose; Hess, Matthew; Scelsi, Chris L.; Widener, Justin; Hajduk, Stephen L.

    2014-01-01

    Haptoglobin-related protein (Hpr) is a component of a minor subspecies of high density lipoproteins (HDL) that function in innate immunity. Here we show that assembly of Hpr into HDL is mediated by its retained N-terminal signal peptide, an unusual feature for a secreted protein and the major difference between Hpr and the soluble acute phase protein haptoglobin (Hp). The 18-amino acid signal peptide is necessary for binding to HDL and interacts directly with the hydrocarbon region of lipids. Utilizing model liposomes, we show that the rate of assembly and steady-state distribution of Hpr in lipid particles is mediated by the physical property of lipid fluidity. Dye release assays reveal that Hpr interacts more rapidly with fluid liposomes. Conversely, steady-state binding assays indicate that more rigid lipid compositions stabilize Hpr association. Lipid association also plays a role in facilitating hemoglobin binding by Hpr. Our data may offer an explanation for the distinct distribution of Hpr among HDL subspecies. Rather than protein-protein interactions mediating localization, direct interaction with phospholipids and sensitivity to lipid fluidity may be sufficient for localization of Hpr and may represent a mechanism of HDL subspeciation. PMID:25037218

  3. Very low density lipoproteins in intestinal lymph: role in triglyceride and cholesterol transport during fat absorption

    PubMed Central

    Ockner, Robert K.; Hughes, Faith B.; Isselbacher, Kurt J.

    1969-01-01

    The role of nonchylomicron very low density lipoproteins (VLDL, Sf 20-400) in the transport of triglyceride and cholesterol was studied during lipid absorption. Various long chain fatty acids were infused intraduodenally in the form of mixed fatty acid—mono-olein-taurocholate micelles; control animals received saline or taurocholate. As compared with controls, all fatty acids (palmitic, oleic, linoleic) resulted in significant increases in chylomicron (Sf > 400) triglyceride. In addition, palmitic acid resulted in a twofold increase in VLDL triglyceride, whereas with the absorption of oleic or linoleic acid VLDL triglyceride did not change significantly. Differences in triglyceride fatty acid composition between chylomicrons and VLDL were observed during lipid absorption. Although the absolute amount of endogenous cholesterol in intestinal lymph was not significantly affected by lipid absorption under these conditions, its lipoprotein distribution differed substantially among the lipid-infused groups. During palmitate absorption, VLDL cholesterol was similar to that in the taurocholate-infused controls, and was equal to chylomicron cholesterol. In contrast, during oleate and linoleate absorption the VLDL cholesterol fell markedly, and was less than half of the chylomicron cholesterol in these groups. The half-time of plasma survival of VLDL cholesterol-14C was found to be twice that of chylomicron cholesterol-14C. These studies demonstrate that dietary long chain fatty acids differ significantly in their effects upon the transport of triglyceride and cholesterol by lipoproteins of rat intestinal lymph. These findings, together with the observed differences in rates of removal of chylomicrons and VLDL from plasma, suggest that variations in lipoprotein production at the intestinal level may be reflected in differences in the subsequent metabolism of absorbed dietary and endogenous lipids. PMID:5355348

  4. Effects of cholesterol on thermal stability of discoidal high density lipoproteins[S

    PubMed Central

    Jayaraman, Shobini; Benjwal, Sangeeta; Gantz, Donald L.; Gursky, Olga

    2010-01-01

    Reverse cholesterol transport in plasma involves variations in HDL cholesterol concentration. To understand physicochemical and functional implications of such variations, we analyzed stability of reconstituted HDL containing human apolipoproteins (apoA-I, apoA-II, or apoC-I), phosphatidylcholines varying in chain length (12–18 carbons) and unsaturation (0 or 1), and 0–35 mol% cholesterol. Lipoprotein heat denaturation was monitored by circular dichroism for protein unfolding/dissociation and by light scattering for particle fusion. We found that cholesterol stabilizes relatively unstable complexes; for example, incorporation of 10–30 mol% cholesterol in apoC-I:dimyristoyl phosphatidylcholine complexes increased their kinetic stability by δΔG* ≅ 1 kcal/mol. In more stable complexes containing larger proteins and/or longer-chain lipids, incorporation of 10% cholesterol did not significantly alter the disk stability; however, 15% or more cholesterol destabilized the apoA-I-containing complexes and led to vesicle formation. Thus, cholesterol tends to stabilize less stable lipoproteins, apparently by enhancing favorable packing interactions, but in more stable lipoproteins, where such interactions are already highly optimized, the stabilizing effect of cholesterol decreases and, eventually, becomes destabilizing. These results help uncouple the functional roles of particle stability and chain fluidity and suggest that structural disorder in HDL surface, rather than chain fluidity, is an important physicochemical determinant of HDL function.—Jayaraman, S., S. Benjwal, D. L. Gantz, and O. Gursky. Effects of cholesterol on thermal stability of discoidal high density lipoproteins. J. Lipid Res. 2010. 51: 324–333. PMID:19700415

  5. Low density lipoprotein apheresis in pediatric patients with homozygous familial hypercholesterolemia.

    PubMed

    Coker, Mahmut; Ucar, Sema Kalkan; Simsek, Damla Goksen; Darcan, Sukran; Bak, Mustafa; Can, Sule

    2009-04-01

    The aim of the present study is to clarify the low density lipoprotein apheresis procedure for pediatric patients with homozygous familial hypercholesterolemia (FH) in terms of efficacy, adverse effects and difficulties. The follow-up was carried out using an open, prospective uncontrolled clinical design. Data were collected from 10 patients (with an average age of 8.4 +/- 4.7 years) with FH treated with double filtration plasmapheresis. The total time span of follow-up covered five years (30.2 +/- 17.8 months [range 9-60 months]) and more than 600 sessions (62.1 +/- 35.5 sessions per patient [range 18-120 sessions]) were evaluated. The mean low density lipoprotein cholesterol (LDL-C) pre-treatment value was 375.5 +/- 127.5 mg/dL, and the post-treatment value was 147.5 +/- 73.9 mg/dL. This corresponded to a 62.8 +/- 10.3% (43-73%) acute reduction of LDL-C, while the mean high density lipoprotein cholesterol losses amounted to 41%. The chronic reduction in LDL-C ranged from 18 to 52%, with a mean level of 36.4 +/- 11.7%. The most frequently occurring technical problems were related to blood lines: puncture difficulties (4.5%), insufficient blood flow (3.5%), and obturation of the blood lines (2.4%). The main clinical adverse effects were hypotension (0.2%), chills/feeling cold (0.1%), and nausea and vomiting (0.2%). We observed that the low pediatric patient tolerance is the main problem in compliance with treatment. In conclusion, LDL apheresis, started under the age of eight years, combined with lipid-lowering drugs, provides a safe and effective lowering of the mean LDL-C levels in pediatric homozygous FH; and there are more problems with compliance for pediatric LDL apheresis than in the adult population.

  6. A linoleate-enriched cheese product reduces low-density lipoprotein in moderately hypercholesterolemic adults.

    PubMed

    Davis, P A; Platon, J F; Gershwin, M E; Halpern, G M; Keen, C L; DiPaolo, D; Alexander, J; Ziboh, V A

    1993-10-01

    To test the effect of substituting a modified-fat cheese product into the diets of hypercholesterolemic adults. A 4-month, randomized, double-blind, crossover substitution trial. General community outpatient study. Twenty-six healthy adult volunteers (17 men, 9 women) with moderate hypercholesterolemia (total cholesterol > 5.69 mmol/L but < 7.24 mmol/L). Daily substitution of 100 g of cheese, either partial skim-milk mozzarella or modified-fat (vegetable oil) mozzarella cheese product, into participants' normal diets. Participants consumed an assigned cheese for 2 months, at which time they crossed over to consume the other study cheese. Plasma lipid and apolipoprotein levels were measured at baseline and at 2 and 4 months after initiation of the study. Compliance was assessed by body weight and by biweekly dietary records and interviews. No differences in weight or in the amount or type of calories consumed were found during the study. No statistically significant changes in lipid values resulted from consumption of mozzarella cheese. Modified-fat cheese substitution resulted in a decreased low-density lipoprotein cholesterol level when compared with levels at both baseline (-0.28 mmol/L; 95% Cl, -0.14 to -0.42 mmol/L) and during consumption of the skim-milk mozzarella cheese (-0.38 mmol/L; 95% Cl, -0.2 to -0.70 mmol/L). Findings for total cholesterol were similar. High-density lipoprotein cholesterol, plasma triglyceride, and apolipoprotein A-l and B-100 levels were unaltered. Both sexes responded similarly. A linoleate-enriched cheese product, in the absence of any other changes in diet or habits, substituted into the normal diets of hypercholesterolemic adults reduced low-density lipoprotein and plasma cholesterol levels.

  7. High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits.

    PubMed

    Badimon, J J; Badimon, L; Galvez, A; Dische, R; Fuster, V

    1989-03-01

    The effects of in vivo administration of high density lipoprotein-very high density lipoprotein (HDL-VHDL) on the development of aortic fatty streaks were studied in cholesterol-fed rabbits. The rabbits received a 0.5% cholesterol-rich diet for 8 weeks. During this period, the HDL-VHDL group was intravenously administered with 50 mg/week of homologous HDL-VHDL protein; the control group received normal saline (0.9% NaCl). HDL-VHDL fraction was obtained at density range 1.063 to 1.25 gm/ml by ultracentrifugation of normal rabbit plasma. Along the study, plasma lipid levels followed a similar profile in both groups. At the completion of the study, atherosclerotic-like lipid-rich lesions covered 37.9 +/- 6% (X +/- SEM) of the intimal aortic surface in the control group, and 14.9 +/- 2.1% in the treated group (p less than 0.001). The values of total and free cholesterol, esterified cholesterol, and phospholipids deposited within vessel wall were significantly lower in the aortas of the HDL-VHDL treated group than those in the control group. Cholesterol accumulation in the livers was also significantly lower (p less than 0.01) in the treated group than in the control. We concluded that administration of homologous HDL-VHDL lipoprotein fraction to cholesterol-fed rabbits, dramatically inhibited the extent of aortic fatty streaks and lowered lipid deposition in the arterial wall and liver without modification of the plasma lipid levels.

  8. High-Density Lipoprotein Prevents Endoplasmic Reticulum Stress-Induced Downregulation of Liver LOX-1 Expression.

    PubMed

    Hong, Dan; Li, Ling-Fang; Gao, Hai-Chao; Wang, Xiang; Li, Chuan-Chang; Luo, Ying; Bai, Yong-Ping; Zhang, Guo-Gang

    2015-01-01

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a specific cell-surface receptor for oxidized-low-density lipoprotein (ox-LDL). The impact of high-density lipoprotein (HDL) on endoplasmic reticulum (ER) stress-mediated alteration of the LOX-1 level in hepatocytes remains unclear. We aimed to investigate the impact on LOX-1 expression by tunicamycin (TM)-induced ER stress and to determine the effect of HDL on TM-affected LOX-1 expression in hepatic L02 cells. Overexpression or silencing of related cellular genes was conducted in TM-treated cells. mRNA expression was evaluated using real-time polymerase chain reaction (PCR). Protein expression was analyzed by western blot and immunocytochemistry. Lipid uptake was examined by DiI-ox-LDL, followed by flow cytometric analysis. The results showed that TM induced the upregulation of ER chaperone GRP78, downregulation of LOX-1 expression, and lipid uptake. Knock down of IRE1 or XBP-1 effectively restored LOX-1 expression and improved lipid uptake in TM-treated cells. HDL treatment prevented the negative impact on LOX-1 expression and lipid uptake induced by TM. Additionally, 1-10 μg/mL HDL significantly reduced the GRP78, IRE1, and XBP-1 expression levels in TM-treated cells. Our findings reveal that HDL could prevent the TM-induced reduction of LOX-1 expression via inhibiting the IRE1/XBP-1 pathway, suggesting a new mechanism for beneficial roles of HDL in improving lipid metabolism.

  9. Transport of Very Low Density Lipoprotein Triglycerides in Varying Degrees of Obesity and Hypertriglyceridemia

    PubMed Central

    Grundy, Scott M.; Mok, Henry Y. I.; Zech, Loren; Steinberg, Daniel; Berman, Mones

    1979-01-01

    Measurements of transport of triglycerides (TG) in very low density lipoproteins (VLDL) were carried out in 59 patients by injection of radioactive glycerol, determinations of specific activities of VLDL-TG for 48 h thereafter, and treatment of the data by multicompartmental analysis. The patients were divided into three groups: normal weight (89-120% ideal weight), mildly obese (120-135% ideal weight), and markedly obese (135% ideal weight). They had varying levels of VLDL-TG ranging from normal to markedly elevated. In many subjects, there was a positive correlation between concentrations and transport of VLDL indicating that overproduction of VLDL-TG contributed to hypertriglyceridemia. In others, and particularly in several markedly obese subjects, transport rates were greatly increased without significant hypertriglyceridemia, suggesting that they had enhanced capacity to clear TG. In all groups, however, there were patients whose degree of hypertriglyceridemia seemed out of proportion to their transport rates. This finding and the fact that many patients have increased secretion of VLDL-TG without elevated plasma TG suggests that both overproduction of VLDL-TG and insufficient enhancement of clearance contributed to the development of hypertriglyceridemia. The data showed a poor correlation between transport rates determined by our multicompartment analysis and single-exponential analysis used previously by other investigators (r = 0.46); this comparison was not improved by segregating patients according to their degree of obesity. Although two conversion pathways (fast and slow synthetic paths) were required to fit the data, there was no correlation between transport rates and the ratio of the two pathways. Also, despite the known pathway of conversion of VLDL to low density lipoprotein, no correlation was found between VLDL-TG transport rates and estimated low density lipoprotein-cholesterol concentrations. PMID:221538

  10. Lipoprotein Lipase and PPAR Alpha Gene Polymorphisms, Increased Very-Low-Density Lipoprotein Levels, and Decreased High-Density Lipoprotein Levels as Risk Markers for the Development of Visceral Leishmaniasis by Leishmania infantum

    PubMed Central

    Carvalho, Márcia Dias Teixeira; Alonso, Diego Peres; Vendrame, Célia Maria Vieira; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery; Werneck, Guilherme Loureiro; Ribolla, Paulo Eduardo Martins

    2014-01-01

    In visceral leishmaniasis (VL) endemic areas, a minority of infected individuals progress to disease since most of them develop protective immunity. Therefore, we investigated the risk markers of VL within nonimmune sector. Analyzing infected symptomatic and, asymptomatic, and noninfected individuals, VL patients presented with reduced high-density lipoprotein cholesterol (HDL-C), elevated triacylglycerol (TAG), and elevated very-low-density lipoprotein cholesterol (VLDL-C) levels. A polymorphism analysis of the lipoprotein lipase (LPL) gene using HindIII restriction digestion (N = 156 samples) (H+ = the presence and H− = the absence of mutation) revealed an increased adjusted odds ratio (OR) of VL versus noninfected individuals when the H+/H+ was compared with the H−/H− genotype (OR = 21.3; 95% CI = 2.32–3335.3; P = 0.003). The H+/H+ genotype and the H+ allele were associated with elevated VLDL-C and TAG levels (P < 0.05) and reduced HDL-C levels (P < 0.05). An analysis of the L162V polymorphism in the peroxisome proliferator-activated receptor alpha (PPARα) gene (n = 248) revealed an increased adjusted OR when the Leu/Val was compared with the Leu/Leu genotype (OR = 8.77; 95% CI = 1.41–78.70; P = 0.014). High TAG (P = 0.021) and VLDL-C (P = 0.023) levels were associated with susceptibility to VL, whereas low HDL (P = 0.006) levels with resistance to infection. The mutated LPL and the PPARα Leu/Val genotypes may be considered risk markers for the development of VL. PMID:25242866

  11. High-Density Lipoprotein Biogenesis: Defining the Domains Involved in Human Apolipoprotein A-I Lipidation.

    PubMed

    Pollard, Ricquita D; Fulp, Brian; Sorci-Thomas, Mary G; Thomas, Michael J

    2016-09-06

    The first step in removing cholesterol from a cell is the ATP-binding cassette transporter 1 (ABCA1)-driven transfer of cholesterol to lipid-free or lipid-poor apolipoprotein A-I (apoA-I), which yields cholesterol-rich nascent high-density lipoprotein (nHDL) that then matures in plasma to spherical, cholesteryl ester-rich HDL. However, lipid-free apoA-I has a three-dimensional (3D) conformation that is significantly different from that of lipidated apoA-I on nHDL. By comparing the lipid-free apoA-I 3D conformation of apoA-I to that of 9-14 nm diameter nHDL, we formulated the hypothetical helical domain transitions that might drive particle formation. To test the hypothesis, ten apoA-I mutants were prepared that contained two strategically placed cysteines several of which could form intramolecular disulfide bonds and others that could not form these bonds. Mass spectrometry was used to identify amino acid sequence and intramolecular disulfide bond formation. Recombinant HDL (rHDL) formation was assessed with this group of apoA-I mutants. ABCA1-driven nHDL formation was measured in four mutants and wild-type apoA-I. The mutants contained cysteine substitutions in one of three regions: the N-terminus, amino acids 34 and 55 (E34C to S55C), central domain amino acids 104 and 162 (F104C to H162C), and the C-terminus, amino acids 200 and 233 (L200C to L233C). Mutants were studied in the locked form, with an intramolecular disulfide bond present, or unlocked form, with the cysteine thiol blocked by alkylation. Only small amounts of rHDL or nHDL were formed upon locking the central domain. We conclude that both the N- and C-terminal ends assist in the initial steps in lipid acquisition, but that opening of the central domain was essential for particle formation.

  12. Free cholesterol determines reassembled high-density lipoprotein phospholipid phase structure and stability.

    PubMed

    Auton, Matthew; Bassett, G Randall; Gillard, Baiba K; Pownall, Henry J

    2013-06-25

    Reassembled high-density lipoproteins (rHDL) of various sizes and compositions containing apo A-I or apo A-II as their sole protein, dimyristoylphosphatidylcholine (DMPC), and various amounts of free cholesterol (FC) have been isolated and analyzed by differential scanning calorimetry (DSC) and by circular dichroism to determine their stability and the temperature dependence of their helical content. Our data show that the multiple rHDL species obtained at each FC mole percent usually do not have the same FC mole percent as the starting mixture and that the size of the multiple species increases in a quantized way with their respective FC mole percent. DSC studies reveal multiple phases or domains that can be classified as virtual DMPC, which contains a small amount of DMPC that slightly reduces the melting temperature (Tm), a boundary phase that is adjacent to the apo A-I or apo A-II that circumscribes the discoidal rHDL, and a mixed FC/DMPC phase that has a Tm that increases with FC mole percent. Only the large rHDL contain virtual DMPC, whereas all contain boundary phase and various amounts of the mixed FC/DMPC phase according to increasing size and FC mole percent. As reported by others, FC stabilizes the rHDL. For rHDL (apo A-II) compared to rHDL (apo A-I), this occurs in spite of the reduced number of helical regions that mediate binding to the DMPC surface. This effect is attributed to the very high lipophilicity of apo A-II and the reduction in the polarity of the interface between DMPC and the aqueous phase with an increasing FC mole percent, an effect that is expected to increase the strength of the hydrophobic associations with the nonpolar face of the amphipathic helices of apo A-II. These data are relevant to the differential effects of FC and apolipoprotein species on intracellular and plasma membrane nascent HDL assembly and subsequent remodeling by plasma proteins.

  13. High-density lipoproteins induce a rapid and transient release of Ca2+ in cultured fibroblasts.

    PubMed Central

    Pörn, M I; Akerman, K E; Slotte, J P

    1991-01-01

    Several different cell types showed increased rates of proliferation and cholesterol mobilization in response to treatment with high-density lipoprotein (HDL). This would suggest that one main function of HDL is the activation of signal pathways in cells. In the current study we have used the fluorescent indicator fura-2 to monitor the level of cytosolic Ca2+ ([Ca2+]i) in human skin fibroblasts. Exposure of subconfluent as well as confluent fibroblasts to HDL3 (20-60 micrograms/ml) resulted in a rapid and transient increase in [Ca2+]i. Sequential additions of HDL3 resulted in diminished rises in [Ca2+]i. The transient rise in [Ca2+]i was observed with HDL prepared from plasma either by conventional ultracentrifugation or by precipitation with dextran sulphate. Chelation of the extracellular Ca2+ with EGTA prior to the addition of HDL3 did not prevent the HDL3-induced rise in [Ca2+]i, suggesting that the mobilized Ca2+ was derived mainly from intracellular stores. Covalent modification of the apoproteins of HDL3 with dimethyl suberimidate or tetranitromethane did not inhibit the HDL3-induced rise in [Ca2+]i. This indicates that the binding of HDL3 to cell surface receptors may not be necessary for the mobilization of intracellular Ca2+. Moreover, the Ca(2+)-releasing effect of HDL3 was not inhibited by the presence of albumin (1%, w/v) in the extracellular medium, suggesting that non-esterified fatty acids were not the cause of the increased [Ca2+]i. The exposure of fibroblasts to lysophosphatidic acid, a potent mitogen and Ca(2+)-releasing agent, before addition of HDL3 completely inhibited the HDL3-induced rise in [Ca2+]i. Furthermore, phorbol 12-myristate 13-acetate blocked the HDL3-induced rise in [Ca2+]i. The results of this study imply that exposure of cells to HDL generates an intracellular signal which is induced by a component of the lipid fraction. PMID:1930148

  14. Sterol carrier protein-2 alters high density lipoprotein-mediated cholesterol efflux.

    PubMed

    Atshaves, B P; Starodub, O; McIntosh, A; Petrescu, A; Roths, J B; Kier, A B; Schroeder, F

    2000-11-24

    Although sterol carrier protein-2 (SCP-2) participates in the uptake and intracellular trafficking of cholesterol, its effect on "reverse cholesterol transport" has not been explored. As shown herein, SCP-2 expression inhibited high density lipoprotein (HDL)-mediated efflux of [(3)H]cholesterol and fluorescent 22-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3b-ol (NBD-cholesterol) up to 61 and 157%, respectively. Confocal microscopy of living cells allowed kinetic analysis of two intracellular pools of HDL-mediated NBD-cholesterol efflux: the highly fluorescent lipid droplet pool and the less fluorescent pool outside the lipid droplets, designated the cytoplasmic compartment. Both the whole cell and the cytoplasmic compartment exhibited two similar kinetic pools, the half-times of which were consistent with protein (t(b)(12) near 1 min) and vesicular (t(d)(12) = 10-20 min) mediated sterol transfer. Although SCP-2 expression did not alter cytoplasmic sterol pool sizes, the rapid t(b)(12) decreased 36%, while the slower t(d)(12) increased 113%. Lipid droplets also exhibited two kinetic pools of NBD-cholesterol efflux but with half-times over 200% shorter than those of the cytoplasmic compartment. The lipid droplet slower effluxing pool size and t(d)(12) were increased 48% and 115%, respectively, in SCP-2-expressing cells. Concomitantly, the level of the lipid droplet-specific adipose differentiation-related protein decreased 70%. Overall, HDL-mediated sterol efflux from L-cell fibroblasts reflected that of the cytoplasmic rather than lipid droplet compartment. SCP-2 differentially modulated sterol efflux from the two cytoplasmic pools. However, net efflux was determined primarily by inhibition of the slowly effluxing pool rather than by acceleration of the rapid protein-mediated pool. Finally, SCP-2 expression also inhibited sterol efflux from lipid droplets, an effect related to decreased adipose differentiation-related protein, a lipid

  15. Health benefits of high-density lipoproteins in preventing cardiovascular diseases.

    PubMed

    Berrougui, Hicham; Momo, Claudia N; Khalil, Abdelouahed

    2012-01-01

    Plasma levels of high-density lipoprotein (HDL) are strongly and inversely correlated with atherosclerotic cardiovascular diseases. However, it is becoming clear that a functional HDL is a more desirable target than simply increasing HDL-cholesterol levels. The best known antiatherogenic function of HDL particles relates to their ability to promote reverse cholesterol transport from peripheral cells. However, HDL also possesses antioxidant, anti-inflammatory, and antithrombotic effects. This review focuses on the state of knowledge regarding assays of HDL heterogeneity and function and their relationship to cardiovascular diseases. Copyright © 2012 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  16. Synthetic high-density lipoprotein-like nanoparticles for cancer therapy

    PubMed Central

    Foit, Linda; Giles, Francis J.; Gordon, Leo I.; Thaxton, C. Shad

    2015-01-01

    Summary High-density lipoproteins (HDLs) are a diverse group of natural nanoparticles that are most well-known for their role in cholesterol transport. However, HDLs have diverse functions that provide significant opportunities for cancer therapy. Presented is a focused review of the ways that synthetic versions of HDL have been used as targeted therapies for cancer, and as vehicles for the delivery of diverse therapeutic cargo to cancer cells. As such, synthetic HDLs are likely to play a central role in the development of next generation cancer therapies. PMID:25487833

  17. Mechanisms of metal ion-dependent oxidation of human low density lipoprotein.

    PubMed

    Lynch, S M; Frei, B

    1996-04-01

    Although either copper or iron is essential for oxidation of human low density lipoprotein (LDL) by vascular cells, the mechanism is unknown. In our experiments copper- and iron-mediated LDL oxidation was found to proceed by different mechanisms. Oxidation of LDL by iron requires superoxide and proceeds by a hydroxyl radical-independent mechanism involving reduction of iron from the ferric to the ferrous form. In contrast, copper-mediated LDL oxidation involves direct reduction of copper from the cupric to the cuprous form by LDL.

  18. Umbilical Cord Blood Transplantation-associated Nephrotic Syndrome Successfully Treated by Low-density Lipoprotein Apheresis

    PubMed Central

    Sugawara, Yuka; Honda, Kenjiro; Katagiri, Daisuke; Nakamura, Motonobu; Kawakami, Takahisa; Nasu, Ryo; Hayashi, Akimasa; Shintani, Yukako; Tojo, Akihiro; Noiri, Eisei; Kurokawa, Mineo; Fukayama, Masashi; Nangaku, Masaomi

    2016-01-01

    The development of nephrotic syndrome (NS) after umbilical cord transplantation (UBT) has been reported in only four cases to date. We herein report the case of a 50-year-old woman who developed NS 94 days after UBT. She fell into oliguria and required dialysis. A kidney biopsy revealed focal and segmental glomerulosclerosis. Although glucocorticoid monotherapy did not improve her condition, the addition of low-density lipoprotein (LDL) apheresis resulted in remission of NS, a drastic improvement in her renal function, and withdrawal from dialysis. To the best of our knowledge, this is the first report of UBT-associated NS treated with LDL apheresis. PMID:27725544

  19. Ceruloplasmin as low-density lipoprotein oxidase: activation by ascorbate and dehydroascorbate.

    PubMed

    Feichtenhofer, S; Fabjan, J S; Abuja, P M

    2001-07-13

    The ability of ceruloplasmin (Cp) to oxidize low-density lipoproteins (LDL) in the presence of water-soluble antioxidants was investigated and a reaction mechanism proposed. Ascorbate strongly enhanced LDL oxidation, but only after its rapid consumption. Dehydroascorbate enhanced Cp-mediated LDL oxidation even more strongly. Lipid-soluble antioxidants and water-soluble peroxides did not show noticeable activation. However, loading of LDL with lipid hydroperoxides increased the initial oxidation rate. We conclude that Cp mediates a localized redox cycle, where reduction of Cp-Cu2+ is effected by water-soluble reductants and reoxidation by liposoluble hydroperoxides.

  20. Nanocrystal core high-density lipoproteins: A multimodality contrast agent platform

    PubMed Central

    Cormode, David P.; Skajaa, Torjus; van Schooneveld, Matti M.; Koole, Rolf; Jarzyna, Peter; Lobatto, Mark E.; Calcagno, Claudia; Barazza, Alessandra; Gordon, Ronald E.; Zanzonico, Pat; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2009-01-01

    High density lipoprotein (HDL), is an important natural nanoparticle that may be modified for biomedical imaging purposes. Here we developed a novel technique to create unique multimodality HDL mimicking nanoparticles by inclusion of gold, iron oxide or quantum dot nanocrystals for computed tomography, magnetic resonance and fluorescence imaging, respectively. By including additional labels in the corona of the particles, they were made multi-functional. The characterization of these nanoparticles, as well as their in vitro and in vivo behavior revealed that they closely mimic native HDL. PMID:18939808

  1. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform.

    PubMed

    Cormode, David P; Skajaa, Torjus; van Schooneveld, Matti M; Koole, Rolf; Jarzyna, Peter; Lobatto, Mark E; Calcagno, Claudia; Barazza, Alessandra; Gordon, Ronald E; Zanzonico, Pat; Fisher, Edward A; Fayad, Zahi A; Mulder, Willem J M

    2008-11-01

    High density lipoprotein (HDL) is an important natural nanoparticle that may be modified for biomedical imaging purposes. Here we developed a novel technique to create unique multimodality HDL mimicking nanoparticles by incorporation of gold, iron oxide, or quantum dot nanocrystals for computed tomography, magnetic resonance, and fluorescence imaging, respectively. By including additional labels in the corona of the particles, they were made multifunctional. The characteristics of these nanoparticles, as well as their in vitro and in vivo behavior, revealed that they closely mimic native HDL.

  2. Preparation and Activity Analysis of Recombinant Human High-Density Lipoprotein

    PubMed Central

    Su, Manman; Chang, Weiqin; Shi, Kaiyao; Wang, Dingding; Wang, Mingxing; Yan, Weiqun

    2012-01-01

    Abstract Population studies have consistently shown a highly inverse correlation between plasma concentration of high-density lipoprotein and the risk of atherosclerotic cardiovascular disease in humans. High-density lipoprotein (HDL) as a therapeutic target is an intense area of ongoing investigation. Aiming to solve the shortcomings of native HDL application, we prepared recombinant human HDL (rhHDL) that contains a similar composition and has similar functions with native HDL. Six kinds of recombinant human apolipoproteins (rhapo)—rhapoA-I, rhapoA-II, rhapoA-IV, rhapoC-I, rhapoC-II, and rhapoE—were expressed in Pichia pastoris and purified with chromatography. By the facilitation of cholate, six kinds of rhapo penetrated among the phosphatidylcholine acyl chains. After purification by density-gradient centrifugation, rhHDL was acquired. Based on morphological observation, we confirmed that the micellar complexes of rhapo with phosphatidylcholine and cholesterol were prepared. We carried on comparative studies in vitro and in vivo between native HDL and rhHDL. Cellular cholesterol efflux assays showed that rhHDL could promote the efflux of excess cholesterol from macrophages. Furthermore, rhHDL has similar effects with native HDL on the blood lipid metabolism in hyperlipidemic mice. In conclusion, rhHDL has similar effects on antiatherosclerosis with native HDL through reverse cholesterol transport, antioxidative, and antithrombotic properties. It could be used as a therapeutic HDL-replacement agent. PMID:22897450

  3. Females with angina pectoris have altered lipoprotein metabolism with elevated cholesteryl ester transfer protein activity and impaired high-density lipoproteins-associated antioxidant enzymes

    PubMed Central

    PARK, JUNGHO; KIM, JAE-RYONG; SHIN, DONG-GU; CHO, KYUNG-HYUN

    2012-01-01

    In order to investigate non-invasive biomarkers for angina pectoris (AP), we analyzed the lipid and protein composition in individual lipoproteins from females with angina pectoris (n=22) and age- and gender-matched controls (n=20). In the low-density lipoprotein (LDL) fraction, the triglycerides (TG) and protein content increased in the AP group compared to the control group. The AP group had lower total cholesterol (TC) and elevated TG in the high-density lipoprotein (HDL) fraction. In the AP group, cholesteryl ester transfer protein (CETP) activity was enhanced in HDL and LDL, while lecithin:cholesterol acyltransferase (LCAT) activity in HDL3 was almost depleted. Antioxidant activity was significantly decreased in the HDL3 fraction, with a decrease in the HDL2 particle size. In the HDL3 fraction, paraoxonase and platelet activating factor-acetylhydrolase (PAF-AH) activity were much lower and the levels of CETP and apoC-III were elevated in the AP group. The LDL from the AP group was more sensitive to cupric ion-mediated oxidation with faster mobility. In conclusion, the lipoprotein fractions in the AP group had impaired antioxidant activity and increased TG and apoC-III with structural and functional changes. PMID:22211242

  4. Plasma fasting and nonfasting triglycerides and high-density lipoprotein cholesterol in atherosclerotic stroke: different profiles according to low-density lipoprotein cholesterol.

    PubMed

    Kim, Suk Jae; Park, Yun Gyoung; Kim, Ji Hyun; Han, Yun Kyung; Cho, Hong Keun; Bang, Oh Young

    2012-08-01

    Although low-density lipoprotein cholesterol (LDL-C) is the main lipid target for cardiovascular risk reduction, recent studies suggest that other lipid indicies are also associated with vascular events. We hypothesized that the association of triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) with atherosclerotic stroke (AS) differs depending on LDL-C levels. Data prospectively collected on subjects admitted with acute ischemic stroke to a university medical center were analyzed. We divided the patients into AS and non-atherosclerotic stroke (NAS) groups and independent association of lipid parameters and genetic influences of apolipoprotein A5 (ApoA5) polymorphisms with AS were evaluated. Of 268 patients, 160 (59.7%) were classified with AS and 108 (40.3%) were classified with NAS. Vascular risk factors were more prevalent in AS patients than in those with NAS; additionally, AS patients' anthropometric indexes and laboratory findings showed that they were prone to atherosclerosis. AS was independently associated with fasting TG (OR per 10 mg/dL increase, 1.38; 95% CI, 1.16-1.64; OR for highest vs. lowest tertile, 12.85; 95% CI, 3.31-49.85), HDL-C (OR per 10 mg/dL increase, 0.61; 95% CI, 0.42-0.88; OR for lowest vs. highest tertile, 4.28; 95% CI, 1.16-15.86), and nonfasting TG (OR per 10 10 mg/dL increase, 1.25; 95% CI, 1.11-1.42; OR for highest vs. lowest tertile, 8.20; 95% CI, 1.98-33.88) only among patients with LDL <100 mg/dL. No interaction was observed between fasting and nonfasting TG and ApoA5 polymorphisms. In conclusion, fasting and nonfasting TG and HDL-C were associated with AS only when patients had low levels of LDL-C. Non-LDL-C may have an additional role in addition to the LDL-C levels in AS development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Low-Density Lipoprotein Cholesterol, Non-High-Density Lipoprotein Cholesterol, Triglycerides, and Apolipoprotein B and Cardiovascular Risk in Patients With Manifest Arterial Disease.

    PubMed

    van den Berg, M Johanneke; van der Graaf, Yolanda; de Borst, Gert Jan; Kappelle, L Jaap; Nathoe, Hendrik M; Visseren, Frank L J

    2016-09-15

    Low-density lipoprotein cholesterol (LDL-C) only partly represents the atherogenic lipid burden, and a growing body of evidence suggests that non-high-density lipoprotein cholesterol (non-HDL-C), triglycerides, and apolipoprotein B (apoB) are more accurate in estimating lipid-related cardiovascular disease risk. Our objective was to compare the relation among LDL-C, non-HDL-C, triglycerides, and apoB and the occurrence of future vascular events and mortality in patients with manifest arterial disease. This is a prospective cohort study of 7,216 patients with clinically manifest arterial disease in the Secondary Manifestations of Arterial Disease Study. Cox proportional hazard models were used to quantify the risk of major cardiovascular events (MACE; i.e., stroke, myocardial infarction, and vascular mortality) and all-cause mortality. Interaction was tested for type of vascular disease at inclusion. MACE occurred in 1,185 subjects during a median follow-up of 6.5 years (interquartile range 3.4 to 9.9 years). Adjusted hazard ratios (HRs) of MACE per 1 SD higher were for LDL-C (HR 1.15, 95% confidence interval [CI] 1.09 to 1.22), for non-HDL-C (HR 1.17, 95% CI 1.11 to 1.23), for log(triglycerides) (HR 1.12, 95% CI 1.06 to 1.19), and for apoB HR (1.12, 95% CI 0.99 to 1.28). The relation among LDL-C, non-HDL-C, and cardiovascular events was comparable in patients with cerebrovascular disease, coronary artery disease, or polyvascular disease and absent in those with aneurysm of abdominal aorta or peripheral artery disease. In conclusion, in patients with a history of cerebrovascular, coronary artery, or polyvascular disease, but not aneurysm of abdominal aorta or peripheral artery disease, higher levels of LDL-C and non-HDL-C are related to increased risk of future MACE and of comparable magnitude. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Triglyceride to high density lipoprotein cholesterol ratio, total cholesterol to high density lipoprotein cholesterol ratio and low ankle brachial index in an elderly population.

    PubMed

    Zhan, Yiqiang; Yu, Jinming; Ding, Rongjing; Sun, Yihong; Hu, Dayi

    2014-05-01

    Hintergrund: Der Zusammenhang zwischen den Quotienten aus Triglycerid (TG) und High-density-lipoprotein-cholesterin (HDL‑C) sowie Gesamtcholesterin (TC) und HDL‑C und dem Knöchel-Arm-Index (ABI) wurde selten untersucht. Patienten und Methoden: Insgesamt 2.982 Teinehmer, die über 60 Jahre alt waren, wurden für die bevölkerungsbasierte Querschnittstudie rekrutiert. TG, TC, HDL‑C, und low-density Lipoprotein Cholesterol (LDL-C) wurden bei allen Teilnehmern getestet. Ein niedriger ABI wurde als ABI ≤ 0.9 definiert. Multiple Regressionsmodelle wurden für die Untersuchung der Assoziation zwischen TG/HDL‑C Ratio und TC/HDL‑C Ratio und niedrigem ABI angewendet. Ergebnisse: Die TG/HDL‑C Ratios für ABI > 0.9 und ABI ≤ 0.9 waren 1.28 ± 1.20 und 1.48 ± 1.13 (P < 0.0001), während die TC/HDL‑C Ratios 3.96 ± 1.09 bzw. 4.32 ± 1.15 (P < 0.0001) waren. Nach der Angleichung von Alter, Geschlecht, Body-Mass-Index, Fettleibigkeit, Alkoholkonsum, köperliche Aktivität, Hypertonie, Diabetes, Einnahme von lipidsenkenden Medikamenten, und Herz-Kreislauf-Erkrankungen waren die Odds Ratios (OR) mit 95 % Konfidenzintervall (KI) bei dem niedrigen ABI und TG/HDL‑C Quotient 1,10 (0,96 - 1,26) und 1,34 (1,14 - 1,59) für TC/HDL‑C in der Nichtrauchergruppe. Wenn das TC weiter angeglichen wurde, waren die ORs (95 % CIs) 1.40 (0.79, 2.52) und 1.53 (1.21, 1.93) für die TG/HDL‑C Ratio und TC/HDL‑C Ratio. Nichtlineare Zusammenhänge wurden zwischen der TG/HDL‑C Ratio und TC/HDL‑C Ratio und dem niedrigen ABI in der Raucher- und Nichtrauchergruppe entdeckt. Schlussfolgerungen: Die TC/HDL‑C Ratio war signifikant mit einem niedrigen ABI in der Nichtrauchergruppe verbunden und die Assoziation war unabhängig von TC, TG, HDL‑C und LDL-C. TC/HDL‑C könnte als potentieller Biomarker für die frühe periphere arterielle Verschlusskrankheit beim Screening berücksichtigt werden.

  7. Relation of black race between high density lipoprotein cholesterol content, high density lipoprotein particles and coronary events (from the Dallas Heart Study).

    PubMed

    Chandra, Alvin; Neeland, Ian J; Das, Sandeep R; Khera, Amit; Turer, Aslan T; Ayers, Colby R; McGuire, Darren K; Rohatgi, Anand

    2015-04-01

    Therapies targeting high-density lipoprotein cholesterol content (HDL-C) have not improved coronary heart disease (CHD) outcomes. High-density lipoprotein particle concentration (HDL-P) may better predict CHD. However, the impact of race/ethnicity on the relations between HDL-P and subclinical atherosclerosis and incident CHD events has not been described. Participants from the Dallas Heart Study (DHS), a multiethnic, probability-based, population cohort of Dallas County adults, underwent the following baseline measurements: HDL-C, HDL-P by nuclear magnetic resonance imaging, and coronary artery calcium by electron-beam computed tomography. Participants were followed for a median of 9.3 years for incident CHD events (composite of first myocardial infarction, stroke, coronary revascularization, or cardiovascular death). The study comprised 1,977 participants free of CHD (51% women, 46% black). In adjusted models, HDL-C was not associated with prevalent coronary artery calcium (p = 0.13) or incident CHD overall (hazard ratio [HR] per 1 SD 0.89, 95% confidence interval [CI] 0.76 to 1.05). However, HDL-C was inversely associated with incident CHD among nonblack (adjusted HR per 1 SD 0.67, 95% CI 0.46 to 0.97) but not black participants (HR 0.94, 95% CI 0.78 to 1.13, pinteraction = 0.05). Conversely, HDL-P, adjusted for risk factors and HDL-C, was inversely associated with prevalent coronary artery calcium (p = 0.009) and with incident CHD overall (adjusted HR per 1 SD 0.73, 95% CI 0.62 to 0.86), with no interaction by black race/ethnicity (pinteraction = 0.57). In conclusion, in contrast to HDL-C, the inverse relation between HDL-P and incident CHD events is consistent across ethnicities. These findings suggest that HDL-P is superior to HDL-C in predicting prevalent atherosclerosis as well as incident CHD events across a diverse population and should be considered as a therapeutic target. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Human lipoprotein binding to schistosomula of schistosoma mansoni. Displacement by polyanions, parasite antigen masking, and persistence in young larvae.

    PubMed Central

    Chiang, C. P.; Caulfield, J. P.

    1989-01-01

    It was previously shown by the authors that the binding of human low-density lipoprotein (LDL) to the surface of schistosomula inhibits the binding of human anti-schistosomal antibodies and is inhibited by suramin. Here, three questions were considered. 1) Are LDLs bound to schistosomula displaced from the membrane by polyanions? 2) Does bound LDL mask or hide antigens recognized by human anti-schistosomal antibodies? 3) Is LDL, binding capability present when the larvae enter the blood stream? The first question was tested by measuring the percentage of the schistosomular surface membrane covered by LDL after exposure to LDL with or without dextran sulfate or suramin. The bound LDL was visualized with polyclonal goat anti-human apolipoprotein B (anti-apo B) antibodies and peroxidase-conjugated secondary antibodies. After overnight culture in 20 micrograms/300 microliters LDL, 84.0% +/- 0.3% of the parasite surface was covered by LDL reaction product. When the polyanions suramin or dextran sulfate were added to the cultures for 30 minutes, only 59.7% +/- 4.9% of the surface was covered by reaction product, demonstrating that the LDL was partially displaced from the membrane by these compounds. The second question was tested by measuring the binding of human and mouse monoclonal anti-schistosomal antibodies before and after exposure to LDL, with or without partial removal of the bound LDL by suramin. LDL partially inhibited antibody binding in a reversible fashion. The LDL clearly masked parasite antigens, most probably by steric hindrance. However, there may be competitive inhibition of antibody binding by the LDL as well, because human anti-schistosomal antibodies inhibited LDL binding to worms and both human anti-schistosomal antibody and LDL binding to schistosomula were inhibited by suramin. Finally, the third question was tested by quantitative immunofluorescence. The LDL binding capability persisted and nearly doubled by 72 hours after transformation from

  9. Cholesterol-lowering drugs inhibit lectin-like oxidized low-density lipoprotein-1 receptor function by membrane raft disruption.

    PubMed

    Matarazzo, Sara; Quitadamo, Maria Chiara; Mango, Ruggiero; Ciccone, Sarah; Novelli, Giuseppe; Biocca, Silvia

    2012-08-01

    Lectin-like oxidized low-density lipoprotein (LOX-1), the primary receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is up-regulated in atherosclerotic lesions. Statins are the principal therapeutic agents for cardiovascular diseases and are known to down-regulate LOX-1 expression. Whether the effect on the LOX-1 receptor is related to statin-mediated cholesterol-lowering activity is unknown. We investigate the requirement of cholesterol for LOX-1-mediated lipid particle internalization, trafficking, and processing and the role of statins as inhibitors of LOX-1 function. Disruption of cholesterol-rich membrane microdomains by acute exposure of cells to methyl-β-cyclodextrin or chronic exposure to different statins (lovastatin and atorvastatin) led to a spatial disorganization of LOX-1 in plasma membranes and a marked loss of specific LOX-1 function in terms of ox-LDL binding and internalization. Subcellular fractionation and immunochemical studies indicate that LOX-1 is naturally present in caveolae-enriched lipid rafts and, by cholesterol reduction, the amount of LOX-1 in this fraction is highly decreased (≥60%). In contrast, isoprenylation inhibition had no effect on the distribution and function of LOX-1 receptors. Furthermore, in primary cultures from atherosclerotic human aorta lesions, we confirm the presence of LOX-1 in caveolae-enriched lipid rafts and demonstrate that lovastatin treatment led to down-regulation of LOX-1 in lipid rafts and rescue of the ox-LDL-induced apoptotic phenotype. Taken together, our data reveal a previously unrecognized essential role of membrane cholesterol for LOX-1 receptor activity and suggest that statins protect vascular endothelium against the adverse effect of ox-LDL by disruption of membrane rafts and impairment of LOX-1 receptor function.

  10. Alpinetin enhances cholesterol efflux and inhibits lipid accumulation in oxidized low-density lipoprotein-loaded human macrophages.

    PubMed

    Jiang, Zhengming; Sang, Haiqiang; Fu, Xin; Liang, Ying; Li, Ling

    2015-01-01

    Alpinetin is a natural flavonoid abundantly present in the ginger family. Here, we investigated the effect of alpinetin on cholesterol efflux and lipid accumulation in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 macrophages and human peripheral blood monocyte-derived macrophages (HMDMs). After exposing THP-1 macrophages to alpinetin, cholesterol efflux was determined by liquid scintillator. The mRNA and protein levels of peroxisome proliferator-activated receptor gamma (PPAR-γ), liver X receptor alpha (LXR-α), ATP-binding cassette transporter A1 (ABCA1), and ABCG1 and scavenger receptor class B member 1 were determined by reverse-transcriptase PCR (RT-PCR) and Western blot analysis, respectively. Alpinetin promoted apolipoprotein A-I- and high-density-lipoprotein-mediated cholesterol efflux and elevated PPAR-γ and LXR-α mRNA and protein expression in a dose-dependent fashion in ox-LDL-treated THP-1 macrophages and HMDMs. Small interfering RNA-mediated silencing of PPAR-γ or LXR-α dose dependently reversed alpinetin-increased cholesterol efflux in THP-1 macrophages, indicating the involvement of PPAR-γ and LXR-α in alpinetin-promoted cholesterol efflux. Alpinetin inhibited ox-LDL-induced lipid accumulation and enhanced the expression of ABCA1 and ABCG1 mRNA and protein, which was reversed by specific knockdown of PPAR-γ or LXR-α. Taken together, our results reveal that alpinetin exhibits positive effects on cholesterol efflux and inhibits ox-LDL-induced lipid accumulation, which might be through PPAR-γ/LXR-α/ABCA1/ABCG1 pathway.

  11. Determinants of obstructive sleep apnea syndrome: Pro-inflammatory state and dysfunction of high-density lipoprotein.

    PubMed

    Karadeniz, Yusuf; Onat, Altan; Akbaş, Tuğba; Şimşek, Barış; Yüksel, Hüsniye; Can, Günay

    The goal of this study was to determine variables preceding and predicting incident obstructive sleep apnea syndrome (OSAS) in the population at large. Anthropometric, lipid, and non-lipid variables in participants with newly developing OSAS (n = 131) were compared with those of a cohort sample (n = 2615) of the Turkish Adult Risk Factor study. Available values preceding (by a median of 32 mo) the development of OSAS were used in multivariable Cox regression models. Significant determinants of OSAS assessed by group differences were waist/neck circumference and fibrinogen. Fasting triacylglycerols, systolic blood pressure, and C-reactive protein in men and low sex hormone-binding globulin and elevated homeostatic model assessment in women were further significant covariates. Cox regression analysis for the risk of incident OSAS confirmed the independent predictive value of central obesity measures, especially neck circumference (having a twofold hazard ratio) and younger age. Age-adjusted former smoking status and-compared with the lowest tertile-the upper two tertiles of fibrinogen (relative risk = 1.66, 95% confidence interval: 1.05-2.63) were significant predictors. Elevated triacylglycerols in males and high apolipoprotein B and lowest high-density lipoprotein cholesterol tertile in females also predicted subsequent OSAS. Systolic blood pressure and total cholesterol did not prove to be independent predictors in multivariable adjusted Cox models in which partial sex-dependent independence of obesity measures of the previously stated five variables was essentially retained. An enhanced pro-inflammatory state appeared to be the underlying pathophysiologic mechanism for OSAS, whereas in men, the added factor of high-density lipoprotein dysfunction was suggested. Because it contributes to the pro-inflammatory state, discontinuance of smoking was another further significant predictor of OSAS. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Interaction of apolipoprotein AII with the putative high-density lipoprotein receptor.

    PubMed

    Vadiveloo, P K; Allan, C M; Murray, B J; Fidge, N H

    1993-09-14

    There is strong evidence to indicate that binding of HDL by cells is due to recognition of apoproteins residing on the surface of the lipoprotein by the putative HDL receptor(s). Although both of the major HDL apoproteins, AI and AII, are recognized by the putative receptor, the nature of the binding interaction and the domains of the apoproteins involved are largely unknown. Previous data from this laboratory led to the proposal of a model to explain how HDL particles containing AII interacted with the HDL receptor in a different manner as compared to HDL particles which contain apoAI but not apoAII [Vadiveloo, P. K., & Fidge, N. H. (1992) Biochem. J. 284, 145-151]. The model predicted that each chain of the apoAII homodimer contained a binding domain capable of interacting with the HDL receptor. This model was tested in the current study by preparing apoAII monomers, complexing them with phospholipid, and determining the ability of these complexes to bind to putative HDL receptors in rat liver plasma membranes (RLPM) and bovine aortic endothelial cell membranes (BAECM) by ligand blotting. The data showed that these complexes were bound by HB1 and HB2 from RLPM, and to the 110-kDa HDL binding protein from BAECM, providing critical evidence to support the model. Further investigation into the binding interaction revealed that apoAII complexed with phospholipid (apoAII-PC) bound more than delipidated apoAII, which bound more than delipidated apoAII monomers. Thus, optimum binding required the presence of lipid.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Optimal Low-Density Lipoprotein Cholesterol for Cardiovascular Prevention: How Low Should We Go?

    PubMed

    Anderson, Todd J

    2017-03-01

    The treatment of dyslipidemia with lifestyle interventions and statin-based therapy has been an important defense against atherosclerotic cardiovascular disease and its complications. It has been well documented for more than 2 decades that 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors (statins) reduce the risk of events. The evolution of drug development and randomized clinical trials in cardiovascular medicine has resulted in the conclusion that lower cholesterol concentrations result in greater benefit. However, how aggressive one should be in lowering cholesterol levels and to what level has not been definitively established. In this brief review I aim to defend the hypothesis that lower is better on the basis of the evidence to date. This will include indirect evidence from randomized clinical trials with statins and novel lipid-modifying drugs. In addition, there is a wealth of epidemiology and Mendelian randomization genetic data to support this. Also, on-treatment low-density lipoprotein cholesterol concentrations show a robust relationship with cardiovascular disease events. Finally, most national guidelines groups around the world continue to advocate for a treat to target philosophy. As such, the prevailing philosophy is that lowering low-density lipoprotein cholesterol to very low levels is our best preventative strategy particularly for those at the highest risk. We eagerly await the results of ongoing clinical trials that will more firmly establish if this concept will ultimately be proven correct.

  14. Lowering low-density lipoprotein cholesterol levels in patients with type 2 diabetes mellitus

    PubMed Central

    Bays, Harold E

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia, insulin resistance, and/or progressive loss of β-cell function. T2DM patients are at increased risk of micro- and macrovascular disease, and are often considered as representing an atherosclerotic coronary heart disease (CHD) risk equivalent. Interventions directed at glucose and lipid level control in T2DM patients may reduce micro- and macrovascular disease. The optimal T2DM agent is one that lowers glucose levels with limited risk for hypoglycemia, and with no clinical trial evidence of worsening CHD risk. Lipid-altering drugs should preferably reduce low-density lipoprotein cholesterol and apolipoprotein B (apo B) and have evidence that the mechanism of action reduces CHD risk. Statins reduce low-density lipoprotein cholesterol and apo B and have evidence of improving CHD outcomes, and are thus first-line therapy for the treatment of hypercholesterolemia. In patients who do not achieve optimal lipid levels with statin therapy, or who are intolerant to statin therapy, add-on therapy or alternative therapies may be indicated. Additional available agents to treat hypercholesterolemic patients with T2DM include bile acid sequestrants, fibrates, niacin, and ezetimibe. This review discusses the use of these alternative agents to treat hypercholesterolemia in patients with T2DM, either as monotherapy or in combination with statin therapy. PMID:25045281

  15. Lowering low-density lipoprotein cholesterol levels in patients with type 2 diabetes mellitus.

    PubMed

    Bays, Harold E

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia, insulin resistance, and/or progressive loss of β-cell function. T2DM patients are at increased risk of micro- and macrovascular disease, and are often considered as representing an atherosclerotic coronary heart disease (CHD) risk equivalent. Interventions directed at glucose and lipid level control in T2DM patients may reduce micro- and macrovascular disease. The optimal T2DM agent is one that lowers glucose levels with limited risk for hypoglycemia, and with no clinical trial evidence of worsening CHD risk. Lipid-altering drugs should preferably reduce low-density lipoprotein cholesterol and apolipoprotein B (apo B) and have evidence that the mechanism of action reduces CHD risk. Statins reduce low-density lipoprotein cholesterol and apo B and have evidence of improving CHD outcomes, and are thus first-line therapy for the treatment of hypercholesterolemia. In patients who do not achieve optimal lipid levels with statin therapy, or who are intolerant to statin therapy, add-on therapy or alternative therapies may be indicated. Additional available agents to treat hypercholesterolemic patients with T2DM include bile acid sequestrants, fibrates, niacin, and ezetimibe. This review discusses the use of these alternative agents to treat hypercholesterolemia in patients with T2DM, either as monotherapy or in combination with statin therapy.

  16. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit.

    PubMed

    Brites, Fernando; Martin, Maximiliano; Guillas, Isabelle; Kontush, Anatol

    2017-12-01

    Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.

  17. Drugs targeting high-density lipoprotein cholesterol for coronary artery disease management.

    PubMed

    Katz, Pamela M; Leiter, Lawrence A

    2012-01-01

    Many patients remain at high risk for future cardiovascular events despite levels of low-density lipoprotein cholesterol (LDL-C) at, or below, target while taking statin therapy. Much effort is therefore being focused on strategies to reduce this residual risk. High-density lipoprotein cholesterol (HDL-C) is a strong, independent, inverse predictor of coronary heart disease risk and is therefore an attractive therapeutic target. Currently available agents that raise HDL-C have only modest effects and there is limited evidence of additional cardiovascular risk reduction on top of background statin therapy associated with their use. It was hoped that the use of cholesteryl ester transfer protein (CETP) inhibitors would provide additional benefit, but the results of clinical outcome studies to date have been disappointing. The results of ongoing trials with other CETP inhibitors that raise HDL-C to a greater degree and also lower LDL-C, as well as with other emerging therapies are awaited. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  18. [Alterations in the protein content and dysfunction of high-density lipoproteins from hyperhomocysteinemic mice].

    PubMed

    Julve, Josep; Errico, Teresa Laura; Chen, Xiangyu; Santos, David; Freixa, Júlia; Porcel, Inmaculada; Cubero, Esther; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2013-01-01

    The aim of this study was to evaluate the proteic changes in high-density lipoproteins (HDL) induced by methionine-induced hyperhomocysteinemia in mice and its relationship with two of their main antiatherogenic properties. The oral administration of methionine resulted in an elevation (~8 times) in the plasma concentration of homocysteine. Hyperhomocysteinemia was inversely correlated with the plasma concentration of HDL cholesterol and its main protein component of HDL, apolipoprotein (apo) A-I, respectively. The cholesterol efflux in vivo from macrophages to HDL was decreased in hyperhomocysteinemic mice compared with the control mice. However, the reverse cholesterol transport from macrophages to feces remained unchanged. On the other hand, the ability of HDL from hyperhomocysteinemic mice to prevent the oxidative modification of low-density lipoproteins (LDL) was found decreased and associated with a concomitant reduction in the plasma activity of paraoxonase-1 (PON1) and the plasma concentration of apoA-I, and with a relative reduction in the apoA-IV content (~1.5 times) in the hyperhomocysteinemic HDL, respectively. The decrease in the ability of HDL from hyperhomocysteinemic mice to prevent LDL from oxidation was associated with a decrease in the apoA-I, PON1 and apoA-IV. Copyright © 2013 Elsevier España, S.L. and SEA. All rights reserved.

  19. Targeting PCSK9 as a promising new mechanism for lowering low-density lipoprotein cholesterol.

    PubMed

    Della Badia, Laura A; Elshourbagy, Nabil A; Mousa, Shaker A

    2016-08-01

    Statins and other lipid-lowering drugs have dominated the market for many years for achievement of recommended levels of low-density lipoprotein cholesterol (LDL-C). However, a substantial number of high-risk patients are unable to achieve the LDL-C goal. Proprotein convertase subtilisin/kexin 9 (PCSK9) has recently emerged as a new, promising key therapeutic target for hypercholesterolemia. PCSK9 is a protease involved in chaperoning the low-density lipoprotein receptor to the process of degradation. PCSK9 inhibitors and statins effectively lower LDL-C. The PCSK9 inhibitors decrease the degradation of the LDL receptors, whereas statins mainly interfere with the synthetic machinery of cholesterol by inhibiting the key rate limiting enzyme, the HMG CoA reductase. PCSK9 inhibitors are currently being developed as monoclonal antibodies for their primary use in lowering LDL-C. They may be especially useful for patients with homozygous familial hypercholesterolemia, who at present receive minimal benefit from traditional statin therapy. The monoclonal antibody PCSK9 inhibitors, recently granted FDA approval, show the most promising safety and efficacy profile compared to other, newer LDL-C lowering therapies. This review will primarily focus on the safety and efficacy of monoclonal antibody PCSK9 inhibitors in comparison to statins. The review will also address new, alternative PCSK9 targeting drug classes such as small molecules, gene silencing agents, apolipoprotein B antisense oligonucleotides, and microsomal triglyceride transfer protein inhibitors.

  20. Generation in Human Plasma of Misfolded, Aggregation-Prone Electronegative Low Density Lipoprotein

    PubMed Central

    Greco, Giulia; Balogh, Gabor; Brunelli, Roberto; Costa, Graziella; De Spirito, Marco; Lenzi, Laura; Mei, Giampiero; Ursini, Fulvio; Parasassi, Tiziana

    2009-01-01

    Abstract Human plasma contains small amounts of a low density lipoprotein in which apoprotein is misfolded. Originally identified and isolated by means of anion-exchange chromatography, this component was subsequently described as electronegative low density lipoprotein (LDL)(−), with increased concentrations associated with elevated cardiovascular disease risk. It has been recognized recently as the trigger of LDL amyloidogenesis, which produces aggregates similar to subendothelial droplets observed in vivo in early atherogenesis. Although LDL(−) has been produced in vitro through various manipulations, the mechanisms involved in its generation in vivo remain obscure. By using a more physiological model, we demonstrate spontaneous, sustained and noticeable production of LDL(−) during incubation of unprocessed human plasma at 37°C. In addition to a higher fraction of amyloidogenic LDL(−), LDL purified from incubated plasma contains an increased level of lysophospholipids and free fatty acids; analysis of LDL lipids packing shows their loosening. As a result, during plasma incubation, lipid destabilization and protein misfolding take place, and aggregation-prone particles are generated. All these phenomena can be prevented by inhibiting calcium-dependent secretory phospholipases A2. Our plasma incubation model, without removal of reaction products, effectively shows a lipid-protein interplay in LDL, where lipid destabilization after lipolysis threatens the apoprotein's structure, which misfolds and becomes aggregation-prone. PMID:19619478

  1. Non-high-density lipoprotein cholesterol in patients with metabolic syndrome.

    PubMed

    Huang, Jian; Parish, Roy; Mansi, Ishak; Yu, Herbert; Kennen, Estela M; Davis, Terry; Carden, Donna

    2008-10-01

    Metabolic syndrome (MS) represents a cluster of cardiovascular risk factors that includes hypertriglyceridemia. Although low-density lipoprotein (LDL) cholesterol is the critical therapeutic target in patients with coronary artery disease, LDL cannot be calculated in those with excessive hypertriglyceridemia. Non-high-density lipoprotein (HDL) does not require LDL for calculation and may be an alternative therapeutic target in MS. The purpose of this study was to determine non-HDL cholesterol in relation to other lipid components and comorbidities in MS patients. A cross-sectional chart review on 928 public hospital patients was performed. Metabolic syndrome was present in 53% of all patients. Among those with MS, 87% had triglyceride level of greater than 150 mg/dL, 85% had low HDL, 71% had LDL of greater than 100 mg/dL, and 74% had non-HDL of greater than 130 mg/dL. The level of non-HDL cholesterol, but not total cholesterol or LDL cholesterol, was significantly higher (P < 0.05) and less at goal (P < 0.0001) in patients with MS. Diagnoses of coronary artery disease, hypertension, obesity, dyslipidemia, and diabetes were significantly more prevalent in MS patients (P < 0.0001). Compared with those without MS, non-HDL level was significantly higher and undertargeted in patients with MS, in parallel with significantly higher prevalence of comorbidities.

  2. The role of high density lipoprotein in Type 1 Gaucher disease.

    PubMed

    Watad, Salmas; Abu-Saleh, Niroz; Yousif, Awni; Agbaria, Abed; Rosenbaum, Hanna

    2016-11-12

    Type I Gaucher Disease (GD1) is known to be associated with hypocholesterolemia and reduced levels of low density lipoprotein (LDL) and high density lipoprotein (HDL). In this study we aimed to correlate disease severity with HDL levels and to evaluate the effect of enzyme replacement therapy (ERT) on HDL levels as well as estimating the frequency of cardiovascular events in GD. Two groups of GD1 patients were evaluated: 30 untreated and 36 patients on ERT. Disease severity, biomarkers of GD and lipid levels were evaluated in the two groups. The Zimran Severity Score Index (SSI) was used to estimate disease severity and the effect of ERT on HDL levels was evaluated, as well as the frequency of cardiovascular disease. GD1 patients with more severe disease (SSI median 11) had significantly lower levels of HDL (median 23mg/dL), compared to patients with milder (SSI median 4.5) disease (median 37mg/dL p=0.001). HDL levels increased after ERT. Despite lower HDL levels in patients with more severe disease, a low frequency of cardiovascular events was detected. HDL level should be used in GD as a biomarker for diagnosis, monitoring and estimation of ERT effect. Copyright © 2016. Published by Elsevier Inc.

  3. Evaluation of bacteriochlorophyll-reconstituted low-density lipoprotein nanoparticles for photodynamic therapy efficacy in vivo

    PubMed Central

    Marotta, Diane E; Cao, Weiguo; Wileyto, E Paul; Li, Hui; Corbin, Ian; Rickter, Elizabeth; Glickson, Jerry D; Chance, Britton; Zheng, Gang; Busch, Theresa M

    2011-01-01

    Aim To evaluate the novel nanoparticle reconstituted bacteriochlorin e6 bisoleate low-density lipoprotein (r-Bchl-BOA-LDL) for its efficacy as a photodynamic therapy agent delivery system in xenografts of human hepatoblastoma G2 (HepG2) tumors. Materials & methods Bchl-BOA was encapsulated in the nanoparticle low-density lipoprotein (LDL), a native particle whose receptor’s overexpression is a cancer signature for a number of neoplasms. Evaluation of r-Bchl-BOA-LDL as a potential photosensitizer was performed using a tumor response and foot response assay. Results & discussion When compared with controls, tumor regrowth was significantly delayed at injected murine doses of 2 µmole/kg r-Bchl-BOA-LDL after illumination at fluences of 125, 150 or 175 J/cm2. Foot response assays showed that although normal tissue toxicity accompanied the higher fluences it was significantly reduced at the lowest fluence tested. Conclusion This research demonstrates that r-Bchl-BOA-LDL is an effective photosensitizer and a promising candidate for further investigation. PMID:21542686

  4. High-Density Lipoprotein Mimetics: a Therapeutic Tool for Atherosclerotic Diseases.

    PubMed

    Ikenaga, Masahiro; Higaki, Yasuki; Saku, Keijiro; Uehara, Yoshinari

    2016-01-01

    Clinical trials and epidemiological studies have revealed a negative correlation between serum high-density lipoprotein (HDL) cholesterol levels and the risk of cardiovascular events. Currently, statin treatment is the standard therapy for cardiovascular diseases, reducing plasma low-density lipoprotein (LDL) cholesterol levels. However, more than half of the patients have not been able to receive the beneficial effects of this treatment.The reverse cholesterol transport pathway has several potential anti-atherogenic properties. An important approach to HDL-targeted therapy is the optimization of HDL cholesterol levels and function in the blood to enhance the removal of circulating cholesterol and to prevent or mitigate inflammation that causes atherosclerosis. Cholesteryl ester transfer protein inhibitors increase HDL cholesterol levels in humans, but whether they reduce the risk of atherosclerotic diseases is unknown. HDL therapies using HDL mimetics, including reconstituted HDL, apolipoprotein (Apo) A-IMilano, ApoA-I mimetic peptides, or full-length ApoA-I, are highly effective in animal models. In particular, the Fukuoka University ApoA-I-mimetic peptide (FAMP) effectively removes cholesterol via the ABCA1 transporter and acts as an anti-atherosclerotic agent by enhancing the biological functions of HDL without elevating HDL cholesterol levels.Our literature review suggests that HDL mimetics have significant atheroprotective potential and are a therapeutic tool for atherosclerotic diseases.

  5. Protective effects of endomorphins, endogenous opioid peptides in the brain, on human low density lipoprotein oxidation.

    PubMed

    Lin, Xin; Xue, Li-Ying; Wang, Rui; Zhao, Qian-Yu; Chen, Qiang

    2006-03-01

    Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l-glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders.

  6. Activation of 15-lipoxygenase by low density lipoprotein in vascular endothelial cells. Relationship to the oxidative modification of low density lipoprotein.

    PubMed

    Derian, C K; Lewis, D F

    1992-01-01

    Oxidatively-modified low density lipoprotein (LDL) is thought to play a significant role in the formation of lipid-laden macrophages, the primary cellular component of atherosclerotic fatty lesions. Recently, lipoxygenases have been implicated as a major enzymatic pathway involved in rabbit endothelial cell-mediated LDL modification. We investigated the effect of LDL on porcine aortic endothelial cell (PAEC) and human umbilical vein (HUVEC) and aortic endothelial cell (HAEC) lipoxygenase activity. By thin layer chromatography, we observed that human LDL stimulated the metabolism of radiolabeled arachidonic acid to 12 + 15-hydroxyeicosatetraenoic acid (HETE) in indomethacin-treated PAEC. Furthermore, radiolabeled linoleic acid, a specific substrate for the 15-lipoxygenase, was metabolized to its respective product 13-hydroxyoctadecadienoic acid (13-HODE) in the presence of LDL. Increased product formation in both studies was inhibited by the lipoxygenase blockers nordihydroguaiaretic acid (NDGA) and RG 6866. 15-HETE was confirmed as the predominant HETE product in LDL-treated cells by high performance liquid chromatography. Both porcine- and human-derived LDL stimulated the CL release of 15-HETE from cells as determined by radioimmunoassay. Release of immunoreactive 15-HETE was inhibited by NDGA, RG 6866, and 5,8,11,14-eicosatetraynoic acid (ETYA) but not by the selective 5-lipoxygenase inhibitor RG 5901. These lipoxygenase inhibitors had similar effects on the modification of LDL. Our results suggest that the oxidative modification of LDL by endothelial cells may be mediated in part through activation of 15-lipoxygenase.

  7. Correlation of Friedewald's calculated low-density lipoprotein cholesterol levels with direct low-density lipoprotein cholesterol levels in a tertiary care hospital.

    PubMed

    Nanda, Sunil Kumar; Bharathy, M; Dinakaran, Asha; Ray, Lopamudra; Ravichandran, K

    2017-01-01

    One of the risk factors for the development of coronary heart disease is high low-density lipoprotein (LDL) cholesterol levels. National Cholesterol Education Program ATP III guidelines suggest drug therapy to be considered at LDL-cholesterol levels >130 mg/dl. This makes accurate reporting of LDL cholesterol crucial in the management of Coronary heart disease. Estimation of LDL cholesterol by direct LDL method is accurate, but it is expensive. Hence, We compared Friedewald's calculated LDL values with direct LDL values. To evaluate the correlation of Friedewalds calculated LDL with direct LDL method. We compared LDL cholesterol measured by Friedewald's formula with direct LDL method in 248 samples between the age group of 20-70 years. Paired t-test was used to test the difference in LDL concentration obtained by a direct method and Friedewald's formula. The level of significance was taken as P < 0.05. Pearsons correlation formula was used to test the correlation between direct LDL values with Friedewald's formula. There was no significant difference between the direct LDL values when compared to calculated LDL by Friedewalds formula (P = 0.140). Pearson correlation showed there exists good correlation between direct LDL versus Friedewalds formula (correlation coefficient = 0.98). The correlation between direct LDL versus Friedewalds calculated LDL was best at triglycerides values between 101 and 200 mg/dl. This study indicates calculated LDL by Friedewalds equation can be used instead of direct LDL in patients who cannot afford direct LDL method.

  8. N-Succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors

    PubMed Central

    Zhang, Chun-ge; Zhu, Qiao-ling; Zhou, Yi; Liu, Yang; Chen, Wei-liang; Yuan, Zhi-Qiang; Yang, Shu-di; Zhou, Xiao-feng; Zhu, Ai-jun; Zhang, Xue-nong; Jin, Yong

    2014-01-01

    N-Succinyl-chitosan (NSC) was synthesized and NSC nanoparticles (NPs) with loaded osthole (Ost) (Ost/NSC-NPs) were prepared by emulsion solvent diffusion. Subsequently, low-density lipoprotein (LDL)-mediated NSC-NPs with loaded Ost (Ost/LDL-NSC-NPs) were obtained by coupling LDL with Ost/NSC-NPs through amide linkage. The average particle size of Ost/NSC-NPs was approximately 145 nm, the entrapment efficiency was 78.28%±2.06%, and the drug-loading amount was 18.09%±0.17%. The release of Ost from Ost/NSC-NPs in vitro showed a more evident sustained effect than the native material. The half maximal inhibitory concentration of Ost/LDL-NSC-NPs was only 16.23% that of the free Ost at 24 hours in HepG2 cells. Ost inhibited HepG2 cell proliferation by arresting cells in the synthesis phase of the cell cycle and by triggering apoptosis. Cellular uptake and subcellular localization in vitro and near-infrared fluorescence real-time imaging in vivo showed that Ost/LDL-NSC-NPs had high targeting efficacy. Therefore, LDL-NSC-NPs are a promising system for targeted Ost delivery to liver tumor. PMID:24966673

  9. Niacin-ER/statin combination for the treatment of dyslipidemia: focus on low high-density lipoprotein cholesterol.

    PubMed

    Chrysant, Steven G; Ibrahim, Mohammed

    2006-07-01

    Statins are effective drugs for lowering low-density lipoprotein cholesterol, and their use has been associated with a significant decrease in cardiovascular morbidity and mortality. However, statins are ineffective in lowering plasma triglycerides and lipoprotein(a), or increasing low high-density lipoprotein cholesterol (HDL-C) plasma levels, which are independent risk factors for coronary heart disease. Niacin, on the other hand, is the most potent drug available for lowering plasma levels of triglycerides and lipoprotein(a) and raising HDL-C levels. It follows, then, that a combination of niacin with a statin might be an effective combination in improving all components of the lipid profile. Previous studies have shown that the use of long-acting niacin with a statin, in dose combinations of niacin-ER/lovastatin 1,000/20 mg or 2,000/40 mg once daily, has been effective in favorably modifying low-density lipoprotein cholesterol, triglycerides, lipoprotein(a), and HDL-C plasma levels. Dyslipidemias often predate the onset of hypertension, and HDL-C has been found to be inversely related to the incidence of hypertension. Normalization of lipid components, including the total cholesterol/HDL-C ratio, is important in the management of hypertensive individuals and patients with the metabolic syndrome or diabetes. Thus, the long-term treatment of dyslipidemias with these two agents may help to modify risk and reduce cardiovascular morbidity and mortality in these patients over and above benefits achieved by lowering blood pressure.

  10. Carbamylated low-density lipoprotein induces proliferation and increases adhesion molecule expression of human coronary artery smooth muscle cells.

    PubMed

    Asci, Gulay; Basci, Ali; Shah, Sudhir V; Basnakian, Alexei; Toz, Huseyin; Ozkahya, Mehmet; Duman, Soner; Ok, Ercan

    2008-12-01

    Presence of accelerated atherosclerosis in dialysis patients cannot be entirely explained by conventional risk factors. Exposure to urea, which is elevated in patients with kidney disease, leads to the carbamylation of proteins. We investigated the effects of carbamylated low-density lipoprotein (cLDL) on human coronary artery vascular smooth muscle cells (VSMC). Native LDL (nLDL) was carbamylated with potassium cyanate. Cells were incubated with different concentrations of cLDL carbamylated at different time points. Cytotoxicity, apoptosis, proliferation (bromodeoxyuridine incorporation), expression of adhesion molecules and extracellular matrix protein synthesis were studied. Carbamylated low-density lipoprotein exposure leads to morphological alterations and presence of cellular debris. Neither nLDL nor cLDL caused apoptosis. Lactate dehydrogenase (LDH) release was not different between groups. Carbamylated low-density lipoprotein led to a striking proliferation in VSMC compared to nLDL. Carbamylated low-density lipoprotein significantly increased intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression compared to the control. The effects of cLDL on proliferation and adhesion molecule expression were dose-dependent and correlated with the degree of low-density lipoprotein carbamylation. cLDL had no effect on extracellular matrix protein synthesis. The results support the hypothesis that cLDL may contribute to the pathogenesis of atherosclerosis in uraemic patients.

  11. Neutrophil–lymphocyte ratio is associated with low high-density lipoprotein cholesterol in healthy young men

    PubMed Central

    Tok, Duran; Ozenc, Salim

    2014-01-01

    Objective: It has been reported that the neutrophil–lymphocyte ratio is significantly elevated in patients with low high-density lipoprotein cholesterol (<35 mg/dL). But in this study, some patients had hypertension that may have affected the neutrophil–lymphocyte ratio. This study consisted of 1274 asymptomatic healthy young men. In contrast with the previous study, we investigated the neutrophil–lymphocyte ratio in healthy young men with low high-density lipoprotein cholesterol compared with controls. Methods: We studied 1274 asymptomatic young males (military personnel screening) who underwent routine health check-up. Of them, 102 subjects had low high-density lipoprotein cholesterol. Results: The neutrophil–lymphocyte ratio was significantly higher among the men with low high-density lipoprotein cholesterol than that of the control group (P < 0.001). Conclusion: We conclude that the neutrophil–lymphocyte ratio is significantly elevated in asymptomatic healthy young men with low high-density lipoprotein cholesterol compared with control participants. PMID:26770725

  12. Triglyceride and non-high-density lipoprotein cholesterol as predictors of cardiovascular disease risk factors in Chinese Han children.

    PubMed

    Zhu, Wei Fen; Liang, Li; Wang, Chun Lin; Fu, Jun Fen

    2013-04-01

    To investigate the role of serum cholesterol and triglyceride in the assessment of cardiovascular disease risk factors in children and adolescents. Case-control study. Childrens Hospital of Zhejiang University School of Medicine, Hangzhou, China. Children from 6 years to 17 year old. 188 with simple obesity, and 431 with obesity and metabolic abnormalities. 274 age and gender-matched healthy children as controls. Receiver operating characteristic curves were used to analyze the detection of cardiovascular disease risk factors by cholesterol and triglyceride in children and adolescents. The ranges of areas under receiver operating characteristic curves (AUC) for triglyceride and non-high-density lipoprotein cholesterol were 0.798-0.860 and 0.667-0.749, respectively to detect cardiovascular disease risk factors. The ranges of AUC for low-density lipoprotein cholesterol, total cholesterol, and high-density lipoprotein cholesterol were 0.631-0.718, 0.596-0.683, and 0.292-0.376, respectively. Triglyceride and non-high-density lipoprotein cholesterol are better than low-density lipoprotein cholesterol as predictors of cardiovascular disease risk factors in Chinese Han children and adolescents.

  13. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid–binding protein 2 reduce plasma triglyceride–rich lipoproteins

    USDA-ARS?s Scientific Manuscript database

    The Thr54 allele of the fatty acid binding protein 2 (FABP2) DNA polymorphism is associated with increased triglyceride-rich lipoproteins and insulin resistance. We investigated whether the triglyceride-rich lipoprotein response to diets of varied fat content is affected by the fatty acid binding pr...

  14. Changes in remnant and high-density lipoproteins associated with hormone therapy and progression of coronary artery disease in postmenopausal women

    USDA-ARS?s Scientific Manuscript database

    The effect of hormone therapy (HT) on the plasma concentration of remnant lipoprotein cholesterol (RLP-C) and high density lipoprotein (HDL) subpopulations and the contribution of HT-related changes in these lipoproteins to the progression of coronary heart disease (CHD) were examined in 256 postmen...

  15. Structure of human plasma low-density lipoproteins: molecular organization of the central core.

    PubMed Central

    Atkinson, D; Deckelbaum, R J; Small, D M; Shipley, G G

    1977-01-01

    Human plasma low density lipoprotein (LDL) exhibits a thermal transition over the temperature range 20-40 degrees. This transition is associated with a structural change within the lipoprotein particle and is reflected in the small-angle x-ray scattering profiles from LDL. The scattering profile of the quasispherical LDL particle at 10 degrees shows a relatively intense maximum at 1/36 A-1 which is absent from the scattering of LDL at 45 degrees. Theoretical calculations, using model electron density distributions, have been carried out to describe the packing of arrangement of the cholesterol esters, based on perturbations of the molecular packing of crystalline cholesteryl myristate, adequately reproduces the high relative intensity of the x-ray scattering maximum at 1/36 A-1. The perturbations of the packing in the crystal structure of cholesteryl myristate involve "melting" of the hydrocarbon chains of the esters together with translations of pairs of molecules parallel to the molecular long axis. The interaction of opposing steroid moieties, with C18 and C19 angular methyl groups interlocked, exhibited in the crystal structure is retained in the perturbed arrangement. At 45 degrees, thermally induced disorder of this arrangement averages the electron density of the central core. The x-ray scattering profiles of particles with a homogeneous electron density in the core region do not show a high relative intensity of the subsidiary maxima in the 1/36 A-1 region, in agreement with experimental observation. The results of these calculations support the concept that the thermal transition observed for LDL is due to a smectic leads to disordered transition of the cholesterol esters in the core of the LDL particle. PMID:191827

  16. Effects of maximal doses of atorvastatin versus rosuvastatin on small dense low-density lipoprotein cholesterol levels

    USDA-ARS?s Scientific Manuscript database

    Maximal doses of atorvastatin and rosuvastatin are highly effective in lowering low-density lipoprotein (LDL) cholesterol and triglyceride levels; however, rosuvastatin has been shown to be significantly more effective than atorvastatin in lowering LDL cholesterol and in increasing high-density lipo...

  17. Differential effects of grape ( Vitis vinifera ) skin polyphenolics on human platelet aggregation and low-density lipoprotein oxidation.

    PubMed

    Shanmuganayagam, Dhanansayan; Beahm, Mark R; Kuhns, Melissa A; Krueger, Christian G; Reed, Jess D; Folts, John D

    2012-06-13

    Antioxidant and antiplatelet properties of grape products are thought to be responsible for observed antiatherosclerotic effects. Diverse classes of phenolics are derived from the seed and skin (GSK) of grapes. The relative contributions of the classes of phenolics to observed properties of grape products are unknown. In this paper, GSK fractions were used to examine effects on platelet aggregation, low-density lipoprotein (LDL) oxidation in vitro, and relative binding of phenolics to LDL. GSK was separated into six fractions (fractions 1-6), and primary phenolics were characterized using high-performance liquid chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Fractions 4, 5, and 6, enriched in polygalloyl polyflavan-3-ols (PGPFs) with 3-6, 4-8, and 6-15 degrees of polymerization, respectively, inhibited platelet aggregation. Fractions 1-3, containing various amounts of oligosaccharides, hydroxycinnamic acids, anthocyanins, flavanols, and low molecular weight PGPFs, significantly increased platelet aggregation. Fractions 4-6 were most effective in binding LDL and inhibiting LDL oxidation. Fractions 5 and 6 exhibited the greatest inhibition of platelet aggregation and LDL oxidation, suggesting that polymeric PGPFs are responsible for the beneficial effects of grape products. Conversely, phenolics in fractions 1-3 may reduce the net biological potency of the grape products and have undesirable effects on cardiovascular disease risk factors.

  18. Tartaric Acid-based Amphiphilic Macromolecules with Ether Linkages Exhibit Enhanced Repression of Oxidized Low Density Lipoprotein Uptake

    PubMed Central

    Abdelhamid, Dalia; Zhang, Yingue; Lewis, Daniel R.; Moghe, Prabhas V.; Welsh, William J.; Uhrich, Kathryn E.

    2015-01-01

    Cardiovascular disease initiates with the atherogenic cascade of scavenger receptor- (SR-) mediated oxidized low-density lipoprotein (oxLDL) uptake. Resulting foam cell formation leads to lipid-rich lesions within arteries. We designed amphiphilic macromolecules (AMs) to inhibit these processes by competitively blocking oxLDL uptake via SRs, potentially arresting atherosclerotic development. In this study, we investigated the impact of replacing ester linkages with ether linkages in the AM hydrophobic domain. We hypothesized that ether linkages would impart flexibility for orientation to improve binding to SR binding pockets, enhancing anti-atherogenic activity. A series of tartaric acid-based AMs with varying hydrophobic chain lengths and conjugation chemistries were synthesized, characterized, and evaluated for bioactivity. 3-D conformations of AMs in aqueous conditions may have significant effects on anti-atherogenic potency and were simulated by molecular modeling. Notably, ether-linked AMs exhibited significantly higher levels of inhibition of oxLDL uptake than their corresponding ester analogues, indicating a dominant effect of linkage flexibility on pharmacological activity. The degradation stability was also enhanced for ether-linked AMs. These studies further suggested that alkyl chain length