DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S.H.; Nestel, P.J.
1987-05-01
The consumption of long chain polyunsaturated fatty acids of fish oils leads to profound lowering of plasma triacylglyercol (TAG) but not of plasma cholesterol. Reasons for this were investigated with the human hepatoma cell line, the Hep G2 cell. Incubations with oleic acid (OA), linoleic acid (LA) and the characteristic marine fatty acid eicosapentaenoic acid (EPA) enriched cellular TAG mass, though least with EPA. However, secretion of very low density lipoprotein (VLDL)-TAG and apoprotein B (apo B), measured from (/sup 3/H)-glycerol and (/sup 3/H)-leucine was markedly inhibited by EPA. Preincubation with LA reduced VLDL-TAG but not apo B secretion inmore » comparison with OA which stimulated both. A possible effect on low density lipoprotein (LDL) removal was studied by measuring (/sup 125/I)-LDL binding. Preincubation with either EPA or LA inhibited the saturable binding of LDL, observed with OA and control incubations. The binding of lipoproteins containing chylomicron remnants was not affected by any of the fatty acids.« less
Complex effects of inhibiting hepatic apolipoprotein B100 synthesis in humans.
Reyes-Soffer, Gissette; Moon, Byoung; Hernandez-Ono, Antonio; Dionizovik-Dimanovski, Marija; Dionizovick-Dimanovski, Marija; Jimenez, Jhonsua; Obunike, Joseph; Thomas, Tiffany; Ngai, Colleen; Fontanez, Nelson; Donovan, Daniel S; Karmally, Wahida; Holleran, Stephen; Ramakrishnan, Rajasekhar; Mittleman, Robert S; Ginsberg, Henry N
2016-01-27
Mipomersen is a 20mer antisense oligonucleotide (ASO) that inhibits apolipoprotein B (apoB) synthesis; its low-density lipoprotein (LDL)-lowering effects should therefore result from reduced secretion of very-low-density lipoprotein (VLDL). We enrolled 17 healthy volunteers who received placebo injections weekly for 3 weeks followed by mipomersen weekly for 7 to 9 weeks. Stable isotopes were used after each treatment to determine fractional catabolic rates and production rates of apoB in VLDL, IDL (intermediate-density lipoprotein), and LDL, and of triglycerides in VLDL. Mipomersen significantly reduced apoB in VLDL, IDL, and LDL, which was associated with increases in fractional catabolic rates of VLDL and LDL apoB and reductions in production rates of IDL and LDL apoB. Unexpectedly, the production rates of VLDL apoB and VLDL triglycerides were unaffected. Small interfering RNA-mediated knockdown of apoB expression in human liver cells demonstrated preservation of apoB secretion across a range of apoB synthesis. Titrated ASO knockdown of apoB mRNA in chow-fed mice preserved both apoB and triglyceride secretion. In contrast, titrated ASO knockdown of apoB mRNA in high-fat-fed mice resulted in stepwise reductions in both apoB and triglyceride secretion. Mipomersen lowered all apoB lipoproteins without reducing the production rate of either VLDL apoB or triglyceride. Our human data are consistent with long-standing models of posttranscriptional and posttranslational regulation of apoB secretion and are supported by in vitro and in vivo experiments. Targeting apoB synthesis may lower levels of apoB lipoproteins without necessarily reducing VLDL secretion, thereby lowering the risk of steatosis associated with this therapeutic strategy. Copyright © 2016, American Association for the Advancement of Science.
Complex effects of inhibiting hepatic apolipoprotein B100 synthesis in humans
Reyes-Soffer, Gissette; Moon, Byoung; Hernandez-Ono, Antonio; Dionizovik-Dimanovski, Marija; Jimenez, Jhonsua; Obunike, Joseph; Thomas, Tiffany; Ngai, Colleen; Fontanez, Nelson; Donovan, Daniel S.; Karmally, Wahida; Holleran, Stephen; Ramakrishnan, Rajasekhar; Mittleman, Robert S.; Ginsberg, Henry N.
2016-01-01
Mipomersen is a 20mer antisense oligonucleotide (ASO) that inhibits apolipoprotein B (apoB) synthesis; its low-density lipoprotein (LDL)–lowering effects should therefore result from reduced secretion of very-low-density lipoprotein (VLDL). We enrolled 17 healthy volunteers who received placebo injections weekly for 3 weeks followed by mipomersen weekly for 7 to 9 weeks. Stable isotopes were used after each treatment to determine fractional catabolic rates and production rates of apoB in VLDL, IDL (intermediate-density lipoprotein), and LDL, and of triglycerides in VLDL. Mipomersen significantly reduced apoB in VLDL, IDL, and LDL, which was associated with increases in fractional catabolic rates of VLDL and LDL apoB and reductions in production rates of IDL and LDL apoB. Unexpectedly, the production rates of VLDL apoB and VLDL triglycerides were unaffected. Small interfering RNA–mediated knockdown of apoB expression in human liver cells demonstrated preservation of apoB secretion across a range of apoB synthesis. Titrated ASO knockdown of apoB mRNA in chow-fed mice preserved both apoB and triglyceride secretion. In contrast, titrated ASO knockdown of apoB mRNA in high-fat–fed mice resulted in stepwise reductions in both apoB and triglyceride secretion. Mipomersen lowered all apoB lipoproteins without reducing the production rate of either VLDL apoB or triglyceride. Our human data are consistent with longstanding models of posttranscriptional and posttranslational regulation of apoB secretion and are supported by in vitro and in vivo experiments. Targeting apoB synthesis may lower levels of apoB lipoproteins without necessarily reducing VLDL secretion, thereby lowering the risk of steatosis associated with this therapeutic strategy. PMID:26819195
Li, Chen; Li, Lena; Lian, Jihong; Watts, Russell; Nelson, Randal; Goodwin, Bryan; Lehner, Richard
2015-05-01
Very low-density lipoprotein assembly and secretion are regulated by the availability of triacylglycerol. Although compelling evidence indicates that the majority of triacylglycerol in very low-density lipoprotein is derived from re-esterification of lipolytic products released by endoplasmic reticulum-associated lipases, little is known about roles of acyl-CoA:diacylglycerol acyltransferases (DGATs) in this process. We aimed to investigate the contribution of DGAT1 and DGAT2 in lipid metabolism and lipoprotein secretion in primary mouse and human hepatocytes. We used highly selective small-molecule inhibitors of DGAT1 and DGAT2, and we tracked storage and secretion of lipids synthesized de novo from [(3)H]acetic acid and from exogenously supplied [(3)H]oleic acid. Inactivation of individual DGAT activity did not affect incorporation of either radiolabeled precursor into intracellular triacylglycerol, whereas combined inactivation of both DGATs severely attenuated triacylglycerol synthesis. However, inhibition of DGAT2 augmented fatty acid oxidation, whereas inhibition of DGAT1 increased triacylglycerol secretion, suggesting preferential channeling of separate DGAT-derived triacylglycerol pools to distinct metabolic pathways. Inactivation of DGAT2 impaired cytosolic lipid droplet expansion, whereas DGAT1 inactivation promoted large lipid droplet formation. Moreover, inactivation of DGAT2 attenuated expression of lipogenic genes. Finally, triacylglycerol secretion was significantly reduced on DGAT2 inhibition without altering extracellular apolipoprotein B levels. Our data suggest that DGAT1 and DGAT2 can compensate for each other to synthesize triacylglycerol, but triacylglycerol synthesized by DGAT1 is preferentially channeled to oxidation, whereas DGAT2 synthesizes triacylglycerol destined for very low-density lipoprotein assembly. © 2015 American Heart Association, Inc.
Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan
2009-07-10
PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutralmore » pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.« less
Lipoprotein-cholesterol levels in infertile women with luteal phase deficiency.
Hansen, K K; Knopp, R H; Soules, M R
1991-05-01
To determine if reductions in plasma progesterone (P) secretion seen in luteal phase deficiency (LPD) might be because of reduced availability of circulating low-density lipoprotein (LDL) or high-density lipoprotein (HDL), known substrates for corpus luteum P synthesis. We measured plasma lipoproteins in the luteal phase of the menstrual cycle in 39 infertile women. These women were divided into two groups on the basis of endometrial biopsies; the LPD group had biopsies that were greater than or equal to 3 days out-of-phase. All participants were recruited from the Reproductive Endocrinology and Infertility Clinic at the University of Washington, an institutional tertiary care center. Eighteen women had in-phase and 21 had out-of-phase LPD biopsies. Lipoprotein levels were obtained in a fasted state on the day of the luteal phase on which the biopsy was performed. No difference in covariates that affect lipoprotein levels such as obesity, age, and alcohol use were observed between the two groups. No significant differences between groups were found for triglycerides, total cholesterol, very low density lipoprotein, LDL, HDL, HDL2, and HDL3 concentrations. However, LPD was associated with a reduction in the extent to which: age and obesity are associated with higher triglycerides; obesity is associated with a lower HDL2; and alcohol is associated with a higher HDL3-cholesterol. Lipoproteins on average are not different in LPD, suggesting reasons other than a deficient plasma lipoprotein cholesterol source as the explanation for decreased P secretion. A lesser interaction between LDL or HDL and obesity, age, and alcohol in LPD could signify an influence of the altered hormonal milieu of LPD on the way lipoproteins interact with covariates and could lead to differences in lipoproteins between normal and LPD subjects at the extremes of the lipoprotein distribution.
Jammart, Baptiste; Michelet, Maud; Pécheur, Eve-Isabelle; Parent, Romain; Bartosch, Birke; Zoulim, Fabien
2013-01-01
In the plasma samples of hepatitis C virus (HCV)-infected patients, lipoviroparticles (LVPs), defined as (very-) low-density viral particles immunoprecipitated with anti-β-lipoproteins antibodies are observed. This HCV-lipoprotein association has major implications with respect to our understanding of HCV assembly, secretion, and entry. However, cell culture-grown HCV (HCVcc) virions produced in Huh7 cells, which are deficient for very-low-density lipoprotein (VLDL) secretion, are only associated with and dependent on apolipoprotein E (apoE), not apolipoprotein B (apoB), for assembly and infectivity. In contrast to Huh7, HepG2 cells can be stimulated to produce VLDL by both oleic acid treatment and inhibition of the MEK/extracellular signal-regulated kinase (ERK) pathway but are not permissive for persistent HCV replication. Here, we developed a new HCV cell culture model to study the interaction between HCV and lipoproteins, based on engineered HepG2 cells stably replicating a blasticidin-tagged HCV JFH1 strain (JB). Control Huh7.5-JB as well as HepG2-JB cell lines persistently replicated viral RNA and expressed viral proteins with a subcellular colocalization of double-stranded RNA (dsRNA), core, gpE2, and NS5A compatible with virion assembly. The intracellular RNA replication level was increased in HepG2-JB cells upon dimethyl sulfoxide (DMSO) treatment, MEK/ERK inhibition, and NS5A overexpression to a level similar to that observed in Huh7.5-JB cells. Both cell culture systems produced infectious virions, which were surprisingly biophysically and biochemically similar. They floated at similar densities on gradients, contained mainly apoE but not apoB, and were not neutralized by anti-apoB antibodies. This suggests that there is no correlation between the ability of cells to simultaneously replicate HCV as well as secrete VLDL and their capacity to produce LVPs. PMID:23427158
Jammart, Baptiste; Michelet, Maud; Pécheur, Eve-Isabelle; Parent, Romain; Bartosch, Birke; Zoulim, Fabien; Durantel, David
2013-05-01
In the plasma samples of hepatitis C virus (HCV)-infected patients, lipoviroparticles (LVPs), defined as (very-) low-density viral particles immunoprecipitated with anti-β-lipoproteins antibodies are observed. This HCV-lipoprotein association has major implications with respect to our understanding of HCV assembly, secretion, and entry. However, cell culture-grown HCV (HCVcc) virions produced in Huh7 cells, which are deficient for very-low-density lipoprotein (VLDL) secretion, are only associated with and dependent on apolipoprotein E (apoE), not apolipoprotein B (apoB), for assembly and infectivity. In contrast to Huh7, HepG2 cells can be stimulated to produce VLDL by both oleic acid treatment and inhibition of the MEK/extracellular signal-regulated kinase (ERK) pathway but are not permissive for persistent HCV replication. Here, we developed a new HCV cell culture model to study the interaction between HCV and lipoproteins, based on engineered HepG2 cells stably replicating a blasticidin-tagged HCV JFH1 strain (JB). Control Huh7.5-JB as well as HepG2-JB cell lines persistently replicated viral RNA and expressed viral proteins with a subcellular colocalization of double-stranded RNA (dsRNA), core, gpE2, and NS5A compatible with virion assembly. The intracellular RNA replication level was increased in HepG2-JB cells upon dimethyl sulfoxide (DMSO) treatment, MEK/ERK inhibition, and NS5A overexpression to a level similar to that observed in Huh7.5-JB cells. Both cell culture systems produced infectious virions, which were surprisingly biophysically and biochemically similar. They floated at similar densities on gradients, contained mainly apoE but not apoB, and were not neutralized by anti-apoB antibodies. This suggests that there is no correlation between the ability of cells to simultaneously replicate HCV as well as secrete VLDL and their capacity to produce LVPs.
Inhibition of fatty acid synthesis decreases very low density lipoprotein secretion in the hamster.
Arbeeny, C M; Meyers, D S; Bergquist, K E; Gregg, R E
1992-06-01
The hamster was developed as a model to study very low density lipoprotein (VLDL) metabolism, since, as is the case in humans, the hamster liver was found to synthesize apoB-100 and not apoB-48. The effect of inhibiting fatty acid synthesis on the hepatic secretion of VLDL triglyceride (TG) and apolipoprotein (apo) B-100 in this model was then investigated. In an in vivo study, hamsters were fed a chow diet containing 0.15% TOFA (5-tetradecyloxy-2-furancarboxylic acid), an inhibitor of acetyl-CoA carboxylase. After 6 days of treatment, plasma triglyceride and cholesterol levels were decreased by 30.2% and 11.6%, respectively. When the secretion of VLDL-TG by the liver was measured in vivo after injection of Triton WR 1339, TOFA treatment was found to decrease VLDL-TG secretion by 40%. In subsequent in vitro studies utilizing cultured primary hamster hepatocytes, incubation with 20 microM TOFA for 4 h resulted in 98% and 76% inhibition in fatty acid and triglyceride synthesis, respectively; VLDL-TG secretion was decreased by 90%. When hepatocytes were pulsed with [3H]leucine, incubation with TOFA resulted in a 50% decrease in the incorporation of radiolabel into secreted VLDL apoB-100. The results of this study indicate that inhibition of intracellular triglyceride synthesis decreases the secretion of VLDL-TG and apoB-100, and does not result in the secretion of a dense, triglyceride-depleted lipoprotein.
Blanchard, G; Paragon, B M; Sérougne, C; Férézou, J; Milliat, F; Lutton, C
2004-04-01
Anorexia in obese cats may result in feline hepatic lipidosis (FHL). This study was designed to determine plasma lipids and lipoprotein profiles in queens at different stages during experimental induction of FHL (lean, obese, FHL), and after 10 weeks of treatment. Results were compared with those obtained from lean queens of same age fed the same diet but at a maintenance level, once a day. Hepatic lipidosis led to an increase in plasma triacylglycerol (TG), very low density lipoprotein (VLDL) and low density lipoprotein (LDL), and an enrichment of LDL with TG and of high density lipoprotein (HDL) with cholesterol, suggesting that VLDL secretion is enhanced, VLDL and LDL catabolism is lowered, and lipoprotein exchanges are impaired in FHL. This study also showed that cholesterolaemia is increased in cats fed at a dietary rhythm of one meal per day compared to ad libitum feeding.
Lopez-Soldado, I; Avella, M; Botham, K M
2007-06-01
The effect of chylomicron remnant-like particles (CRLPs) enriched in saturated, mono-unsaturated or n-6 polyunsaturated fatty acids (derived from palm, olive or corn oil, respectively) on the secretion of VLDL (very-low-density lipoprotein) by rat hepatocytes in culture was investigated. CRLPs were incubated with cultured hepatocytes for 5 h. The medium was then removed and the secretion of cholesterol and triacylglycerol (TAG) into the whole medium during the following 16 h was determined. After exposure of the cells to olive oil as compared with corn and palm oil CRLPs, secretion of TAG into the medium was decreased. The TAG content of the cells was also lower in experiments with olive oil as compared with corn oil CRLPs. The levels of apoB48 (apolipoprotein B48) found in the medium remained unchanged after the exposure of the cells to the different types of remnants. These findings indicate that the type of fat in the diet directly affects VLDL lipid secretion on delivery to the liver in chylomicron remnants.
Wiggins, D; Gibbons, G F
1992-01-01
In hepatocyte cultures maintained in the absence of extracellular fatty acids, at least 70% of the secreted very-low-density lipoprotein (VLDL) triacylglycerol was derived via lipolysis of intracellular triacylglycerol. This proportion was unchanged when the cells were exposed for 24 h to insulin or glucagon, hormones which decreased the overall secretion of intracellular triacylglycerol, or to chloroquine or tolbutamide, agents which inhibit lysosomal lipolysis. The rate of intracellular lipolysis was 2-3-fold greater than that required to maintain the observed rate of triacylglycerol secretion. Most of the fatty acids released were returned to the intracellular pool. Neither insulin nor glucagon had any significant effect on the overall lipolysis and re-esterification of intracellular triacylglycerol. In these cases a greater proportion of the released fatty acids re-entered the cellular pool, rather than being recruited for VLDL assembly. Tolbutamide inhibited intracellular lipolysis, but suppressed VLDL secretion to a greater extent. 3,5-Dimethylpyrazole did not affect lipolysis or VLDL secretion. The increased secretion of VLDL triacylglycerol observed after exposure of cells to insulin for 3 days was not accompanied by an increased rate of intracellular lipolysis. However, a larger proportion of the triacylglycerol secreted under these conditions may not have undergone prior lipolysis. PMID:1599431
Mangiapane, E H; Brindley, D N
1986-01-01
Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the hepatocytes for the total 42 h period with 36 nM-insulin decreased the amount of triacylglycerol in the medium and in the cells after the final incubation for 23 h with radioactive substrates. However, insulin had no significant effect on the triacylglycerol content of the cell and medium when it was present only in the final 23 h incubation. Insulin antagonized the effects of dexamethasone in stimulating the secretion of triacylglycerol from the hepatocytes, especially when it was present throughout the total 42 h period. The labelling of lysophosphatidylcholine in the medium when hepatocytes were incubated with [14C]oleate and [3H]glycerol was greater than that of phosphatidylcholine. The appearance of this lipid in the medium, unlike that of triacylglycerol and phosphatidylcholine, was not stimulated by dexamethasone, or inhibited by colchicine. However, the presence of lysophosphatidylcholine in the medium was decreased when the hepatocytes were incubated with both dexamethasone and insulin. These findings are discussed in relation to the control of the synthesis of glycerolipids and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by the liver, particularly in relation to the interactions of glucocorticoids and insulin. PMID:3513755
Tsai, Julie; Qiu, Wei; Kohen-Avramoglu, Rita; Adeli, Khosrow
2007-01-01
Hepatic VLDL assembly is defective in HepG2 cells, resulting in the secretion of immature triglyceride-poor LDL-sized apoB particles. We investigated the mechanisms underlying defective VLDL assembly in HepG2 and have obtained evidence implicating the MEK-ERK pathway. HepG2 cells exhibited considerably higher levels of the ERK1/2 mass and activity compared with primary hepatocytes. Inhibition of ERK1/2 using the MEK1/MEK2 inhibitor, U0126 (but not the inactive analogue) led to a significant increase in apoB secretion. In the presence of oleic acid, ERK1/2 inhibition caused a major shift in the lipoprotein distribution with a majority of particles secreted as VLDL, an effect independent of insulin. In contrast, overexpression of constitutively active MEK1 decreased apoB and large VLDL secretion. MEK1/2 inhibition significantly increased both cellular and microsomal TG mass, and mRNA levels for DGAT-1 and DGAT-2. In contrast to ERK, modulation of the PI3-K pathway or inhibition of the p38 MAP kinase, had no effect on lipoprotein density profile. Modulation of the MEK-ERK pathway in primary hamster hepatocytes led to changes in apoB secretion and altered the density profile of apoB-containing lipoproteins. Inhibition of the overactive ras-MEK-ERK pathway in HepG2 cells can correct the defect in VLDL assembly leading to the secretion of large, VLDL-sized particles, similar to primary hepatocytes, implicating the MEK-ERK cascade in VLDL assembly in the HepG2 model. Modulation of this pathway in primary hepatocytes also regulates apoB secretion and appears to alter the formation of VLDL-1 sized particles.
Unoki, H; Fan, J; Watanabe, T
1999-01-01
We investigated the structural and functional properties of human umbilical vein endothelial cells (HUVECs) cultured on a two-chamber culture model system using an amnion membrane. Compared to HUVECs cultured on a plastic dish, HUVECs cultured on the model system exhibited several features similar to those of in vivo vessels, including formation of the intercellular junctional devices and expression of tight junction-associated protein ZO-1 and adherence junction-associated protein alpha-catenin. Furthermore, we found that HUVECs had a property of polar secretion of endothelin-1 (ET-1). About 90% of the total amount of synthesized ET-1 was found in the lower well, designated as the basal side. When HUVECs were incubated with either native low-density lipoproteins (nLDLs) or oxidized LDLs (oxLDLs) at a concentration of 100 microgram/ml, ET-1 secretion was significantly increased, dependent on the cell side (apical vs basal) on which the nLDLs or oxLDLs were loaded. When the LDLs were loaded on the apical side, the secretion of ET-1 from HUVECs on the apical side was increased by 48% (nLDL) and 61% (oxLDL), whereas it was accompanied by a concomitant decrease of ET-1 on the basal side (45% by nLDLs and 38% by oxLDLs). When loaded on the basal side, however, ET-1 was increased by 23% (nLDLs) and 53% (oxLDLs) on the basal side, with a 26% simultaneous decrease of ET-1 on the opposite side for both nLDLs and oxLDLs. On the contrary, high-density lipoproteins (HDLs) inhibited ET-1 secretion from HUVECs on the opposite side of the well on which HDLs were loaded; there was a 57% decrease on the basal side when HDLs were loaded on the apical side, and a 46% decrease on the apical side when loaded on the basal side. These results indicate that modulation of ET-1 secretion from ECs by lipoproteins is virtually dependent on the place (apical vs basal) where these proteins are present. The finding that nLDLs and oxLDLs enhance ET-1 secretion by ECs in a polarized pattern suggests that ET-1 may be involved in pathophysiological processes such as atherogenesis.
Mankouri, Jamel; Walter, Cheryl; Stewart, Hazel; Bentham, Matthew; Park, Wei Sun; Heo, Won Do; Fukuda, Mitsunori
2016-01-01
ABSTRACT The release of infectious hepatitis C virus (HCV) particles from infected cells remains poorly characterized. We previously demonstrated that virus release is dependent on the endosomal sorting complex required for transport (ESCRT). Here, we show a critical role of trans-Golgi network (TGN)-endosome trafficking during the assembly, but principally the secretion, of infectious virus. This was demonstrated by both small interfering RNA (siRNA)-mediated silencing of TGN-associated adaptor proteins and a panel of dominant negative (DN) Rab GTPases involved in TGN-endosome trafficking steps. Importantly, interfering with factors critical for HCV release did not have a concomitant effect on secretion of triglycerides, ApoB, or ApoE, indicating that particles are likely released from Huh7 cells via pathways distinct from that of very-low-density lipoprotein (VLDL). Finally, we show that HCV NS2 perturbs TGN architecture, redistributing TGN membranes to closely associate with HCV core protein residing on lipid droplets. These findings support the notion that HCV hijacks TGN-endosome trafficking to facilitate particle assembly and release. Moreover, although essential for assembly and infectivity, the trafficking of mature virions is seemingly independent of host lipoproteins. IMPORTANCE The mechanisms by which infectious hepatitis C virus particles are assembled and released from the cell are poorly understood. We show that the virus subverts host cell trafficking pathways to effect the release of virus particles and disrupts the structure of the Golgi apparatus, a key cellular organelle involved in secretion. In addition, we demonstrate that the mechanisms used by the virus to exit the cell are distinct from those used by the cell to release lipoproteins, suggesting that the virus effects a unique modification to cellular trafficking pathways. PMID:27226379
Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol.
Sharma, Vineeta; Forte, Trudy M; Ryan, Robert O
2013-04-01
Apolipoprotein (apo) A-V functions to modulate intracellular and extracellular triacylglycerol metabolism. The present review addresses molecular mechanisms underlying these effects. The relevance of apoA-V to human disease conditions is illustrated by the strong correlation between single nucleotide polymorphisms in APOA5, elevated plasma triacylglycerol and dyslipidemic disease. Despite undergoing processing for secretion from hepatocytes, a portion of apoA-V escapes this destiny and accumulates as a component of cytosolic lipid droplets. Expression of recombinant apoA-V in hepatocarcinoma cells results in increased lipid droplet size and number at the expense of triacylglycerol secretion.ApoA-V modulates atherosclerosis in hypercholesterolemic apoE null mice. ApoE null/human apoA-V transgenic mice had reduced levels of triacylglycerol and cholesterol in plasma along with decreased aortic lesion size. ApoA-V modulates triacylglycerol metabolic fate. Following its synthesis, apoA-V enters the endoplasmic reticulum and associates with membrane defects created by triacylglycerol accumulation. Association of apoA-V with endoplasmic reticulum membrane defects promotes nascent lipid droplets budding toward the cytosol. Despite its low concentration in plasma (∼150 ng/ml), apoA-V modulates lipoprotein metabolism by binding to glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. This interaction effectively localizes triacylglycerol-rich lipoproteins in the vicinity of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein1's other ligand, lipoprotein lipase.
Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol
Sharma, Vineeta; Forte, Trudy M.; Ryan, Robert O.
2013-01-01
Purpose of review Apolipoprotein (apo) A-V functions to modulate intracellular and extracellular triacylglycerol metabolism. The present review addresses molecular mechanisms underlying these effects. The relevance of apoA-V to human disease conditions is illustrated by the strong correlation between single nucleotide polymorphisms in APOA5, elevated plasma triacylglycerol and dyslipidemic disease. Recent findings Despite undergoing processing for secretion from hepatocytes, a portion of apoA-V escapes this destiny and accumulates as a component of cytosolic lipid droplets. Expression of recombinant apoA-V in hepatocarcinoma cells results in increased lipid droplet size and number at the expense of triacylglycerol secretion. ApoA-V modulates atherosclerosis in hypercholesterolemic apoE null mice. ApoE null/human apoA-V transgenic mice had reduced levels of triacylglycerol and cholesterol in plasma along with decreased aortic lesion size. Summary ApoA-V modulates triacylglycerol metabolic fate. Following its synthesis, apoA-V enters the endoplasmic reticulum and associates with membrane defects created by triacylglycerol accumulation. Association of apoA-V with endoplasmic reticulum membrane defects promotes nascent lipid droplets budding toward the cytosol. Despite its low concentration in plasma (~150 ng/ml), apoA-V modulates lipoprotein metabolism by binding to glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. This interaction effectively localizes triacylglycerol-rich lipoproteins in the vicinity of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1’s other ligand, lipoprotein lipase. PMID:23241513
NASA Astrophysics Data System (ADS)
Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin
2014-04-01
Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins.
Bahitham, Wesam; Watts, Russell; Nelson, Randal; Lian, Jihong; Lehner, Richard
2016-05-01
Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insulin sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Liang, John J; Oelkers, Peter; Guo, Cuiying; Chu, Pi-Chun; Dixon, Joseph L; Ginsberg, Henry N; Sturley, Stephen L
2004-10-22
The relative importance of each core lipid in the assembly and secretion of very low density lipoproteins (VLDL) has been of interest over the past decade. The isolation of genes encoding diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) provided the opportunity to investigate the effects of isolated increases in triglycerides (TG) or cholesteryl esters (CE) on apolipoprotein B (apoB) lipoprotein biogenesis. Overexpression of human DGAT1 in rat hepatoma McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of TG. These effects were associated with decreased intracellular degradation and increased secretion of newly synthesized apoB as VLDL. Similarly, overexpression of human ACAT1 or ACAT2 in McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of CE. This led to decreased intracellular degradation and increased secretion of VLDL apoB. Overexpression of ACAT2 had a significantly greater impact upon assembly and secretion of VLDL from liver cells than did overexpression of ACAT1. The addition of oleic acid (OA) to media resulted in a further increase in VLDL secretion from cells expressing DGAT1, ACAT1, or ACAT2. VLDL secreted from DGAT1-expressing cells incubated in OA had a higher TG:CE ratio than VLDL secreted from ACAT1- and ACAT2-expressing cells treated with OA. These studies indicate that increasing DGAT1, ACAT1, or ACAT2 expression in McA-RH7777 cells stimulates the assembly and secretion of VLDL from liver cells and that the core composition of the secreted VLDL reflects the enzymatic activity that is elevated.
Oikawa, Shin; Mizunuma, Yuko; Iwasaki, Yukari; Tharwat, Mohamed
2010-10-01
The purpose of this study was to evaluate changes of very low-density lipoprotein (VLDL) components in hepatic blood (HB) from 5 nonlactating nonpregnant cows fasted from days 0 to 3 and subsequently refed to day 10 and, in addition, to assess those of other lipoproteins. Increased phospholipid concentrations in each lipoprotein after the start of fasting suggested their availability for the surface lipids of lipoproteins. Although the VLDL-triglyceride (TG) concentration in HB from all cows increased on day 1, the value on day 4 became similar to that on day 0. However, the concentration on day 10 was significantly increased. In all cows, the decreased ratio of the VLDL-TG concentration in HB to the non-esterified fatty acids (NEFA) concentration in portal blood (PB) on day 4 appeared to reflect relatively decreased secretion of TG as VLDL by NEFA excessively mobilized to the liver via PB. The markedly increased ratio on day 10 was considered to contribute to the improvement of hepatic lipidosis.
Control of very low-density lipoprotein secretion by N-ethylmaleimide-sensitive factor and miR-33.
Allen, Ryan M; Marquart, Tyler J; Jesse, Jordan J; Baldán, Angel
2014-06-20
Several reports suggest that antisense oligonucleotides against miR-33 might reduce cardiovascular risk in patients by accelerating the reverse cholesterol transport pathway. However, conflicting reports exist about the impact of anti-miR-33 therapy on the levels of very low-density lipoprotein-triglycerides (VLDL-TAG). We test the hypothesis that miR-33 controls hepatic VLDL-TAG secretion. Using therapeutic silencing of miR-33 and adenoviral overexpression of miR-33, we show that miR-33 limits hepatic secretion of VLDL-TAG by targeting N-ethylmaleimide-sensitive factor (NSF), both in vivo and in primary hepatocytes. We identify conserved sequences in the 3'UTR of NSF as miR-33 responsive elements and show that Nsf is specifically recruited to the RNA-induced silencing complex following induction of miR-33. In pulse-chase experiments, either miR-33 overexpression or knock-down of Nsf lead to decreased secretion of apolipoproteins and TAG in primary hepatocytes, compared with control cells. Importantly, Nsf rescues miR-33-dependent reduced secretion. Finally, we show that overexpression of Nsf in vivo increases global hepatic secretion and raises plasma VLDL-TAG. Together, our data reveal key roles for the miR-33-NSF axis during hepatic secretion and suggest that caution should be taken with anti-miR-33-based therapies because they might raise proatherogenic VLDL-TAG levels. © 2014 American Heart Association, Inc.
Secreted Progranulin Is a Homodimer and Is Not a Component of High Density Lipoproteins (HDL)*
Nguyen, Andrew D.; Nguyen, Thi A.; Cenik, Basar; Yu, Gang; Herz, Joachim; Walther, Tobias C.; Davidson, W. Sean; Farese, Robert V.
2013-01-01
Progranulin is a secreted glycoprotein, and the GRN gene is mutated in some cases of frontotemporal dementia. Progranulin has also been implicated in cell growth, wound healing, inflammation, and cancer. We investigated the molecular nature of secreted progranulin and provide evidence that progranulin exists as a homodimer. Although recombinant progranulin has a molecular mass of ∼85 kDa by SDS-PAGE, it elutes in fractions corresponding to ∼170–180 kDa by gel-filtration chromatography. Additionally, recombinant progranulin can be intermolecularly cross-linked, yielding a complex corresponding to a dimer (∼180 kDa), and progranulins containing different epitope tags physically interact. In plasma, progranulin similarly forms complexes of ∼180–190 kDa. Although progranulin partially co-fractionated with high density lipoproteins (HDL) by gel-filtration chromatography, we found no evidence that progranulin in mouse or human plasma is a component of HDL either by ultracentrifugation or by lipid binding assays. We conclude that circulating progranulin exists as a dimer and is not likely a component of HDL. PMID:23364791
Secreted progranulin is a homodimer and is not a component of high density lipoproteins (HDL).
Nguyen, Andrew D; Nguyen, Thi A; Cenik, Basar; Yu, Gang; Herz, Joachim; Walther, Tobias C; Davidson, W Sean; Farese, Robert V
2013-03-22
Progranulin is a secreted glycoprotein, and the GRN gene is mutated in some cases of frontotemporal dementia. Progranulin has also been implicated in cell growth, wound healing, inflammation, and cancer. We investigated the molecular nature of secreted progranulin and provide evidence that progranulin exists as a homodimer. Although recombinant progranulin has a molecular mass of ∼85 kDa by SDS-PAGE, it elutes in fractions corresponding to ∼170-180 kDa by gel-filtration chromatography. Additionally, recombinant progranulin can be intermolecularly cross-linked, yielding a complex corresponding to a dimer (∼180 kDa), and progranulins containing different epitope tags physically interact. In plasma, progranulin similarly forms complexes of ∼180-190 kDa. Although progranulin partially co-fractionated with high density lipoproteins (HDL) by gel-filtration chromatography, we found no evidence that progranulin in mouse or human plasma is a component of HDL either by ultracentrifugation or by lipid binding assays. We conclude that circulating progranulin exists as a dimer and is not likely a component of HDL.
Zhou, Meicen; Zhu, Lixin; Cui, Xiangli; Feng, Linbo; Zhao, Xuefeng; He, Shuli; Ping, Fan; Li, Wei; Li, Yuxiu
2016-06-07
Triglyceride/high-density lipoprotein-cholesterol (TG/HDL-C) ratio was a surrogate marker of IR; however, the relationship of TG/HDL-C with IR might vary by ethnicity. This study aims to investigate whether lipid ratios-TG/HDL-C, cholesterol/high-density lipoprotein-cholesterol (TC/HDL-C) ratio, low-density lipoprotein-cholesterol/high-density lipoprotein-cholesterol (LDL-C/HDL-C)) could be potential clinical markers of insulin resistance (IR) and β cell function and further to explore the optimal cut-offs in a Chinese population with different levels of glucose tolerance. Four hundred seventy-nine subjects without a history of diabetes underwent a 75 g 2 h Oral Glucose Tolerance Test (OGTT). New-onset diabetes (n = 101), pre-diabetes (n = 186), and normal glucose tolerance (n = 192) were screened. IR was defined by HOMA-IR > 2.69. Based on indices (HOMA-β, early-phase disposition index [DI30], (ΔIns30/ΔGlu30)/HOMA-IR and total-phase index [DI120]) that indicated different phases of insulin secretion, the subjects were divided into two groups, and the lower group was defined as having inadequate β cell compensation. Logistic regression models and accurate estimates of the areas under receiver operating characteristic curves (AUROC) were obtained. In all of the subjects, TG/HDL, TC/HDL-C, LDL-C/HDL-C, and TG were significantly associated with IR. The AUROCs of TG/HDL-C and TG were 0.71 (95 % CI: 0.66-0.75) and 0.71 (95 % CI: 0.65-0.75), respectively. The optimal cut-offs of TG/HDL-C and TG for IR diagnosis were 1.11 and 1.33 mmol/L, respectively. The AUROCs of TC/HDL-C and LDL-C/HDL-C were 0.66 and 0.65, respectively, but they were not acceptable for IR diagnosis. TG/HDL-C,LDL-C/HDL-C and TG were significantly associated with HOMA-β, but AUROCs were less than 0.50; therefore, the lipid ratios could not be predictors of basal β cell dysfunction. None of the lipid ratios was associated with early-phase insulin secretion. Only TG/HDL-C and TG were significantly correlated with total-phase insulin secretion, but they also were not acceptable predictors of total-phase insulin secretion (0.60 < AUROC < 0.70). In a Chinese population with different levels of glucose tolerance, TG/HDL-C and TG could be the predictors of IR. The lipid ratios could not be reliable makers of β cell function in the population.
Oikawa, Shin; Mizunuma, Yuko; Iwasaki, Yukari; Tharwat, Mohamed
2010-01-01
The purpose of this study was to evaluate changes of very low-density lipoprotein (VLDL) components in hepatic blood (HB) from 5 nonlactating nonpregnant cows fasted from days 0 to 3 and subsequently refed to day 10 and, in addition, to assess those of other lipoproteins. Increased phospholipid concentrations in each lipoprotein after the start of fasting suggested their availability for the surface lipids of lipoproteins. Although the VLDL-triglyceride (TG) concentration in HB from all cows increased on day 1, the value on day 4 became similar to that on day 0. However, the concentration on day 10 was significantly increased. In all cows, the decreased ratio of the VLDL-TG concentration in HB to the non-esterified fatty acids (NEFA) concentration in portal blood (PB) on day 4 appeared to reflect relatively decreased secretion of TG as VLDL by NEFA excessively mobilized to the liver via PB. The markedly increased ratio on day 10 was considered to contribute to the improvement of hepatic lipidosis. PMID:21197233
Effects of a low-glycemic load vs low-fat diet in obese young adults: a randomized trial.
Ebbeling, Cara B; Leidig, Michael M; Feldman, Henry A; Lovesky, Margaret M; Ludwig, David S
2007-05-16
The results of clinical trials involving diet in the treatment of obesity have been inconsistent, possibly due to inherent physiological differences among study participants. To determine whether insulin secretion affects weight loss with 2 popular diets. Randomized trial of obese young adults (aged 18-35 years; n = 73) conducted from September 2004 to December 2006 in Boston, Mass, and consisting of a 6-month intensive intervention period and a 12-month follow-up period. Serum insulin concentration at 30 minutes after a 75-g dose of oral glucose was determined at baseline as a measure of insulin secretion. Outcomes were assessed at 6, 12, and 18 months. Missing data were imputed conservatively. A low-glycemic load (40% carbohydrate and 35% fat) vs low-fat (55% carbohydrate and 20% fat) diet. Body weight, body fat percentage determined by dual-energy x-ray absorptiometry, and cardiovascular disease risk factors. Change in body weight and body fat percentage did not differ between the diet groups overall. However, insulin concentration at 30 minutes after a dose of oral glucose was an effect modifier (group x time x insulin concentration at 30 minutes: P = .02 for body weight and P = .01 for body fat percentage). For those with insulin concentration at 30 minutes above the median (57.5 microIU/mL; n = 28), the low-glycemic load diet produced a greater decrease in weight (-5.8 vs -1.2 kg; P = .004) and body fat percentage (-2.6% vs -0.9%; P = .03) than the low-fat diet at 18 months. There were no significant differences in these end points between diet groups for those with insulin concentration at 30 minutes below the median level (n = 28). Insulin concentration at 30 minutes after a dose of oral glucose was not a significant effect modifier for cardiovascular disease risk factors. In the full cohort, plasma high-density lipoprotein cholesterol and triglyceride concentrations improved more on the low-glycemic load diet, whereas low-density lipoprotein cholesterol concentration improved more on the low-fat diet. Variability in dietary weight loss trials may be partially attributable to differences in hormonal response. Reducing glycemic load may be especially important to achieve weight loss among individuals with high insulin secretion. Regardless of insulin secretion, a low-glycemic load diet has beneficial effects on high-density lipoprotein cholesterol and triglyceride concentrations but not on low-density lipoprotein cholesterol concentration. clinicaltrials.gov Identifier: NCT00130299.
Meroño, Tomás; Brites, Fernando; Dauteuille, Carolane; Lhomme, Marie; Menafra, Martín; Arteaga, Alejandra; Castro, Marcelo; Saez, María Soledad; Ballerga, Esteban González; Sorroche, Patricia; Rey, Jorge; Lesnik, Philippe; Sordá, Juan Andrés; Chapman, M John; Kontush, Anatol; Daruich, Jorge
2015-05-01
Iron overload (IO) has been associated with glucose metabolism alterations and increased risk of cardiovascular disease (CVD). Primary IO is associated with mutations in the HFE gene. To which extent HFE gene mutations and metabolic alterations contribute to the presence of atherogenic lipoprotein modifications in primary IO remains undetermined. The present study aimed to assess small, dense low-density lipoprotein (LDL) levels, chemical composition of LDL and high-density lipoprotein (HDL) particles, and HDL functionality in IO patients. Eighteen male patients with primary IO and 16 sex- and age-matched controls were recruited. HFE mutations (C282Y, H63D and S65C), measures of insulin sensitivity and secretion (calculated from the oral glucose tolerance test), chemical composition and distribution profile of LDL and HDL subfractions (isolated by gradient density ultracentrifugation) and HDL functionality (as cholesterol efflux and antioxidative activity) were studied. IO patients compared with controls exhibited insulin resistance (HOMA-IR (homoeostasis model assessment-estimated insulin resistance): +93%, P< 0.001). Metabolic profiles differed across HFE genotypes. C282Y homozygotes (n=7) presented a reduced β-cell function and insulin secretion compared with non-C282Y patients (n=11) (-58% and -73%, respectively, P< 0.05). In addition, C282Y homozygotes featured a predominance of large, buoyant LDL particles (C282Y: 43±5; non-C282Y: 25±8; controls: 32±7%; P< 0.001), whereas non-C282Y patients presented higher amounts of small, dense LDL (C282Y: 23±5; non-C282Y: 39±10; controls: 26±4%; P< 0.01). HDL particles were altered in C282Y homozygotes. However, HDL functionality was conserved. In conclusion, metabolic alterations and HFE gene mutations are involved in the presence of atherogenic lipoprotein modifications in primary IO. To what extent such alterations could account for an increase in CVD risk remains to be determined.
Liapkov, B G; Listratenkova, E F
1977-01-01
The feeding of rats for a space of 30 days on diets with elevated content of starch or saccharose (71 per cent of the total calorific value) was followed by an accelerated synthesis and secretion into the blood of pre-beta-lipoproteins. The ration with succharose, however, produced a much greater effect on the rate of synthesis of pre-beta-lipoproteins than did the one containing starch. The action of both carbohydrate-rich rations was noted to be attended by a growing rate of the apoproteids and glycerides exchange in the low-density lipoproteins. The feature distinguishing the effect produced by the ration with saccharose, as compared with that containing starch, was an accelerated etherification of cholesterol in the blood.
Causes of the triglyceride-lowering effect of exercise training in rats
NASA Technical Reports Server (NTRS)
Mondon, C. E.; Dolkas, C. B.; Tobey, T.; Reaven, G. M.
1984-01-01
Studies conducted with human subjects and laboratory animals have consistently shown a reduction in serum triglyceride (TG) in exercise-trained subjects. The obtained data have suggested that this decrease was due to a reduction in hepatic TG secretion. The present investigation, which was conducted with rats trained to attain a high level of spontaneous running activity, provides support for the earlier results. In addition, insights are obtained regarding the mechanism by which exercise lowers TG levels. Since the liver accounts for the vast majority of endogenous very low density lipoprotein (VLDL)-TG secretion, the fall in TG secretion rate seen in exercise-trained (ET) rats must be due to a reduction in hepatic TG secretion.
Titov, V N; Kotlovskii, M Yu; Pokrovskii, A A; Kotlovskaia, O S; Osedko, A V; Titova, N M; Kotlovskii, Yu V; Digaii, A M
2015-04-01
The hypolipidemic effect of statins is realized by inhibition of synthesis of local pool of cholesterol spirit in endoplasmic net of hepatocytes. The cholesterol spirit covers all hydrophobic medium of triglycerides with polar mono layer of phosphatidylcholines and cholesterol spirit prior to secretion of lipoproteins of very low density into hydrophilic medium. The lesser mono layer between lipase enzyme and triglycerides substrate contains of cholesterol spirit the higher are the parameters of hydrolysis of palmitic and oleic lipoproteins of very low density. The sequence of effect of statins is as follows: blocking of synthesis in hepatocytes and decreasing of content of unesterified cholesterol spirit in blood plasma; activation of hydrolysis of triglycerides in palmitic and oleic lipoproteins of very low density; formation of ligand lipoproteins of very low density and their absorption by cells by force of apoB-100 endocytosis; decreasing in blood of content of polyenoic fatty acids, equimolar esterified by cholesterol spirit, polyethers of cholesterol spirit and decreasing of level of cholesterol spirit-lipoproteins of very low density. There is no way to eliminate aphysiological effect of disordered biological function of trophology (nutrition) on metabolism of fatty acids in population by means of pharmaceuticals intake. It is necessary to eliminate aphysiological effect of environment. To decrease rate of diseases of cardiovascular system one has to decrease in food content of saturated fatty acids and in the first instance palmitic saturated fatty acid, trans-form fatty acid, palmitoleic fatty acids up to physiological values and increase to the same degree the content of polyenoic fatty acids. The saturated fatty acids block absorption of polyenoic fatty acids by cells. The atherosclerosis is a deficiency of polyenoic fatty acids under surplus of palmitic saturated fatty acid.
Lipoprotein Uptake by Neuronal Growth Cones in Vitro
NASA Astrophysics Data System (ADS)
Ignatius, Michael J.; Shooter, Eric M.; Pitas, Robert E.; Mahley, Robert W.
1987-05-01
Macrophages that rapidly enter injured peripheral nerve synthesize and secrete large quantities of apolipoprotein E. This protein may be involved in the redistribution of lipid, including cholesterol released during degeneration, to the regenerating axons. To test this postulate, apolipoprotein E-associated lipid particles released from segments of injured rat sciatic nerve and apolipoprotein E-containing lipoproteins from plasma were used to determine whether sprouting neurites, specifically their growth cones, possessed lipoprotein receptors. Pheochromocytoma (PC12) cells, which can be stimulated to produce neurites in vitro, were used as a model system. Apolipoprotein E-containing lipid particles and lipoproteins, which had been labeled with fluorescent dye, were internalized by the neurites and their growth cones; the unmetabolized dye appeared to be localized to the lysosomes. The rapid rate of accumulation in the growth cones precludes the possibility of orthograde transport of the fluorescent particles from the PC12 cell bodies. Thus, receptor-mediated lipoprotein uptake is performed by the apolipoprotein B,E(LDL) (low density lipoprotein) receptors, and in the regenerating peripheral nerve apolipoprotein E may deliver lipids to the neurites and their growth cones for membrane biosynthesis.
Xie, Ping; Jia, Lin; Ma, Yinyan; Ou, Juanjuan; Miao, Hongming; Wang, Nanping; Guo, Feng; Yazdanyar, Amirfarbod; Jiang, Xian-Cheng; Yu, Liqing
2013-05-01
Controversies have arisen from recent mouse studies about the essential role of biliary sterol secretion in reverse cholesterol transport (RCT). The objective of this study was to examine the role of biliary cholesterol secretion in modulating macrophage RCT in Niemann-Pick C1-Like 1 (NPC1L1) liver only (L1(LivOnly)) mice, an animal model that is defective in both biliary sterol secretion and intestinal sterol absorption, and determine whether NPC1L1 inhibitor ezetimibe facilitates macrophage RCT by inhibiting hepatic NPC1L1. L1(LivOnly) mice were generated by crossing NPC1L1 knockout (L1-KO) mice with transgenic mice overexpressing human NPC1L1 specifically in liver. Macrophage-to-feces RCT was assayed in L1-KO and L1(LivOnly) mice injected intraperitoneally with [(3)H]-cholesterol-labeled peritoneal macrophages isolated from C57BL/6 mice. Inhibition of biliary sterol secretion by hepatic overexpression of NPC1L1 substantially reduced transport of [(3)H]-cholesterol from primary peritoneal macrophages to the neutral sterol fraction in bile and feces in L1(LivOnly) mice without affecting tracer excretion in the bile acid fraction. Ezetimibe treatment for 2 weeks completely restored both biliary and fecal excretion of [(3)H]-tracer in the neutral sterol fraction in L1(LivOnly) mice. High-density lipoprotein kinetic studies showed that L1(LivOnly) mice compared with L1-KO mice had a significantly reduced fractional catabolic rate without altered hepatic and intestinal uptake of high-density lipoprotein-cholesterol ether. In mice lacking intestinal cholesterol absorption, macrophage-to-feces RCT depends on efficient biliary sterol secretion, and ezetimibe promotes macrophage RCT by inhibiting hepatic NPC1L1 function.
Qin, Wen; Sundaram, Meenakshi; Wang, Yuwei; Zhou, Hu; Zhong, Shumei; Chang, Chia-Ching; Manhas, Sanjay; Yao, Erik F; Parks, Robin J; McFie, Pamela J; Stone, Scot J; Jiang, Zhenghui G; Wang, Congrong; Figeys, Daniel; Jia, Weiping; Yao, Zemin
2011-08-05
Hepatic assembly of triacylglycerol (TAG)-rich very low density lipoproteins (VLDL) is achieved through recruitment of bulk TAG (presumably in the form of lipid droplets within the microsomal lumen) into VLDL precursor containing apolipoprotein (apo) B-100. We determined protein/lipid components of lumenal lipid droplets (LLD) in cells expressing recombinant human apoC-III (C3wt) or a mutant form (K58E, C3KE) initially identified in humans that displayed hypotriglyceridemia. Although expression of C3wt markedly stimulated secretion of TAG and apoB-100 as VLDL(1), the K58E mutation (located at the C-terminal lipid binding domain) abolished the effect in transfected McA-RH7777 cells and in apoc3-null mice. Metabolic labeling studies revealed that accumulation of TAG in LLD was decreased (by 50%) in cells expressing C3KE. A Fat Western lipid protein overlay assay showed drastically reduced lipid binding of the mutant protein. Substituting Lys(58) with Arg demonstrated that the positive charge at position 58 is crucial for apoC-III binding to lipid and for promoting TAG secretion. On the other hand, substituting both Lys(58) and Lys(60) with Glu resulted in almost entire elimination of lipid binding and loss of function in promoting TAG secretion. Thus, the lipid binding domain of apoC-III plays a key role in the formation of LLD for hepatic VLDL assembly and secretion.
Vaziri, Nosratola D; Kim, Choong H; Phan, Dennis; Kim, Sara; Liang, Kaihui
2004-07-01
Nephrotic syndrome is associated with hypercholesterolemia, hypertriglyceridemia, and marked elevations of plasma low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). Hypertriglyceridemia in nephrotic syndrome is accompanied by increased hepatic fatty acid synthesis, elevated triglyceride secretion, as well as lipoprotein lipase, VLDL-receptor, and hepatic triglyceride lipase deficiencies, which lead to impaired clearance of triglyceride-rich lipoproteins. Acyl CoA: diacylglycerol acyltransferase (DGAT) is a microsomal enzyme that joins acyl CoA to 1, 2-diacylglycerol to form triglyceride. Two distinct DGATs (DGAT-1 and DGAT2) have recently been identified in the liver and other tissues. The present study tested the hypothesis that the reported increase in hepatic triglyceride secretion in nephrotic syndrome may be caused by up-regulation of DGAT. Male Sprague-Dawley rats were rendered nephrotic by two sequential injections of puromycin aminonucleoside (130 mg/kg on day 1 and 60 mg/kg on day 14) and studied on day 30. Placebo-treated rats served as controls. Hepatic DGAT-1 and DGAT-2 mRNA abundance and enzymatic activity were measured. The nephrotic group exhibited heavy proteinuria, hypoalbuminemia, hypercholesterolemia, hypertriglyceridemia, and marked elevation of VLDL concentration. Hepatic DGAT-1 mRNA, DGAT-1, and total DGAT activity were significantly increased, whereas DGAT-2 mRNA abundance and activity were unchanged in the nephrotic rats compared to the control animals. The functional significance of elevation of DGAT activity was illustrated by the reduction in microsomal free fatty acid concentration in the liver of nephrotic animals. Nephrotic syndrome results in up-regulation of hepatic DGAT-1 expression and activity, which can potentially contribute to the associated hypertriglyceridemia by enhancing triglyceride synthesis. Thus, it appears that both depressed catabolism and increased synthetic capacity contribute to hypertriglyceridemia of nephrotic syndrome.
Amano, Yuichiro; Nishimoto, Tomoyuki; Tozawa, Ryu ichi; Ishikawa, Eiichiro; Imura, Yoshimi; Sugiyama, Yasuo
2003-04-11
The lipid-lowering effects of 1-[2-[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-1,2,3,5-tetrahydro-2-oxo-5-(2,3-dimethoxyphenyl)-4,1-benzoxazepine-3-yl] acetyl] piperidin-4-acetic acid (TAK-475), a novel squalene synthase inhibitor, were examined in two models of familial hypercholesterolemia, low-density lipoprotein (LDL) receptor knockout mice and Watanabe heritable hyperlipidemic (WHHL) rabbits. Two weeks of treatment with TAK-475 in a diet admixture (0.02% and 0.07%; approximately 30 and 110 mg/kg/day, respectively) significantly lowered plasma non-high-density lipoprotein (HDL) cholesterol levels by 19% and 41%, respectively, in homozygous LDL receptor knockout mice. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, simvastatin and atorvastatin (in 0.02% and 0.07% admixtures), also reduced plasma levels of non-HDL cholesterol. In homozygous WHHL rabbits, 4 weeks of treatment with TAK-475 (0.27%; approximately 100 mg/kg/day) lowered plasma total cholesterol, triglyceride and phospholipid levels by 17%, 52% and 26%, respectively. In Triton WR-1339-treated rabbits, TAK-475 inhibited to the same extent the rate of secretion from the liver of the cholesterol, triglyceride and phospholipid components of very-low-density lipoprotein (VLDL). These results suggest that the lipid-lowering effects of TAK-475 in WHHL rabbits are based partially on the inhibition of secretion of VLDL from the liver. TAK-475 had no effect on plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the squalene synthase inhibitor TAK-475 revealed lipid-lowering effects in both LDL receptor knockout mice and WHHL rabbits.
Daher, Costantine F; Slaiby, Rita; Haddad, Najib; Boustany, Karim; Baroody, George M
2006-06-01
The effects of acute and chronic (10 wk) red or white wine consumption on fasted and postprandial lipemia in the rat model are reported. Fasted rats, in the acute study, were loaded intragastrically with 5 ml of an olive oil emulsion (30% w/v) in the presence or absence of wine (8% v/v ethanol), and either mesenteric lymph or blood was collected 3 h postprandially. Animals in the chronic study received either red or white wine in drinking water for a period of 10 wk (3% v/v ethanol). Blood samples were collected from animals in either the fasted state or after fat-wine loading. Postprandially, wine delayed gastric emptying, reduced lymph triacylglycerol (TAG) secretion concomitantly with increased number and decreased chylomicron (CM) size, and increased plasma TAG and CM concentrations. Phospholipid and cholesterol contents of CM, but not very-low-density lipoprotein (VLDL), were increased, indicating enhanced liver bile secretion; however, a significant increase in plasma VLDL concentration was observed. In the chronic study, a wine-fat load resulted in increased high-density lipoprotein (HDL) cholesterol concentration and less pronounced postprandial hypertriglyceridemia and hyperchylomicronemia. In the fasted state, plasma TAG and total apolipoprotein B concentrations were not modified in these animals, and an increase in HDL and a decrease in low-density lipoprotein (LDL)/HDL cholesterol ratios were observed. No liver function or intestinal lipid absorption impairment was observed. In conclusion, unlike binge drinking, chronic moderate wine consumption appears to have a cardioprotective effect in the fasted state, an effect attenuated by the observed temporary postprandial hyperchylomicronemia and hypertriglyceridemia resulting from a direct effect of alcohol on CM size and number.
Recombinant Incretin-Secreting Microbe Improves Metabolic Dysfunction in High-Fat Diet Fed Rodents.
Ryan, Paul M; Patterson, Elaine; Kent, Robert M; Stack, Helena; O'Connor, Paula M; Murphy, Kiera; Peterson, Veronica L; Mandal, Rupasri; Wishart, David S; Dinan, Timothy G; Cryan, John F; Seeley, Randy J; Stanton, Catherine; Ross, R Paul
2017-10-19
The gut hormone glucagon-like peptide (GLP)-1 and its analogues represent a new generation of anti-diabetic drugs, which have also demonstrated propensity to modulate host lipid metabolism. Despite this, drugs of this nature are currently limited to intramuscular administration routes due to intestinal degradation. The aim of this study was to design a recombinant microbial delivery vector for a GLP-1 analogue and assess the efficacy of the therapeutic in improving host glucose, lipid and cholesterol metabolism in diet induced obese rodents. Diet-induced obese animals received either Lactobacillus paracasei NFBC 338 transformed to express a long-acting analogue of GLP-1 or the isogenic control microbe which solely harbored the pNZ44 plasmid. Short-term GLP-1 microbe intervention in rats reduced serum low-density lipoprotein cholesterol, triglycerides and triglyceride-rich lipoprotein cholesterol substantially. Conversely, extended GLP-1 microbe intervention improved glucose-dependent insulin secretion, glucose metabolism and cholesterol metabolism, compared to the high-fat control group. Interestingly, the microbe significantly attenuated the adiposity associated with the model and altered the serum lipidome, independently of GLP-1 secretion. These data indicate that recombinant incretin-secreting microbes may offer a novel and safe means of managing cholesterol metabolism and diet induced dyslipidaemia, as well as insulin sensitivity in metabolic dysfunction.
Truncated variants of apolipoprotein B cause hypobetalipoproteinaemia.
Collins, D R; Knott, T J; Pease, R J; Powell, L M; Wallis, S C; Robertson, S; Pullinger, C R; Milne, R W; Marcel, Y L; Humphries, S E
1988-01-01
Familial hypobetalipoproteinaemia is a rare autosomal dominant disorder in which levels of apo-B-containing plasma lipoproteins are approximately half-normal in heterozygotes and virtually absent in homozygotes. Here we describe mutations of the apo-B gene that cause two different truncated variants of apo-B in unrelated individuals with hypobetalipoproteinaemia. One variant, apo-B(His1795----Met-Trp-Leu-Val-Thr-Term) is predicted to be 1799 amino acids long and arises from deletion of a single nucleotide (G) from leucine codon 1794. This protein was found at low levels in very low density and low density lipoprotein fractions in the blood. The second, shorter variant, apo-B(Arg1306----Term), is caused by mutation of a CpG dinucleotide in arginine codon 1306 converting it to a stop codon and predicting a protein of 1305 residues. The product of this allele could not be detected in the circulation. The differences in size and behaviour of these two variants compared to apo-B100 or apo-B48 point to domains that may be important for the assembly, secretion or stability of apo-B-containing lipoproteins. Images PMID:2843815
Systemic Free Fatty Acid Disposal Into Very Low-Density Lipoprotein Triglycerides
Koutsari, Christina; Mundi, Manpreet S.; Ali, Asem H.; Patterson, Bruce W.; Jensen, Michael D.
2013-01-01
We measured the incorporation of systemic free fatty acids (FFA) into circulating very low-density lipoprotein triglycerides (VLDL-TGs) under postabsorptive, postprandial, and walking conditions in humans. Fifty-five men and 85 premenopausal women with BMI 18–24 (lean) and 27–36 kg/m2 (overweight/obese) received an intravenous bolus injection of [1,1,2,3,3-2H5]glycerol (to measure VLDL-TG kinetics) and either [1-14C]palmitate or [9,10-3H]palmitate to determine the proportion of systemic FFA that is converted to VLDL-TG. Experiments started at 0630 h after a 12-h overnight fast. In the postabsorptive protocol, participants rested and remained fasted until 1330 h. In the postprandial protocol, volunteers ingested frequent portions of a fat-free smoothie. In the walking protocol, participants walked on a treadmill for 5.5 h at ∼3× resting energy expenditure. Approximately 7% of circulating FFA was converted into VLDL-TG. VLDL-TG secretion rates (SRs) were not statistically different among protocols. Visceral fat mass was the only independent predictor of VLDL-TG secretion, explaining 33–57% of the variance. The small proportion of systemic FFA that is converted to VLDL-TG can confound the expected relationship between plasma FFA concentration and VLDL-TG SRs. Regulation of VLDL-TG secretion is complex in that, despite a broad spectrum of physiological FFA concentrations, VLDL-TG SRs did not vary based on different acute substrate availability. PMID:23434937
Takahashi, K; Jiang, X C; Sakai, N; Yamashita, S; Hirano, K; Bujo, H; Yamazaki, H; Kusunoki, J; Miura, T; Kussie, P
1993-01-01
Plasma HDL are a negative risk factor for atherosclerosis. Cholesteryl ester transfer protein (CETP; 476 amino acids) transfers cholesteryl ester from HDL to other lipoproteins. Subjects with homozygous CETP deficiency caused by a gene splicing defect have markedly elevated HDL; however, heterozygotes have only mild increases in HDL. We describe two probands with a CETP missense mutation (442 D:G). Although heterozygous, they have threefold increases in HDL concentration and markedly decreased plasma CETP mass and activity, suggesting that the mutation has dominant effects on CETP and HDL in vivo. Cellular expression of mutant cDNA results in secretion of only 30% of wild type CETP activity. Moreover, coexpression of wild type and mutant cDNAs leads to inhibition of wild type secretion and activity. The dominant effects of the CETP missense mutation during cellular expression probably explains why the probands have markedly increased HDL in the heterozygous state, and suggests that the active molecular species of CETP may be multimeric. Images PMID:8408659
Marchesi, Marta; Parolini, Cinzia; Caligari, Silvia; Gilio, Donatella; Manzini, Stefano; Busnelli, Marco; Cinquanta, Paola; Camera, Marina; Brambilla, Marta; Sirtori, Cesare R; Chiesa, Giulia
2011-11-01
Besides a significant reduction of low-density lipoprotein (LDL) cholesterol, statins moderately increase high-density lipoprotein (HDL) levels. In vitro studies have indicated that this effect may be the result of an increased expression of apolipoprotein (apo)A-I, the main protein component of HDL. The aim of the present study was to investigate in vivo the effect of rosuvastatin on apoA-I expression and secretion in a transgenic mouse model for human apoA-I. Human apoA-I transgenic mice were treated for 28 days with 5, 10 or 20 mg·kg(-1) ·day(-1) of rosuvastatin, the most effective statin in raising HDL levels. Possible changes of apoA-I expression by treatment were investigated by quantitative real-time RT-PCR on RNA extracted from mouse livers. The human apoA-I secretion rate was determined in primary hepatocytes isolated from transgenic mice from each group after treatment. Rosuvastatin treatment with 5 and 10 mg·kg(-1) ·day(-1) did not affect apoA-I plasma levels, whereas a significant decrease was observed in mice treated with 20 mg·kg(-1) ·day(-1) of rosuvastatin (-16%, P < 0.01). Neither relative hepatic mRNA concentrations of apoA-I nor apoA-I secretion rates from primary hepatocytes were influenced by rosuvastatin treatment at each tested dose. In human apoA-I transgenic mice, rosuvastatin treatment does not increase either apoA-I transcription and hepatic secretion, or apoA-I plasma levels. These results support the hypothesis that other mechanisms may account for the observed HDL increase induced by statin therapy in humans. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Sheridan, D A; Price, D A; Schmid, M L; Toms, G L; Donaldson, P; Neely, D; Bassendine, M F
2009-06-15
Hepatitis C virus (HCV) co-opts very-low-density lipoprotein (VLDL) pathways for replication, secretion and entry into hepatocytes and associates with apolipoprotein B (apoB) in plasma. Each VLDL contains apoB-100 and variable amounts of apolipoproteins E and C, cholesterol and triglycerides. To determine whether baseline lipid levels predicted treatment outcome. Retrospective analysis was performed of 250 chronic hepatitis C (CHC) patients who had received anti-viral agents interferon-alpha and ribavirin; 165 had a sustained virological response (SVR). Pre- and post-treatment nonfasting lipid profiles were measured and non-high-density lipoprotein (non-HDL) cholesterol (i.e. apoB-associated) was calculated. Binary logistic regression analysis assessed factors independently associated with treatment outcome. There was an independent association between higher apoB-associated cholesterol (non-HDL-C) and increased odds of SVR (odds ratio 2.09, P = 0.042). In multivariate analysis, non-HDL-C was significantly lower in HCV genotype 3 (g3) than genotype 1 (P = 0.007); this was reversible upon eradication of HCVg3 (pre-treatment non-HDL-C = 2.8 mmol/L, SVR = 3.6 mmol/L, P < 0.001). Higher apoB-associated cholesterol is positively associated with treatment outcome in CHC patients receiving anti-viral therapy, possibly due to competition between apoB-containing lipoproteins and infectious low-density HCV lipo-viral particles for hepatocyte entry via shared lipoprotein receptors.
OIKAWA, Shin; SAITOH-OKUMURA, Haruka; TANJI, Masaki; NAKADA, Ken
2017-01-01
Serum concentrations of non-esterified fatty acids (NEFA) and very low-density lipoprotein (VLDL) in close-up dairy cattle were compared in relation to parity. Data were obtained from 37 nulli/primiparous (NP) and 24 multiparous (MU, parity: 2–7) cows between 14 days and 1 day prepartum. A positive correlation (r=0.684, P<0.01) was found between serum NEFA and VLDL concentrations in NP cows. Among the VLDL constituents, the NEFA concentration was particularly correlated with the triglyceride (TG) concentration (r=0.658, P<0.01). However, no significant correlation was found between the concentrations of NEFA and VLDL or VLDL-TG in MU cows (r=−0.028 and 0.307). These results suggest the presence of higher hepatic secretion of NEFA-derived VLDL in NP cows. PMID:28804115
Oikawa, Shin; Saitoh-Okumura, Haruka; Tanji, Masaki; Nakada, Ken
2017-10-07
Serum concentrations of non-esterified fatty acids (NEFA) and very low-density lipoprotein (VLDL) in close-up dairy cattle were compared in relation to parity. Data were obtained from 37 nulli/primiparous (NP) and 24 multiparous (MU, parity: 2-7) cows between 14 days and 1 day prepartum. A positive correlation (r=0.684, P<0.01) was found between serum NEFA and VLDL concentrations in NP cows. Among the VLDL constituents, the NEFA concentration was particularly correlated with the triglyceride (TG) concentration (r=0.658, P<0.01). However, no significant correlation was found between the concentrations of NEFA and VLDL or VLDL-TG in MU cows (r=-0.028 and 0.307). These results suggest the presence of higher hepatic secretion of NEFA-derived VLDL in NP cows.
Soluble Megalin is Reduced in Cerebrospinal Fluid Samples of Alzheimer's Disease Patients.
Spuch, Carlos; Antequera, Desireé; Pascual, Consuelo; Abilleira, Soledad; Blanco, María; Moreno-Carretero, María José; Romero-López, Jesús; Ishida, Tetsuya; Molina, Jose Antonio; Villarejo, Alberto; Bermejo-Pareja, Felix; Carro, Eva
2015-01-01
Megalin or low-density lipoprotein receptor-related protein-2 is a member of the low-density lipoprotein receptor family, which has been linked to Alzheimer's disease (AD) by clearing brain amyloid β-peptide (Aβ) across the blood-cerebrospinal fluid barrier at the choroid plexus. Here, we found a soluble form of megalin secreted from choroid plexus epithelial cells. Soluble megalin levels were also localized in the human cerebrospinal fluid (CSF), being reduced in AD patients. We have also shown that soluble megalin binding to Aβ is decreased in the CSF of AD patients, suggesting that decreased sequestration of Aβ in the CSF could be associated with defective clearance of Aβ and an increase of brain Aβ levels. Thus, therapies, which increase megalin expression, at the choroid plexus and/or enhance circulating soluble megalin hold potential to control brain Aβ-related pathologies in AD.
Soluble Megalin is Reduced in Cerebrospinal Fluid Samples of Alzheimer’s Disease Patients
Spuch, Carlos; Antequera, Desireé; Pascual, Consuelo; Abilleira, Soledad; Blanco, María; Moreno-Carretero, María José; Romero-López, Jesús; Ishida, Tetsuya; Molina, Jose Antonio; Villarejo, Alberto; Bermejo-Pareja, Felix; Carro, Eva
2015-01-01
Megalin or low-density lipoprotein receptor-related protein-2 is a member of the low-density lipoprotein receptor family, which has been linked to Alzheimer’s disease (AD) by clearing brain amyloid β-peptide (Aβ) across the blood–cerebrospinal fluid barrier at the choroid plexus. Here, we found a soluble form of megalin secreted from choroid plexus epithelial cells. Soluble megalin levels were also localized in the human cerebrospinal fluid (CSF), being reduced in AD patients. We have also shown that soluble megalin binding to Aβ is decreased in the CSF of AD patients, suggesting that decreased sequestration of Aβ in the CSF could be associated with defective clearance of Aβ and an increase of brain Aβ levels. Thus, therapies, which increase megalin expression, at the choroid plexus and/or enhance circulating soluble megalin hold potential to control brain Aβ-related pathologies in AD. PMID:25926771
Activation of lipoprotein lipase by lipoprotein fractions of human serum.
Bier, D M; Havel, R J
1970-11-01
Triglycerides in fat emulsions are hydrolyzed by lipoprotein lipase only when they are "activated" by serum lipoproteins. The contribution of different lipoprotein fractions to hydrolysis of triglycerides in soybean oil emulsion was assessed by determining the quantity of lipoprotein fraction required to give half-maximal hydrolysis. Most of the activator property of whole serum from normolipidemic, postabsorptive subjects was in high density lipoproteins. Low density lipoproteins and serum from which all lipoprotein classes were removed had little or no activity. Also, little activator was present in guinea pig serum or in very low density poor serum from an individual with lecithin:cholesterol acyltransferase deficiency, both of which are deficient in high density lipoproteins. Human very low density lipoproteins are potent activators and are much more active than predicted from their content of high density lipoprotein-protein. Per unit weight of protein, very low density lipoproteins had 13 times the activity of high density lipoproteins. These observations suggest that one or more of the major apoproteins of very low density lipoproteins, present as a minor constituent of high density lipoproteins, may be required for the activation process.
Li, Xinwei; Guan, Yuan; Li, Ying; Wu, Dianjun; Liu, Lei; Deng, Qinghua; Li, Xiaobing; Wang, Zhe; Liu, Guowen
2016-01-15
Fatty liver is a major metabolic disorder of dairy cows. One important reason is that hepatic very low-density lipoproteins (VLDL) assembly was significant decreased in dairy cows with fatty liver. In addition, the impairment of insulin-like growth factor (IGF)-1 synthesis was involved in the development of fatty liver. Therefore, the objective of this study was to investigate the effects of IGF-1 on the VLDL assembly in cow hepatocytes. In this study, cow hepatocytes were cultured and then transfected with Ad-GFP-IGF-1 (inhibited the IGF-1 expression) and Ad-GFP (negative control), and treated with different concentrations of IGF-1, respectively. The results showed that IGF-1 increased the mRNA abundance of apolipoprotein B100 (ApoB100), apolipoprotein E (ApoE), microsomal triglyceride transfer protein (MTTP), and low-density lipoprotein receptor (LDLR) and then increased the VLDL assembly in cow hepatocytes. Nevertheless, impairment of IGF-1 expression by Ad-GFP-IGF-1 could inhibit above genes expression and VLDL assembly in hepatocytes. Taken together, these results indicate that IGF-1 increases the VLDL assembly and impairment of IGF-1 expression decreases the VLDL assembly in cow hepatocytes. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighton, J.K.; Joyner, J.; Zamarripa, J.
Two different molecular weight forms of apoB are produced from a common initial transcript via editing of a Gln codon (CAA) to a stop codon (UAA), leading to a truncated translation product (apo BS) that consists of the amino terminal half of the larger form (apoBL). Previous studies have shown that fasting coordinately decreases lipogenesis and the secretion of very low density lipoprotein (VLDL) lipids and apoBS. Secretion of the apoBL is unaffected by fasting. We studied whether editing of apoB RNA is repressed by fasting, thus accounting for the selective decreased secretion of apoBS. Column chromatography of (35S)methionine-labeled lipoproteinsmore » secreted by hepatocytes from fed rats showed that essentially all of apoBL is secreted in the VLDL fraction, whereas a significant amount (15%) of apoBS is secreted associated as lipoproteins eluting in the HDL fractions. Fasting decreased the relative amount of apoBS that eluted in the VLDL fractions and increased the amount secreted in the HDL fractions. Consistent with previous results, hepatocytes from fasted rats show a selective twofold decrease in apoBS secretion. Fasting did not affect the relative abundance of apoB RNA, determined by slot blot hybridization assays using two different 32P-labeled cDNA probes coding either for both molecular weight forms or for only the large molecular weight form. However, quantitative of the editing of apoB RNA showed that fasting caused a 60% decrease in the amount of apoB RNA possessing the stop codon. These data show that the editing of apoB RNA is sensitive to metabolic state (i.e., fasting) resulting in a selective decrease in the secretion of apoBS. However, since the total secretion of apoB was decreased by fasting, while apoB mRNA levels remained constant, additional (post-transcriptional) mechanisms play a role in regulating apoB secretion.« less
Groot, P H; Scheek, L M; Jansen, H
1983-05-16
Human sera were incubated with rat liver lipase after inactivation of lecithin:cholesterol acyltransferase, and the changes in serum lipoprotein composition were measured. In the presence of liver lipase serum triacylglycerol and phosphatidylcholine were hydrolyzed. The main changes in the concentrations of these lipids were found in the high-density lipoprotein fraction. Subfractionation of high-density lipoprotein by rate-zonal ultracentrifugation showed a prominent decrease in all constituents of high-density lipoprotein2, a smaller decrease in the 'light' high-density lipoprotein3 and an increase in the 'heavy' high-density lipoprotein3. These data support a concept in which liver lipase is involved in high-density lipoprotein2 phospholipid and triacylglycerol catabolism and suggest that as a result of this action high-density lipoprotein2 is converted into high-density lipoprotein3.
Identification of a Chrysanthemic Ester as an Apolipoprotein E Inducer in Astrocytes
Zhao, Wenchen; Shimizu, Yoko; Pfeifer, Tom A.; Tak, Jun-Hyung; Isman, Murray B.; Van den Hoven, Bernard; Duggan, Mark E.; Wood, Michael W.; Wellington, Cheryl L.
2016-01-01
The apolipoprotein E (APOE) gene is the most highly associated susceptibility locus for late onset Alzheimer’s Disease (AD), and augmenting the beneficial physiological functions of apoE is a proposed therapeutic strategy. In a high throughput phenotypic screen for small molecules that enhance apoE secretion from human CCF-STTG1 astrocytoma cells, we show the chrysanthemic ester 82879 robustly increases expressed apoE up to 9.4-fold and secreted apoE up to 6-fold and is associated with increased total cholesterol in conditioned media. Compound 82879 is unique as structural analogues, including pyrethroid esters, show no effect on apoE expression or secretion. 82879 also stimulates liver x receptor (LXR) target genes including ATP binding cassette A1 (ABCA1), LXRα and inducible degrader of low density lipoprotein receptor (IDOL) at both mRNA and protein levels. In particular, the lipid transporter ABCA1 was increased by up to 10.6-fold upon 82879 treatment. The findings from CCF-STTG1 cells were confirmed in primary human astrocytes from three donors, where increased apoE and ABCA1 was observed along with elevated secretion of high-density lipoprotein (HDL)-like apoE particles. Nuclear receptor transactivation assays revealed modest direct LXR agonism by compound 82879, yet 10 μM of 82879 significantly upregulated apoE mRNA in mouse embryonic fibroblasts (MEFs) depleted of both LXRα and LXRβ, demonstrating that 82879 can also induce apoE expression independent of LXR transactivation. By contrast, deletion of LXRs in MEFs completely blocked mRNA changes in ABCA1 even at 10 μM of 82879, indicating the ability of 82879 to stimulate ABCA1 expression is entirely dependent on LXR transactivation. Taken together, compound 82879 is a novel chrysanthemic ester capable of modulating apoE secretion as well as apoE-associated lipid metabolic pathways in astrocytes, which is structurally and mechanistically distinct from known LXR agonists. PMID:27598782
Zuñiga, Laura Y; González-Ortiz, Manuel; Martínez-Abundis, Esperanza
2017-08-01
Gymnema sylvestre is a medicinal plant whose consumption has demonstrated benefits on lipid and glucose levels, blood pressure, and body weight (BWt). The aim of this study was to evaluate the effect of G. sylvestre administration on metabolic syndrome (MetS), insulin secretion, and insulin sensitivity. A randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (without pharmacological treatment), 30-60 years old, with diagnosis of MetS in accordance with the modified International Diabetes Federation criteria. Patients were randomly assigned to receive G. sylvestre or placebo twice daily before breakfast and dinner in 300 mg capsules for a total of 600 mg per day for 12 weeks. Before and after the intervention, the components of MetS were evaluated as well as BWt, body mass index (BMI), total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein (VLDL). Area under the curve of glucose and insulin, phases of insulin secretion, and insulin sensitivity were calculated. Statistical analysis was performed using Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests; P ≤ .05 was considered statistically significant. After G. sylvestre administration, significant decreases in BWt (81.3 ± 10.6 kg vs. 77.9 ± 8.4 kg, P = .02), BMI (31.2 ± 2.5 kg/m 2 vs. 30.4 ± 2.2 kg/m 2 , P = .02), and VLDL levels (0.45 ± 0.15 mmol/dL vs. 0.35 ± 0.15 mmol/dL, P = .05) were observed, without modifying the components of MetS, insulin secretion, and insulin sensitivity. In conclusion, G. sylvestre administration decreased BWt, BMI, and VLDL levels in subjects with MetS, without changes in insulin secretion and insulin sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, R.A.; Haynes, E.B.; Sand, T.M.
1987-05-01
The development of the liver's ability to coordinately express the synthesis and secretion of the two major components of very low density lipoproteins (VLDL): triacylglycerol (TG) and apolipoprotein B (apo B) was examined in cultured hepatocytes obtained from fetal, suckling and adult rats. Hepatocytes from fetal and suckling rats synthesized and secreted TG at rates lower than that displayed by adult cells. When TG synthesis was equalized by adding oleic acid to the culture medium, fetal cells still secreted only 39% as much TG as did adult cells. To determine the basis for the apparent defect in VLDL assembly/secretion displayedmore » by fetal cells, the synthesis and secretion of (TVS)methionine-labeled apo B was quantified by immunoprecipitation. Although adult and fetal cells synthesized and secreted large molecular weight apo B at similar rates, the synthesis and secretion of small molecular weight apo B was 2-fold greater in adult cells. These data suggest that the ability to assemble/secrete VLDL triacylglycerol varies in parallel with the developmental expression of small molecular weight apo B. Furthermore, these studies show the usefulness of the cultured rat hepatocyte model for examining the ontogeny and regulation of VLDL assembly/secretion.« less
Basciano, Heather; Miller, Abigale; Baker, Chris; Naples, Mark; Adeli, Khosrow
2009-08-01
Liver X receptor-alpha (LXRalpha) is considered a master regulator of hepatic lipid metabolism; however, little is known about the link between LXR activation, hepatic insulin signaling, and very low-density lipoprotein (VLDL)-apolipoprotein B (apoB) assembly and secretion. Here, we examined the effect of LXRalpha activation on hepatic insulin signaling and apoB-lipoprotein production. In vivo activation of LXRalpha for 7 days using a synthetic LXR agonist, TO901317, in hamsters led to increased plasma triglyceride (TG; 3.6-fold compared with vehicle-treated controls, P = 0.006), apoB (54%, P < 0.0001), and VLDL-TG (eightfold increase compared with vehicle). As expected, LXR stimulation activated maturation of sterol response element binding protein-1c (SREBP-1c) as well as the SREBP-1c target genes steroyl CoA desaturase (SCD) and fatty acid synthase (FAS). Metabolic pulse-chase labeling experiments in primary hamster hepatocytes showed increased stability and secretion of newly synthesized apoB following LXR activation. Microsomal triglyceride transfer protein (MTP) mRNA and protein were unchanged, however, likely because of the relatively short period of treatment and long half-life of MTP mRNA. Examination of hepatic insulin-signaling molecules revealed LXR-mediated reductions in insulin receptor (IR)beta subunit mass (39%, P = 0.014) and insulin receptor substrate (IRS)-1 tyrosine phosphorylation (24%, P = 0.023), as well as increases in protein tyrosine phosphatase (PTP)1B (29%, P < 0.001) protein mass. In contrast to IRS-1, a twofold increase in IRS-2 mass (228%, P = 0.0037) and a threefold increase in IRS-2 tyrosine phosphorylation (321%, P = 0.012) were observed. In conclusion, LXR activation dysregulates hepatic insulin signaling and leads to a considerable increase in the number of circulating TG-rich VLDL-apoB particles, likely due to enhanced hepatic assembly and secretion of apoB-containing lipoproteins.
Cedó, Lídia; Santos, David; Roglans, Núria; Julve, Josep; Pallarès, Victor; Rivas-Urbina, Andrea; Llorente-Cortes, Vicenta; Laguna, Joan Carles; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles
2017-01-01
Human hepatic lipase (hHL) is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL) is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT). In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL)-mediated free fatty acid (FFA) lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.
Cedó, Lídia; Santos, David; Roglans, Núria; Julve, Josep; Pallarès, Victor; Rivas-Urbina, Andrea; Llorente-Cortes, Vicenta; Laguna, Joan Carles
2017-01-01
Human hepatic lipase (hHL) is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL) is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT). In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL)-mediated free fatty acid (FFA) lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL. PMID:29244870
1990-04-11
triglycerides , insulin, glucagon, cholesterol (total, high density lipoprotein ( HDL ), low density lipoprotein (LDL)I, cortisol, thyroid hormone...thyroid function, triglycerides , total cholesterol , high density lipoprotein cholesterol ( HDL ), low density lipoprotein cholesterol (LDL), ketone... density lipoprotein ( HDL ) fraction of cholesterol was
Manifold-Wheeler, Brett C; Elmore, Bradley O; Triplett, Kathleen D; Castleman, Moriah J; Otto, Michael; Hall, Pamela R
2016-01-01
Hyperlipidemia has been extensively studied in the context of atherosclerosis, whereas the potential health consequences of the opposite extreme, hypolipidemia, remain largely uninvestigated. Circulating lipoproteins are essential carriers of insoluble lipid molecules and are increasingly recognized as innate immune effectors. Importantly, severe hypolipidemia, which may occur with trauma or critical illness, is clinically associated with bacterial pneumonia. To test the hypothesis that circulating lipoproteins are essential for optimal host innate defense in the lung, we used lipoprotein-deficient mice and a mouse model of Staphylococcus aureus pneumonia in which invasive infection requires virulence factor expression controlled by the accessory gene regulator (agr) operon. Activation of agr and subsequent virulence factor expression is inhibited by apolipoprotein B, the structural protein of low-density lipoprotein, which binds and sequesters the secreted agr-signaling peptide (AIP). In this article, we report that lipoprotein deficiency impairs early pulmonary innate defense against S. aureus quorum-sensing-dependent pathogenesis. Specifically, apolipoprotein B levels in the lung early postinfection are significantly reduced with lipoprotein deficiency, coinciding with impaired host control of S. aureus agr-signaling and increased agr-dependent morbidity (weight loss) and inflammation. Given that lipoproteins also inhibit LTA- and LPS-mediated inflammation, these results suggest that hypolipidemia may broadly impact posttrauma pneumonia susceptibility to both Gram-positive and -negative pathogens. Together with previous reports demonstrating that hyperlipidemia also impairs lung innate defense, these results suggest that maintenance of normal serum lipoprotein levels is necessary for optimal host innate defense in the lung. Copyright © 2015 by The American Association of Immunologists, Inc.
Kinesin-dependent mechanism for controlling triglyceride secretion from the liver.
Rai, Priyanka; Kumar, Mukesh; Sharma, Geetika; Barak, Pradeep; Das, Saumitra; Kamat, Siddhesh S; Mallik, Roop
2017-12-05
Despite massive fluctuations in its internal triglyceride content, the liver secretes triglyceride under tight homeostatic control. This buffering function is most visible after fasting, when liver triglyceride increases manyfold but circulating serum triglyceride barely fluctuates. How the liver controls triglyceride secretion is unknown, but is fundamentally important for lipid and energy homeostasis in animals. Here we find an unexpected cellular and molecular mechanism behind such control. We show that kinesin motors are recruited to triglyceride-rich lipid droplets (LDs) in the liver by the GTPase ARF1, which is a key activator of lipolysis. This recruitment is activated by an insulin-dependent pathway and therefore responds to fed/fasted states of the animal. In fed state, ARF1 and kinesin appear on LDs, consequently transporting LDs to the periphery of hepatocytes where the smooth endoplasmic reticulum (sER) is present. Because the lipases that catabolize LDs in hepatocytes reside on the sER, LDs can now be catabolized efficiently to provide triglyceride for lipoprotein assembly and secretion from the sER. Upon fasting, insulin is lowered to remove ARF1 and kinesin from LDs, thus down-regulating LD transport and sER-LD contacts. This tempers triglyceride availabiity for very low density lipoprotein assembly and allows homeostatic control of serum triglyceride in a fasted state. We further show that kinesin knockdown inhibits hepatitis-C virus replication in hepatocytes, likely because translated viral proteins are unable to transfer from the ER to LDs. Copyright © 2017 the Author(s). Published by PNAS.
Grün, Johanna L.; Manjarrez-Reyna, Aaron N.; Gómez-Arauz, Angélica Y.; Leon-Cabrera, Sonia; Bueno-Hernández, Nallely; Islas-Andrade, Sergio
2018-01-01
The effect of metabolic syndrome on human monocyte subpopulations has not yet been studied. Our main goal was to examine monocyte subpopulations in metabolic syndrome patients, while also identifying the risk factors that could directly influence these cells. Eighty-six subjects were divided into metabolic syndrome patients and controls. Monocyte subpopulations were quantified by flow cytometry, and interleukin- (IL-) 1β secretion levels were measured by ELISA. Primary human monocytes were cultured in low or elevated concentrations of high-density lipoprotein (HDL) and stimulated with lipopolysaccharide (LPS). The nonclassical monocyte (NCM) percentage was significantly increased in metabolic syndrome patients as compared to controls, whereas classical monocytes (CM) were reduced. Among all metabolic syndrome risk factors, HDL reduction exhibited the most important correlation with monocyte subpopulations and then was studied in vitro. Low HDL concentration reduced the CM percentage, whereas it increased the NCM percentage and IL-1β secretion in LPS-treated monocytes. The LPS effect was abolished when monocytes were cultured in elevated HDL concentrations. Concurring with in vitro results, IL-1β serum values significantly increased in metabolic syndrome patients with low HDL levels as compared to metabolic syndrome patients without HDL reduction. Our data demonstrate that HDL directly modulates monocyte subpopulations in metabolic syndrome. PMID:29850624
Transcriptional regulation of human Paraoxonase 1 by nuclear receptors.
Ponce-Ruiz, N; Murillo-González, F E; Rojas-García, A E; Mackness, Mike; Bernal-Hernández, Y Y; Barrón-Vivanco, B S; González-Arias, C A; Medina-Díaz, I M
2017-04-25
Paraoxonase 1 (PON1) is a calcium-dependent lactonase synthesized primarily in the liver and secreted into the plasma, where it is associates with high density lipoproteins (HDL). PON1 acts as antioxidant preventing low-density lipoprotein (LDL) oxidation, a process considered critical in the initiation and progression of atherosclerosis. Additionally, PON1 hydrolyzes and detoxifies some toxic metabolites of organophosphorus compounds (OPs). Thus, PON1 activity and expression levels are important for determining susceptibility to OPs intoxication and risk of developing diseases related to inflammation and oxidative stress. Increasing evidence has demonstrated the modulation of PON1 expression by many factors is due to interaction with nuclear receptors (NRs). Here, we briefly review the studies in this area and discuss the role of nuclear receptors in the regulation of PON1 expression, as well as how understanding these mechanisms may allow us to manipulate PON1 levels to improve drug efficacy and treat disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Zuñiga, Laura Y; Aceves-de la Mora, Martha C Aceves-de; González-Ortiz, Manuel; Ramos-Núñez, Julia L; Martínez-Abundis, Esperanza
2018-05-01
Chlorogenic acid has been described as a novel polyphenol with metabolic effects on glucose homeostasis. The aim of this study was to evaluate the effect of chlorogenic acid administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance (IGT). A randomized, double-blind, placebo-controlled clinical trial was performed in 30 patients with IGT; 15 patients randomly assigned to oral chlorogenic acid received 400 mg three times per day for 12 weeks, and the other 15 patients received placebo in the same way. Before and after the intervention, anthropometric and metabolic measurements, including fasting plasma glucose (FPG), glycated hemoglobin A1c, and a lipid profile, were performed. Area under the curve of glucose and insulin as well as the insulinogenic, Stumvoll, and Matsuda indices were calculated. Wilcoxon, Mann-Whitney U, and chi-square tests were performed, and P ≤ .05 was considered statistically significant. There were significant decreases in FPG (5.7 ± 0.4 vs. 5.5 ± 0.4 mmol/L, P = .002), insulinogenic index (0.71 ± 0.25 vs. 0.63 ± 0.25, P = .028), body weight, body mass index, waist circumference, triglycerides, total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein levels in the chlorogenic acid group, with an increment in the Matsuda index (1.98 ± 0.88 vs. 2.30 ± 1.23, P = .002). There were no significant differences in the placebo group. In conclusion, chlorogenic acid administration in patients with IGT decreased FPG and insulin secretion, while increasing insulin sensitivity and improving both anthropometric evaluations and the lipid profile.
[Effects of thyroid hormone on macrophage dysfunction induced by oxidized low-density lipoprotein].
Ning, Yu; Zhang, Ming; DU, Yun-Hui; Zhang, Hui-Na; Li, Lin-Yi; Qin, Yan-Wen; Wen, Wan-Wan; Zhao, Quan-Ming
2018-04-25
It has been recognized that patients with hypothyroidism have higher risks of atherosclerosis and coronary heart disease, however, the mechanisms are largely unknown. Considering that macrophage dysfunction plays an important role in the formation and development of atherosclerosis plaques, this study aimed to investigate the direct effects of thyroid hormone on macrophage functions and to provide new insight for the mechanism of hypothyroid atherosclerosis. RAW264.7 cells (mouse leukaemic monocyte macrophage cell line) were incubated with oxidized low-density lipoprotein (oxLDL) to establish macrophage foam cells model in vitro, and the protective effects of different concentration of thyroxine (T4) on the macrophage foam cells function were explored. The proliferation, migration and cell aging of macrophages were detected by MTT method, scratch test and β-galactosidase staining respectively. The ELISA method was used to detect the secretion of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-1β (IL-1β). Western blot analysis was applied to measure the phosphorylation of focal adhesion kinase (FAK), which was required for the process of proliferation and migration of macrophages. The results showed that oxLDL significantly inhibited the macrophage proliferation and migration, induced cell senescence, and promoted the secretion of TNF-α, MCP-1, and IL-1β; while T4 reversed those effects of oxLDL on macrophage in a concentration-dependent manner. Moreover, oxLDL increased the phosphorylation of FAK in macrophage, while T4 concentration-dependently reversed the effect. These results suggest that T4 modulates macrophage proliferation, migration, senescence, and secretion of inflammation factors in a concentration-dependent way.
Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro.
Nishimoto, Tomoyuki; Amano, Yuichiro; Tozawa, Ryuichi; Ishikawa, Eiichiro; Imura, Yoshimi; Yukimasa, Hidefumi; Sugiyama, Yasuo
2003-07-01
1. Squalene synthase is the enzyme that converts farnesyl pyrophosphate to squalene in the cholesterol biosynthesis pathway. We examined the lipid-lowering properties of 1-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid (TAK-475), a novel squalene synthase inhibitor. 2. TAK-475 inhibited hepatic cholesterol biosynthesis in rats (ED(50), 2.9 mg kg(-1)) and showed lipid-lowering effects in beagle dogs, marmosets, cynomolgus monkeys and Wistar fatty rats. 3. In marmosets, TAK-475 (30, 100 mg kg(-1), p.o., for 4 days) lowered both plasma non-high-density lipoprotein (HDL) cholesterol and triglyceride, but did not affect plasma HDL cholesterol. On the other hand, atorvastatin (10, 30 mg kg(-1), p.o., for 4 days) lowered the levels of all these lipids. A correlation between decrease in triglyceride and increase in HDL cholesterol was observed, and TAK-475 increased HDL cholesterol with a smaller decrease in triglyceride than did atorvastatin. 4. TAK-475 (60 mg kg(-1), p.o., for 15 days) suppressed the rate of triglyceride secretion from the liver in hypertriglyceridemic Wistar fatty rats, which show an enhanced triglyceride secretion rate from the liver compared with their lean littermates. 5. In HepG2 cells, TAK-475 and its pharmacologically active metabolite, T-91485, increased the binding of (125)I-low-density lipoprotein (LDL) to LDL receptors. 6. These results suggest that TAK-475 has clear hypolipidemic effects in animals via inhibition of hepatic triglyceride secretion and upregulation of LDL receptors, and that TAK-475 might increase HDL cholesterol by decreasing triglyceride. Thus, TAK-475 is expected to be useful for the treatment of dyslipidemia.
Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro
Nishimoto, Tomoyuki; Amano, Yuichiro; Tozawa, Ryuichi; Ishikawa, Eiichiro; Imura, Yoshimi; Yukimasa, Hidefumi; Sugiyama, Yasuo
2003-01-01
Squalene synthase is the enzyme that converts farnesyl pyrophosphate to squalene in the cholesterol biosynthesis pathway. We examined the lipid-lowering properties of 1-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid (TAK-475), a novel squalene synthase inhibitor. TAK-475 inhibited hepatic cholesterol biosynthesis in rats (ED50, 2.9 mg kg−1) and showed lipid-lowering effects in beagle dogs, marmosets, cynomolgus monkeys and Wistar fatty rats. In marmosets, TAK-475 (30, 100 mg kg−1, p.o., for 4 days) lowered both plasma non-high-density lipoprotein (HDL) cholesterol and triglyceride, but did not affect plasma HDL cholesterol. On the other hand, atorvastatin (10, 30 mg kg−1, p.o., for 4 days) lowered the levels of all these lipids. A correlation between decrease in triglyceride and increase in HDL cholesterol was observed, and TAK-475 increased HDL cholesterol with a smaller decrease in triglyceride than did atorvastatin. TAK-475 (60 mg kg−1, p.o., for 15 days) suppressed the rate of triglyceride secretion from the liver in hypertriglyceridemic Wistar fatty rats, which show an enhanced triglyceride secretion rate from the liver compared with their lean littermates. In HepG2 cells, TAK-475 and its pharmacologically active metabolite, T-91485, increased the binding of 125I-low-density lipoprotein (LDL) to LDL receptors. 6 These results suggest that TAK-475 has clear hypolipidemic effects in animals via inhibition of hepatic triglyceride secretion and upregulation of LDL receptors, and that TAK-475 might increase HDL cholesterol by decreasing triglyceride. Thus, TAK-475 is expected to be useful for the treatment of dyslipidemia. PMID:12839864
Francis, G A; Mendez, A J; Bierman, E L; Heinecke, J W
1993-01-01
Lipoprotein oxidation is thought to play a pivotal role in atherogenesis, yet the underlying reaction mechanisms remain poorly understood. We have explored the possibility that high density lipoprotein (HDL) might be oxidized by peroxidase-generated tyrosyl radical. Exposure of HDL to L-tyrosine, H2O2, and horseradish peroxidase crosslinked its apolipoproteins and strikingly increased protein-associated fluorescence. The reaction required L-tyrosine but was independent of free metal ions; it was blocked by either catalase or the heme poison aminotriazole. Dityrosine and other tyrosine oxidation products were detected in the apolipoproteins of HDL modified by the peroxidase/L-tyrosine/H2O2 system, implicating tyrosyl radical in the reaction pathway. Further evidence suggests that tyrosylated HDL removes cholesterol from cultured cells more effectively than does HDL. Tyrosylated HDL was more potent than HDL at inhibiting cholesterol esterification by the acyl-CoA:cholesterol acyltransferase reaction, stimulating the incorporation of [14C]acetate into [14C]cholesterol, and depleting cholesteryl ester stores in human skin fibroblasts. Moreover, exposure of mouse macrophage foam cells to tyrosylated HDL markedly diminished cholesteryl ester and free cholesterol mass. We have recently found that myeloperoxidase, a heme protein secreted by activated phagocytes, can also convert L-tyrosine to o,o'-dityrosine. This raises the possibility that myeloperoxidase-generated tyrosyl radical may modify HDL, enabling the lipoprotein to protect the artery wall against pathological cholesterol accumulation. Images Fig. 1 PMID:8341680
Manchekar, Medha; Liu, Yanwen; Sun, Zhihuan; Richardson, Paul E; Dashti, Nassrin
2015-03-27
In this study, we tested the hypothesis that phospholipid transfer protein (PLTP) is a plausible mediator of phospholipid (PL) transfer to the N-terminal 1000 residues of apoB (apoB:1000) leading to the initiation of apoB-containing lipoprotein assembly. To this end, primary hepatocytes from wild type (WT) and PLTP knock-out (KO) mice were transduced with adenovirus-apoB:1000 with or without co-transduction with adenovirus-PLTP, and the assembly and secretion of apoB:1000-containing lipoproteins were assessed. PLTP deficiency resulted in a 65 and 72% reduction in the protein and lipid content, respectively, of secreted apoB:1000-containing lipoproteins. Particles secreted by WT hepatocytes contained 69% PL, 9% diacylglycerol (DAG), and 23% triacylglycerol (TAG) with a stoichiometry of 46 PL, 6 DAG, and 15 TAG molecules per apoB:1000. PLTP absence drastically altered the lipid composition of apoB:1000 lipoproteins; these particles contained 46% PL, 13% DAG, and 41% TAG with a stoichiometry of 27 PL, 10 DAG, and 23 TAG molecules per apoB:1000. Reintroduction of Pltp gene into PLTP-KO hepatocytes stimulated the lipidation and secretion of apoB:1000-containing lipoproteins by ∼3-fold; the lipid composition and stoichiometry of these particles were identical to those secreted by WT hepatocytes. In contrast to the WT, apoB:1000 in PLTP-KO hepatocytes was susceptible to intracellular degradation predominantly in the post-endoplasmic reticulum, presecretory compartment. Reintroduction of Pltp gene into PLTP-KO hepatocytes restored the stability of apoB:1000. These results provide compelling evidence that in hepatocytes initial recruitment of PL by apoB:1000 leading to the formation of the PL-rich apoB-containing initiation complex is mediated to a large extent by PLTP. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Manchekar, Medha; Liu, Yanwen; Sun, Zhihuan; Richardson, Paul E.; Dashti, Nassrin
2015-01-01
In this study, we tested the hypothesis that phospholipid transfer protein (PLTP) is a plausible mediator of phospholipid (PL) transfer to the N-terminal 1000 residues of apoB (apoB:1000) leading to the initiation of apoB-containing lipoprotein assembly. To this end, primary hepatocytes from wild type (WT) and PLTP knock-out (KO) mice were transduced with adenovirus-apoB:1000 with or without co-transduction with adenovirus-PLTP, and the assembly and secretion of apoB:1000-containing lipoproteins were assessed. PLTP deficiency resulted in a 65 and 72% reduction in the protein and lipid content, respectively, of secreted apoB:1000-containing lipoproteins. Particles secreted by WT hepatocytes contained 69% PL, 9% diacylglycerol (DAG), and 23% triacylglycerol (TAG) with a stoichiometry of 46 PL, 6 DAG, and 15 TAG molecules per apoB:1000. PLTP absence drastically altered the lipid composition of apoB:1000 lipoproteins; these particles contained 46% PL, 13% DAG, and 41% TAG with a stoichiometry of 27 PL, 10 DAG, and 23 TAG molecules per apoB:1000. Reintroduction of Pltp gene into PLTP-KO hepatocytes stimulated the lipidation and secretion of apoB:1000-containing lipoproteins by ∼3-fold; the lipid composition and stoichiometry of these particles were identical to those secreted by WT hepatocytes. In contrast to the WT, apoB:1000 in PLTP-KO hepatocytes was susceptible to intracellular degradation predominantly in the post-endoplasmic reticulum, presecretory compartment. Reintroduction of Pltp gene into PLTP-KO hepatocytes restored the stability of apoB:1000. These results provide compelling evidence that in hepatocytes initial recruitment of PL by apoB:1000 leading to the formation of the PL-rich apoB-containing initiation complex is mediated to a large extent by PLTP. PMID:25638820
Syed, Gulam H; Khan, Mohsin; Yang, Song; Siddiqui, Aleem
2017-08-01
Hepatitis C virus (HCV) exists as a lipoprotein-virus hybrid lipoviroparticle (LVP). In vitro studies have demonstrated the importance of apolipoproteins in HCV secretion and infectivity, leading to the notion that HCV coopts the secretion of very-low-density lipoprotein (VLDL) for its egress. However, the mechanisms involved in virus particle assembly and egress are still elusive. The biogenesis of VLDL particles occurs in the endoplasmic reticulum (ER), followed by subsequent lipidation in the ER and Golgi compartment. The secretion of mature VLDL particles occurs through the Golgi secretory pathway. HCV virions are believed to latch onto or fuse with the nascent VLDL particle in either the ER or the Golgi compartment, resulting in the generation of LVPs. In our attempt to unravel the collaboration between HCV and VLDL secretion, we studied HCV particles budding from the ER en route to the Golgi compartment in COPII vesicles. Biophysical characterization of COPII vesicles fractionated on an iodixanol gradient revealed that HCV RNA is enriched in the highly buoyant COPII vesicle fractions and cofractionates with apolipoprotein B (ApoB), ApoE, and the HCV core and envelope proteins. Electron microscopy of immunogold-labeled microsections revealed that the HCV envelope and core proteins colocalize with apolipoproteins and HCV RNA in Sec31-coated COPII vesicles. Ultrastructural analysis also revealed the presence of HCV structural proteins, RNA, and apolipoproteins in the Golgi stacks. These findings support the hypothesis that HCV LVPs assemble in the ER and are transported to the Golgi compartment in COPII vesicles to embark on the Golgi secretory route. IMPORTANCE HCV assembly and release accompany the formation of LVPs that circulate in the sera of HCV patients and are also produced in an in vitro culture system. The pathway of HCV morphogenesis and secretion has not been fully understood. This study investigates the exact site where the association of HCV virions with host lipoproteins occurs. Using immunoprecipitation of COPII vesicles and immunogold electron microscopy (EM), we characterize the existence of LVPs that cofractionate with lipoproteins, viral proteins, RNA, and vesicular components. Our results show that this assembly occurs in the ER, and LVPs thus formed are carried through the Golgi network by vesicular transport. This work provides a unique insight into the HCV LVP assembly process within infected cells and offers opportunities for designing antiviral therapeutic cellular targets. Copyright © 2017 American Society for Microbiology.
Khan, Mohsin; Yang, Song
2017-01-01
ABSTRACT Hepatitis C virus (HCV) exists as a lipoprotein-virus hybrid lipoviroparticle (LVP). In vitro studies have demonstrated the importance of apolipoproteins in HCV secretion and infectivity, leading to the notion that HCV coopts the secretion of very-low-density lipoprotein (VLDL) for its egress. However, the mechanisms involved in virus particle assembly and egress are still elusive. The biogenesis of VLDL particles occurs in the endoplasmic reticulum (ER), followed by subsequent lipidation in the ER and Golgi compartment. The secretion of mature VLDL particles occurs through the Golgi secretory pathway. HCV virions are believed to latch onto or fuse with the nascent VLDL particle in either the ER or the Golgi compartment, resulting in the generation of LVPs. In our attempt to unravel the collaboration between HCV and VLDL secretion, we studied HCV particles budding from the ER en route to the Golgi compartment in COPII vesicles. Biophysical characterization of COPII vesicles fractionated on an iodixanol gradient revealed that HCV RNA is enriched in the highly buoyant COPII vesicle fractions and cofractionates with apolipoprotein B (ApoB), ApoE, and the HCV core and envelope proteins. Electron microscopy of immunogold-labeled microsections revealed that the HCV envelope and core proteins colocalize with apolipoproteins and HCV RNA in Sec31-coated COPII vesicles. Ultrastructural analysis also revealed the presence of HCV structural proteins, RNA, and apolipoproteins in the Golgi stacks. These findings support the hypothesis that HCV LVPs assemble in the ER and are transported to the Golgi compartment in COPII vesicles to embark on the Golgi secretory route. IMPORTANCE HCV assembly and release accompany the formation of LVPs that circulate in the sera of HCV patients and are also produced in an in vitro culture system. The pathway of HCV morphogenesis and secretion has not been fully understood. This study investigates the exact site where the association of HCV virions with host lipoproteins occurs. Using immunoprecipitation of COPII vesicles and immunogold electron microscopy (EM), we characterize the existence of LVPs that cofractionate with lipoproteins, viral proteins, RNA, and vesicular components. Our results show that this assembly occurs in the ER, and LVPs thus formed are carried through the Golgi network by vesicular transport. This work provides a unique insight into the HCV LVP assembly process within infected cells and offers opportunities for designing antiviral therapeutic cellular targets. PMID:28515296
Borradaile, Nica M; de Dreu, Linda E; Wilcox, Lisa J; Edwards, Jane Y; Huff, Murray W
2002-01-01
Diets containing the soya-derived phytoestrogens, genistein and daidzein, decrease plasma cholesterol in humans and experimental animals. The mechanisms responsible for the hypocholesterolaemic effects of these isoflavones are unknown. The present study was conducted to determine if genistein and daidzein regulate hepatocyte cholesterol metabolism and apolipoprotein (apo) B secretion in cultured human hepatoma (HepG2) cells. ApoB secretion was decreased dose-dependently by up to 63% and 71% by genistein and daidzein (100 microM; P<0.0001) respectively. In contrast, no effect on apoAI secretion was observed. Cellular cholesterol synthesis was inhibited 41% by genistein (100 microM; P<0.005) and 18% by daidzein (100 microM; P<0.05), which was associated with significant increases in 3-hydroxy-3-methylglutaryl-CoA reductase mRNA. Cellular cholesterol esterification was decreased 56% by genistein (100 microM; P<0.04) and 29% by daidzein (100 microM; P<0.04); however, mRNA levels for acyl-CoA:cholesterol acyltransferase (ACAT) 1 and ACAT2 were unaffected. At 100 microM, both isoflavones equally inhibited the activities of both forms of ACAT in cells transfected with either ACAT1 or ACAT2. Genistein (100 microM) and daidzein (100 microM) significantly decreased the activity of microsomal triacylglycerol transfer protein (MTP) by 30% and 24% respectively, and significantly decreased MTP mRNA levels by 35% and 55%. Both isoflavones increased low-density lipoprotein (LDL)-receptor mRNA levels by 3- to 6-fold (100 microM; P<0.03) and significantly increased the binding, uptake and degradation of (125)I-labelled LDL, suggesting that enhanced reuptake of newly secreted apoB-containing lipoproteins contributed to the net decrease in apoB secretion. These results indicate that genistein and daidzein inhibit hepatocyte apoB secretion through several mechanisms, including inhibition of cholesterol synthesis and esterification, inhibition of MTP activity and expression and increased expression of the LDL-receptor. PMID:12030847
Dory, L; Krause, B R; Roheim, P S
1981-08-01
Lipid and lipoprotein concentration, and triglyceride turnover were studied in control, thyroidectomized, and pair-fed control rats (pair-fed to match the food intake of the thyroidectomized rats). Thyroidectomy induced a significant increase in plasma cholesterol (and low density lipoprotein) concentrations and a decrease in plasma triglyceride (and very low density lipoprotein) concentrations. Changes in similar direction but of smaller magnitude were observed in the plasma of the pair-fed control rats. To further investigate triglyceride metabolism in these three groups of animals, triglyceride turnover was studied in fasted, unrestrained, and unanesthetized rats, following injection of [2-3H]glycerol. Peak incorporation of [2-3H]glycerol into plasma triglyceride occurred in all three groups of animals at 25 min after precursor administration, although the maximal incorporation was substantially lower in the thyroidectomized group than in either of the control groups. Thereafter, plasma triglyceride radioactivity decayed monoexponentially with a half-life of 24 +/- 1 min for both normal and pair-fed control rats, compared with the half-life of 41 +/- 3 min observed in the thyroidectomized rats. The calculated apparent fractional catabolic rates were thus 0.029 min-1 for both control groups and only 0.017 min-1 for the thyroidectomized animals. The apparent total catabolic rates of plasma triglyceride were 299 +/- 11, 138 +/- 11, and 48 +/- 4 micrograms triglyceride . min-1 for the normal controls, pair-fed controls, and thyroidectomized rats, respectively. These data further emphasize the importance of thyroid hormones in regulating plasma lipid and lipoprotein metabolism and, specifically, indicate that hypothyroidism results in a reduction of triglyceride secretion into, and the removal from, circulation. Furthermore, evidence was presented that the decreased caloric intake of the hypothyroid animals cannot, in itself, account for this observation.
Dehghan, Firouzeh; Hajiaghaalipour, Fatemeh; Yusof, Ashril; Muniandy, Sekaran; Hosseini, Seyed Ali; Heydari, Sedigheh; Salim, Landa Zeenelabdin Ali; Azarbayjani, Mohammad Ali
2016-01-01
Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P < 0.01). High dose of saffron stimulated insulin release in RIN-5F cells and improved glucose uptake in L6 myotubes. GLUT4 and AMPKα expressions increased in both doses of saffron (P < 0.01), whereas GLUT2 not changed (p > 0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p < 0.01). However, no significant differences were observed in the high-density lipoprotein, insulin, adiponectin, and leptin concentration levels in all groups (p > 0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake. PMID:27122001
NASA Astrophysics Data System (ADS)
de Freitas, Maria Camila Pruper; Figueiredo Neto, Antonio Martins; Giampaoli, Viviane; da Conceição Quintaneiro Aubin, Elisete; de Araújo Lima Barbosa, Milena Maria; Damasceno, Nágila Raquel Teixeira
2016-04-01
The great atherogenic potential of oxidized low-density lipoprotein has been widely described in the literature. The objective of this study was to investigate whether the state of oxidized low-density lipoprotein in human plasma measured by the Z-scan technique has an association with different cardiometabolic biomarkers. Total cholesterol, high-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-I and apolipoprotein B, paraoxonase-1, and glucose were analyzed using standard commercial kits, and low-density lipoprotein cholesterol was estimated using the Friedewald equation. A sandwich enzyme-linked immunosorbent assay was used to detect electronegative low-density lipoprotein. Low-density lipoprotein and high-density lipoprotein sizes were determined by Lipoprint® system. The Z-scan technique was used to measure the non-linear optical response of low-density lipoprotein solution. Principal component analysis and correlations were used respectively to resize the data from the sample and test association between the θ parameter, measured with the Z-scan technique, and the principal component. A total of 63 individuals, from both sexes, with mean age 52 years (±11), being overweight and having high levels of total cholesterol and low levels of high-density lipoprotein cholesterol, were enrolled in this study. A positive correlation between the θ parameter and more anti-atherogenic pattern for cardiometabolic biomarkers together with a negative correlation for an atherogenic pattern was found. Regarding the parameters related with an atherogenic low-density lipoprotein profile, the θ parameter was negatively correlated with a more atherogenic pattern. By using Z-scan measurements, we were able to find an association between oxidized low-density lipoprotein state and multiple cardiometabolic biomarkers in samples from individuals with different cardiovascular risk factors.
Young, R L; DelConte, A
1999-11-01
The aim of this 24-cycle study was to evaluate the effects on serum lipid concentrations of an oral contraceptive preparation containing 100 microg levonorgestrel and 20 microg ethinyl estradiol. Forty-two healthy women were enrolled in a study designed to evaluate the effects on serum lipid concentrations of an oral contraceptive containing 100 microg levonorgestrel and 20 microg ethinyl estradiol. Lipid data were evaluated for 28 women who completed 24 cycles of treatment with a preparation of 100 microg levonorgestrel with 20 microg ethinyl estradiol for 21 days followed by placebo for 7 days. Concentrations of triglycerides, total cholesterol, high-density lipoprotein cholesterol, high-density lipoprotein cholesterol subfractions 2 and 3, low-density lipoprotein cholesterol, and apolipoproteins A-I and B were analyzed. Mean percentage changes from baseline were tested for significance by means of paired Student t tests. Total cholesterol, high-density lipoprotein cholesterol, high-density lipoprotein subfraction 2, and apolipoprotein A-I concentrations were not significantly changed from baseline. Neither was the ratio of high-density lipoprotein subfraction 2 to high-density lipoprotein subfraction 3. Mean percentage increases in concentrations of triglyceride, high-density lipoprotein subfraction 3, apolipoprotein B, and low-density lipoprotein cholesterol and increases in the ratios of total cholesterol to high-density lipoprotein cholesterol, low-density lipoprotein cholesterol to high-density lipoprotein cholesterol, and apolipoprotein B to apolipoprotein A-I were significant (P <.05) at >/=1 cycle. By cycle 24, however, only the concentration of high-density lipoprotein subfraction 3 remained significantly elevated. Changes in the plasma lipid profiles among women receiving monophasic 100 microg levonorgestrel with 20 microg ethinyl estradiol were similar to those seen with other low-dose oral contraceptives, but by cycle 24 only 1 of 7 mean values remained significantly different from baseline.
Effective reduction of LDL cholesterol by indigenous plant product.
Bhardwaj, P K; Dasgupta, D J; Prashar, B S; Kaushal, S S
1994-03-01
A herbal powder containing guar gum, methi, tundika and meshasringi was administered to 30 control and 30 type 2 (non-insulin dependent) diabetes mellitus patients for a month. Total serum cholesterol and its fractions eg, high density lipoprotein, low density lipoproteins, very low density lipoproteins and serum triglyceride were determined before and after the trial period. Total and low density lipoprotein (LDL) cholesterols were reduced significantly after the therapy. There were no significant changes in high density lipoproteins (HDL), very low density lipoproteins (VLDL) or triglyceride levels. Side-effects eg, mild flatulence and looseness of bowel were noticed in less than 40% cases.
21 CFR 866.5600 - Low-density lipoprotein immunological test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-density lipoprotein immunological test system...
Wilson, Marlena M; Anderson, D Eric; Bernstein, Harris D
2015-01-01
Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM) and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.
Alger, Heather M; Brown, J Mark; Sawyer, Janet K; Kelley, Kathryn L; Shah, Ramesh; Wilson, Martha D; Willingham, Mark C; Rudel, Lawrence L
2010-05-07
Acyl-CoA:cholesterol O-acyl transferase 2 (ACAT2) promotes cholesterol absorption by the intestine and the secretion of cholesteryl ester-enriched very low density lipoproteins by the liver. Paradoxically, mice lacking ACAT2 also exhibit mild hypertriglyceridemia. The present study addresses the unexpected role of ACAT2 in regulation of hepatic triglyceride (TG) metabolism. Mouse models of either complete genetic deficiency or pharmacological inhibition of ACAT2 were fed low fat diets containing various amounts of cholesterol to induce hepatic steatosis. Mice genetically lacking ACAT2 in both the intestine and the liver were dramatically protected against hepatic neutral lipid (TG and cholesteryl ester) accumulation, with the greatest differences occurring in situations where dietary cholesterol was elevated. Further studies demonstrated that liver-specific depletion of ACAT2 with antisense oligonucleotides prevents dietary cholesterol-associated hepatic steatosis both in an inbred mouse model of non-alcoholic fatty liver disease (SJL/J) and in a humanized hyperlipidemic mouse model (LDLr(-/-), apoB(100/100)). All mouse models of diminished ACAT2 function showed lowered hepatic triglyceride concentrations and higher plasma triglycerides secondary to increased hepatic secretion of TG into nascent very low density lipoproteins. This work demonstrates that inhibition of hepatic ACAT2 can prevent dietary cholesterol-driven hepatic steatosis in mice. These data provide the first evidence to suggest that ACAT2-specific inhibitors may hold unexpected therapeutic potential to treat both atherosclerosis and non-alcoholic fatty liver disease.
Metabolism of cholesteryl esters of rat very low density lipoproteins.
Faergeman, O; Havel, R J
1975-06-01
Rat very low density lipoproteins (d smaller than 1.006), biologically labeled in esterified and free cholesterol, were obtained form serum 6 h after intravenous injection of particulate (3-H) cholesterol. When injected into recipient animals, the esterified cholesterol was cleared form plasma with a half-life of 5 min. After 15 min, 71% of the injected esterified (3-H) cholesterol had been taken up by the liver, where it was rapidly hydrolyzed. After 60 min only 3.3% of the amount injected had been transferred, via lipoproteins of intermediate density, to the low density lipoproteins of plasma (d 1.019-1.063). Both uptake in the liver and transfer to low density lipoproteins occurred without change of distribution of 3-H in the various cholesteryl esters. 3-H appearing in esterified cholesterol of high density lipoproteins (d greater than 1.063) was derived from esterification, presumably by lecithin: cholesterol acyltransferase, of simultaneously injected free (3-H) cholesterol. Content of free (3-H) cholesterol in the very low density lipoproteins used for injection could be reduced substantially by incubation with erythrocytes. This procedure, however, increased the rate of clearance of the lipoproteins after injection into recipient rats. These studies show that hepatic removal is the major catabolic pathway for cholesteryl esters of rat very low density lipoproteins and that transfer to low density lipoproteins occurs to only a minor extent.
21 CFR 866.5600 - Low-density lipoprotein immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 866.5600 - Low-density lipoprotein immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 866.5600 - Low-density lipoprotein immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 866.5600 - Low-density lipoprotein immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
In vitro anti-Plasmodium falciparum properties of the full set of human secreted phospholipases A2.
Guillaume, Carole; Payré, Christine; Jemel, Ikram; Jeammet, Louise; Bezzine, Sofiane; Naika, Gajendra S; Bollinger, James; Grellier, Philippe; Gelb, Michael H; Schrével, Joseph; Lambeau, Gérard; Deregnaucourt, Christiane
2015-06-01
We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P. falciparum has not been investigated. We show here that 4 out of 10 human sPLA2s, namely, hGX, hGIIF, hGIII, and hGV, exhibit potent in vitro anti-Plasmodium properties with half-maximal inhibitory concentrations (IC50s) of 2.9 ± 2.4, 10.7 ± 2.1, 16.5 ± 9.7, and 94.2 ± 41.9 nM, respectively. Other human sPLA2s, including hGIIA, are inactive. The inhibition is dependent on sPLA2 catalytic activity and primarily due to hydrolysis of plasma lipoproteins from the parasite culture. Accordingly, purified lipoproteins that have been prehydrolyzed by hGX, hGIIF, hGIII, and hGV are more toxic to P. falciparum than native lipoproteins. However, the total enzymatic activities of human sPLA2s on purified lipoproteins or plasma did not reflect their inhibitory activities on P. falciparum. For instance, hGIIF is 9-fold more toxic than hGV but releases a lower quantity of nonesterified fatty acids (NEFAs). Lipidomic analyses of released NEFAs from lipoproteins demonstrate that sPLA2s with anti-Plasmodium properties are those that release polyunsaturated fatty acids (PUFAs), with hGIIF being the most selective enzyme. NEFAs purified from lipoproteins hydrolyzed by hGIIF were more potent at inhibiting P. falciparum than those from hGV, and PUFA-enriched liposomes hydrolyzed by sPLA2s were highly toxic, demonstrating the critical role of PUFAs. The selectivity of sPLA2s toward low- and high-density (LDL and HDL, respectively) lipoproteins and their ability to directly attack parasitized erythrocytes further explain their anti-Plasmodium activity. Together, our findings indicate that 4 human sPLA2s are active against P. falciparum in vitro and pave the way to future investigations on their in vivo contribution in malaria pathophysiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
In Vitro Anti-Plasmodium falciparum Properties of the Full Set of Human Secreted Phospholipases A2
Guillaume, Carole; Payré, Christine; Jemel, Ikram; Jeammet, Louise; Bezzine, Sofiane; Naika, Gajendra S.; Bollinger, James; Grellier, Philippe; Gelb, Michael H.; Schrével, Joseph
2015-01-01
We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P. falciparum has not been investigated. We show here that 4 out of 10 human sPLA2s, namely, hGX, hGIIF, hGIII, and hGV, exhibit potent in vitro anti-Plasmodium properties with half-maximal inhibitory concentrations (IC50s) of 2.9 ± 2.4, 10.7 ± 2.1, 16.5 ± 9.7, and 94.2 ± 41.9 nM, respectively. Other human sPLA2s, including hGIIA, are inactive. The inhibition is dependent on sPLA2 catalytic activity and primarily due to hydrolysis of plasma lipoproteins from the parasite culture. Accordingly, purified lipoproteins that have been prehydrolyzed by hGX, hGIIF, hGIII, and hGV are more toxic to P. falciparum than native lipoproteins. However, the total enzymatic activities of human sPLA2s on purified lipoproteins or plasma did not reflect their inhibitory activities on P. falciparum. For instance, hGIIF is 9-fold more toxic than hGV but releases a lower quantity of nonesterified fatty acids (NEFAs). Lipidomic analyses of released NEFAs from lipoproteins demonstrate that sPLA2s with anti-Plasmodium properties are those that release polyunsaturated fatty acids (PUFAs), with hGIIF being the most selective enzyme. NEFAs purified from lipoproteins hydrolyzed by hGIIF were more potent at inhibiting P. falciparum than those from hGV, and PUFA-enriched liposomes hydrolyzed by sPLA2s were highly toxic, demonstrating the critical role of PUFAs. The selectivity of sPLA2s toward low- and high-density (LDL and HDL, respectively) lipoproteins and their ability to directly attack parasitized erythrocytes further explain their anti-Plasmodium activity. Together, our findings indicate that 4 human sPLA2s are active against P. falciparum in vitro and pave the way to future investigations on their in vivo contribution in malaria pathophysiology. PMID:25824843
Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard
2011-06-01
Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.
2011-01-01
cholesterol , triglycerides , high - density cholesterol (HDL), and calculated low- density lipoprotein (LDL)), and blood glucose level. 2.3. Assessments 2.3.1...separately; BP: blood pressure; HDL: high - density lipoprotein ; LDL: low- density lipoprotein . at or above threshold with those who do not among a group of...261, 2001. [11] G. R. Warnick, R. H. Knopp, V. Fitzpatrick, and L. Branson, “Estimating low- density lipoprotein
Forrest, Lolita M.; Lough, Christopher M.; Chung, Soonkyu; Boudyguina, Elena Y.; Gebre, Abraham K.; Smith, Thomas L.; Colvin, Perry L.; Parks, John S.
2013-01-01
Echium oil (EO), which is enriched in SDA (18:4 n-3), reduces plasma triglyceride (TG) concentrations in humans and mice. We compared mechanisms by which EO and fish oil (FO) reduce plasma TG concentrations in mildly hypertriglyceridemic male apoB100-only LDLrKO mice. Mice were fed one of three atherogenic diets containing 0.2% cholesterol and palm oil (PO; 20%), EO (10% EO + 10% PO), or FO (10% FO + 10% PO). Livers from PO- and EO-fed mice had similar TG and cholesteryl ester (CE) content, which was significantly higher than in FO-fed mice. Plasma TG secretion was reduced in FO vs. EO-fed mice. Plasma very low density lipoprotein (VLDL) particle size was ordered: PO (63 ± 4 nm) > EO (55 ± 3 nm) > FO (40 ± 2 nm). Post-heparin lipolytic activity was similar among groups, but TG hydrolysis by purified lipoprotein lipase was significantly greater for EO and FO VLDL compared to PO VLDL. Removal of VLDL tracer from plasma was marginally faster in EO vs. PO fed mice. Our results suggest that EO reduces plasma TG primarily through increased intravascular lipolysis of TG and VLDL clearance. Finally, EO may substitute for FO to reduce plasma TG concentrations, but not hepatic steatosis in this mouse model. PMID:23857172
Forrest, Lolita M; Lough, Christopher M; Chung, Soonkyu; Boudyguina, Elena Y; Gebre, Abraham K; Smith, Thomas L; Colvin, Perry L; Parks, John S
2013-07-12
Echium oil (EO), which is enriched in SDA (18:4 n-3), reduces plasma triglyceride (TG) concentrations in humans and mice. We compared mechanisms by which EO and fish oil (FO) reduce plasma TG concentrations in mildly hypertriglyceridemic male apoB100-only LDLrKO mice. Mice were fed one of three atherogenic diets containing 0.2% cholesterol and palm oil (PO; 20%), EO (10% EO + 10% PO), or FO (10% FO + 10% PO). Livers from PO- and EO-fed mice had similar TG and cholesteryl ester (CE) content, which was significantly higher than in FO-fed mice. Plasma TG secretion was reduced in FO vs. EO-fed mice. Plasma very low density lipoprotein (VLDL) particle size was ordered: PO (63 ± 4 nm) > EO (55 ± 3 nm) > FO (40 ± 2 nm). Post-heparin lipolytic activity was similar among groups, but TG hydrolysis by purified lipoprotein lipase was significantly greater for EO and FO VLDL compared to PO VLDL. Removal of VLDL tracer from plasma was marginally faster in EO vs. PO fed mice. Our results suggest that EO reduces plasma TG primarily through increased intravascular lipolysis of TG and VLDL clearance. Finally, EO may substitute for FO to reduce plasma TG concentrations, but not hepatic steatosis in this mouse model.
Whitney, M S; Boon, G D; Rebar, A H; Story, J A; Bottoms, G D
1993-01-01
To better characterize the idiopathic hyperlipoproteinemia of Miniature Schnauzer dogs, the plasma lipoproteins of 20 Miniature Schnauzers (MS) and 11 dogs of other breeds (DOB) were evaluated by ultracentrifugation, electrophoresis, and biochemical tests. Seventeen MS were healthy; 3 had diabetes mellitus. Plasma from 6 of 17 healthy and all 3 diabetic MS was visibly lipemic. Lipemia was slight to marked in healthy lipemic MS, and marked in diabetic ones. All DOB had clear plasma; 8 were healthy and 3 had diabetes. All healthy lipemic MS and diabetic lipemic MS had hypertriglyceridemia associated with excess very low density lipoproteins. Chylomicronemia was present in 4 of 6 healthy lipemic MS and all 3 diabetic lipemic MS. Lipoproteins with ultracentrifugal and electrophoretic characteristics of normal low density lipoprotein were lacking in 4 of 6 healthy lipemic MS. The lipoprotein patterns of 4 of 11 healthy nonlipemic MS were characterized by mild hypertriglyceridemia associated with increased very low density lipoproteins and a lack of lipoproteins with characteristics of normal low density lipoproteins. Lipoprotein patterns of diabetic DOB closely resembled those of healthy DOB; those of diabetic lipemic MS resembled those of markedly lipemic healthy lipemic MS. In conclusion, the hyperlipoproteinemia of Miniature Schnauzers is characterized by increased very low density lipoproteins with or without accompanying chylomicronemia; some affected dogs may have decreased low density lipoproteins.
Gorgani-Firuzjaee, Sattar; Khatami, Shohreh; Adeli, Khosrow; Meshkani, Reza
2015-09-04
Hepatic de-novo lipogenesis and production of triglyceride rich VLDL are regulated via the phosphoinositide 3-kinase cascade, however, the role of a negative regulator of this pathway, the SH2 domain-containing inositol 5-phosphatase (SHIP2) in this process, remains unknown. In the present study, we investigated the molecular link between SHIP2 expression and metabolic dyslipidemia using overexpression or suppression of SHIP2 gene in HepG2 cells. The results showed that overexpression of the wild type SHIP2 gene (SHIP2-WT) led to a higher total lipid content (28%) compared to control, whereas overexpression of the dominant negative SHIP2 gene (SHIP2-DN) reduced total lipid content in oleate treated cells by 40%. Overexpression of SHIP2-WT also led to a significant increase in both secretion of apoB100 containing lipoproteins and de-novo lipogenesis, as demonstrated by an enhancement in secreted apoB100 and MTP expression, increased intra and extracellular triglyceride levels and enhanced expression of lipogenic genes such as SREBP1c, FAS and ACC. On the other hand, overexpression of the SHIP2-DN gene prevented oleate-induced de-novo lipogenesis and secretion of apoB100 containing lipoproteins in HepG2 cells. Collectively, these findings suggest that SHIP2 expression level is a key determinant of hepatic lipogenesis and lipoprotein secretion, and its inhibition could be considered as a potential target for treatment of dyslipidemia. Copyright © 2015 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A shift towards overall larger very low-density lipoprotein (VLDL), and smaller low-density lipoprotein and high-density lipoprotein (HDL) diameters occurs in insulin resistance (IR), which reflects shifts in the distribution of the subfraction concentrations. Fenofibrate, indicated for hypertriglyc...
Gomes, Rodrigo Mello; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Pavanello, Audrei; Torrezan, Rosana; Natali, Maria Raquel Marçal; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar
2016-01-01
Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol. PMID:27007071
Pauquai, Thomas; Bouchoux, Julien; Chateau, Danielle; Vidal, Romain; Rousset, Monique; Chambaz, Jean; Demignot, Sylvie
2006-01-01
Enterocytes are responsible for the absorption of dietary lipids, which involves TRL [TG (triacylglycerol)-rich lipoprotein] assembly and secretion. In the present study, we analysed the effect on TRL secretion of Caco-2 enterocyte adaptation to a differential glucose supply. We showed that TG secretion in cells adapted to a low glucose supply for 2 weeks after confluence was double that of control cells maintained in high-glucose-containing medium, whereas the level of TG synthesis remained similar in both conditions. This increased secretion resulted mainly from an enlargement of the mean size of the secreted TRL. The increased TG availability for TRL assembly and secretion was not due to an increase in the MTP (microsomal TG transfer protein) activity that is required for lipid droplet biogenesis in the ER (endoplasmic reticulum) lumen, or to the channelling of absorbed fatty acids towards the monoacylglycerol pathway for TG synthesis. Interestingly, by electron microscopy and subcellular fractionation studies, we observed, in the low glucose condition, an increase in the TG content available for lipoprotein assembly in the ER lumen, with the cytosolic/microsomal TG levels being verapamil-sensitive. Overall, we demonstrate that Caco-2 enterocytes modulate TRL secretion through TG partitioning between the cytosol and the ER lumen according to the glucose supply. Our model will help in identifying the proteins involved in the control of the balance between TRL assembly and cytosolic lipid storage. This mechanism may be a way for enterocytes to regulate TRL secretion after a meal, and thus impact on our understanding of post-prandial hypertriglyceridaemia. PMID:16393142
Charlton-Menys, Valentine; Chobotova, Jelena; Durrington, Paul N
2008-01-01
Isolation of different density lipoproteins by ultracentrifugation can require lengthy centrifugation times and freeze/thawing of plasma may influence recovery. We isolated a range of lipoproteins using a preparative ultracentrifuge and the TLX micro-ultracentrifuge and determined the effect of freeze/thawing of plasma beforehand. In fresh plasma, there was no significant difference in results for small-dense low-density lipoprotein apolipoprotein B (LDL apoB) (density >1.044 g/mL) or cholesterol at density >1.006 g/mL. Freeze/thawing had no effect on closely correlated results for small-dense LDL apoB (r=0.85; p<0.0001) or high-density lipoprotein (r=0.93; p<0.0001). The TLX micro-ultracentrifuge is a reliable alternative to the preparative ultracentrifuge and freeze/thawing has only a small effect on small-dense LDL apoB or high-density lipoprotein cholesterol.
Identification of the trypanocidal factor in normal human serum: high density lipoprotein.
Rifkin, M R
1978-01-01
The differentiation of Trypanosoma brucei from T. rhodesiense, the causative agent of human sleeping sickness, depends on their relative sensitivities to the cytotoxic effects of normal human serum. The molecule responsible for the specific lysis of T. brucei has now been isolated. Serum lipoproteins were fractionated and purified by ultracentrifugal flotation and chromatography on Bio-Gel A-5m. Trypanocidal activity was recovered in the high density lipoprotein fraction (density, 1.063-1.216 g/ml). Contamination by other serum proteins was checked by crossed immunoelectrophoresis and sodium dodecyl sulfate/acrylamide gel electrophoresis. Only a trace of beta-lipoprotein was found. The trypanocidal activity of pure human high density lipoprotein was identical to that of unfractionated serum when the following were tested: (i) time course of in vitro lysis of T. bruceli; (ii) in vivo destruction of T. brucei; (iii) relative resistance of T. rhodesiense to lysis. Rat or rabbit high density lipoprotein had no trypanocidal activity. Identification of the trypanocidal factor as high density lipoprotein was confirmed by the finding that serum from patients with Tangier disease, an autosomal recessive disorder characterized by a severe deficiency of high density lipoprotein, had no trypanocidal activity. Images PMID:210461
Burnett, John R; Telford, Dawn E; Barrett, P Hugh R; Huff, Murray W
2005-12-30
Previously, we have shown, in vivo, that the acyl coenzyme A: cholesterol acyltransferase (ACAT) inhibitor avasimibe decreases hepatic apolipoprotein (apo) B secretion into plasma. To test the hypothesis that avasimibe modulates postprandial triglyceride-rich lipoprotein (TRL) metabolism in vivo, an oral fat load (2 g fat/kg) containing retinol was given to 9 control miniature pigs and to 9 animals after 28 days treatment with avasimibe (10 mg/kg/day, n=5; 25 mg/kg/day, n=4). The kinetic parameters for plasma retinyl palmitate (RP) metabolism were determined by multi-compartmental modeling using SAAM II. Avasimibe decreased the 2-h TRL (d<1.006 g/mL; S(f)>20) triglyceride concentrations by 34%. The TRL triglyceride 0-12 h area under the curve (AUC) was decreased by 21%. In contrast, avasimibe had no effect on peak TRL RP concentrations, time to peak, or its rate of appearance into plasma, however, the TRL RP 0-12 h AUC was decreased by 17%. Analysis of the RP kinetic parameters revealed that the TRL fractional clearance rate (FCR) was increased 1.4-fold with avasimibe. The TRL RP FCR was negatively correlated with very low density lipoprotein (VLDL) apoB production rate measured in the fasting state (r=-0.504). No significant changes in total intestinal lipid concentrations were observed. Thus, although avasimibe had no effect on intestinal TRL secretion, plasma TRL clearance was significantly increased; an effect that may relate to a decreased competition with hepatic VLDL for removal processes.
Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids
ERIC Educational Resources Information Center
Biggerstaff, Kyle D.; Wooten, Joshua S.
2004-01-01
A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…
1985-01-01
We used electron microscopy, acid hydrolase cytochemistry, and biochemistry to analyze the uptake and metabolism of colloidal gold- and [3H]cholesteryl linoleate-labeled human low density lipoprotein (LDL) by cultured rat granulosa cells. The initial interaction of gold- LDL conjugates with granulosa cells occurred at binding sites diffusely distributed over the plasma membrane. After incubation with ligand in the cold, 99.9% of the conjugates were at the cell surface but less than 4% lay over coated pits. Uptake was specific since it was decreased 93-95% by excess unconjugated LDL and heparin, but only 34- 38% by excess unconjugated human high density lipoprotein. LDL uptake was related to granulosa cell differentiation; well-luteinized cells bound 2-3 times as much gold-LDL as did poorly luteinized cells. Ligand internalization was initiated by warming and involved coated pits, coated vesicles, pale multivesicular bodies (MVBs), dense MVBs, and lysosomes. A key event in this process was the translocation of gold- LDL conjugates from the cell periphery to the Golgi zone. This step was carried out by the pale MVB, a prelysosomal compartment that behaves like an endosome. Granulosa cells exposed to LDL labeled with gold and [3H]cholesteryl linoleate converted [3H]sterol to [3H]progestin in a time-dependent manner. This conversion was paralleled by increased gold- labeling of lysosomes and blocked by chloroquine, an inhibitor of lysosomal activity. In brief, granulosa cells deliver LDL to lysosomes by a receptor-mediated mechanism for the hydrolysis of cholesteryl esters. The resulting cholesterol is, in turn, transferred to other cellular compartments, where conversion to steroid occurs. These events comprise the pathway used by steroid-secreting cells to obtain the LDL- cholesterol vital for steroidogenesis. PMID:3920223
Sahebkar, Amirhossein; Watts, Gerald F
2013-12-01
Apolipoprotein B (apoB) has a key role in the assembly and secretion of very low-density lipoprotein (VLDL) from the liver. Plasma apoB concentration affects the number of circulating atherogenic particles, and serves as an independent predictor of the risk of atherosclerotic cardiovascular disease. While statins are the most potent apoB-lowering agents currently prescribed, their efficacy in achieving therapeutic targets for low-density lipoprotein cholesterol (LDL-C) in high-risk patients, such as those with familial hypercholesterolaemia (FH), is limited. Resistance and intolerance to statins also occurs in a significant number of patients, necessitating new types of lipid-lowering therapies. Monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9; AMG 145 and REGN727), a sequence-specific antisense oligonucleotide against apoB mRNA (mipomersen) and a synthetic inhibitor of microsomal triglyceride transfer protein (MTTP; lomitapide) have been tested in phase III clinical trials, particularly in patients with FH. The trials demonstrated the efficacy of these agents in lowering apoB, LDL-C, non-high-density lipoprotein cholesterol and lipoprotein(a) by 32-55 %, 37-66 %, 38-61 % and 22-50 % (AMG 145), 21-68 %, 29-72 %, 16-60 % and 8-36 % (REGN727), 16-71 %, 15-71 %, 12-66 % and 23-49 % (mipomersen) and 24-55 %, 25-51 %, 27-50 % and 15-19 % (lomitapide), respectively. Monoclonal antibodies against PCSK9 have an excellent safety profile and may be indicated not only in heterozygous FH, but also in statin-intolerant patients and those with other inherited dyslipidemias, such as familial combined hyperlipidaemia and familial elevation in Lp(a). Mipomersen and lomitapide increase hepatic fat content and are at present indicated for treating adult patients with homozygous FH alone.
Chen, Kuanlin; Zhuo, Tiejun; Wang, Jian; Mei, Qing
2018-06-18
Saxagliptin as one of dipeptidyl peptidase-4 (DPP-4) inhibitors can effectively improve glycaemic control in type 2 diabetes mellitus, and nesfatin-1 is regarded as a very important factor in regulating feeding behavior and energy homeostasis. In this trial, we observed the effect of saxagliptin on regulating nesfatin-1 secretion and ameliorating insulin resistance and metabolic profiles in type 2 diabetes mellitus. One hundred two type 2 diabetes participants (M/F = 48/54) were investigated. Fifty-one (M/F = 24/27) of them as the treatment group were treated with oral glucose-lowering agents including saxagliptin, the other 51 (M/F = 24/27) as the control group were treated with oral glucose-lowering agents excluding any DPP-4 inhibitors. The parameters of serum nesfatin-1, C-peptide, homeostasis model assessment-β (HOMA-β) function, HOMA insulin resistance (HOMA-IR), glycosylated hemoglobin A1c (HbA1c), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), body mass index (BMI), and blood pressure (BP) at baseline, month 3, 6, and 12 were observed and compared respectively. Saxagliptin significantly upregulated nesfatin-1 secretion (P < 0.001 at 3-, 6-, and 12-months vs. baseline), increased serum C-peptide (P < 0.05, 0.001, and 0.001 at 3-, 6-, and 12-months vs. baseline), improved HOMA-IR and function of HOMA-β (P < 0.001 at 3-, 6-, and 12-months vs. baseline) and metabolic profiles (P < 0.001 with HbA1c at 3-, 6- and 12-months; P < 0.001 with LDL-C at 6- and 12-months; P < 0.001 and 0.01 with HDL-C at 6- and 12-months vs. baseline), declined BMI (P < 0.05 at 6- and 12-months vs. baseline) and BP (P < 0.001 with systolic BP (SBP), and mean BP at 6- and 12-months, P < 0.01 with diastolic BP at 6- and 12-months vs. baseline). Saxagliptin could upregulate nesfatin-1 secretion and ameliorate insulin resistance and metabolic profiles in type 2 diabetes mellitus. Saxagliptin had the potential to play fundamental by upregulating nesfatin-1 secretion besides lowering glucose by inhibiting the degradation of glucagon-like peptide-1.
Marshall, Stephanie M; Kelley, Kathryn L; Davis, Matthew A; Wilson, Martha D; McDaniel, Allison L; Lee, Richard G; Crooke, Rosanne M; Graham, Mark J; Rudel, Lawrence L; Brown, J Mark; Temel, Ryan E
2014-01-01
An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.
Roberts, Joseph L; He, Bo; Erickson, Anjeza; Moreau, Régis
2016-03-01
The activation of hepatic kinase mechanistic target of rapamycin complex 1 (mTORC1) is implicated in the development of obesity-related metabolic disorders. This study investigated the metabolic sequelae of mTORC1 hyperactivation in human hepatoma cells and the lipid-regulating mechanisms of two short-chain fatty acids: 4-phenylbutyric acid (PBA) and (R)-α-lipoic acid (LA). We created three stable cell lines that exhibit low, normal, or high mTORC1 activity. mTORC1 hyperactivation induced the expression of lipogenic (DGAT1 and DGAT2) and lipoprotein assembly (MTP and APOB) genes, thereby raising cellular triacylglyceride (TG) and exacerbating secretion of apoB-containing TG-rich lipoproteins. LYS6K2, a specific inhibitor of the p70 S6 kinase branch of mTORC1 signaling, reversed these effects. PBA and LA decreased secreted TG through distinct mechanisms. PBA repressed apoB expression (both mRNA and protein) and lowered secreted TG without mitigation of mTORC1 hyperactivity or activation of AMPK. LA decreased cellular and secreted TG by attenuating mTORC1 signaling in an AMPK-independent manner. LA did not regulate apoB expression but led to the secretion of apoB-containing TG-poor lipoproteins by repressing the expression of lipogenic genes, FASN, DGAT1, and DGAT2. Our studies provide new mechanistic insight into the hypolipidemic activity of PBA and LA in the context of mTORC1 hyperactivation and suggest that the short-chain fatty acids may aid in the prevention and treatment of hypertriglyceridemia. Copyright © 2015 Elsevier B.V. All rights reserved.
Inaku, Kenneth O; Ogunkeye, Obasola O; Abbiyesuku, Fayeofori M; Chuhwak, Evelyn K; Isichei, Christian O; Imoh, Lucius C; Amadu, Noel O; Abu, Alexander O
2017-01-01
The global prevalence of type 2 diabetes is increasing. Dyslipidaemia is a known complication of diabetes mellitus manifesting frequently as cardiovascular diseases and stoke. Elevation of small, dense low density lipoprotein has been recognised as a component of the atherogenic lipoprotein phenotype associated with cardiovascular complications. We speculate that the elevation of this lipoprotein particle may be the antecedent of the atherogenic lipoprotein phenotype. This study therefore aims to determine the pattern of dyslipidaemia among diabetes mellitus patients in Jos, North-Central Nigeria. One hundred and seventy-six patients with type 2 diabetes and 154 age-matched controls were studied. The patients with diabetes were regular clinic attenders and had stable glycaemic control. None were on lipid-lowering therapy. Anthropometric indices, blood pressure, and lipids (including total cholesterol, high density lipoprotein cholesterol, and triglyceride) were measured by chemical methods using the Hitachi 902 analyzer. Low density lipoprotein cholesterol was calculated using the Friedewald's equation. Small, dense low density lipoprotein cholesterol, -sdLDL-C was measured using the precipitation method by Hirano et al. Means of the different groups were compared using EPI Info and a P -value of <0.05 was accepted as significant difference. Total cholesterol, low density lipoprotein cholesterol, triglyceride and small, dense lipoprotein cholesterol were all significantly higher in diabetes patients than controls except high density lipoprotein cholesterol. The percentage of LDL-C as sdLDL-C among the diabetes versus control group was 45% ± 17.79 v 32.0% ± 15.93. Serum sdLDL-C concentration was determined to be 1.45 ± 0.64 among diabetes patients and 0.8 ± 0.54 among control subjects. 75% of diabetes patients had hypertension and were taking blood pressure lowering medications. The classical atherogenic lipoprotein phenotype was not demonstrated among subjects with type 2 diabetes mellitus in this study, but the elevation of serum small dense low density lipoprotein cholesterol in patients with sustained hypertension suggests the establishment of atherogenic complications among our diabetes patients.
MIZUTANI, Hisashi; SAKO, Toshinori; OKUDA, Hiroko; ARAI, Nobuaki; KURIYAMA, Koji; MORI, Akihiro; YOSHIMURA, Itaru; KOYAMA, Hidekazu
2016-01-01
Density gradient ultracentrifugation (DGUC) and gel electrophoresis are conventionally used to obtain lipoprotein profiles of animals. We recently applied high-performance liquid chromatography with a gel permeation column (GP-HPLC) and an on-line dual enzymatic system to dogs for lipoprotein profile analysis. We compared the GP-HPLC with DGUC as a method to obtain a feline lipoprotein profile. The lipoprotein profiles showed large and small peaks, which corresponded to high-density lipoprotein (HDL) and low-density lipoprotein (LDL), respectively, whereas very low-density lipoprotein (VLDL) and chylomicron (CM) were only marginally detected. This profile was very similar to that of dogs reported previously. Healthy cats also had a small amount of cholesterol-rich particles distinct from the normal LDL or HDL profile. There was no difference in lipoprotein profiles between the sexes, but males had a significantly larger LDL particle size (P=0.015). This study shows the feasibility of GP-HPLC for obtaining accurate lipoprotein profiles with small sample volumes and provides valuable reference data for healthy cats that should facilitate diagnoses. PMID:27170431
de Souza, Melina Oliveira; Souza E Silva, Lorena; de Brito Magalhães, Cíntia Lopes; de Figueiredo, Bianca Barros; Costa, Daniela Caldeira; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia
2012-12-01
Previous studies have demonstrated that the ingestion of açaí pulp can improve serum lipid profile in various animal models; therefore, we hypothesized that açaí pulp (Euterpe oleracea Mart.) may modulate the expression of the genes involved in cholesterol homeostasis in the liver and increase fecal excretion, thus reducing serum cholesterol. To test this hypothesis, we analyzed the expression of 7α-hydroxylase and ATP-binding cassette, subfamily G transporters (ABCG5 and ABCG8), which are genes involved with the secretion of cholesterol in the rat. We also evaluated the expression of sterol regulatory element-binding protein 2, 3-hydroxy-3-methylglutaryl CoA reductase, low-density lipoprotein receptor (LDL-R), and apolipoprotein B100, which are involved in cholesterol biosynthesis. Female Fischer rats were divided into 4 groups: the C group, which was fed a standard AIN-93 M diet; the CA group, which was fed a standard diet supplemented with 2% açaí pulp; the H group, which was fed a hypercholesterolemic diet (25% soy oil and 1% cholesterol); and the HA group, which was fed a hypercholesterolemic diet supplemented with 2% açaí pulp. At the end of the experimental period, the rats were euthanized, and their blood and livers were collected. The HA group exhibited a significant decrease in serum total cholesterol, low-density lipoprotein cholesterol, and atherogenic index and also had increased high-density lipoprotein cholesterol and cholesterol excretion in feces compared with the H group. In addition, the expression of the LDL-R, ABCG5, and ABCG8 genes was significantly increased by the presence of açaí pulp. These results suggest that açaí pulp promotes a hypocholesterolemic effect in a rat model of dietary-induced hypercholesterolemia through an increase in the expression of ATP-binding cassette, subfamily G transporters, and LDL-R genes. Copyright © 2012 Elsevier Inc. All rights reserved.
Mak, Angel C. Y.; Pullinger, Clive R.; Tang, Ling Fung; Wong, Jinny S.; Deo, Rahul C.; Schwarz, Jean-Marc; Gugliucci, Alejandro; Movsesyan, Irina; Ishida, Brian Y.; Chu, Catherine; Poon, Annie; Kim, Phillip; Stock, Eveline O.; Schaefer, Ernst J.; Asztalos, Bela F.; Castellano, Joseph M.; Wyss-Coray, Tony; Duncan, Jacque L.; Miller, Bruce L.; Kane, John P.; Kwok, Pui-Yan; Malloy, Mary J.
2016-01-01
IMPORTANCE The identification of a patient with a rare form of severe dysbetalipoproteinemia allowed the study of the consequences of total absence of apolipoprotein E (apoE). OBJECTIVES To discover the molecular basis of this rare disorder and to determine the effects of complete absence of apoE on neurocognitive and visual function and on lipoprotein metabolism. DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing was performed on the patient’s DNA. He underwent detailed neurological and visual function testing and lipoprotein analysis. Lipoprotein analysis was also performed in the Cardiovascular Research Institute, University of California, San Francisco, on blood samples from the proband’s mother, wife, 2 daughters, and normolipidemic control participants. MAIN OUTCOME MEASURES Whole-exome sequencing, lipoprotein analysis, and neurocognitive function. RESULTS The patient was homozygous for an ablative APOE frameshift mutation (c.291del, p.E97fs). No other mutations likely to contribute to the phenotype were discovered, with the possible exception of two, in ABCC2 (p.I670T) and LIPC (p.G137R). Despite complete absence of apoE, he had normal vision, exhibited normal cognitive, neurological, and retinal function, had normal findings on brain magnetic resonance imaging, and had normal cerebrospinal fluid levels of β-amyloid and tau proteins. He had no significant symptoms of cardiovascular disease except a suggestion of myocardial ischemia on treadmill testing and mild atherosclerosis noted on carotid ultrasonography. He had exceptionally high cholesterol content (760 mg/dL; to convert to millimoles per liter, multiply by 0.0259) and a high cholesterol to triglycerides ratio (1.52) in very low-density lipoproteins with elevated levels of small-diameter high-density lipoproteins, including high levels of prebeta-1 high-density lipoprotein. Intermediate-density lipoproteins, low-density lipoproteins, and very low-density lipoproteins contained elevated apoA-I and apoA-IV levels. The patient’s apoC-III and apoC-IV levels were decreased in very low-density lipoproteins. Electron microscopy revealed large lamellar particles having electron-opaque cores attached to electron-lucent zones in intermediate-density and low-density lipoproteins. Low-density lipoprotein particle diameters were distributed bimodally. CONCLUSIONS AND RELEVANCE Despite a profound effect on lipoprotein metabolism, detailed neurocognitive and retinal studies failed to demonstrate any defects. This suggests that functions of apoE in the brain and eye are not essential or that redundant mechanisms exist whereby its role can be fulfilled. Targeted knockdown of apoE in the central nervous system might be a therapeutic modality in neurodegenerative disorders. PMID:25111166
Subramanian, Chitra; White, Peter T; Kuai, Rui; Kalidindi, Avinaash; Castle, Valerie P; Moon, James J; Timmermann, Barbara N; Schwendeman, Anna; Cohen, Mark S
2018-05-09
Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. Synthetic high-density lipoprotein is a promising platform to improve the delivery of anticancer drug 4,19,27-triacetyl withalongolide A to neuroblastomas and neuroblastoma cancer stem cells through SR-B1 targeting in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
Damsteegt, Erin L; Mizuta, Hiroko; Hiramatsu, Naoshi; Lokman, P Mark
2015-09-15
Previous research using eels has shown that 11-ketotestosterone can induce ovarian triacylglyceride accumulation both in vivo and in vitro. Further, accumulation is dramatically enhanced in the presence of very-low density lipoprotein. This study examined the involvement of the low density lipoprotein receptor and vitellogenin receptor in oocyte lipid accumulation. Specific antisera were used in an attempt to block the vitellogenin receptor and/or the low density lipoprotein receptor. Accordingly, incubation with the low density lipoprotein receptor antiserum clearly reduced the oocyte diameter and the amount of oil present within the oocyte. In contrast, blocking the vitellogenin receptor had little effect on either oocyte surface area or the abundance of oil droplets in the cytosol. In keeping with birds, we conclude that the low density lipoprotein receptor is a major player involved in mediating ovarian fatty acid accumulation in the eel. However, lipoprotein lipase-mediated fatty acid accumulation also remains conceivable, for example through interactions between this enzyme and the low density lipoprotein receptor. Copyright © 2015 Elsevier Inc. All rights reserved.
Feng, Tom; Howard, Lauren E; Vidal, Adriana C; Moreira, Daniel M; Castro-Santamaria, Ramiro; Andriole, Gerald L; Freedland, Stephen J
2017-02-01
To determine if cholesterol is a risk factor for the development of lower urinary tract symptoms in asymptomatic men. A post-hoc analysis of the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) study was carried out in 2323 men with baseline International Prostate Symptom Score <8 and not taking benign prostatic hyperplasia or cholesterol medications. Cox proportion models were used to test the association between cholesterol, high-density lipoprotein, low-density lipoprotein and the cholesterol : high-density lipoprotein ratio with incident lower urinary tract symptoms, defined as first report of medical treatment, surgery or two reports of an International Prostate Symptom Score >14. A total of 253 men (10.9%) developed incident lower urinary tract symptoms. On crude analysis, higher high-density lipoprotein was associated with a decreased lower urinary tract symptoms risk (hazard ratio 0.89, P = 0.024), whereas total cholesterol and low-density lipoprotein showed no association. After multivariable adjustment, the association between high-density lipoprotein and incident lower urinary tract symptoms remained significant (hazard ratio 0.89, P = 0.044), whereas no association was observed for low-density lipoprotein (P = 0.611). There was a trend for higher cholesterol to be linked with higher lower urinary tract symptoms risk, though this was not statistically significant (hazard ratio 1.04, P = 0.054). A higher cholesterol : high-density lipoprotein ratio was associated with increased lower urinary tract symptoms risk on crude (hazard ratio 1.11, P = 0.016) and adjusted models (hazard ratio 1.12, P = 0.012). Among asymptomatic men participating in the REDUCE study, higher cholesterol was associated with increased incident lower urinary tract symptoms risk, though the association was not significant. A higher cholesterol : high-density lipoprotein ratio was associated with increased incident lower urinary tract symptoms, whereas higher high-density lipoprotein was protective. These findings suggest dyslipidemia might play a role in lower urinary tract symptoms progression. © 2016 The Japanese Urological Association.
Evolving targets for lipid-modifying therapy
Do, Rose Q; Nicholls, Stephen J; Schwartz, Gregory G
2014-01-01
The pathogenesis and progression of atherosclerosis are integrally connected to the concentration and function of lipoproteins in various classes. This review examines existing and emerging approaches to modify low-density lipoprotein and lipoprotein (a), triglyceride-rich lipoproteins, and high-density lipoproteins, emphasizing approaches that have progressed to clinical evaluation. Targeting of nuclear receptors and phospholipases is also discussed. PMID:25172365
Nishida, T
1968-09-01
The effect of phospholipase A on the interaction of low density lipoproteins of the S(f) 0-10 class with dextran sulfate was studied in phosphate buffer of pH 7.4, ionic strength 0.1, by chemical, spectrophotometric, and centrifugal methods. When low density lipoproteins that had been treated with phospholipase A were substituted for untreated lipoproteins, the amount of insoluble dextran sulfate-lipoprotein complex formed was greatly reduced. Hydrolysis of over 20% of the lecithin and phosphatidyl ethanolamine constituents of the lipoproteins prevented the formation of insoluble complex. However, even the lipoproteins in which almost all the phosphoglycerides were hydrolyzed produced soluble complex, which was converted to insoluble complex upon addition of magnesium sulfate. It is apparent that the lipoproteins altered extensively by treatment with phospholipase A retain many characteristic properties of native low density lipoproteins. Fatty acids, but not lysolecithin, released by the action of phospholipase A interfered with the formation of insoluble complex; this interference was due to association of the fatty acids with the lipoproteins. With increases in the concentration of the associated fatty acids, the amounts of magnesium ion required for the conversion of soluble complex to insoluble complex increased progressively. Charge interaction is evidently of paramount importance in the formation of sulfated polysaccharide-lipoprotein complexes.
Cardiovascular disease parameters in periodontitis.
Monteiro, Andréa M; Jardini, Maria A N; Alves, Sarah; Giampaoli, Viviana; Aubin, Elisete C Q; Figueiredo Neto, Antônio M; Gidlund, Magnus
2009-03-01
Recently, there has been an increasing in the impact of oral health on atherosclerosis and subsequent cardiovascular disease. The aim of this study is to investigate the association between chronic periodontitis and cardiovascular risk markers. Forty patients with periodontitis and 40 healthy gender-, body mass index-, and age-matched individuals were compared by measuring total cholesterol, high-density lipoprotein, low-density lipoprotein, triglycerides, levels of cytokines, antibodies against oxidized low-density lipoprotein, thiobarbituric acid reactive substances, total and differential white blood cell counts, and the non-linear index of refraction. The levels of triglycerides and high-density lipoprotein in periodontitis patients were significantly higher and lower, respectively (P = 0.002 and P = 0.0126), compared to controls. Total cholesterol, low-density lipoprotein, and lipid peroxide levels were the same in both groups (P = 0.2943, P = 0.1284, and P = 0.067, respectively). Interleukin (IL)-6 and -8, antibodies against oxidized low-density lipoprotein, and leukocyte and neutrophil counts were significantly higher in periodontitis patients (P <0.05). The value of the non-linear index of refraction of low-density lipoprotein solutions was higher in the controls (P = 0.015) compared to individuals with periodontitis. Our results confirmed and further strengthened the suggested association between coronary artery disease and periodontitis.
Pharmacological Regulation of Peroxisome Number in Glia
2008-09-01
histone deacetylase HDL high - density lipoprotein LXR liver X receptor NPC Niemann Pick type C disease PBD peroxisome...transporters ABCA1 and ABCG1 with lipoproteins in the extracellular space, such as apoE; transportation to the liver occurs via high density lipoprotein ...mechanisms involved in the athero-protective effect of high density lipoproteins . Journal of internal medicine, 263, 256-273. Tobin, K. A., Steineger, H
Dong, Zhao; Shi, Haozhe; Zhao, Mingming; Zhang, Xin; Huang, Wei; Wang, Yuhui; Zheng, Lemin; Xian, Xunde; Liu, George
2018-06-01
Lecithin cholesterol acyltransferase (LCAT) plays a pivotal role in HDL metabolism but its influence on atherosclerosis remains controversial for decades both in animal and clinical studies. Because lack of cholesteryl ester transfer protein (CETP) is a major difference between murine and humans in lipoprotein metabolism, we aimed to create a novel Syrian Golden hamster model deficient in LCAT activity, which expresses endogenous CETP, to explore its metabolic features and particularly the influence of LCAT on the development of atherosclerosis. CRISPR/CAS9 gene editing system was employed to generate mutant LCAT hamsters. The characteristics of lipid metabolism and the development of atherosclerosis in the mutant hamsters were investigated using various conventional methods in comparison with wild type control animals. Hamsters lacking LCAT activity exhibited pro-atherogenic dyslipidemia as diminished high density lipoprotein (HDL) and ApoAI, hypertriglyceridemia, Chylomicron/VLDL accumulation and significantly increased ApoB100/48. Mechanistic study for hypertriglyceridemia revealed impaired LPL-mediated lipolysis and increased very low density lipoprotein (VLDL) secretion, with upregulation of hepatic genes involved in lipid synthesis and transport. The pro-atherogenic dyslipidemia in mutant hamsters was exacerbated after high fat diet feeding, ultimately leading to near a 3- and 5-fold increase in atherosclerotic lesions by aortic en face and sinus lesion quantitation, respectively. Our findings demonstrate that LCAT deficiency in hamsters develops pro-atherogenic dyslipidemia and promotes atherosclerotic lesion formation. Published by Elsevier Inc.
Proprotein convertase subtilisin/kexin 9 inhibitors: an emerging lipid-lowering therapy?
Dragan, Simona; Serban, Maria-Corina; Banach, Maciej
2015-03-01
Proprotein convertase subtilisin/kexin 9 (PCSK9) is part of the proteinase K subfamily of subtilases and plays a key role in lipid metabolism. It increases degradation of the low-density lipoprotein receptor (LDL-R), modulates cholesterol metabolism and transport, and contributes to the production of apolipoprotein B (apoB) in intestinal cells. Exogenous PCSK9 modifies the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase and enhances secretion of chylomicrons by modulating production of lipids and apoB-48. Statins increase PCSK9 messenger RNA expression and attenuate the capacity to increase LDL-R levels. Therefore, the inhibition of PCSK9 in combination with statins provides a promising approach for lowering low-density lipoprotein cholesterol (LDL-C) concentrations. This review will address new therapeutic strategies targeting PCSK9, including monoclonal antibodies, antisense oligonucleotides, small interfering RNAs, and other small molecule inhibitors. Further studies are still needed to determine the efficacy and safety of the PCSK9 inhibitors not only to decrease LDL-C but also to investigate the potential underlying mechanisms involved and to test whether these compounds actually reduce cardiovascular end points and mortality. © The Author(s) 2014.
Fioravanti, Antonella; Adamczyk, Przemysław; Pascarelli, Nicola Antonio; Giannitti, Chiara; Urso, Renato; Tołodziecki, Michał; Ponikowska, Irena
2015-07-01
Obesity is a major risk factor for arterial hypertension, coronary artery disease, dyslipidemias, and type 2 diabetes. Spa therapy has long been used for treating obesity and its comorbidities. Enlargement of adipose tissue has been linked to a dysregulation of adipokine secretion and adipose tissue inflammation. Adipokines are currently investigated as potential drug targets in these conditions. Our primary aim was to assess the clinical efficacy of a 3-week program of diet combined with spa therapy in obese patients with and without type 2 diabetes. The secondary aim was to examine whether this combined program influences the response of serum levels of leptin, adiponectin, visfatin, and high-sensitivity C-reactive protein. Fifty obese males were enrolled and 21 of these featured a type 2 diabetes. During the 3-week period of the study, the patients were on a 1,000-kcal diet and were involved in mineral bath and total body's mud-pack applications (15 procedures). Patients were assessed at baseline and at the end of the therapy for clinical and biochemical parameters (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, glycemia, and adipokines). We showed that a 3-week program of spa therapy in obese patients induced significant decrease of body weight, body mass index, triglycerides, total cholesterol, low-density lipoprotein (LDL) cholesterol, glycemia, and serum levels of leptin and high-sensitivity C-reactive protein. So, a cycle of mud-bath therapy associated with a controlled diet may be a promising treatment for obesity and type 2 diabetes decreasing body weight and many risk factors for atherosclerosis and metabolic syndrome.
NASA Astrophysics Data System (ADS)
Fioravanti, Antonella; Adamczyk, Przemysław; Pascarelli, Nicola Antonio; Giannitti, Chiara; Urso, Renato; Tołodziecki, Michał; Ponikowska, Irena
2015-07-01
Obesity is a major risk factor for arterial hypertension, coronary artery disease, dyslipidemias, and type 2 diabetes. Spa therapy has long been used for treating obesity and its comorbidities. Enlargement of adipose tissue has been linked to a dysregulation of adipokine secretion and adipose tissue inflammation. Adipokines are currently investigated as potential drug targets in these conditions. Our primary aim was to assess the clinical efficacy of a 3-week program of diet combined with spa therapy in obese patients with and without type 2 diabetes. The secondary aim was to examine whether this combined program influences the response of serum levels of leptin, adiponectin, visfatin, and high-sensitivity C-reactive protein. Fifty obese males were enrolled and 21 of these featured a type 2 diabetes. During the 3-week period of the study, the patients were on a 1,000-kcal diet and were involved in mineral bath and total body's mud-pack applications (15 procedures). Patients were assessed at baseline and at the end of the therapy for clinical and biochemical parameters (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, glycemia, and adipokines). We showed that a 3-week program of spa therapy in obese patients induced significant decrease of body weight, body mass index, triglycerides, total cholesterol, low-density lipoprotein (LDL) cholesterol, glycemia, and serum levels of leptin and high-sensitivity C-reactive protein. So, a cycle of mud-bath therapy associated with a controlled diet may be a promising treatment for obesity and type 2 diabetes decreasing body weight and many risk factors for atherosclerosis and metabolic syndrome.
1985-01-01
Hepatocytes of estradiol-treated rats, which express many low density lipoprotein receptors, rapidly accumulate intravenously injected low density lipoprotein in multivesicular bodies (MVBs). We have isolated MVBs and Golgi apparatus fractions from livers of estradiol-treated rats. MVB fractions were composed mainly of large vesicles, approximately 0.55 micron diam, filled with remnantlike very low density lipoproteins, known to be taken up into hepatocytes by receptor- mediated endocytosis. MVBs also contained numerous small vesicles, 0.05- 0.07 micron in diameter, and had two types of appendages: one fingerlike and electron dense and the other saclike and electron lucent. MVBs contained little galactosyltransferase or arylsulfatase activity, and content lipoproteins were largely intact. Very low density lipoproteins from Golgi fractions, which are derived to a large extent from secretory vesicles, were larger than those of MVB fractions and contained newly synthesized triglycerides. Membranes of MVBs contained much more cholesterol and less protein than did Golgi membranes. We conclude that two distinct lipoprotein-filled organelles are located in the bile canalicular pole of hepatocytes. MVBs, a major prelysosomal organelle of low density in the endocytic pathway, contain remnants of triglyceride-rich lipoproteins, whereas secretory vesicles of the Golgi apparatus contain nascent very low density lipoproteins. PMID:3988801
Chen, Pengxiang; Han, Lihui; Wang, Cong; Jia, Yibin; Song, Qingxu; Wang, Jianbo; Guan, Shanghui; Tan, Bingxu; Liu, Bowen; Jia, Wenqiao; Cui, Jianfeng; Zhou, Wei; Cheng, Yufeng
2017-06-20
This study was to evaluate the prognostic significance of serum lipids in esophageal squamous cell carcinoma patients who underwent esophagectomy. Preoperative serum lipids were collected from 214 patients who were diagnosed with esophageal squamous cell carcinoma. All of the patients received esophagectomy in Qilu Hospital of Shandong University from January 2007 to December 2008. The records and data were analyzed retrospectively. We found that low total cholesterol (for T stage, p = 0.006; for TNM stage, p = 0.039) and low-density lipoprotein cholesterol (for T stage, p = 0.031; for TNM stage, p = 0.035) were associated with advanced T stage and TNM stage. Kaplan-Meier survival analysis indicated that low total cholesterol and low-density lipoprotein cholesterol were associated with shorter disease-free survival(for total cholesterol, p = 0.045; for low-density lipoprotein cholesterol, p < 0.001) and overall survival (for total cholesterol, p = 0.043; for low-density lipoprotein cholesterol, p < 0.001). Lower low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio (LHR) indicated poorer disease-free survival and overall survival (both p < 0.001). In the multivariate analysis, low-density lipoprotein cholesterol and LHR were independent prognostic factors for disease-free survival and overall survival. In conclusion, our study indicated that preoperative serum total cholesterol and low-density lipoprotein cholesterol are prognostic factors for esophageal squamous cell carcinoma patients who underwent esophagectomy. LHR can serve as a promising serum lipids-based prognostic indicator.
Update on the molecular biology of dyslipidemias.
Ramasamy, I
2016-02-15
Dyslipidemia is a commonly encountered clinical condition and is an important determinant of cardiovascular disease. Although secondary factors play a role in clinical expression, dyslipidemias have a strong genetic component. Familial hypercholesterolemia is usually due to loss-of-function mutations in LDLR, the gene coding for low density lipoprotein receptor and genes encoding for proteins that interact with the receptor: APOB, PCSK9 and LDLRAP1. Monogenic hypertriglyceridemia is the result of mutations in genes that regulate the metabolism of triglyceride rich lipoproteins (eg LPL, APOC2, APOA5, LMF1, GPIHBP1). Conversely familial hypobetalipoproteinemia is caused by inactivation of the PCSK9 gene which increases the number of LDL receptors and decreases plasma cholesterol. Mutations in the genes APOB, and ANGPTL3 and ANGPTL4 (that encode angiopoietin-like proteins which inhibit lipoprotein lipase activity) can further cause low levels of apoB containing lipoproteins. Abetalipoproteinemia and chylomicron retention disease are due to mutations in the microsomal transfer protein and Sar1b-GTPase genes, which affect the secretion of apoB containing lipoproteins. Dysbetalipoproteinemia stems from dysfunctional apoE and is characterized by the accumulation of remnants of chylomicrons and very low density lipoproteins. ApoE deficiency can cause a similar phenotype or rarely mutations in apoE can be associated with lipoprotein glomerulopathy. Low HDL can result from mutations in a number of genes regulating HDL production or catabolism; apoAI, lecithin: cholesterol acyltransferase and the ATP-binding cassette transporter ABCA1. Patients with cholesteryl ester transfer protein deficiency have markedly increased HDL cholesterol. Both common and rare genetic variants contribute to susceptibility to dyslipidemias. In contrast to rare familial syndromes, in most patients, dyslipidemias have a complex genetic etiology consisting of multiple genetic variants as established by genome wide association studies. Secondary factors, obesity, metabolic syndrome, diabetes, renal disease, estrogen and antipsychotics can increase the likelihood of clinical presentation of an individual with predisposed genetic susceptibility to hyperlipoproteinemia. The genetic profiles studied are far from complete and there is room for further characterization of genes influencing lipid levels. Genetic assessment can help identify patients at risk for developing dyslipidemias and for treatment decisions based on 'risk allele' profiles. This review will present the current information on the genetics and pathophysiology of disorders that cause dyslipidemias. Copyright © 2015 Elsevier B.V. All rights reserved.
van Capelleveen, Julian C; Bernelot Moens, Sophie J; Yang, Xiaohong; Kastelein, John J P; Wareham, Nicholas J; Zwinderman, Aeilko H; Stroes, Erik S G; Witztum, Joseph L; Hovingh, G Kees; Khaw, Kay-Tee; Boekholdt, S Matthijs; Tsimikas, Sotirios
2017-06-01
Apolipoprotein C-III (apoC-III) is a key regulator of triglyceride metabolism. Elevated triglyceride-rich lipoproteins and apoC-III levels are causally linked to coronary artery disease (CAD) risk. The mechanism(s) through which apoC-III increases CAD risk remains largely unknown. The aim was to confirm the association between apoC-III plasma levels and CAD risk and to explore which lipoprotein subfractions contribute to this relationship between apoC-III and CAD risk. Plasma apoC-III levels were measured in baseline samples from a nested case-control study in the European Prospective Investigation of Cancer (EPIC)-Norfolk study. The study comprised 2711 apparently healthy study participants, of whom 832 subsequently developed CAD. We studied the association of baseline apoC-III levels with incident CAD risk, lipoprotein subfractions measured by nuclear magnetic resonance spectroscopy and inflammatory biomarkers. ApoC-III levels were significantly associated with CAD risk (odds ratio, 1.91; 95% confidence interval, 1.48-2.48 for highest compared with lowest quintile), retaining significance after adjustment for traditional CAD risk factors (odds ratio, 1.47; 95% confidence interval, 1.11-1.94). ApoC-III levels were positively correlated with triglyceride levels, ( r =0.39), particle numbers of very-low-density lipoprotein ( r =0.25), intermediate-density lipoprotein ( r =0.23), small dense low-density lipoprotein ( r =0.26), and high-sensitivity C-reactive protein ( r =0.15), whereas an inverse correlation was observed with large low-density lipoprotein particle number ( r =-0.11), P <0.001 for each. Mediation analysis indicated that the association between apoC-III and CAD risk could be explained by triglyceride elevation (triglyceride, very-low-density lipoprotein, and intermediate-density lipoprotein particles), small low-density lipoprotein particle size, and high-sensitivity C-reactive protein. ApoC-III levels are significantly associated with incident CAD risk. Elevated levels of remnant lipoproteins, small dense low-density lipoprotein, and low-grade inflammation may explain this association. © 2017 American Heart Association, Inc.
Gillard, Baiba K; Raya, Joe L; Ruiz-Esponda, Raul; Iyer, Dinakar; Coraza, Ivonne; Balasubramanyam, Ashok; Pownall, Henry J
2013-07-01
HIV patients on antiretroviral therapy (HIV/ART) exhibit a unique atherogenic dyslipidemic profile with hypertriglyceridemia (HTG) and low plasma concentrations of high-density lipoprotein (HDL) cholesterol. In the Heart Positive Study of HIV/ART patients, a hypolipidemic therapy of fenofibrate, niacin, diet, and exercise reduced HTG and plasma non-HDL cholesterol concentrations and raised plasma HDL cholesterol and adiponectin concentrations. We tested the hypothesis that HIV/ART HDL have abnormal structures and properties and are dysfunctional. Hypolipidemic therapy reduced the TG contents of low-density lipoprotein and HDL. At baseline, HIV/ART low-density lipoproteins were more triglyceride (TG)-rich and HDL were more TG- and cholesteryl ester-rich than the corresponding lipoproteins from normolipidemic (NL) subjects. Very-low-density lipoproteins, low-density lipoprotein, and HDL were larger than the corresponding lipoproteins from NL subjects; HIV/ART HDL were less stable than NL HDL. HDL-[(3)H]cholesteryl ester uptake by Huh7 hepatocytes was used to assess HDL functionality. HIV/ART plasma were found to contain significantly less competitive inhibition activity for hepatocyte HDL-cholesteryl ester uptake than NL plasma were found to contain (P<0.001). Compared with NL subjects, lipoproteins from HIV/ART patients are larger and more neutral lipid-rich, and their HDL are less stable and less receptor-competent. On the basis of this work and previous studies of lipase activity in HIV, we present a model in which plasma lipolytic activities or hepatic cholesteryl ester uptake are impaired in HIV/ART patients. These findings provide a rationale to determine whether the distinctive lipoprotein structure, properties, and function of HIV/ART HDL predict atherosclerosis as assessed by carotid artery intimal medial thickness.
Targeting Apolipoproteins in Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Sriram, Renuka; Lagerstedt, Jens O.; Samardzic, Haris; Kreutzer, Ulrike; Petrolova, Jitka; Xie, Hongtao; Kaysen, George A.; Voss, John C.; Desreux, Jean F.; Jue, Thomas
Maintaining normal physiological homeostasis depends upon a coordinated metabolism of both water-soluble and -insoluble substrates. In humans the body derives these molecules — such as glucose, amino acids, and fatty acids — from complex food matter. Water-soluble substrates can circulate readily in blood, while water-insoluble molecules — such as fatty acid, triacylglycerol, and cholesterol — require ampiphathic carriers to transport them from the site of biosynthesis (liver and intestine) to the target tissue. For fatty acid, albumin serves as the major transporter. For triacylglycerol and cholesterol, however, macromolecular complexes aggregate the hydrophobic molecules into the core and cover the surface with amphiphatic proteins and phospholipids to solubilize the particles in the lymphatic and circulatory systems. These macromolecules belong to a class of proteins, plasma lipoproteins, with specific functions and cellular targets. In the clinic these lipoproteins prognosticate the risk of cardiovascular disease (CVD). Lipoproteins divide usually into five major types: chylomicron, very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL). Each lipoprotein type exhibits characteristic density, size, and composition. As implied in the name, the density varies from the low-density chylomicron (<0.95 g/ml) to the high-density HDL (1.2 g/ml). Size also varies. The chylomicron has the largest diameter (75-1,200 nm), and HDL has the smallest (5-12 nm). The physical property variation arises from each lipoprotein's distinct composition. In a chylomicron, cholesterol, triacylglycerol, and phospholipid predominate and constitute about 90% of the particle. Protein constitutes only about 10%. In contrast, the smaller HDL has less cholesterol, triacylglycerol, and phospholipid (65% of the particle) but more protein (over 30%).
Imamura, H; Nagata, A; Oshikata, R; Yoshimura, Y; Miyamoto, N; Miyahara, K; Oda, K; Iide, K
2013-05-01
Many of the published data on the lipid profile of athletes is based on studies of endurance athletes. The data on soccer players are rare. The purpose of this study was to examine serum high-density lipoprotein cholesterol subfractions and lecithin:cholesterol acyltransferase activity in collegiate soccer players. 31 well-trained male collegiate soccer players were divided into 2 groups: 16 defenders and 15 offenders. They were compared with 16 sedentary controls. Dietary information was obtained with a food frequency questionnaire. The subjects were all non-smokers and were not taking any drug known to affect the lipid and lipoprotein metabolism. The offenders had significantly higher high-density lipoprotein cholesterol, high-density lipoprotein2 cholesterol, and apolipoprotein A-I than the defenders and controls, whereas the defenders had the significantly higher high-density lipoprotein2 cholesterol than the controls. Both groups of athletes had significantly higher lecithin:cholesterol acyltransferase activity than the controls. The results indicate that favorable lipid and lipoprotein profile could be obtained by vigorous soccer training. © Georg Thieme Verlag KG Stuttgart · New York.
Effect of Ezetimibe on Insulin Secretion in db/db Diabetic Mice
Zhong, Yong; Wang, Jun; Gu, Ping; Shao, Jiaqing; Lu, Bin; Jiang, Shisen
2012-01-01
Objective. To investigate the effect of ezetimibe on the insulin secretion in db/db mice. Methods. The db/db diabetic mice aged 8 weeks were randomly assigned into 2 groups and intragastrically treated with ezetimibe or placebo for 6 weeks. The age matched db/m mice served as controls. At the end of experiment, glucose tolerance test was performed and then the pancreas was collected for immunohistochemistry. In addition, in vitro perfusion of pancreatic islets was employed for the detection of insulin secretion in the first phase. Results. In the ezetimibe group, the fasting blood glucose was markedly reduced, and the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly lowered when compared with those in the control group (P < 0.05). At 120 min after glucose tolerance test, the area under curve in the ezetimibe group was significantly smaller than that in the control group (P < 0.05), but the AUCINS0−30 was markedly higher. In vitro perfusion of pancreatic islets revealed the first phase insulin secretion was improved. In addition, the insulin expression in the pancreas in the ezetimibe group was significantly increased as compared to the control group. Conclusion. Ezetimibe can improve glucose tolerance, recover the first phase insulin secretion, and protect the function of β cells in mice. PMID:23118741
Synthetic lipoprotein as nano-material vehicle in the targeted drug delivery.
Zhang, Xueqin; Huang, Gangliang
2017-12-01
High-density lipoprotein (HDL) and low-density lipoprotein (LDL), as human endogenous lipoprotein particles, have low toxicity, high selectivity, and good safety. They can avoid the recognition and clearance of human reticuloendothelial system. These synthetic lipoproteins (sLPs) have been attracted extensive attention as the nanovectors for tumor-targeted drug and gene delivery. Herein, recent advances in the field of anticancer based on these two lipid proteins and recombinant lipoproteins (rLPs) as target delivery vectors were analyzed and discussed.
Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease.
Cao, Guoqing; Qian, Yue-Wei; Kowala, Mark C; Konrad, Robert J
2008-12-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that belongs to the proprotein convertase family. PCSK9 is synthesized as a zymogen and its prodomain is cleaved by its own catalytic activity. The cleaved prodomain forms a protein complex with the rest of the PCSK9 carboxyl terminus within the endoplasmic reticulum and is secreted. Secreted PCSK9 has been shown to be able to reduce low-density lipoprotein receptor (LDLR) levels in vitro and in vivo. Thus PCSK9 has emerged as an important player modulating LDLR levels and plasma LDL cholesterol. Furthermore, PCSK9 deficiency leads to significantly lowered LDL cholesterol levels in humans and provides dramatic protection against coronary heart disease. We review here the current understanding of PCSK9 and its potential as a therapeutic target through which to reduce LDL cholesterol for prevention and treatment of coronary heart disease.
Bellou, Elena; Maraki, Maria; Magkos, Faidon; Botonaki, Helena; Panagiotakos, Demosthenes B.; Kavouras, Stavros A.; Sidossis, Labros S.
2013-01-01
Background Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG) concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known. Objective The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women. Design Ten healthy women (age: 22.0±2.9 years, BMI: 21.2±1.3 kg/m2) underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i) isocaloric feeding (control) ii) hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii) hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition. Results Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037), owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023) and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016). Hypercaloric feeding increased plasma glucose concentration (P = 0.042) but had no effect on VLDL-TG concentration and kinetics compared to the control trial. Conclusion Acute dietary energy deficit (∼3MJ) leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ) does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women. PMID:23533676
Luo, Jun; Xu, Li; Li, Jiang; Zhao, Shuiping
2018-03-12
Apolipoprotein (apo) A-V is a key regulator of triglyceride (TG) metabolism. We investigated effects of apoA-V on lipid metabolism in cardiomyocytes in this study. We first examined whether apoA-V can be taken up by cardiomyocytes and whether low density lipoprotein receptor family members participate in this process. Next, triglyceride (TG) content and lipid droplet changes were detected at different concentrations of apoA-V in normal and lipid-accumulation cells in normal and obese animals. Finally, we tested the levels of fatty acids (FAs) taken up into cardiomyocytes and lipid secretion through [ 14 C]-oleic acid. Our results show that heart tissue has apoA-V protein, and apoA-V is taken up by cardiomyocytes. When HL-1 cells were transfected with low density lipoprotein receptor (LDLR)-related protein 1(LRP1) siRNA, apoA-V intake decreased by 53% (P<0.05), while a 37% lipid accumulation in HL-1 cells remain unchanged. ApoA-V localized to the cytoplasm and was associated with lipid droplets in HL-1 cells. A 1200 and 1800 ng/mL apoA-V intervention decreased TG content by 28% and 45% in HL-1 cells, respectively and decreased TG content by 39% in mouse heart tissue (P<0.05). However, apoA-V had no effects on TG content in either normal HL-1 cells or mice. The levels of FAs taken up into cardiomyocytes decreased by 43% (P < 0.05), and the levels of TG and cholesterol ester secretion increased by 1.2-fold and 1.6-fold, respectively (P < 0.05). ApoA-V is a novel regulator of lipid metabolism in cardiomyocytes.
Araki, Atsushi; Iimuro, Satoshi; Sakurai, Takashi; Umegaki, Hiroyuki; Iijima, Katsuya; Nakano, Hiroshi; Oba, Kenzo; Yokono, Koichi; Sone, Hirohito; Yamada, Nobuhiro; Ako, Junya; Kozaki, Koichi; Miura, Hisayuki; Kashiwagi, Atsunori; Kikkawa, Ryuichi; Yoshimura, Yukio; Nakano, Tadasumi; Ohashi, Yasuo; Ito, Hideki
2012-04-01
To evaluate the association of low-density lipoprotein, high-density lipoprotein and non-high-density lipoprotein cholesterol with the risk of stroke, diabetes-related vascular events and mortality in elderly diabetes patients. This study was carried out as a post-hoc landmark analysis of a randomized, controlled, multicenter, prospective intervention trial. We included 1173 elderly type 2 diabetes patients (aged ≥ 65 years) from 39 Japanese institutions who were enrolled in the Japanese elderly diabetes intervention trial study and who could be followed up for 1 year. A landmark survival analysis was carried out in which follow up was set to start 1 year after the initial time of entry. During 6 years of follow up, there were 38 cardiovascular events, 50 strokes, 21 diabetes-related deaths and 113 diabetes-related events. High low-density lipoprotein cholesterol was associated with incident cardiovascular events, and high glycated hemoglobin was associated with strokes. After adjustment for possible covariables, non-high-density lipoprotein cholesterol showed a significant association with increased risk of stroke, diabetes-related mortality and total events. The adjusted hazard ratios (95% confidence intervals) of non-high-density lipoprotein cholesterol were 1.010 (1.001-1.018, P = 0.029) for stroke, 1.019 (1.007-1.031, P < 0.001) for diabetes-related death and 1.008 (1.002-1.014; P < 0.001) for total diabetes-related events. Higher non-high-density lipoprotein cholesterol was associated with an increased risk of stroke, diabetes-related mortality and total events in elderly diabetes patients. © 2012 Japan Geriatrics Society.
Rolla, Roberta; De Mauri, Andreana; Valsesia, Ambra; Vidali, Matteo; Chiarinotti, Doriana; Bellomo, Giorgio
2015-12-01
Cardiovascular disease is the leading cause of morbidity and mortality in hemodialysis patients; the increased risk of cardiovascular disease is due to accelerated atherosclerosis, inflammation and impaired lipoprotein metabolism. We aimed to evaluate lipoprotein-associated phospholipase A2 (Lp-PLA2) and some pro-inflammatory aspects of the lipoprotein profile in dialyzed patients in order to evaluate the relationship with the accelerated atherosclerosis and vascular accidents. In 102 dialysis patients and 40 non-uremic controls, we investigated the lipoprotein plasma profile, high sensitivity C-reactive protein (CRP), ceruloplasmin and serum amyloid A protein (SAA), and followed patients for 1 year to analyze the risk of acute cardiovascular events. Total cholesterol, low-density lipoprotein and high-density lipoprotein plasma levels were significantly lower in uremic patients than controls, whereas CRP, SAA, ceruloplasmin, Lp-PLA2 and their ratio with apolipoprotein A1 were significantly higher. Patients with Lp-PLA2 levels >194 nmol/min/ml had more acute cardiovascular events than patients with lower values. Our results show that in dialysis subjects: (1) low-density lipoproteins show a more atherogenic phenotype than in the general population; (2) high-density lipoproteins are less anti-inflammatory; (3) Lp-PLA2 could potentially be used to evaluate cardiovascular risk.
Veldhuis, Johannes D; Dyer, Roy B; Trushin, Sergey A; Bondar, Olga P; Singh, Ravinder J; Klee, George G
2016-12-01
Available data associate lipids concentrations in men with body mass index, anabolic steroids, age, and certain cytokines. Data were less clear in women, especially across the full adult lifespan, and when segmented by premenopausal and postmenopausal status. 120 healthy women (60 premenopausal and 60 postmenopausal) in Olmsted County, MN, USA, a stable well studied clinical population. Dependent variables: measurements of 10 h fasting high-density lipoprotein cholesterol, total cholesterol, low-density lipoprotein cholesterol, and triglycerides. testosterone, estrone, estradiol, 5-alpha-dihydrotestosterone, and sex-hormone binding globulin (by mass spectrometry); insulin, glucose, and albumin; abdominal visceral, subcutaneous, and total abdominal fat [abdominal visceral fat, subcutaneous fat, total abdominal fat by computerized tomography scan]; and a panel of cytokines (by enzyme-linked immunosorbent assay). Multivariate forward-selection linear-regression analysis was applied constrained to P < 0.01. Lifetime data: High-density lipoprotein cholesterol was correlated jointly with age (P < 0.0001, positively), abdominal visceral fat (P < 0.0001, negatively), and interleukin-6 (0.0063, negatively), together explaining 28.1 % of its variance (P = 2.3 × 10 -8 ). Total cholesterol was associated positively with multivariate age only (P = 6.9 × 10 -4 , 9.3 % of variance). Triglycerides correlated weakly with sex-hormone binding globulin (P = 0.0115), and strongly with abdominal visceral fat (P < 0.0001), and interleukin-6 (P = 0.0016) all positively (P = 1.6 × 10 -12 , 38.9 % of variance). Non high-density lipoprotein cholesterol and low-density lipoprotein cholesterol correlated positively with both total abdominal fat and interleukin-8 (P = 2.0 × 10 -5 , 16.9 % of variance; and P = 0.0031, 9.4 % of variance, respectively). Premenopausal vs. postmenopausal comparisons identified specific relationships that were stronger in premenopausal than postmenopausal individuals, and vice versa. Age was a stronger correlate of low-density lipoprotein cholesterol; interleukin-6 of triglycerides and high-density lipoprotein; and both sex-hormone binding globulin and total abdominal fat of non high-density lipoprotein cholesterol in premenopausal than postmenopausal women. Conversely, sex-hormone binding globulin, abdominal visceral fat, interleukin-8, adiponectin were stronger correlates of triglycerides; abdominal visceral fat, and testosterone of high-density lipoprotein cholesterol; and age of both non high-density lipoprotein and low-density lipoprotein in postmenopausal than premenopausal women. Our data delineate correlations of total abdominal fat and interleukin-8 (both positively) with non high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in healthy women across the full age range of 21-79 years along with even more specific associations in premenopausal and postmenopausal individuals. Whether some of these outcomes reflect causal relationships would require longitudinal and interventional or genetic studies.
Corral, Pablo; Schreier, Laura
2014-01-01
There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Non-high-density lipoprotein cholesterol (NHDL) is an independent and superior predictor of CVD risk as compared to low-density lipoprotein alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) t...
Block, Robert C; Abdolahi, Amir; Niemiec, Christopher P; Rigby, C Scott; Williams, Geoffrey C
2016-12-01
There is a lack of research on the use of electronic tools that guide patients toward reducing their cardiovascular disease risk. We conducted a 9-month clinical trial in which participants who were at low (n = 100) and moderate (n = 23) cardiovascular disease risk-based on the National Cholesterol Education Program III's 10-year risk estimator-were randomized to usual care or to usual care plus use of an Interactive Cholesterol Advisory Tool during the first 8 weeks of the study. In the moderate-risk category, an interaction between treatment condition and Framingham risk estimate on low-density lipoprotein and non-high-density lipoprotein cholesterol was observed, such that participants in the virtual clinician treatment condition had a larger reduction in low-density lipoprotein and non-high-density lipoprotein cholesterol as their Framingham risk estimate increased. Perceptions of the Interactive Cholesterol Advisory Tool were positive. Evidence-based information about cardiovascular disease risk and its management was accessible to participants without major technical challenges. © The Author(s) 2015.
Nicolas, Xavier; Djebli, Nassim; Rauch, Clémence; Brunet, Aurélie; Hurbin, Fabrice; Martinez, Jean-Marie; Fabre, David
2018-05-03
Alirocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly lowers low-density lipoprotein cholesterol levels. This analysis aimed to develop and qualify a population pharmacokinetic/pharmacodynamic model for alirocumab based on pooled data obtained from 13 phase I/II/III clinical trials. From a dataset of 2799 individuals (14,346 low-density lipoprotein-cholesterol values), individual pharmacokinetic parameters from the population pharmacokinetic model presented in Part I of this series were used to estimate alirocumab concentrations. As a second step, we then developed the current population pharmacokinetic/pharmacodynamic model using an indirect response model with a Hill coefficient, parameterized with increasing low-density lipoprotein cholesterol elimination, to relate alirocumab concentrations to low-density lipoprotein cholesterol values. The population pharmacokinetic/pharmacodynamic model allowed the characterization of the pharmacokinetic/pharmacodynamic properties of alirocumab in the target population and estimation of individual low-density lipoprotein cholesterol levels and derived pharmacodynamic parameters (the maximum decrease in low-density lipoprotein cholesterol values from baseline and the difference between baseline low-density lipoprotein cholesterol and the pre-dose value before the next alirocumab dose). Significant parameter-covariate relationships were retained in the model, with a total of ten covariates (sex, age, weight, free baseline PCSK9, total time-varying PCSK9, concomitant statin administration, total baseline PCSK9, co-administration of high-dose statins, disease status) included in the final population pharmacokinetic/pharmacodynamic model to explain between-subject variability. Nevertheless, the high number of covariates included in the model did not have a clinically meaningful impact on model-derived pharmacodynamic parameters. This model successfully allowed the characterization of the population pharmacokinetic/pharmacodynamic properties of alirocumab in its target population and the estimation of individual low-density lipoprotein cholesterol levels.
Schmidt, Debra A; Ellersieck, Mark R; Cranfield, Michael R; Karesh, William B
2006-09-01
Cholesterol concentrations in captive gorillas and orangutans vary widely within species and average approximately 244 mg/dl for gorillas and 169 mg/dl for orangutans as published previously. The International Species Inventory System reports higher concentrations of 275 and 199 mg/dl for gorillas and orangutans, respectively. It is unknown whether these values were typical, influenced by captive management, or both. To answer this question, banked serum samples from free-ranging mountain gorillas (Gorilla beringei), western lowland gorillas (Gorilla gorilla gorilla), and Bornean orangutans (Pongo pygmaeus) were analyzed for total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol concentrations. Mountain gorillas did not differ significantly from free-ranging western lowland gorillas in cholesterol, triglyceride, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol concentrations, indicating mountain gorilla values could be a model for western lowland gorillas. Captive gorilla total cholesterol and low-density lipoprotein cholesterol concentrations were significantly higher (P < 0.05) than in free-ranging groups. Triglyceride concentrations for captive gorillas were significantly higher (P < 0.05) than the male mountain and western lowland gorillas, but they were not significantly different from the female mountain gorillas. Captive orangutan total cholesterol concentrations were only higher (P < 0.05) than the free-ranging female orangutans, whereas captive orangutan low-density lipoprotein cholesterol concentrations were significantly higher (P < 0.05) than both free-ranging male and female orangutans. Calculated and measured low-density lipoprotein cholesterol concentrations were compared for all free-ranging animals and were significantly different (P < 0.05) for all groups, indicating Friedewald's equation for calculating low-density lipoprotein cholesterol is not appropriate for use with nonfasted apes. The higher total cholesterol and low-density lipoprotein cholesterol concentrations in captive apes may predispose them to cardiovascular disease and might be attributed to diets, limited energy expenditure, and genetics.
Drenos, Fotios; Davey Smith, George; Ala-Korpela, Mika; Kettunen, Johannes; Würtz, Peter; Soininen, Pasi; Kangas, Antti J; Dale, Caroline; Lawlor, Debbie A; Gaunt, Tom R; Casas, Juan-Pablo; Timpson, Nicholas J
2016-06-01
Plasma triglyceride levels have been implicated in atherosclerosis and coronary heart disease. Apolipoprotein C-III (APOC3) plays a key role in the hydrolysis of triglyceride-rich lipoproteins to remnant particles by lipoprotein lipase (LPL) and their uptake by the liver. A rare variant in APOC3(rs138326449) has been associated with triglyceride, very low-density lipoprotein, and high-density lipoprotein levels, as well as risk of coronary heart disease. We aimed to characterize the impact of this locus across a broad set of mainly lipids-focused metabolic measures. A high-throughput serum nuclear magnetic resonance metabolomics platform was used to quantify 225 metabolic measures in 13 285 participants from 2 European population cohorts. We analyzed the effect of the APOC3 variant on the metabolic measures and used the common LPL(rs12678919) polymorphism to test for LPL-independent effects. Eighty-one metabolic measures showed evidence of association with APOC3(rs138326449). In addition to previously reported triglyceride and high-density lipoprotein associations, the variant was also associated with very low-density lipoprotein and high-density lipoprotein composition measures, other cholesterol measures, and fatty acids. Comparison of the APOC3 and LPL associations revealed that APOC3 association results for medium and very large very low-density lipoprotein composition are unlikely to be solely predictable by the action of APOC3 through LPL. We characterized the effects of the rare APOC3(rs138326449) loss of function mutation in lipoprotein metabolism, as well as the effects of LPL(rs12678919). Our results improve our understanding of the role of APOC3 in triglyceride metabolism, its LPL independent action, and the complex and correlated nature of human metabolites. © 2016 The Authors.
Davey Smith, George; Ala-Korpela, Mika; Kettunen, Johannes; Würtz, Peter; Soininen, Pasi; Kangas, Antti J.; Dale, Caroline; Lawlor, Debbie A.; Gaunt, Tom R.; Casas, Juan-Pablo
2016-01-01
Background— Plasma triglyceride levels have been implicated in atherosclerosis and coronary heart disease. Apolipoprotein C-III (APOC3) plays a key role in the hydrolysis of triglyceride-rich lipoproteins to remnant particles by lipoprotein lipase (LPL) and their uptake by the liver. A rare variant in APOC3(rs138326449) has been associated with triglyceride, very low–density lipoprotein, and high-density lipoprotein levels, as well as risk of coronary heart disease. We aimed to characterize the impact of this locus across a broad set of mainly lipids-focused metabolic measures. Methods and Results— A high-throughput serum nuclear magnetic resonance metabolomics platform was used to quantify 225 metabolic measures in 13 285 participants from 2 European population cohorts. We analyzed the effect of the APOC3 variant on the metabolic measures and used the common LPL(rs12678919) polymorphism to test for LPL-independent effects. Eighty-one metabolic measures showed evidence of association with APOC3(rs138326449). In addition to previously reported triglyceride and high-density lipoprotein associations, the variant was also associated with very low–density lipoprotein and high-density lipoprotein composition measures, other cholesterol measures, and fatty acids. Comparison of the APOC3 and LPL associations revealed that APOC3 association results for medium and very large very low–density lipoprotein composition are unlikely to be solely predictable by the action of APOC3 through LPL. Conclusions— We characterized the effects of the rare APOC3(rs138326449) loss of function mutation in lipoprotein metabolism, as well as the effects of LPL(rs12678919). Our results improve our understanding of the role of APOC3 in triglyceride metabolism, its LPL independent action, and the complex and correlated nature of human metabolites. PMID:27114411
Dietary lipids and blood cholesterol: quantitative meta-analysis of metabolic ward studies.
Clarke, R.; Frost, C.; Collins, R.; Appleby, P.; Peto, R.
1997-01-01
OBJECTIVE: To determine the quantitative importance of dietary fatty acids and dietary cholesterol to blood concentrations of total, low density lipoprotein, and high density lipoprotein cholesterol. DESIGN: Meta-analysis of metabolic ward studies of solid food diets in healthy volunteers. SUBJECTS: 395 dietary experiments (median duration 1 month) among 129 groups of individuals. RESULTS: Isocaloric replacement of saturated fats by complex carbohydrates for 10% of dietary calories resulted in blood total cholesterol falling by 0.52 (SE 0.03) mmol/l and low density lipoprotein cholesterol falling by 0.36 (0.05) mmol/l. Isocaloric replacement of complex carbohydrates by polyunsaturated fats for 5% of dietary calories resulted in total cholesterol falling by a further 0.13 (0.02) mmol/l and low density lipoprotein cholesterol falling by 0.11 (0.02) mmol/l. Similar replacement of carbohydrates by monounsaturated fats produced no significant effect on total or low density lipoprotein cholesterol. Avoiding 200 mg/day dietary cholesterol further decreased blood total cholesterol by 0.13 (0.02) mmol/l and low density lipoprotein cholesterol by 0.10 (0.02) mmol/l. CONCLUSIONS: In typical British diets replacing 60% of saturated fats by other fats and avoiding 60% of dietary cholesterol would reduce blood total cholesterol by about 0.8 mmol/l (that is, by 10-15%), with four fifths of this reduction being in low density lipoprotein cholesterol. PMID:9006469
Zheng, Gang; Li, Hui; Zhang, Min; Lund-Katz, Sissel; Chance, Britton; Glickson, Jerry D
2002-01-01
To target tumors overexpressing low-density lipoprotein receptors (LDLr), a pyropheophorbide cholesterol oleate conjugate was synthesized and successfully reconstituted into the low-density lipoprotein (LDL) lipid core. Laser scanning confocal microscopy studies demonstrated that this photosensitizer-reconstituted LDL can be internalized via LDLr by human hepatoblastoma G(2) (HepG(2)) tumor cells.
Fitness, Heart Disease, and High-Density Lipoproteins: A Look at the Relationships.
ERIC Educational Resources Information Center
McCunney, Robert J.
1987-01-01
The role of fitness in preventing coronary heart disease is explored. Research on high-density lipoprotein, which has been found to be one of the most critical determinants of risk, is reviewed. The relationship between fitness, high-density lipoprotein, and coronary heart disease is assessed, and clinical implications are spelled out. (MT)
Babin, P J
1987-01-01
I have previously described [Babin (1987) J. Biol. Chem. 262, 4290-4296] the apolipoprotein composition of the major classes of trout plasma lipoproteins. The present work describes the use of an isopycnic density gradient centrifugation procedure and sequential flotation ultracentrifugation to show: (1) the presence of intermediate density lipoproteins (IDL) in the plasma, between 1.015 and 1.040 g/ml; (2) the existence of a single type of Mr 240,000 apoB-like in the low density lipoproteins (LDL, 1.040 less than p less than 1.085 g/ml); (3) the presence of apoA-I-like (Mr 25,000) in the densest LDL; (4) the adequacy of 1.085 g/ml as a cutoff between the LDL and high density lipoproteins (HDL); (5) the accumulation of Mr 55,000 and 76,000 apolipoproteins and apoA-like apolipoproteins in the 1.21 g/ml infranatant. The fractionation of trout lipoprotein spectrum thus furnishes the distribution of the different lipoprotein classes and leads to the description of the constituent apolipoproteins, which account for about 36% of circulating plasma proteins in this species. Images Fig. 2. Fig. 3. PMID:3689318
Weiss, Ram; Otvos, James D; Sinnreich, Ronit; Miserez, Andre R; Kark, Jeremy D
2011-01-01
To assess whether the fasting triglyceride-to-high-density lipoprotein (HDL)-cholesterol (TG/HDL) ratio in adolescence is predictive of a proatherogenic lipid profile in adulthood. A longitudinal follow-up of 770 Israeli adolescents 16 to 17 years of age who participated in the Jerusalem Lipid Research Clinic study and were reevaluated 13 years later. Lipoprotein particle size was assessed at the follow-up with proton nuclear magnetic resonance. The TG/HDL ratio measured in adolescence was strongly associated with low-density lipoprotein, very low-density lipoprotein (VLDL), and HDL mean particle size in young adulthood in both sexes, even after adjustment for baseline body mass index and body mass index change. The TG/HDL ratio measured in adolescence and subsequent weight gain independently predicted atherogenic small low-density lipoprotein and large VLDL particle concentrations (P < .001 in both sexes). Baseline TG/HDL and weight gain interacted to increase large VLDL concentration in men (P < .001). Adolescents with an elevated TG/HDL ratio are prone to express a proatherogenic lipid profile in adulthood. This profile is additionally worsened by weight gain. Copyright © 2011 Mosby, Inc. All rights reserved.
Shetty, Priya B; Tang, Hua; Feng, Tao; Tayo, Bamidele; Morrison, Alanna C; Kardia, Sharon L R; Hanis, Craig L; Arnett, Donna K; Hunt, Steven C; Boerwinkle, Eric; Rao, Dabeeru C; Cooper, Richard S; Risch, Neil; Zhu, Xiaofeng
2015-02-01
Admixture mapping of lipids was followed-up by family-based association analysis to identify variants for cardiovascular disease in African Americans. The present study conducted admixture mapping analysis for total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. The analysis was performed in 1905 unrelated African American subjects from the National Heart, Lung and Blood Institute's Family Blood Pressure Program (FBPP). Regions showing admixture evidence were followed-up with family-based association analysis in 3556 African American subjects from the FBPP. The admixture mapping and family-based association analyses were adjusted for age, age(2), sex, body mass index, and genome-wide mean ancestry to minimize the confounding caused by population stratification. Regions that were suggestive of local ancestry association evidence were found on chromosomes 7 (low-density lipoprotein cholesterol), 8 (high-density lipoprotein cholesterol), 14 (triglycerides), and 19 (total cholesterol and triglycerides). In the fine-mapping analysis, 52 939 single-nucleotide polymorphisms (SNPs) were tested and 11 SNPs (8 independent SNPs) showed nominal significant association with high-density lipoprotein cholesterol (2 SNPs), low-density lipoprotein cholesterol (4 SNPs), and triglycerides (5 SNPs). The family data were used in the fine-mapping to identify SNPs that showed novel associations with lipids and regions, including genes with known associations for cardiovascular disease. This study identified regions on chromosomes 7, 8, 14, and 19 and 11 SNPs from the fine-mapping analysis that were associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides for further studies of cardiovascular disease in African Americans. © 2014 American Heart Association, Inc.
Singh, Jogender
2017-01-01
ABSTRACT The unfolded protein response (UPR) is a stress response pathway that is activated upon increased unfolded and/or misfolded proteins in the endoplasmic reticulum (ER), and enhanced ER stress response prolongs life span and improves immunity. However, the mechanism by which ER stress affects immunity remains poorly understood. Using the nematode Caenorhabditis elegans, we show that mutations in the lipoproteins vitellogenins, which are homologs of human apolipoprotein B-100, resulted in upregulation of the UPR. Lipoprotein accumulation in the intestine adversely affects the immune response and the life span of the organism, suggesting that it could be a contributing factor to immunosenescence. We show that lipoprotein accumulation inhibited the expression of several immune genes encoding proteins secreted by the intestinal cells in an IRE-1-independent manner. Our studies provide a mechanistic explanation for adverse effects caused by protein aggregation and ER stress on immunity and highlight the role of an IRE-1-independent pathway in the suppression of the expression of genes encoding secreted proteins. PMID:28559483
Virani, Salim S.; Catellier, Diane J.; Pompeii, Lisa A.; Nambi, Vijay; Hoogeveen, Ron C.; Wasserman, Bruce A.; Coresh, Josef; Mosley, Thomas H.; Otvos, James D.; Sharrett, A. Richey; Boerwinkle, Eric; Ballantyne, Christie M.
2011-01-01
Objective There is a paucity of data regarding relations of apolipoproteins (apolipoprotein B [ApoB] and apolipoprotein A-1 [Apo A-1]), lipoprotein particle measures (low-density lipoprotein particle concentration [LDLp] and high-density lipoprotein particle concentration [HDLp]), and lipoprotein cholesterol measures (low-density lipoprotein cholesterol [LDL-C], non–high-density lipoprotein cholesterol [non– HDL-C], and high-density lipoprotein cholesterol [HDL-C]) with atherosclerotic plaque burden, plaque eccentricity, and lipid-rich core presence as a marker of high-risk plaques. Methods Carotid artery magnetic resonance imaging was performed in 1,670 Atherosclerosis Risk in Communities study participants. Vessel wall and lipid cores were measured; normalized wall index (NWI), standard deviation (SD) of wall thickness (measure of plaque eccentricity) were calculated; and lipid cores were detected in vessels with ≥1.5 mm thickness. Fasting concentrations of cholesterol, ApoB and Apo A-1, and LDLp and HDLp were measured. Results Measures of plaque burden (carotid wall volume, wall thickness, and NWI) were positively associated with atherogenic cholesterol and lipoproteins (p<0.05 for total cholesterol, LDL-C, non–HDL-C, ApoB, and LDLp), but not with HDL-C, Apo A-1, or HDLp. SD of wall thickness was associated with total cholesterol (p 0.01) and non-HDL-C (p 0.02). Although measures of atherogenic or anti-atherogenic cholesterol or lipoprotein were not individually associated with detection of a lipid-rich core, their ratios (total cholesterol/HDL-C, non–HDL-C/ HDL-C, and LDLp/HDLp) were associated with lipid-rich core presence (p≤0.05). Conclusion Extent of carotid atherosclerosis is associated with atherogenic cholesterol and lipoproteins. Atherogenic/anti-atherogenic cholesterol or particle ratios were associated with presence of a detectable lipid-rich core. PMID:21868017
Virani, Salim S; Catellier, Diane J; Pompeii, Lisa A; Nambi, Vijay; Hoogeveen, Ron C; Wasserman, Bruce A; Coresh, Josef; Mosley, Thomas H; Otvos, James D; Sharrett, A Richey; Boerwinkle, Eric; Ballantyne, Christie M
2011-12-01
There is a paucity of data regarding relations of apolipoproteins (apolipoprotein B [ApoB] and apolipoprotein A-1 [Apo A-1]), lipoprotein particle measures (low-density lipoprotein particle concentration [LDLp] and high-density lipoprotein particle concentration [HDLp]), and lipoprotein cholesterol measures (low-density lipoprotein cholesterol [LDL-C], non-high-density lipoprotein cholesterol [non-HDL-C], and high-density lipoprotein cholesterol [HDL-C]) with atherosclerotic plaque burden, plaque eccentricity, and lipid-rich core presence as a marker of high-risk plaques. Carotid artery magnetic resonance imaging was performed in 1670 Atherosclerosis Risk in Communities study participants. Vessel wall and lipid cores were measured; normalized wall index (NWI), standard deviation (SD) of wall thickness (measure of plaque eccentricity) were calculated; and lipid cores were detected in vessels with ≥ 1.5mm thickness. Fasting concentrations of cholesterol, ApoB and Apo A-1, and LDLp and HDLp were measured. Measures of plaque burden (carotid wall volume, wall thickness, and NWI) were positively associated with atherogenic cholesterol and lipoproteins (p < 0.05 for total cholesterol, LDL-C, non-HDL-C, ApoB, and LDLp), but not with HDL-C, Apo A-1, or HDLp. SD of wall thickness was associated with total cholesterol (p 0.01) and non-HDL-C (p 0.02). Although measures of atherogenic or anti-atherogenic cholesterol or lipoprotein were not individually associated with detection of a lipid-rich core, their ratios (total cholesterol/HDL-C, non-HDL-C/HDL-C, and LDLp/HDLp) were associated with lipid-rich core presence (p ≤ 0.05). Extent of carotid atherosclerosis is associated with atherogenic cholesterol and lipoproteins. Atherogenic/anti-atherogenic cholesterol or particle ratios were associated with presence of a detectable lipid-rich core. Published by Elsevier Ireland Ltd.
Lipoprotein-Cholesterol Fractions in Marginalized Roma versus Majority Population.
Hubková, Beáta; Bódy, Gabriel; Mašlanková, Jana; Birková, Anna; Frišman, Eugen; Kraus, Vladimír; Mareková, Mária
2018-01-06
The trend of modern clinical biochemistry is to emphasize the composition and the quality of lipoproteins over their quantity. The serum lipoprotein fractions and subfractions were analyzed by the Lipoprint Lipoprotein Subfractions Testing System, the parameters of lipid profile, as total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C) and triacylglycerides (TAG) were determined by an automated selective biochemical analyzer. Our results showed a significantly lower concentration of cholesterol in the LDL fractions 1 and 2 and in the HDL fractions 8 to 10 in Roma compared to the majority population. The most significant differences between Roma and the majority population when considering body mass index (BMI), waist-to-hip ratio and the index of central obesity were in very low-density lipoproteins (VLDL), intermediate-density lipoproteins, fraction A (IDL-A) and LDL-2. The last two listed were significantly higher in the majority population. VLDL was significantly higher in overweight or obese Roma men and in Roma men with central obesity compared to men from the majority population, as well as in Roma women with normal weight and physiological waist-to-hip ratio compared to the women from majority population. Our study is among the first describing the distribution of lipoprotein subfractions in different ethnic groups.
Maki, K C; Lawless, A L; Kelley, K M; Kaden, V N; Geiger, C J; Palacios, O M; Dicklin, M R
2017-01-01
Corn oil (CO) and extra-virgin olive oil (EVOO) are rich sources of unsaturated fatty acids (UFA), but UFA profiles differ among oils, which may affect lipoprotein levels. The objective of this study was to assess the effects of CO versus EVOO intake on fasting lipoprotein and subfraction cholesterol levels, apolipoprotein (apo) A1, apo B, and low-density lipoprotein particle concentrations in men and women. As part of a weight maintenance diet, men and women were provided with food items prepared with 54 g per day of CO or EVOO (21-day treatment, 21-day washout) in a randomized, double-blind, controlled-feeding, crossover trial. Fasting lipoprotein cholesterol and related variables were determined with density gradient ultracentrifugation. Among the 54 completers, CO reduced total cholesterol, low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), apo B and LDL particle concentration to a greater extent compared with EVOO intake. Changes in LDL-C and VLDL-C contributed to the larger reduction in non-HDL-C with CO compared with EVOO intake (-0.39 mmol/l vs -0.04 mmol/l; P<0.001). The larger reduction in LDL-C by CO intake was attributable to changes (P<0.05) caused by CO vs EVOO in large LDL 1+2 -C (-0.22 mmol/l) and intermediate-density lipoprotein cholesterol (-0.12 mmol/l). HDL-C responses did not differ between treatments, but apo A1 increased more with EVOO compared with CO intake (4.6 versus 0.7 mg/dl, respectively, P=0.016). CO intake reduced atherogenic lipoprotein cholesterol and particle concentrations to a larger extent than did EVOO, which may have implications for cardiovascular disease risk.
Rojas, Jennifer M; Stafford, John M; Saadat, Sanaz; Printz, Richard L; Beck-Sickinger, Annette G; Niswender, Kevin D
2012-12-15
Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.
Lipid Panel Reference Intervals for Amazon Parrots (Amazona species).
Ravich, Michelle; Cray, Carolyn; Hess, Laurie; Arheart, Kristopher L
2014-09-01
The lipoprotein panel is a useful diagnostic tool that allows clinicians to evaluate blood lipoprotein fractions. It is a standard diagnostic test in human medicine but is poorly understood in avian medicine. Amazon parrots (Amazona species) are popular pets that frequently lead a sedentary lifestyle and are customarily fed high-fat diets. Similar to people with comparable diets and lifestyles, Amazon parrots are prone to obesity and atherosclerosis. In human medicine, these conditions are typically correlated with abnormalities in the lipoprotein panel. To establish reference intervals for the lipoprotein panel in Amazon parrots, plasma samples from 31 captive Amazon parrots were analyzed for concentrations of cholesterol, triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL). The data were also grouped according to sex, diet, body condition score, and age. Aside from HDL levels, which were significantly different between male and female parrots, no intergroup differences were found for any of the lipoprotein fractions.
Effects of Diet High in Palmitoleic Acid on Serum Lipid Levels and Metabolism
2000-07-01
cholesterol , high - density a typical American diet. lipoprotein cholesterol , and triglyceride ...group imbalance resulting from density lipoprotein ( HDL ) cholesterol , and triglyceride dropouts or exclusions during the run-in or early in the levels...Circulation 1997;95:69-75. 15. Austin MA, Rodriguez BL, McKnight B, JD Curb. Low- density lipoprotein (LDL) particle size and plasma triglyceride ( TG
Klapman, M H; Sosa, V B; Yao, J F
2014-06-01
Port wine stains in the malar area of the face can develop thickening in early adult life. We began a study with a hypothesis that this thickening can be associated with elevation of low density lipoprotein. In a retrospective review, we divided 53 subjects with malar port wine stains into 4 groups, adults 25-39 years of age with thickening, that age group without thickening, adults 40+ years of age with thickening, and that age group without thickening. Low density lipoprotein levels in the subjects were compared to age and sex matched controls randomly selected from the general Dermatology clinic. The younger subjects with thickening demonstrated significantly higher low density lipoprotein levels than their controls (p .0082) and without thickening lower low density lipoprotein levels than their controls with great significance (p .00058). The subjects without thickening also consisted mainly of women. The low density lipoprotein levels in the older age groups, whether thickened or not, demonstrated no significant difference in low density lipoprotein levels between subjects and controls. This led to a new hypothesis that there is a factor in a subgroup of young adult women with malar port wine stains that suppresses thickening and delays the elevation of low density lipoprotein and that this factor might be estrogen. The implications of this hypothesis are that it could define a marker for a subset of the population that might be protected from the diseases associated with early elevation of low density lipoprotein and provide a source of cutaneous tissue for studying the basic science of this protection (although limited by cosmetic considerations). Future laboratory research to test the new hypothesis might include testing blood of women with malar port wine stains with or without thickening for estrogen and other sex hormones. It might also include skin biopsies to study receptors for estrogen, other sex hormones, and angiogenic factors in malar port wine stains with or without thickening. Future clinical research might include a long term prospective project to study the development of low density lipoprotein related diseases in women with malar port wine stains with or without thickening over years. Copyright © 2014 Elsevier Ltd. All rights reserved.
Distribution of thiobarbituric acid-reactive substances in lipoproteins and proteins in serum.
Bonnefont, D; Legrand, A; Peynet, J; Emerit, J; Delattre, J; Galli, A
1989-10-01
We assessed the distribution of malondialdehyde (MDA) in lipoproteins and proteins in serum after using two procedures to separate the lipoproteins: sequential ultracentrifugation or selective precipitation with a sodium phosphotungstate and magnesium chloride reagent followed by ultracentrifugation of the supernate. MDA concentrations were determined by the thiobarbituric acid reaction and quantified by fluorometry. We found that 43% of the thiobarbituric acid-reactive substances (TBARS) was bound to the lipoproteins--27% to very-low- and low-density lipoproteins (VLDL-LDL) and 16% to high-density lipoproteins (HDL)--and from 11.5% to 15.8% to proteins, depending on the separation procedure. Residual unbound TBARS were located in the ultracentrifugation layers that contained no lipoproteins or proteins. The TBARS concentration in serum lipoproteins containing apolipoprotein B (i.e., VLDL-LDL) was the same after ultracentrifugation or selective precipitation. We therefore consider the precipitation method more suitable for routine TBARS determination in these lipoproteins, because it is easier to handle and faster. However, for determination of TBARS in HDL, selective precipitation requires subsequent ultracentrifugation at a density of 1.21 kg/L.
Temprosa, M.; Otvos, J.; Brunzell, J.; Marcovina, S.; Mather, K.; Arakaki, R.; Watson, K.; Horton, E.; Barrett-Connor, E.
2013-01-01
Context: Although intensive lifestyle change (ILS) and metformin reduce diabetes incidence in subjects with impaired glucose tolerance (IGT), their effects on lipoprotein subfractions have not been studied. Objective: The objective of the study was to characterize the effects of ILS and metformin vs placebo interventions on lipoprotein subfractions in the Diabetes Prevention Program. Design: This was a randomized clinical trial, testing the effects of ILS, metformin, and placebo on diabetes development in subjects with IGT. Participants: Selected individuals with IGT randomized in the Diabetes Prevention Program participated in the study. Interventions: Interventions included randomization to metformin 850 mg or placebo twice daily or ILS aimed at a 7% weight loss using a low-fat diet with increased physical activity. Main Outcome Measures: Lipoprotein subfraction size, density, and concentration measured by magnetic resonance and density gradient ultracentrifugation at baseline and 1 year were measured. Results: ILS decreased large and buoyant very low-density lipoprotein, small and dense low-density lipoprotein (LDL), and small high-density lipoprotein (HDL) and raised large HDL. Metformin modestly reduced small and dense LDL and raised small and large HDL. Change in insulin resistance largely accounted for the intervention-associated decreases in large very low-density lipoprotein, whereas changes in body mass index (BMI) and adiponectin were strongly associated with changes in LDL. Baseline and a change in adiponectin were related to change in large HDL, and BMI change associated with small HDL change. The effect of metformin to increase small HDL was independent of adiponectin, BMI, and insulin resistance. Conclusion: ILS and metformin treatment have favorable effects on lipoprotein subfractions that are primarily mediated by intervention-related changes in insulin resistance, BMI, and adiponectin. Interventions that slow the development of diabetes may also retard the progression of atherosclerosis. PMID:23979954
Polyphenols: Potential Use in the Prevention and Treatment of Cardiovascular Diseases.
Giglio, Rosaria Vincenza; Patti, Angelo Maria; Cicero, Arrigo F G; Lippi, Giuseppe; Rizzo, Manfredi; Toth, Peter P; Banach, Maciej
2018-01-01
Polyphenols are bioactive compounds that can be found mostly in foods like fruits, cereals, vegetables, dry legumes, chocolate and beverages such as coffee, tea and wine. They are extensively used in the prevention and treatment of cardiovascular disease (CVD) providing protection against many chronic illnesses. Their effects on human health depend on the amount consumed and on their bioavailability. Many studies have demonstrated that polyphenols have also good effects on the vascular system by lowering blood pressure, improving endothelial function, increasing antioxidant defences, inhibiting platelet aggregation and low-density lipoprotein oxidation, and reducing inflammatory responses. This review is focused on some groups of polyphenols and their effects on several cardiovascular risk factors such as hypertension, oxidative stress, atherogenesis, endothelial dysfunction, carotid artery intima-media thickness, diabetes and lipid disorders. It is proved that these compounds have many cardio protective functions: they alter hepatic cholesterol absorption, triglyceride biosynthesis and lipoprotein secretion, the processing of lipoproteins in plasma, and inflammation. In some cases, human long-term studies did not show conclusive results because they lacked in appropriate controls and in an undefined polyphenol dosing regimen. Rigorous evidence is necessary to demonstrate whether or not polyphenols beneficially impact CVD prevention and treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Studies on antidyslipidemic effects of Morinda citrifolia (Noni) fruit, leaves and root extracts
2010-01-01
Background The objective of present study was to provide the pharmacological basis for the medicinal use of Morinda citrifolia Linn in dyslipidemia using the aqueous-ethanolic extracts of its fruits (Mc.Cr.F), leaves (Mc.Cr.L) and roots (Mc.Cr.R). Results Mc.Cr.F, Mc.Cr.L and Mc.Cr.R showed antidyslipidemic effects in both triton (WR-1339) and high fat diet-induced dyslipidemic rat models to variable extents. All three extracts caused reduction in total cholesterol and triglyceride levels in triton-induced dyslipidemia. In high fat diet-induced dyslipidemia all these extracts caused significant reduction in total cholesterol, triglyceride, low density lipoprotein-cholesterol (LDL-C), atherogenic index and TC/HDL ratio. Mc.Cr.R extract also caused increase in high density lipoprotein-cholesterol (HDL-C). The Mc.Cr.L and Mc.Cr.R reduced gain in body weight with a reduction in daily diet consumption but Mc.Cr.F had no effect on body weight and daily diet consumption. Conclusions These data indicate that the antidyslipidemic effect of the plant extracts was meditated through the inhibition of biosynthesis, absorption and secretion of lipids. This may be possibly due partly to the presence of antioxidant constituents in this plant. Therefore, this study rationalizes the medicinal use of Morinda citrifolia in dyslipidemia. PMID:20727145
Studies on antidyslipidemic effects of Morinda citrifolia (Noni) fruit, leaves and root extracts.
Mandukhail, Saf-ur Rehman; Aziz, Nauman; Gilani, Anwarul-Hassan
2010-08-20
The objective of present study was to provide the pharmacological basis for the medicinal use of Morinda citrifolia Linn in dyslipidemia using the aqueous-ethanolic extracts of its fruits (Mc.Cr.F), leaves (Mc.Cr.L) and roots (Mc.Cr.R). Mc.Cr.F, Mc.Cr.L and Mc.Cr.R showed antidyslipidemic effects in both triton (WR-1339) and high fat diet-induced dyslipidemic rat models to variable extents. All three extracts caused reduction in total cholesterol and triglyceride levels in triton-induced dyslipidemia. In high fat diet-induced dyslipidemia all these extracts caused significant reduction in total cholesterol, triglyceride, low density lipoprotein-cholesterol (LDL-C), atherogenic index and TC/HDL ratio. Mc.Cr.R extract also caused increase in high density lipoprotein-cholesterol (HDL-C). The Mc.Cr.L and Mc.Cr.R reduced gain in body weight with a reduction in daily diet consumption but Mc.Cr.F had no effect on body weight and daily diet consumption. These data indicate that the antidyslipidemic effect of the plant extracts was meditated through the inhibition of biosynthesis, absorption and secretion of lipids. This may be possibly due partly to the presence of antioxidant constituents in this plant. Therefore, this study rationalizes the medicinal use of Morinda citrifolia in dyslipidemia.
Lowering serum lipids via PCSK9-targeting drugs: current advances and future perspectives.
He, Ni-Ya; Li, Qing; Wu, Chun-Yan; Ren, Zhong; Gao, Ya; Pan, Li-Hong; Wang, Mei-Mei; Wen, Hong-Yan; Jiang, Zhi-Sheng; Tang, Zhi-Han; Liu, Lu-Shan
2017-03-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9), also known as neural apoptosis regulated convertase (NARC1), is a key modulator of cholesterol metabolism. PCSK9 increases the serum concentration of low-density lipoprotein cholesterol by escorting low-density lipoprotein receptors (LDLRs) from the membrane of hepatic cells into lysosomes, where the LDLRs are degraded. Owing to the importance of PCSK9 in lipid metabolism, considerable effort has been made over the past decade in developing drugs targeting PCSK9 to lower serum lipid levels. Nevertheless, some problems and challenges remain. In this review we first describes the structure and function of PCSK9 and its gene polymorphisms. We then discuss the various designs of pharmacological targets of PCSK9, including those that block the binding of PCSK9 to hepatic LDLRs (mimetic peptides, adnectins, and monoclonal antibodies), inhibit PCSK9 expression (the clustered regularly interspaced short palindromic repeats/Cas9 platform, small molecules, antisense oligonucleotides, and small interfering RNAs), and interfere with PCSK9 secretion. Finally, this review highlights future challenges in this field, including safety concerns associated with PCSK9 monoclonal antibodies, the limited utility of PCSK9 inhibitors in the central nervous system, and the cost-effectiveness of PCSK9 inhibitors.
da Silva, Robin P; Leonard, Kelly-Ann; Jacobs, René L
2017-12-01
Recent studies have shown that dietary creatine supplementation can prevent lipid accumulation in the liver. Creatine is a small molecule that plays a large role in energy metabolism, but since the enzyme creatine kinase is not present in the liver, the classical role in energy metabolism does not hold in this tissue. Fat accumulation in the liver can lead to the development of nonalcoholic fatty liver disease (NAFLD), a progressive disease that is prevalent in humans. We have previously reported that creatine can directly influence lipid metabolism in cell culture to promote lipid secretion and oxidation. Our goal in the current study was to determine whether similar mechanisms that occur in cell culture were present in vivo. We also sought to determine whether dietary creatine supplementation could be effective in reversing steatosis. Sprague-Dawley rats were fed a high-fat diet or a high-fat diet supplemented with creatine for 5 weeks. We found that rats supplemented with creatine had significantly improved rates of lipoprotein secretion and alterations in mitochondrial function that were consistent with greater oxidative capacity. We also find that introducing creatine into a high-fat diet halted hepatic lipid accumulation in rats with fatty liver. Our results support our previous report that liver cells in culture with creatine secrete and oxidize more oleic acid, demonstrating that dietary creatine can effectively change hepatic lipid metabolism by increasing lipoprotein secretion and oxidation in vivo. Our data suggest that creatine might be an effective therapy for NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.
Clerc, T.; Sbarra, V.; Domingo, N.; Rault, J. P.; Diaconescu, N.; Moutardier, V.; Hasselot, N.; Lafont, H.; Jadot, G.; Laruelle, C.; Chanussot, F.
1996-01-01
1. The objective of this study was to compare in cultured human hepatocytes or Hep G2 cells, changes in the fate of unesterified low density lipoprotein (LDL)-cholesterol induced by crilvastatin, a new cholesterol lowering drug and a reference statin, simvastatin. 2. The experiments were carried out for 20 h, each well contained 4.2 x 10(5)/cm2 Hep G2 cells or 0.5 x 10(5)/Cm2 human hepatocytes, 130 microM ursodeoxycholate, 0.68 microCi or 1.59 microCi unesterified human [14C]-LDL-cholesterol, crilvastatin or simvastatin at 0 or 50 microM (both cell types) or 300 microM (Hep-G2 cells). Incubation with the two drugs resulted in increased amounts of unesterified [14C]-LDL-cholesterol taken by the two cell types, compared to control. 3. Crilvastatin 50 microM led to significantly higher quantities of [14C]-glyco-tauro-conjugated bile salts, compared to simvastatin. Statins reduced the apo B100 level secreted by the two cell types (simvastatin) or human hepatocytes (crilvastatin). Crilvastatin enhanced both the level of apo A1 secreted by the Hep G2 cells and the level of APF, a high density lipoprotein (HDL) and biliary apoprotein. 4. Crilvastatin not only acts by stimulating LDL-cholesterol uptake by hepatocytes, but also by enhancing the catabolism of LDL-cholesterol in bile salts and probably by stimulating HDL and/or bile component secretion. Such a mechanism was not previously described for HMG CoA reductase inhibitors. Our results on APF show that this apoprotein could be considered also as an indicator of changes in bile and/or HDL compartments. 5. The human hepatocyte model appeared to be a suitable and relevant model in the pharmacological-metabolic experiments carried out in this study. It led to more consistent data than those obtained with Hep G2 cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8842455
2013-01-01
Background Despite the importance of abnormalities in lipoprotein metabolism in clinical canine medicine, the fact that most previously used methods for lipoprotein profiling are rather laborious and time-consuming has been a major obstacle to the wide clinical application and use of lipoprotein profiling in this species. The aim of the present study was to assess the feasibility of a continuous lipoprotein density profile (CLPDP) generated within a bismuth sodium ethylenediaminetetraacetic acid (NaBiEDTA) density gradient to characterize and compare the lipoprotein profiles of healthy dogs of various breeds, healthy Miniature Schnauzers, and Miniature Schnauzers with primary hypertriacylglycerolemia. A total of 35 healthy dogs of various breeds with serum triacylglycerol (TAG) and cholesterol concentrations within their respective reference intervals were selected for use as a reference population. Thirty-one Miniature Schnauzers with serum TAG and cholesterol concentrations within their respective reference intervals and 31 Miniature Schnauzers with hypertriacylglyceridemia were also included in the study. Results The results suggest that CLPDP using NaBiEDTA provides unique diagnostic information in addition to measurements of serum TAG and cholesterol concentrations and that it is a useful screening method for dogs with suspected lipoprotein metabolism disorders. Using the detailed and continuous density distribution information provided by the CLPDP, important differences in lipoprotein profiles can be detected even among dogs that have serum TAG and cholesterol concentrations within the reference interval. Miniature Schnauzers with serum TAG and cholesterol concentrations within the reference interval had significantly different lipoprotein profiles than dogs of various other breeds. In addition, it was further established that specific lipoprotein fractions are associated with hypertriacylglyceridemia in Miniature Schnauzers. Conclusions The results of the present study suggest that density gradient ultracentrifugation using NaBiEDTA is a useful screening method for the study of lipoprotein profiles in dogs. Therefore, this method could potentially be used for diagnostic purposes for the separation of dogs suspected of having lipoprotein abnormalities from healthy dogs. PMID:23497598
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtenstein, A.H.; Cohn, J.S.; Hachey, D.L.
1990-09-01
The production rates of apolipoprotein (apo)B-100 in very low density lipoprotein and in low density lipoprotein and apolipoprotein A-I in high density lipoprotein were determined using a primed-constant infusion of (5,5,5,-2H3)leucine, (4,4,4,-2H3)valine, and (6,6-2H2,1,2-13C2)lysine. The three stable isotope-labeled amino acids were administered simultaneously to determine whether absolute production rates calculated using a stochastic model were independent of the tracer species utilized. Three normolipidemic adult males were studied in the constantly fed state over a 15-h period. The absolute production rates of very low density lipoprotein apoB-100 were 11.4 +/- 5.8 (leucine), 11.2 +/- 6.8 (valine), and 11.1 +/- 5.4 (lysine)more » mg per kg per day (mean +/- SDM). The absolute production rates for low density lipoprotein apoB-100 were 8.0 +/- 4.7 (leucine), 7.5 +/- 3.8 (valine), and 7.5 +/- 4.2 (lysine) mg per kg per day. The absolute production rates for high density lipoprotein apoA-I were 9.7 +/- 0.2 (leucine), 9.4 +/- 1.7 (valine), and 9.1 +/- 1.3 (lysine) mg per kg per day. There were no statistically significant differences in absolute synthetic rates of the three apolipoproteins when the plateau isotopic enrichment values of very low density lipoprotein apoB-100 were used to define the isotopic enrichment of the intracellular precursor pool. Our data indicate that deuterated leucine, valine, or lysine provided similar results when used for the determination of apoA-I and apoB-100 absolute production rates within plasma lipoproteins as part of a primed-constant infusion protocol.« less
Stein, James H.; Komarow, Lauren; Cotter, Bruno R.; Currier, Judith S.; Dubé, Michael P.; Fichtenbaum, Carl J.; Gerschenson, Mariana; Mitchell, Carol K.C.; Murphy, Robert L.; Squires, Kathleen; Parker, Robert A.; Torriani, Francesca J.
2008-01-01
Background Dyslipidemia is a frequent complication of antiretroviral therapy (ART) for patients with human immunodeficiency virus infection (HIV). The effects of ART on lipoproteins are less well-understood, and have not been investigated in a prospective study where assignment to ART is randomized. Objective To evaluate the effects of three class-sparing ART regimens on lipids and lipoproteins. Methods This was a substudy of a prospective, multicenter study treatment-naïve HIV-infected individuals randomly assigned to receive a regimen of nucleoside reverse transcriptase inhibitors (NRTIs) + the non-nucleoside reverse transcriptase inhibitor efavirenz, NRTIs + the protease inhibitor lopinavir/ritonavir, or a NRTI-sparing regimen of efavirenz + lopinavir/ritonavir. Lipoproteins were measured by nuclear magnetic resonance spectroscopy. Results Among the 82 participants, total and small low-density lipoprotein concentrations increased (median, interquartile range) by 152 (-49 - +407, p<0.01) and 130 (-98 - +417, p<0.01) nmol/L, respectively, especially in the arms containing lopinavir/ritonavir (pKW<0.04). Very low-density lipoproteins also increased (p<0.01), with a larger increase in the arms that contained lopinavir/ritonavir (p=0.022). High-density lipoproteins increased by 6.0 nmol/L (2.8 - 10.4, p<0.01), but differences between arms were not significant (pKW=0.069). Changes were not related to changes in markers of insulin/glucose metabolism. Conclusions Total and small low-density lipoprotein concentrations increased, especially in the arms containing lopinavir/ritonavir, as did increases in total very low-density lipoproteins. Adverse changes were especially prominent in the arm with efavirenz + lopinavir/ritonavir. PMID:19956354
A clustering analysis of lipoprotein diameters in the metabolic syndrome
USDA-ARS?s Scientific Manuscript database
The presence of smaller low-density lipoproteins (LDL) has been associated with atherosclerosis risk, and the insulin resistance (IR) underlying the metabolic syndrome (MetS). In addition, some research has supported the association of very low-, low- and high-density lipoprotein (VLDL HDL) particle...
Effect of n-3 polyunsaturated fatty acids on the lipidic profile of healthy Mexican volunteers.
Carvajal, O; Angulo, O
1997-01-01
The effect of n-3 polyunsaturated fatty acids on the serum lipid profile in a Mexican population was evaluated. Three g of salmon oil was the daily intake during four weeks. Total cholesterol, triglycerides, low density lipoproteins, high density lipoproteins and erythrocyte fatty acid composition were analyzed. The hypertriglyceridemic group showed a statistically significant (p < 0.05) reduction of triglycerides and significant (p < 0.01) elevation of high density lipoproteins. The hypercholesterolemic group reduced significantly the levels of cholesterol and triglycerides; high density lipoproteins were augmented by 11.6%. The hypolipidemic effect of n-3 polyunsaturated fatty acids was manifest in the Mexican volunteers under the conditions here evaluated.
Alavi, M Z; Richardson, M; Moore, S
1989-02-01
The effect of injury-induced alterations in the aortic neointimal proteoglycans on their binding with homologous serum lipoproteins was examined. Proteoglycans of the aortic intimal-medial tissues of rabbits that had undergone denudation with a balloon catheter 12 weeks earlier were isolated after homogenization of the tissues in 0.33 M sucrose, ultracentrifugation and subsequently by gel-exclusion chromatography. Lipoproteins from the plasma of healthy donors were prepared by sequential, ultracentrifugal floatation after density adjustment with KBr. To study the interactions, aliquots of electrophoretically pure very low-density lipoproteins (VLDL, d less than 1.006 g/ml), low-density lipoproteins (LDL, d = 1.019-1.063 g/ml), or high-density lipoproteins (HDL, d = 1.210 g/ml) were incubated with proteoglycans in the presence of Ca++ and Mg++ at 4 C. The amount of cholesterol found in the resulting pellet was measured as a marker of the binding capacity of the proteoglycans. Among lipoprotein fractions both VLDL and LDL showed strong binding with proteoglycans, whereas no appreciable binding was observed when incubation experiments were done with HDL. There were significant differences in the lipoprotein binding capacity of proteoglycan of control and injured animals, indicating that injury induced changes in proteoglycan composition exert profound influences on their ionic interactions.
Scuotto, Angelo; Djorie, Serge; Colavizza, Michel; Romond, Pierre-Charles; Romond, Marie-Bénédicte
2014-12-01
Extracellular components secreted by Bifidobacterium breve C50 can induce maturation, high IL-10 production and prolonged survival of dendritic cells via a TLR2 pathway. In this study, the components were isolated from the supernatant by gel filtration chromatography. Antibodies raised against the major compounds with molecular weight above 600 kDa (Bb C50BC) also recognized compounds of lower molecular weight (200–600 kDa). TLR2 and TLR6 bound to the components already recognized by the antibodies. Trypsin digestion of Bb C50BC released three major peptides whose sequences displayed close similarities to a putative secreted protein with a CHAP amidase domain from B. breve. The 1300-bp genomic region corresponding to the hypothetical protein was amplified by PCR. The deduced polypeptide started with an N-terminal signal sequence of 45 amino acids, containing the lipobox motif (LAAC) with the cysteine in position 25, and 2 positively charged residues within the first 14 residues of the signal sequence. Lipid detection in Bb C50BC by GC/MS further supported the implication of a lipoprotein. Sugars were also detected in Bb C50BC. Close similarity with the glucan-binding protein B from Bifidobacterium animalis of two released peptides from Bb C50BC protein suggested that glucose moieties, possibly in glucan form, could be bound to the lipoprotein. Finally, heating at 100 °C for 5 min led to the breakdown of Bb C50BC in compounds of molecular weight below 67 kDa, which suggested that Bb C50BC was an aggregate. One might assume that a basic unit was formed by the lipoprotein bound putatively to glucan. Besides the other sugars and hexosamines recognized by galectin 1 were localized at the surface of the Bb C50BC aggregate. In conclusion, the extracellular components secreted by B. breve C50 were constituted of a lipoprotein putatively associated with glucose moieties and acting in an aggregating form as an agonist of TLR2/TLR6.
Type II hyperlipoproteinemia; Hypercholesterolemic xanthomatosis; Low density lipoprotein receptor mutation ... defect makes the body unable to remove low density lipoprotein (LDL, or bad) cholesterol from the blood. ...
Jialal, I; Remaley, A T
2014-07-01
The deposition of cholesterol in the arterial wall by the infiltration of low-density lipoproteins (LDLs) is a key step in the development of atherosclerosis. In this Commentary, we discuss recent recommendations for clinical laboratory measurement of low-density lipoprotein cholesterol (LDL-C) and its utility both for assessing cardiovascular disease risk and as a tool in the management of patients receiving lipid-lowering therapy.
Sacks, Frank M; Hermans, Michel P; Fioretto, Paola; Valensi, Paul; Davis, Timothy; Horton, Edward; Wanner, Christoph; Al-Rubeaan, Khalid; Aronson, Ronnie; Barzon, Isabella; Bishop, Louise; Bonora, Enzo; Bunnag, Pongamorn; Chuang, Lee-Ming; Deerochanawong, Chaicharn; Goldenberg, Ronald; Harshfield, Benjamin; Hernández, Cristina; Herzlinger-Botein, Susan; Itoh, Hiroshi; Jia, Weiping; Jiang, Yi-Der; Kadowaki, Takashi; Laranjo, Nancy; Leiter, Lawrence; Miwa, Takashi; Odawara, Masato; Ohashi, Ken; Ohno, Atsushi; Pan, Changyu; Pan, Jiemin; Pedro-Botet, Juan; Reiner, Zeljko; Rotella, Carlo Maria; Simo, Rafael; Tanaka, Masami; Tedeschi-Reiner, Eugenia; Twum-Barima, David; Zoppini, Giacomo; Carey, Vincent J
2014-03-04
Microvascular renal and retinal diseases are common major complications of type 2 diabetes mellitus. The relation between plasma lipids and microvascular disease is not well established. The case subjects were 2535 patients with type 2 diabetes mellitus with an average duration of 14 years, 1891 of whom had kidney disease and 1218 with retinopathy. The case subjects were matched for diabetes mellitus duration, age, sex, and low-density lipoprotein cholesterol to 3683 control subjects with type 2 diabetes mellitus who did not have kidney disease or retinopathy. The study was conducted in 24 sites in 13 countries. The primary analysis included kidney disease and retinopathy cases. Matched analysis was performed by use of site-specific conditional logistic regression in multivariable models that adjusted for hemoglobin A1c, hypertension, and statin treatment. Mean low-density lipoprotein cholesterol concentration was 2.3 mmol/L. The microvascular disease odds ratio increased by a factor of 1.16 (95% confidence interval, 1.11-1.22) for every 0.5 mmol/L (≈1 quintile) increase in triglycerides or decreased by a factor of 0.92 (0.88-0.96) for every 0.2 mmol/L (≈1 quintile) increase in high-density lipoprotein cholesterol. For kidney disease, the odds ratio increased by 1.23 (1.16-1.31) with triglycerides and decreased by 0.86 (0.82-0.91) with high-density lipoprotein cholesterol. Retinopathy was associated with triglycerides and high-density lipoprotein cholesterol in matched analysis but not significantly after additional adjustment. Diabetic kidney disease is associated worldwide with higher levels of plasma triglycerides and lower levels of high-density lipoprotein cholesterol among patients with good control of low-density lipoprotein cholesterol. Retinopathy was less robustly associated with these lipids. These results strengthen the rationale for studying dyslipidemia treatment to prevent diabetic microvascular disease.
Wang, Fenglei; Zheng, Jusheng; Yang, Bo; Jiang, Jiajing; Fu, Yuanqing; Li, Duo
2015-10-27
Vegetarian diets exclude all animal flesh and are being widely adopted by an increasing number of people; however, effects on blood lipid concentrations remain unclear. This meta-analysis aimed to quantitatively assess the overall effects of vegetarian diets on blood lipids. We searched PubMed, Scopus, Embase, ISI Web of Knowledge, and the Cochrane Library through March 2015. Studies were included if they described the effectiveness of vegetarian diets on blood lipids (total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride). Weighted mean effect sizes were calculated for net changes by using a random-effects model. We performed subgroup and univariate meta-regression analyses to explore sources of heterogeneity. Eleven trials were included in the meta-analysis. Vegetarian diets significantly lowered blood concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and non-high-density lipoprotein cholesterol, and the pooled estimated changes were -0.36 mmol/L (95% CI -0.55 to -0.17; P<0.001), -0.34 mmol/L (95% CI -0.57 to -0.11; P<0.001), -0.10 mmol/L (95% CI -0.14 to -0.06; P<0.001), and -0.30 mmol/L (95% CI -0.50 to -0.10; P=0.04), respectively. Vegetarian diets did not significantly affect blood triglyceride concentrations, with a pooled estimated mean difference of 0.04 mmol/L (95% CI -0.05 to 0.13; P=0.40). This systematic review and meta-analysis provides evidence that vegetarian diets effectively lower blood concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and non-high-density lipoprotein cholesterol. Such diets could be a useful nonpharmaceutical means of managing dyslipidemia, especially hypercholesterolemia. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alpha-1-lipoprotein immuno-logical test system....5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An alpha-1-lipoprotein... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of alpha-1...
21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alpha-1-lipoprotein immuno-logical test system....5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An alpha-1-lipoprotein... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of alpha-1...
21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alpha-1-lipoprotein immuno-logical test system....5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An alpha-1-lipoprotein... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of alpha-1...
21 CFR 866.5580 - Alpha-1-lipoprotein immuno-logical test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alpha-1-lipoprotein immuno-logical test system....5580 Alpha-1-lipoprotein immuno-logical test system. (a) Identification. An alpha-1-lipoprotein... the alpha-1-lipoprotein (high-density lipoprotein) in serum and plasma. Measurement of alpha-1...
Oda, Hitomi; Mori, Akihiro; Hirowatari, Yuji; Takoura, Toshie; Manita, Daisuke; Takahashi, Tomoya; Shono, Saori; Onozawa, Eri; Mizutani, Hisashi; Miki, Yohei; Itabashi, Yukiko; Sako, Toshinori
2017-10-01
Anion-exchange (AEX)-high-performance liquid chromatography (HPLC) for measurement of cholesterol can be used to separate serum lipoproteins (high-density lipoprotein (HDL); low-density lipoprotein (LDL); intermediate-density lipoprotein (IDL); very-low-density lipoprotein (VLDL)) in humans. However, AEX-HPLC has not been applied in veterinary practice. We had three objectives: (i) the validation of AEX-HPLC methods including the correlation of serum cholesterol concentration in lipoprotein fraction measured by AEX-HPLC and gel permeation-HPLC (GP-HPLC) in healthy dogs and those with hypercholesterolemia was investigated; (ii) the reference intervals of lipoprotein fractions measured by AEX-HPLC from healthy dogs (n=40) was established; (iii) lipoprotein fractions from the serum of healthy dogs (n=12) and dogs with hypercholesterolemia (n=23) were compared. Analytic reproducibility and precision of AEX-HPLC were acceptable. Positive correlation between serum concentrations of total cholesterol (Total-Chol), HDL cholesterol (HDL-Chol), LDL cholesterol (LDL-Chol)+IDL cholesterol (IDL-Chol), and VLDL cholesterol (VLDL-Chol) was noted for AEX-HPLC and GP-HPLC in healthy dogs and dogs with hypercholesterolemia. Reference intervals measured by AEX-HPLC for serum concentrations of Total-Chol, HDL-Chol, and LDL-Chol were determined to be 2.97-9.32, 2.79-6.57, 0.16-3.28mmol/L (2.5-97.5% interval), respectively. Furthermore, there was significant difference in lipoprotein profiles between healthy and dogs with hypercholesterolemia. These results suggest that AEX-HPLC can be used to evaluate lipoprotein profiles in dogs and could be a new useful indicator of hyperlipidemia in dogs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shojaei, Mir Hatef; Djalali, Mamhmoud; Siassi, Fereydoun; Khatami, Mohammad Reza; Boroumand, Mohammad Ali; Eshragian, Mohammad Reza
2009-07-01
High serum levels of lipoprotein(a) and homocysteine are risk factors of cardiovascular disease which are prevalent in patients on hemodialysis. Controversy exists about the effects of hydroxymethylglutaryl-CoA reductase inhibitors on serum lipoprotein(a) levels in patients on hemodialysis. Also, deficiency of some water soluble vitamins and administration of statins may raise serum levels of homocysteine in these patients. This study was designed to investigate serum levels of lipoprotein(a) and homocysteine in patients on hemodialysis who were taking a statin, vitamin B6, and folic acid. We investigated on 152 patients with maintenance hemodialysis who were taking atorvastatin or lovastatin, vitamin B6, and folic acid for at least 6 months. Their serum levels were obtained to measure lipoprotein(a) and homocysteine levels, as well as triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The mean serum values of total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and triglyceride were significantly less than the maximum reference values (P < .001). The mean serum level of lipoprotein(a) was also less than the reference value (P = .009), but homocysteine level was 33% higher on average than the reference value (P < .001). Our study demonstrated that in our patients on hemodialysis, the mean serum level of homocysteine was about 30% higher than the reference value although they were receiving vitamin B6 and folic acid. Hence, they were still exposed to the risk of cardiovascular disease.
Operation Everest II. Plasma Lipid and Hormonal Responses
1988-01-01
cholesterol [TC] and high density lipoprotein cholesterol [ HDL -C] concentrations are shown in Fig 2. Pre-ascent...of altitude on fasting total cholesterol and high density lipoprotein ( HDL ) cholesterol concentrations. ** = p<O.Ol from 760 Torr Figure 3: The effect...157.7*9.7 mg/dl, decreased by 25% to .6 118.3*13.5 mg/dl following the 40-day exposure (p<O.Ol). High density lipoprotein [ HDL -C] levels
Ion mobility analysis of lipoproteins
Benner, W Henry [Danville, CA; Krauss, Ronald M [Berkeley, CA; Blanche, Patricia J [Berkeley, CA
2007-08-21
A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.
Aerosol preparation of intact lipoproteins
Benner, W Henry [Danville, CA; Krauss, Ronald M [Berkeley, CA; Blanche, Patricia J [Berkeley, CA
2012-01-17
A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.
Serum lipoprotein changes in dogs with renal disease.
Behling-Kelly, E
2014-01-01
People with renal disease develop a dyslipidemia that contributes to progression of renal injury and development of cardiovascular disease. Lipoproteins in dogs with renal disease have not been investigated. Dogs with chronic kidney disease (CKD) have dyslipidemia characterized by increased lower density lipoproteins and decreased high-density lipoproteins (HDLs). The degree of dyslipidemia is positively correlated with severity of disease, as reflected by serum creatinine concentration. Prospective study of client-owned dogs presented to the Cornell University Hospital for Animals: 29 dogs with confirmed CKD, 5 dogs with nephrotic syndrome (NS), and 12 healthy control dogs presented for routine vaccinations, dental cleaning, or owned by students. Lipoprotein electrophoresis was used to quantify relative proportions of the 3 main classes of lipoproteins in canine serum: low-density lipoproteins (LDL), very low-density lipoproteins (VLDL), and HDL. Serum cholesterol and creatinine concentrations; urinalysis and urine protein-to-creatinine ratio were measured by standard methods. Dyslipidemia was consistently found in dogs with CKD and NS and was characterized by a decrease in HDL and variable increases in LDL and VLDL. Dogs with NS had a proportionately greater increase in the VLDL fraction, as compared with dogs with CKD. Dyslipidemia similar to that documented in people with renal disease occurs in dogs with CKD, despite serum cholesterol concentrations often being within the reference interval. The contribution of altered lipoproteins to the pathogenesis of renal disease in dogs warrants additional study. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Factorial Effects of Evolocumab and Atorvastatin on Lipoprotein Metabolism.
Watts, Gerald F; Chan, Dick C; Dent, Ricardo; Somaratne, Ransi; Wasserman, Scott M; Scott, Rob; Burrows, Sally; R Barrett, P Hugh
2017-01-24
Monoclonal antibodies against proprotein convertase subtilisin kexin type 9 (PCSK9), such as evolocumab, lower plasma low-density lipoprotein (LDL)-cholesterol concentrations. Evolocumab is under investigation for its effects on cardiovascular outcomes in statin-treated, high-risk patients. The mechanism of action of PCSK9 monoclonal antibodies on lipoprotein metabolism remains to be fully evaluated. Stable isotope tracer kinetics can effectively elucidate the mode of action of new lipid-regulating pharmacotherapies. We conducted a 2-by-2 factorial trial of the effects of atorvastatin (80 mg daily) and subcutaneous evolocumab (420 mg every 2 weeks) for 8 weeks on the plasma kinetics of very-low-density lipoprotein (VLDL)-apolipoprotein B-100 (apoB), intermediate-density lipoprotein-apoB, and LDL-apoB in 81 healthy, normolipidemic, nonobese men. The kinetics of apoB in these lipoproteins was studied using a stable isotope infusion of D3-leucine, gas chromatography/mass spectrometry, and multicompartmental modeling. Atorvastatin and evolocumab independently accelerated the fractional catabolism of VLDL-apoB (P<0.001 and P.032, respectively), intermediate-density lipoprotein-apoB (P=0.021 and P=.002, respectively), and LDL-apoB (P<0.001, both interventions). Evolocumab but not atorvastatin decreased the production rate of intermediate-density lipoprotein-apoB (P=0.043) and LDL-apoB (P<0.001), which contributed to the reduction in the plasma pool sizes of these lipoprotein particles. The reduction in LDL-apoB and LDL-cholesterol concentrations was significantly greater with combination versus either monotherapy (P<0.001). Whereas evolocumab but not atorvastatin lowered the concentration of free PCSK9, atorvastatin lowered the lathosterol/campesterol ratio (a measure of cholesterol synthesis/absorption) and apoC-III concentration. Both interventions decreased plasma apoE, but neither significantly altered lipoprotein lipase and cholesteryl ester protein mass or measures of insulin resistance. In healthy, normolipidemic subjects, evolocumab decreased the concentration of atherogenic lipoproteins, particularly LDL, by accelerating their catabolism. Reductions in intermediate-density lipoprotein and LDL production also contributed to the decrease in LDL particle concentration with evolocumab by a mechanism distinct from that of atorvastatin. These kinetic findings provide a metabolic basis for understanding the potential benefits of PCSK9 monoclonal antibodies incremental to statins in on-going clinical end point trials. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02189837. © 2016 American Heart Association, Inc.
Progranulin concentration in relation to bone mineral density among obese individuals.
Milajerdi, Alireza; Maghbooli, Zhila; Mohammadi, Farzad; Hosseini, Banafsheh; Mirzaei, Khadijeh
2018-01-01
Adipose tissue, particularly visceral adipose tissue, secretes a variety of cytokines, among which progranulin is a glycoprotein related to the immune system. Along with other secreted proteins, progranulin may be associated with bone mineral density. The aim of this study was to find out whether there are associations between the progranulin and bone mineral density among obese people. This cross-sectional study was conducted on 244 obese participants (aged 22-52). Serum progranulin, high sensitive C-reactive protein, oxidised-low dencity lipoprotein, tumor necrosis factor-α, parathormone, vitamin D, and interleukins of 1 β, 4, 6, 10, 13, and 17 concentrations were measured. Anthropometric measurements, body composition and bone mineral density were also assessed. Serum progranulin was directly associated with interleukin-6 and interleukin-1β, while it had a negative association with interleukin-17 and tumor necrosis factor-α. We also observed a statistically significant direct association between progranulin concentration and visceral fat, abdominal fat, waist, abdominal and hip circumferences, hip T-score, and Z-score and T-score for the lumbar region. A partial correlation test has also shown a significant positive correlation regarding serum progranulin and the hip Z-score. Moreover, progranulin level is inversely associated with ospteopenia (P = 0.04 and CI: 0.17,0.96). Our study revealed that central obesity may be related to increased progranulin concentration. In addition, progranulin concentration was directly related to bone formation parameters, which indicates the protective effects of progranulin on bone density. Further studies are needed to clarify the exact mechanisms underlying these associations.
Serum lipoprotein concentrations in cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, W.J.; Lindgren, F.T.; Whalen, J.B.
1978-02-17
Two major classes of lipoproteins, low density and high density, are decreased in the serum of patients with cystic fibrosis; major apoproteins are also decreased. Since essential fatty acids and certain fat-soluble vitamins depend on lipoproteins for transport in the serum, knowledge of lipoprotein levels in cystic fibrosis patients could prove valuable in understanding (i) the basis for the abnormally low serum levels of these fatty acids and vitamins and (ii) the effects of therapies involving these molecules.
Steffen, Brian T; Guan, Weihua; Remaley, Alan T; Paramsothy, Pathmaja; Heckbert, Susan R; McClelland, Robyn L; Greenland, Philip; Michos, Erin D; Tsai, Michael Y
2015-02-01
The American College of Cardiology and American Heart Association have issued guidelines indicating that the contribution of apolipoprotein B-100 (ApoB) to cardiovascular risk assessment remains uncertain. The present analysis evaluates whether lipoprotein particle measures convey risk of coronary heart disease (CHD) in 4679 Multi-Ethnic Study of Atherosclerosis (MESA) participants. Cox regression analysis was performed to determine associations between lipids or lipoproteins and primary CHD events. After adjustment for nonlipid variables, lipoprotein particle levels in fourth quartiles were found to convey significantly greater risk of incident CHD when compared to first quartile levels (hazard ratio [HR]; 95% confidence interval [CI]): ApoB (HR, 1.84; 95% CI, 1.25-2.69), ApoB/ApoA-I (HR, 1.91; 95% CI, 1.32-2.76), total low-density lipoprotein-particles (LDL-P; HR, 1.77; 95% CI, 1.21-2.58), and the LDL-P/HDL-P (high-density lipoprotein-P) ratio (HR, 2.28; 95% CI, 1.54-3.37). Associations between lipoprotein particle measures and CHD were attenuated after adjustment for standard lipid panel variables. Using the American Heart Association/American College of Cardiology risk calculator as a baseline model for CHD risk assessment, significant net reclassification improvement scores were found for ApoB/ApoA-I (0.18; P=0.007) and LDL-P/high-density lipoprotein-P (0.15; P<0.001). C-statistics revealed no significant increase in CHD event discrimination for any lipoprotein measure. Lipoprotein particle measures ApoB/ApoA-I and LDL-P/high-density lipoprotein-P marginally improved net reclassification improvement scores, but null findings for corresponding c-statistic are not supportive of lipoprotein testing. The attenuated associations of lipoprotein particle measures with CHD after the adjustment for lipids indicate that their measurement does not detect risk that is unaccounted for by the standard lipid panel. However, the possibility that lipoprotein measures may identify CHD risk in a subpopulation of individuals with normal cholesterol, but elevated lipoprotein particle numbers cannot be ruled out. © 2014 American Heart Association, Inc.
Lipid paradox in acute myocardial infarction-the association with 30-day in-hospital mortality.
Cheng, Kai-Hung; Chu, Chih-Sheng; Lin, Tsung-Hsien; Lee, Kun-Tai; Sheu, Sheng-Hsiung; Lai, Wen-Ter
2015-06-01
Elevated low-density lipoprotein cholesterol and triglycerides are major risk factors for coronary artery disease. However, fatty acids from triglycerides are a major energy source, low-density lipoprotein cholesterol is critical for cell membrane synthesis, and both are critical for cell survival. This study was designed to clarify the relationship between lipid profile, morbidity as assessed by Killip classification, and 30-day mortality in patients with acute myocardial infarction. A noninterventional observational study. Coronary care unit in a university hospital. Seven hundred twenty-four patients with acute myocardial infarction in the coronary care program of the Bureau of Health Promotion were analyzed. None. Low-density lipoprotein cholesterol and triglyceride levels were significantly lower in high-Killip (III+IV) patients compared with low-Killip (I+II) patients and in those who died compared with those who survived beyond 30 days (both p<0.001). After adjustment for risk factors, low-density lipoprotein cholesterol less than 62.5 mg/dL and triglycerides less than 110 mg/dL were identified as optimal threshold values for predicting 30-day mortality and were associated with hazard ratios of 1.65 (95% CI, 1.18-2.30) and 5.05 (95% CI, 1.75-14.54), and the actual mortality rates were 23% in low low-density lipoprotein, 6% in high low-density lipoprotein, 14% in low triglycerides, and 3% in high triglycerides groups, respectively. To test the synergistic effect, high-Killip patients with triglycerides less than 62.5 mg/dL and low-density lipoprotein cholesterol less than 110 mg/dL had a 10.9-fold higher adjusted risk of mortality than low-Killip patients with triglycerides greater than or equal to 62.5 mg/dL and low-density lipoprotein cholesterol greater than or equal to 110 mg/dL (p<0.001). The lipid paradox also improved acute myocardial infarction short-term outcomes prediction on original Killip and thrombolytic in myocardial infarction scores. Low low-density lipoprotein cholesterol, low triglycerides, and high Killip severity were associated with significantly higher 30-day in-hospital mortality in patients presenting with acute myocardial infarction. The initial lipid profile of patients with acute myocardial infarction may therefore hold prognostic value.
... fatty substances such as low-density lipoprotein (LDL) cholesterol ('bad cholesterol') in the blood and to increase the amount of high-density lipoprotein (HDL) cholesterol ('good cholesterol'). Pitavastatin is in a class of ...
Singh, Ratnesh K; Lui, Edmund; Wright, David; Taylor, Adrian; Bakovic, Marica
2017-09-01
We investigated whether North American ginseng (Panax quinquefolius) could reduce development of the metabolic syndrome phenotype in a mouse model (ETKO) of the disease. Young ETKO mice have no disease but similar to humans start to develop the fatty liver, hypertriglyceridemia, obesity, and insulin resistance at 25-30 weeks of age, and the disease continues to progress with ageing. ETKO mice were orally given an ethanol extract of ginseng roots at 4 and 32 weeks of age. Treatments with ginseng eliminated the ETKO fatty liver, reduced hepatic and intestinal lipoprotein secretion, and reduced the level of circulating lipids. Improvements by ginseng treatments were manifested as a reduction in the expression of genes involved in the regulation of fatty acid and triglyceride (fat) synthesis and secretion by the lipoproteins on one hand, and the stimulation of fatty acid oxidation and triglyceride degradation by lipolysis on the other hand. These processes altogether improved glucose, fatty acid, and triglyceride metabolism, reduced liver fat load, and reversed the progression of metabolic syndrome. These data confirm that treatments with North American ginseng could alleviate metabolic syndrome through the maintenance of a better balance between glucose and fatty acid metabolism, lipoprotein secretion, and energy homeostasis in disease-prone states.
Chou, Ting-Yi; Lu, Yi-Fa; Inbaraj, Baskaran Stephen; Chen, Bing-Huei
2018-02-07
The aim of this study was to examine the effects of several vegetable oils and blended oil composed of soybean and camellia oils on blood lipid reduction and antioxidative activity. Forty male hamsters were fed an AIN-93 G diet for 1 wk, followed by dividing into five groups: control group-1 was fed a low-fat diet containing 5% oil for 6 wk, and the other four groups were fed high-fat diets with group-2 containing 14% palm oil, group-3 containing 14% camellia oil, group-4 containing 14% soybean oil, and group-5 containing 14% blended oil (8.4% soybean oil and 5.6% camellia oil) along with 0.2% cholesterol and 0.1% bile acid. High-fat diets raised serum triacylglycerol, total cholesterol, and aspartate aminotransferase in hamsters without affecting alanine aminotransferase. Compared with palm oil-containing diet, the other three high-fat diets reduced serum total cholesterol, low-density lipoprotein cholesterol, and the ratio of low-density lipoprotein to high-density lipoprotein cholesterol with an opposite trend for liver total cholesterol. However, compared with the control group, the serum high-density lipoprotein cholesterol level was raised for all four high-fat diets. The higher the degree of oil unsaturation, the higher the serum thiobarbituric acid reactive substances and the lower the liver triacylglycerol level and activities of fatty acid synthase, glucose 6-phosphate dehydrogenase, and malic enzymes. Both soybean and blended oils lowered the antioxidative activity of liver. Camellia and blended oils were more efficient than soybean oil in elevating serum high-density lipoprotein cholesterol and decreasing the ratio of low-density lipoprotein to high-density lipoprotein cholesterol in hamsters. Copyright © 2018 Elsevier Inc. All rights reserved.
East, Alexandra; Mechaly, Ariel E; Huysmans, Gerard H M; Bernarde, Cédric; Tello-Manigne, Diana; Nadeau, Nathalie; Pugsley, Anthony P; Buschiazzo, Alejandro; Alzari, Pedro M; Bond, Peter J; Francetic, Olivera
2016-01-05
The Klebsiella lipoprotein pullulanase (PulA) is exported to the periplasm, triacylated, and anchored via lipids in the inner membrane (IM) prior to its transport to the bacterial surface through a type II secretion system (T2SS). X-Ray crystallography and atomistic molecular dynamics (MD) simulations of PulA in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) model membrane provided an unprecedented molecular view of an N-terminal unstructured tether and the IM lipoprotein retention signal, and revealed novel interactions with the IM via N-terminal immunoglobulin-like domains in PulA. An efficiently secreted nonacylated variant (PulANA) showed similar peripheral membrane association during MD simulations, consistent with the binding of purified PulANA to liposomes. Remarkably, combined X-ray, MD, and functional studies identified a novel subdomain, Ins, inserted in the α-amylase domain, which is required for PulA secretion. Available data support a model in which PulA binding to the IM promotes interactions with the T2SS, possibly via the Ins subdomain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Qingli; Yang, Meng; Fu, Xuekun; Liu, Renzhong; Sun, Caijun; Pan, Haobo; Wong, Chi-Wai; Guan, Min
2016-11-15
As a novel mediator of hepatic very low-density lipoproteins (VLDL) secretion, phospholipase A2 G12B (PLA2G12B) is transcriptionally regulated by hepatocyte nuclear factor-4 alpha (HNF-4α). Farnesoid X receptor (FXR) plays a critical role in maintaining bile acids and triglycerides (TG) homeostasis. Here we report that FXR regulates serum TG level in part through PLA2G12B. Activation of FXR by chenodeoxycholic acid (CDCA) or GW4064 significantly decreased PLA2G12B expression in HepG2 cells. PLA2G12B expression was transcriptionally repressed due to an FXR-mediated up-regulation of small heterodimer partner (SHP) which functionally suppresses HNF-4α activity. We found that hepatic PLA2G12B expression was suppressed and serum TG level reduced in high fat diet mice treated with CDCA. Concurrently, CDCA treatment lowered hepatic VLDL-TG secretion. Our data demonstrate that activation of FXR promotes TG lowering, not only by decreasing de novo lipogenesis but also reducing hepatic secretion of TG-rich VLDL particles in part through suppressing PLA2G12B expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effect of Exercise Training on Cardiac Biomarkers in At-Risk Populations: A Systematic Review.
Glenney, Susan Sullivan; Brockemer, Derrick Paul; Ng, Andy C; Smolewski, Michael A; Smolgovskiy, Vladimir M; Lepley, Adam S
2017-12-01
Studies have demonstrated beneficial effects of exercise on cardiovascular disease biomarkers for healthy individuals; however, a comprehensive review regarding the effect of exercise on cardiovascular disease biomarkers in at-risk populations is lacking. A literature search was performed to identify studies meeting the following criteria: randomized controlled study, participants with pathology/activity limitations, biomarker outcome (total cholesterol, high-density lipoprotein, low-density lipoprotein, C-reactive protein, insulin, triglycerides, or glucose), and exercise intervention. Means and standard deviations from each biomarker were used to calculate standardized Cohen's d effect sizes with 95% confidence intervals. In total, 37 articles were included. The majority (44/57; 77%) of data points demonstrated moderate to strong effects for the reduction in total cholesterol, triglycerides, and low-density lipoprotein, and elevation in high-density lipoprotein following exercise. The majority of data points demonstrated strong effects for reductions in blood glucose (24/30; 80%) and insulin (23/24; 96%) levels following exercise intervention. Evidence is heterogeneous regarding the influence of exercise on cardiovascular disease biomarkers in at-risk patients, which does not allow a definitive conclusion. Favorable effects include reductions in triglycerides, total cholesterol, low-density lipoprotein, glucose, and insulin, and elevation in high-density lipoprotein following exercise intervention. The strongest evidence indicates that exercise is favorable for the reduction in glucose and cholesterol levels among obese patients, and reduction of insulin regardless of population.
Role of the Enterocyte in Fructose-Induced Hypertriglyceridaemia.
Steenson, Simon; Umpleby, A Margot; Lovegrove, Julie A; Jackson, Kim G; Fielding, Barbara A
2017-04-01
Dietary fructose has been linked to an increased post-prandial triglyceride (TG) level; which is an established independent risk factor for cardiovascular disease. Although much research has focused on the effects of fructose consumption on liver-derived very-low density lipoprotein (VLDL); emerging evidence also suggests that fructose may raise post-prandial TG levels by affecting the metabolism of enterocytes of the small intestine. Enterocytes have become well recognised for their ability to transiently store lipids following a meal and to thus control post-prandial TG levels according to the rate of chylomicron (CM) lipoprotein synthesis and secretion. The influence of fructose consumption on several aspects of enterocyte lipid metabolism are discussed; including de novo lipogenesis; apolipoprotein B48 and CM-TG production; based on the findings of animal and human isotopic tracer studies. Methodological issues affecting the interpretation of fructose studies conducted to date are highlighted; including the accurate separation of CM and VLDL. Although the available evidence to date is limited; disruption of enterocyte lipid metabolism may make a meaningful contribution to the hypertriglyceridaemia often associated with fructose consumption.
Role of the Enterocyte in Fructose-Induced Hypertriglyceridaemia
Steenson, Simon; Umpleby, A. Margot; Lovegrove, Julie A.; Jackson, Kim G.; Fielding, Barbara A.
2017-01-01
Dietary fructose has been linked to an increased post-prandial triglyceride (TG) level; which is an established independent risk factor for cardiovascular disease. Although much research has focused on the effects of fructose consumption on liver-derived very-low density lipoprotein (VLDL); emerging evidence also suggests that fructose may raise post-prandial TG levels by affecting the metabolism of enterocytes of the small intestine. Enterocytes have become well recognised for their ability to transiently store lipids following a meal and to thus control post-prandial TG levels according to the rate of chylomicron (CM) lipoprotein synthesis and secretion. The influence of fructose consumption on several aspects of enterocyte lipid metabolism are discussed; including de novo lipogenesis; apolipoprotein B48 and CM-TG production; based on the findings of animal and human isotopic tracer studies. Methodological issues affecting the interpretation of fructose studies conducted to date are highlighted; including the accurate separation of CM and VLDL. Although the available evidence to date is limited; disruption of enterocyte lipid metabolism may make a meaningful contribution to the hypertriglyceridaemia often associated with fructose consumption. PMID:28368310
USDA-ARS?s Scientific Manuscript database
Dose-associated effects of rosuvastatin on the metabolism of apolipoprotein (apo) B-100 in triacylglycerol rich lipoprotein (TRL, d < 1.019 g/ml) and low density lipoprotein (LDL) and of apoA-I in high density lipoprotein (HDL) were assessed in subjects with combined hyperlipidemia. Our primary hypo...
USDA-ARS?s Scientific Manuscript database
We evaluated whether a water extract of cinnamon (CE = Cinnulin PF®) attenuates the dyslipidemia induced by TNF-alpha in Triton WR-1339-treated hamsters, and whether CE inhibited the over-secretion of apoB48-induced by TNF-alpha in enterocytes in a 35S-labelling study. In vivo, oral treatment with C...
... fatty substances such as low-density lipoprotein (LDL) cholesterol ('bad cholesterol') and triglycerides in the blood and to increase the amount of high-density lipoprotein (HDL) cholesterol ('good cholesterol') in the blood. Fluvastatin may also ...
... fatty substances such as low-density lipoprotein (LDL) cholesterol (''bad cholesterol'') and triglycerides in the blood and to increase the amount of high-density lipoprotein (HDL) cholesterol (''good cholesterol'') in the blood. Simvastatin may also ...
... fatty substances such as low-density lipoprotein (LDL) cholesterol ('bad cholesterol') and triglycerides in the blood and to increase the amount of high-density lipoprotein (HDL) cholesterol ('good cholesterol') in the blood. Pravastatin is in ...
Determining the risk of cardiovascular disease using ion mobility of lipoproteins
Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.
2010-05-11
A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.
Vengerovsky, A I; Yakimova, T V; Nasanova, O N
2015-01-01
The influence of low-fat diet, nettle (Urtica dioica) leafs and burdock (Arctium lappa) roots extracts on lipid metabolism and glycosylation reactions has been investigated in experimental diabetes mellitus. These extracts were applied in diets with both high and low fat content. The experiments were performed on 90 noninbred male albino rats (200–220 g) that were divided into 9 experimental groups. Diabetes mellitus was modeled with twice-repeated intraperitoneal streptozotocin (30 mg/kg) injections. The animals received food with increased fat content (proteins – 8%, fats – 30%, carbohydrates – 62% of total daily caloric content) during 4 weeks before streptozotocine injections and 8 weeks after its discontinuation. Simultaneously the rats were daily administered nettle leafs (100 mg/kg), burdock roots (25 mg/kg) extracts or metformin (100 mg/kg) into the stomach during 10 days. During the period of agents introduction half the animals continued to receive food with high fat content, the other half received low fat diet (proteins – 20%, fats – 8%, carbohydrates – 72% of the total daily caloric content). The forth (control) group received low fat food only without extracts or metformin administration. The levels of blood glucose, glycosylated hemoglobin, malonic dialdehyde, lipid and lipoprotein fractions content were measured. It has been shown that after streptozotocine injections and 30% fat diet consumption the blood glucose level increased by 5.3 fold compared to that of the intact animals, the content of atherogenic lipid fractions increased by 2–8.3 fold and the protein glycosylation reactions were intensified by 1.9–2.5 fold. In animals fed with 8% fat diet the blood glucose and malonic dialdehyde content decreased by 1.8–2.3 fold. In this experiment the levels of triglycerides, total cholesterol, cholesterol of nonhigh-density lipoproteins, low-density and very low-density lipoproteins, as well as the cholesterol and protein content of high-density lipoproteins normalized. The low fat food did not cause glycosylation reactions regression. With the administration of nettle, burdock extracts or metformin to animals that continued to receive high fat food the blood glucose, triglycerides, total cholesterol, cholesterol of nonhigh-density lipoproteins, low-density and very low-density lipoproteins levels decreased by l.6–7.l fold as compared to the parameters in streptozotocine diabetes mellitus. Cholesterol and protein content of high-density lipoproteins increased by l.4–3.7 fold. The herbal extracts also prevented malonic dialdehyde formation, high-density lipoproteins and hemoglobin glycosylation. The nettle and burdock extracts more effectively decreased hyperglycemia, hypertriglyceridemia and lipoperoxidation in animals fed with low fat food. Metformin in the experiment with low fat intake decreased the glucose, low-density and very low-density lipoproteins content to a maximal degree and prevented high-density lipoproteins glycosylation.
High density lipoprotein cholesterol is associated with serum cortisol in older people.
Varma, V K; Rushing, J T; Ettinger, W H
1995-12-01
To determine the associations between serum cortisol and HDL cholesterol, other lipoprotein lipids and cardiovascular risk factors, carotid atherosclerosis, and clinical heart disease in older people. A cross-sectional, observational, ancillary study of the Cardiovascular Health Study (CHS). A total of 245 community-dwelling people, 65 to 89 years old, were recruited consecutively for a 2-month period from the CHS cohort in Forsyth County, North Carolina. Cortisol was measured by radioimmunoassay in serum collected between 7:00 and 10:00 AM after an overnight fast. Cortisol levels were correlated with lipoprotein lipids, insulin, glucose, body mass index, waist-hip ratio, prevalent coronary heart disease, hypertension, diabetes, and carotid atherosclerosis by B-mode ultrasound. Serum cortisol was correlated negatively (r = -.24) with body mass index and waist-hip ratio (r = -.16) but was not related significantly to fasting insulin or glucose. Cortisol was not associated significantly with triglyceride and low density lipoprotein cholesterol but showed a positive correlation (r = .21) with high density lipoprotein cholesterol. The relationship between cortisol and high density lipoprotein cholesterol persisted after adjustment for gender, body mass index, waist-hip ratio, cigarette and alcohol use, triglyceride level, and diabetes. There was a trend toward a negative correlation between cortisol and measures of carotid atherosclerosis, but no significant relationship was indicated between cortisol and prevalent coronary heart disease, hypertension, or diabetes. Endogenous glucocorticoid levels correlated with HDL cholesterol levels and may play a role in the physiologic regulation of high density lipoprotein levels in older people.
Whiteman, John P; Frank, Nicholas; Greller, Katie A; Harlow, Henry J; Ben-David, Merav
2013-05-01
Blood triacylglycerol (TG) and lipoproteins are important variables for evaluating nutritional status of wildlife, but measurements are often expensive and difficult. Performance of a small, portable blood analyzer intended for human medical diagnostics was evaluated in measuring these variables in plasma and serum from free-ranging polar bears (Ursus maritimus), which are experiencing nutritional stress related to sea ice loss. The analyzer accurately tracked changes in concentration of total cholesterol (Ctotal), cholesterol associated with high-density lipoprotein (CHDL), and TG during a validation protocol of diluting samples and spiking them with exogenous cholesterol and glycerol. Values of Ctotal and TG agreed well with values obtained by other methods (ultracentrifugation followed by colorimetric assays); agreement was variable for values of cholesterol associated with specific lipoproteins. Similar to a study of captive polar bears, ultracentrifugation methods revealed greater TG in very low-density lipoproteins than in low-density lipoprotein, which is unusual and merits additional study.
... and LDL (bad) cholesterol: HDL stands for high-density lipoproteins. It is called the "good" cholesterol because ... cholesterol from your body. LDL stands for low-density lipoproteins. It is called the "bad" cholesterol because ...
... and HDL (good) cholesterol: LDL stands for low-density lipoproteins. It is called the "bad" cholesterol because ... cholesterol in your arteries. HDL stands for high-density lipoproteins. It is called the "good" cholesterol because ...
Perttilä, Julia; Merikanto, Krista; Naukkarinen, Jussi; Surakka, Ida; Martin, Nicolas W; Tanhuanpää, Kimmo; Grimard, Vinciane; Taskinen, Marja-Riitta; Thiele, Christoph; Salomaa, Veikko; Jula, Antti; Perola, Markus; Virtanen, Ismo; Peltonen, Leena; Olkkonen, Vesa M
2009-08-01
Analysis of variants in three genes encoding oxysterol-binding protein (OSBP) homologues (OSBPL2, OSBPL9, OSBPL10) in Finnish families with familial low high-density lipoprotein (HDL) levels (N = 426) or familial combined hyperlipidemia (N = 684) revealed suggestive linkage of OSBPL10 single-nucleotide polymorphisms (SNPs) with extreme end high triglyceride (TG; >90th percentile) trait. Prompted by this initial finding, we carried out association analysis in a metabolic syndrome subcohort (Genmets) of Health2000 examination survey (N = 2,138), revealing association of multiple OSBPL10 SNPs with high serum TG levels (>95th percentile). To investigate whether OSBPL10 could be the gene underlying the observed linkage and association, we carried out functional experiments in the human hepatoma cell line Huh7. Silencing of OSBPL10 increased the incorporation of [(3)H]acetate into cholesterol and both [(3)H]acetate and [(3)H]oleate into triglycerides and enhanced the accumulation of secreted apolipoprotein B100 in growth medium, suggesting that the encoded protein ORP10 suppresses hepatic lipogenesis and very-low-density lipoprotein production. ORP10 was shown to associate dynamically with microtubules, consistent with its involvement in intracellular transport or organelle positioning. The data introduces OSBPL10 as a gene whose variation may contribute to high triglyceride levels in dyslipidemic Finnish subjects and provides evidence for ORP10 as a regulator of cellular lipid metabolism.
Yang, Shu-Yu; Li, Xue-Jun; Zhang, Wei; Liu, Chang-Qin; Zhang, Hui-Jie; Lin, Jin-Rong; Yan, Bing; Yu, Ya-Xin; Shi, Xiu-Lin; Li, Can-Dong; Li, Wei-Hua
2012-06-01
To investigate whether the Chinese lacto-vegetarian diet has protective effects on metabolic and cardiovascular disease (CVD). One hundred sixty-nine healthy Chinese lacto-vegetarians and 126 healthy omnivore men aged 21-76 years were enrolled. Anthropometric indexes, lipid profile, insulin sensitivity, pancreatic β cell function, and intima-media thickness (IMT) of carotid arteries were assessed and compared. Cardiovascular risk points and probability of developing CVD in 5-10 years in participants aged 24-55 years were calculated. Compared with omnivores, lacto-vegetarians had remarkably lower body mass index, systolic and diastolic blood pressure, and serum levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B, γ-glutamyl transferase, serum creatinine, uric acid, fasting blood glucose, as well as lower total cholesterol/high-density lipoprotein cholesterol ratio. Vegetarians also had higher homeostasis model assessment β cell function and insulin secretion index and thinner carotid IMT than the omnivores did. These results corresponded with lower cardiovascular risk points and probability of developing CVD in 5-10 years in vegetarians 24-55 years old. In healthy Chinese men, the lacto-vegetarian diet seems to exert protective effects on blood pressure, lipid profiles, and metabolic parameters and results in significantly lower carotid IMT. Lower CVD risks found in vegetarians also reflect the beneficial effect of the Chinese lacto-vegetarian diet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Robert K.
Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less
Kosukhin, A B; Akhmetova, B S
1986-01-01
Fatty acid spectrum of lipoproteins was studied in intestinal steam lymph and blood plasma of dogs with alimentary hypercholesterolemia. Mechanism of cholesterol accumulation in blood plasma appears to relate to increase in content of cholesterol palmitate which is secreted from intestine into lymph and hydrolyzed slowly in liver tissue. Alterations in composition of fatty acid acyls of cholesterol esters, of phosphatidyl cholines and triacyl glycerides as well as effect of these alterations on the lecithin-cholesterol acyl-transferase reaction and lipoprotein lipolysis are discussed.
Sparks, Janet D.; Collins, Heidi L.; Chirieac, Doru V.; Cianci, Joanne; Jokinen, Jenny; Sowden, Mark P.; Galloway, Chad A.; Sparks, Charles E.
2006-01-01
We have previously reported a positive correlation between the expression of BHMT (betaine–homocysteine S-methyltransferase) and ApoB (apolipoprotein B) in rat hepatoma McA (McArdle RH-7777) cells [Sowden, Collins, Smith, Garrow, Sparks and Sparks (1999) Biochem. J. 341, 639–645]. To examine whether a similar relationship occurs in vivo, hepatic BHMT expression was induced by feeding rats a Met (L-methionine)-restricted betaine-containing diet, and parameters of ApoB metabolism were evaluated. There were no generalized metabolic abnormalities associated with Met restriction for 7 days, as evidenced by control levels of serum glucose, ketones, alanine aminotransferase and L-homocysteine levels. Betaine plus the Met restriction resulted in lower serum insulin and non-esterified fatty acid levels. Betaine plus Met restriction induced hepatic BHMT 4-fold and ApoB mRNA 3-fold compared with Met restriction alone. No changes in percentage of edited ApoB mRNA were observed on the test diets. An increase in liver ApoB mRNA correlated with an 82% and 46% increase in ApoB and triacylglycerol production respectively using in vivo Triton WR 1339. Increased secretion of VLDL (very-low-density lipoprotein) with Met restriction plus betaine was associated with a 45% reduction in liver triacylglycerol compared with control. Nuclear run-off assays established that transcription of both bhmt and apob genes was also increased in Met-restricted plus betaine diets. No change in ApoB mRNA stability was detected in BHMT-transfected McA cells. Hepatic ApoB and BHMT mRNA levels were also increased by 1.8- and 3-fold respectively by betaine supplementation of Met-replete diets. Since dietary betaine increased ApoB mRNA, VLDL ApoB and triacylglycerol production and decreased hepatic triacylglycerol, results suggest that induction of apob transcription may provide a potential mechanism for mobilizing hepatic triacylglycerol by increasing ApoB available for VLDL assembly and secretion. PMID:16396637
Glueck, Charles J; Morrison, John A; Goldenberg, Naila; Wang, Ping
2009-05-01
Our specific aim was to determine whether coronary heart disease (CHD) risk factors in polycystic ovary syndrome (PCOS) patients were independent of their higher body mass index (BMI) and centripetal obesity. In adult, premenopausal, white women, CHD risk factors were compared between 488 patients with well-defined PCOS and 351 healthy free-living population controls from the Princeton Follow-up Study (PFS). After excluding women with irregular menses (putative PCOS phenotypes), comparisons were also made between the 261 PFS women with a history of regular menses and the 488 women with PCOS. Fasting lipids, insulin, glucose, homeostasis model assessment of insulin resistance (HOMA-IR), HOMA insulin secretion, blood pressure, BMI, and waist circumference were measured. Compared with both the full cohort of 351 PFS women and the subgroup of 261 PFS women with regular menses, women with PCOS had higher BMI, waist circumference, total and low-density lipoprotein cholesterol, triglyceride, systolic blood pressure, diastolic blood pressure, insulin, glucose, and HOMA-IR (all Ps < or = .005). After adjusting for age and BMI, women with PCOS, compared with the 351 and 261 PFS women, had lower high-density lipoprotein cholesterol (P < .0001, .0008) and higher systolic blood pressure (P = .0002, < .0001), insulin (P = .017, .039), HOMA-IR (P = .013, .032), and HOMA insulin secretion (P = .022, .037). The small subgroup of PCOS women with normal BMI (<25 kg/m(2)) (36/488, 7%) also had higher age-adjusted insulin, glucose, and HOMA-IR (all Ps < .005) than the subgroup of PFS women with BMI less than 25 kg/m(2) (123/261, 47%). Increased CHD risk factors and high HOMA-IR in PCOS cannot be exclusively attributed to their preponderant centripetal obesity. Identification of women with clinical features of PCOS should alert the clinician to potentially increased risk for CHD and prompt CHD risk factor testing.
Impaired Insulin Suppression of VLDL-Triglyceride Kinetics in Nonalcoholic Fatty Liver Disease.
Poulsen, Marianne K; Nellemann, Birgitte; Stødkilde-Jørgensen, Hans; Pedersen, Steen B; Grønbæk, Henning; Nielsen, Søren
2016-04-01
Nonalcoholic fatty liver disease (NAFLD) is associated with glucose and lipid metabolic abnormalities. However, insulin suppression of very low-density lipoprotein-triglyceride (VLDL-TG) kinetics is not fully understood. The objective of the study was to determine VLDL-TG, glucose, and palmitate kinetics during fasting and hyperinsulinemia in men with (NAFLD+) and without NAFLD (NAFLD−). Twenty-seven nondiabetic, upper-body obese (waist to hip ratio > 0.9, body mass index > 28 kg/m2) men, 18 NAFLD+, and nine NAFLD− determined by magnetic resonance spectroscopy were enrolled.14C-labeled VLDL-TG and 3H-labeled glucose and palmitate tracers were applied in combination with indirect calorimetry and breath samples to assess kinetics and substrate oxidations postabsorptively and during a hyperinsulinemic-euglycemic clamp. Dual-X-ray absorptiometry and magnetic resonance imaging assessed body composition. Liver fat content was greater in NAFLD+ than NAFLD− men (21.0% vs 3.7%), even though body composition, metabolites (except triglycerides), and insulin were similar in the groups. Insulin suppression of VLDL-TG secretion (P = .0001), oxidation (P = .0003), and concentration (P= .008) as well as percentage decreases were lower in NAFLD+ than NAFLD− men (secretion: 31.9% ± 17.2% vs 64.7% ± 19.9%; oxidation: −9.0% ± 24.7% vs 46.5% ± 36.6%; concentration: 11.9% ± 20.7% vs 56.2% ± 22.9%, all P < .001). Likewise, lower insulin suppression of very low-density lipoprotein particle size was present in NAFLD+ than NAFLD− men (P = .0002). Conversely, insulin suppression of endogenous glucose production was similar in the groups. Compared with endogenous glucose production, the inability of NAFLD+ men to suppress VLDL-TG kinetics to compensate for the increased liver fat content seems to be an early pathophysiological manifestation of male NAFLD+. These data suggest therapeutic targets reducing liver fat content may ameliorate metabolic abnormalities associated with NAFLD and presumably diabetes.
Gillard, Baiba K.; Lin, Hu-Yu Alice; Massey, John B.; Pownall, Henry J.
2009-01-01
Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport. PMID:19635584
Fryer, Lee G. D.; Jones, Bethan; Duncan, Emma J.; Hutchison, Claire E.; Ozkan, Tozen; Williams, Paul A.; Alder, Olivia; Nieuwdorp, Max; Townley, Anna K.; Mensenkamp, Arjen R.; Stephens, David J.; Dallinga-Thie, Geesje M.; Shoulders, Carol C.
2014-01-01
Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions. PMID:24338480
Meier, C; Staub, J J; Roth, C B; Guglielmetti, M; Kunz, M; Miserez, A R; Drewe, J; Huber, P; Herzog, R; Müller, B
2001-10-01
This study evaluated the effect of physiological, TSH-guided, L-thyroxine treatment on serum lipids and clinical symptoms in patients with subclinical hypothyroidism. Sixty-six women with proven subclinical hypothyroidism (TSH, 11.7 +/- 0.8 mIU/liter) were randomly assigned to receive L-thyroxine or placebo for 48 wk. Individual L-thyroxine replacement (mean dose, 85.5 +/- 4.3 microg/d) was performed based on blinded TSH monitoring, resulting in euthyroid TSH levels (3.1 +/- 0.3 mIU/liter). Lipid concentrations and clinical scores were measured before and after treatment. Sixty-three of 66 patients completed the study. In the L-thyroxine group (n = 31) total cholesterol and low density lipoprotein cholesterol were significantly reduced [-0.24 mmol/liter, 3.8% (P = 0.015) and -0.33 mmol/liter, 8.2% (P = 0.004), respectively]. Low density lipoprotein cholesterol decrease was more pronounced in patients with TSH levels greater than 12 mIU/liter or elevated low density lipoprotein cholesterol levels at baseline. A significant decrease in apolipoprotein B-100 concentrations was observed (P = 0.037), whereas high density lipoprotein cholesterol, triglycerides, apolipoprotein AI, and lipoprotein(a) levels remained unchanged. Two clinical scores assessing symptoms and signs of hypothyroidism (Billewicz and Zulewski scores) improved significantly (P = 0.02). This is the first double blind study to show that physiological L-thyroxine replacement in patients with subclinical hypothyroidism has a beneficial effect on low density lipoprotein cholesterol levels and clinical symptoms of hypothyroidism. An important risk reduction of cardiovascular mortality of 9-31% can be estimated from the observed improvement in low density lipoprotein cholesterol.
Habitual Diet and Avocado Trial
2018-06-19
Intra-abdominal Fat; Metabolic Syndrome; High Cholesterol; Triglycerides High; Diet Habit; High Blood Sugar; Liver Fat; Dietary Modification; HDL Cholesterol, Low Serum; Cardiovascular Diseases; High Density Lipoprotein Deficiency; Low-density-lipoprotein-type; Cardiovascular Risk Factor; Diabetes
Method of assessing a lipid-related health risk based on ion mobility analysis of lipoproteins
Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.
2010-12-14
A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.
Titov, V N
2014-02-01
In liver statins inhibit synthesis of specific pool of cholesterol which is formed de novo by hepatocytes for monolayer of polar lipids at the surface of forming lipoproteins of very low density. The statins, decreasing content of non-esterified cholesterol in monolayer, activate hydrolysis of triglycerides in lipoproteins of very low density, formation of lipoproteins of low density and their absorption by cells through apoB-100 receptors. The statins, activating absorption of lipoproteins of low density, restore functional action of essential polyenoic fatty acids. The essential polyenoic fatty acids, fibrates and glitazones form in cells effective oleic version of metabolism when mitochondrions predominantly oxidize oleic fatty acid. The statins, non-activating oxidation in peroxisomes and inhibiting activity of stearil-KoA-desaturase, form in cells less effective palmitic variant of metabolism of fatty acids under oxidation of palmitic fatty acid in mitochondrions. The fatty acids are not enough under hydrolysis of exogenous triglycerides to synthesize optimal amount of ATP. The fatty acids accumulated in adipocytes are to be used. This is the cause of formation by statins the resistance to insulin. Functionally, lipoproteins of very low density and lipoproteins of low density are phylogenetically different. The former ones transfer fatty acids to cells in the form of triglycerides and the latter ones--in the form of ethers with alcohol cholesterol. The statins normalize absorption of essential polyenoic fatty acids by cells which manifest a physiological action named a pleotropic one.
Rideout, Todd C; Harding, Scott V; Raslawsky, Amy; Rempel, Curtis B
2017-05-04
Resistant starch (RS) has been well characterized for its glycemic control properties; however, there is little consensus regarding the influence of RS on blood lipid concentrations and lipoprotein distribution and size. Therefore, this study aimed to characterize the effect of daily RS supplementation in a controlled capsule delivery on biomarkers of cardiovascular (blood lipids, lipoproteins) and diabetes (glucose, insulin) risk in a pig model. Twelve 8-week-old male Yorkshire pigs were placed on a synthetic Western diet and randomly divided into two groups (n = 6/group) for 30 days: (1) a placebo group supplemented with capsules containing unmodified pre-gelatinized potato starch (0 g/RS/day); and (2) an RS group supplemented with capsules containing resistant potato starch (10 g/RS/day). Serum lipids including total-cholesterol (C), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides did not differ (p > 0.05) between the RS and placebo groups. Although the total numbers of very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) particles were similar (p > 0.05) between the two groups, total high-density lipoprotein (HDL) particles were higher (+28%, p < 0.05) in the RS group compared with placebo, resulting from an increase (p < 0.05) in the small HDL subclass particles (+32%). Compared with the placebo group, RS supplementation lowered (p < 0.05) fasting serum glucose (-20%) and improved (p < 0.05) insulin resistance as estimated by Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) without a change in insulin. Additionally, total serum glucagon-like-peptide 1 (GLP-1) was higher (+141%, p < 0.05) following RS supplementation compared with placebo. This data suggests that in addition to the more well-characterized effect of RS intake in lowering blood glucose and improving insulin sensitivity, the consumption of RS may be beneficial in lipid management strategies by enhancing total HDL particle number.
Lupton, Joshua R; Faridi, Kamil F; Martin, Seth S; Sharma, Sristi; Kulkarni, Krishnaji; Jones, Steven R; Michos, Erin D
2016-01-01
Cross-sectional studies have found an association between deficiencies in serum vitamin D, as measured by 25-hydroxyvitamin D (25[OH]D), and an atherogenic lipid profile. These studies have focused on a limited panel of lipid values including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG). Our study examines the relationship between serum 25(OH)D and an extended lipid panel (Vertical Auto Profile) while controlling for age, gender, glycemic status, and kidney function. We used the Very Large Database of Lipids, which includes US adults clinically referred for analysis of their lipid profile from 2009 to 2011. Our study focused on 20,360 subjects who had data for lipids, 25(OH)D, age, gender, hemoglobin A1c, insulin, creatinine, and blood urea nitrogen. Subjects were split into groups based on serum 25(OH)D: deficient (<20 ng/mL), intermediate (≥ 20-30 ng/mL), and optimal (≥ 30 ng/mL). The deficient group was compared to the optimal group using multivariable linear regression. In multivariable-adjusted linear regression, deficient serum 25(OH)D was associated with significantly lower serum HDL-C (-5.1%) and higher total cholesterol (+9.4%), non-HDL-C (+15.4%), directly measured LDL-C (+13.5%), intermediate-density lipoprotein cholesterol (+23.7%), very low-density lipoprotein cholesterol (+19.0%), remnant lipoprotein cholesterol (+18.4%), and TG (+26.4%) when compared with the optimal group. Deficient serum 25(OH)D is associated with significantly lower HDL-C and higher directly measured LDL-C, intermediate-density lipoprotein cholesterol, very low-density lipoproteins cholesterol, remnant lipoprotein cholesterol, and TG. Future trials examining vitamin D supplementation and cardiovascular disease risk should consider using changes in an extended lipid panel as an additional outcome measurement. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Gerasimova, E N; Levachev, M M; Perova, N V; Nikitin, Iu P; Ozerova, I N
1986-01-01
Contents of cholesterol, triglycerides, high density lipoproteins (HDL) cholesterol as well as phospholipid and fatty acid compositions of phosphatidyl cholines and sphingomyelins in low density lipoproteins (LDL) were studied in blood plasma of Chukot aborigenes--Eskimos as compared with Moscow inhabitants. In Eskimos content of HDL cholesterol was higher but concentration of cholesterol and triglycerides was lower in blood plasma. In LDL concentration of sphingomyelins was increased and fatty acid composition of phosphatidyl cholines and sphingomyelins was altered where amount of polyunsaturated fatty acids was elevated (20:5 + 22:5 + 22:6). The specific characteristics of the LDL phospholipids observed in Eskimos might be responsible for the higher liquid properties of the surface monolayer in the lipoproteins; this alteration might be important for the lipoprotein properties and transformation as well as for the properties of membrane-bound enzymes, for synthesis of thromboxane and prostacyclins.
Arai, Y; Hirose, N; Nakazawa, S; Yamamura, K; Shimizu, K; Takayama, M; Ebihara, Y; Osono, Y; Homma, S
2001-11-01
To assess the complex interaction of apolipoprotein (apo) E polymorphisms and environmental factors on lipoprotein profile in centenarians. Cross-sectional analysis. Tokyo metropolitan area. Seventy-five centenarians and 73 healthy older volunteers (mean age 63.1 +/- 10.0) living in the Tokyo metropolitan area. Plasma lipids and lipoproteins, cholesteryl ester transfer protein mass, apo E phenotype, body mass index, nutritional indices (serum albumin, prealbumin, transferrin), dietary intake, inflammation markers (C-reactive protein (CRP), interleukin-6 (IL-6)), activities of daily living, and cognitive function. In comparison with older people, the centenarians had low concentrations of total and low-density lipoprotein cholesterol (LDL-C) and a relative predominance of high-density lipoprotein 2 cholesterol. No environmental factor, except the number of apo E epsilon2 alleles, was a significant determinant of LDL-C and apo B, suggesting that the low apo B-containing lipoprotein in centenarians may be attributable to a genetic cause. Centenarians had elevated levels of lipoprotein (a) and decreased high-density lipoprotein cholesterol (HDL-C), which seem to be an unfavorable lipoprotein profile. Lower levels of HDL-C in the centenarians were associated with decreased serum albumin, elevated CRP and IL-6 levels, and cognitive impairment, suggesting that HDL-C could be a sensitive marker for frailty and comorbidity in the oldest old. Low levels of apo B-containing lipoproteins attributable to a genetic cause may be advantageous for longevity. Lipoprotein profiles in centenarians were consistently related to the subjects' nutritional status, inflammation markers, and apo E polymorphisms. The results provide evidence for the importance of maintaining nutritional status in the very old.
USDA-ARS?s Scientific Manuscript database
Maximal doses of atorvastatin and rosuvastatin are highly effective in lowering low-density lipoprotein (LDL) cholesterol and triglyceride levels; however, rosuvastatin has been shown to be significantly more effective than atorvastatin in lowering LDL cholesterol and in increasing high-density lipo...
Biddinger, Sudha B.; Hernandez-Ono, Antonio; Rask-Madsen, Christian; Haas, Joel T.; Alemán, José O.; Suzuki, Ryo; Scapa, Erez F.; Agarwal, Chhavi; Carey, Martin C.; Stephanopoulos, Gregory; Cohen, David E.; King, George L.; Ginsberg, Henry; Kahn, C. Ronald
2014-01-01
Insulin resistance plays a central role in the development of the metabolic syndrome, but how it relates to cardiovascular disease remains controversial. Liver insulin receptor knockout (LIRKO) mice have pure hepatic insulin resistance. On a chow diet, LIRKO mice have a proatherogenic lipoprotein profile with reduced HDL cholesterol and VLDL particles that are markedly enriched in cholesterol. This is due to increased secretion and decreased clearance of apoB-containing lipoproteins, coupled with decreased triglyceride secretion secondary to increased expression of PGC-1β, which promotes VLDL secretion, but decreased expression of SREBP-1c, SREBP-2 and their targets, the lipogenic enzymes and the LDL receptor. Within twelve weeks on an atherogenic diet, LIRKO mice show marked hypercholesterolemia, and 100% of LIRKO mice, but 0% of controls, develop severe atherosclerosis. Thus, insulin resistance at the level of the liver is sufficient to produce the dyslipidemia and increased risk of atherosclerosis associated with the metabolic syndrome. PMID:18249172
Genome-wide association analysis of metabolic traits in a birth cohort from a founder population.
Sabatti, Chiara; Service, Susan K; Hartikainen, Anna-Liisa; Pouta, Anneli; Ripatti, Samuli; Brodsky, Jae; Jones, Chris G; Zaitlen, Noah A; Varilo, Teppo; Kaakinen, Marika; Sovio, Ulla; Ruokonen, Aimo; Laitinen, Jaana; Jakkula, Eveliina; Coin, Lachlan; Hoggart, Clive; Collins, Andrew; Turunen, Hannu; Gabriel, Stacey; Elliot, Paul; McCarthy, Mark I; Daly, Mark J; Järvelin, Marjo-Riitta; Freimer, Nelson B; Peltonen, Leena
2009-01-01
Genome-wide association studies (GWAS) of longitudinal birth cohorts enable joint investigation of environmental and genetic influences on complex traits. We report GWAS results for nine quantitative metabolic traits (triglycerides, high-density lipoprotein, low-density lipoprotein, glucose, insulin, C-reactive protein, body mass index, and systolic and diastolic blood pressure) in the Northern Finland Birth Cohort 1966 (NFBC1966), drawn from the most genetically isolated Finnish regions. We replicate most previously reported associations for these traits and identify nine new associations, several of which highlight genes with metabolic functions: high-density lipoprotein with NR1H3 (LXRA), low-density lipoprotein with AR and FADS1-FADS2, glucose with MTNR1B, and insulin with PANK1. Two of these new associations emerged after adjustment of results for body mass index. Gene-environment interaction analyses suggested additional associations, which will require validation in larger samples. The currently identified loci, together with quantified environmental exposures, explain little of the trait variation in NFBC1966. The association observed between low-density lipoprotein and an infrequent variant in AR suggests the potential of such a cohort for identifying associations with both common, low-impact and rarer, high-impact quantitative trait loci.
Lecerf, Jean-Michel; Luc, Gérald; Marécaux, Nadine; Bal, Sylvie; Bonte, Jean-Paul; Lacroix, Brigitte; Cayzeele, Amélie
2009-01-01
The diet is the first step in managing hypercholesterolemia. The objective of the present study is to assess whether moderate changes in dietary fatty acids improve plasma lipid parameters in mildly hypercholesterolemic outpatients. Using a randomized double-blind study, 121 outpatients within two groups received an isocaloric amount of unsaturated margarine or butter. Clinical and anthropometric measurements and a 3-day food record were made. Chi-square and Fisher's tests were used to compare qualitative variables and the general linear procedure was used to compare the groups. Additional analyses were performed after adjustment. There was a significant difference (P <0.03) in low-density lipoprotein-cholesterol levels between the groups. Total cholesterol, low-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol and apolipoprotein B values decreased in the unsaturated group in comparison with the saturated group. Low-density lipoprotein-cholesterol changes were correlated with the variation in polyunsaturated fatty acid intake and with plasma phospholipid linoleic acid levels. A small change in saturated by polyunsaturated fatty acid intake may improve plasma lipid parameters in mildly hypercholesterolemic subjects.
Bobadilla Fazzini, Roberto A.; Levican, Gloria
2010-01-01
The nature of the mineral–bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743–2747, 1998). On this respect, despite Acidithiobacilli—a ubiquitous bacterial genera in bioleaching processes (Rawlings, Microb Cell Fact 4(1):13, 2005)—has long been recognized as secreting bacteria (Jones and Starkey, J Bacteriol 82:788–789, 1961; Schaeffer and Umbreit, J Bacteriol 85:492–493, 1963), few studies have been carried out in order to clarify the nature and the role of the secreted protein component: the secretome. This work characterizes for the first time the sulfur (meta)secretome of Acidithiobacillus thiooxidans strain DSM 17318 in pure and mixed cultures with Acidithiobacillus ferrooxidans DSM 16786, identifying the major component of these secreted fractions as a single lipoprotein named here as Licanantase. Bioleaching assays with the addition of Licanantase-enriched concentrated secretome fractions show that this newly found lipoprotein as an active protein additive exerts an increasing effect on chalcopyrite bioleaching rate. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-3063-8) contains supplementary material, which is available to authorized users. PMID:21191788
Effect of platelet activating factor on endothelial permeability to plasma macromolecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handley, D.A.; Arbeeny, C.M.; Lee, M.L.
The effect of intrajugular administration of platelet activating factor (PAF-C16) on vascular permeability was examined in the guinea pig. To examine the loss of selective endothelial permeability, the extravasative effect of PAF was assessed by monitoring hemoconcentration and the plasma loss of /sup 125/I-albumin (6.7 nm), /sup 125/I-low density lipoproteins (22.0 nm) or /sup 125/I-very low density lipoproteins (62.1 nm). Extravasation was dose-dependent and began 1 min after PAF administration, continuing for 5-7 min. During extravasation, there was no evidence for selective plasma retention of any of the labeled plasma tracers, as measured by plasma radioactivity. These results suggest thatmore » PAF-induced extravasation is dose-dependent, with increases in vascular permeability sufficient to permit similar plasma efflux rates of albumin, low density lipoproteins and very low density lipoproteins.« less
The Statin–Iron Nexus: Anti-Inflammatory Intervention for Arterial Disease Prevention
DePalma, Ralph G.; Shamayeva, Galina; Chow, Bruce K.
2013-01-01
Objectives. We postulated the existence of a statin–iron nexus by which statins improve cardiovascular disease outcomes at least partially by countering proinflammatory effects of excess iron stores. Methods. Using data from a clinical trial of iron (ferritin) reduction in advanced peripheral arterial disease, the Iron and Atherosclerosis Study, we compared effects of ferritin levels versus high-density lipoprotein to low-density lipoprotein ratios (both were randomization variables) on clinical outcomes in participants receiving and not receiving statins. Results. Statins increased high-density lipoprotein to low-density lipoprotein ratios and reduced ferritin levels by noninteracting mechanisms. Improved clinical outcomes were associated with lower ferritin levels but not with improved lipid status. Conclusions. There are commonalities between the clinical benefits of statins and the maintenance of physiologic iron levels. Iron reduction may be a safe and low-cost alternative to statins. PMID:23409890
Tabares-Guevara, Jorge H.; Lara-Guzmán, Oscar J.; Londoño-Londoño, Julian A.; Sierra, Jelver A.; León-Varela, Yudy M.; Álvarez-Quintero, Rafael M.; Osorio, Edison J.; Ramirez-Pineda, José R.
2017-01-01
The accumulation of oxidized ApoB-100-containing lipoproteins in the vascular intima and its subsequent recognition by macrophages results in foam cell formation and inflammation, key events during atherosclerosis development. Agents targeting this process are considered potentially atheroprotective. Since natural biflavonoids exert antioxidant and anti-inflammatory effects, we evaluated the atheroprotective effect of biflavonoids obtained from the tropical fruit tree Garcinia madruno. To this end, the pure biflavonoid aglycones morelloflavone (Mo) and volkensiflavone (Vo), as well as the morelloflavone’s glycoside fukugiside (Fu) were tested in vitro in primary macrophages, whereas a biflavonoid fraction with defined composition (85% Mo, 10% Vo, and 5% Amentoflavone) was tested in vitro and in vivo. All biflavonoid preparations were potent reactive oxygen species (ROS) scavengers in the oxygen radical absorbance capacity assay, and most importantly, protected low-density lipoprotein particle from both lipid and protein oxidation. In biflavonoid-treated macrophages, the surface expression of the oxidized LDL (oxLDL) receptor CD36 was significantly lower than in vehicle-treated macrophages. Uptake of fluorescently labeled oxLDL and cholesterol accumulation were also attenuated in biflavonoid-treated macrophages and followed a pattern that paralleled that of CD36 surface expression. Fu and Vo inhibited oxLDL-induced ROS production and interleukin (IL)-6 secretion, respectively, whereas all aglycones, but not the glucoside Fu, inhibited the secretion of one or more of the cytokines IL-1β, IL-12p70, and monocyte chemotactic protein-1 (MCP-1) in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, in macrophages primed with low-dose LPS and stimulated with cholesterol crystals, IL-1β secretion was significantly and comparably inhibited by all biflavonoid preparations. Intraperitoneal administration of the defined biflavonoid fraction into ApoE−/− mice was atheroprotective, as evidenced by the reduction of the atheromatous lesion size and the density of T cells and macrophages infiltrating the aortic root; moreover, this treatment also lowered the circulating levels of cholesterol and the lipid peroxidation product malondialdehyde. These results reveal the potent atheroprotective effects exerted by biflavonoids on key events of the oxLDL–macrophage interphase: (i) atheroligand formation, (ii) atheroreceptor expression, (iii) foam cell transformation, and (iv) prooxidant/proinflammatory macrophage response. Furthermore, our results also evidence the antioxidant, anti-inflammatory, hypolipemiant, and atheroprotective effects of Garcinia madruno’s biflavonoids in vivo. PMID:28824646
Pathogenesis and Prevention of Hepatic Steatosis
Nassir, Fatiha; Rector, R. Scott; Hammoud, Ghassan M.
2015-01-01
Hepatic steatosis is defined as intrahepatic fat of at least 5% of liver weight. Simple accumulation of triacylglycerols in the liver could be hepatoprotective; however, prolonged hepatic lipid storage may lead to liver metabolic dysfunction, inflammation, and advanced forms of nonalcoholic fatty liver disease. Nonalcoholic hepatic steatosis is associated with obesity, type 2 diabetes, and dyslipidemia. Several mechanisms are involved in the accumulation of intrahepatic fat, including increased flux of fatty acids to the liver, increased de novo lipogenesis, and/or reduced clearance through β-oxidation or very-low-density lipoprotein secretion. This article summarizes the mechanisms involved in the accumulation of triacylglycerols in the liver, the clinical implications, and the prevention of hepatic steatosis, with a focus on the role of mitochondrial function and lifestyle modifications. PMID:27099587
2008-12-01
statistically significant. T. Chol indicates total cholesterol ; HDL, high - density lipoprotein . B, Hematoxylin and eosin staining of proximal aortas from...low density lipoprotein receptor null Ldlr/ mice transplanted with Stat1/ bone marrow. Conclusions—STAT1 is critical for endoplasmic reticulum...intracellular accumulation of lipoprotein - derived free cholesterol (FC).11 FC enrichment of macro- phages, like many ER stressors, activates the UPR
Cholesterol in serum lipoprotein fractions after spaceflight
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.; Johnson, Philip C., Jr.; Krauhs, Jane M.; Cintron, Nitza M.
1988-01-01
Results are reported from blood-lipid measurements obtained from 125 Space Shuttle crew members before and after space flight. The data are presented in tables and discussed in detail. The main differences noted between preflight and postflight values are a 12.8-percent decrease in high-density lipoproteins on postflight day 1 and significant decreases in total cholesterol and both high- and low-density lipoproteins later in the 23-day postflight period.
Effect of dietary fat source on lipoprotein composition and plasma lipid concentrations in pigs.
Faidley, T D; Luhman, C M; Galloway, S T; Foley, M K; Beitz, D C
1990-10-01
Most studies of the effects of dietary fat sources on plasma lipid components have used diets with extreme fat compositions; the current study was designed to more nearly mimic human dietary fat intake. Young growing pigs were fed diets containing either 20 or 40% of energy as soy oil, beef tallow or a 50/50 blend of soy oil and tallow. Different dietary fats did not affect concentrations of cholesterol, triacylglycerol or protein in plasma or major lipoprotein fractions. The concentration of phospholipid was less in plasma and in very low density lipoproteins with soy oil feeding than with tallow feeding. The weight percentage of cholesteryl ester in the low density lipoprotein fraction tended to be greater with 40% than with 20% tallow and tended to be less with 40% than with 20% soy oil. Phospholipid as a weight percentage of low density lipoprotein was least in pigs fed soy oil. Tallow feeding increased the percentage of myristic, palmitic, palmitoleic and oleic acids in plasma, relative to both other groups. Soy oil feeding increased the percentage of linoleic and linolenic acids. These moderate diets were not hypercholesterolemic, but they did alter plasma fatty acid composition and phospholipid concentrations in plasma and very low density lipoprotein.
Serum high density lipoprotein cholesterol, alcohol, and coronary mortality in male smokers.
Paunio, M.; Virtamo, J.; Gref, C. G.; Heinonen, O. P.
1996-01-01
OBJECTIVE--To determine whether the increase in mortality from coronary heart disease with high concentration (> 1.75 mmol/l) of high density lipoprotein cholesterol could be due to alcohol intake. DESIGN--Cohort study. SETTING--Placebo group of the alpha tocopherol, beta carotene cancer prevention (ATBC) study of south western population in Finland. PARTICIPANTS--7052 male smokers aged 50-69 years enrolled to the ATBC study in the 1980s. MAIN OUTCOME MEASURES--The relative and absolute rates adjusted for risk factors for clinically or pathologically verified deaths from coronary heart disease for different concentrations of high density lipoprotein cholesterol with and without stratification for alcohol intake. Similar rates were also calculated for different alcohol consumption groups. RESULTS--During the average follow up period of 6.7 years 258 men died from verified coronary heart disease. Coronary death rate steadily decreased with increasing concentration of high density lipoprotein cholesterol until a high concentration. An increase in the rate was observed above 1.75 mmol/l. This increase occurred among those who reported alcohol intake. Mortality was associated with alcohol intake in a J shaped dose response, and those who reported consuming more than five drinks a day (heavy drinkers) had the highest death rate. Mortality was higher in heavy drinkers than in non-drinkers or light or moderate drinkers in all high density lipoprotein categories from 0.91 mmol/l upward. CONCLUSIONS--Mortality from coronary heart disease increases at concentrations of high density lipoprotein cholesterol over 1.75 mmol/l. The mortality was highest among heavy drinkers, but an increase was found among light drinkers also. PMID:8634563
NASA Technical Reports Server (NTRS)
Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.
1999-01-01
We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.
Ryan, Jennifer Joan; Hanes, Douglas Allen; Schafer, Morgan Beth; Mikolai, Jeremy; Zwickey, Heather
2015-05-01
Elevated blood cholesterol levels are a major risk factor for coronary artery disease, the leading cause of death worldwide. Probiotics have been investigated as potential cholesterol-lowering therapies, but no previous studies have assessed the effect of the probiotic yeast Saccharomyces boulardii on cholesterol levels in human volunteers. The objective of this study was to examine the effect of S. boulardii on serum cholesterol and lipoprotein particles in hypercholesterolemic adults. This study was a single-arm, open-label pilot study. Twelve hypercholesterolemic participants were recruited into the study; one dropped out. Participants took 5.6×10(10) colony forming unit (CFU) encapsulated S. boulardii (Saccharomyces cerevisiae var. boulardii CNCM I-1079) twice daily for an 8-week period. Fasting concentrations of cholesterol (total cholesterol, low-density lipoprotein-cholesterol [LDL-C], high-density lipoprotein-cholesterol [HDL-C], and triglycerides), lipoprotein particles (very-low-density lipoprotein-particle [VLDL-P], remnant lipoprotein particle [RLP-P], total LDL-P, LDL III-P, LDL IV-P, total HDL-P, and HDL 2b-P), and additional cardiovascular biomarkers (apo B-100, lipoprotein [a], high-sensitivity C-reactive protein, homocysteine, fibrinogen, and insulin) were measured at baseline, after 4 weeks, and after 8 weeks. Remnant lipoprotein particles decreased by 15.5% (p=0.03) over the 8-week period. The remaining outcome measures were not significantly altered. In this pilot study, 8 weeks of daily supplementation with S. boulardii lowered remnant lipoprotein, a predictive biomarker and potential therapeutic target in the treatment and prevention of coronary artery disease.
Steffensen, Lasse Bach; Mortensen, Martin Bødtker; Kjolby, Mads; Hagensen, Mette Kallestrup; Oxvig, Claus; Bentzon, Jacob Fog
2015-09-01
Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins. Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation. Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins. © 2015 American Heart Association, Inc.
Olson, Eric J; Pearce, Gregory L; Jones, Nigel P; Sprecher, Dennis L
2012-09-01
Peroxisome proliferator-activated receptor-δ-induced upregulation in skeletal muscle fatty acid oxidation would predict the modulation of lipid/lipoproteins. GW501516 (2.5, 5.0, or 10.0 mg) or placebo was given for 12 weeks to patients (n=268) with high-density lipoprotein (HDL) cholesterol <1.16 mmol/L. Fasting lipids/apolipoproteins (apos), insulin, glucose, and free fatty acid were measured; changes from baseline were calculated and assessed. A second smaller exploratory study (n=37) in a similar population was conducted using a sequence of 5 and 10 mg dosing for the assessment of lipoprotein particle concentration. GW501516 demonstrated HDL cholesterol increases up to 16.9% (10 mg) and apoA-I increases up to 6.6%. Reductions were observed in low-density lipoprotein (LDL) cholesterol (-7.3%), triglycerides (-16.9%), apoB (-14.9%), and free fatty acids (-19.4%). The exploratory study showed significant reductions in the concentration of very LDL (-19%), intermediate-density lipoprotein (-52%), and LDL (-14%, predominantly a reduction in small particles), whereas the number of HDL particles increased (+10%; predominantly medium and large HDL). GW501516 produced significant changes in HDL cholesterol, LDL cholesterol, apoA1, and apoB. Fewer very LDL and larger LDL support a transition toward less atherogenic lipoprotein profiles. These data are consistent with peroxisome proliferator-activated receptor-δ being a potentially important target for providing cardiovascular protection in metabolic syndrome-like patients.
Thermal transitions in the low-density lipoprotein and lipids of the egg yolk of hens.
Smith, M B; Back, J F
1975-05-22
1. Differential sanning calorimetry and light-scattering have been used to investigate temperature-dependent transitions in low-density lipoprotein and in lipids from hens' egg yolk. Yolks of different fatty acid composition were obtained by varying the dietary lipid and by adding methyl sterculate to the hen's diet. 2. Lipoprotein solutions in 50 percent glycerol/water gave characteristic melting curves between -25 degrees C and 50 degrees C, and on cooling showed increases in light-scattering between 10 degrees C and -20 degrees C. The temperatures at which major changes occurred depended on the proportions of saturated and unsaturated fatty acids. 3. The thermal transitions in the intact lipoprotein in glycerol solution were reversible, but with marked hysteresis. Lipid extracted from the lipoprotein did not show temperature hystersis but the transition heats and melting curves similar to those of the intact lipoprotein. The results support the hypothesis of a "lipid-core" structure for low-density lipoproteins. 4. Scanning calorimetry of egg-yolk lecithins indicated a strong dependence of transition temperature on water content in the rane 3 percent-20 percent water. A rise in the mid-temperature of the liquid-crystalline to gel transition as the water content is lowered on freezing may be the primary event in the irreversible gelation of egg yolk and aggregation of lipoprotein.
Won, Jane I; Zhang, Jun; Tecson, Kristen M; McCullough, Peter A
2017-01-01
Homozygous familial hypercholesterolemia (HoFH) is an autosomal codominant disorder manifested by high concentrations of total cholesterol and low-density lipoprotein (LDL) cholesterol, and premature cardiovascular disease. Despite conventional lipid-lowering therapy, LDL cholesterol levels remain elevated in patients with HoFH; these patients are considered to be at high risk for cardiovascular events. In 2012-2013, two drugs with novel mechanisms of action were approved by the US Food and Drug Administration for the treatment of HoFH: lomitapide mesylate and mipomersen. Both of these treatments reduce total cholesterol, LDL cholesterol, non-high-density lipoprotein cholesterol, apolipoprotein B, lipoprotein a, and triglyceride levels. This review describes the clinical tradeoffs in efficacy and hepatotoxicity of these drugs in two cases of HoFH.
Friday, K E; Drinkwater, B L; Bruemmer, B; Chesnut, C; Chait, A
1993-12-01
To determine the interactive effects of hormones, exercise, and diet on plasma lipids and lipoproteins, serum estrogen and progesterone levels, nutrient intake, and plasma lipid, lipoprotein, and apolipoprotein concentrations were measured in 24 hypoestrogenic amenorrheic and 44 eumenorrheic female athletes. When compared to eumenorrheic athletes, amenorrheic athletes had higher levels of plasma cholesterol (5.47 +/- 0.17 vs. 4.84 +/- 0.12 mmol/L, P = 0.003), triglyceride (0.75 +/- 0.06 vs. 0.61 +/- 0.03 mmol/L, P = 0.046), low-density lipoprotein (LDL; 3.16 +/- 0.15 vs. 2.81 +/- 0.09 mmol/L, P = 0.037), high-density lipoprotein (HDL; 1.95 +/- 0.07 vs. 1.73 +/- 0.05 mmol/L, P = 0.007), and HDL2 (0.84 +/- 0.06 vs. 0.68 +/- 0.04 mmol/L, P = 0.02) cholesterol. Plasma LDL/HDL cholesterol ratios, very low-density lipoprotein and HDL3 cholesterol, and apolipoprotein A-I and A-II levels were similar in the two groups. Amenorrheic athletes consumed less fat than eumenorrheic subjects (52 +/- 5 vs. 75 +/- 3 g/day, P = 0.02), but similar amounts of calories, cholesterol, protein, carbohydrate, and ethanol. HDL cholesterol levels in amenorrheic subjects correlated positively with the percent of dietary calories from fat (r = 0.42, n = 23, P = 0.045) but negatively with the percent from protein (r = -0.49, n = 23, P = 0.017). Thus, exercise-induced amenorrhea may adversely affect cardiovascular risk by increasing plasma LDL and total cholesterol. However, cardioprotective elevations in plasma HDL and HDL2 cholesterol may neutralize the risk of cardiovascular disease in amenorrheic athletes.
Khan, Sikandar Hayat; Asif, Naveed; Ijaz, Aamir; Manzoor, Syed Mohsin; Niazi, Najumusaquib Khan; Fazal, Nadeem
2018-04-01
To to compare non-high-density lipoprotein and low-density lipoprotein cholesterol among subjects with or without metabolic syndrome, glycation status and nephropathic changes. The comparative cross-sectional study was carried out from Dec 21, 2015, to Nov 15, 2016, at the department of pathology and medicine PNS HAFEEZ and department of chemical pathology and clinical endocrinology (AFIP), and comprised patients of either gender visiting the out-patient department for routine screening. They were evaluated for anthropometric indices, blood pressure and sampled for lipid profile, fasting plasma glucose, glycated haemoglobin, insulin, and urine albumin-to-creatinine ratio. Subjects were segregated based upon presence (Group1) or absence (Group2) of metabolic syndrome based upon criteria of National Cholesterol Education Programme and the International Diabetes Federation. Differences in high and low density lipoprotein cholesterols were calculated between the groups. Of the 229 subjects, 120(52.4%) were women and 109(47.6%) were men. Overall, there were 107(46.7%) subjects in Group 1, and 122(53.3%) in Group 2. Non-high-density lipoprotein cholesterol was significantly different between subjects with and without metabolic syndrome as per both the study criteria (p<0.05 each). . Non-high-density lipoprotein cholesterol levels were higher in subjects with metabolic syndrome.
Ooi, Esther M M; Watts, Gerald F; Sprecher, Dennis L; Chan, Dick C; Barrett, P Hugh R
2011-10-01
Dyslipidemia increases the risk of cardiovascular disease in obesity. Peroxisome proliferator-activated receptor (PPAR)-δ agonists decrease plasma triglycerides and increase high-density lipoprotein (HDL)-cholesterol in humans. The aim of the study was to examine the effect of GW501516, a PPAR-δ agonist, on lipoprotein metabolism. Design, Setting, and Intervention: We conducted a randomized, double-blind, crossover trial of 6-wk intervention periods with placebo or GW501516 (2.5 mg/d), with 2-wk placebo washout between treatment periods. We recruited 13 dyslipidemic men with central obesity from the general community. We measured the kinetics of very low-density lipoprotein (VLDL)-, intermediate-density lipoprotein-, and low-density lipoprotein (LDL)-apolipoprotein (apo) B-100, plasma apoC-III, and high-density lipoprotein (HDL) particles (LpA-I and LpA-I:A-II). GW501516 decreased plasma triglycerides, fatty acid, apoB-100, and apoB-48 concentrations. GW501516 decreased the concentrations of VLDL-apoB by increasing its fractional catabolism and of apoC-III by decreasing its production rate (P < 0.05). GW501516 reduced VLDL-to-LDL conversion and LDL-apoB production. GW501516 increased HDL-cholesterol, apoA-II, and LpA-I:A-II concentrations by increasing apoA-II and LpA-I:A-II production (P < 0.05). GW501516 decreased cholesteryl ester transfer protein activity, and this was paralleled by falls in the triglyceride content of VLDL, LDL, and HDL and the cholesterol content of VLDL and LDL. GW501516 increased the hepatic removal of VLDL particles, which might have resulted from decreased apoC-III concentration. GW501516 increased apoA-II production, resulting in an increased concentration of LpA-I:A-II particles. This study elucidates the mechanism of action of this PPAR-δ agonist on lipoprotein metabolism and supports its potential use in treating dyslipidemia in obesity.
Boyer, Marjorie; Lévesque, Valérie; Poirier, Paul; Marette, André; Mitchell, Patricia L; Mora, Samia; Mathieu, Patrick; Després, Jean-Pierre; Larose, Éric; Arsenault, Benoit J
2018-06-01
Our objective was to identify the determinants of high-density lipoprotein cholesterol efflux capacity (HDL-CEC) changes in patients with coronary artery disease who participated in a lifestyle modification program aimed at increasing physical activity levels and improving diet quality. A total of 86 men with coronary artery disease aged between 35 and 80 years participated in a 1-year lifestyle modification program that aimed to achieve a minimum of 150 minutes of aerobic physical activity weekly and improve diet quality. HDL-CECs were measured before and after the 1-year intervention using 3 H-cholesterol-labeled J774 and HepG2 cells. Visceral, subcutaneous, and cardiac adipose tissue levels were assessed before and after the intervention using magnetic resonance imaging. Lipoprotein particle size and concentrations were measured by proton nuclear magnetic resonance spectroscopy and a complete lipoprotein-lipid profile was obtained. At baseline, the best correlate of HDL-CECs were apolipoprotein AI ( R 2 =0.35, P <0.0001) and high-density lipoprotein cholesterol ( R 2 =0.21, P <0.0001) for J774-HDL-CECs and HepG2-HDL-CECs, respectively. Baseline and longitudinal changes in HDL-CECs were associated with several lipoprotein size and concentration indices, although high-density lipoprotein cholesterol was the best predictor of longitudinal changes in J774-HDL-CECs ( R 2 =0.18, P =0.002) and apolipoprotein AI was found to be the best predictor of longitudinal changes in HepG2 cholesterol efflux capacities ( R 2 =0.21, P =0.002). Results of this study suggest that increases in high-density lipoprotein cholesterol and apolipoprotein AI levels typically observed in patients with coronary artery disease undergoing healthy lifestyle modification therapy may be indicative of higher plasma concentrations of functional high-density lipoprotein particles. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Lipoprotein lipase S447X variant associated with VLDL, LDL and HDL diameter clustering in the MetS
USDA-ARS?s Scientific Manuscript database
Previous analysis clustered 1,238 individuals from the general population Genetics of Lipid Lowering Drugs Network (GOLDN) study by the size of their fasting very low-density, low-density and high-density lipoproteins (VLDL, LDL, HDL) using latent class analysis. From two of the eight identified gro...
Apolipoprotein A-I interactions with insulin secretion and production.
Rye, Kerry-Anne; Barter, Philip J; Cochran, Blake J
2016-02-01
Human population studies have established that an elevated plasma high-density lipoprotein cholesterol (HDL-C) level is associated with a decreased risk of developing cardiovascular disease. In addition to having several potentially cardioprotective functions, HDLs and apolipoprotein (apo)A-I, the main HDL apolipoprotein, also have antidiabetic properties. Interventions that elevate plasma HDL-C and apoA-I levels improve glycemic control in people with type 2 diabetes mellitus by enhancing pancreatic β-cell function and increasing insulin sensitivity. This review is concerned with recent advances in understanding the mechanisms by which HDLs and apoA-I improve pancreatic β-cell function. HDLs and apoA-I increase insulin synthesis and secretion in pancreatic β cells. The underlying mechanism of this effect is similar to what has been reported for intestinally derived incretins, such as glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, which both increase β-cell insulin secretion under high glucose conditions. This involves the activation of a heterotrimeric G protein Gαs subunit on the β-cell surface that leads to induction of a transmembrane adenylyl cyclase, increased intracellular cyclic adenosine monophosphate and Ca levels, and activation of protein kinase A. Protein kinase A increases insulin synthesis by excluding FoxO1 from the β-cell nucleus and derepressing transcription of the insulin gene.
A single secreted luciferase-based gene reporter assay.
Barriscale, Kathy A; O'Sullivan, Sharon A; McCarthy, Tommie V
2014-05-15
Promoter analysis typically employs a reporter gene fused to a test promoter combined with a second reporter fused to a control promoter that is used for normalization purposes. However, this approach is not valid when experimental conditions affect the control promoter. We have developed and validated a single secreted luciferase reporter (SSLR) assay for promoter analysis that avoids the use of a control reporter. The approach uses an early level of expression of a secreted luciferase linked to a test promoter as an internal normalization control for subsequent analysis of the same promoter. Comparison of the SSLR assay with the dual luciferase reporter (DLR) assay using HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) and LDLR (low-density lipoprotein receptor) promoter constructs, which are down-regulated by 25-hydroxycholesterol, show that both assays yield similar results. Comparison of the response of the HMGCR promoter in SSLR transient assays compared very favorably with the response of the same promoter in the stable cell line. Overall, the SSLR assay proved to be a valid alternative to the DLR assay for certain applications and had significant advantages in that measurement of only one luciferase is required and monitoring can be continuous because cell lysis is not necessary. Copyright © 2014 Elsevier Inc. All rights reserved.
van der Gaag, M S; Sierksma, A; Schaafsma, G; van Tol, A; Geelhoed-Mieras, T; Bakker, M; Hendriks, H F
2000-01-01
Moderate alcohol consumption is associated with a reduced risk of coronary heart disease. Earlier studies in men have shown that moderate alcohol consumption affects lipoprotein metabolism and hemostasis. In this diet-controlled, randomized, crossover trial, we investigated the effect on lipoprotein metabolism of moderate consumption of red wine or red grape juice with evening dinner for 3 weeks in premenopausal women using oral contraceptives and in postmenopausal women. After 3 weeks, blood samples were collected 1 hour before dinner up to 19 hours after starting dinner at 2-hour or 4-hour intervals. Plasma triglyceride concentrations and very low density lipoprotein (VLDL) triglyceride levels peaked 3 hours after dinner with wine in both premenopausal and postmenopausal women. After wine consumption, the overall high-density lipoprotein (HDL) cholesterol level was increased in postmenopausal women (mean increase 0.17 mmol/L, or 12%, p = 0.03), and the plasma low-density lipoprotein (LDL) cholesterol level was reduced in premenopausal women (mean reduction 0.35 mmol/L, or 12%, p = 0.01) as compared with grape juice consumption. The findings suggest that postprandial lipoprotein metabolism after moderate alcohol consumption differs between oral contraceptive-using premenopausal women and postmenopausal women. The response of postmenopausal women to alcohol resembled the response found in earlier studies in men.
Lin, Chunrong; Grandinetti, Andrew; Shikuma, Cecilia; Souza, Scott; Parikh, Nisha; Nakamoto, Beau; Kallianpur, Kalpana J
2013-01-01
With the advent of highly active antiretroviral therapy (HAART), Cardiovascular Disease (CVD) has emerged as the leading cause of death in Human Immunodeficiency Virus (HIV) infected patients. An atherogenic lipoprotein phenotype has been described in HIV- infected patients with a predominance of small, low density lipoprotein (SLDL) particles with accompanying elevated triglycerides and reduced high density lipoprotein cholesterol. This randomized controlled pilot study was conducted to evaluate the efficacy of Extended Release Niacin (ERN) in improving the lipid profile in HIV patients. A total of 17 HIV positive subjects on HAART therapy with High Density Lipoprotein Cholesterol (HDL) levels below 40mg/dl and Low Density Lipoprotein Cholesterol (LDL) below 130mg/dl were enrolled. Nine were randomized to be treated with ERN titrated from a starting level of 500mg/night and titrated to a level of 1500mg/night. Eight patients were assigned to the control arm. No placebo was used. Lipoprotein profiles of the subjects were analyzed at baseline and at the end of 12 weeks using Nuclear Magnetic Resonance (NMR) spectroscopy. At the end of 12 weeks, NMR spectroscopic analysis revealed a significant increase in overall LDL size (1.2% in ERN treated subjects vs 2.0% decrease in control patients, P=.04) and a decrease in small LDL particle concentration (17.0% in ERN treated subjects vs 21.4% increase in control patients, P=.03) in subjects receiving ERN as compared to those in the control group. Only 1 subject receiving ERN developed serious flushing which was attributed to an accidental overdose of the drug. This pilot study demonstrates that ERN therapy in HIV-infected patients with low HDL is safe and effective in improving the lipoprotein profile in these patients. PMID:23795312
Effects of hormones on lipids and lipoproteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, R.M.
1991-12-01
Levels of plasma lipids and lipoproteins are strong predictors for the development of atherosclerotic cardiovascular disease in postmenopausal women. In women, as in men, numerous factors contribute to variations in plasma lipoproteins that may affect cardiovascular disease risk. These include age, dietary components, adiposity, genetic traits, and hormonal changes. Each of these factors may operate to varying degrees in determining changes in plasma lipoprotein profiles accompanying menopause- Cross-sectional and longitudinal studies have suggested increases in levels of cholesterol, low density lipoproteins (LDL) and triglyceride-rich lipoproteins associated with menopause. High density lipoproteins (HDL), which are higher in women than men andmore » are thought to contribute to relative protection of premenopausal women from cardiovascular disease, remain relatively constant in the years following menopause, although small, and perhaps transient reductions in the HDL{sub 2} subfraction have been reported in relation to reduced estradiol level following menopause. Despite these associations, it has been difficult to determine the role of endogenous hormones in influencing the plasma lipoproteins of postmenopausal women. In principle, the effects of hormone replacement should act to reverse any alterations in lipoprotein metabolism that are due to postmenopausal hormone changes. While there may be beneficial effects on lipoproteins, hormone treatment does not restore a premenopausal lipoprotein profile. Furthermore, it is not dear to what extent exogenous hormone-induced lipoprotein changes contribute to the reduced incidence of cardiovascular disease with hormone replacement therapy.« less
Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagby, G.J.; Corll, C.B.; Martinez, R.R.
1987-07-01
Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionallymore » hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.« less
Martin, Gregory G.; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Storey, Stephen M.; Howles, Philip N.; Kier, Ann B.
2014-01-01
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. PMID:25277800
Regulation of plasma cholesterol by hepatic low-density lipoprotein receptors.
Kovanen, P T
1987-02-01
The endogenous lipoprotein system (very low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL] cascade) holds the key to understanding the mechanisms by which hormones, diet, and drugs interact to regulate the plasma cholesterol level. Crucial components of this system are hepatic LDL receptors that mediate the uptake and degradation of plasma LDL. With experimental animals, it has been possible to demonstrate that hepatic LDL receptors are sensitive to hormonal, dietary, and pharmacologic manipulation. The decrease in number of hepatic LDL receptors in hypothyroidism or after cholesterol feeding leads to elevation of plasma LDL cholesterol levels. Conversely, the increase in number of hepatic LDL receptors results in lowering of plasma LDL cholesterol levels. This can be observed in hyperthyroidism, during administration of pharmacologic doses of 17 alpha-ethinyl estradiol, or during treatment with cholesterol-lowering drugs such as the bile acid-binding resins and cholesterol-synthesis inhibitors. Since cholesterol excretion from the body occurs via the liver, the increased efficiency of disposal of plasma cholesterol by increasing hepatic LDL receptors will ultimately lead to depletion of excessive body cholesterol. Pharmacologic regulation of hepatic LDL receptors should be a valuable tool in the prevention and therapy of atherosclerosis.
Gutierrez, Maria J; Rosenberg, Noah L; Macdougall, Diane E; Hanselman, Jeffrey C; Margulies, Janice R; Strange, Poul; Milad, Mark A; McBride, Scott J; Newton, Roger S
2014-03-01
8-Hydroxy-2,2,14,14-tetramethylpentadecanedioic acid (ETC-1002) is a small molecule with a unique mechanism of action shown in nonclinical studies to modulate pathways of cholesterol, fatty acid, and carbohydrate metabolism. In previous phase 2 clinical trials, once daily oral treatment with ETC-1002 significantly reduced low-density lipoprotein-cholesterol in patients with hypercholesterolemia. In this trial, the lipid-lowering efficacy of ETC-1002 was evaluated in patients with type 2 diabetes mellitus and hypercholesterolemia. Additional cardiometabolic biomarkers, including glycemic measures, were also assessed. A single-center, double-blind, placebo-controlled trial evaluated 60 patients with type 2 diabetes mellitus and elevated low-density lipoprotein-cholesterol. Patients discontinued all diabetes mellitus and lipid-regulating drugs and were randomized to receive ETC-1002 80 mg QD for 2 weeks followed by 120 mg QD for 2 weeks or placebo for 4 weeks. ETC-1002 lowered low-density lipoprotein-cholesterol levels by 43±2.6% (least squares mean±SE), compared with a reduction of 4±2.5% by placebo at day 29 (P<0.0001; primary end point). Non-high-density lipoprotein-cholesterol and total cholesterol were also significantly lowered by ETC-1002 compared with placebo (P<0.0001). High-sensitivity C-reactive protein was reduced by 41% (median) compared with a placebo reduction of 11% (P=0.0011). No clinically meaningful safety findings were observed. ETC-1002 lowered low-density lipoprotein-cholesterol and other lipids and demonstrated improvement in high-sensitivity C-reactive protein in patients with type 2 diabetes mellitus and hypercholesterolemia without worsening glycemic control. ETC-1002 was well tolerated in this population. http://www.clinicaltrials.gov. Unique identifier: NCT# 01607294.
Chinwong, Surarong; Chinwong, Dujrudee; Mangklabruks, Ampica
2017-01-01
This open-label, randomized, controlled, crossover trial assessed the effect of daily virgin coconut oil (VCO) consumption on plasma lipoproteins levels and adverse events. The study population was 35 healthy Thai volunteers, aged 18-25. At entry, participants were randomly allocated to receive either (i) 15 mL VCO or (ii) 15 mL 2% carboxymethylcellulose (CMC) solution (as control), twice daily, for 8 weeks. After 8 weeks, participants had an 8-week washout period and then crossed over to take the alternative regimen for 8 weeks. Plasma lipoproteins levels were measured in participants at baseline, week-8, week-16, and week-24 follow-up visits. Results . Of 32 volunteers with complete follow-up (16 males and 16 females), daily VCO intake significantly increased high-density lipoprotein cholesterol by 5.72 mg/dL ( p = 0.001) compared to the control regimen. However, there was no difference in the change in total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels between the two regimens. Mild diarrhea was reported by some volunteers when taking VCO, but no serious adverse events were reported. Conclusion . Daily consumption of 30 mL VCO in young healthy adults significantly increased high-density lipoprotein cholesterol. No major safety issues of taking VCO daily for 8 weeks were reported.
2017-01-01
This open-label, randomized, controlled, crossover trial assessed the effect of daily virgin coconut oil (VCO) consumption on plasma lipoproteins levels and adverse events. The study population was 35 healthy Thai volunteers, aged 18–25. At entry, participants were randomly allocated to receive either (i) 15 mL VCO or (ii) 15 mL 2% carboxymethylcellulose (CMC) solution (as control), twice daily, for 8 weeks. After 8 weeks, participants had an 8-week washout period and then crossed over to take the alternative regimen for 8 weeks. Plasma lipoproteins levels were measured in participants at baseline, week-8, week-16, and week-24 follow-up visits. Results. Of 32 volunteers with complete follow-up (16 males and 16 females), daily VCO intake significantly increased high-density lipoprotein cholesterol by 5.72 mg/dL (p = 0.001) compared to the control regimen. However, there was no difference in the change in total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels between the two regimens. Mild diarrhea was reported by some volunteers when taking VCO, but no serious adverse events were reported. Conclusion. Daily consumption of 30 mL VCO in young healthy adults significantly increased high-density lipoprotein cholesterol. No major safety issues of taking VCO daily for 8 weeks were reported. PMID:29387131
Distribution and Kinetics of Lipoprotein-Bound Lipoteichoic Acid
Levels, Johannes H. M.; Abraham, Philip R.; van Barreveld, Erik P.; Meijers, Joost C. M.; van Deventer, Sander J. H.
2003-01-01
Lipoteichoic acid (LTA), a major cell wall component of gram-positive bacteria, is an amphipathic anionic glycolipid with structural similarities to lipopolysaccharide (LPS) from gram-negative bacteria. LTA has been implicated as one of the primary immunostimulatory components that may trigger the systemic inflammatory response syndrome. Plasma lipoproteins have been shown to sequester LPS, which results in attenuation of the host response to infection, but little is known about the LTA binding characteristics of plasma lipid particles. In this study, we have examined the LTA binding capacities and association kinetics of the major lipoprotein classes under simulated physiological conditions in human whole blood (ex vivo) by using biologically active, fluorescently labeled LTA and high-performance gel permeation chromatography. The average distribution of an LTA preparation from Staphylococcus aureus in whole blood from 10 human volunteers revealed that >95% of the LTA was associated with total plasma lipoproteins in the following proportions: high-density lipoprotein (HDL), 68% ± 10%; low-density lipoprotein (LDL), 28% ± 8%; and very low density lipoprotein (VLDL), 4% ± 5%. The saturation capacity of lipoproteins for LTA was in excess of 150 μg/ml. The LTA distribution was temperature dependent, with an optimal binding between 22 and 37°C. The binding of LTA by lipoproteins was essentially complete within 10 min and was followed by a subsequent redistribution from HDL and VLDL to LDL. We conclude that HDL has the highest binding capacity for LTA and propose that the loading and redistribution of LTA among plasma lipoproteins is a specific process that closely resembles that previously described for LPS (J. H. M. Levels, P. R. Abraham, A. van den Ende, and S. J. H. van Deventer, Infect. Immun. 68:2821-2828, 2001). PMID:12761109
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwiterovich Jr., Peter O.; Cockrill, Steven L.; Virgil, Donna G.
2003-10-01
Because low birth weight is associated with adverse cardiovascular risk and death in adults, lipoprotein heterogeneity at birth was studied. A prominent, large high-density lipoprotein (HDL) subclass enriched in apolipoprotein C-I (apoC-I) was found in 19 percent of infants, who had significantly lower birth weights and younger gestational ages and distinctly different lipoprotein profiles than infants with undetectable, possible or probable amounts of apoC-I-enriched HDL. An elevated amount of an apoC-I-enriched HDL identifies a new group of low birth weight infants.
Pan, Bing; Kong, Jinge; Jin, Jingru; Kong, Jian; He, Yubin; Dong, Shuying; Ji, Liang; Liu, Donghui; He, Dan; Kong, Liming; Jin, David K; Willard, Belinda; Pennathur, Subramaniam; Zheng, Lemin
2016-06-01
High density lipoprotein (HDL) as well as annexin A1 have been reported to be associated with cardiovascular protection. However, the correlation between HDL and annexin A1 was still unknown. In this study, HDL increased endothelial annexin A1 and prevented the decrease of annexin A1 in TNF-α-activated endothelial cells in vitro and in vivo, and above effects were attenuated after knockdown of annexin A1. Annexin A1 modulation affected HDL-mediated inhibition of monocyte adhesion to TNF-α-activated endothelium (45.2±13.7% decrease for annexin A1 RNA interference; 78.7±16.3% decrease for anti-Annexin A1 antibody blocking; 11.2±6.9% increase for Ad-ANXA1 transfection). Additionally, HDL up-regulated annexin A1 through scavenger receptor class B type I, involving ERK, p38MAPK, Akt and PKC signaling pathways, and respective inhibitors of these pathways attenuated HDL-induced annexin A1 expression as well as impaired HDL-mediated inhibition of monocyte-endothelial cell adhesion. Apolipoprotein AI also increased annexin A1 and activated similar signaling pathways. Endothelial annexin A1 from apolipoprotein AI knockout mice was decreased in comparison to that from wild type mice. Finally, HDL-induced annexin A1 inhibited cell surface VCAM-1, ICAM-1 and E-selectin, and secretion of MCP-1, IL-8, VCAM-1 and E-selectin, thereby inhibiting monocyte adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Hui-Jie; Han, Peng; Sun, Su-Yun; Wang, Li-Ying; Yan, Bing; Zhang, Jin-Hua; Zhang, Wei; Yang, Shu-Yu; Li, Xue-Jun
2013-01-01
Obesity is related to hyperlipidemia and risk of cardiovascular disease. Health benefits of vegetarian diets have well-documented in the Western countries where both obesity and hyperlipidemia were prevalent. We studied the association between BMI and various lipid/lipoprotein measures, as well as between BMI and predicted coronary heart disease probability in lean, low risk populations in Southern China. The study included 170 Buddhist monks (vegetarians) and 126 omnivore men. Interaction between BMI and vegetarian status was tested in the multivariable regression analysis adjusting for age, education, smoking, alcohol drinking, and physical activity. Compared with omnivores, vegetarians had significantly lower mean BMI, blood pressures, total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, total cholesterol to high density lipoprotein ratio, triglycerides, apolipoprotein B and A-I, as well as lower predicted probability of coronary heart disease. Higher BMI was associated with unfavorable lipid/lipoprotein profile and predicted probability of coronary heart disease in both vegetarians and omnivores. However, the associations were significantly diminished in Buddhist vegetarians. Vegetarian diets not only lower BMI, but also attenuate the BMI-related increases of atherogenic lipid/ lipoprotein and the probability of coronary heart disease.
Hsia, Judith; Otvos, James D.; Rossouw, Jacques E.; Wu, LieLing; Wassertheil-Smoller, Sylvia; Hendrix, Susan L.; Robinson, Jennifer G.; Lund, Bernedine; Kuller, Lewis H.
2009-01-01
Objective The Women's Health Initiative randomized hormone trials unexpectedly demonstrated an increase in early coronary events. In an effort to explain this finding, we examined lipoprotein particle concentrations and their interactions with hormone therapy in a case–control substudy. Methods and Results We randomized 16 608 postmenopausal women with intact uterus to conjugated estrogens 0.625 mg with medroxyprogesterone acetate 2.5 mg daily or to placebo, and 10 739 women with prior hysterectomy to conjugated estrogens 0.625 mg daily or placebo, and measured lipoprotein subclasses by nuclear magnetic resonance spectroscopy at baseline and year 1 in 354 women with early coronary events and matched controls. Postmenopausal hormone therapy raised high-density lipoprotein cholesterol and particle concentration and reduced low-density lipoprotein cholesterol (LDL-C; all P<0.001 versus placebo). In contrast, neither unopposed estrogen nor estrogen with progestin lowered low-density lipoprotein particle concentration (LDL-P). Conclusions Postmenopausal hormone therapy–induced reductions in LDL-C were not paralleled by favorable effects on LDL-P. This finding may account for the absence of coronary protection conferred by estrogen in the randomized hormone trials. PMID:18599797
Analyzing the molecular mechanism of lipoprotein localization in Brucella
Goolab, Shivani; Roth, Robyn L.; van Heerden, Henriette; Crampton, Michael C.
2015-01-01
Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella. PMID:26579096
Rysz-Górzyńska, Magdalena; Banach, Maciej
2016-08-01
A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD.
Common variants at 30 loci contribute to polygenic dyslipidemia
USDA-ARS?s Scientific Manuscript database
Blood low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL)cholesterol and triglyceride levels are risk factors for cardiovascular disease. To dissect the polygenic basis of these traits, we conducted genome-wide association screens in 19,840 individuals and replication in up to ...
Ullrich, I H; Albrink, M J
1982-07-01
Eight healthy young men were fed a 72% carbohydrate high starch diet either high or low in dietary fiber for 4 days in a double cross-over design. Both groups showed a slight transient increase in plasma triglyceride level and a decrease in total and high-density lipoprotein cholesterol. There were few differences in glucose and insulin levels after glucose and meal tolerance tests after each diet. Fasting triglycerides and high-density lipoprotein cholesterol were inversely related at base-line; insulin response to oral glucose was inversely related to high-density lipoprotein cholesterol levels at the end of the study. We conclude that a high carbohydrate high starch diet, whether high or low in fiber, caused little increase in triglycerides, with little difference between the high and low fiber diets. Dietary fiber did not influence the fall in plasma cholesterol or high-density lipoprotein cholesterol concentrations over and above that seen after the low fiber diet.
NASA Astrophysics Data System (ADS)
Trirongjitmoah, Suchin; Iinaga, Kazuya; Sakurai, Toshihiro; Chiba, Hitoshi; Sriyudthsak, Mana; Shimizu, Koichi
2016-04-01
Quantification of small, dense low-density lipoprotein (sdLDL) cholesterol is clinically significant. We propose a practical technique to estimate the amount of sdLDL cholesterol using dynamic light scattering (DLS). An analytical solution in a closed form has newly been obtained to estimate the weight fraction of one species of scatterers in the DLS measurement of two species of scatterers. Using this solution, we can quantify the sdLDL cholesterol amount from the amounts of the low-density lipoprotein cholesterol and the high-density lipoprotein (HDL) cholesterol, which are commonly obtained through clinical tests. The accuracy of the proposed technique was confirmed experimentally using latex spheres with known size distributions. The applicability of the proposed technique was examined using samples of human blood serum. The possibility of estimating the sdLDL amount using the HDL data was demonstrated. These results suggest that the quantitative estimation of sdLDL amounts using DLS is feasible for point-of-care testing in clinical practice.
Huffman, Kim M; Hawk, Victoria H; Henes, Sarah T; Ocampo, Christine I; Orenduff, Melissa C; Slentz, Cris A; Johnson, Johanna L; Houmard, Joseph A; Samsa, Gregory P; Kraus, William E; Bales, Connie W
2012-07-01
The standard clinical approach for reducing cardiovascular disease risk due to dyslipidemia is to prescribe changes in diet and physical activity. The purpose of the current study was to determine if, across a range of dietary patterns, there were variable lipoprotein responses to an aerobic exercise training intervention. Subjects were participants in the STRRIDE I, a supervised exercise program in sedentary, overweight subjects randomized to 6 months of inactivity or 1 of 3 aerobic exercise programs. To characterize diet patterns observed during the study, we calculated a modified z-score that included intakes of total fat, saturated fat, trans fatty acids, cholesterol, omega-3 fatty acids, and fiber as compared with the 2006 American Heart Association diet recommendations. Linear models were used to evaluate relationships between diet patterns and exercise effects on lipoproteins/lipids. Independent of diet, exercise had beneficial effects on low-density lipoprotein cholesterol particle number, low-density lipoprotein cholesterol size, high-density lipoprotein cholesterol, high-density lipoprotein cholesterol size, and triglycerides (P < .05 for all). However, having a diet pattern that closely adhered to American Heart Association recommendations was not related to changes in these or any other serum lipids or lipoproteins in any of the exercise groups. We found that even in sedentary individuals whose habitual diets vary in the extent of adherence to AHA dietary recommendations, a rigorous, supervised exercise intervention can achieve significant beneficial lipid effects. Copyright © 2012 Mosby, Inc. All rights reserved.
Kulikova, A I; Tugusheva, F A; Zubina, I M; Shepilova, I N
2008-05-01
The authors propose a simple and reproducible procedure for using iron ions to stimulate serum lipid peroxidation, with TBA-active products being further determined. The procedure determines the reserve of lipids that can be oxidized during oxidative stress. A combination of direct studies and correlation analysis suggests that low-density lipoproteins and very low-density lipoproteins are the major substrates for lipid peroxidation while high-density lipoproteins show a high resistance to this process. The presented procedure may be used to monitor lipid peroxidation in various conditions and upon various exposures in common laboratory practice.
Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: An update and review
Huang, Ya-Kai; Yu, Jian-Chun
2015-01-01
Gastric cancer (GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most popular non-coding RNAs in cancer research. To date, the roles of miRNAs and lncRNAs have been extensively studied in GC, suggesting that miRNAs and lncRNAs represent a vital component of tumor biology. Furthermore, circulating miRNAs and lncRNAs are found to be dysregulated in patients with GC compared with healthy individuals. Circulating miRNAs and lncRNAs may function as promising biomarkers to improve the early detection of GC. Multiple possibilities for miRNA secretion have been elucidated, including active secretion by microvesicles, exosomes, apoptotic bodies, high-density lipoproteins and protein complexes as well as passive leakage from cells. However, the mechanism underlying lncRNA secretion and the functions of circulating miRNAs and lncRNAs have not been fully illuminated. Concurrently, to standardize results of global investigations of circulating miRNAs and lncRNAs biomarker studies, several recommendations for pre-analytic considerations are put forward. In this review, we summarize the known circulating miRNAs and lncRNAs for GC diagnosis. The possible mechanism of miRNA and lncRNA secretion as well as methodologies for identification of circulating miRNAs and lncRNAs are also discussed. The topics covered here highlight new insights into GC diagnosis and screening. PMID:26379393
Yu, Dongsheng; Chen, Gang; Pan, Minglin; Zhang, Jia; He, Wenping; Liu, Yang; Nian, Xue; Sheng, Liang; Xu, Bin
2018-06-01
Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease with manifestation of over-accumulation of fat in liver. Increasing evidences indicate that NAFLD may be in part caused by malfunction of very low density lipoprotein (VLDL) secretion. Hepatocyte nuclear factor 4α (HNF4α), a nuclear receptor protein, plays an important role in sustain hepatic lipid homeostasis via transcriptional regulation of genes involved in secretion of VLDL, such as apolipoprotein B (ApoB). However, the exact functional change of HNF4α in NAFLD remains to be elucidated. In the present study, we found that high fat diet (HFD) induced cytoplasmic retention of HNF4α in hepatocytes, which led to down-regulation of hepatic ApoB expression and its protein level in serum, as well as reduced secretion of VLDL. We further revealed that oxidative stress, elevated in fatty liver, was the key factor inducing the cytoplasmic retention of HNF4α in hepatocytes by activating protein kinase C (PKC)-mediated phosphorylation in HNF4α. Thus, our findings reveal a novel mechanism underlying HFD-induced fatty liver that oxidative stress impairs function of HNF4α on ApoB expression and VLDL secretion via PKC activation, eventually promoting fat accumulation in the liver. Therefore, oxidative stress/PKC/HNF4α pathway may be a novel target to treat diet-induced fatty liver. © 2017 Wiley Periodicals, Inc.
1993-09-01
density lipoprotein ( HDL -C) cholesterol and triglyceride changes in TSH (P < .05)1 TBG (P < .01), TT3 (P < .05), ( TG ), on the other hand, were analyzed from...total thyroxine (TT4), free T4 (FT4), total T3 (TT3), free T3 (FT3), thyroid-binding globulin (TBG), total cholesterol (T-CHOL), high - density lipoprotein ... cholesterol ( HDL -C), triglyceride ( TG ), dietary cholesterol (D-CHOL), dietary fat (D-FAT), and dietary
Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci
USDA-ARS?s Scientific Manuscript database
Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholest...
Auto antibodies against oxidized low density lipoprotein in severe preeclampsia.
Jain, Meenakshi; Sawhney, Harjeet; Aggarwal, Neelam; Vashistha, Kala; Majumdhar, Siddarth
2004-06-01
To study autoantibody titres against oxidized low density lipoprotein in preeclamsia. Ten millimeters of heparinized blood samples were collected from 20 primigravidae with severe preeclamsia (study group) and 20 gestation-matched normotensive primigravidae (control group). Concentration of malondialdehyde, metabolite of lipid peroxidation were measured in sera by HPLC and autoantibodies against oxidized low density lipoproteins (obtained after oxidation with 2 mm CuSO(4)) were determined by ELISA. Statistical analysis was performed by Student's t-test and chi(2) test. Mean triglyceride levels were significantly (P < 0.001) higher in the study group (193.20 +/- 31.16 mg/dL) compared to the control group (170.60 +/- 23.2 mg/dL). Mean plasma lipid per oxide levels were not significantly different between the study (4.45 +/- 1.28 mmol/mL) and control (3.88 +/- 0.99 mmol/mL) groups. The majority of women in both groups had low antibody titres (<1.32) against low density lipoprotein. Six women (30%) of the study group and four (20%) of the control group had high autoantibody titres (>/=1.32). In preeclamptic women, diastolic blood pressure, the amount of urinary protein excretion and the plasma level of urea were significantly higher (P < 0.05) in patients with higher auto antibody titre. Titres of autoantibodies to oxidized low density lipoprotein were similar in normotensive and preeclamptic women. In preeclamptic women, titres correlated positively with the severity of preeclampsia.
Temel, Ryan E.; Brown, J. Mark
2015-01-01
Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention. PMID:25930707
Wine as a biological fluid: history, production, and role in disease prevention.
Soleas, G J; Diamandis, E P; Goldberg, D M
1997-01-01
Wine has been part of human culture for 6,000 years, serving dietary and socio-religious functions. Its production takes place on every continent, and its chemical composition is profoundly influenced by enological techniques, the grape cultivar from which it originates, and climatic factors. In addition to ethanol, which in moderate consumption can reduce mortality from coronary heart disease by increasing high-density lipoprotein cholesterol and inhibiting platelet aggregation, wine (especially red wine) contains a range of polyphenols that have desirable biological properties. These include the phenolic acids (p-coumaric, cinnamic, caffeic, gentisic, ferulic, and vanillic acids), trihydroxy stilbenes (resveratrol and polydatin), and flavonoids (catechin, epicatechin, and quercetin). They are synthesized by a common pathway from phenylalanine involving polyketide condensation reactions. Metabolic regulation is provided by competition between resveratrol synthase and chalcone synthase for a common precursor pool of acyl-CoA derivatives. Polymeric aggregation gives rise, in turn to the viniferins (potent antifungal agents) and procyanidins (strong antioxidants that also inhibit platelet aggregation). The antioxidant effects of red wine and of its major polyphenols have been demonstrated in many experimental systems spanning the range from in vitro studies (human low-density lipoprotein, liposomes, macrophages, cultured cells) to investigations in healthy human subjects. Several of these compounds (notably catechin, quercetin, and resveratrol) promote nitric oxide production by vascular endothelium; inhibit the synthesis of thromboxane in platelets and leukotriene in neutrophils, modulate the synthesis and secretion of lipoproteins in whole animals and human cell lines, and arrest tumour growth as well as inhibit carcinogenesis in different experimental models. Target mechanisms to account for these effects include inhibition of phospholipase A2 and cyclo-oxygenase, inhibition of phosphodiesterase with increase in cyclic nucleotide concentrations, and inhibition of several protein kinases involved in cell signalling. Although their bioavailability remains to be fully established, red wine provides a more favourable milieu than fruits and vegetables, their other dietary source in humans.
Quispe, Renato; Manalac, Raoul J; Faridi, Kamil F; Blaha, Michael J; Toth, Peter P; Kulkarni, Krishnaji R; Nasir, Khurram; Virani, Salim S; Banach, Maciej; Blumenthal, Roger S; Martin, Seth S; Jones, Steven R
2015-09-01
High levels of the triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio are associated with obesity, metabolic syndrome, and insulin resistance. We evaluated variability in the remaining lipid profile, especially remnant lipoprotein particle cholesterol (RLP-C) and its components (very low-density lipoprotein cholesterol subfraction 3 and intermediate-density lipoprotein cholesterol), with variability in the TG/HDL-C ratio in a very large study cohort representative of the general U.S. We examined data from 1,350,908 US individuals who were clinically referred for lipoprotein cholesterol ultracentrifugation (Atherotech, Birmingham, AL) from 2009 to 2011. Demographic information other than age and sex was not available. Changes to the remaining lipid profile across percentiles of the TG/HDL-C ratio were quantified, as well as by three TG/HDL-C cut-off points previously proposed in the literature: 2.5 (male) and 2 (female), 3.75 (male) and 3 (female), and 3.5 (male and female). The mean age of our study population was 58.7 years, and 48% were men. The median TG/HDL-C ratio was 2.2. Across increasing TG/HDL-C ratios, we found steadily increasing levels of RLP-C, non-HDL-C and LDL density. Among the lipid parameters studied, RLP-C and LDL density had the highest relative increase when comparing individuals with elevated TG/HDL-C levels to those with lower TG/HDL-C levels using established cut-off points. Approximately 47% of TG/HDL-C ratio variance was attributable to RLP-C. In the present analysis, a higher TG/HDL-C ratio was associated with an increasingly atherogenic lipid phenotype, characterized by higher RLP-C along with higher non-HDL-C and LDL density. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Background: Population studies have shown an inverse association between high-density lipoprotein (HDL) cholesterol levels and risk of coronary heart disease (CHD). HDL has different functions, including the ability to protect biological molecules from oxidation. Our aim was to evaluate the performa...
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Plasma high density lipoprotein (HDL) cholesterol (HDL-C) concentration is highly heritable but is also modifiable by environmental factors including physical activity. HDL-C response to exercise varies among individuals, and this variability may be associated with genetic polymorphism...
Tapader, Rima; Bose, Dipro; Pal, Amit
2017-04-01
YghJ, also known as SslE (Secreted and surface associated lipoprotein) is a cell surface associated and secreted lipoprotein harbouring M60 metalloprotease domain. Though the gene is known to be conserved among both pathogenic and commensal Escherichia coli isolates, the expression and secretion of YghJ was found to be higher among diverse E. coli pathotypes. YghJ, secreted from intestinal pathogens such as enterotoxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC) has been demonstrated to possess mucinase activity and hence facilitates colonization of these enteric pathogens to intestinal epithelial cells. Importantly, YghJ is also reported to be secreted from extraintestinal pathogenic E. coli isolates. In our previous study we have shown that YghJ, purified from a neonatal septicemic E. coli isolate could trigger induction of various proinflammatory cytokines in vitro. This led us to investigate the role of YghJ in causing in vivo tissue hemorrhage. In the present study, we validate the earlier in vitro finding and have showed that YghJ can cause extensive tissue damage in mouse ileum and is also able to induce significant fluid accumulation in a dose dependent manner in a mouse ileal loop (MIL) assay. Hence, our present study not only confirms the pathogenic potential of YghJ in sepsis pathophysiology but also indicates the enterotoxic ability of YghJ which makes it an important virulence determinant of intestinal pathogenic E. coli. Copyright © 2017 Elsevier Ltd. All rights reserved.
Glucose, lipid, and lipoprotein levels in sheep naturally infected with Fasciola hepatica.
Kozat, Süleyman; Denizhan, Vural
2010-06-01
This study was designed to investigate serum glucose, lipid, and lipoprotein in sheep naturally infected with Fasciola hepatica. Ten healthy sheep and 15 infected with F. hepatica were used in study. Serum concentrations of total protein (TP), albumin, glucose, cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), very-low-density lipoproteins (VLDL), and serum activities of AST, ALT, GGT, and LDH were measured using a Roche-Cobas Integra 800 auto-analyzer. At day 0 (prior to treatment) and on the 28th day (after treatment) the serum concentrations of TP, albumin, glucose, cholesterol, triglyceride, HDL, LDL, and VLDL values in sheep with F. hepatica were significantly lower than those of the control group, while serum activities of AST, ALT, GGT, and LDH of lambs with F. hepatica were significantly higher than those of the control group. At day 56 (after treatment), none of the variables was significantly different between control sheep and those that received treatment for fascioliasis (P > 0.05). Nutritional management may be used to reduce the impact of fascioliasis.
Genetics of Lipid and Lipoprotein Disorders and Traits.
Dron, Jacqueline S; Hegele, Robert A
2016-01-01
Plasma lipids, namely cholesterol and triglyceride, and lipoproteins, such as low-density lipoprotein (LDL) and high-density lipoprotein, serve numerous physiological roles. Perturbed levels of these traits underlie monogenic dyslipidemias, a diverse group of multisystem disorders. We are on the verge of having a relatively complete picture of the human dyslipidemias and their components. Recent advances in genetics of plasma lipids and lipoproteins include the following: (1) expanding the range of genes causing monogenic dyslipidemias, particularly elevated LDL cholesterol; (2) appreciating the role of polygenic effects in such traits as familial hypercholesterolemia and combined hyperlipidemia; (3) accumulating a list of common variants that determine plasma lipids and lipoproteins; (4) applying exome sequencing to identify collections of rare variants determining plasma lipids and lipoproteins that via Mendelian randomization have also implicated gene products such as NPC1L1 , APOC3 , LDLR , APOA5 , and ANGPTL4 as causal for atherosclerotic cardiovascular disease; and (5) using naturally occurring genetic variation to identify new drug targets, including inhibitors of apolipoprotein (apo) C-III, apo(a), ANGPTL3, and ANGPTL4. Here, we compile this disparate range of data linking human genetic variation to plasma lipids and lipoproteins, providing a "one stop shop" for the interested reader.
Mechanisms of Dyslipoproteinemias in Systemic Lupus Erythematosus
Borba, Eduardo F.; Carvalho, Jozelio F.; Bonfá, Eloísa
2006-01-01
Autoimmunity and inflammation are associated with marked changes in lipid and lipoprotein metabolism in SLE. Autoantibodies and cytokines are able to modulate lipoprotein lipase (LPL) activity, a key enzyme in lipid metabolism, with a consequent “lupus pattern” of dyslipoproteinemia characterized by elevated levels of very low-density lipoprotein cholesterol (VLDL) and triglycerides (TG) and lower high-density lipoprotein cholesterol (HDL) levels. This pattern favors an enhanced LDL oxidation with a subsequent deleterious foam cell formation. Autoantibodies and immunocomplexes may aggravate this oxidative injury by inducing accumulation and deposition of oxLDL in endothelial cells. Drugs and associated diseases usually magnify the close interaction of these factors and further promote the proatherogenic environment of this disease. PMID:17162363
Barter, P J; Hopkins, G J; Gorjatschko, L
1984-01-17
A recent observation that lecithin: cholesterol acyltransferase (EC 2.3.1.43) interacts with both low-density lipoproteins (LDL) and high-density lipoproteins (HDL) in human plasma is in apparent conflict with an earlier finding that the purified enzyme, while highly reactive with isolated HDL, was only minimally reactive with LDL. There is evidence, however, that lecithin: cholesterol acyltransferase may exist physiologically as a component of a complex with other proteins and that studies with the isolated enzyme may therefore provide misleading results. Consequently, interactions of the enzyme with isolated human lipoproteins have been re-examined in incubations containing lecithin: cholesterol acyltransferase as a component of human lipoprotein-free plasma in which a physiologically active complex of the enzyme with other proteins may have been preserved. In this system there was a ready esterification of the free cholesterol associated with both LDL and HDL-subfraction 3 (HDL3) in reactions that obeyed typical enzyme-saturation kinetics. For a given preparation of lipoprotein-free plasma the Vmax values with LDL and with HDL3 were virtually identical. The apparent Km for free cholesterol associated with HDL3 was 5.6 X 10(-5) M, while for that associated with LDL it was 4.1 X 10(-4) M. This implied that, in terms of free cholesterol concentration, the affinity of HDL3 for lecithin: cholesterol acyltransferase was about 7-times greater than that of LDL. When expressed in terms of lipoprotein particle concentration, however, it was apparent that the affinity of LDL for the enzyme was considerably greater than that of HDL3. When the lipoprotein fractions were equated in terms of lipoprotein surface area, the apparent affinities of the two fractions for the enzyme were found to be comparable.
Hoeke, Geerte; Nahon, Kimberly J; Bakker, Leontine E H; Norkauer, Sabine S C; Dinnes, Donna L M; Kockx, Maaike; Lichtenstein, Laeticia; Drettwan, Diana; Reifel-Miller, Anne; Coskun, Tamer; Pagel, Philipp; Romijn, Fred P H T M; Cobbaert, Christa M; Jazet, Ingrid M; Martinez, Laurent O; Kritharides, Leonard; Berbée, Jimmy F P; Boon, Mariëtte R; Rensen, Patrick C N
Cold exposure and β3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by 1 H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [ 3 H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
The association between lipid parameters and obesity in university students.
Hertelyova, Z; Salaj, R; Chmelarova, A; Dombrovsky, P; Dvorakova, M C; Kruzliak, P
2016-07-01
Abdominal obesity is associated with high plasma triglyceride and with low plasma high-density lipoprotein cholesterol levels. Objective of the study was to find an association between plasma lipid and lipoprotein levels and anthropometric parameters in abdominal obesity in Slovakian university students. Lipid profile and anthropometric parameters of obesity were studied in a sample of 419 probands, including 137 men and 282 women. Males had higher values of non-high-density lipoprotein cholesterol (non-HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and very low-density lipoprotein cholesterol (VLDL-C) than females, but these differences were not significant. Females had significantly (P < 0.05) higher TC and HDL-C (P < 0.001) than males. In comparison, all anthropometric parameters in the males were significantly (P < 0.001) higher than in the females. A positive correlation between non-HDL-C, TG, VLDL-C and anthropometric parameters (BMI, WC, WHR, WHtR) was found at P < 0.001. LDL was positively correlated with BMI, WCF, WHtR and TC with BMI, WHtR at P < 0.001. We also observed a correlation between TC-WCF and LDL-WHR at P < 0.01. A negative correlation was found between HDL and all monitored anthropometric parameters at P < 0.001. On the other hand, no correlation between TC and WHR was detected. This study shows an association between plasma lipid and lipoprotein levels and anthropometric parameters in abdominal obesity in young people, predominantly university students.
2013-01-01
Background Because of the absorption of glucose in peritoneal dialysis (PD) solution, PD patients show an atherogenic lipid profile, which is predictive of poor survival in PD patients. Lipoprotein subclasses consist of a continuous spectrum of particles of different sizes and densities (fraction). In this study, we investigated the lipoprotein fractions in PD patients with controlled serum low-density lipoprotein (LDL) cholesterol level, and evaluated the effects of icodextrin on lipid metabolism. Methods Forty-nine PD patients were enrolled in this cross-sectional study in Japan. The proportions of cholesterol levels to total cholesterol level (cholesterol proportion) in 20 lipoprotein fractions were measured using an improved method of high-performance gel permeation chromatography (HPGPC). Results Twenty-six patients used icodextrin. Although no significant differences in cholesterol levels in LDL and high-density lipoprotein (HDL) were observed between the patients using icodextrin (icodextrin group) and control groups, HPGPC showed that the icodextrin group had significantly lower cholesterol proportions in the small LDL (t-test, p=0.053) and very small LDL (p=0.019), and significantly higher cholesterol proportions in the very large HDL and large HDL than the control group (p=0.037; p=0.066, respectively). Multivariate analysis adjusted for patient characteristics and statin use showed that icodextrin use was negatively associated with the cholesterol proportions in the small LDL (p=0.037) and very small LDL (p=0.026), and positively with those in the very large HDL (p=0.040), large HDL (p=0.047), and medium HDL (p=0.009). Conclusions HPGPC showed the relationship between icodextrin use and the cholesterol proportions in lipoprotein fractions in PD patients. These results suggest that icodextrin may improve atherogenic lipid profiles in a manner different from statin. PMID:24161017
Korolenko, Tatyana A; Tuzikov, Fedor V; Johnston, Thomas P; Tuzikova, Natalia A; Kisarova, Yana A; Zhanaeva, Svetlana Ya; Alexeenko, Tatyana V; Zhukova, Natalia A; Brak, Ivan V; Spiridonov, Victor K; Filjushina, Elena E; Cherkanova, Marina S; Monoszon, Anna A
2012-11-01
The effects of repeated administration of poloxamer 407 (P-407) on lipoprotein-cholesterol (LP-C) and lipoprotein-triglyceride (LP-TG) fractions and subfractions, as well as the effect on liver and heart proteases, were studied. Repeated administration of P-407 to male CBA mice resulted in a model of atherosclerosis with increased diastolic blood pressure; there was a drastic increase in total serum cholesterol and especially TG. A novel small-angle X-ray scattering method for the determination of the fractional and subfractional composition of LP-C and LP-TG was used. In chronically P-407-treated mice, P-407 significantly increased atherogenic low-density lipoprotein C (LDL-C) fractions, as well as intermediate-density lipoprotein C (IDL-C), and LDL₁₋₃-C subfractions, and very-low-density lipoprotein-C (VLDL-C) fractions, as well as VLDL₁₋₂-C and VLDL₃₋₅-C subfractions), to a lesser extent, the total anti-atherogenic high-density lipoprotein C (HDL-C) fraction, as well as HDL₂-C and HDL₃-C subfractions. Additionally, we demonstrated an increase in the serum chitotriosidase activity, without significant changes in serum matrix metalloprotease (MMP) activity. Morphological changes observed in P-407-treated mice included atherosclerosis in the heart and storage syndrome in the liver macrophages. P-407 significantly increased the activity of cysteine, aspartate proteases, and MMPs in the heart, and only the activity of cathepsin B and MMPs in the liver of mice. Thus, repeated administration of P-407 to mice induced atherosclerosis secondary to sustained dyslipidemia and formation of foamy macrophages in liver, and also modulated the activity of heart and liver proteases.
Tuazon, Marc A; Campbell, Sara C; Klein, Dylan J; Shapses, Sue A; Anacker, Keith R; Anthony, Tracy G; Uzumcu, Mehmet; Henderson, Gregory C
2018-06-01
Menopause is associated with fatty liver, glucose dysregulation, increased body fat, and impaired bone quality. Previously, it was demonstrated that single sessions of high-intensity interval exercise (HIIE) are more effective than distance- and duration-matched continuous exercise (CE) on altering hepatic triglyceride (TG) metabolism and very-low density lipoprotein-TG (VLDL-TG) secretion. Six weeks training using these modalities was examined for effects on hepatic TG metabolism/secretion, glucose tolerance, body composition, and bone mineral density (BMD) in ovariectomized (OVX) and sham-operated (SHAM) mice. OVX and SHAM were assigned to distance- and duration-matched CE and HIIE, or sedentary control. Energy expenditure during exercise was confirmed to be identical between CE and HIIE and both similarly reduced post-exercise absolute carbohydrate oxidation and spontaneous physical activity (SPA). OVX vs. SHAM displayed impaired glucose tolerance and greater body fat despite lower hepatic TG, and these outcomes were not affected by training. Only HIIE increased hepatic AMPK in OVX and SHAM, but neither training type impacted VLDL-TG secretion. As expected, BMD was lower in OVX, and training did not affect long bones. The results reveal intensity-dependent effects on hepatic AMPK expression and general exercise effects on subsequent SPA and substrate oxidation that is independent of estrogen status. These findings support the notion that HIIE can impact aspects of liver physiology in females while the effects of exercise on whole body substrate selection appear to be independent of training intensity. However, neither exercise approach mitigated the impairment in glucose tolerance and elevated body fat occurring in OVX mice. Copyright © 2018 Elsevier Inc. All rights reserved.
The influence of a high level of corn oil on rat serum lipoproteins.
Narayan, K A; McMullen, J J; Butler, D P; Wakefield, T; Calhoun, W K
1976-01-01
Although the stated requirement for linoleic acid in humans is less than 2% of the dietary calories, recently there has been considerable emphasis on the necessity to substitute dietary polyunsaturates for saturates in order to reduce serum cholesterol levels. In this study we have sought to determine the nutritional consequences of feeding a very high level of linoleate to rats. Three groups of thirty adult animals each were fed a semipurified diet consisting by weight of casein 17%; mineral mixture 5.5%; vitamin mixture in glucose 2.2%; cellulose fiber 3.0%; and corn oil 0% (group A), 10% (group B) or 40% (group C), which was provided at the expense of glucose. At the end of four weeks on the diets, blood was obtained in the fasting state from 16 rats in each group. The serum was ultracentrifugally fractionated into six classes of lipoproteins and analyzed for lipid composition and protein content. Disc gel electrophoresis using lipid and protein stains established that the various lipoprotein subclasses were reasonably free of adjacent density fractions. Although the total serum cholesterol levels were practically the same in the three groups, the cholesterol moiety of the major low density lipoproteins, LDL2 (d 1.019-1.050), but not of very low density lipoproteins, VLDL (d 1.006) or low density lipoproteins, LDL1 (d 1.006-1.019), was substantially and very significantly increased in rats fed the high level of corn oil as compared to the other groups. The concentration of the very low density lipoproteins was significantly lower in group C than in the groups A and B. The LDL2 concentration but not that of LDL1 was significantly greater in group C as compared to group A. The cholesterol/total lipid ratio was significantly greater in both LDL2 and LDL1 but not in VLDL of group C as compared with group A. The serum high density lipoproteins were relatively less influenced by the ingestion of an excessive level of corn oil at this time period. The serum lipoprotein levels as well as their lipid composition were generally similar in groups A and B and suggested that a moderate level (5%) of dietary linoleate did not cause any untoward changes in rats. On the basis of current information on the metabolism of lipoproteins, it has been proposed that the increase in rat serum LDL2 of group C reflects the status of the liver and that a large portion of the cholesterol moiety of LDL2 is perhaps derived from the liver while the protein and phospholipid portions may represent remnants of VLDL catabolism.(ABSTRACT TRUNCATED AT 400 WORDS)
Jelenkovic, Aline; Bogl, Leonie H; Rose, Richard J; Kangas, Antti J; Soininen, Pasi; Ala-Korpela, Mika; Kaprio, Jaakko; Silventoinen, Karri
2013-01-01
Little is known about the relationship between growth and lipoprotein profile. We aimed to analyze common genetic and environmental factors in the association of height from late childhood to adulthood and pubertal timing with serum lipid and lipoprotein subclass profile. A longitudinal cohort of Finnish twin pairs (FinnTwin12) was analyzed using self-reported height at 11-12, 14, 17 years and measured stature at adult age (21-24 years). Data were available for 719 individual twins including 298 complete pairs. Serum lipids and lipoprotein subclasses were measured by proton nuclear magnetic resonance spectroscopy. Multivariate variance component models for twin data were fitted. Cholesky decomposition was used to partition the phenotypic covariation among traits into additive genetic and unique environmental correlations. In men, the strongest associations for both adult height and puberty were observed with total cholesterol, low-density lipoprotein cholesterol, intermediate-density lipoprotein cholesterol, and low-density lipoprotein particle subclasses (max. r = -0.19). In women, the magnitude of the correlations was weaker (max. r = -0.13). Few associations were detected between height during adolescence and adult lipid profile. Early onset of puberty was related to an adverse lipid profile, but delayed pubertal development in girls was associated with an unfavorable profile, as well. All associations were mediated mainly by additive genetic factors, but unique environmental effects cannot be disregarded. Early puberty and shorter adult height relate to higher concentrations of atherogenic lipids and lipoprotein particles in early adulthood. Common genetic effects behind these phenotypes substantially contribute to the observed associations. Copyright © 2013 Wiley Periodicals, Inc.
Varbo, Anette; Benn, Marianne; Smith, George Davey; Timpson, Nicholas J; Tybjaerg-Hansen, Anne; Nordestgaard, Børge G
2015-02-13
Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. To test the hypothesis that the increased IHD risk because of obesity is mediated through lipoproteins, blood pressure, glucose, and C-reactive protein. Approximately 90 000 participants from Copenhagen were included in a Mendelian randomization design with mediation analyses. Associations were examined using conventional measurements of body mass index and intermediate variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood pressure, and possibly also through elevated nonfasting glucose levels; however, reduced high-density lipoprotein cholesterol and elevated C-reactive protein levels were not mediators in genetic analyses. The 3 intermediate variables that explained the highest excess risk of IHD from genetically determined obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. The increased IHD risk because of obesity was partly mediated through elevated levels of nonfasting remnant and low-density lipoprotein cholesterol and through elevated blood pressure. Our results suggest that there may be benefit to gain by reducing levels of these risk factors in obese individuals not able to achieve sustained weight loss. © 2014 American Heart Association, Inc.
León-Latre, Montserrat; Moreno-Franco, Belén; Andrés-Esteban, Eva M; Ledesma, Marta; Laclaustra, Martín; Alcalde, Víctor; Peñalvo, José L; Ordovás, José M; Casasnovas, José A
2014-06-01
To analyze the association between sitting time and biomarkers of insulin resistance and inflammation in a sample of healthy male workers. Cross-sectional study carried out in a sample of 929 volunteers belonging to the Aragon Workers' Health Study cohort. Sociodemographic, anthropometric, pharmacological and laboratory data were collected: lipids-total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoproteins A-1 and B-100, lipoprotein (a)-, insulin resistance-glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, insulin, and triglyceride/high-density lipoprotein cholesterol ratio-, and inflammatory profile-C-reactive protein and leukocytes. Information on sitting time and physical activity was assessed using a questionnaire. Sedentary behavior was analyzed in terms of prevalences and medians, according to tertiles, using a multivariate model (crude and adjusted linear regression) with biomarkers of inflammation and insulin resistance. The most sedentary individuals had higher body mass index, greater waist circumference, and higher systolic blood pressure, with a significant upward trend in each tertile. Likewise, they had a worse lipid profile with a higher C-reactive protein level, homeostasis model assessment of insulin resistance index, triglyceride/high-density lipoprotein cholesterol ratio, and insulin concentration. In the multivariate analysis, we observed a significant association between the latter parameters and sitting time in hours (log C-reactive protein [β = 0.07], log homeostasis model assessment of insulin resistance index [β = 0.05], triglyceride/high-density lipoprotein cholesterol ratio [β = 0.23], and insulin [β = 0.44]), which remained after adjustment for metabolic equivalents-h/week. Workers who spend more time sitting show a worse inflammatory and insulin resistance profile independently of the physical activity performed. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Vinson, Joe A; Proch, John; Bose, Pratima; Muchler, Sean; Taffera, Pamela; Shuta, Donna; Samman, Najwa; Agbor, Gabriel A
2006-10-18
Chocolate today is often viewed as a food or snack with little nutritional value. The high saturated fat content of chocolate has also contributed to the belief that its consumption increases the risk of heart disease. However, recent human studies have proven that chocolate has beneficial effects on some pathogenic mechanisms of heart disease such as endothelial function and blood pressure. Although the antioxidant properties of chocolate have been known for some time, there has been no examination of its place in the U.S. diet as a source of antioxidants. This paper demonstrates that chocolate makes a significant contribution to U.S. per capita dietary antioxidants and by inference the European Community's. In the U.S. diet chocolate is the third highest daily per capita antioxidant source. An ex vivo study shows that epicatechin, a major polyphenol in chocolate and chocolate extracts, is a powerful inhibitor of plasma lipid oxidation due to polyphenols' ability to bind to lower density lipoproteins. Conversely, the fat from chocolate alone is a pro-oxidant in this model. This is also demonstrated in an in vivo human study. After consumption of dark chocolate and cocoa powder, the lower density lipoproteins isolated from plasma were protected from oxidation compared to the lipoproteins isolated after cocoa butter consumption, which were put under oxidative stress. In an animal model of atherosclerosis, cocoa powder at a human dose equivalent of two dark chocolate bars per day significantly inhibited atherosclerosis, lowered cholesterol, low-density lipoprotein, and triglycerides, raised high-density lipoprotein, and protected the lower density lipoproteins from oxidation. Chocolate has thus been shown to have potential beneficial effects with respect to heart disease.
Excessive centrifugal fields damage high density lipoprotein[S
Munroe, William H.; Phillips, Martin L.; Schumaker, Verne N.
2015-01-01
HDL is typically isolated ultracentrifugally at 40,000 rpm or greater, however, such high centrifugal forces are responsible for altering the recovered HDL particle. We demonstrate that this damage to HDL begins at approximately 30,000 rpm and the magnitude of loss increases in a rotor speed-dependent manner. The HDL is affected by elevated ultracentrifugal fields resulting in a lower particle density due to the shedding of associated proteins. To circumvent the alteration of the recovered HDL, we utilize a KBr-containing density gradient and a lowered rotor speed of 15,000 rpm to separate the lipoproteins using a single 96 h centrifugation step. This recovers the HDL at two density ranges; the bulk of the material has a density of about 1.115 g/ml, while lessor amounts of material are recovered at >1.2 g/ml. Thus, demonstrating the isolation of intact HDL is possible utilizing lower centrifuge rotor speeds. PMID:25910941
Social Inclusion Predicts Lower Blood Glucose and Low-Density Lipoproteins in Healthy Adults.
Floyd, Kory; Veksler, Alice E; McEwan, Bree; Hesse, Colin; Boren, Justin P; Dinsmore, Dana R; Pavlich, Corey A
2017-08-01
Loneliness has been shown to have direct effects on one's personal well-being. Specifically, a greater feeling of loneliness is associated with negative mental health outcomes, negative health behaviors, and an increased likelihood of premature mortality. Using the neuroendocrine hypothesis, we expected social inclusion to predict decreases in both blood glucose levels and low-density lipoproteins (LDLs) and increases in high-density lipoproteins (HDLs). Fifty-two healthy adults provided self-report data for social inclusion and blood samples for hematological tests. Results indicated that higher social inclusion predicted lower levels of blood glucose and LDL, but had no effect on HDL. Implications for theory and practice are discussed.
Casaschi, Adele; Rubio, Brent K; Maiyoh, Geoffrey K; Theriault, Andre G
2004-10-01
The purpose of the present study was to examine the role of taxifolin, a plant flavonoid, on several aspects involving apolipoprotein B (apoB) secretion and triglyceride (TG) availability in HepG2 cells. Taxifolin was shown by ELISA to markedly reduce apoB secretion under basal and lipid-rich conditions up to 63% at 200 micromol/L. As to the mechanism underlying this effect, we examined whether taxifolin exerted its effect by limiting TG availability in the microsomal lumen essential for lipoprotein assembly. Taxifolin was shown to inhibit microsomal TG synthesis by 37% and its subsequent transfer into the lumen (-26%). The reduction in synthesis was due to a decrease in diacylglycerol acyltransferase (DGAT) activity (-35%). The effect on DGAT activity was found to be non-competitive and non-transcriptional in nature. Both DGAT-1 and DGAT-2 mRNA expression remained essentially unchanged suggesting the point of regulation may be at the post-transcriptional level. Evidence is accumulating that microsomal triglyceride transfer protein (MTP) is also involved in determining the amount of lumenal TG available for lipoprotein assembly and secretion. Taxifolin was shown to inhibit this enzyme by 41%. Whether the reduction in TG accumulation in the microsomal lumen is predominantly due to DGAT and/or MTP activity remains to be addressed. In summary, taxifolin reduced apoB secretion by limiting TG availability via DGAT and MTP activity.
Fukuda, N; Ontko, J A
1984-08-01
In a series of experiments with male rat livers perfused with or without 5-tetradecyloxy-2-furoic acid (TOFA) in the presence and absence of oleate, the relationships between fatty acid synthesis, oxidation, and esterification from newly synthesized and exogenous fatty acid substrates have been examined. When livers from fed rats were perfused without exogenous fatty acid substrate, 20% of the triglyceride secreted was derived from de novo fatty acid synthesis. Addition of TOFA caused immediate and nearly complete inhibition of fatty acid synthesis, measured by incorporation of 3H2O into fatty acids. Concurrently, ketone body production increased 140% and triglyceride secretion decreased 84%. These marked reciprocal alterations in fatty acid synthesis and oxidation in the liver almost completely abolished the production of very low density lipoproteins (VLDL). Cholesterol synthesis was also depressed by TOFA, suggesting that this drug also inhibited lipid synthesis at a site other than acetyl-CoA carboxylase. When livers from fed rats were supplied with a continuous infusion of [1-14C]oleate as exogenous substrate, similar proportions, about 45-47%, of both ketone bodies and triglyceride in the perfusate were derived from the infused [1-14C]oleate. The production of ketone bodies was markedly increased by TOFA; the secretion of triglyceride and cholesterol were decreased. Altered conversion of [1-14C]oleate into these products occurred in parallel. While TOFA decreased esterification of oleate into triglyceride, incorporation of [1-14C]oleate into liver phospholipid was increased, indicating that TOFA also affected glycerolipid synthesis at the stage of diglyceride processing. The decreased secretion of triglyceride and cholesterol following TOFA treatment was localized almost exclusively in VLDL. The specific activities of 3H and of 14C fatty acids in triglyceride of the perfusate were greater than those of liver triglyceride, indicating preferential secretion of triglyceride produced from both de novo fatty acid synthesis and from infused free fatty acid substrate. These observations suggest the following chain of events in the liver following TOFA treatment: inhibition of fatty acid and cholesterol synthesis; increased fatty acid oxidation and ketogenesis; decreased triglyceride synthesis as a result of inhibition of fatty acid synthesis, stimulation of fatty acid oxidation, and altered partition of diglyceride between triglyceride and phospholipid synthesis; and decreased production of VLDL. These comparative rat liver perfusion experiments indicate that free fatty acids provide the major source of substrate for the hepatic production of triglyceri
USDA-ARS?s Scientific Manuscript database
Atorvastatin and rosuvastatin at maximal doses are both highly effective in lowering low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels. Rosuvastatin has been shown to be more effective than atorvastatin in lowering LDL-C, small dense LDL-C and in raising high-density lipoprote...
Glycated albumin and direct low density lipoprotein cholesterol levels in type 2 diabetes mellitus
USDA-ARS?s Scientific Manuscript database
Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) has been associated with a decreased risk of these complications. We evaluated the ut...
Riales, R; Albrink, M J
1981-12-01
Chromium deficiency may cause insulin resistance, hyperinsulinemia, impaired glucose tolerance, and hyperlipidemia, recovered by chromium supplementation. The effect of chromium supplementation on serum lipids and glucose tolerance was tested in a double-blind 12-wk study of 23 healthy adult men aged 31 to 60 yr. Either 200 micrograms trivalent chromium in 5 ml water (Cr) or 5 ml plain water (W) was ingested daily 5 days each week. Half the subjects volunteered for glucose tolerance tests with insulin levels. At 12 wk high-density lipoprotein cholesterol increased in the Cr group from 35 to 39 mg/dl (p less than 0.05) but did not change in the water group (34 mg/dl). The largest increase in high-density lipoprotein cholesterol and decreases in insulin and glucose were found in those subjects having normal glucose levels together with elevated insulin levels at base-line. The data are thus consistent with the hypothesis that Cr supplementation raises high-density lipoprotein cholesterol and improves insulin sensitivity in those with evidence of insulin resistance but normal glucose tolerance.
Association of ADRB2 polymorphism with triglyceride levels in Tongans.
Naka, Izumi; Ohashi, Jun; Kimura, Ryosuke; Inaoka, Tsukasa; Matsumura, Yasuhiro
2013-07-23
Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index.
Apolipoprotein B variant derived from rat intestine.
Krishnaiah, K V; Walker, L F; Borensztajn, J; Schonfeld, G; Getz, G S
1980-01-01
A variant of apolipoprotein B has been observed in the lymph lipoproteins [chylomicrons, very low density lipoproteins (VLDL), and low density lipoproteins (LDL)] of rats, in the plasma VLDL of fed rats, and in the plasma VLDL and LDL of rats fed a high-fat, high-cholesterol diet. It is the sole apolipoprotein B in the chylomicrons and VLDL of lymph. It differs from the apolipoprotein B of normal plasma LDL in its immunological properties and in its apparent molecular weight from electrophoresis on 3.5% NaDodSO4/polyacrylamide gel. Images PMID:6933436
Beilstein, Frauke; Lemasson, Matthieu; Pène, Véronique; Rainteau, Dominique; Demignot, Sylvie; Rosenberg, Arielle R
2017-12-01
HCV is intimately linked with the liver lipid metabolism, devoted to the efflux of triacylglycerols stored in lipid droplets (LDs) in the form of triacylglycerol-rich very-low-density lipoproteins (VLDLs): (i) the most infectious HCV particles are those of lowest density due to association with triacylglycerol-rich lipoproteins and (ii) HCV-infected patients frequently develop hepatic steatosis (increased triacylglycerol storage). The recent identification of lysophosphatidylcholine acyltransferase 1 (LPCAT1) as an LD phospholipid-remodelling enzyme prompted us to investigate its role in liver lipid metabolism and HCV infectious cycle. Huh-7.5.1 cells and primary human hepatocytes (PHHs) were infected with JFH1-HCV. LPCAT1 depletion was achieved by RNA interference. Cells were monitored for LPCAT1 expression, lipid metabolism and HCV production and infectivity. The density of viral particles was assessed by isopycnic ultracentrifugation. Upon HCV infection, both Huh-7.5.1 cells and PHH had decreased levels of LPCAT1 transcript and protein, consistent with transcriptional downregulation. LPCAT1 depletion in either naive or infected Huh-7.5.1 cells resulted in altered lipid metabolism characterised by LD remodelling, increased triacylglycerol storage and increased secretion of VLDL. In infected Huh-7.5.1 cells or PHH, LPCAT1 depletion increased production of the viral particles of lowest density and highest infectivity. We have identified LPCAT1 as a modulator of liver lipid metabolism downregulated by HCV, which appears as a viral strategy to increase the triacylglycerol content and hence infectivity of viral particles. Targeting this metabolic pathway may represent an attractive therapeutic approach to reduce both the viral titre and hepatic steatosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Keaton, Jacob M; Gao, Chuan; Guan, Meijian; Hellwege, Jacklyn N; Palmer, Nicholette D; Pankow, James S; Fornage, Myriam; Wilson, James G; Correa, Adolfo; Rasmussen-Torvik, Laura J; Rotter, Jerome I; Chen, Yii-Der I; Taylor, Kent D; Rich, Stephen S; Wagenknecht, Lynne E; Freedman, Barry I; Ng, Maggie C Y; Bowden, Donald W
2018-04-24
Although type 2 diabetes (T2D) results from metabolic defects in insulin secretion and insulin sensitivity, most of the genetic risk loci identified to date relates to insulin secretion. We reported that T2D loci influencing insulin sensitivity may be identified through interactions with insulin secretion loci, thereby leading to T2D. Here, we hypothesize that joint testing of variant main effects and interaction effects with an insulin secretion locus increases power to identify genetic interactions leading to T2D. We tested this hypothesis with an intronic MTNR1B SNP, rs10830963, which is associated with acute insulin response to glucose, a dynamic measure of insulin secretion. rs10830963 was tested for interaction and joint (main + interaction) effects with genome-wide data in African Americans (2,452 cases and 3,772 controls) from five cohorts. Genome-wide genotype data (Affymetrix Human Genome 6.0 array) was imputed to a 1000 Genomes Project reference panel. T2D risk was modeled using logistic regression with rs10830963 dosage, age, sex, and principal component as predictors. Joint effects were captured using the Kraft two degrees of freedom test. Genome-wide significant (P < 5 × 10 -8 ) interaction with MTNR1B and joint effects were detected for CMIP intronic SNP rs17197883 (P interaction = 1.43 × 10 -8 ; P joint = 4.70 × 10 -8 ). CMIP variants have been nominally associated with T2D, fasting glucose, and adiponectin in individuals of East Asian ancestry, with high-density lipoprotein, and with waist-to-hip ratio adjusted for body mass index in Europeans. These data support the hypothesis that additional genetic factors contributing to T2D risk, including insulin sensitivity loci, can be identified through interactions with insulin secretion loci. © 2018 WILEY PERIODICALS, INC.
Diet and the role of lipoproteins, lipases, and thyroid hormones in coronary lesion growth
NASA Technical Reports Server (NTRS)
Barth, Jacques D.; Jansen, Hans; Reiber, Johan H. C.; Birkenhager, Jan C.; Kromhout, Daan
1987-01-01
The relationships between the coronary lesion growth and the blood contents of lipoprotein fractions, thyroic hormones, and the lipoprotein lipase activity were investigated in male patients with severe coronary atherosclerosis, who participated in a lipid-lowering dietary intervention program. A quantitative computer-assisted image-processing technique was used to assess the severity of coronary obstructions at the beginning of the program and at its termination two years later. Based on absolute coronary scores, patients were divided into a no-lesion growth group (14 patients) and a progression group (21 paients). At the end of the trial, the very-low-density lipoprotein cholesterol and triglycerides were found to be significantly higher, while the high-density lipoprotein cholesterol and hepatic lipase (HL) were lower in the progression group. Multivariate regression analysis showed HL to be the most important determinant of changes in coronary atherosclerotic lesions.
The effects of exercise on the lipoprotein subclass profile: a meta-analysis of 10 interventions
Sarzynski, Mark A.; Burton, Jeffrey; Rankinen, Tuomo; Blair, Steven N.; Church, Timothy S.; Després, Jean-Pierre; Hagberg, James M.; Landers-Ramos, Rian; Leon, Arthur S.; Mikus, Catherine R.; Rao, D.C.; Seip, Richard L.; Skinner, James S.; Slentz, Cris A.; Thompson, Paul D.; Wilund, Kenneth R.; Kraus, William E.; Bouchard, Claude
2015-01-01
Objective The goal was to examine lipoprotein subclass responses to regular exercise as measured in 10 exercise interventions derived from six cohorts. Methods Nuclear magnetic resonance spectroscopy was used to quantify average particle size, total and subclass concentrations of very low-density lipoprotein, low-density lipoprotein, and high-density lipoprotein particles (VLDL-P, LDL-P, and HDL-P, respectively) before and after an exercise intervention in 1,555 adults from six studies, encompassing 10 distinct exercise programs: APOE (N=106), DREW (N=385), GERS (N=79), HERITAGE (N=715), STRRIDE I (N=168) and II (N=102). Random-effects meta-analyses were performed to evaluate the overall estimate of mean change across the unadjusted and adjusted mean change values from each exercise group. Results Meta-analysis of unadjusted data showed that regular exercise induced significant decreases in the concentration of large VLDL-P, small LDL-P, and medium HDL-P and mean VLDL-P size, with significant increases in the concentration of large LDL-P and large HDL-P and mean LDL-P size. These changes remained significant in meta-analysis with adjustment for age, sex, race, baseline body mass index, and baseline trait value. Conclusions Despite differences in exercise programs and study populations, regular exercise produced putatively beneficial changes in the lipoprotein subclass profile across 10 exercise interventions. Further research is needed to examine how exercise-induced changes in lipoprotein subclasses may be associated with (concomitant changes in) cardiovascular disease risk. PMID:26520888
Tabuchi, Mari; Seo, Makoto; Inoue, Takayuki; Ikeda, Takeshi; Kogure, Akinori; Inoue, Ikuo; Katayama, Shigehiro; Matsunaga, Toshiyuki; Hara, Akira; Komoda, Tsugikazu
2011-02-01
The increasing number of patients with metabolic syndrome is a critical global problem. In this study, we describe a novel geometrical electrophoretic separation method using a bioformulated-fiber matrix to analyze high-density lipoprotein (HDL) particles. HDL particles are generally considered to be a beneficial component of the cholesterol fraction. Conventional electrophoresis is widely used but is not necessarily suitable for analyzing HDL particles. Furthermore, a higher HDL density is generally believed to correlate with a smaller particle size. Here, we use a novel geometrical separation technique incorporating recently developed nanotechnology (Nata de Coco) to contradict this belief. A dyslipidemia patient given a 1-month treatment of fenofibrate showed an inverse relationship between HDL density and size. Direct microscopic observation and morphological observation of fractionated HDL particles confirmed a lack of relationship between particle density and size. This new technique may improve diagnostic accuracy and medical treatment for lipid related diseases.
Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Storey, Stephen M; Howles, Philip N; Kier, Ann B; Schroeder, Friedhelm
2014-12-01
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. Copyright © 2014 the American Physiological Society.
Acuña, Mariana; González-Hódar, Lila; Amigo, Ludwig; Castro, Juan; Morales, M Gabriela; Cancino, Gonzalo I; Groen, Albert K; Young, Juan; Miquel, Juan Francisco; Zanlungo, Silvana
2016-02-01
Niemann-Pick C2 (NPC2) is a lysosomal protein involved in the egress of low-density lipoprotein-derived cholesterol from lysosomes to other intracellular compartments. NPC2 has been detected in several tissues and is also secreted from the liver into bile. We have previously shown that NPC2-deficient mice fed a lithogenic diet showed reduced biliary cholesterol secretion as well as cholesterol crystal and gallstone formation. This study aimed to investigate the consequences of NPC2 hepatic overexpression on liver cholesterol metabolism, biliary lipid secretion, gallstone formation and the effect of NPC2 on cholesterol crystallization in model bile. We generated NPC2 transgenic mice (Npc2.Tg) and fed them either chow or lithogenic diets. We studied liver cholesterol metabolism, biliary lipid secretion, bile acid composition and gallstone formation. We performed cholesterol crystallization studies in model bile using a recombinant NPC2 protein. No differences were observed in biliary cholesterol content or secretion between wild-type and Npc2.Tg mice fed the chow or lithogenic diets. Interestingly, Npc2.Tg mice showed an increased susceptibility to the lithogenic diet, developing more cholesterol gallstones at early times, but did not show differences in the bile acid hydrophobicity and gallbladder cholesterol saturation indices compared to wild-type mice. Finally, recombinant NPC2 decreased nucleation time in model bile. These results suggest that NPC2 promotes cholesterol gallstone formation by decreasing the cholesterol nucleation time, indicating a pro-nucleating function of NPC2 in bile. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Usta, Akin; Avci, Eyup; Bulbul, Cagla Bahar; Kadi, Hasan; Adali, Ertan
2018-04-10
Women with polycystic ovary syndrome are more likely to suffer from obesity, insulin resistance, and chronic low-grade inflammation. In fact, the excessive activation of monocytes exacerbates oxidative stress and inflammation. However, high-density lipoprotein cholesterol neutralizes the pro-inflammatory and pro-oxidant effects of monocytes. The aim of this study is to investigate whether monocyte counts to high-density lipoprotein cholesterol ratio can predict the inflammatory condition in patients with polycystic ovary syndrome. In this cross-sectional study, a total of 124 women (61 of them with polycystic ovary syndrome and 63 age-matched healthy volunteers) were included in the study population. Obese polycystic ovary syndrome patients (n = 30) with a body mass index of ≥25 kg/m 2 and lean polycystic ovary syndrome patients (n = 31) with a body mass index of < 25 kg/m 2 were compared to age-and body mass index-matched healthy subjects (30 obese and 33 non-obese). The monocyte counts to high density lipoprotein cholesterol values in women with polycystic ovary syndrome were significantly higher than in control subjects (p = 0.0018). Moreover, a regression analysis revealed that body mass index, the homeostasis model assessment of insulin resistance and the high sensitivity C-reactive protein levels were confounding factors that affected the monocyte counts to high density lipoprotein cholesterol values. Additionally, a univariate and multivariate logistic regression analysis demonstrated that the increased monocyte counts to high density lipoprotein cholesterol values were more sensitive than the other known risk factors (such as increased body mass index, homeostasis model assessment of insulin resistance and high sensitive C-reactive protein levels) in the prediction of the inflammation in patients with polycystic ovary syndrome. The present study demonstrated that the monocyte count to high density lipoprotein cholesterol may be a novel and useful predictor of the presence of polycystic ovary syndrome.
Effects of the duration of hyperlipidemia on cerebral lipids, vessels and neurons in rats.
Yang, Weichun; Shi, He; Zhang, Jianfen; Shen, Ziyi; Zhou, Guangyu; Hu, Minyu
2017-01-31
The present study was designed to investigate the effects of hyperlipidemia on the cerebral lipids, vessels and neurons of rats, and to provide experimental evidence for subsequent intervention. One hundred adult SD rats, half of which were male and half of which were female, were randomly divided into five groups on the basis of serum total cholesterol (TC) levels. Four groups were fed a hypercholesterolemic diet (rat chow supplemented with 4% cholesterol, 1% cholic acid and 0.5% thiouracil - this is also called a CCT diet) for periods of 1 week, 2 weeks, 3 weeks and 4 weeks, respectively. A control group was included. The levels of serum lipids, cerebral lipids, free fatty acids (FFA), interleukin-6 (IL-6), interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), oxidized low density lipoprotein (ox-LDL), A-beta precursor proteins (APP), amyloid beta (Aβ), glial fibrillary acidic protein (GFAP) and tight junction protein Claudin-5 were measured after the experiment. The pathologic changes and apoptosis of the rat brains were evaluated. Compared with the control group, after 1 week of a CCT diet, the levels of serum total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and brain triglycerides had increased by 2.40, 1.29 and 1.75 and 0.3 times, respectively. The serum high density lipoprotein cholesterol (HDL-C) had decreased by 0.74 times (P < 0.05) and the expression of IL-1, TNF-α and GFAP in the brains had increased (P < 0.05). In the second week, the expression of FFA and APP in the brains, and the amount of apoptotic neurons, had increased (P < 0.05). In the third week, the levels of VEGF, Ox-LDL and Aβ had increased, and the expression of Claudin-5 had decreased in the brains (P < 0.05). In the fourth week, the levels of TC, LDL-C and the amount of apoptotic neurons had increased (P < 0.05). The correlation analysis showed a positive correlation among FFA, TNF-α, VEGF, ox-LDL, Aβ, GFAP and neuronal apoptosis in the rat brains, and they all were negatively correlated with Claudin-5 (P < 0.05). Hyperlipidemia may activate astrocytes by means of high levels of TG that will have direct toxic effects on the cerebral vessels and neurons by causing the secretion of TNF-α and IL-1 in the brains of rats. In the metabolic procession, brain tissue was shown to generate FFA that aggravated the biosynthesis of ox-LDL. With the extension of the duration of hyperlipidemia, high levels of cerebral TC and LDL-C were shown to aggravate the deposition of Aβ, induce the secretion of VEGF, reduce the expression of tight junction protein Claudin-5 and change the permeability of blood-brain barriers to factors that could damage cerebral vessels and neurons.
Baker, Jason V; Sharma, Shweta; Achhra, Amit C; Bernardino, Jose Ignacio; Bogner, Johannes R; Duprez, Daniel; Emery, Sean; Gazzard, Brian; Gordin, Jonathan; Grandits, Greg; Phillips, Andrew N; Schwarze, Siegfried; Soliman, Elsayed Z; Spector, Stephen A; Tambussi, Giuseppe; Lundgren, Jens
2017-05-22
HIV infection and certain antiretroviral therapy (ART) medications increase atherosclerotic cardiovascular disease risk, mediated, in part, through traditional cardiovascular disease risk factors. We studied cardiovascular disease risk factor changes in the START (Strategic Timing of Antiretroviral Treatment) trial, a randomized study of immediate versus deferred ART initiation among HIV-positive persons with CD4 + cell counts >500 cells/mm 3 . Mean change from baseline in risk factors and the incidence of comorbid conditions were compared between groups. The characteristics among 4685 HIV-positive START trial participants include a median age of 36 years, a CD4 cell count of 651 cells/mm 3 , an HIV viral load of 12 759 copies/mL, a current smoking status of 32%, a median systolic/diastolic blood pressure of 120/76 mm Hg, and median levels of total cholesterol of 168 mg/dL, low-density lipoprotein cholesterol of 102 mg/dL, and high-density lipoprotein cholesterol of 41 mg/dL. Mean follow-up was 3.0 years. The immediate and deferred ART groups spent 94% and 28% of follow-up time taking ART, respectively. Compared with patients in the deferral group, patients in the immediate ART group had increased total cholesterol and low-density lipoprotein cholesterol and higher use of lipid-lowering therapy (1.2%; 95% CI, 0.1-2.2). Concurrent increases in high-density lipoprotein cholesterol with immediate ART resulted in a 0.1 lower total cholesterol to high-density lipoprotein cholesterol ratio (95% CI, 0.1-0.2). Immediate ART resulted in 2.3% less BP-lowering therapy use (95% CI, 0.9-3.6), but there were no differences in new-onset hypertension or diabetes mellitus. Among HIV-positive persons with preserved immunity, immediate ART led to increases in total cholesterol and low-density lipoprotein cholesterol but also concurrent increases in high-density lipoprotein cholesterol and decreased use of blood pressure medications. These opposing effects suggest that, in the short term, the net effect of early ART on traditional cardiovascular disease risk factors may be clinically insignificant." URL: http://www.clinicaltrials.gov. Unique identifier: NCT00867048. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Chung, B H; Segrest, J P; Franklin, F
1998-12-01
As a model for the formation of beta-very low density lipoproteins (VLDL) and small, dense LDL by the intraplasma metabolic activities in vivo, lipoproteins in fresh plasma were interacted in vitro with endogenous lecithin:cholesterol acyltransferase (LCAT) and cholesterylester transfer proteins (CETP) and subsequently with purified lipoprotein lipase (LpL). The LCAT and CETP reactions in a mildly hypertriglyceridemic (HTG) plasma at 37 degrees C for 18 h resulted in (1) esterification of about 45% plasma unesterified cholesterol (UC), (2) a marked increase in cholesterylester (CE) (+129%) and a decrease in triglyceride (TG) (-45%) in VLDL, and (3) a marked increase of TG (+ 341%) with a small net decrease of CE (-3.6%) in LDL, causing a significant alteration in the TG/CE of VLDL (from 8.0 to 1.9) and of LDL (from 0.20 to 0.93). The LDL in LCAT and CETP-reacted plasma is larger and more buoyant than that in control plasma. In vitro lipolysis of control and LCAT and CETP-reacted plasma by LpL, which hydrolyzed >90% of VLDL-TG and about 50-60% of LDL-TG, converted most of VLDL in control plasma (>85%) but less than half (40%) of VLDL in LCAT and CETP-reacted plasma into the IDL-LDL density fraction and transformed the large, buoyant LDL in the LCAT and CETP-reacted plasma into particles smaller and denser than those in the control plasma. The remnants that accumulated in the VLDL density region of the postlipolysis LCAT and CETP-reacted plasma contained apo B-100 and E but little or no detectable apo Cs and consisted of particles having pre-beta and beta-electrophoretic mobilities. The inhibition of LCAT during incubation of plasma, which lessened the extent of alteration in VLDL and LDL core lipids, increased the extent of lipolytic removal of VLDL from the VLDL density region but lowered the extent of alteration in the size and density of LDL. The LCAT, CETP and/or LpL-mediated alterations in the density of LDL in normolipidemic fasting plasma were less pronounced than that in mildly HTG plasma, but they became highly pronounced upon increase of its TG-rich lipoprotein level by the addition of preisolated VLDL or by the induction of postprandial lipemia. Although the effect of LCAT, CETP and LpL reactions in non-circulating plasma in vitro may be different from that in vivo, the above data suggests that the plasma TG-rich lipoprotein level and the extent of intraplasma LCAT, CETP, LpL and likely hepatic lipase (HL) reactions in vivo may play a role in determining the LDL phenotype.
Interpreting Multiple Logistic Regression Coefficients in Prospective Observational Studies
1982-11-01
TG HDL -C Males T-C 50-80 MRW pɘ.05 pɘ.10 1HDL-C = high density lipoprotein cholesterol MRW...consider a more complete analy- sis, attempting to uncover the relationship between CHD and TG controlling for covariables such a high density ...for T-C can be re- duced, when among older individuals, elevated T-C may increase the capacity to carry cholesterol in the high density lipoprotein
Mammary lipid metabolism and milk fatty acid secretion in alpine goats fed vegetable lipids.
Bernard, L; Rouel, J; Leroux, C; Ferlay, A; Faulconnier, Y; Legrand, P; Chilliard, Y
2005-04-01
Fourteen Alpine goats at midlactation were fed a diet of hay and concentrate (55:45), without (control) or with formaldehyde-treated linseed (FLS) or oleic sunflower oil (OSO) at 11.2 or 3.5% of dry matter intake, respectively, in a 3 x 3 Latin Square design with three 3-wk periods. Milk yield was lower in goats fed FLS than control or OSO (2.13 vs. 2.32 kg/d). Milk fat content was higher with FLS or OSO than control (40.8 vs. 33.8 g/kg). Formaldehyde-treated linseed and OSO caused a significant decrease (23 and 18%, respectively) of C10 to C17 fatty acids secretion compared with control. The secretion of cis-9 C18:1 and cis-9, trans-11 C18:2 were increased 1.44- and 1.54-fold for FLS and 1.78- and 1.36-fold for OSO, compared with control. The C18:3 (n-3) secretion was increased 2.61-fold with FLS compared with control. Milk cis-9 C14:1/C14:0, cis-9 C16:1/C16:0, and cis-9 C18:1/C18:0 ratios decreased with the supplemented diets compared with control. Mammary stearoyl-CoA desaturase mRNA and activity were decreased by the lipid supplements, whereas no significant change was observed for acetyl-CoA carboxylase and fatty acid synthase. The activities of glucose-6-phosphate dehydrogenase, malic enzyme, and glycerol-3-phosphate dehydrogenase were not affected by the lipid supplements. Mammary lipoprotein lipase mRNA increased with OSO, whereas lipoprotein lipase activity tended to decrease with FLS compared with control. Milk lipoprotein lipase activity sharply decreased with lipid supplement (by 59 and 71%, for FLS and OSO, respectively). The changes in milk fatty acid profile due to FLS and OSO supplements were partly related to changes in the levels of mammary enzyme activities or mRNA.
Total and High-Density Lipoprotein Cholesterol in Adults with Mental Retardation.
ERIC Educational Resources Information Center
Rimmer, James H.; Kelly, Luke E.
1990-01-01
The study evaluated the total cholesterol and high density lipoprotein cholesterol of 40 adults (mean age 37.5 years) with mental retardation residing at an intermediate care facility. Results indicated that 59 percent of the males and 68 percent of the females were at moderate to high risk for coronary heart disease. (DB)
Serum Cholesterol Levels in College Students: Opportunities for Education and Intervention.
ERIC Educational Resources Information Center
Sparling, Phillip B.; Snow, Teresa K.; Beavers, Bill D.
1999-01-01
Analyzed lipid profiles in 1,088 college students at a university where lipid profiles were available to students in selected health/wellness courses. Mean total cholesterol levels were similar for men and women, but men had significantly lower high-density lipoprotein cholesterol and higher low-density lipoprotein cholesterol than women. About 11…
Lipoproteins during the estrous cycle in swine.
Liu, Ying; Rector, R Scott; Thomas, Tom R; Taylor, Julia A; Holiman, Denise A; Henderson, Kyle K; Welshons, Wade V; Sturek, Michael S
2004-02-01
The purpose of this study was to examine lipoprotein values at high versus low 17beta-estradiol (E2) concentrations in Yucatan miniature swine. Estrous cycles were measured by heat checking the female on a daily basis using a boar. All swine were fed a 1,050-g low-fat, standard chow diet (8% kcal from fat) once per day. Fasted (24 hours) blood samples were collected during low (early luteal, day 5) and high (late follicular, day 18) E2 concentrations to determine differences in concentrations of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C), high-density lipoprotein cholesterol (HDL-C), and subfractions. Concentrations of E2 differed significantly from day 5 (3.5 +/- 0.7 pg/mL) to day 18 (14.2 +/- 1.8 pg/mL) of the estrous cycle. Except for HDL(3)-C, all lipoprotein parameters examined were significantly elevated during high E2 versus low E2. TC/HDL-C and LDL-C/HDL-C ratios were significantly lower during the high E2 phase. These results suggest that lipoprotein concentrations fluctuate during the estrous cycle of swine, with high E2 concentrations associated with elevated lipoprotein concentrations.
Hemoglobin level and lipoprotein particle size.
Hämäläinen, Päivi; Saltevo, Juha; Kautiainen, Hannu; Mäntyselkä, Pekka; Vanhala, Mauno
2018-01-10
Alterations in lipoprotein size are associated with increased cardiovascular disease risk. Higher hemoglobin levels may indicate a higher risk of atherosclerosis and was previously associated with obesity, metabolic syndrome, and insulin resistance. No previous studies have investigated an association between hemoglobin concentration and lipoprotein particle size. We conducted a population-based, cross-sectional study of 766 Caucasian, middle-aged subjects (341 men and 425 women) born in Pieksämäki, Finland, who were categorized into five age groups. The concentrations and sizes of lipoprotein subclass particles were analyzed by high-throughput nuclear magnetic resonance (NMR) spectroscopy. Larger very low density lipoprotein (VLDL) particle diameter was associated with higher hemoglobin concentrations in men (p = 0.003). There was a strong relationship between smaller high density lipoprotein (HDL) particle size and higher hemoglobin concentration in both men and women as well as with smaller low density lipoprotein (LDL) particle size and higher hemoglobin concentration in men and women (p < 0.001; p = 0.009, p = 0.008). VLDL particle concentration had a moderate positive correlation with hemoglobin concentration (r = 0.15; p < 0.001). LDL particle concentration showed a statistical trend suggesting increasing particle concentration with increasing hemoglobin levels (r = 0.08; p = 0.05). Higher hemoglobin levels are associated with larger VLDL, smaller LDL, and smaller HDL particle sizes and increasing amounts of larger VLDL and smaller LDL particles. This suggests that a higher hemoglobin concentration is associated with an unfavorable lipoprotein particle profile that is part of states that increase cardiovascular disease risk like diabetes and metabolic syndrome.
Pharmacological Effects of Niacin on Acute Hyperlipemia.
la Paz, Sergio Montserrat-de; Bermudez, Beatriz; Naranjo, M Carmen; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G
2016-01-01
The well-known changes in modern lifestyle habits including over nutrition and physical inactivity have led to striking adverse effects on public health (e.g., obesity, diabetes, and metabolic syndrome) over recent decades. One noticeable consequence is exaggerated and prolonged state of postprandial hyperlipemia due to the ingestion of multiple fat-enriched meals during the course of a day. Postprandial (non-fasting) hyperlipemia is characterized by increased blood levels of exogenous triglycerides (TG) in the form of apolipoprotein (apo) B48-containing TG-rich lipoproteins (TRL), which have a causal role in the pathogenesis and progression of cardiovascular disease (CVD). The cardiovascular benefits of lifestyle modification (healthy diet and exercise) and conventional lipid-lowering therapies (e.g., statins, fibrates, and niacin) could involve their favourable effects on postprandial metabolism. Pharmacologically, niacin has been used as an athero-protective drug for five decades. Studies have since shown that niacin may decrease fasting levels of plasma verylow- density lipoproteins (VLDL), low-density lipoprotein cholesterol (LDL-C), and lipoprotein [a] (Lp[a]), while may increase high-density lipoprotein cholesterol (HDL-C). Herein, the purpose of this review was to provide an update on effects and mechanisms related to the pharmacological actions of niacin on acute hyperlipemia.
[Residual risk: The roles of triglycerides and high density lipoproteins].
Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried
2016-06-01
In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target. © Georg Thieme Verlag KG Stuttgart · New York.
Razavi, Seyed-Mostafa; Gholamin, Sharareh; Eskandari, Ali; Mohsenian, Nakta; Ghorbanihaghjo, Amir; Delazar, Abbas; Rashtchizadeh, Nadereh; Keshtkar-Jahromi, Maryam; Argani, Hassan
2013-03-01
Hyperlipidemia can lead to atherosclerosis by lipoprotein deposition inside the vessel wall and oxidative stress induction that leads to the formation of atherosclerotic plaque. Oxidized low-density lipoprotein particles (Ox-LDL) have a key role in the pathogenesis of atherosclerosis. The lipid-lowering properties and antioxidants of the grape seed can be beneficial in atherosclerosis prevention. We conducted a randomized double-blind placebo-controlled crossover clinical trial. Fifty-two mildly hyperlipidemic individuals were divided into two groups that received either 200 mg/day of the red grape seed extract (RGSE) or placebo for 8 weeks. After an 8-week washout period, the groups were crossed over for another 8 weeks. Lipid profiles and Ox-LDL were measured at the beginning and the end of each phase. RGSE consumption reduced total cholesterol (-10.68±26.76 mg/dL, P=.015), LDL cholesterol (-9.66±23.92 mg/dL, P=.014), and Ox-LDL (-5.47±12.12 mg/dL, P=.008). While triglyceride and very low-density lipoprotein cholesterol were decreased and high-density lipoprotein cholesterol was increased by RGSE, the changes were not statistically significant. RGSE consumption decreases Ox-LDL and has beneficial effects on lipid profile-consequently decreasing the risk of atherosclerosis and cardiovascular disorders-in mild hyperlipidemic individuals.
Sofer, Sigal; Eliraz, Abraham; Kaplan, Sara; Voet, Hillary; Fink, Gershon; Kima, Tzadok; Madar, Zecharia
2011-10-01
This study was designed to investigate the effect of a low-calorie diet with carbohydrates eaten mostly at dinner on anthropometric, hunger/satiety, biochemical, and inflammatory parameters. Hormonal secretions were also evaluated. Seventy-eight police officers (BMI >30) were randomly assigned to experimental (carbohydrates eaten mostly at dinner) or control weight loss diets for 6 months. On day 0, 7, 90, and 180 blood samples and hunger scores were collected every 4 h from 0800 to 2000 hours. Anthropometric measurements were collected throughout the study. Greater weight loss, abdominal circumference, and body fat mass reductions were observed in the experimental diet in comparison to controls. Hunger scores were lower and greater improvements in fasting glucose, average daily insulin concentrations, and homeostasis model assessment for insulin resistance (HOMA(IR)), T-cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels were observed in comparison to controls. The experimental diet modified daily leptin and adiponectin concentrations compared to those observed at baseline and to a control diet. A simple dietary manipulation of carbohydrate distribution appears to have additional benefits when compared to a conventional weight loss diet in individuals suffering from obesity. It might also be beneficial for individuals suffering from insulin resistance and the metabolic syndrome. Further research is required to confirm and clarify the mechanisms by which this relatively simple diet approach enhances satiety, leads to better anthropometric outcomes, and achieves improved metabolic response, compared to a more conventional dietary approach.
Very low-density lipoprotein (VLDL)-induced signals mediating aldosterone production.
Tsai, Ying-Ying; Rainey, William E; Bollag, Wendy B
2017-02-01
Aldosterone, secreted by the adrenal zona glomerulosa, enhances sodium retention, thus increasing blood volume and pressure. Excessive production of aldosterone results in high blood pressure and contributes to cardiovascular and renal disease, stroke and visual loss. Hypertension is also associated with obesity, which is correlated with other serious health risks as well. Although weight gain is associated with increased blood pressure, the mechanism by which excess fat deposits increase blood pressure remains unclear. Several studies have suggested that aldosterone levels are elevated with obesity and may represent a link between obesity and hypertension. In addition to hypertension, obese patients typically have dyslipidemia, including elevated serum levels of very low-density lipoprotein (VLDL). VLDL, which functions to transport triglycerides from the liver to peripheral tissues, has been demonstrated to stimulate aldosterone production. Recent studies suggest that the signaling pathways activated by VLDL are similar to those utilized by AngII. Thus, VLDL increases cytosolic calcium levels and stimulates phospholipase D (PLD) activity to result in the induction of steroidogenic acute regulatory (StAR) protein and aldosterone synthase (CYP11B2) expression. These effects seem to be mediated by the ability of VLDL to increase the phosphorylation (activation) of their regulatory transcription factors, such as the cAMP response element-binding (CREB) protein family of transcription factors. Thus, research into the pathways by which VLDL stimulates aldosterone production may identify novel targets for the development of therapies for the treatment of hypertension, particularly those associated with obesity, and other aldosterone-modulated pathologies. © 2017 Society for Endocrinology.
Metabolic syndrome in women with chronic pain.
Loevinger, Barbara L; Muller, Daniel; Alonso, Carmen; Coe, Christopher L
2007-01-01
Fibromyalgia is a prevalent syndrome characterized by chronic pain, fatigue, and insomnia. Patients with fibromyalgia commonly have an elevated body mass index and are physically inactive, 2 major risk factors for metabolic syndrome. Yet little is known about the relationship between chronic pain conditions and metabolic disturbances. Our study evaluated the risk for, and neuroendocrine correlates of, metabolic syndrome in this patient population. Women with fibromyalgia (n = 109) were compared with control healthy women (n = 46), all recruited from the community. Metabolic syndrome was identified by using criteria from the Adult Treatment Panel III with glycosylated hemoglobin concentrations substituted for serum glucose. Catecholamine and cortisol levels were determined from 12-hour overnight urine collections. Women with fibromyalgia were 5.56 times more likely than healthy controls to have metabolic syndrome (95% confidence interval, 1.25-24.74). Fibromyalgia was associated with larger waist circumference (P = .04), higher glycosylated hemoglobin (P = .01) and serum triglyceride (P < .001) levels, and higher systolic (P = .003) and diastolic (P = .002) blood pressure. Total and low-density lipoprotein cholesterol were also significantly higher in women with fibromyalgia (P = .001 and .02, respectively), although high-density lipoprotein cholesterol was in the reference range. These associations were not accounted for by age or body mass index. Meeting criteria for more metabolic syndrome components was related to higher urinary norepinephrine (NE)/epinephrine and NE/cortisol ratios (P < .001 and P = .009, respectively). Women with chronic pain from fibromyalgia are at an increased risk for metabolic syndrome, which may be associated with relatively elevated NE levels in conjunction with relatively reduced epinephrine and cortisol secretion.
Simsolo, R B; Ong, J M; Kern, P A
1992-12-01
The regulation of adipose tissue lipoprotein lipase (LPL) by feeding and fasting occurs through post-translational changes in the LPL protein. In addition, LPL activity and secretion are decreased when N-linked glycosylation is inhibited. To better understand the role of oligosaccharide processing in the development of LPL activity and in LPL secretion, primary cultures of rat adipocytes were treated with inhibitors of oligosaccharide processing. LPL catalytic activity from the heparin-releasable fraction of adipocytes was inhibited by more than 70%, with similar decreases in LPL mass, when cells were cultured for 24 h in the presence of either tunicamycin or castanospermine. On the other hand, deoxymannojirimycin (DMJ) and swainsonine had no effect on LPL activity. LPL secretion was examined after pulse-labeling cells with [35S]methionine. The appearance of 35S-labeled LPL in the medium was blocked by treatment of cells with tunicamycin and castanospermine, whereas secretion was not affected by DMJ or swainsonine. To examine the effect of oligosaccharide processing on LPL intracellular degradation, adipocytes were treated with tunicamycin, castanospermine, and DMJ and then pulse-labeled with [35S]methionine, followed by a chase with unlabeled methionine for 120 min. The unglycosylated [35S]LPL that was synthesized in the presence of tunicamycin demonstrated essentially no intracellular degradation. In the presence of castanospermine and DMJ, the half-life of newly synthesized LPL was increased to 81 and 113 min, as compared to 65 min in control cells. Thus, castanospermine-treated adipocytes demonstrated a decrease in LPL activity and secretion, suggesting that the glucosidase-mediated cleavage of terminal glucose residues from oligosaccharides is a critical step in LPL maturation.(ABSTRACT TRUNCATED AT 250 WORDS)
Lu, Xinping; Zhao, Xilin; Feng, Jianying; Liou, Alice P.; Anthony, Shari; Pechhold, Susanne; Sun, Yuxiang; Lu, Huiyan
2012-01-01
Ghrelin is a gastric peptide hormone that controls appetite and energy homeostasis. Plasma ghrelin levels rise before a meal and fall quickly thereafter. Elucidation of the regulation of ghrelin secretion has been hampered by the difficulty of directly interrogating ghrelin cells diffusely scattered within the complex gastric mucosa. Therefore, we generated transgenic mice with ghrelin cell expression of green fluorescent protein (GFP) to enable characterization of ghrelin secretion in a pure population of isolated gastric ghrelin-expressing GFP (Ghr-GFP) cells. Using quantitative RT-PCR and immunofluorescence staining, we detected a high level of expression of the long-chain fatty acid (LCFA) receptor GPR120, while the other LCFA receptor, GPR40, was undetectable. In short-term-cultured pure Ghr-GFP cells, the LCFAs docosadienoic acid, linolenic acid, and palmitoleic acid significantly suppressed ghrelin secretion. The physiological mechanism of LCFA inhibition on ghrelin secretion was studied in mice. Serum ghrelin levels were transiently suppressed after gastric gavage of LCFA-rich lipid in mice with pylorus ligation, indicating that the ghrelin cell may directly sense increased gastric LCFA derived from ingested intraluminal lipids. Meal-induced increase in gastric mucosal LCFA was assessed by measuring the transcripts of markers for tissue uptake of LCFA, lipoprotein lipase (LPL), fatty acid translocase (CD36), glycosylphosphatidylinositol-anchored HDL-binding protein 1, and nuclear fatty acid receptor peroxisome proliferator-activated receptor-γ. Quantitative RT-PCR studies indicate significantly increased mRNA levels of lipoprotein lipase, glycosylphosphatidylinositol-anchored HDL-binding protein 1, and peroxisome proliferator-activated receptor-γ in postprandial gastric mucosa. These results suggest that meal-related increases in gastric mucosal LCFA interact with GPR120 on ghrelin cells to inhibit ghrelin secretion. PMID:22678998
Liu, Mengyang; Chen, Yuanli; Zhang, Ling; Wang, Qixue; Ma, Xingzhe; Li, Xiaoju; Xiang, Rong; Zhu, Yan; Qin, Shucun; Yu, Yang; Jiang, Xian-cheng; Duan, Yajun; Han, Jihong
2015-06-05
Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from high density lipoprotein to triglyceride-rich lipoproteins. CETP expression can be transcriptionally activated by liver X receptor (LXR). Etoposide and teniposide are DNA topoisomerase II (Topo II) inhibitors. Etoposide has been reported to inhibit atherosclerosis in rabbits with un-fully elucidated mechanisms. In this study we determined if Topo II activity can influence cholesterol metabolism by regulating hepatic CETP expression. Inhibition of Topo II by etoposide, teniposide, or Topo II siRNA increased CETP expression in human hepatic cell line, HepG2 cells, which was associated with increased CETP secretion and mRNA expression. Meanwhile, inhibition of LXR expression by LXR siRNA attenuated induction of CETP expression by etoposide and teniposide. Etoposide and teniposide induced LXRα expression and LXRα/β nuclear translocation while inhibiting expression of receptor interacting protein 140 (RIP140), an LXR co-repressor. In vivo, administration of teniposide moderately reduced serum lipid profiles, induced CETP expression in the liver, and activated reverse cholesterol transport in CETP transgenic mice. Our study demonstrates a novel function of Topo II inhibitors in cholesterol metabolism by activating hepatic CETP expression and reverse cholesterol transport. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
USDA-ARS?s Scientific Manuscript database
The association of coronary heart disease (CHD) with subpopulations of triglyceride (TG)-rich lipoproteins and high-density lipoproteins (HDL) is established in men, but has not been well characterized in women. Plasma HDL subpopulation concentrations, quantified by 2-dimensional gel electrophoresis...
Chauke, Chesa G; Arieff, Zainunisha; Kaur, Mandeep; Seier, Jurgen V
2014-02-01
Niacin is the most effective drug available for raising levels of high-density lipoprotein (HDL) cholesterol. To evaluate its effects on plasma lipid concentrations, the authors administered a low dose of niacin to healthy, adult, female African green monkeys for 3 months. In the treated monkeys, low-density lipoprotein cholesterol concentrations decreased by 43% from baseline, whereas concentrations of HDL cholesterol and apolipoprotein A-I increased by 49% and 34%, respectively. The results suggest that in this primate model, a low dose of niacin can effectively increase concentrations of HDL cholesterol.
Yahya, Reyhana; Mulder, Monique T; Sijbrands, Eric J G; Williams, Monique; Roeters van Lennep, Jeanine E
We present the case history of 2 patients with low-density lipoprotein receptor-negative compound heterozygous familial hypercholesterolemia who did not receive lipoprotein apheresis. We describe the subsequent effect of all lipid-lowering medications during their life course including resins, statins, ezetimibe, nicotinic acid/laropiprant, mipomersen, and lomitapide. These cases tell the story of siblings affected with this rare disease, who are free of symptoms but still are at a very high cardiovascular disease risk, and their treatment from childhood. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Parhofer, Klaus G; Barrett, P Hugh R
2006-08-01
Lipoprotein metabolism is the result of a complex network of many individual components. Abnormal lipoprotein concentrations can result from changes in the production, conversion, or catabolism of lipoprotein particles. Studies in hypolipoproteinemia and hyperlipoproteinemia have elucidated the processes that control VLDL secretion as well as VLDL and LDL catabolism. Here, we review the current knowledge regarding apolipoprotein B (apoB) metabolism, focusing on selected clinically relevant conditions. In hypobetalipoproteinemia attributable to truncations in apoB, the rate of secretion is closely linked to the length of apoB. On the other hand, in patients with the metabolic syndrome, it appears that substrate, in the form of free fatty acids, coupled to the state of insulin resistance can induce hypersecretion of VLDL-apoB. Studies in patients with familial hypercholesterolemia, familial defective apoB, and mutant forms of proprotein convertase subtilisin/kexin type 9 show that mutations in the LDL receptor, the ligand for the receptor, or an intracellular chaperone for the receptor are the most important determinants in regulating LDL catabolism. This review also demonstrates the variance of results within similar, or even the same, phenotypic conditions. This underscores the sensitivity of metabolic studies to methodological aspects and thus the importance of the inclusion of adequate controls in studies.
NASA Astrophysics Data System (ADS)
Chen, Wei-Wen; Yi, Yung-Hsiang; Chien, Cheng-Hao; Hsiung, Kuei-Ching; Ma, Tian-Hsiang; Lin, Yi-Chun; Lo, Szecheng J.; Chang, Ta-Chau
2016-08-01
Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm-1) and lipid (~2845 cm-1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.
Koppel, Kristina; Bratt, Göran; Schulman, Sam; Bylund, Håkan; Sandström, Eric
2002-04-15
Decreased insulin sensitivity, hyperlipidemia, and body fat changes are considered as risk factors for coronary heart disease (CHD). A clustering of such factors (metabolic syndrome [MSDR]) exponentially increases the risk. Impaired fibrinolysis and increased coagulation are additional independent risk factors for CHD. We studied the effects of protease inhibitor (PI)-containing highly active antiretroviral therapy (HAART) on metabolic and hemostatic parameters in 363 HIV-infected individuals, of whom 266 were receiving PI-containing HAART and 97 were treatment naive. The fasting plasma levels of insulin, glucose, triglycerides, cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, plasminogen activator inhibitor type 1 (PAI-1), and fibrinogen were evaluated together with the areas of visceral adipose tissue and the visceral adipose tissue/subcutaneous adipose tissue area ratio. The levels of insulin, triglycerides, cholesterol, and low-density lipoprotein cholesterol; visceral adipose tissue area; low-density lipoprotein/high-density lipoprotein ratio; and visceral adipose tissue/subcutaneous adipose tissue area ratio were significantly increased in patients receiving PI-containing HAART compared with treatment-naive patients. The levels of PAI-1 and fibrinogen were significantly higher in patients receiving PI-containing HAART. PAI-1 levels were higher in individuals with MSDR but also in patients without MSDR who were receiving PI-containing HAART. PAI-1 was independently correlated to use of PI-containing HAART, triglyceride level, insulin level, and body mass index (p <.001). These findings suggest that patients receiving PI-containing HAART have decreased fibrinolysis and increased coagulability, which may thus represent additional risk factors for cardiovascular disease in this patient group.
Ruiz-Fernández, Nelina; Bosch, Virgilio; Giacopini, Maria Isabel
2016-12-30
To establish association between socioeconomic status and plasmatic markers of lipoperoxidation and antioxidants in Venezuelan school-age children from the middle-class and in critical poverty. Cross-sectional study with a sample of 114 school-age children (aged 7-9). The socioeconomic status, dietary intake of macro and micro-nutrients, weight, height, lipid profile, indicators of lipid peroxidation and enzymatic and non-enzymatic antioxidants were determined. The daily average intake of energy, carbohydrates and vitamin A, and the percentage of energy obtained from carbohydrates was significantly higher in middle-class children compared to critical poverty children ( p <0.05). The circulating oxidized low density lipoprotein ( p <0.001) and the susceptibility of low density lipoproteins and very low density lipoproteins to oxidation in vitro ( p <0.05) were significantly higher in middle-class children, while the critical poverty children showed significantly lower levels of Vitamin C and E in plasma ( p <0.05). Non-enzymatic antioxidant levels were frequently deficient in both strata. The concentrations of circulating oxidized low density lipoprotein (OR: 1.09, CI 95% : 1.016-1.179; p = 0.017) and Vitamin C (OR: 3.21, CI 95% : 1.104-9.938; p = 0.032) were associated to the socioeconomic status independently of gender, family history of premature coronary artery disease, triglicerides, Vitamin C and E dietary intake and count of white blood cells. The socioeconomic status was associated to circulating oxidized low density lipoprotein and Vitamin C in Venezuelan school-age children, The results suggested the need to improve the dietary intake of antioxidants in both studied socioeconomic groups.
Negatively Cooperative Binding of High Density Lipoprotein to the HDL Receptor SR-BI†
Nieland, Thomas J.F.; Xu, Shangzhe; Penman, Marsha; Krieger, Monty
2011-01-01
Scavenger receptor class B, type I (SR-BI) is a high-density lipoprotein (HDL) receptor, which also binds low density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a co-receptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high affinity binding sites (one site model). We have re-investigated the ligand concentration dependence of 125I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [3H]CE from [3H]CE-HDL using an expanded range of ligand concentrations (<1 µg protein/ml, lower than previously reported). Scatchard and non-linear least squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites, or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects (‘ lattice model’). Similar results were observed for LDL. Application of the ‘infinite dilution’ dissociation rate method established that the binding of 125I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport and cell signaling. PMID:21254782
Moretti, Laura; Canada, Todd
2006-04-01
To compare the effects of a low-carbohydrate diet and a conventional (fat- and calorie-restricted) diet on lipoprotein subfractions and inflammation in severely obese subjects. We compared changes in lipoprotein subfractions and C-reactive protein levels in 78 severely obese subjects, including 86% with either diabetes or metabolic syndrome, who were randomly assigned to either a low-carbohydrate or conventional diet for 6 months. Subjects on a low-carbohydrate diet experienced a greater decrease in large very low-density lipoprotein (VLDL) levels (difference =-0.26 mg/dL, p = .03) but more frequently developed detectable chylomicrons (44% vs 22%, p = .04). Both diet groups experienced similar decreases in the number of low-density lipoprotein (LDL) particles (difference = -30 nmol/L, p = .74) and increases in large high-density lipoprotein (HDL) concentrations (difference = 0.70 mg/dL, p = .63). Overall, C-reactive protein levels decreased modestly in both diet groups. However, patients with a high-risk baseline level (>3 mg/dL, n = 48) experienced a greater decrease in C-reactive protein levels on a low-carbohydrate diet (adjusted difference = -2 mg/dL, p = .005), independent of weight loss. In this 6-month study involving severely obese subjects, we found an overall favorable effect of a low-carbohydrate diet on lipoprotein subfractions and on inflammation in high-risk subjects. Both diets had similar effects on LDL and HDL subfractions. ( Am J Med. 2004;117:398-405.).
Seshadri, Prakash; Iqbal, Nayyar; Stern, Linda; Williams, Monica; Chicano, Kathryn L; Daily, Denise A; McGrory, Joyce; Gracely, Edward J; Rader, Daniel J; Samaha, Frederick F
2004-09-15
To compare the effects of a low-carbohydrate diet and a conventional (fat- and calorie-restricted) diet on lipoprotein subfractions and inflammation in severely obese subjects. We compared changes in lipoprotein subfractions and C-reactive protein levels in 78 severely obese subjects, including 86% with either diabetes or metabolic syndrome, who were randomly assigned to either a low-carbohydrate or conventional diet for 6 months. Subjects on a low-carbohydrate diet experienced a greater decrease in large very low-density lipoprotein (VLDL) levels (difference = -0.26 mg/dL, P = 0.03) but more frequently developed detectable chylomicrons (44% vs. 22%, P = 0.04). Both diet groups experienced similar decreases in the number of low-density lipoprotein (LDL) particles (difference = -30 nmol/L, P = 0.74) and increases in large high-density lipoprotein (HDL) concentrations (difference = 0.70 mg/dL, P = 0.63). Overall, C-reactive protein levels decreased modestly in both diet groups. However, patients with a high-risk baseline level (>3 mg/dL, n = 48) experienced a greater decrease in C-reactive protein levels on a low-carbohydrate diet (adjusted difference = -2.0 mg/dL, P = 0.005), independent of weight loss. In this 6-month study involving severely obese subjects, we found an overall favorable effect of a low-carbohydrate diet on lipoprotein subfractions, and on inflammation in high-risk subjects. Both diets had similar effects on LDL and HDL subfractions. Copyright 2004 Elsevier Inc.
Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS.
Roe, Andrea; Hillman, Jennifer; Butts, Samantha; Smith, Mathew; Rader, Daniel; Playford, Martin; Mehta, Nehal N; Dokras, Anuja
2014-05-01
Women with polycystic ovary syndrome (PCOS) have a high prevalence of cardiovascular disease (CVD) risk factors including dyslipidemia. Lipoproteins are heterogeneous, and measurement of serum lipids provides only the size of the pool and does not predict their function or composition. Recently, high-density lipoprotein cholesterol (HDL-C) function, as determined by cholesterol efflux capacity from macrophages, has been shown to be an independent predictor of subclinical CVD. The aim of the study was to comprehensively evaluate lipoprotein profile including lipid particle size and number and cholesterol efflux capacity in PCOS to better define CVD risk. A case control study was performed at an academic PCOS center. Women with PCOS (n = 124) and geographically matched controls (n = 67) were included in the study. The primary outcome was to measure HDL-C efflux capacity by an ex vivo system involving the incubation of macrophages with apolipoprotein (Apo) B-depleted serum from subjects, and the secondary outcome was to measure lipid particle size and number using nuclear magnetic resonance spectroscopy. Women with PCOS had significantly higher body mass index and blood pressure but similar HDL-C and low-density lipoprotein cholesterol levels compared to controls. The mean ApoA1 levels were lower, and the ApoB/ApoA1 ratio was higher in PCOS subjects compared to controls (P < .01). There were no differences in ApoB levels. Women with PCOS had an 7% decrease in normalized cholesterol efflux capacity compared to controls (P < .003). Cholesterol efflux capacity in PCOS correlated with body mass index, ApoA1, HDL-C, and the presence of metabolic syndrome. In a multivariable regression model, PCOS was significantly associated with diminished cholesterol efflux. PCOS was also associated with an atherogenic profile including an increase in large very low-density lipoprotein particles, very low-density lipoprotein (VLDL) size, and small low-density lipoprotein cholesterol particles (P < .01). Our novel findings of decreased cholesterol efflux and an atherogenic lipid particle number and size pattern in women with PCOS, independent of obesity, further substantiate the increased risk of CVD in this population.
Decreased Cholesterol Efflux Capacity and Atherogenic Lipid Profile in Young Women With PCOS
Roe, Andrea; Hillman, Jennifer; Butts, Samantha; Smith, Mathew; Rader, Daniel; Playford, Martin; Mehta, Nehal N.
2014-01-01
Context: Women with polycystic ovary syndrome (PCOS) have a high prevalence of cardiovascular disease (CVD) risk factors including dyslipidemia. Lipoproteins are heterogeneous, and measurement of serum lipids provides only the size of the pool and does not predict their function or composition. Recently, high-density lipoprotein cholesterol (HDL-C) function, as determined by cholesterol efflux capacity from macrophages, has been shown to be an independent predictor of subclinical CVD. Objective: The aim of the study was to comprehensively evaluate lipoprotein profile including lipid particle size and number and cholesterol efflux capacity in PCOS to better define CVD risk. Design and Setting: A case control study was performed at an academic PCOS center. Patients: Women with PCOS (n = 124) and geographically matched controls (n = 67) were included in the study. Main Outcome Measures: The primary outcome was to measure HDL-C efflux capacity by an ex vivo system involving the incubation of macrophages with apolipoprotein (Apo) B-depleted serum from subjects, and the secondary outcome was to measure lipid particle size and number using nuclear magnetic resonance spectroscopy. Results: Women with PCOS had significantly higher body mass index and blood pressure but similar HDL-C and low-density lipoprotein cholesterol levels compared to controls. The mean ApoA1 levels were lower, and the ApoB/ApoA1 ratio was higher in PCOS subjects compared to controls (P < .01). There were no differences in ApoB levels. Women with PCOS had an 7% decrease in normalized cholesterol efflux capacity compared to controls (P < .003). Cholesterol efflux capacity in PCOS correlated with body mass index, ApoA1, HDL-C, and the presence of metabolic syndrome. In a multivariable regression model, PCOS was significantly associated with diminished cholesterol efflux. PCOS was also associated with an atherogenic profile including an increase in large very low-density lipoprotein particles, very low-density lipoprotein (VLDL) size, and small low-density lipoprotein cholesterol particles (P < .01). Conclusions: Our novel findings of decreased cholesterol efflux and an atherogenic lipid particle number and size pattern in women with PCOS, independent of obesity, further substantiate the increased risk of CVD in this population. PMID:24512495
Association of ADRB2 polymorphism with triglyceride levels in Tongans
2013-01-01
Background Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. Methods To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. Results A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. Conclusions In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index. PMID:23875540
Bartels, Emil D.; Nielsen, Jan M.; Hellgren, Lars I.; Ploug, Thorkil; Nielsen, Lars B.
2009-01-01
Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease. PMID:19390571
ASYMMETRIC DIMETHYLARGININE LEVELS AND ATHEROSCLEROSIS MARKERS IN CUSHING SYNDROME.
Ozsurekci, Cemile Gulbas; Akturk, Mujde; Ozkan, Cigdem; Gulbahar, Ozlem; Altinova, Alev Eroglu; Yalcin, Muhittin; Arslan, Emre; Toruner, Fusun
2016-09-01
As a consequence of hypercortisolism, Cushing syndrome (CS) is frequently observed with other diseases that are associated with atherosclerosis, including diabetes mellitus, dyslipidemia, hypertension, and obesity. Cardiovascular disease (CVD) is the primary cause of mortality and morbidity in CS. We investigate CVD risk markers such as asymmetric dimethylarginine (ADMA), lipoprotein-associated phospholipase A2 (Lp-PLA2), highsensitive C-reactive protein (hsCRP), homocysteine, lipid levels, ankle-brachial index (ABI), and carotid intimamedia thickness (CIMT) in CS. Our study included 27 patients with CS and 27 age-, sex-, body mass index (BMI)-, and comorbid disease-matched control subjects. Plasma ADMA levels were significantly lower in the CS group than the control group (P = .013). Total cholesterol, low-density lipoprotein, triglycerides, high-density lipoprotein, and apolipoprotein A1 and apolipoprotein B levels were higher in patients with CS than the control group (P<.05). We did not find any statistically significant differences in levels of hsCRP, Lp-PLA2, or homocysteine or CIMT and ABI measurements between the CS group and comorbidity-matched control group (P>.05). We found that ADMA levels were lower in CS, the finding that should be further investigated. Levels of hsCRP, Lp-PLA2, and homocysteine levels and CIMT and ABI measurements were similar between the CS group and comorbidity-matched control group. None of these markers was prominent to show an increased risk of CVD in CS, independent of the comorbidities of CS. ABI = ankle-brachial index Apo = apolipoprotein ADMA = asymmetric dimethylarginine BMI = body mass index CVD = cardiovascular disease CIMT = carotid intima-media thickness CS = Cushing syndrome DM = diabetes mellitus DDAH = dimethylarginine dimethylaminohydrolase ELISA = enzyme-linked immunosorbent assay HDL = high-density lipoprotein hsCRP = high-sensitive C-reactive protein HOMA-IR = homeostatic model assessment of insulin resistance HT = hypertension LDL = low-density lipoprotein Lp-PLA2 = lipoprotein-associated phospholipase A2 Lp-a = lipoprotein a NO = nitric oxide.
Effect of losartan and spironolactone on triglyceride-rich lipoproteins in diabetic nephropathy
Srivastava, Anand; Adams-Huet, Beverley; Vega, Gloria L; Toto, Robert D
2016-01-01
Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs) can improve dyslipidemia in patients with diabetes and albuminuria. Whether combined ACEi+ARB or ACEi+mineralocorticoid receptor blockade improves dyslipidemia is not known. We hypothesized long-term administration of either losartan 100 mg or spironolactone 25 mg once daily added onto lisinopril 80 mg once daily would improve dyslipidemia in diabetic nephropathy (DN). We measured lipid levels, very-low-density (V), intermediate-density (I), low-density (LDL), high-density (HDL) lipoprotein, LDL particle size with their respective cholesterol (C) and apolipoprotein B levels (ApoB), and urine albumin/creatinine ratio (UACR) at 12-week interval during a 48-week randomized, double-blind placebo-controlled trial in 81 patients with DN. Plasma lipids and lipoprotein C were analyzed enzymatically and Apo B was determined chemically. Data were analyzed by mixed model repeated measures. ΔUACR differed among treatment arms (placebo −24.6%, los −38.2%, spiro −51.6%, p=0.02). No correlation existed between ΔUACR and ΔTG or any of the lipid or lipoprotein measurements. Compared with placebo losartan, but not spironolactone, decreased TG (−20.9% vs +34.3%, p<0.01), V+I C(−18.8% vs +21.3%, p<0.01), and V+I-ApoB (−13.2% vs +21%, p<0.01). There were no significant changes in body weight, HbA1c or other lipoprotein variables. We conclude losartan improves dyslipidemia in patients with DN. We speculate the mechanism improved clearance of VLDL and remnant lipoproteins. Trial registration number NCT00381134; Results. PMID:27388615
Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits.
Keaney, J F; Gaziano, J M; Xu, A; Frei, B; Curran-Celentano, J; Shwaery, G T; Loscalzo, J; Vita, J A
1993-01-01
Recent evidence suggests that dietary therapy with lipid-soluble antioxidants may be beneficial for patients with atherosclerotic vascular disease but the potential mechanism(s) for these observations remain obscure. Abnormalities in endothelium-dependent control of vascular tone develop early in the course of atherosclerosis and may result from oxidative modification of low density lipoproteins. We examined the role of dietary antioxidants in preserving normal endothelial cell vasodilator function in cholesterol-fed rabbits with particular attention to possible effects on serum lipoproteins, low density lipoprotein oxidation, and atherogenesis. Male New Zealand White rabbits were fed diets containing no additive (controls), 1% cholesterol (cholesterol group), or 1% cholesterol chow supplemented with either beta-carotene (0.6 g/kg of chow) or alpha-tocopherol (1000 international units/kg of chow) for a 28-day period. After dietary therapy, thoracic aortae were harvested for assay of vascular function and for pathologic examination and tissue antioxidant levels. Compared to controls, acetylcholine- and A23187-mediated endothelium-dependent relaxations were significantly impaired in vessels from the cholesterol group (P < 0.001), whereas vessels from animals treated with beta-carotene or alpha-tocopherol demonstrated normal endothelium-dependent arterial relaxation. Preservation of endothelial function was associated with vascular incorporation of alpha-tocopherol and beta-carotene but was unrelated to plasma lipoprotein levels, smooth muscle cell function, or the extent of atherosclerosis. Increased low density lipoprotein resistance to ex vivo copper-mediated oxidation was observed only in the alpha-tocopherol group. Our results suggest that dietary antioxidants may benefit patients with atherosclerosis by preserving endothelial vasodilator function through a mechanism related to vascular tissue antioxidant content and not reflected by assay of low density lipoprotein resistance to ex vivo oxidation. PMID:8265642
Toth, Peter P
2013-01-01
Familial hypercholesterolemia (FH) is characterized by severe elevations in low-density lipoprotein cholesterol (LDL-C) and poses considerable treatment challenges. Substantive LDL-C reductions are difficult to achieve with standard therapies, and many patients with FH do not tolerate currently available lipid-lowering medications. Mipomersen is an antisense oligonucleotide injectable drug that was recently approved by the Food and Drug Administration for the treatment of homozygous FH. It is complementary in sequence to a segment of the human apolipoprotein (Apo) B-100 messenger RNA and specifically binds to it, blocking translation of the gene product. Reducing the production of Apo B-100 reduces hepatic production of very low-density lipoprotein, consequently decreasing circulating levels of atherogenic very low-density lipoprotein remnants, intermediate-density lipoproteins, LDL, and lipoprotein(a) particles. Results from a pivotal trial conducted in patients with homozygous FH, and supporting trials in patients with heterozygous FH with coronary artery disease (CAD) (LDL-C ≥ 100 mg/dL, triglycerides < 200 mg/dL), severe hypercholesterolemia (LDL-C ≥ 300 mg/dL or ≥ 200 mg/dL with CAD), and individuals at high risk for CAD (LDL-C ≥ 100 mg/dL, triglycerides ≤ 200 mg/dL), have indicated that mipomersen reduces all Apo B-containing atherogenic lipoproteins. The average LDL-C reduction was >100 mg/dL in homozygous FH and severe hypercholesterolemia populations. The main on-treatment adverse events were mild-to-moderate injection site reactions and flu-like symptoms. Available data regarding the efficacy, safety and tolerability of mipomersen, including results at up to 104 weeks of therapy, support the use of mipomersen for the treatment of FH. Copyright © 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Otvos, James D; Guyton, John R; Connelly, Margery A; Akapame, Sydney; Bittner, Vera; Kopecky, Steven L; Lacy, Megan; Marcovina, Santica M; Muhlestein, Joseph B; Boden, William E
The Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes trial showed no incremental benefit of extended-release niacin (ERN) therapy added to simvastatin in subjects with cardiovascular disease (CVD). To examine the effects of ERN treatment on lipoprotein particles and GlycA, a new marker of systemic inflammation, and their relations with incident CVD events including mortality. GlycA and very low-density lipoprotein, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) particle subclasses were quantified by nuclear magnetic resonance spectroscopy using available stored baseline (n = 2754) and 1-year in-trial (n = 2581) samples. Associations with CVD events and all-cause mortality were assessed using multivariable Cox proportional hazards regression adjusted for age, sex, diabetes, treatment assignment, and lipoproteins. Compared to placebo, ERN treatment lowered very low-density lipoprotein and LDL and increased HDL particle concentrations, increased LDL and HDL particle sizes (all P < .0001), but did not affect GlycA. Baseline and in-trial GlycA levels were associated with increased risk of CVD events: hazard ratio (HR) per SD increment, 1.17 (95% confidence interval [CI], 1.06-1.28) and 1.13 (1.02-1.26), respectively. However, none of the lipoprotein particle classes or subclasses was associated with incident CVD. By contrast, all-cause mortality was significantly associated with both GlycA (baseline HR: 1.46 [1.22-1.75]; in-trial HR: 1.41 [1.24-1.60]) and low levels of small HDL particles (baseline HR: 0.69 [0.56-0.86]; in-trial HR: 0.69 [0.56-0.86]). This Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes trial post hoc substudy indicates that inflammation, as indexed by GlycA, is unaffected by ERN treatment but is significantly associated with the residual risk of CVD and death in patients treated to low levels of LDL cholesterol. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Dokras, Anuja; Playford, Martin; Kris-Etherton, Penny M; Kunselman, Allen R; Stetter, Christy M; Williams, Nancy I; Gnatuk, Carol L; Estes, Stephanie J; Sarwer, David B; Allison, Kelly C; Coutifaris, Christos; Mehta, Nehal; Legro, Richard S
2017-05-01
To study the effects of oral contraceptive pills (OCP), the first-line treatment for PCOS, on high-density lipoprotein cholesterol (HDL-C) function (reverse cholesterol efflux capacity) and lipoprotein particles measured using nuclear magnetic resonance spectroscopy in obese women. Secondary analysis of a randomized controlled trial (OWL-PCOS) of OCP or Lifestyle (intensive Lifestyle modification) or Combined (OCP + Lifestyle) treatment groups for 16 weeks. Eighty-seven overweight/obese women with PCOS at two academic centres. Change in HDL-C efflux capacity and lipoprotein particles. High-density lipoprotein cholesterol efflux capacity increased significantly at 16 weeks in the OCP group [0·11; 95% confidence interval (CI) 0·03, 0·18, P = 0·008] but not in the Lifestyle (P = 0·39) or Combined group (P = 0·18). After adjusting for HDL-C and TG levels, there was significant mean change in efflux in the Combined group (0·09; 95% CI 0·01, 0·15; P = 0·01). Change in HDL-C efflux correlated inversely with change in serum testosterone (r s = -0·21; P = 0·05). In contrast, OCP use induced an atherogenic low-density lipoprotein cholesterol (LDL-C) profile with increase in small (P = 0·006) and large LDL-particles (P = 0·002). Change in small LDL-particles correlated with change in serum testosterone (r s = -0·31, P = 0·009) and insulin sensitivity index (ISI; r s = -0·31, P = 0·02). Both Lifestyle and Combined groups did not show significant changes in the atherogenic LDL particles. Oral contraceptive pills use is associated with improved HDL-C function and a concomitant atherogenic LDL-C profile. Combination of a Lifestyle program with OCP use improved HDL-C function and mitigated adverse effects of OCP on lipoproteins. Our study provides evidence for use of OCP in overweight/obese women with PCOS when combined with Lifestyle changes. © 2017 John Wiley & Sons Ltd.
Brockman, Adam H; Oller, Haley R; Moreau, Benoît; Kriksciukaite, Kristina; Bilodeau, Mark T
2015-02-12
Medicinal chemists have been encouraged in recent years to embrace high speed protein binding assays. These methods employ dialysis membranes in 96-well format or spin filters. Membrane-based methods do not separate lipoprotein binding from albumin binding and introduce interference despite membrane binding controls. Ultracentrifugation methods, in contrast, do not introduce interference if density gradients can be avoided and they resolve lipoprotein from albumin. A new generation of compact, fast ultracentrifuges facilitates the rapid and fully informative separation of plasma into albumin, albumin/fatty acid complex, lipoprotein, protein-free, and chylomicron fractions with no need of salt or sugar density gradients. We present a simple and fast ultracentrifuge method here for two platinum compounds and a taxane that otherwise bound irreversibly to dialysis membranes and which exhibited distinctive lipoprotein binding behaviors. This new generation of ultracentrifugation methods underscores a need to further discuss protein binding assessments as they relate to medicinal chemistry efforts.
New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs
Norata, Giuseppe Danilo; Ballantyne, Christie M.; Catapano, Alberico Luigi
2013-01-01
Dyslipidaemias play a key role in determining cardiovascular risk; the discovery of statins has contributed a very effective approach. However, many patients do not achieve, at the maximal tolerated dose, the recommended goals for low-density lipoprotein-cholesterol (LDL-C), non-high-density lipoprotein-cholesterol, and apolipoprotein B (apoB). Available agents combined with statins can provide additional LDL-C reduction, and agents in development will increase therapeutic options impacting also other atherogenic lipoprotein classes. In fact, genetic insights into mechanisms underlying regulation of LDL-C levels has expanded potential targets of drug therapy and led to the development of novel agents. Among them are modulators of apoB containing lipoproteins production and proprotein convertase subtilisin/kexin type-9 inhibitors. Alternative targets such as lipoprotein(a) also require attention; however, until we have a better understanding of these issues, further LDL-C lowering in high and very high-risk patients will represent the most sound clinical approach. PMID:23509227
Méndez-Del Villar, Miriam; Puebla-Pérez, Ana M; Sánchez-Peña, María J; González-Ortiz, Luis J; Martínez-Abundis, Esperanza; González-Ortiz, Manuel
2016-05-01
To evaluate the effect of Artemisia dracunculus on glycemic control, insulin sensitivity, and insulin secretion in patients with impaired glucose tolerance (IGT). A randomized, double blind, placebo-controlled clinical trial was performed in 24 patients with diagnosis of IGT. Before and after the intervention, glucose and insulin levels were measured every 30 min for 2 h after a 75-g dextrose load, along with glycated hemoglobin A1c (A1C) and lipid profile. Twelve patients received A. dracunculus (1000 mg) before breakfast and dinner for 90 days; the remaining 12 patients received placebo. Area under the curve (AUC) of glucose and insulin, total insulin secretion, first phase of insulin secretion, and insulin sensitivity were calculated. Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests were used for statistical analyses. The institutional ethics committee approved the protocol. After A. dracunculus administration, there were significant decreases in systolic blood pressure (SBP; 120.0 ± 11.3 vs. 113.0 ± 11.2 mmHg, P < .05), A1C (5.8 ± 0.3 vs. 5.6% ± 0.4%, P < .05), AUC of insulin (56,136.0 ± 27,426.0 vs. 44,472.0 ± 23,370.0 pmol/L, P < .05), and total insulin secretion (0.45 ± 0.23 vs. 0.35 ± 0.18, P < .05), with a significant increase in high-density lipoprotein cholesterol (HDL-C) (1.3 ± 0.3 vs. 1.4 ± 0.3 mmol/L, P < .05). There were no significant differences after placebo administration. A. dracunculus administration for 90 days in patients with IGT significantly decreased SBP, A1C, AUC of insulin, and total insulin secretion with a significant increase in HDL-C levels.
Kiani, Adnan N; Fang, Hong; Akhter, Ehtisham; Quiroga, Carmen; Simpson, Nancy; Alaupovic, Petar; Magder, Laurence S; Petri, Michelle
2015-03-01
Traditional classification of hyperlipidemia using high-density lipoprotein, low-density lipoprotein (LDL), and very low-density lipoprotein does not provide information on lipoprotein function. Apolipoproteins (Apos), which are protein components of plasma lipoproteins (including A, B, C, D, E) with their different composition, metabolic, and atherogenic properties, provide insight on lipoprotein functioning. In particular, the Apo B/A-I ratio is associated with atherogenic LDL and development of cardiovascular disease. We explored the baseline association between these nontraditional risk factors with subclinical measures of atherosclerosis (coronary artery calcification [CAC] and carotid intima-media thickness [IMT]) in systemic lupus erythematosus (SLE). A total of 58 SLE patients (97% women, 58% white, 40% African American, and 2% other, mean ± SD age 44 ± 11 years) had measurement of Apo and lipoproteins by immunoturbidimetric procedures, electroimmunoassays, and immunoprecipitation. CAC was measured by helical computed tomography and carotid IMT by carotid duplex. This study was based on the baseline assessment of subclinical atherosclerosis in the Lupus Atherosclerosis Prevention Study. The measurement of the lipoproteins was made on sera collected at the same time. There was no association between cardioprotective Apos (Apo A-I, LpA-I, LpA-I:A-II) and CAC (P < 0.15, P < 0.41, and P < 0.39, respectively) or carotid IMT (P < 0.97, P < 0.53, and P < 0.76, respectively). CAC and carotid IMT did not associate with atherogenic Apos either, including LpB:E+LpB:C:E, Apo B, LpB, LpB:C, Apo C-III, Apo C-III-HS, Apo C-III-HP, Apo C-III-R, LpA-II:B:C:D:E, and Apo B/Apo A-I. Measures of disease activity, including physician's global assessment and Systemic Lupus Erythematosus Disease Activity Index, were not associated with CAC or carotid IMT. Neither cardioprotective nor atherogenic lipoproteins were associated with measures of subclinical atherosclerosis in this series of SLE patients. Further studies with a larger sample size are warranted to confirm our findings.
Grace, M R; Vladutiu, C J; Nethery, R C; Siega-Riz, A M; Manuck, T A; Herring, A H; Savitz, D; Thorp, J T
2018-06-01
To estimate the association between lipoprotein particle concentrations in pregnancy and gestational age at delivery. Prospective cohort study. The study was conducted in the USA at the University of North Carolina. We assessed 715 women enrolled in the Pregnancy, Infection, and Nutrition study from 2001 to 2005. Fasting blood was collected at two time points (<20 and 24-29 weeks of gestation). Nuclear magnetic resonance (NMR) quantified lipoprotein particle concentrations [low-density lipoprotein (LDL), high-density lipoprotein (HDL), very-low density lipoprotein (VLDL)] and 10 subclasses of lipoproteins. Concentrations were assessed as continuous measures, with the exception of medium HDL which was classified as any or no detectable level, given its distribution. Cox proportional hazards models estimated hazard ratios (HR) for gestational age at delivery adjusting for covariates. Gestational age at delivery, preterm birth (<37 weeks of gestation), and spontaneous preterm birth. At <20 weeks of gestation, three lipoproteins were associated with later gestational ages at delivery [large LDL NMR (HR 0.78, 95% CI 0.64-0.96), total VLDL NMR (HR 0.77, 95% CI 0.61-0.98), and small VLDL NMR (HR 0.78, 95% CI 0.62-0.98], whereas large VLDL NMR (HR 1.19, 95% CI 1.01-1.41) was associated with a greater hazard of earlier delivery. At 24-28 weeks of gestation, average VLDL NMR (HR 1.25, 95% CI 1.03-1.51) and a detectable level of medium HDL NMR (HR 1.90, 95% CI 1.19-3.02) were associated with earlier gestational ages at delivery. In this sample of pregnant women, particle concentrations of VLDL NMR , LDL NMR , IDL NMR , and HDL NMR were each independently associated with gestational age at delivery for all deliveries or spontaneous deliveries <37 weeks of gestation. These findings may help formulate hypotheses for future studies of the complex relationship between maternal lipoproteins and preterm birth. Nuclear magnetic resonance spectroscopy may identify lipoprotein particles associated with preterm delivery. © 2017 Royal College of Obstetricians and Gynaecologists.
McGowan, S E; Doro, M M; Jackson, S
Lipid-laden interstitial fibroblasts (LIFs) are abundant during alveolar septal formation in rats and accumulate droplets of neutral lipids. The mechanisms controlling lipid acquisition by LIFs are incompletely understood and accumulation varies during postnatal development, because lipid droplets are usually a transient phenotype. We hypothesized that plasma lipoproteins may be an important source of lipids and that the cells may alter their acquisition of lipoproteins by changing the expression of lipoprotein receptors and apolipoprotein E. We quantified the accumulation low-density lipoproteins (LDLs) and very-low-density lipoproteins (VLDLs) by LIFs and the expression of LDL and VLDL receptors mRNA and protein at various perinatal ages and found no significant age-related differences. Apolipoprotein E mRNA was maximal at postnatal day 15, whereas immunoreactive apolipoprotein E protein was maximal at gestational day 21, suggesting complex regulation. Our findings indicate that the age-related difference in the lipid droplet contents of LIFs is not primarily related to differences in LDL or VLDL receptor expression. They suggest that changes in the quantities of plasma lipoproteins, which are presented to LIFs in the lung at various perinatal ages, are more likely to be responsible for age-related alterations in lipid droplet size and abundance.
Rustembegovic, Avdo; Sofic, Emin; Wichart, Ildiko
2006-01-01
Weight gain is a common adverse effect associated with the use of most typical and atypical antipsychotic. Aim of this study was to investigate serum prolactin, leptin, cholesterol, triglyceride, lipoproteins, such high density lipoprotein (HDL), and low density lipoprotein (LDL) levels in patients with Parkinson's disease (PD)-related psychosis during long-term medication with atypical antipsychotic. The study population comprised 40 patients, who were divided into 4 groups: olanzapine (n=10), risperidone (n=10), seroquel (n=10) monotherapy, a group of 10 patients receiving only antiparkinson drugs and a control group of 8 healthy persons. The patients were evaluated at baseline and at the sixth and twelfth week according to the Positive and Negative Syndrome Scale (PANSS), body mass index (BMI), and fasting serum prolactin, leptin, lipids and lipoproteins levels. Treatment of patients with olanzapine caused marked increase of serum LDL, cholesterol, triglyceride, and leptin levels (p<0,02). No changes in HDL concentrations. There was positive relationship between serum leptin, lipid levels and BMI. However, treatment of patients with seroquel did not cause changes in serum prolactin, leptin, lipids, and lipoproteins levels. Our results suggest that treatment of patients with PD-related psychosis with seroquel appears to have minimal influence on serum leptin, prolactin, lipids, lipoproteins and BMI compared with olanzapine and risperidone.
Barona, Jacqueline; Jones, Jennifer J.; Kopec, Rachel E.; Comperatore, Michael; Andersen, Catherine; Schwartz, Steven J.; Lerman, Robert H.; Fernandez, Maria Luz
2013-01-01
Thirty-five women with metabolic syndrome and high plasma low-density lipoprotein (LDL) cholesterol (≥100 mg/dl) participated in a dietary intervention consisting of a Mediterranean-style low-glycemic-load diet for 12 weeks. Participants were randomly allocated to consume diet only (n=15) or diet plus a medical food containing soy protein and plant sterols (n=20). Plasma concentrations of carotenoids, lipoprotein subfractions and oxidized LDL (OxLDL) were measured. Independent of treatment, women had a significant increase in plasma lutein (P<.0001) and β-carotene (P<.0001), while plasma lycopene was reduced (P<.05) after 12 weeks. Low-density lipoprotein cholesterol was reduced from 138±35 to 114±33 mg/dl (P<.0001). In addition, decreases were observed in the atherogenic subfractions: large very low-density lipoprotein (P<.05), small LDL (P<.00001) and medium high-density lipoprotein (P<.05). Oxidized LDL was significantly reduced by 12% in both groups (P<.01). Changes in OxLDL were inversely correlated with plasma lutein (r=−.478, P<.0001). The data indicate that women complied with the dietary regimen by increasing fruits and vegetable intake. Decreased consumption of high-glycemic foods frequently co-consumed with lycopene-rich tomato sauce such as pasta and pizza may be responsible for the lowering of this carotenoid in plasma after 12 weeks. These results also suggest that plasma lutein concentrations may protect against oxidative stress by reducing the concentrations of OxLDL. PMID:21775117
Cairoli, E; Rebella, M; Danese, N; Garra, V; Borba, E F
2012-10-01
The influence of antimalarials on lipids in systemic lupus erythematosus (SLE) has been identified in several studies but not in many prospective cohorts. The aim of this study was to longitudinally determine the effect of antimalarials on the lipoprotein profile in SLE. Fasting total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL) and low-density lipoprotein cholesterol (LDL) plasma levels were determined at entry and after 3 months of hydroxychloroquine (HCQ) treatment in a longitudinal evaluation of 24 patients with SLE. a significant decrease in TC (198 ± 33.7 vs. 183 ± 30.3 mg/dl, p = 0.023) and LDL levels (117 ± 31.3 vs. 101 ± 26.2 mg/dl, p = 0.023) were detected after the 3 months of HCQ therapy. The reduction of 7.6% in TC (p = 0.055) and 13.7% in LDL levels (p = 0.036) determined a significant decrease in the frequency of dyslipidemia (26% vs. 12.5%, p = 0.013) after HCQ therapy. This longitudinal study demonstrated the beneficial effect of antimalarials on lipids in SLE since this therapy induced a reduction of atherogenic lipoproteins.
Pyrene-Labeled Amphiphiles: Dynamic And Structural Probes Of Membranes And Lipoproteins
NASA Astrophysics Data System (ADS)
Pownall, Henry J.; Homan, Reynold; Massey, John B.
1987-01-01
Lipids and proteins are important functional and structural components of living organisms. Although proteins are frequently found as soluble components of plasma or the cell cytoplasm, many lipids are much less soluble and separate into complex assemblies that usually contain proteins. Cell membranes and plasma lipoproteins' are two important macro-molecular assemblies that contain both lipids and proteins. Cell membranes are composed of a variety of lipids and proteins that form an insoluble bilayer array that has relatively little curvature over distances of several nm. Plasma lipoproteins are different in that they are much smaller, water-soluble, and have highly curved surfaces. A model of a high density lipoprotein (HDL) is shown in Figure 1. This model (d - 10 nm) contains a surface of polar lipids and proteins that surrounds a small core of insoluble lipids, mostly triglycerides and cholesteryl esters. The low density (LDL) (d - 25 nm) and very low density (VLDL) (d 90 nm) lipoproteins have similar architectures, except the former has a cholesteryl ester core and the latter a core that is almost exclusively triglyceride (Figure 1). The surface proteins of HDL are amphiphilic and water soluble; the single protein of LDL is insoluble, whereas VLDL contains both soluble and insoluble proteins. The primary structures of all of these proteins are known.
Franzese, Christopher J; Bliden, Kevin P; Gesheff, Martin G; Pandya, Shachi; Guyer, Kirk E; Singla, Anand; Tantry, Udaya S; Toth, Peter P; Gurbel, Paul A
2015-05-01
Fish oil supplementation (FOS) is known to have cardiovascular benefits. However, the effects of FOS on thrombosis are incompletely understood. We sought to determine if the use of FOS is associated with lower indices of atherothrombotic risk in patients with suspected coronary artery disease (sCAD). This is a subgroup analysis of consecutive patients with sCAD (n=600) enrolled in the Multi-Analyte, Thrombogenic, and Genetic Markers of Atherosclerosis study. Patients on FOS were compared with patients not on FOS. Lipid profile was determined by vertical density gradient ultracentrifugation (n=520), eicosapentaenoic acid+docosahexaenoic acid was measured by gas chromatography (n=437), and AtherOx testing was performed by immunoassay (n=343). Thromboelastography (n=419), ADP- and collagen-induced platelet aggregation (n=137), and urinary 11-dehydrothromboxane B2 levels (n=259) were performed immediately before elective coronary angiography. In the total population, FOS was associated with higher eicosapentaenoic acid+docosahexaenoic acid content (p<0.001), lower triglycerides (p=0.04), total very low-density lipoprotein cholesterol (p=0.002), intermediate-density lipoprotein cholesterol (p=0.02), and AtherOx levels (p=0.02) but not in patients on lipid-lowering therapy. Patients not on lipid-lowering therapy taking FOS had lower very low-density lipoprotein cholesterol, intermediate-density lipoprotein cholesterol, remnant lipoproteins, triglycerides, low-density lipoprotein cholesterol, AtherOx levels, collagen-induced platelet aggregation, thrombin-induced platelet-fibrin clot strength, and shear elasticity (p<0.03 for all). In clopidogrel-treated patients, there was no difference in ADP-induced aggregation between FOS groups. Patients on FOS had lower urinary 11-dehydrothromboxane B2 levels regardless of lipid-lowering therapy (p<0.04). In conclusion, the findings of this study support the potential benefit of FOS for atherothrombotic risk reduction in sCAD with the greatest benefit in patients not receiving lipid-lowering therapy. Future prospective studies to compare FOS with lipid-lowering therapy and to assess the independent effects of FOS on thrombogenicity are needed. Copyright © 2015 Elsevier Inc. All rights reserved.
Titration of Serum Lipoproteins with Lipoprotein Precipitants.
1981-12-01
Lipid Res 11:583 (1970). 6. Grove, T. H. Effect of reagent pH on determination of high-density lipo- protein cholesterol by precipitation with sodium ...of choles- terol in the supernate plateaued at 43 mg/dl after the beta and prebeta lipo- proteins had been precipitated . The intensities of the two...AD-A113 370 SCHOOL OF AEROSPACE MEDICINE BROOKS AFS TX F/S 6/1 TITRATION OF SERU’LIPOPROTEINS WITH LIPOPROTEIN PRECIPITANTS .(Ul DEC 81 0 A CLARK. J A
Chen, Yanmin; Du, Mengkai; Xu, Jianyun; Chen, Danqing
2017-12-14
The lipoprotein subfraction particle profile can be used to improve clinical assessments of cardiovascular disease risk and contribute to early detection of atherogenic dyslipidemia. Lipid alterations in gestational diabetes have been extensively studied, but the results have been inconsistent. Here, we investigated serum lipoprotein subfraction particle levels and their association with glucose metabolic status in pregnancy. Twenty-eight pregnant women with gestational diabetes and 56 pregnant women with normal glucose tolerance matched for body mass index were enrolled in this study. We assessed fasting serum lipid concentrations and lipoprotein subfraction particle levels in participants between 24 and 28 weeks of gestation. The level of low-density lipoprotein (LDL) cholesterol was significantly lower in women with gestational diabetes than in those with normal glucose tolerance, but the triglyceride and high-density lipoprotein (HDL) cholesterol levels of the two groups were similar. Lipoprotein particle analysis showed that very-low-density lipoprotein (VLDL) particle number and the small dense LDL particle/large buoyant LDL particle (sdLDL-P/lbLDL-P) ratio were significantly higher in women with gestational diabetes than in those with normal glucose tolerance (P = 0.013 and P = 0.015, respectively). In multivariate analysis, fasting glucose was independently and positively associated with sdLDL-P/lbLDL-P ratio even after adjustment for maternal age, gestational weight gain, BMI and LDL cholesterol (standardized Beta = 0.214, P = 0.029). The sdLDL-P/lbLDL-P ratio is higher in GDM compared with non-diabetic pregnant women, and positively and independently associated with fasting glucose in pregnant women.
Jago, Russell; Drews, Kimberly L; Otvos, James D; Foster, Gary D; Marcus, Marsha D; Buse, John B; Mietus-Snyder, Michele; Willi, Steven M
2014-05-01
To examine whether longitudinal changes in relative weight category (as indicated by change in body mass index [BMI] classification group) were associated with changes in nuclear magnetic resonance (NMR)-derived lipoprotein particles among US youth. Secondary analysis of data from a clustered randomized controlled trial. BMI and fasting blood samples were obtained from 2069 participants at the start of the 6th grade and end of the 8th grade. BMI was categorized as normal weight, overweight, or obese at both time points. Lipoprotein particle profiles were measured with NMR spectroscopy at both time points. Regression models were used to examine changes in relative weight group and change in lipoprotein variables. A total of 38% of participants changed relative weight category (BMI group) during the 2.5-year study period. Low-density lipoprotein (LDL) cholesterol and non-high-density lipoprotein (HDL) cholesterol decreased almost universally, but more with improved BMI category. There were adverse effects on LDL size and total LDL particles, HDL size, and cholesterol for participants who remained obese or whose relative weight group worsened. Changes in relative category had no impact on HDL particles. Improvement in relative weight group from 6th to 8th grade was associated with favorable changes in non-HDL cholesterol, very low-density lipoprotein size, LDL size, HDL size, and LDL particles but had no effect on HDL particles. Findings indicate that an improvement in relative weight group between 6th and 8th grade had an effect on NMR-derived particles sizes and concentrations among a large group of adolescents, which overrepresented low-income minorities. Copyright © 2014 Elsevier Inc. All rights reserved.
Bremer, Andrew A; Auinger, Peggy; Byrd, Robert S
2009-04-01
To evaluate the relationship between insulin resistance-associated metabolic parameters and anthropometric measurements with sugar-sweetened beverage intake and physical activity levels. A cross-sectional analysis of the National Health and Nutrition Examination Survey data collected by the National Center for Health Statistics. Nationally representative samples of US adolescents participating in the National Health and Nutrition Examination Survey during the years 1999-2004. A total of 6967 adolescents aged 12 to 19 years. Sugar-sweetened beverage consumption and physical activity levels. Glucose and insulin concentrations, a homeostasis model assessment of insulin resistance (HOMA-IR), total, high-density lipoprotein, and low-density lipoprotein cholesterol concentrations, triglyceride concentrations, systolic and diastolic blood pressure, waist circumference, and body mass index (calculated as weight in kilograms divided by height in meters squared) percentile for age and sex. Multivariate linear regression analyses showed that increased sugar-sweetened beverage intake was independently associated with increased HOMA-IR, systolic blood pressure, waist circumference, and body mass index percentile for age and sex and decreased HDL cholesterol concentrations; alternatively, increased physical activity levels were independently associated with decreased HOMA-IR, low-density lipoprotein cholesterol concentrations, and triglyceride concentrations and increased high-density lipoprotein cholesterol concentrations. Furthermore, low sugar-sweetened beverage intake and high physical activity levels appear to modify each others' effects of decreasing HOMA-IR and triglyceride concentrations and increasing high-density lipoprotein cholesterol concentrations. Sugar-sweetened beverage intake and physical activity levels are each independently associated with insulin resistance-associated metabolic parameters and anthropometric measurements in adolescents. Moreover, low sugar-sweetened beverage intake and high physical activity levels appear to modify each others' effects on several health-related outcome variables.
Huang, Rong; Zheng, Jun; Li, Shengxian; Tao, Tao; Ma, Jing; Liu, Wei
2015-05-01
To investigate the different characteristics in Chinese Han women with polycystic ovary syndrome, and to analyze the significance of hyperandrogenism in insulin resistance and other metabolic profiles. A cross-sectional study. Medical university hospital. A total of 229 women with polycystic ovary syndrome aged 18-45 years. Women with polycystic ovary syndrome, diagnosed by Rotterdam criteria, were divided into four groups according to the quartile intervals of free androgen index levels. Comparisons between groups were performed using one-way analysis of variance. Stepwise logistic regression analysis was performed to investigate the association between homeostasis model assessment-insulin resistance and independent variables. Within the four phenotypes, women with phenotype 1 (hyperandrogenism, oligo/anovulation, and polycystic ovaries) exhibited higher total testosterone, free androgen index, androstenedione, low-density lipoprotein, and lower quantitative insulin sensitivity check index (p < 0.05); women with phenotype 4 (oligo/anovulation and polycystic ovaries) showed lower total cholesterol, low-density lipoprotein, and homeostasis model assessment-insulin resistance, but higher high-density lipoprotein (p < 0.05). The levels of triglycerides, total cholesterol, low-density lipoprotein, and homeostasis model assessment-insulin resistance significantly increased, but high-density lipoprotein and quantitative insulin sensitivity check index decreased with the elevation of free androgen index intervals. After adjustment for lipid profiles, free androgen index was significantly associated with homeostasis model assessment-insulin resistance in both lean and overweight/obese women (odds ratio 1.302, p = 0.039 in lean vs. odds ratio 1.132, p = 0.036 in overweight/obese). Phenotypes 1 and 4 represent groups with the most and least severe metabolic profiles, respectively. Hyperandrogenism, particularly with elevated free androgen index, is likely a key contributing factor for insulin resistance and for the aggravation of other metabolic profiles. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
Pulido-Moran, M; Bullon, P; Morillo, J M; Battino, M; Quiles, J L; Ramirez-Tortosa, MCarmen
2017-05-01
To examine the insulin resistance measured by surrogate indices in subjects with and without periodontitis and to find out any correlation among dietary intake with insulin resistance. Fifty-five patients were recruited to participate in this cross-sectional study. Insulin resistance measured by the homoeostasis model assessment (HOMA-IR) and the quantitative insulin sensitivity check index moreover glycaemia, creatinine, uric acid, high density lipoproteins, low density lipoproteins, very low density lipoproteins and triglycerides among others. True periodontal disease was elucidated through the examination of probing pocket depth, clinical attachment level, recession of the gingival margin and gingival bleeding. The statistical analyses used were the student's T-test for independent variables, Kolmogorov-Smirnov if variations were homogeneous; if not, the Mann-Whitney U Test was applied instead. Correlations between variables were assessed using Pearson's correlation coefficients. True periodontal disease was confirmed through the greater values of probing pocket depth, clinical attachment level, gingival margin and gingival bleeding in the periodontitis group in comparison with non-periodontitis group. Insulin resistance was evidenced by the greater values of HOMA-IR as well as by the lower quantitative insulin sensitivity check index values in the periodontitis group. Fasting insulin, glucose, uric acid, creatinine, low density lipoproteins, triglycerides and very low density lipoprotein levels were significant higher in periodontitis group. Pearson's correlations did not show any association among diet data and insulin resistance parameters in periodontitis patients. A putative systemic relationship between insulin resistance and periodontitis exists but it does not seem conceivable any effect of diet over such relationship. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jeffrey, P D; Nichol, L W; Smith, G D
1975-01-25
A method is presented by which an experimental record of total concentration as a function of radial distance, obtained in a sedimentation equilibrium experiment conducted with a noninteracting mixture in the absence of a density gradient, may be analyzed to obtain the unimodal distributions of molecular weight and of partial molar volume when these vary concomitantly and continuously. Particular attention is given to the caracterization of classes of lipoproteins exhibiting Gaussian distributions of these quantities, although the analysis is applicable to other types of unimodal distribution. Equations are also formulated permitting the definition of the corresponding distributions of partial specific volume and of density. The analysis procedure is based on a method (employing Laplace transforms) developed previously, but differs from it in that it avoids the necessity of differentiating experimental results, which introduces error. The method offers certain advantages over other procedures used to characterize and compare lipoprotein samples (exhibiting unimodal distributions) with regard to the duration of the experiment, economy of the sample, and, particularly, the ability to define in principle all of the relevant distributions from one sedimentation equilibrium experiment and an external measurement of the weight average partial specific volume. These points and the steps in the analysis procedure are illustrated with experimental results obtained in the sedimentation equilibrium of a sample of human serum low density lipoprotein. The experimental parameters (such as solution density, column height, and angular velocity) used in the conduction of these experiments were selected on the basis of computer-simulated examples, which are also presented. These provide a guide for other workers interested in characterizing lipoproteins of this class.
2011-03-01
The aim of this study was to test the hypothesis that patients with atherosclerotic cardiovascular (CV) disease optimally treated on a statin but with residual atherogenic dyslipidemia (low high-density lipoprotein cholesterol [HDL-C] and high triglycerides) will benefit from addition of niacin with fewer CV events compared with placebo. Statin monotherapy trials have found 25%-35% CV risk reduction relative to placebo, leaving significant residual risk. Patients with atherogenic dyslipidemia have substantially increased CV risk. Participants were men and women with established CV disease and atherogenic dyslipidemia. Lipid entry criteria varied by gender and statin dose at screening. All participants received simvastatin (or simvastatin plus ezetimibe) at a dose sufficient to maintain low-density lipoprotein cholesterol (LDL-C) 40-80 mg/dL (1.03-2.07 mmol/L). Participants were randomized to extended-release niacin or matching placebo. The primary end point was time to occurrence of the first of the following: coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, hospitalization for acute coronary syndrome, or symptom-driven coronary or cerebral revascularization. This event-driven trial will have 85% power to show a 25% reduction in primary event frequency after 850 patients have experienced a primary outcome event. AIM-HIGH completed enrollment in April 2010. Follow-up is expected to continue through 2012. AIM-HIGH was designed to determine whether treating residual dyslipidemia with niacin further reduces cardiovascular events in patients with CV disease on a statin at target levels of low-density lipoprotein cholesterol. Copyright © 2011 Mosby, Inc. All rights reserved.
Czarnecka, H; Yokoyama, S
1993-09-15
The mechanism for regulation of cholesterol esterification by lecithin-cholesterol acyltransferase (LCAT) was studied using the highly isolated enzyme from pig plasma. In the reaction with phosphatidylcholine small unilamellar vesicles, cholesterol, water, diacylglycerol, and lysophosphatidylcholine were all potent acceptors of an acyl group cleaved from the sn-2 position of egg phosphatidylcholine, generating cholesteryl ester, free fatty acid, triglyceride, and phosphatidylcholine, respectively. All of these reactions required activation by human apolipoprotein A-I, suggesting that this activation leads to the deacylation of phosphatidylcholine. Those acceptors competed against each other in this vesicle reaction system, and cholesterol was the most potent acyl acceptor. Lysophosphatidylcholine that was endogenously generated by deacylation of phosphatidylcholine in the first step of the LCAT reaction was also a good acyl acceptor, showing that the reaction is always partly "idling." Bovine serum albumin partially inhibited this idling reaction in a concentration-dependent manner up to 80% at 0.60 mM. The above results were essentially reproducible with high density lipoprotein, except that cholesterol is less potent than lysophosphatidylcholine in accepting the acyl group under the condition used. Unlike the apolipoprotein A-I-activated reaction, cholesterol was esterified only slightly by the LCAT reaction on low density lipoprotein and, consequently, did not compete against lysophosphatidylcholine for generation of phosphatidylcholine. Thus, apoB may activate LCAT in a very different manner from apoA-I. The rate of esterification of lysophosphatidylcholine on low density lipoprotein was one-tenth of that on the vesicles and on high density lipoprotein. Thus, LCAT is active on low density lipoprotein but mostly idling as deacylating and reacylating glycerophospholipids.
Bosch, Virgilio; Giacopini, Maria Isabel
2016-01-01
Abstract Objetive: To establish association between socioeconomic status and plasmatic markers of lipoperoxidation and antioxidants in Venezuelan school-age children from the middle-class and in critical poverty. Methods: Cross-sectional study with a sample of 114 school-age children (aged 7-9). The socioeconomic status, dietary intake of macro and micro-nutrients, weight, height, lipid profile, indicators of lipid peroxidation and enzymatic and non-enzymatic antioxidants were determined. Results: The daily average intake of energy, carbohydrates and vitamin A, and the percentage of energy obtained from carbohydrates was significantly higher in middle-class children compared to critical poverty children (p <0.05). The circulating oxidized low density lipoprotein (p <0.001) and the susceptibility of low density lipoproteins and very low density lipoproteins to oxidation in vitro (p <0.05) were significantly higher in middle-class children, while the critical poverty children showed significantly lower levels of Vitamin C and E in plasma (p <0.05). Non-enzymatic antioxidant levels were frequently deficient in both strata. The concentrations of circulating oxidized low density lipoprotein (OR: 1.09, CI 95%: 1.016-1.179; p= 0.017) and Vitamin C (OR: 3.21, CI 95%: 1.104-9.938; p= 0.032) were associated to the socioeconomic status independently of gender, family history of premature coronary artery disease, triglicerides, Vitamin C and E dietary intake and count of white blood cells. Conclusion: The socioeconomic status was associated to circulating oxidized low density lipoprotein and Vitamin C in Venezuelan school-age children, The results suggested the need to improve the dietary intake of antioxidants in both studied socioeconomic groups. PMID:28293041
Appraisal of Antihyperlipidemic Activities of Lentinus lepideus in Hypercholesterolemic Rats
Yoon, Ki Nam; Lee, Jae Seong; Kim, Hye Young; Lee, Kyung Rim; Shin, Pyung Gyun; Cheong, Jong Chun; Yoo, Young Bok; Alam, Nuhu; Ha, Tai Moon
2011-01-01
The wild edible mushroom, Lentinus lepideus has recently been cultivated for commercial use in Korea. While the mushroom has been widely used for nutritional and medicinal purposes, the possible anti-hyperlipidemic action is unclear. The effects of dietary L. lepideus on plasma and feces biochemical and on the liver histological status were investigated in hypercholesterolemic rats. Six-wk-old female Sprague-Dawley albino rats were divided into three groups of 10 rats each. Biochemical and histological examinations were performed. A diet containing 5% L. lepideus fruiting bodies reduced plasma total cholesterol, triglyceride, low-density lipoprotein, total lipid, phospholipids, and the ratio of low-density to high-density lipoprotein. Body weight was reduced. The diet did not adversely affect plasma biochemical and enzyme profiles. L. lepideus reduced significantly plasma β- and pre-β-lipoprotein, while α-lipoprotein content was increased. A histological study of hepatic cells by conventional hematoxylin-eosin and oil red O staining revealed normal findings for mushroom-fed hypercholesterolemic rats. The present study suggests that a diet supplemented with L. lepideus can provide health benefits by acting on the atherogenic lipid profile in hypercholesterolemic rats. PMID:22783117
Salleh, Mohd Nizar; Runnie, Irine; Roach, Paul D; Mohamed, Suhaila; Abeywardena, Mahinda Y
2002-06-19
Twelve edible plant extracts rich in polyphenols were screened for their potential to inhibit oxidation of low-density lipoprotein (LDL) in vitro and to modulate LDL receptor (LDLr) activity in cultured HepG2 cells. The antioxidant activity (inhibition of LDL oxidation) was determined by measuring the formation of conjugated dienes (lag time) and thiobarbituric acid reagent substances (TBARS). Betel leaf (94%), cashew shoot (63%), Japanese mint (52%), semambu leaf (50%), palm frond (41%), sweet potato shoot, chilli fruit, papaya shoot, roselle calyx, and maman showed significantly increased lag time (>55 min, P < 0.05) and inhibition of TBARS formation (P < 0.05) compared to control. LDLr was significantly up-regulated (P < 0.05) by Japanese mint (67%), semambu (51%), cashew (50%), and noni (49%). Except for noni and betel leaf, most plant extracts studied demonstrated a positive association between antioxidant activity and the ability to up-regulate LDL receptor. Findings suggest that reported protective actions of plant polyphenols on lipoprotein metabolism might be exerted at different biochemical mechanisms.
ApoE and the role of very low density lipoproteins in adipose tissue inflammation
USDA-ARS?s Scientific Manuscript database
Our goal was too identify the role of triglyceride-rich lipoproteins and apoE, a major apolipoprotein in triglyceride-rich lipoproteins, in adipose tissue inflammation with high-fat diet induced obesity. Male apoE-/- and C57BL/6J wild-type mice fed high fat diets for 12 weeks were assessed for metab...
Croyal, Mikaël; Tran, Thi-Thu-Trang; Blanchard, Rose Hélène; Le Bail, Jean-Christophe; Villard, Elise F; Poirier, Bruno; Aguesse, Audrey; Billon-Crossouard, Stéphanie; Ramin-Mangata, Stéphane; Blanchard, Valentin; Nativel, Brice; Chemello, Kévin; Khantalin, Ilya; Thedrez, Aurélie; Janiak, Philip; Krempf, Michel; Boixel, Christophe; Lambert, Gilles; Guillot, Etienne
2018-05-31
Therapeutic antibodies targeting proprotein convertase subtilisin kexin type 9 (PCSK9) (e.g. alirocumab) lower low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp(a)] levels in clinical trials. We recently showed that PCSK9 enhances apolipoprotein(a) [apo(a)] secretion from primary human hepatocytes but does not affect Lp(a) cellular uptake. Here, we aimed to determine how PCSK9 neutralization modulates Lp(a) levels in vivo Six nonhuman primates (NHP) were treated with alirocumab or a control antibody (IgG1) in a crossover protocol. After the lowering of lipids reached steady state, NHP received an intravenous injection of [ 2 H 3 ]-leucine, and blood samples were collected sequentially over 48 h. Enrichment of apolipoproteins in [ 2 H 3 ]-leucine was assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kinetic parameters were calculated using numerical models with the SAAMII software. Compared with IgG1, alirocumab significantly reduced total cholesterol (TC) (-28%), LDL-C (-67%), Lp(a) (-56%), apolipoprotein B100 (apoB100) (-53%), and apo(a) (-53%). Alirocumab significantly increased the fractional catabolic rate of apoB100 (+29%) but not that of apo(a). Conversely, alirocumab sharply and significantly reduced the production rate (PR) of apo(a) (-42%), but not significantly that of apoB100, compared with IgG1, respectively.In line with the observations made in human hepatocytes, the present kinetic study establishes that PCSK9 neutralization with alirocumab efficiently reduces circulating apoB100 and apo(a) levels by distinct mechanisms: apoB primarily by enhancing its catabolism and apo(a) primarily by lowering its production. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Dietary fatty acids were not independently associated with lipoprotein subclasses in elderly women.
Alaghehband, Fatemeh Ramezan; Lankinen, Maria; Värri, Miika; Sirola, Joonas; Kröger, Heikki; Erkkilä, Arja T
2017-07-01
Dietary fatty acids are known to affect serum lipoproteins; however, little is known about the associations between consumption of dietary fatty acids and lipoprotein subclasses. In this study, we hypothesized that there is an association between dietary fatty acids and lipoprotein subclasses and investigated the cross-sectional association of dietary fat intake with subclasses of lipoproteins in elderly women. Altogether, 547 women (aged ≥65 years) who were part of OSTPRE cohort participated. Dietary intake was assessed by 3-day food records, lifestyle, and health information obtained through self-administrated questionnaires, and lipoprotein subclasses were determined by nuclear magnetic resonance spectroscopy. To analyze the associations between fatty acids and lipoprotein subclasses, we used Pearson and Spearman correlation coefficients and the analysis of covariance (ANCOVA) test with, adjustment for physical activity, body mass index, age, smoking status, and intake of lipid-lowering drugs. There were significant correlations between saturated fatty acids (SFA; % of energy) and concentrations of large, medium, and small low-density lipoproteins (LDL); total cholesterol in large, medium, and small LDL; and phospholipids in large, medium, and small LDL, after correction for multiple testing. After adjustment for covariates, the higher intake of SFA was associated with smaller size of LDL particles (P = .04, ANCOVA) and lower amount of triglycerides in small very low-density lipoproteins (P = .046, ANCOVA). However, these associations did not remain significant after correction for multiple testing. In conclusion, high intake of SFA may be associated with the size of LDL particles, but the results do not support significant, independent associations between dietary fatty acids and lipoprotein subclasses. Copyright © 2017 Elsevier Inc. All rights reserved.
Hirooka, Nobutaka; Shin, Chol; Masaki, Kamal H.; Edmundowicz, Daniel; Choo, Jina; Barinas-Mitchell, Emma J.M.; Willcox, Bradley J.; Sutton-Tyrrell, Kim; El-Saed, Aiman; Miljkovic-Gacic, Iva; Ohkubo, Takayoshi; Miura, Katsuyuki; Ueshima, Hirotsugu; Kuller, Lewis H.; Sekikawa, Akira
2013-01-01
Background Both indices of obesity and lipoprotein subfractions contribute to coronary heart disease risk. However, associations between indices of obesity and lipoprotein subfractions remain undetermined across different ethnic groups. This study aims to examine the associations of indices of obesity in Japanese Americans (JA), African Americans (AA) and Koreans with lipoprotein subfractions. Methods A population-based sample of 230 JA, 91 AA, and 291 Korean men aged 40–49 was examined for indices of obesity, i.e., visceral and subcutaneous adipose tissue (VAT and SAT, respectively), waist circumference (WC), and body-mass index (BMI), and for lipoprotein subfractions by nuclear-magnetic-resonance spectroscopy. Multiple regression analyses were performed in each of the three ethnic groups to examine the associations of each index of obesity with lipoprotein. Results VAT had significant positive associations with total and small low-density lipoprotein (LDL) and a significant negative association with large high-density lipoprotein (HDL) in all three ethnicities (p < 0.01). SAT, WC, and BMI had significant positive associations with total and small LDL in only JA and Koreans, while these indices had significant inverse associations with large HDL in all ethnic groups (p < 0.01). Compared to SAT, VAT had larger R2 values in the associations with total and small LDL and large HDL in all three ethnic groups. Conclusions VAT is significantly associated with total and small LDL and large HDL in all three ethnic groups. The associations of SAT, WC, and BMI with lipoprotein subfractions are weaker compared to VAT in all three ethnic groups. PMID:25068101
Fatty liver and drugs: the two sides of the same coin.
Miele, L; Liguori, A; Marrone, G; Biolato, M; Araneo, C; Vaccaro, F G; Gasbarrini, A; Grieco, A
2017-03-01
Drug-induced liver injury (DILI) is a common and underestimated cause of liver disease. Several drugs and other xenobiotics can be the cause of different clinicopathologic patterns of liver disease. Steatosis and steatohepatitis are rare but well-documented types of DILI. Over the past decades commonly used drugs like amiodarone, tamoxifen, irinotecan, methotrexate, valproic acid and glucocorticoids have been recognized to be associated with steatosis. Even though the pathophysiological pathways are still only partially understood, inhibition of mitochondrial beta-oxidation, reduced very low-density lipoprotein secretion, insulin resistance induction and increased de novo synthesis or increased liver uptake of fatty acids are considered the main pathogenic mechanisms through which drugs can lead to hepatic steatosis. On the other hand, fatty liver itself is a very common clinical condition, and there is a growing awareness of the potential risk factors for DILI due to the underlying metabolic condition itself.
Cholesterol and Triglycerides in Antipsychotic-Naive Patients with Nonaffective Psychosis
Kirkpatrick, Brian; Garcia-Rizo, Clemente; Tang, Kun; Fernandez-Egea, Emilio; Bernardo, Miguel
2010-01-01
Patients with psychosis have an increased prevalence of hyperlipidemia. We compared fasting concentrations of lipids in newly diagnosed, antipsychotic-naïve patients with nonaffective psychosis (N-87) and control subjects (N=92). After accounting for gender, age, smoking, socioeconomic status, and body mass index, there was no significant difference between the two groups in total cholesterol, high-density lipoproteins, low-density lipoproteins, or triglycerides. PMID:20576293
Lin, Pei-Pei; Hsieh, You-Miin; Zhang, Zi-yi; Wu, Hui-Ching; Huang, Chun-Chih
2014-01-01
This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease. PMID:25538960
Impact of acculturation on cardiovascular risk factors among elderly Mexican Americans.
López, Lenny; Peralta, Carmen A; Lee, Anne; Zeki Al Hazzouri, Adina; Haan, Mary N
2014-10-01
Higher levels of acculturation among Latinos have been shown to be associated with a higher prevalence of cardiovascular (CV) risk factors in some studies of middle-age persons. The association of acculturation and prevalence of CV risk factors in elderly Latinos is less well established. Acculturation was measured using the validated bidimensional Acculturation Rating Scale for Mexican Americans-II. We conducted a cross-sectional analysis of the association of acculturation with prevalence of CV risk factors among 1789 elderly men and women from the Sacramento Area Latino Study on Aging using multivariate linear and logistic regression. We tested for the interaction of acculturation with risk factors by nativity status. Median age was 69.8 years. Higher acculturation was associated with lower systolic blood pressure, lower low-density lipoprotein, higher high-density lipoprotein, and lower prevalence of CV disease after age and sex adjustment. Higher acculturation remained associated with lower level of low-density lipoprotein and higher level of high-density lipoprotein after full adjustment. Nativity status did not affect these results. Contrary to other reports in middle-aged persons, higher levels of acculturation were associated with better lipid profiles and no significant differences in other CV risk factors by acculturation level in elderly Latinos. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ha Young, E-mail: hayoung@skku.edu; Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714; Kim, Sang Doo
2013-03-29
Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foammore » cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.« less
She, Zhi-Gang; Chang, Yunchao; Pang, Hong-Bo; Han, Wenlong; Chen, Hou-Zao; Smith, Jeffrey W; Stallcup, William B
2016-01-01
Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis. © 2015 American Heart Association, Inc.
Cannabinoids impair the formation of cholesteryl ester in cultured human cells.
Cornicelli, J A; Gilman, S R; Krom, B A; Kottke, B A
1981-01-01
The ability of cultured human fibroblasts to form cholesteryl esters from 14C-oleate is impaired by delta'-tetrahydrocannabinol, cannabidiol, and cannabinol, a group of natural products isolated from Cannabis sativa. This inhibition is compound and dose-related; 30 microM cannabidiol reduced esterification to less than 20% of the control values. The esterification of endogenous and exogenous cholesterol was affected, since inhibition was seen with either low density lipoproteins (200 micrograms/ml) or 25-hydroxycholesterol (5 micrograms/ml) as esterification stimuli. Cells treated with these compounds at doses of from 1 to 30 microM showed no impairment of protein synthesis, triglyceride or phospholipid formation, or ability to metabolize 125I-low density lipoproteins. An inhibition of cholesterol esterification was seen in human aortic medial cells. With increasing doses of these compounds, low density lipoproteins (25 micrograms/ml) became progressively less effective in suppressing HMG-CoA reductase in cultured human fibroblasts; with 30 microM cannabidiol the enzyme suppression was only 24% of that found in cells incubated with low density lipoproteins in the absence of drugs. Based on these data, we conclude that the cannabinoids "compartmentalize" cholesterol and, thus, make is unavailable for regulating cellular cholesterol metabolism. This may occur as a result of enhanced sterol efflux.
Evaluation of Lipid Profile in Patients with Cherry Angioma: A Case-Control Study in Guilan, Iran.
Darjani, Abbas; Rafiei, Rana; Shafaei, Sareh; Rafiei, Elahe; Eftekhari, Hojat; Alizade, Narges; Gharaei Nejad, Kaveh; Rafiee, Behnam; Najirad, Sara
2018-01-01
Cherry angioma is the most common type of acquired cutaneous vascular proliferation which would increase with aging due to some angiogenic factors but the exact pathogenesis is unknown. Usually angiogenic factors are synthesized in human body to compensate occlusive effects of atherogenic agents such as serum lipids. Our hypothesis was that increased levels of these angiogenic factors could be a trigger for development of cherry angioma. This study has been designed to compare frequency of dyslipidemia in subjects with and without cutaneous cherry angioma. In this case-control study, 122 cases with cherry angioma and 122 control subjects without cherry angioma were enrolled. Demographic characteristics, number of the cherry angioma lesions, and serum lipid profile were collected for all subjects. The data was analyzed using SPSS 18 software. Mean levels of the total cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein were higher in patients with cherry angioma compared to control subjects in which differences were significant for total cholesterol, low-density lipoprotein, and triglyceride ( P < 0.05) but not for high-density lipoprotein level. Serum lipids may have a role in producing angiogenic factors and development of cherry angioma and it seems logical to evaluate lipid profile in these cases.
Lipid and lipoprotein testing in resource-limited laboratories.
Myers, Gary L
2003-01-01
The role of total cholesterol (TC) and lipoproteins in the assessment of coronary heart disease (CHD) is firmly established from population and intervention studies. Total and low-density lipoprotein cholesterol (LDLC) levels are positively associated with CHD, and high-density lipoprotein cholesterol (HDLC) levels are negatively associated with CHD. Efforts to identify and treat people at increased risk based on cholesterol and lipoprotein levels have led to more lipid testing and the need for very reliable test results. Thus, quality laboratory services are an essential component of healthcare delivery and play a vital role in any strategy to reduce morbidity and mortality from CHD. In laboratories with limited resources, establishing laboratory capability to measure CHD risk markers may be a considerable challenge. Laboratories face problems in selecting proper techniques, difficulties in equipment availability and maintenance, and shortage of supplies, staffing, and supervision. The Centers for Disease Control and Prevention (CDC) has been providing technical assistance for more than 30 years to laboratories that measure lipids and lipoproteins and is willing to provide technical assistance as needed for other laboratories to develop this capability. CDC can provide technical assistance to establish lipid and lipoprotein testing capability to support a CHD public health program in areas with limited laboratory resources. This assistance includes: selecting a suitable testing instrument; providing training for laboratory technicians; establishing a simple quality control plan; and instructing staff on how to prepare frozen serum control materials suitable for assessing accuracy of lipid and lipoprotein testing.
New insights into the pathophysiology of dyslipidemia in type 2 diabetes.
Taskinen, Marja-Riitta; Borén, Jan
2015-04-01
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality for patients with type 2 diabetes, despite recent significant advances in management strategies to lessen CVD risk factors. A major cause is the atherogenic dyslipidemia, which consists of elevated plasma concentrations of both fasting and postprandial triglyceride-rich lipoproteins (TRLs), small dense low-density lipoprotein (LDL) and low high-density lipoprotein (HDL) cholesterol. The different components of diabetic dyslipidemia are not isolated abnormalities but closely linked to each other metabolically. The underlying disturbances are hepatic overproduction and delayed clearance of TRLs. Recent results have unequivocally shown that triglyceride-rich lipoproteins and their remnants are atherogenic. To develop novel strategies for the prevention and treatment of dyslipidaemia, it is essential to understand the pathophysiology of dyslipoproteinaemia in humans. Here, we review recent advances in our understanding of the pathophysiology of diabetic dyslipidemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Serum lipoprotein (a) concentrations among Arab children: a hospital-based study in Kuwait.
Alsaeid, M; Alsaeid, K; Fatania, H R; Sharma, P N; Abd-Elsalam, R
1998-09-01
Elevated lipoprotein (a) [Lp(a)] is an independent risk factor for premature atherosclerosis and coronary heart disease, both of which are prevalent among Kuwaitis. Our objective was to measure serum lipids, including Lp(a), in Arab children and compare them with values reported for other ethnic groups. To that end, serum concentrations of Lp(a), total cholesterol [T-CHOL], high density lipoprotein [HDL], low density lipoprotein [LDL], and triglyceride [TG] were assessed in 103 Arab children. The mean and median Lp(a) were 140.4 mg/l and 95 mg/l, respectively. The Lp(a) frequency distribution was skewed to the right with the highest frequencies appearing at low levels. Serum Lp(a) correlated positively with T-CHOL and LDL but did not correlate with age, HDL and TG. Only nine children (8.7%) had serum Lp(a) levels associated with increased cardiovascular risk, namely > or = 300 mg/l.
A high-density lipoprotein-mediated drug delivery system.
Mo, Zhong-Cheng; Ren, Kun; Liu, Xing; Tang, Zhen-Li; Yi, Guang-Hui
2016-11-15
High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier. Copyright © 2016 Elsevier B.V. All rights reserved.
New Frontiers in the Treatment of Diabetic Dyslipidemia
Wang, Shu-Yi; Hsieh, Ming-Chia; Tu, Shih-Te; Chuang, Chieh-Sen
2013-01-01
Dyslipidemia is a major risk factor for cardiovascular complications in people with diabetes. Lowering low-density lipoprotein cholesterol (LDL-C) levels is effective in the primary and secondary prevention of diabetic vascular complications. However, LDL-C levels do not reflect all aspects of diabetic dyslipidemia, which is characterized by hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C). Statins, nicotinic acid, and fibrates play a role in treating diabetic dyslipidemia. Atherosclerosis is a major disorder of the blood vessel wall in patients with diabetes. A number of antihyperlipidemic agents may be beneficial and exhibit effects at the actual site of vascular disease and not only on plasma lipoprotein concentrations. Several novel therapeutic compounds are currently being developed. These include additional therapeutics for LDL-C, triglycerides, HDL-C, and modulators of inflammation that can be used as possible synergic agents for the treatment of atherosclerosis and irregularities in plasma lipoprotein concentrations. PMID:24380093
Yang, X; Wang, H; Zhu, Z; Deng, A
1998-01-01
Serum lipoprotein(a) [Lp(a)] concentration was determined in 42 patients with primary nephrotic syndrome (NS) and the relationships between Lp (a) and plasma lipids, apolipoproteins, serum creatinine (Scr), albumin, urinary proteins (Upro) were also analyzed. The results showed that: (1) serum Lp(a) concentrations in the patients with NS were higher than those in healthy controls; (2) the levels of serum Lp(a) were correlated positively with total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C), apolipoprotein B (Apo-B), Upros (Upro). It is concluded that the NS patients had the potential risk of suffering from coronary artery disease, glomerular sclerosis and thrombosis. The remission of NS may partially decrease the serum Lp(a) levels. Further studies are needed to explore the prevention and treatment of dislipedemia in patients with NS.
LRP1 protects the vasculature by regulating levels of connective tissue growth factor and HtrA1.
Muratoglu, Selen C; Belgrave, Shani; Hampton, Brian; Migliorini, Mary; Coksaygan, Turhan; Chen, Ling; Mikhailenko, Irina; Strickland, Dudley K
2013-09-01
Low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is abundant in vascular smooth muscle cells. Mice in which the lrp1 gene is deleted in smooth muscle cells (smLRP1(-/-)) on a low-density lipoprotein receptor-deficient background display excessive platelet derived growth factor-signaling, smooth muscle cell proliferation, aneurysm formation, and increased susceptibility to atherosclerosis. The objectives of the current study were to examine the potential of LRP1 to modulate vascular physiology under nonatherogenic conditions. We found smLRP1(-/-) mice to have extensive in vivo aortic dilatation accompanied by disorganized and degraded elastic lamina along with medial thickening of the arterial vessels resulting from excess matrix deposition. Surprisingly, this was not attributable to excessive platelet derived growth factor-signaling. Rather, quantitative differential proteomic analysis revealed that smLRP1(-/-) vessels contain a 4-fold increase in protein levels of high-temperature requirement factor A1 (HtrA1), which is a secreted serine protease that is known to degrade matrix components and to impair elastogenesis, resulting in fragmentation of elastic fibers. Importantly, our study discovered that HtrA1 is a novel LRP1 ligand. Proteomics analysis also identified excessive accumulation of connective tissue growth factor, an LRP1 ligand and a key mediator of fibrosis. Our findings suggest a critical role for LRP1 in maintaining the integrity of vessels by regulating protease activity as well as matrix deposition by modulating HtrA1 and connective tissue growth factor protein levels. This study highlights 2 new molecules, connective tissue growth factor and HtrA1, which contribute to detrimental changes in the vasculature and, therefore, represent new target molecules for potential therapeutic intervention to maintain vessel wall homeostasis.
Cam, Judy A; Zerbinatti, Celina V; Knisely, Jane M; Hecimovic, Silva; Li, Yonghe; Bu, Guojun
2004-07-09
The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family that shares high homology with the LDL receptor-related protein (LRP). LRP1B was originally described as a putative tumor suppressor in lung cancer cells; however, its expression profile in several regions of adult human brain suggests it may have additional functions in the central nervous system. Since LRP1B has overlapping ligand binding properties with LRP, we investigated whether LRP1B, like LRP, could interact with the beta-amyloid precursor protein (APP) and modulate its processing to amyloid-beta peptides (Abetas). Using an LRP1B minireceptor (mLRP1B4) generated to study the trafficking of LRP1B, we found that mLRP1B4 and APP form an immunoprecipitable complex. Furthermore mLRP1B4 bound and facilitated the degradation of a soluble isoform of APP containing a Kunitz proteinase inhibitor domain but not soluble APP lacking a Kunitz proteinase inhibitor domain. A functional consequence of mLRP1B4 expression was a significant accumulation of APP at the cell surface, which is likely related to the slow endocytosis rate of LRP1B. More importantly, mLRP1B4-expressing cells that accumulated cell surface APP produced less Abeta and secreted more soluble APP. These findings reveal that LRP1B is a novel binding partner of APP that functions to decrease APP processing to Abeta. Consequently LRP1B expression could function to protect against the pathogenesis of Alzheimer's disease.
Crespo, N; Esteve-Garcia, E
2003-07-01
An experiment was conducted to study the effect of different dietary fatty acid profiles on plasma levels of insulin, very low density lipoproteins (VLDL), cholesterol, and glucose. Diets with four types of fat (tallow, olive, sunflower, and linseed oils) at an inclusion level of 10% and a basal diet without additional fat were administered to female broiler chickens. Serum insulin, cholesterol, and plasma VLDL were affected by the different treatments; however, glucose concentrations were similar among treatments. In the fasted state, broilers fed diets with sunflower or linseed oil presented lower levels of insulin and cholesterol with respect to those fed tallow or olive oil (P < 0.05). VLDL in the fasted state was reduced in broilers fed sunflower and linseed oils (P < 0.05) with respect to those fed tallow, olive oil, or the basal diet. Plasma levels of VLDL were only significantly correlated with abdominal fat in birds fed the basal diet, in the fed and in the fasted state, and in those fed linseed oil in the fed state (P < 0.05). Results of this experiment suggest that higher insulin levels in broilers fed diets rich in saturated fatty acids could be related to higher fat deposition. Fat deposition in birds fed high fat diets was not correlated with circulating VLDL, which suggested direct dietary fat deposition, except for birds fed linseed oil diets. Although birds fed linseed oil diets presented lower levels of VLDL than those fed tallow, olive oil, or the basal diet, the higher correlation with abdominal fat suggests that in these birds, fat deposition is more dependent on hepatic VLDL secretion, despite the high dietary fat level.
Thongrangsalit, Sirigul; Phaechamud, Thawatchai; Lipipun, Vimolmas; Ritthidej, Garnpimol C
2015-07-01
Both low solubility and high hepatic metabolism cause low oral bioavailability of bromocriptine mesylate (BM) leading to very low drug amount in brain. Self-microemulsion (SME) tablets were developed to improve solubility, stimulate lipoprotein synthesis to promote lymphatic transport, avoid hepatic metabolism and target drug to brain. SME liquid containing castor oil, Tween(®) 80 and Cremophor(®) EL was prepared and then adsorbed onto solid carries, Aerosil(®)200, Aeroperl(®)300 or NeusilinUS2(®), yielding SME powders. The optimal ratios of SME liquid to carriers determined from flowability and scanning electron photomicrographs before tableting were 1.5:1, 2:1 and 2.5:1 for Aerosil(®)200, Aeroperl(®)300 and NeusilinUS2(®), respectively. Only Aeroperl(®)300 SME tablet had comparable dissolution to BM commercial tablet. From in vitro study in Caco-2 cells, fluorescein loaded SME tablet showed higher uptake than fluorescein loaded in either oil or surfactant. Although significantly lower amount of drug was permeated from SME tablet than from commercial tablet, higher drug uptake was obviously observed (P<0.05). In addition, higher lipoprotein synthesis expressing as content of apolipoprotein B (apo-B) found in secreted chylomicron resulted in higher drug uptake in co-culture of brain endothelial cells (bEnd.3) and astrocytes (CTX TNA2) from drug loaded SME tablet when compared to commercial tablet (P<0.05) due to binding of apo-B to LDL receptors expressed on the surface of endothelial cells. Therefore, tablet of SME adsorbed onto porous carrier potentially delivered BM to brain via lymphatic transport by increasing the lipoprotein synthesis. Copyright © 2015. Published by Elsevier B.V.
Pownall, Henry J.; Rosales, Corina; Gillard, Baiba K.; Ferrari, Mauro
2016-01-01
Although many acute and chronic diseases are managed via pharmacological means, challenges remain regarding appropriate drug targeting and maintenance of therapeutic levels within target tissues. Advances in nanotechnology will overcome these challenges through the development of lipidic particles, including liposomes, lipoproteins, and reconstituted high-density lipoproteins (rHDL) that are potential carriers of water-soluble, hydrophobic, and amphiphilic molecules. Herein we summarize the properties of human plasma lipoproteins and rHDL, identify the physicochemical determinants of lipid transfer between phospholipid surfaces, and discuss strategies for increasing the plasma half-life of lipoprotein- and liposome-associated molecules. PMID:27826368
USDA-ARS?s Scientific Manuscript database
Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) has been associated with a decreased risk of these complications. We evaluated the ut...
New Drugs for Treating Dyslipidemia: Beyond Statins
Ahn, Chang Ho
2015-01-01
Statins have been shown to be very effective and safe in numerous randomized clinical trials, and became the implacable first-line treatment against atherogenic dyslipidemia. However, even with optimal statin treatment, 60% to 80% of residual cardiovascular risk still exists. The patients with familial hypercholesterolemia which results in extremely high level of low density lipoprotein cholesterol (LDL-C) level and the patients who are intolerant or unresponsive to statins are the other hurdles of statin treatment. Recently, new classes of lipid-lowering drugs have been developed and some of them are available for the clinical practice. The pro-protein convertase subtilisin/kexintype 9 (PCSK9) inhibitor increases the expression of low density lipoprotein (LDL) receptor in hepatocytes by enhancing LDL receptor recycling. The microsomal triglyceride transport protein (MTP) inhibitor and antisense oligonucleotide against apolipoprotein B (ApoB) reduce the ApoB containing lipoprotein by blocking the hepatic very low density lipoprotein synthesis pathway. The apolipoprotein A1 (ApoA1) mimetics pursuing the beneficial effect of high density lipoprotein cholesterol and can reverse the course of atherosclerosis. ApoA1 mimetics had many controversial clinical data and need more validation in humans. The PCSK9 inhibitor recently showed promising results of significant LDL-C lowering in familial hypercholesterolemia (FH) patients from the long-term phase III trials. The MTP inhibitor and antisesnse oligonucleotide against ApoB were approved for the treatment of homozygous FH but still needs more consolidated evidences about hepatic safety such as hepatosteatosis. We would discuss the benefits and concerns of these new lipid-lowering drugs anticipating additional benefits beyond statin treatment. PMID:25922802
Mora, Samia; Caulfield, Michael P; Wohlgemuth, Jay; Chen, Zhihong; Superko, H Robert; Rowland, Charles M; Glynn, Robert J; Ridker, Paul M; Krauss, Ronald M
2015-12-08
Cardiovascular disease (CVD) can occur in individuals with low low-density lipoprotein (LDL) cholesterol (LDL-C). We investigated whether detailed measures of LDL subfractions and other lipoproteins can be used to assess CVD risk in a population with both low LDL-C and high C-reactive protein who were randomized to high-intensity statin or placebo. In 11 186 Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) participants, we tested whether lipids, apolipoproteins, and ion mobility-measured particle concentrations at baseline and after random allocation to rosuvastatin 20 mg/d or placebo were associated with first CVD events (n=307) or CVD/all-cause death (n=522). In placebo-allocated participants, baseline LDL-C was not associated with CVD (adjusted hazard ratio [HR] per SD, 1.03; 95% confidence interval [CI], 0.88-1.21). In contrast, associations with CVD events were observed for baseline non-high-density lipoprotein (HDL) cholesterol (HR, 1.18; 95% CI, 1.01-1.38), apolipoprotein B (HR, 1.28; 95% CI, 1.11-1.48), and ion mobility-measured non-HDL particles (HR, 1.19; 95% CI, 1.05-1.35) and LDL particles (HR, 1.21; 95% CI, 1.07-1.37). Association with CVD events was also observed for several LDL and very-low-density lipoprotein subfractions but not for ion mobility-measured HDL subfractions. In statin-allocated participants, CVD events were associated with on-treatment LDL-C, non-HDL cholesterol, and apolipoprotein B; these were also associated with CVD/all-cause death, as were several LDL and very-low-density lipoprotein subfractions, albeit with a pattern of association that differed from the baseline risk. In JUPITER, baseline LDL-C was not associated with CVD events, in contrast with significant associations for non-HDL cholesterol and atherogenic particles: apolipoprotein B and ion mobility-measured non-HDL particles, LDL particles, and select subfractions of very-low-density lipoprotein particles and LDL particles. During high-intensity statin therapy, on-treatment levels of LDL-C and atherogenic particles were associated with residual risk of CVD/all-cause death. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00239681. © 2015 American Heart Association, Inc.
Yang, Mu; Liu, Yingye; Dai, Jian; Li, Lin; Ding, Xin; Xu, Zhe; Mori, Masayuki; Miyahara, Hiroki; Sawashita, Jinko; Higuchi, Keiichi
2018-04-04
During acute-phase response (APR), there is a dramatic increase in serum amyloid A (SAA) in plasma high density lipoproteins (HDL). Elevated SAA leads to reactive AA amyloidosis in animals and humans. Herein, we employed apolipoprotein A-II (ApoA-II) deficient (Apoa2 -/- ) and transgenic (Apoa2Tg) mice to investigate the potential roles of ApoA-II in lipoprotein particle formation and progression of AA amyloidosis during APR. AA amyloid deposition was suppressed in Apoa2 -/- mice compared with wild type (WT) mice. During APR, Apoa2 -/- mice exhibited significant suppression of serum SAA levels and hepatic Saa1 and Saa2 mRNA levels. Pathological investigation showed Apoa2 -/- mice had less tissue damage and less inflammatory cell infiltration during APR. Total lipoproteins were markedly decreased in Apoa2 -/- mice, while the ratio of HDL to low density lipoprotein (LDL) was also decreased. Both WT and Apoa2 -/- mice showed increases in LDL and very large HDL during APR. SAA was distributed more widely in lipoprotein particles ranging from chylomicrons to very small HDL in Apoa2 -/- mice. Our observations uncovered the critical roles of ApoA-II in inflammation, serum lipoprotein stability and AA amyloidosis morbidity, and prompt consideration of therapies for AA and other amyloidoses, whose precursor proteins are associated with circulating HDL particles.
De novo hepatic steatosis drives atherogenic risk in liver transplantation recipients.
Idowu, Michael O; Chhatrala, Ravi; Siddiqui, M Bilal; Driscoll, Carolyn; Stravitz, R Todd; Sanyal, Arun J; Bhati, Chandra; Sargeant, Carol; Luketic, Velimir A; Sterling, Richard K; Contos, Melissa; Matherly, Scott; Puri, Puneet; Siddiqui, M Shadab
2015-11-01
Nonalcoholic fatty liver disease is associated with cardiovascular disease (CVD) in the general population. Despite a high prevalence of de novo hepatic steatosis after liver transplantation (LT), there are no data exploring the association between hepatic steatosis after LT and atherogenic risk. The aim of the study was to explore the impact of hepatic steatosis on serum atherogenic markers in liver transplantation recipients (LTRs). Biomarkers of CVD risk were compared in 89 LTRs with no known history of dyslipidemia, ischemic heart disease, or graft cirrhosis. To avoid potential confounders, LTRs on oral hypoglycemic agents, exogenous insulin, corticosteroids, or lipid-lowering therapy were excluded. Only patients for whom histological assessment was available after LT were included in the study. Thirty-five LTRs had de novo hepatic steatosis after LT, whereas 54 did not. Both cohorts were similar with regards to age, sex, ethnicity, and follow-up from LT. Additionally, the traditional lipid profile was similar between the 2 cohorts. LTRs with hepatic steatosis had higher serum concentrations of small-dense low-density lipoprotein cholesterol (sdLDL-C; 34.8 ± 16.9 versus 22.7 ± 11.2 mg/dL; P < 0.001), sdLDL-C to low-density lipoprotein cholesterol ratio (32.6 ± 11.6 versus 24.6 ± 10.2; P < 0.01), small-dense low-density lipoprotein particle concentration (sdLDL-P; 770 ± 440 versus 486 ± 402 nmol/L; P < 0.01), very low density lipoprotein particle concentration (VLDL-P; 7.90 ± 7.91 versus 3.86 ± 3.18 nmol/L; P < 0.01), and very low density lipoprotein size (VLDL-size; 51.9 ± 6.4 versus 48.7 ± 6.3 nm; P = 0.06). LTRs with hepatic steatosis had higher serum insulin concentrations (27.8 ± 41.8 versus 11.7 ± 7.8 uU/mL; P < 0.01) but similar fasting glucose and hemoglobin A1c. Steatosis grade was directly related to sdLDL-C, sdLDL-P, insulin, VLDL-P, and VLDL-size. In multivariate analysis, the association between steatosis grade and sdLDL-C (β = 0.03; P = 0.029), VLDL-size (β = 0.316; P = 0.04), and low-density lipoprotein particle size (β = -0.27; P = 0.05) was independent of sex, body mass index, age, diabetes mellitus, time from transplant, and indication for LT. In conclusion, de novo hepatic steatosis after LT is associated with atherogenic lipoproteins and independent of traditional CVD risk factors. © 2015 American Association for the Study of Liver Diseases.
Moundras, C; Rémésy, C; Levrat, M A; Demigné, C
1995-09-01
A number of studies have provided evidence that plant proteins, especially soy protein, have a cholesterol-lowering effect as compared with casein. However, dietary supply of sulfur amino acids may be deficient when soy protein is present in the diet at a suboptimal level, which could affect lipid metabolism. Accordingly, in rats fed 13% protein diets, soy protein feeding resulted in a cholesterol-increasing effect (+18%), which could be counteracted by methionine supplementation (0.4%). In contrast, soy protein was effective in decreasing plasma triglyceride, as compared with levels in rats fed casein; this triglyceride-lowering effect was entirely abolished by methionine supplementation. The hypercholesterolemic effect of soy protein was characterized by a higher cholesterol content in low-density lipoprotein (LDL) and high-density lipoprotein 1 (HDL1) fractions, together with a marked induction of hepatic hydroxymethyl glutaryl coenzyme A (HMG CoA) reductase activity and to a lesser extent cholesterol 7 alpha-hydroxylase. There was practically no induction of these enzymes, as compared with levels in rats fed casein diets, when the soy protein diet was supplemented with methionine. Very-low-density lipoprotein (VLDL) plus LDL susceptibility to peroxidation was higher in rats fed soy protein than in casein-fed rats, which could reflect in part the lack of sulfur amino acid availability, since methionine supplementation led to a partial recovery of lipoprotein resistance to peroxidation. These findings suggest that amino acid imbalance could be atherogenic by increasing circulating cholesterol and leading to a higher lipoprotein susceptibility to peroxidation.
Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men.
Aarsland, A; Wolfe, R R
1998-06-01
Fatty acids (FA) that are utilized for triglyceride (TG) synthesis in the liver and principally from two sources: FA synthesized de novo in the liver and preformed FA. We have measured the contribution from the two sources to very low density lipoprotein (VLDL) TG synthesis individually for palmitate, oleate, stearate, and linoleate (approximately 98% of the total FA of VLDL TG (VLDL TGFA)) by isotopomer analysis. Five healthy men were studied in the basal state, and 1 (day 1) and 4 days (day 4) after the start of a hypercaloric carbohydrate-enriched diet (approximately 2.5 times energy expenditure). The secretion of de novo palmitate was increased 15- and 43-fold after 1 and 4 days of hyperalimentation (2.6+/-1.2 (basal state), 40.8+/-20.0 (day 1), and 113.3+/-42.0 micromol/kg per d (day 4)). Even though 4 days of hyperalimentation increased the secretion of de novo stearate 43-fold and de novo oleate 70-fold (stearate; 0.2+/-0.2 (basal), 8.6+/-3.3 micromol/kg per d (day 4), oleate; 0.4+/-0.4 (basal), 28.2+/-12.7 micromol/kg per d (day 4)), palmitate accounted for 75-85% of all the de novo VLDL TGFA. One day of carbohydrate hyperalimentation tended to decrease the secretion while 4 days increased the secretion of all preformed FA in VLDL TG. The rate of secretion of preformed palmitate and oleate were almost identical (palmitate; 80.2+/-22.2 (basal), 45.1+/-23.8 (day 1), and 256.2+/-74.1 micromol/kg per d (day 4), oleate; 95.2+/-22.8 (basal), 46.2+/-24.2 (day 1), and 356.8+/-74.1 micromol/kg per d (day 4)) and collectively these two FA accounted for 80-90% of the secretion from the preformed source. Palmitate is the predominant product of acute and prolonged carbohydrate mediated lipogenesis in the human liver. The pathway of further elongation and subsequent desaturation of de novo synthesized palmitate to generate stearate and oleate is inducible but, quantitatively, of minor significance in hepatic lipogenesis.
Martins, I J; Redgrave, T G
1992-01-01
Triolein/cholesteryl oleate/cholesterol/phosphatidylcholine emulsions designed to model the lipid composition of chylomicrons were injected intravenously into control and streptozotocin-treated insulin-deficient rats. As previously described for lymph chylomicrons, the emulsion triolein was hydrolysed and phosphatidylcholine was transferred to the plasma high-density lipoproteins (HDL). This mechanism was used to introduce a phospholipid label into HDL in vivo. The subsequent clearance of phospholipid radioactivity from the plasma of insulin-deficient rats was significantly slower than in controls (P less than 0.025). Plasma clearance was similarly slower in insulin-deficient rats after injection of HDL that was previously labelled with radioactive phospholipids. After injection, the phospholipid label redistributed rapidly between the large-particle fraction of plasma lipoproteins (very-low- and low-density lipoproteins), and the lighter and heavier fractions of HDL. Compared with control rats, in insulin-deficient rats less of the phospholipid label was distributed to the lighter HDL fraction and more to the heavier HDL fraction, and this difference was not due to changes in activity of lecithin: cholesterol acyltransferase or in the apparent activity of phospholipid transfer protein. In insulin-deficient rats the changes in HDL phospholipid clearance and exchange appeared to be secondary to the associated hypertriglyceridaemia and the related changes in distribution of phospholipids between classes of plasma lipoproteins. PMID:1536661
Nikolic, Dragana; Katsiki, Niki; Montalto, Giuseppe; Isenovic, Esma R.; Mikhailidis, Dimitri P.; Rizzo, Manfredi
2013-01-01
Small, dense low density lipoprotein (sdLDL) represents an emerging cardiovascular risk factor, since these particles can be associated with cardiovascular disease (CVD) independently of established risk factors, including plasma lipids. Obese subjects frequently have atherogenic dyslipidaemia, including elevated sdLDL levels, in addition to elevated triglycerides (TG), very low density lipoprotein (VLDL) and apolipoprotein-B, as well as decreased high density lipoprotein cholesterol (HDL-C) levels. Obesity-related co-morbidities, such as metabolic syndrome (MetS) are also characterized by dyslipidaemia. Therefore, agents that favourably modulate LDL subclasses may be of clinical value in these subjects. Statins are the lipid-lowering drug of choice. Also, anti-obesity and lipid lowering drugs other than statins could be useful in these patients. However, the effects of anti-obesity drugs on CVD risk factors remain unclear. We review the clinical significance of sdLDL in being overweight and obesity, as well as the efficacy of anti-obesity drugs on LDL subfractions in these individuals; a short comment on HDL subclasses is also included. Our literature search was based on PubMed and Scopus listings. Further research is required to fully explore both the significance of sdLDL and the efficacy of anti-obesity drugs on LDL subfractions in being overweight, obesity and MetS. Improving the lipoprotein profile in these patients may represent an efficient approach for reducing cardiovascular risk. PMID:23507795
Xie, Xuan; Zhang, Jing; Wang, Yu-huan; Wang, Jun-hong; Zhang, Chun-hong; Ni, Hong-yan; Yuan, Xiao-hong
2008-04-01
To investigate the relationship between polymorphism of Ghrelin gene and serum levels of lipoprotein in Han Chinese with or without coronary heart disease (CHD) risk factors. PCR restriction fragment length polymorphism assay was used to detect the distribution of genotypes of Ghrelin gene in 225 Han Chinese (40 to 69 years-old) with CHD risk factors, 78 subjects without CHD risk factors served as normal controls. Serum levels of total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and very low-density lipoprotein (VLDL) were measured to analyze the relationship with the polymorphism of Ghrelin gene. Ghrelin genotype frequencies of AA, AG, GG (0.975, 0.025, 0.00 in control group and 0.956, 0.040, 0.004 in the high-risk group, all P > 0.05) as well as the allele frequencies of A, G (0.987, 0.013 in control group and 0.976, 0.024 in the high-risk group, all P > 0.05) were similar between the groups. HDL-C levels of the Arg/Gln carriers were significantly lower than those of Arg/Arg carriers in control group and in the high-risk group (all P < 0.05). Arg/Gln carriers were associated lower HDL-C levels in Han Chinese.
Paraoxonase responses to exercise and niacin therapy in men with metabolic syndrome.
Taylor, James Kyle; Plaisance, Eric P; Mahurin, A Jack; Mestek, Michael L; Moncada-Jimenez, Jose; Grandjean, Peter W
2015-01-01
Our purpose was to characterize changes in paraoxonase 1 (PON1) activity and concentration after single aerobic exercise sessions conducted before and after 6 weeks of niacin therapy in men with metabolic syndrome (MetS). Twelve men with MetS expended 500 kcal by walking at 65% of VO2max before and after a 6-week regimen of niacin. Niacin doses were titrated by 500 mg/week from 500 to 1500 mg/day and maintained at 1500 mg/day for the last 4 weeks. Fasting blood samples were collected before and 24 hours after each exercise session and analyzed for PON1 activity, PON1 concentration, myeloperoxidase (MPO), apolipoprotein A1, oxidized low-density lipoprotein (oLDL), lipoprotein particle sizes and concentrations. PON1 activity, PON1 concentration, MPO, and oLDL were unaltered following the independent effects of exercise and niacin (P > 0.05 for all). High-density lipoprotein particle size decreased by 3% (P = 0.040) and concentrations of small very low-density lipoprotein increased (P = 0.016) following exercise. PON1 activity increased 6.1% (P = 0.037) and PON1 concentrations increased 11.3% (P = 0.015) with the combination of exercise and niacin. Exercise and niacin works synergistically to increase PON1 activity and concentration with little or no changes in lipoproteins or markers of lipid oxidation.
Roy, Abhro Jyoti; Stanely Mainzen Prince, P
2013-10-01
The present study evaluated the preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Rats were pretreated with p-coumaric acid (8 mg/kg body weight) daily for a period of 7 days and then injected with isoproterenol (100mg/kg body weight) on 8th and 9th day to induce myocardial infarction. Myocardial infarction induced by isoproterenol was indicated by increased level of cardiac sensitive marker and elevated ST-segments in the electrocardiogram. Also, the levels/concentrations of serum and heart cholesterol, triglycerides and free fatty acids were increased in myocardial infarcted rats. Isoproterenol also increased the levels of serum low density and very low density lipoprotein cholesterol and decreased the levels of high density lipoprotein cholesterol. It also enhanced the activity of liver 3-hydroxy-3 methyl glutaryl-Coenzyme-A reductase. p-Coumaric acid pretreatment revealed preventive effects on all the biochemical parameters and electrocardiogram studied in myocardial infarcted rats. The in vitro study confirmed the free radical scavenging property of p-coumaric acid. Thus, p-coumaric acid prevented cardiac hypertrophy and alterations in lipids, lipoproteins, and electrocardiogram, by virtue of its antihypertrophic, antilipidemic, and free radical scavenging effects in isoproterenol induced myocardial infarcted rats. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cinnamon Extract Improves TNF-a Induced Overproduction of Intestinal ApolipoproteinB-48 Lipoproteins
USDA-ARS?s Scientific Manuscript database
TNF-alpha stimulates the overproduction of intestinal apolipoproteins. We evaluated whether a water extract of cinnamon (Cinnulin PF®) improved the dyslipidemia induced by TNF-alpha in Triton WR-1339 treated hamsters, and whether Cinnulin PF® inhibits the TNF-alpha-induced over the secretion of apoB...
More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration
Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim
2014-01-01
Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875
Chiuve, Stephanie E; Martin, Lisa A; Campos, Hannia; Sacks, Frank M
2004-05-01
Androgens are known to lower plasma triglycerides, an independent risk factor for coronary heart disease (CHD). Triglycerides are carried in plasma on very low density (VLDL) and low density (LDL) lipoprotein particles. Apolipoprotein CIII (apoCIII), a strong predictor of CHD, impairs the metabolism of VLDL and LDL, contributing to increased triglycerides. The objective of this study was to assess the effect of oral methyltestosterone (2.5 mg/d), added to esterified estrogens (1.25 mg/d), on concentrations of apolipoproteins and lipoproteins, specifically those containing apoCIII, compared with esterified estrogens alone in surgically postmenopausal women. The women in the methyltestosterone plus esterified estrogen group had significant decreases in total triglycerides, apoCI, apoCII, apoCIII, apoE, and high density lipoprotein (HDL) cholesterol compared with those in the esterified estrogen group. The decreases in apoCIII concentrations occurred in VLDL (62%; P = 0.02), LDL (35%; P = 0.001), and HDL (17%; P < 0.0001). There were also decreases in cholesterol and triglycerides concentrations of apoCIII containing LDL, and apoCI concentration of apoCIII containing VLDL. There was no effect on VLDL and LDL particles that did not contain apoCIII or on apoB concentrations. In conclusion, methyltestosterone, when administered to surgically postmenopausal women taking esterified estrogen, has a selective effect to reduce the apoCIII concentration in VLDL and LDL, a predictor of CHD. Methyltestosterone may lower plasma triglycerides through a reduction in apoCIII.
Wehr, Hanna; Mirkiewicz, Ewa; Rodo, Maria; Bednarska-Makaruk, Malgorzata
2002-04-01
The uptake of acetaldehyde-modified (ethylated) low-density lipoproteins (LDLs) by murine peritoneal macrophages is described and compared with the uptake of acetylated LDLs. The fluorescent marker DiI was used. No competition between ethylated and acetylated LDLs was observed. Ethylated LDL uptake was not inhibited by polyinosinic acid or fucoidin. Our conclusion is that uptake of ethylated and acetylated LDLs can be done by two different receptors.
2011-04-01
density lipoprotein (HDL) cholesterol (HDL-C), elevated triglycerides (TGs), and impaired fasting glucose or impaired glucose tolerance. 3 MbS is a...Stress Disorder and Metabolic Syndrome MILITARY MEDICINE, Vol. 176, April 2011 373 targeted at elevated low- density lipoprotein cholesterol , which is... relationship between PTSD and MbS. ACKNOWLEDGMENTS We thank the staff of the Robert E. Mitchell Center for Prisoner of War Studies for the high
ERIC Educational Resources Information Center
Lungo, Diane; And Others
The effect of aerobic exercise on total cholesterol (TC), high-density lipoprotein (HDL), apolipoprotein B (Apo B), apolioprotein A-I (Apo A-I), and percent body fat in adolescent females was studied. The control subjects (n=86) were volunteers who had completed a physical education class at least six months prior to the commencement of the study,…
Konovalova, G G; Lankin, V Z; Tikhaze, A K; Nezhdanova, I B; Lisina, M O; Kukharchuk, V V
2003-08-01
We studied the effect of a complex containing antioxidant vitamins C and E, provitamin A, and antioxidant element selenium on the contents of primary (lipid peroxides) and secondary products (malonic dialdehyde) of free radical lipid oxidation in low-density lipoproteins isolated from the plasma of patients with coronary heart disease and hypercholesterolemia by means of preparative ultracentrifugation. Activity of key antioxidant enzymes in the blood was measured during treatment with the antioxidant preparation. Combination treatment with antioxidant vitamins and antioxidant element selenium sharply decreased the contents of primary and secondary free radical oxidation products in circulating low-density lipoproteins and increased activity of antioxidant enzymes in erythrocytes. Activities of superoxide dismutase and selenium-containing glutathione peroxidase increased 1 and 2 months after the start of therapy, respectively.
NASA Astrophysics Data System (ADS)
Cao, Ye; Wang, Hong; Yang, Chao; Zhong, Rui; Lei, Yu; Sun, Kang; Liu, Jiaxin
2011-06-01
Polyanion ligands such as acrylic acid (AA) and heparin were grafted on PBT Nonwoven Fabrics (PBTNF) to study their effect on the adsorption of low density lipoprotein (LDL). These modified PBTNFs were characterized by Horizontal Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and X-ray Photoelectron spectroscopy. The blood compatibilities of the modified PBTNFs were examined using in vitro hemolysis rate (HR), platelet adhesion, total protein (TP) and activated partial thromboplastin time. The results showed that direct immobilized heparin could improve PBTNF-PAA's blood compatibility and decrease the adsorption capability of useful high density lipoprotein, but would possess so low bioactivity that could not further improve the absorption of LDL and TC. Since the PBTNF-PAA55-Heparin adsorbent had quite good adsorption selectivity for these proteins, it can be an excellent candidate for depletion of LDL with good blood compatibility.
Underberg, James A; Blaha, Michael J; Jackson, Elizabeth J; Jones, Peter H
2017-10-01
This educational content was derived from a live satellite symposium at the American College of Physicians Internal Medicine Meeting 2017 in San Diego, California (online at http://courses.elseviercme.com/acp/702e). This activity will focus on optimized treatment plans for patients with dyslipidemia in the era of proprotein convertase subtilisin/kexin type 9 inhibitor therapeutics. Low-density lipoprotein cholesterol has been identified as an important therapeutic target to prevent the progression of atherosclerotic disease; however, only 1 of every 3 adults with high low-density lipoprotein cholesterol has the condition under control. Expert faculty on this panel will discuss the science of proprotein convertase subtilisin/kexin type 9 inhibitors and aid physicians in the best practices to achieve low-density lipoprotein cholesterol target in their patients. Copyright © 2017. Published by Elsevier Inc.
Very low density lipoprotein receptor in Alzheimer disease.
Helbecque, N; Amouyel, P
2000-08-15
The apolipoprotein (APO) E4 isoform is associated with an accelerated rate of Alzheimer disease (AD) expression in sporadic as well as late-onset familial forms of the disease but the precise mechanism is unknown. In an attempt to approach the possible mechanisms involved, APOE receptors have been studied. They all belong to the low density lipoprotein (LDL) receptor family and share the same structural motifs. Some of them are preferentially expressed in the brain such as the LDL receptor related protein, the apolipoprotein E receptor 2, and the very low density lipoprotein (VLDL) receptor. These receptors have been suspected to be involved in Alzheimer disease at various levels. Among them, the VLDL receptor was extensively explored. Although genetic studies conducted on a polymorphism in the promoter of the VLDL receptor in Japanese and Caucasian populations gave divergent results, this does not exclude a possible involvement of the VLDL receptor in AD. Copyright 2000 Wiley-Liss, Inc.
Reiss, Allison B.; Voloshyna, Iryna; DeLeon, Joshua; Miyawaki, Nobuyuki; Mattana, Joseph
2015-01-01
Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely impacts lipid balance. Dyslipidemia in CKD is characterized by elevated triglycerides and high density lipoprotein that is both decreased and dysfunctional. This dysfunctional high density lipoprotein becomes pro-inflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglycerides result primarily from defective clearance. The weak association between low density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and pre-clinical evidence of the impact of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored. PMID:26337134
Devoe, Dale; Israel, Richard Gay; Lipsey, Tiffany; Voyles, Wyatt
2009-01-01
To evaluate the effects of a long-distance backpacking trip on body composition, weight, blood lipids, and lipoproteins. Single-subject (male, aged 49 years) study of an experienced backpacker who hiked 118 days on the Appalachian Trail. Outcome measures that were assessed pre-hike and post-hike included body fat (%) by hydrostatic weighing and skinfold assessment, height and weight, body mass index (BMI), circumference measurements (umbilicus, anterior suprailiac, maximum hip, greater trochanter, minimum waist, umbilicus/anterior suprailiac ratio), and blood pressure (systolic and diastolic at rest and peak). Dietary analyses (total kilocalories, protein, carbohydrate, fat, cholesterol, saturated fat, monounsaturated fat, polyunsaturated fat, dietary fiber) were conducted pre-hike, on days 54 through 56, and on days 98 through 100. Blood lipids and lipoproteins (triglycerides, high-density lipoprotein, low-density lipoprotein) were measured pre-hike, on day 89, and post-hike. Pre-post differences showed decreases in body weight, from 85.3 kg to 73.9 kg (-11.4 [-13.4%]); percent body fat, hydrostatic weighing, from 25.18 to 14.31 (-10.87 [-43.2%]); percent body fat, skinfolds (7-site), from 23.79 to 11.61 (12.18 [-51.2%]); and BMI, from 29.37 to 25.46 (-3.91 [-13.3%]). Pre-post differences in blood lipid changes over the course of 118 days were as follows: triglycerides (mg x dL(-1)) fell from 319 to 79 (-240 [-75%]); total cholesterol (mg x dL(-1)) fell from 276 to 196 (-80 [-29%]); high-density lipoprotein (HDL) (mg x dL(-1)) rose from 46 to 63 (+17 [+37%]); low-density lipoprotein (LDL) (mg.dL(-1)) fell from 167 to 118 (-49 [-29%]); LDL/HDL ratio fell from 3.63 to 1.87 (-1.76 [-48%]); and total cholesterol/HDL ratio fell from 6.00 to 3.11 (-2.89 [-48%]). The physical activity and diet associated with an extended backpacking adventure can considerably reduce and clinically normalize blood lipids and lipoproteins without medication and can very positively affect body composition and weight.
Maki, Kevin C; Bobotas, George; Dicklin, Mary R; Huebner, Margie; Keane, William F
Long-chain omega-3 fatty acid concentrate pharmaceuticals are used in the United States for treatment of severe hypertriglyceridemia (≥500 mg/dL) and are under investigation as adjuncts to statins for lowering cardiovascular risk in patients with high triglycerides (TGs; 200-499 mg/dL). To evaluate MAT9001, an investigational prescription-only omega-3 fatty acid agent containing predominantly eicosapentaenoic acid (EPA) and docosapentaenoic acid, in 42 men and women with fasting TG 200 to 400 mg/dL. In this open-label, crossover trial, subjects received MAT9001 and EPA ethyl esters (EPA-EE) in random order. They were housed in a clinical research unit for 2 14-day treatment periods, separated by a ≥35-day washout. Lipoprotein lipids, apolipoproteins (Apos) and proprotein convertase subtilisin kexin type 9 levels were measured before and at the end of each treatment period. MAT9001, compared with EPA-EE, resulted in significantly (P < .05) larger reductions from pretreatment levels for TG (-33.2% vs -10.5%), total cholesterol (-9.0% vs -6.2%), non-high-density lipoprotein cholesterol (-8.8% vs -4.6%), very low-density lipoprotein cholesterol (-32.5% vs -8.1%), Apo C3 (-25.5% vs -5.0%), and proprotein convertase subtilisin kexin type 9 (-12.3% vs +8.8%). MAT9001 also produced a significantly (P = .003) larger reduction in Apo A1 (-15.3% vs -10.2%), but responses for high-density lipoprotein cholesterol (-11.3% vs -11.1%), low-density lipoprotein cholesterol (-2.4% vs -4.3%), and Apo B (-3.8% vs -0.7%), respectively, were not significantly different relative to EPA-EE. MAT9001 produced significantly larger reductions than EPA-EE in several lipoprotein-related variables that would be expected to favorably alter cardiovascular disease risk in men and women with hypertriglyceridemia. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Taechakraichana, N; Holinka, C F; Haines, C J; Subramaniam, R; Tian, X W; Ausmanas, M K
2007-06-01
Lipid/lipoprotein profiles, among other factors, are associated with risk of cardiovascular disease. Because cardiovascular disease varies in Asian countries, we hypothesized that lipid profiles differ in ethnic groups of postmenopausal Asian women. To add to the limited body of information currently available, we also investigated the effects of estrogen/progestin therapy on lipid/lipoprotein profiles in postmenopausal Asian women. The Pan-Asia Menopause (PAM) study was a prospective, randomized, double-blind clinical trial evaluating 1028 postmenopausal women at 22 investigational centers in 11 Asian countries/territories. Subjects were randomly assigned to one of three doses of continuous combined conjugated estrogens (CE)/medroxyprogesterone acetate (MPA): CE/MPA (in mg/day) = 0.625/2.5, 0.45/1.5 or 0.3/1.5. The treatment period, following baseline evaluations, consisted of six continuous 28-day cycles. Analysis of lipid profiles was a secondary objective of the PAM study. Total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), very low density cholesterol (VLDC-C), triglycerides and lipoprotein(a) were analyzed at a central laboratory by state-of-the-art methods. Mean concentrations of total cholesterol, LDL-C, VLDL-C and triglycerides differed significantly among the nine ethnic groups of postmenopausal women. This difference was independent of body mass index and age, two factors that also influenced lipid/lipoprotein profiles. Mean HDL-C concentrations also differed, but this difference was influenced by body mass index in a weak interaction. All three doses of CE/MPA significantly lowered total cholesterol. Treatment with the high and middle doses significantly lowered LDL-C, and increased HDL-C, VLDL-C and triglycerides. The high dose produced a significant decrease in lipoprotein(a). The different lipid/lipoprotein profiles in the nine ethnic groups of postmenopausal Asian women evaluated here suggest a relationship to differences in the prevalence of cardiovascular disease reported for different regions in Asia. However, the reported prevalence data on cardiovascular disease morbidity and mortality in the regions corresponding to the nine ethnic groups are insufficient to allow qualitative comparisons with the lipid profiles shown in our study. The lipid/lipoprotein changes in response to estrogen/progestin therapy observed here are consistent with those reported for Western women.
van der Veen, Jelske N; Kennelly, John P; Wan, Sereana; Vance, Jean E; Vance, Dennis E; Jacobs, René L
2017-09-01
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in all mammalian cell membranes. In the 1950s, Eugene Kennedy and co-workers performed groundbreaking research that established the general outline of many of the pathways of phospholipid biosynthesis. In recent years, the importance of phospholipid metabolism in regulating lipid, lipoprotein and whole-body energy metabolism has been demonstrated in numerous dietary studies and knockout animal models. The purpose of this review is to highlight the unappreciated impact of phospholipid metabolism on health and disease. Abnormally high, and abnormally low, cellular PC/PE molar ratios in various tissues can influence energy metabolism and have been linked to disease progression. For example, inhibition of hepatic PC synthesis impairs very low density lipoprotein secretion and changes in hepatic phospholipid composition have been linked to fatty liver disease and impaired liver regeneration after surgery. The relative abundance of PC and PE regulates the size and dynamics of lipid droplets. In mitochondria, changes in the PC/PE molar ratio affect energy production. We highlight data showing that changes in the PC and/or PE content of various tissues are implicated in metabolic disorders such as atherosclerosis, insulin resistance and obesity. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.
Severe hypertriglyceridemia with pancreatitis: thirteen years' treatment with lomitapide.
Sacks, Frank M; Stanesa, Maxine; Hegele, Robert A
2014-03-01
Recurrent pancreatitis is a potentially fatal complication of severe hypertriglyceridemia. Genetic defects and lifestyle risk factors may render this condition unresponsive to current treatments. We report this first case of long-term management of intractable near-fatal recurrent pancreatitis secondary to severe hypertriglyceridemia by a novel use of lomitapide, an inhibitor of microsomal triglyceride transfer protein, recently approved for treatment of familial homozygous hypercholesterolemia. The patient had been hospitalized many times for pancreatitis since age 15 years. Her serum triglyceride level averaged 3900 mg/dL while she received therapy with approved lipid drugs. She is homozygous for a coding mutation (P234L) in lipoprotein lipase, leaving her unable to metabolize triglycerides in chylomicrons and very low density lipoproteins (VLDL). Lomitapide reduces the secretion of chylomicrons and VLDL. Lomitapide, which was started when she was 44 years old after near-fatal pancreatitis, lowered her fasting triglyceride level from greater than 3000 mg/dL to a mean (SD) of 903 (870) mg/dL while she received 30 mg/d and to 524 (265) mg/dL while she received 40 mg/d; eliminated chronic abdominal pain; and prevented pancreatitis. However, fatty liver, present before treatment, progressed to steatohepatitis and fibrosis after 12 to 13 years. Lomitapide prevented pancreatitis in severe intractable hypertriglyceridemia but at a potential long-term cost of hepatotoxicity.
Ghaffarzad, Aisa; Amani, Reza; Mehrzad Sadaghiani, Mahzad; Darabi, Masoud; Cheraghian, Bahman
2016-01-01
Dyslipidemia and insulin resistance (IR), occurring in most infertile women with polycystic ovarian syndrome (PCOS), increase the risk of cardiovascular disease (CVD) and type 2 diabetes. This study aimed to assess the relationships between lipoprotein ratios and IR in PCOS women. Thirty six infertile women with PCOS selected based on Androgen Excess Society (AES) criteria and 29 healthy women matched for age were recruited to this case-control study. After physical measurements, fasting serum glucose (Glu), insulin and lipid profile levels [triglycerides (TGs), total cholesterol (TC), low-density lipoproteincholesterol (LDL-C) and high-density lipoprotein-cholesterol (HDL-C)] were measured, while lipoprotein ratios (TC/HDL-C, LDL-C/HDL-C, TG/HDL-C) were calculated. IR was also calculated using homeostasis model assessment (HOMA)-IR. The optimal cutoffs of lipoprotein ratios in relation to HOMA-IR were calculated based on the Receiver Operating Characteristics (ROC) curve analysis using the area under curve (AUC). Waist circumference (WC), insulin levels, HOMA-IR, TG levels, and all lipoprotein ratios were significantly higher, while HDL-C was lower in PCOS group as compared to healthy controls. All lipoprotein ratios, TG levels, and WC are significantly correlated with insulin levels and HOMA-IR. Among lipoprotein ratios, the highest AUC of the ROC belonged to TG/HDL-C ratio with sensitivity of 63.6% and specificity of 84.4% (TG/HDL-C>3.19) as a marker of IR in infertile PCOS women. Lipoprotein ratios, particularly TG/HDL-C, are directly correlated with insulin levels and can be used as a marker of IR (HOMA-IR) in infertile PCOS patients.
2013-01-01
Background Peripheral artery disease (PAD) represents atherosclerotic disease and is a risk factor for death in peritoneal dialysis (PD) patients, who tend to show an atherogenic lipid profile. In this study, we investigated the relationship between lipid profile and ankle-brachial index (ABI) as an index of atherosclerosis in PD patients with controlled serum low-density lipoprotein (LDL) cholesterol level. Methods Thirty-five PD patients, whose serum LDL cholesterol level was controlled at less than 120mg/dl, were enrolled in this cross-sectional study in Japan. The proportions of cholesterol level to total cholesterol level (cholesterol proportion) in 20 lipoprotein fractions and the mean size of lipoprotein particles were measured using an improved method, namely, high-performance gel permeation chromatography. Multivariate linear regression analysis was adjusted for diabetes mellitus and cardiovascular and/or cerebrovascular diseases. Results The mean (standard deviation) age was 61.6 (10.5) years; PD vintage, 38.5 (28.1) months; ABI, 1.07 (0.22). A low ABI (0.9 or lower) was observed in 7 patients (low-ABI group). The low-ABI group showed significantly higher cholesterol proportions in the chylomicron fraction and large very-low-density lipoproteins (VLDLs) (Fractions 3–5) than the high-ABI group (ABI>0.9). Adjusted multivariate linear regression analysis showed that ABI was negatively associated with serum VLDL cholesterol level (parameter estimate=-0.00566, p=0.0074); the cholesterol proportions in large VLDLs (Fraction 4, parameter estimate=-3.82, p=0.038; Fraction 5, parameter estimate=-3.62, p=0.0039) and medium VLDL (Fraction 6, parameter estimate=-3.25, p=0.014); and the size of VLDL particles (parameter estimate=-0.0352, p=0.032). Conclusions This study showed that the characteristics of VLDL particles were associated with ABI among PD patients. Lowering serum VLDL level may be an effective therapy against atherosclerosis in PD patients after the control of serum LDL cholesterol level. PMID:24093487
Arai, Hidenori; Yamashita, Shizuya; Yokote, Koutaro; Araki, Eiichi; Suganami, Hideki; Ishibashi, Shun
2017-06-01
Substantial residual cardiovascular risks remain despite intensive statin treatment. Residual risks with high triglyceride and low high-density lipoprotein cholesterol are not the primary targets of statins. K-877 (pemafibrate) demonstrated robust efficacy on triglycerides and high-density lipoprotein cholesterol and a good safety profile as a monotherapy. The aim of these studies was to evaluate the efficacy and safety of K-877 add-on therapy to treat residual hypertriglyceridaemia during statin treatment. The objectives were investigated in two, multicentre, randomised, double-blind, placebo-controlled, parallel group comparison clinical trials: (A) K-877 0.1, 0.2, and 0.4 mg/day in combination with pitavastatin for 12 weeks in 188 patients, (B) K-877 0.2 (fixed dose) and 0.2 (0.4) (conditional up-titration) mg/day in combination with any statin for 24 weeks in 423 patients. In both studies, we found a robust reduction in fasting triglyceride levels by approximately 50% in all combination therapy groups, which was significant compared to the statin-monotherapy (placebo) groups (p < 0.001). High-performance liquid chromatography analysis for lipoprotein subfractions revealed that atherogenic lipoprotein profiles were ameliorated by K-877 add-on therapy, i.e. small low-density lipoproteins decreased whereas larger ones increased, and larger high-density lipoproteins decreased whereas smaller ones increased. The incidence rates of adverse events and adverse drug reactions in K-877 combination therapy groups were comparable to those in statin-monotherapy groups without any noteworthy event in both studies. These results strongly support the favourable benefit-to-risk ratio of K-877 add-on therapy in combination with statin treatment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Ballantyne, Christie M; Bays, Harold E; Kastelein, John J; Stein, Evan; Isaacsohn, Jonathan L; Braeckman, Rene A; Soni, Paresh N
2012-10-01
AMR101 is an ω-3 fatty acid agent containing ≥96% pure icosapent-ethyl, the ethyl ester of eicosapentaenoic acid. The efficacy and safety of AMR101 were evaluated in this phase 3, multicenter, placebo-controlled, randomized, double-blinded, 12-week clinical trial (ANCHOR) in high-risk statin-treated patients with residually high triglyceride (TG) levels (≥200 and <500 mg/dl) despite low-density lipoprotein (LDL) cholesterol control (≥40 and <100 mg/dl). Patients (n = 702) on a stable diet were randomized to AMR101 4 or 2 g/day or placebo. The primary end point was median percent change in TG levels from baseline versus placebo at 12 weeks. AMR101 4 and 2 g/day significantly decreased TG levels by 21.5% (p <0.0001) and 10.1% (p = 0.0005), respectively, and non-high-density lipoprotein (non-HDL) cholesterol by 13.6% (p <0.0001) and 5.5% (p = 0.0054), respectively. AMR101 4 g/day produced greater TG and non-HDL cholesterol decreases in patients with higher-efficacy statin regimens and greater TG decreases in patients with higher baseline TG levels. AMR101 4 g/day decreased LDL cholesterol by 6.2% (p = 0.0067) and decreased apolipoprotein B (9.3%), total cholesterol (12.0%), very-low-density lipoprotein cholesterol (24.4%), lipoprotein-associated phospholipase A(2) (19.0%), and high-sensitivity C-reactive protein (22.0%) versus placebo (p <0.001 for all comparisons). AMR101 was generally well tolerated, with safety profiles similar to placebo. In conclusion, AMR101 4 g/day significantly decreased median placebo-adjusted TG, non-HDL cholesterol, LDL cholesterol, apolipoprotein B, total cholesterol, very-low-density lipoprotein cholesterol, lipoprotein-associated phospholipase A(2), and high-sensitivity C-reactive protein in statin-treated patients with residual TG elevations. Copyright © 2012 Elsevier Inc. All rights reserved.
ISIS 301012 gene therapy for hypercholesterolemia: sense, antisense, or nonsense?
Ito, Matthew K
2007-10-01
To present an overview of antisense technology and to review and assess available literature on the chemistry, pharmacology, pharmacokinetics, drug interactions, preclinical and clinical studies, dosing, and adverse events of ISIS 301012 in the treatment of hyperlipidemia. PubMed database searches were conducted from 1966 to May 2007 using the search terms ISIS 301012, antisense, oligonucleotide, hypercholesterolemia, hyperlipidemia, and apolipoprotein B. Bibliographies of relevant review articles and information from the manufacturer were reviewed for additional references. Available English-language literature, including abstracts, preclinical, and clinical trials, review articles, and scientific presentations were examined. Apolipoprotein B is an important structural protein on the surface of atherogenic lipoproteins such as remnant very-low-density lipoprotein and low-density lipoprotein and facilitates the clearance of these particles from the circulation by binding to the low-density lipoprotein receptor. Overproduction of apolipoprotein B or reduced receptor-mediated clearance of lipoproteins leads to elevated serum cholesterol levels and premature atherosclerosis. ISIS 301012 is an antisense oligonucleotide that inhibits apolipoprotein B production by binding directly to and reducing the expression of apolipoprotein B messenger RNA. In a clinical trial, ISIS 301012 50-400 mg administered weekly via subcutaneous injection for 4 weeks reduced apolipoprotein B by 14.3-47.4% and low-density lipoprotein cholesterol by 5.9-40% at 55 days. The most frequent adverse event was injection-site erythema that resolved spontaneously. Studies are ongoing to further define the safety, efficacy, and pharmacokinetics of ISIS 301012 as add-on therapy in patients with heterozygous and homozygous familial hypercholesterolemia. No pharmacokinetic interactions have been demonstrated with ezetimibe and simvastatin. ISIS 301012 is the first agent to enter clinical trials utilizing an antisense mechanism for reducing the production of apolipoprotein B. Further studies are needed to verify its safety, efficacy, and position of therapy in the dyslipidemic patient.
Automated Processing of Plasma Samples for Lipoprotein Separation by Rate-Zonal Ultracentrifugation.
Peters, Carl N; Evans, Iain E J
2016-12-01
Plasma lipoproteins are the primary means of lipid transport among tissues. Defining alterations in lipid metabolism is critical to our understanding of disease processes. However, lipoprotein measurement is limited to specialized centers. Preparation for ultracentrifugation involves the formation of complex density gradients that is both laborious and subject to handling errors. We created a fully automated device capable of forming the required gradient. The design has been made freely available for download by the authors. It is inexpensive relative to commercial density gradient formers, which generally create linear gradients unsuitable for rate-zonal ultracentrifugation. The design can easily be modified to suit user requirements and any potential future improvements. Evaluation of the device showed reliable peristaltic pump accuracy and precision for fluid delivery. We also demonstrate accurate fluid layering with reduced mixing at the gradient layers when compared to usual practice by experienced laboratory personnel. Reduction in layer mixing is of critical importance, as it is crucial for reliable lipoprotein separation. The automated device significantly reduces laboratory staff input and reduces the likelihood of error. Overall, this device creates a simple and effective solution to formation of complex density gradients. © 2015 Society for Laboratory Automation and Screening.
Genomic interval engineering of mice identified a novel modulator of triglyceride production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y.; Jong, M.C.; Frazer, K.A.
1999-10-01
To accelerate the biological annotation of novel genes discovered in sequenced of mammalian genomes, we are creating large deletions in the mouse genome targeted to include clusters of such genes. Here we describe the targeted deletion of a 450 kb region on mouse chromosome 11 which, based on computational analysis of the deleted murine sequences and human 5q orthologous sequences, codes for nine putative genes. Mice homozygous for the deletion had a variety of abnormalities including severe hypertriglyceridemia, hepatic and cardiac enlargement, growth retardation and premature mortality. Analysis of triglyceride metabolism in these animals demonstrated a several-fold increase in hepaticmore » very-low density lipoprotein (VLDL) triglyceride secretion, the most prevalent mechanism responsible for hypertriglyceridemia in humans. A series of mouse BAC and human YAC transgenes covering different intervals of the 450 kb deleted region were assessed for their ability to complement the deletion induced abnormalities. These studies revealed that OCTN2, a gene recently shown to play a role in carnitine transport, was able to correct the triglyceride abnormalities. The discovery of this previously unappreciated relationship between OCTN2, carnitine and hepatic triglyceride production is of particular importance due to the clinical consequence of hypertriglyceridemia and the paucity of genes known to modulate triglyceride secretion.« less
Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins.
Karimi, Nasibeh; Cvjetkovic, Aleksander; Jang, Su Chul; Crescitelli, Rossella; Hosseinpour Feizi, Mohammad Ali; Nieuwland, Rienk; Lötvall, Jan; Lässer, Cecilia
2018-02-13
The isolation of extracellular vesicles (EVs) from blood is of great importance to understand the biological role of circulating EVs and to develop EVs as biomarkers of disease. Due to the concurrent presence of lipoprotein particles, however, blood is one of the most difficult body fluids to isolate EVs from. The aim of this study was to develop a robust method to isolate and characterise EVs from blood with minimal contamination by plasma proteins and lipoprotein particles. Plasma and serum were collected from healthy subjects, and EVs were isolated by size-exclusion chromatography (SEC), with most particles being present in fractions 8-12, while the bulk of the plasma proteins was present in fractions 11-28. Vesicle markers peaked in fractions 7-11; however, the same fractions also contained lipoprotein particles. The purity of EVs was improved by combining a density cushion with SEC to further separate lipoprotein particles from the vesicles, which reduced the contamination of lipoprotein particles by 100-fold. Using this novel isolation procedure, a total of 1187 proteins were identified in plasma EVs by mass spectrometry, of which several proteins are known as EV-associated proteins but have hitherto not been identified in the previous proteomic studies of plasma EVs. This study shows that SEC alone is unable to completely separate plasma EVs from lipoprotein particles. However, combining SEC with a density cushion significantly improved the separation of EVs from lipoproteins and allowed for a detailed analysis of the proteome of plasma EVs, thus making blood a viable source for EV biomarker discovery.
Jensen, Jan K.; Malmendal, Anders; Schiøtt, Birgit; Skeldal, Sune; Pedersen, Katrine E.; Celik, Leyla; Nielsen, Niels Chr.; Andreasen, Peter A.; Wind, Troels
2006-01-01
The functions of the serpin PAI-1 (plasminogen activator inhibitor-1) are based on molecular interactions with its target proteases uPA and tPA (urokinase-type and tissue-type plasminogen activator respectively), with vitronectin and with endocytosis receptors of the low-density-lipoprotein family. Understanding the significance of these interactions would be facilitated by the ability to block them individually. Using phage display, we have identified the disulfide-constrained peptide motif CFGWC with affinity for natural human PAI-1. The three-dimensional structure of a peptide containing this motif (DVPCFGWCQDA) was determined by liquid-state NMR spectroscopy. A binding site in the so-called flexible joint region of PAI-1 was suggested by molecular modelling and validated through binding studies with various competitors and site-directed mutagenesis of PAI-1. The peptide with an N-terminal biotin inhibited the binding of the uPA–PAI-1 complex to the endocytosis receptors low-density-lipoprotein-receptor-related protein 1A (LRP-1A) and very-low-density-lipoprotein receptor (VLDLR) in vitro and inhibited endocytosis of the uPA–PAI-1 complex in U937 cells. We conclude that the isolated peptide represents a novel approach to pharmacological interference with the functions of PAI-1 based on inhibition of one specific molecular interaction. PMID:16813566
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jozan, S.; Faye, J.C.; Tournier, J.F.
1985-11-27
The responsiveness of the human mammary carcinoma cell line MCF-7 to estradiol and tamoxifen treatment has been studied in different culture conditions. Cells from exponentially growing cultures were compared with cells in their initial cycles after replating from confluent cultures (''confluent-log'' cells). It has been observed that estradiol stimulation of tritiated thymidine incorporation decreases with cell density and that ''confluent-log'' cells are estrogen unresponsive for a period of four cell cycles in serum-free medium conditions. On the other hand, growth of cells replated from exponentially growing, as well as from confluent cultures, can be inhibited by tamoxifen or a combinedmore » treatment with tamoxifen and the progestin levonorgestrel. This growth inhibitory effect can be rescued by estradiol when cells are replated from exponentially growing cultures. The growth inhibitory effect cannot be rescued by estradiol alone (10(-10) to 10(-8) M) when cells are replated from confluent cultures. In this condition, the addition of steroid depleted serum is necessary to reverse the state of estradiol unresponsiveness. Serum can be replaced by high density lipoproteins but not by low density lipoproteins or lipoprotein deficient serum. The present data show that estradiol and HDL interact in the control of MCF-7 cell proliferation.« less
Seasonal mercury exposure and oxidant-antioxidant status of James Bay sport fishermen.
Bélanger, Marie-Claire; Mirault, Marc-Edouard; Dewailly, Eric; Plante, Michel; Berthiaume, Line; Noël, Micheline; Julien, Pierre
2008-05-01
The effects of a moderate seasonal exposure to methylmercury on plasma low-density lipoprotein (LDL) oxidation and cardiovascular risk indices are not known. The objective of the study was to assess the effects of a seasonal exposure to mercury at similar dose reported to increase cardiovascular risk through fish consumption. Effects on lipoprotein cholesterol and fatty acid profiles, LDL oxidation, and blood oxidant-antioxidant balance were to be assessed in sport fishermen presenting normal blood selenium and omega-3 fatty acid contents. Thirty-one healthy James Bay sport fishermen were assessed for within-subject longitudinal seasonal variations in hair and blood mercury, plasma oxidized LDL, lipophilic antioxidants, homocysteine, blood selenium, and glutathione peroxidase and reductase activities determined before and after the fishing season and compared by matched-pair tests. Hair mercury doubled during the fishing season (2.8+/-0.4 microg/g, P<.0001). Baseline blood selenium, homocysteine, and erythrocyte fatty acid profiles did not change. Plasma high-density lipoprotein cholesterol increased (+5%, P=.05), whereas very low-density lipoprotein cholesterol and oxidized LDL decreased (-8%, P=.05; -18%, P=.008). Blood glutathione peroxidase (+9.7%, P=.001), glutathione reductase (+7.2%, P<.0001), and total glutathione (+45% P<.0001) increased during the fishing season. Plasma total coenzyme Q10 (+13%, P=.02), ubiquinone-10 (+67%, P=.03), and beta-carotene (+46%, P=.01) also increased, whereas vitamin E status was unaffected. Pairwise correlations revealed no association between mercury exposure and any of the biomarkers investigated. In contrast, strong predictors of cardiovascular risk such as high-density lipoprotein cholesterol, oxidized LDL, and glutathione peroxidase improved during the fishing season despite elevated methylmercury exposure. The beneficial effects of seasonal fishing activity and fish consumption on cardiovascular health may suppress detrimental effects of concomitant moderate methylmercury exposure.
Ito, Fumiaki; Ito, Tomoyuki; Suzuki, Chinatsu; Yahata, Tomoyo; Ikeda, Kazuyuki; Hamaoka, Kenji
2017-01-01
Reactive oxygen species (ROS) are involved in the initiation and progression of atherosclerosis. ROS-derived hydroperoxides, as an indicator of ROS production, have been measured by using the diacron reactive oxygen metabolites (d-ROMs) test, which requires iron-containing transferrin in the reaction mixture. In this study we developed a modified d-ROMs test, termed the Fe-ROMs test, where iron ions were exogenously added to the reaction mixture. This modification is expected to exclude the assay variation that comes from different blood iron levels in individuals. In addition, this Fe-ROMs test was helpful for determining the class of plasma lipoproteins that are hydroperoxidized. Low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and high-density lipoprotein (HDL) were purified by use of an LDL/VLDL purification kit and the dextran sulfate-Mg2+ precipitation method, respectively; their hydroperoxide contents were assessed by performing the Fe-ROMs test. The majority of the hydroperoxides were detected only in the HDL fraction, not in the LDL/VLDL. Further detailed analysis of HDLs by size-exclusion high-performance liquid chromatography revealed that the hydroperoxide-containing molecules were small-sized HDLs. Because HDL was shown to be the principal vehicle for the plasma hydroperoxides, this Fe-ROMs test is a beneficial method for the assessment of oxidized-HDL levels. Indeed, Fe-ROMs levels were strongly associated with the levels of oxidized HDL, which were determined by performing the malondialdehyde-modified HDL enzyme immunoassay. In conclusion, the Fe-ROMs test using plasma itself or the HDL fraction after dextran sulfate-Mg2+ precipitation is useful to assess the functionality of HDL, because the oxidation of HDL impairs its antiatherogenic capacity. PMID:28230785
Ito, Fumiaki; Ito, Tomoyuki; Suzuki, Chinatsu; Yahata, Tomoyo; Ikeda, Kazuyuki; Hamaoka, Kenji
2017-02-21
Reactive oxygen species (ROS) are involved in the initiation and progression of atherosclerosis. ROS-derived hydroperoxides, as an indicator of ROS production, have been measured by using the diacron reactive oxygen metabolites (d-ROMs) test, which requires iron-containing transferrin in the reaction mixture. In this study we developed a modified d-ROMs test, termed the Fe-ROMs test, where iron ions were exogenously added to the reaction mixture. This modification is expected to exclude the assay variation that comes from different blood iron levels in individuals. In addition, this Fe-ROMs test was helpful for determining the class of plasma lipoproteins that are hydroperoxidized. Low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and high-density lipoprotein (HDL) were purified by use of an LDL/VLDL purification kit and the dextran sulfate-Mg 2+ precipitation method, respectively; their hydroperoxide contents were assessed by performing the Fe-ROMs test. The majority of the hydroperoxides were detected only in the HDL fraction, not in the LDL/VLDL. Further detailed analysis of HDLs by size-exclusion high-performance liquid chromatography revealed that the hydroperoxide-containing molecules were small-sized HDLs. Because HDL was shown to be the principal vehicle for the plasma hydroperoxides, this Fe-ROMs test is a beneficial method for the assessment of oxidized-HDL levels. Indeed, Fe-ROMs levels were strongly associated with the levels of oxidized HDL, which were determined by performing the malondialdehyde-modified HDL enzyme immunoassay. In conclusion, the Fe-ROMs test using plasma itself or the HDL fraction after dextran sulfate-Mg 2+ precipitation is useful to assess the functionality of HDL, because the oxidation of HDL impairs its antiatherogenic capacity.
Gutiérrez, Orlando M; Judd, Suzanne E; Irvin, Marguerite R; Zhi, Degui; Limdi, Nita; Palmer, Nicholette D; Rich, Stephen S; Sale, Michèle M; Freedman, Barry I
2016-04-01
Two independent coding variants in the apolipoprotein L1 gene (APOL1), G1 and G2, strongly associate with nephropathy in African Americans; associations with cardiovascular disease are more controversial. Although APOL1 binds plasma high-density lipoproteins (HDLs), data on APOL1 risk variant associations with HDL subfractions are sparse. Two APOL1 G1 single nucleotide polymorphisms and the G2 insertion/deletion polymorphism were genotyped in 2010 Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study participants with nuclear magnetic resonance spectroscopy-based lipoprotein subfraction measurements. Linear regression was used to model associations between numbers of APOL1 G1/G2 risk variants and HDL subfractions, adjusting for demographic, clinical and ancestral covariates. Female sex and higher percentage of African ancestry were positively associated with the number of APOL1 G1/G2 risk alleles. In the unadjusted analysis, mean (standard error) small HDL concentrations (μmol/L) for participants with zero, one and two G1/G2 risk alleles were 19.0 (0.2), 19.7 (0.2) and 19.9 (0.4), respectively (P = 0.02). Adjustment for age, sex, diabetes and African ancestry did not change the results but strengthened the statistical significance (P = 0.004). No significant differences in large or medium HDL, very low-density lipoprotein or low-density lipoprotein particle concentrations were observed by APOL1 genotype. Greater numbers of APOL1 G1/G2 risk alleles were associated with higher small HDL particle concentrations in African Americans. These results may suggest novel areas of investigation to uncover reasons for the association between APOL1 risk variants with adverse outcomes in African Americans. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Gutiérrez, Orlando M.; Judd, Suzanne E.; Irvin, Marguerite R.; Zhi, Degui; Limdi, Nita; Palmer, Nicholette D.; Rich, Stephen S.; Sale, Michèle M.; Freedman, Barry I.
2016-01-01
Background Two independent coding variants in the apolipoprotein L1 gene (APOL1), G1 and G2, strongly associate with nephropathy in African Americans; associations with cardiovascular disease are more controversial. Although APOL1 binds plasma high-density lipoproteins (HDLs), data on APOL1 risk variant associations with HDL subfractions are sparse. Methods Two APOL1 G1 single nucleotide polymorphisms and the G2 insertion/deletion polymorphism were genotyped in 2010 Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study participants with nuclear magnetic resonance spectroscopy-based lipoprotein subfraction measurements. Linear regression was used to model associations between numbers of APOL1 G1/G2 risk variants and HDL subfractions, adjusting for demographic, clinical and ancestral covariates. Results Female sex and higher percentage of African ancestry were positively associated with the number of APOL1 G1/G2 risk alleles. In the unadjusted analysis, mean (standard error) small HDL concentrations (μmol/L) for participants with zero, one and two G1/G2 risk alleles were 19.0 (0.2), 19.7 (0.2) and 19.9 (0.4), respectively (P = 0.02). Adjustment for age, sex, diabetes and African ancestry did not change the results but strengthened the statistical significance (P = 0.004). No significant differences in large or medium HDL, very low-density lipoprotein or low-density lipoprotein particle concentrations were observed by APOL1 genotype. Conclusions Greater numbers of APOL1 G1/G2 risk alleles were associated with higher small HDL particle concentrations in African Americans. These results may suggest novel areas of investigation to uncover reasons for the association between APOL1 risk variants with adverse outcomes in African Americans. PMID:26152403
Very large database of lipids: rationale and design.
Martin, Seth S; Blaha, Michael J; Toth, Peter P; Joshi, Parag H; McEvoy, John W; Ahmed, Haitham M; Elshazly, Mohamed B; Swiger, Kristopher J; Michos, Erin D; Kwiterovich, Peter O; Kulkarni, Krishnaji R; Chimera, Joseph; Cannon, Christopher P; Blumenthal, Roger S; Jones, Steven R
2013-11-01
Blood lipids have major cardiovascular and public health implications. Lipid-lowering drugs are prescribed based in part on categorization of patients into normal or abnormal lipid metabolism, yet relatively little emphasis has been placed on: (1) the accuracy of current lipid measures used in clinical practice, (2) the reliability of current categorizations of dyslipidemia states, and (3) the relationship of advanced lipid characterization to other cardiovascular disease biomarkers. To these ends, we developed the Very Large Database of Lipids (NCT01698489), an ongoing database protocol that harnesses deidentified data from the daily operations of a commercial lipid laboratory. The database includes individuals who were referred for clinical purposes for a Vertical Auto Profile (Atherotech Inc., Birmingham, AL), which directly measures cholesterol concentrations of low-density lipoprotein, very low-density lipoprotein, intermediate-density lipoprotein, high-density lipoprotein, their subclasses, and lipoprotein(a). Individual Very Large Database of Lipids studies, ranging from studies of measurement accuracy, to dyslipidemia categorization, to biomarker associations, to characterization of rare lipid disorders, are investigator-initiated and utilize peer-reviewed statistical analysis plans to address a priori hypotheses/aims. In the first database harvest (Very Large Database of Lipids 1.0) from 2009 to 2011, there were 1 340 614 adult and 10 294 pediatric patients; the adult sample had a median age of 59 years (interquartile range, 49-70 years) with even representation by sex. Lipid distributions closely matched those from the population-representative National Health and Nutrition Examination Survey. The second harvest of the database (Very Large Database of Lipids 2.0) is underway. Overall, the Very Large Database of Lipids database provides an opportunity for collaboration and new knowledge generation through careful examination of granular lipid data on a large scale. © 2013 Wiley Periodicals, Inc.
Zambrano Morales, Mariana; Fernández Salgado, Erika; Balzán Urdaneta, Ligia; Labastidas, Neila; Aranguren-Méndez, José; Connell, Lissette; Molero Paredes, Tania; Rojas, Alicia; Panunzio, Amelia
2014-06-01
The increase in lipid plasma values is an important cardiovascular risk factor. Lipoprotein lipase (LPL) plays an important role in the lipoprotein metabolism and metabolic and genetic factors may influence its levels and functions. The S447X variant of the lipoprotein lipase gene is associated with changes in plasma lipids in different populations. The objective of this research was to analyze the S447X variant of the LPL gene and its relation with plasma lipids of individuals in Zulia state, Venezuela. With this purpose, we studied 75 individuals (34 men and 41 women) between 20 and 60 years of age. Each subject had a medical history which included family history, anthropometric characteristics, nutritional status evaluation and biochemical tests. Genomic DNA was extracted for the molecular study and the polymerase chain reaction was used, followed by enzyme digestion, for restriction fragments length polymorphisms using the Hinf I enzyme. The individuals studied had normal levels of blood glucose, triglycerides, total cholesterol and low density lipoproteins (LDL-C) and slightly decreased levels of high density lipoproteins (HDL-C). The genotypic distribution of the LPL gene S447X variant in the studied population was 90.6% for the homozygous genotype SS447 and 9.4% for the heterozygote SX447. The genotype 447XX was not identified. The population was found in Hardy Weinberg genetic equilibrium. No association between the S447X polymorphism of lipoprotein lipase gene and plasma lipids was observed.
Grandjean, P W; Oden, G L; Crouse, S F; Brown, J A; Green, J S
1996-03-01
It was the purpose of this investigation to examine the influence of a worksite aerobic training program on serum lipid and lipoproteins and cardiovascular fitness in female employees. Thirty-seven healthy but previously untrained, female employees (Ss) from Westinghouse Corporation, (College Station, Texas) volunteered for the study. Ss were randomly assigned to either an exercise group (Ex) (n = 20) or control group (C) (n = 17). Prior to training (PRE) and following training (POST), all Ss were measured for weight (WT), body composition (%FAT) and tested for maximal oxygen consumption (VO2 max). PRE and POST Lipid analysis included: total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), and triglycerides (TG). Following PRE testing, the Ex group aerobically trained by walking, jogging and/or cycling, at least 3 days per wk for 24 wks. Exercise training resulted in an improvement in VO2 max (p < 0.0006) and a 2 kg WT loss in Ex (p < 0.025) with no change in C. Both Ex and C Ss exhibited a loss in %-FAT (p < 0.0001), and a decrease in TC (p < 0.0001) and LDL-C (p < 0.0001). No differences were observed between groups or over the training period for VLDL-C or TG. Although HDL-C increased 6 mg/dl in the Ex group but not in C, this difference did not reach statistical significance (p < 0.0625). These results demonstrate that aerobic training by females in a worksite fitness program significantly improves cardiovascular fitness without altering lipids or lipoproteins.
Rodríguez-Gallego, Esther; Gómez, Josep; Pacheco, Yolanda M; Peraire, Joaquim; Viladés, Consuelo; Beltrán-Debón, Raúl; Mallol, Roger; López-Dupla, Miguel; Veloso, Sergi; Alba, Verónica; Blanco, Julià; Cañellas, Nicolau; Rull, Anna; Leal, Manuel; Correig, Xavier; Domingo, Pere; Vidal, Francesc
2018-03-13
Poor immunological recovery in treated HIV-infected patients is associated with greater morbidity and mortality. To date, predictive biomarkers of this incomplete immune reconstitution have not been established. We aimed to identify a baseline metabolomic signature associated with a poor immunological recovery after antiretroviral therapy (ART) to envisage the underlying mechanistic pathways that influence the treatment response. This was a multicentre, prospective cohort study in ART-naive and a pre-ART low nadir (<200 cells/μl) HIV-infected patients (n = 64). We obtained clinical data and metabolomic profiles for each individual, in which low molecular weight metabolites, lipids and lipoproteins (including particle concentrations and sizes) were measured by NMR spectroscopy. Immunological recovery was defined as reaching CD4 T-cell count at least 250 cells/μl after 36 months of virologically successful ART. We used univariate comparisons, Random Forest test and receiver-operating characteristic curves to identify and evaluate the predictive factors of immunological recovery after treatment. HIV-infected patients with a baseline metabolic pattern characterized by high levels of large high density lipoprotein (HDL) particles, HDL cholesterol and larger sizes of low density lipoprotein particles had a better immunological recovery after treatment. Conversely, patients with high ratios of non-HDL lipoprotein particles did not experience this full recovery. Medium very-low-density lipoprotein particles and glucose increased the classification power of the multivariate model despite not showing any significant differences between the two groups. In HIV-infected patients, a baseline healthier metabolomic profile is related to a better response to ART where the lipoprotein profile, mainly large HDL particles, may play a key role.
Humphries, S E; Berglund, L; Isasi, C R; Otvos, J D; Kaluski, D; Deckelbaum, R J; Shea, S; Talmud, P J
2002-08-01
The effect of genetic variation on plasma lipoproteins and their subfraction distribution was examined. Forty Hispanic men and 223 women and 42 non-Hispanic white men and 53 women participated in the study. Genotypes for cholesteryl ester transfer protein (CETP TaqIB), hepatic lipase (LIPC -480 C > T), lipoprotein lipase (LPL S447X), and apolipoprotein CIII (APOC3--455T > C) were determined by polymerase chain reaction. Lipoprotein particle size distribution was determined by nuclear magnetic resonance. For all but APOC3, genotype effects were homogeneous in the ethnic/racial groups and men and women. Effects were seen primarily in the women. Compared to women carriers of the common CETP B1 allele, B2B2 women had significantly higher plasma levels of high-density lipoprotein cholesterol (HDL-C) (16.4.0%, p = 0.001), reflected in the level of larger HDL particles (21.9%, p = 0.001), and larger mean particle size of HDL (2.3%, p = 0.01) and low-density lipoproteins (LDL) (1.3%, p = 0.02). Compared to LPL 447S homozygous women carriers of the LPL 447X allele had significantly lower levels of very-low-density lipoprotein-triglyceride (VLDL-TG) (21.0%, p = 0.02). For APOC3, there was significant gender:genotype interaction with the genotype differences seen only in the men. Compared to men homozygous for the -455T allele, carriers of -455C had higher levels of VLDL-TG (71.4%, p = 0.0001), reflected in a larger mean VLDL particle size (13.7%, p = 0.009). LIPC genotype was not associated with significant effects on any of these traits. These data confirm the role of genetic variants of CETP, LPL and APOC3 in determining the relationship between VLDL, LDL and HDL particles.
Lipid Oxidation in Carriers of Lecithin:Cholesterol Acyltransferase Gene Mutations
Holleboom, Adriaan G.; Daniil, Georgios; Fu, Xiaoming; Zhang, Renliang; Hovingh, G. Kees; Schimmel, Alinda W.; Kastelein, John J.P.; Stroes, Erik S.G.; Witztum, Joseph L.; Hutten, Barbara A.; Tsimikas, Sotirios; Hazen, Stanley L.; Chroni, Angeliki; Kuivenhoven, Jan Albert
2013-01-01
Objective Lecithin:cholesterol acyltransferase (LCAT) has been shown to play a role in the depletion of lipid oxidation products, but this has so far not been studied in humans. In this study, we investigated processes and parameters relevant to lipid oxidation in carriers of functional LCAT mutations. Methods and Results In 4 carriers of 2 mutant LCAT alleles, 63 heterozygotes, and 63 family controls, we measured activities of LCAT, paraoxonase 1, and platelet-activating factor-acetylhydrolase; levels of lysophosphatidylcholine molecular species, arachidonic and linoleic acids, and their oxidized derivatives; immunodetectable oxidized phospholipids on apolipoprotein (apo) B–containing and apo(a)-containing lipoproteins; IgM and IgG autoantibodies to malondialdehyde-low-density lipoprotein and IgG and IgM apoB-immune complexes; and the antioxidant capacity of high-density lipoprotein (HDL). In individuals with LCAT mutations, plasma LCAT activity, HDL cholesterol, apoA-I, arachidonic acid, and its oxidized derivatives, oxidized phospholipids on apo(a)-containing lipoproteins, HDL-associated platelet-activating factor-acetylhydrolase activity, and the antioxidative capacity of HDL were gene-dose–dependently decreased. Oxidized phospholipids on apoB-containing lipoproteins was increased in heterozygotes (17%; P<0.001) but not in carriers of 2 defective LCAT alleles. Conclusion Carriers of LCAT mutations present with significant reductions in LCAT activity, HDL cholesterol, apoA-I, platelet-activating factor-acetylhydrolase activity, and antioxidative potential of HDL, but this is not associated with parameters of increased lipid peroxidation; we did not observe significant changes in the oxidation products of arachidonic acid and linoleic acid, immunoreactive oxidized phospholipids on apo(a)-containing lipoproteins, and IgM and IgG autoantibodies against malondialdehyde-low-density lipoprotein. These data indicate that plasma LCAT activity, HDL-associated platelet-activating factor-acetylhydrolase activity, and HDL cholesterol may not influence the levels of plasma lipid oxidation products. PMID:23023370
Chiquette, Elaine; Toth, Peter P; Ramirez, Gilbert; Cobble, Michael; Chilton, Robert
2012-01-01
Background Dyslipidemia and type 2 diabetes are two of the most significant risk factors for the development of cardiovascular disease. Measurement of lipoprotein subclasses provides important information about derangements in lipid metabolism and helps refine cardiovascular risk assessment. Exenatide, a glucagon-like peptide 1 receptor agonist, improved glycemic control, obesity, hypertension, and dyslipidemia in patients with type 2 diabetes in clinical trials. Methods In the DURATION-1 trial, patients with type 2 diabetes were treated with exenatide once weekly or twice daily for 30 weeks. This post hoc analysis evaluated the impact of exenatide on lipoprotein subclasses in 211 DURATION-1 patients using vertical auto profile methodology and the Statistical Package for the Social Sciences general linear model adjusted for glycosylated hemoglobin (HbA1c) and weight. Results Baseline lipids and high sensitivity C-reactive protein were normal overall based on the standard lipid panel. Once-weekly exenatide reduced apolipoprotein B and the apolipoprotein B to apolipoprotein A1 ratio (P < 0.05), independent of glycemic improvement and weight loss. A significant shift in lipoprotein pattern away from small, dense low-density lipoprotein-4 cholesterol was also observed (P < 0.05). Exenatide once weekly increased high-density lipoprotein-2 cholesterol, even after adjustment for changes in HbA1c and weight (P < 0.05). Triglycerides, very low-density lipoprotein cholesterol, and high sensitivity C-reactive protein were reduced with both the once-weekly and twice-daily exenatide regimens (P < 0.05). Conclusion In this post hoc analysis, exenatide significantly improved a number of cardiovascular risk markers. Continuous exenatide exposure with exenatide once weekly elicited a greater response than did immediate-release exenatide twice daily, generally independent of glycemic improvement and weight loss. Thus, in addition to improving glycemic control, exenatide induced favorable changes in lipid and lipoprotein metabolism and decreased systemic inflammation. PMID:23166441
Toth, Peter P; Jones, Steven R; Slee, April; Fleg, Jerome; Marcovina, Santica M; Lacy, Megan; McBride, Ruth; Boden, William E
2018-03-09
The AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes) trial failed to demonstrate incremental clinical benefit of extended-release niacin (ERN) in 3414 statin-treated patients with established cardiovascular (CV) disease who had low baseline levels of high-density lipoprotein cholesterol (HDL-C) as compared to placebo. A previous secondary analysis suggested that ERN provided outcome benefits in ERN-treated patients with high triglycerides (TGs; >200 mg/dL) and very low HDL-C (<32 mg/dL) at baseline. The current analysis sought to ascertain how changes in TG-enriched lipoproteins and HDL subfractions impact residual risk in the comparator treatment arms. We evaluated the relationship between niacin treatment, lipoproteins and their subfractions, and CV outcomes in a non-prespecified, post hoc analysis of the AIM-HIGH trial. Lipoprotein subfraction analysis was performed with zonal ultracentrifugation in 2457 AIM-HIGH participants at baseline and 1 year of treatment. Hazard ratios were estimated using Cox proportional hazards models for relationships between lipoproteins and the composite primary endpoint of CV death, myocardial infarction, acute coronary syndrome, ischemic stroke, or symptom-driven revascularization. Analyses were performed for the entire cohort and in participants with TGs > 200 mg/dL and HDL-C < 32 mg/dL. Apoprotein B-containing lipoproteins and their subfractions decreased significantly in both treatment arms but decreased more with ERN treatment. HDL-C and its subfractions increased significantly in both treatment groups, but more so in patients treated with ERN. For the entire study population, neither apoB- nor apoA1-containing lipoprotein subfractions predicted risk at baseline or at 1 year of follow-up. In the high TG and low HDL-C subgroup treated with placebo, changes at 1 year in HDL 2 -C, total cholesterol/HDL 2 -C, and non-HDL-C/HDL 2 -C may be associated with increased CV events, whereas in the ERN treatment arm, changes at 1 year in very low-density lipoprotein cholesterol and very low-density lipoprotein subfractions, total remnant lipoproteins, and various risk ratios may be associated with increased CV events, while HDL 2 -C may be associated with reduced risk. We provide hypothesis-generating findings that ERN may confer benefit in patients with coronary heart disease who have high TGs and low HDL by reducing serum levels of remnant lipoprotein cholesterol and increasing HDL 2 -C. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Merzouk, H; Bouchenak, M; Loukidi, B; Madani, S; Prost, J; Belleville, J
2000-01-01
Aims—To determine the effects of fetal macrosomia related to maternal type 1 diabetes on the lipid transport system. Methods—Serum lipoprotein concentrations and composition and lecithin:cholesterol acyltransferase (LCAT) activity were investigated in macrosomic newborns (mean birth weight, 4650 g; SEM, 90) and their mothers with poorly controlled type 1 diabetes, in appropriate for gestational age newborns (mean birth weight, 3616 g; SEM, 68) and their mothers with well controlled type 1 diabetes, and macrosomic (mean birth weight, 4555 g; SEM, 86) or appropriate for gestational age (mean birth weight, 3290 g; SEM, 45) newborns and their healthy mothers. Results—In mothers with well controlled type 1 diabetes, serum lipids, apolipoproteins, and lipoproteins were comparable with those of healthy mothers. Similarly, in their infants, these parameters did not differ from those of appropriate for gestational age newborns. Serum triglyceride, very low density lipoprotein (VLDL), apolipoprotein B100 (apo B100), and high density lipoprotein (HDL) triglyceride concentrations were higher, whereas serum apo A-I and HDL3 concentrations were lower in mothers with diabetes and poor glycaemic control than in healthy mothers. Their macrosomic newborns had higher concentrations in all serum lipids and lipoproteins, with high apo A-I and apo B100 values compared with appropriate for gestational age newborns. In macrosomic infants of healthy mothers, there were no significant differences in lipoprotein profiles compared with those of appropriate for gestational age infants. LCAT activity was similar in both groups of mothers and newborns. Conclusion—Poorly controlled maternal type 1 diabetes and fetal macrosomia were associated with lipoprotein abnormalities. Macrosomic lipoprotein profiles related to poor metabolic control of type 1 diabetes appear to have implications for later metabolic diseases. Key Words: apolipoproteins • lipids • lipoproteins • lecithin:cholesterol acyltransferase • fetal macrosomia • maternal type 1 diabetes PMID:11265176
The effect of IL6-174C/G polymorphisms on postprandial triglycerides metabolism in the GOLDN study
USDA-ARS?s Scientific Manuscript database
Chronically elevated IL-6 affects lipid and lipoprotein metabolism. Individuals genetically predisposed to higher IL-6 secretion may be at risk of dyslipidemia, especially during the postprandial phase. We investigated the effect of genetic variants at the IL6 locus on postprandial lipemia in US Whi...
Peñalvo, José L; Oliva, Belén; Sotos-Prieto, Mercedes; Uzhova, Irina; Moreno-Franco, Belén; León-Latre, Montserrat; Ordovás, José María
2015-04-01
There is wide recognition of the importance of healthy eating in cardiovascular health promotion. The purpose of this study was to identify the main dietary patterns among a Spanish population, and to determine their relationship with plasma lipid profiles. A cross-sectional analysis was conducted of data from 1290 participants of the Aragon Workers Health Study cohort. Standardized protocols were used to collect clinical and biochemistry data. Diet was assessed through a food frequency questionnaire, quantifying habitual intake over the past 12 months. The main dietary patterns were identified by factor analysis. The association between adherence to dietary patterns and plasma lipid levels was assessed by linear and logistic regression. Two dietary patterns were identified: a Mediterranean dietary pattern, high in vegetables, fruits, fish, white meat, nuts, and olive oil, and a Western dietary pattern, high in red meat, fast food, dairy, and cereals. Compared with the participants in the lowest quintile of adherence to the Western dietary pattern, those in the highest quintile had 4.6 mg/dL lower high-density lipoprotein cholesterol levels (P < .001), 8 mg/dL lower apolipoprotein A1 levels (P = .005) and a greater risk of having decreased high-density lipoprotein cholesterol (odds ratio = 3.19; 95% confidence interval, 1.36-7.5; P-trend = .03). Participants adhering to the Mediterranean dietary pattern had 3.3mg/dL higher high-density lipoprotein cholesterol levels (P < .001), and a ratio of triglycerides to high-density lipoprotein cholesterol that was 0.43 times lower (P = .043). Adherence to the Mediterranean dietary pattern is associated with improved lipid profile compared with a Western dietary pattern, which was associated with a lower odds of optimal high-density lipoprotein cholesterol levels in this population. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Sari, Ibrahim; Baltaci, Yasemin; Bagci, Cahit; Davutoglu, Vedat; Erel, Ozcan; Celik, Hakim; Ozer, Orhan; Aksoy, Nur; Aksoy, Mehmet
2010-04-01
Recent studies have suggested that nuts have favorable effects beyond lipid lowering. We aimed to investigate effect of the Antep pistachio (Pistacia vera L.) on blood glucose, lipid parameters, endothelial function, inflammation, and oxidation in healthy young men living in a controlled environment. A Mediterranean diet was administered to normolipidemic 32 healthy young men (mean age 22 y, range 21-24) for 4 wk. After 4 wk, participants continued to receive the Mediterranean diet but pistachio was added for 4 wk by replacing the monounsaturated fat content constituting approximately 20% of daily caloric intake. Fasting blood samples and brachial endothelial function measurements were performed at baseline and after each diet. Compared with the Mediterranean diet, the pistachio diet decreased glucose (P<0.001, -8.8+/-8.5%), low-density lipoprotein (P<0.001, -23.2+/-11.9%), total cholesterol (P<0.001, -21.2+/-9.9%), and triacylglycerol (P=0.008, -13.8+/-33.8%) significantly and high-density lipoprotein (P=0.069, -3.1+/-11.7%) non-significantly. Total cholesterol/high-density lipoprotein and low-density lipoprotein/high-density lipoprotein ratios decreased significantly (P<0.001 for both). The pistachio diet significantly improved endothelium-dependent vasodilation (P=0.002, 30% relative increase), decreased serum interleukin-6, total oxidant status, lipid hydroperoxide, and malondialdehyde and increased superoxide dismutase (P<0.001 for all), whereas there was no significant change in C-reactive protein and tumor necrosis factor-alpha levels. In this trial, we demonstrated that a pistachio diet improved blood glucose level, endothelial function, and some indices of inflammation and oxidative status in healthy young men. These findings are in accordance with the idea that nuts, in particular pistachio nuts, have favorable effects beyond lipid lowering that deserve to be evaluated with prospective follow-up studies. Copyright 2010. Published by Elsevier Inc.
Khang, Ah Reum; Song, Young Shin; Kim, Kyoung Min; Moon, Jae Hoon; Lim, Soo; Park, Kyong Soo; Jang, Hak Chul; Choi, Sung Hee
2016-01-01
It is difficult to apply the proper intensity of statin for new treatment guidelines in clinical settings because of few data about the statin efficacy in Asians. We conducted a retrospective, observational study to estimate the percentage changes in lipid parameters and glucose induced by different statins. We analyzed 3854 patients including those with nondiabetes and diabetes treated at the outpatient clinic between 2003 and 2013 who were statin-naïve and maintained fixed-dose of statin for at least 18 months. Moderate- and low-intensity statin therapy was effective in reducing low-density lipoprotein cholesterol (LDL-C) to <100 mg/dL (70.3%, 83.0%, and 87.2% of diabetic patients in the low-, moderate-, and high-intensity therapy groups, respectively). The rapid decrease of LDL-C was observed in the first 8 months, and LDL-C-lowering effect was maintained throughout the observation period in even the low-intensity statin group. The effects of statins in elevating high-density lipoprotein cholesterol were similar in each statin groups, except the ezetimibe-simvastatin group (4.5 ± 2.1%) and high-dose atorvastatin groups (9.7 ± 3.3% and 8.7 ± 2.4% for 40 mg and 80 mg of atorvastatin/day, respectively). High-density lipoprotein cholesterol increased less and LDL-C decreased more in diabetes than in nondiabetes. There were no significant changes of fasting glucose after statin use in nondiabetic patients. Moderate- or low-intensity statin was effective enough in reaching National Cholesterol Education Program Adult Treatment Panel III LDL-C target goals in Koreans. Low-intensity statin showed around 30% LDL-C reduction from the baseline level in Koreans, which is comparable to moderate-intensity statin in new guideline. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Katsube, Akira; Hayashi, Hisamitsu; Kusuhara, Hiroyuki
2016-12-01
ATP-binding cassette transporter A1 (ABCA1) exerts an atheroprotective action through the biogenesis of high-density lipoprotein in hepatocytes and prevents the formation of foam cells from macrophages. Controlling ABCA1 is a rational approach to improving atherosclerotic cardiovascular disease. Although much is known about the regulatory mechanism of ABCA1 synthesis, the molecular mechanism underpinning its degradation remains to be clearly described. ABCA1 possesses potential sites of phosphorylation by serine/threonine-protein kinase Pim-1 (Pim-1). Pim-1 depletion decreased the expression of cell surface-resident ABCA1 (csABCA1) and apolipoprotein A-I-mediated [ 3 H]cholesterol efflux in the human hepatoma cell line HepG2, but not in peritoneal macrophages from mice. In vitro kinase assay, immunoprecipitation, and immunocytochemistry suggested phosphorylation of csABCA1 by the long form of Pim-1 (Pim-1L). Cell surface biotinylation indicated that Pim-1L inhibited lysosomal degradation of csABCA1 involving the liver X receptor β, which interacts with csABCA1 and thereby protects it from ubiquitination and subsequent lysosomal degradation. Cell surface coimmunoprecipitation with COS-1 cells expressing extracellularly hemagglutinin-tagged ABCA1 showed that Pim-1L-mediated phosphorylation of csABCA1 facilitated the interaction between csABCA1 and liver X receptor β and thereby stabilized the csABCA1-Pim-1L complex. Mice deficient in Pim-1 kinase activity showed lower expression of ABCA1 in liver plasma membranes and lower plasma high-density lipoprotein levels than control mice. Pim-1L protects hepatic csABCA1 from lysosomal degradation by facilitating the physical interaction between csABCA1 and liver X receptor β and subsequent stabilization of the csABCA1-Pim-1L complex and thereby regulates the circulating level of high-density lipoprotein. Our findings may aid the development of high-density lipoprotein-targeted therapy. © 2016 American Heart Association, Inc.
Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis
Mortensen, Martin B.; Kjolby, Mads; Gunnersen, Stine; Larsen, Jakob V.; Palmfeldt, Johan; Falk, Erling; Nykjaer, Anders; Bentzon, Jacob F.
2014-01-01
Genome-wide association studies have identified a link between genetic variation at the human chromosomal locus 1p13.3 and coronary artery disease. The gene encoding sortilin (SORT1) has been implicated as the causative gene within the locus, as sortilin regulates hepatic lipoprotein metabolism. Here we demonstrated that sortilin also directly affects atherogenesis, independent of its regulatory role in lipoprotein metabolism. In a mouse model of atherosclerosis, deletion of Sort1 did not alter plasma cholesterol levels, but reduced the development of both early and late atherosclerotic lesions. We determined that sortilin is a high-affinity receptor for the proinflammatory cytokines IL-6 and IFN-γ. Moreover, macrophages and Th1 cells (both of which mediate atherosclerotic plaque formation) lacking sortilin had reduced secretion of IL-6 and IFN-γ, but not of other measured cytokines. Transfer of sortilin-deficient BM into irradiated atherosclerotic mice reduced atherosclerosis and systemic markers of inflammation. Together, these data demonstrate that sortilin influences cytokine secretion and that targeting sortilin in immune cells attenuates inflammation and reduces atherosclerosis. PMID:25401472
Qamar, Arman; Khetarpal, Sumeet A; Khera, Amit V; Qasim, Atif; Rader, Daniel J; Reilly, Muredach P
2015-08-01
Triglyceride-rich lipoproteins have emerged as causal risk factors for developing coronary heart disease independent of low-density lipoprotein cholesterol levels. Apolipoprotein C-III (ApoC-III) modulates triglyceride-rich lipoprotein metabolism through inhibition of lipoprotein lipase and hepatic uptake of triglyceride-rich lipoproteins. Mutations causing loss-of-function of ApoC-III lower triglycerides and reduce coronary heart disease risk, suggestive of a causal role for ApoC-III. Little data exist about the relationship of ApoC-III, triglycerides, and atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Here, we examined the relationships between plasma ApoC-III, triglycerides, and coronary artery calcification in patients with T2DM. Plasma ApoC-III levels were measured in a cross-sectional study of 1422 subjects with T2DM but without clinically manifest coronary heart disease. ApoC-III levels were positively associated with total cholesterol (Spearman r=0.36), triglycerides (r=0.59), low-density lipoprotein cholesterol (r=0.16), fasting glucose (r=0.16), and glycosylated hemoglobin (r=0.12; P<0.0001 for all). In age, sex, and race-adjusted analysis, ApoC-III levels were positively associated with coronary artery calcification (Tobit regression ratio, 1.78; 95% confidence interval, 1.27-2.50 per SD increase in ApoC-III; P<0.001). As expected for an intermediate mediator, these findings were attenuated when adjusted for both triglycerides (Tobit regression ratio, 1.43; 95% confidence interval, 0.94-2.18; P=0.086) and separately for very low-density lipoprotein cholesterol (Tobit regression ratio, 1.14; 95% confidence interval, 0.75-1.71; P=0.53). In persons with T2DM, increased plasma ApoC-III is associated with higher triglycerides, less favorable cardiometabolic phenotypes, and higher coronary artery calcification, a measure of subclinical atherosclerosis. Therapeutic inhibition of ApoC-III may thus be a novel strategy for reducing plasma triglyceride-rich lipoproteins and cardiovascular risk in T2DM. © 2015 American Heart Association, Inc.
Saïdi, Y; Sich, D; Camproux, A; Egloff, M; Federspiel, M C; Gautier, V; Raisonnier, A; Turpin, G; Beucler, I
1999-01-01
We studied the relationships postprandially between triglyceride-rich lipoprotein (TRL) and high-density lipoprotein (HDL) in 11 mixed hyperlipoproteinemia (MHL) and 11 hypercholesterolemia (HCL) patients. The high and prolonged postprandial triglyceridemia response observed in MHL but not HCL patients was essentially dependent on very-low-density lipoprotein (VLDL) changes. This abnormal response was related to decreased lipoprotein lipase (LPL) activity (-48.7%, P<.01) in MHL compared with HCL subjects. Cholesteryl ester transfer protein (CETP) activity was postprandially enhanced only in MHL patients, and this elevation persisted in the late period (+19% at 12 hours, P<.05), sustaining the delayed enrichment of VLDL with cholesteryl ester (CE). The late postprandial period in MHL patients was also characterized by high levels of apolipoprotein B (apoB)-containing lipoproteins with apoCIII ([LpB:CIII] +36% at 12 hours, P<.01) and decreased levels of apoCIII contained in HDL ([LpCIII-HDL] -34% at 12 hours, P<.01), reflecting probably a defective return of apoCIII from TRL toward HDL. In MHL compared with HCL patients, decreased HDL2 levels were related to both HDL2b and HDL2a subpopulations (-57% and -49%, respectively, P<.01 for both) and decreased apoA-I levels (-53%, P<.01) were equally linked to decreased HDL2 with apoA-I only (LpA-I) and HDL2 with both apoA-I and apoA-II ([LpA-I:A-II] -55% and -52%, respectively, P<.01 for both). The significant inverse correlations between the postprandial magnitude of LpB:CIII and HDL2-LpA-I and HDL2b levels in MHL patients underline the close TRL-HDL interrelationships. Our findings indicate that TRL and HDL abnormalities evidenced at fasting were postprandially amplified, tightly interrelated, and persistent during the late fed period in mixed hyperlipidemia. Thus, these fasting abnormalities are likely postprandially originated and may constitute proatherogenic lipoprotein disorders additional to the HCL in MHL patients.
Common variants associated with plasma triglycerides and risk for coronary artery disease.
Do, Ron; Willer, Cristen J; Schmidt, Ellen M; Sengupta, Sebanti; Gao, Chi; Peloso, Gina M; Gustafsson, Stefan; Kanoni, Stavroula; Ganna, Andrea; Chen, Jin; Buchkovich, Martin L; Mora, Samia; Beckmann, Jacques S; Bragg-Gresham, Jennifer L; Chang, Hsing-Yi; Demirkan, Ayşe; Den Hertog, Heleen M; Donnelly, Louise A; Ehret, Georg B; Esko, Tõnu; Feitosa, Mary F; Ferreira, Teresa; Fischer, Krista; Fontanillas, Pierre; Fraser, Ross M; Freitag, Daniel F; Gurdasani, Deepti; Heikkilä, Kauko; Hyppönen, Elina; Isaacs, Aaron; Jackson, Anne U; Johansson, Asa; Johnson, Toby; Kaakinen, Marika; Kettunen, Johannes; Kleber, Marcus E; Li, Xiaohui; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Magnusson, Patrik K E; Mangino, Massimo; Mihailov, Evelin; Montasser, May E; Müller-Nurasyid, Martina; Nolte, Ilja M; O'Connell, Jeffrey R; Palmer, Cameron D; Perola, Markus; Petersen, Ann-Kristin; Sanna, Serena; Saxena, Richa; Service, Susan K; Shah, Sonia; Shungin, Dmitry; Sidore, Carlo; Song, Ci; Strawbridge, Rona J; Surakka, Ida; Tanaka, Toshiko; Teslovich, Tanya M; Thorleifsson, Gudmar; Van den Herik, Evita G; Voight, Benjamin F; Volcik, Kelly A; Waite, Lindsay L; Wong, Andrew; Wu, Ying; Zhang, Weihua; Absher, Devin; Asiki, Gershim; Barroso, Inês; Been, Latonya F; Bolton, Jennifer L; Bonnycastle, Lori L; Brambilla, Paolo; Burnett, Mary S; Cesana, Giancarlo; Dimitriou, Maria; Doney, Alex S F; Döring, Angela; Elliott, Paul; Epstein, Stephen E; Eyjolfsson, Gudmundur Ingi; Gigante, Bruna; Goodarzi, Mark O; Grallert, Harald; Gravito, Martha L; Groves, Christopher J; Hallmans, Göran; Hartikainen, Anna-Liisa; Hayward, Caroline; Hernandez, Dena; Hicks, Andrew A; Holm, Hilma; Hung, Yi-Jen; Illig, Thomas; Jones, Michelle R; Kaleebu, Pontiano; Kastelein, John J P; Khaw, Kay-Tee; Kim, Eric; Klopp, Norman; Komulainen, Pirjo; Kumari, Meena; Langenberg, Claudia; Lehtimäki, Terho; Lin, Shih-Yi; Lindström, Jaana; Loos, Ruth J F; Mach, François; McArdle, Wendy L; Meisinger, Christa; Mitchell, Braxton D; Müller, Gabrielle; Nagaraja, Ramaiah; Narisu, Narisu; Nieminen, Tuomo V M; Nsubuga, Rebecca N; Olafsson, Isleifur; Ong, Ken K; Palotie, Aarno; Papamarkou, Theodore; Pomilla, Cristina; Pouta, Anneli; Rader, Daniel J; Reilly, Muredach P; Ridker, Paul M; Rivadeneira, Fernando; Rudan, Igor; Ruokonen, Aimo; Samani, Nilesh; Scharnagl, Hubert; Seeley, Janet; Silander, Kaisa; Stančáková, Alena; Stirrups, Kathleen; Swift, Amy J; Tiret, Laurence; Uitterlinden, Andre G; van Pelt, L Joost; Vedantam, Sailaja; Wainwright, Nicholas; Wijmenga, Cisca; Wild, Sarah H; Willemsen, Gonneke; Wilsgaard, Tom; Wilson, James F; Young, Elizabeth H; Zhao, Jing Hua; Adair, Linda S; Arveiler, Dominique; Assimes, Themistocles L; Bandinelli, Stefania; Bennett, Franklyn; Bochud, Murielle; Boehm, Bernhard O; Boomsma, Dorret I; Borecki, Ingrid B; Bornstein, Stefan R; Bovet, Pascal; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chambers, John C; Chen, Yii-Der Ida; Collins, Francis S; Cooper, Richard S; Danesh, John; Dedoussis, George; de Faire, Ulf; Feranil, Alan B; Ferrières, Jean; Ferrucci, Luigi; Freimer, Nelson B; Gieger, Christian; Groop, Leif C; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hingorani, Aroon; Hirschhorn, Joel N; Hofman, Albert; Hovingh, G Kees; Hsiung, Chao Agnes; Humphries, Steve E; Hunt, Steven C; Hveem, Kristian; Iribarren, Carlos; Järvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kaprio, Jaakko; Kesäniemi, Antero; Kivimaki, Mika; Kooner, Jaspal S; Koudstaal, Peter J; Krauss, Ronald M; Kuh, Diana; Kuusisto, Johanna; Kyvik, Kirsten O; Laakso, Markku; Lakka, Timo A; Lind, Lars; Lindgren, Cecilia M; Martin, Nicholas G; März, Winfried; McCarthy, Mark I; McKenzie, Colin A; Meneton, Pierre; Metspalu, Andres; Moilanen, Leena; Morris, Andrew D; Munroe, Patricia B; Njølstad, Inger; Pedersen, Nancy L; Power, Chris; Pramstaller, Peter P; Price, Jackie F; Psaty, Bruce M; Quertermous, Thomas; Rauramaa, Rainer; Saleheen, Danish; Salomaa, Veikko; Sanghera, Dharambir K; Saramies, Jouko; Schwarz, Peter E H; Sheu, Wayne H-H; Shuldiner, Alan R; Siegbahn, Agneta; Spector, Tim D; Stefansson, Kari; Strachan, David P; Tayo, Bamidele O; Tremoli, Elena; Tuomilehto, Jaakko; Uusitupa, Matti; van Duijn, Cornelia M; Vollenweider, Peter; Wallentin, Lars; Wareham, Nicholas J; Whitfield, John B; Wolffenbuttel, Bruce H R; Altshuler, David; Ordovas, Jose M; Boerwinkle, Eric; Palmer, Colin N A; Thorsteinsdottir, Unnur; Chasman, Daniel I; Rotter, Jerome I; Franks, Paul W; Ripatti, Samuli; Cupples, L Adrienne; Sandhu, Manjinder S; Rich, Stephen S; Boehnke, Michael; Deloukas, Panos; Mohlke, Karen L; Ingelsson, Erik; Abecasis, Goncalo R; Daly, Mark J; Neale, Benjamin M; Kathiresan, Sekar
2013-11-01
Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
Common variants associated with plasma triglycerides and risk for coronary artery disease
Do, Ron; Willer, Cristen J.; Schmidt, Ellen M.; Sengupta, Sebanti; Gao, Chi; Peloso, Gina M.; Gustafsson, Stefan; Kanoni, Stavroula; Ganna, Andrea; Chen, Jin; Buchkovich, Martin L.; Mora, Samia; Beckmann, Jacques S.; Bragg-Gresham, Jennifer L.; Chang, Hsing-Yi; Demirkan, Ayşe; Den Hertog, Heleen M.; Donnelly, Louise A.; Ehret, Georg B.; Esko, Tõnu; Feitosa, Mary F.; Ferreira, Teresa; Fischer, Krista; Fontanillas, Pierre; Fraser, Ross M.; Freitag, Daniel F.; Gurdasani, Deepti; Heikkilä, Kauko; Hyppönen, Elina; Isaacs, Aaron; Jackson, Anne U.; Johansson, Åsa; Johnson, Toby; Kaakinen, Marika; Kettunen, Johannes; Kleber, Marcus E.; Li, Xiaohui; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Magnusson, Patrik K.E.; Mangino, Massimo; Mihailov, Evelin; Montasser, May E.; Müller-Nurasyid, Martina; Nolte, Ilja M.; O'Connell, Jeffrey R.; Palmer, Cameron D.; Perola, Markus; Petersen, Ann-Kristin; Sanna, Serena; Saxena, Richa; Service, Susan K.; Shah, Sonia; Shungin, Dmitry; Sidore, Carlo; Song, Ci; Strawbridge, Rona J.; Surakka, Ida; Tanaka, Toshiko; Teslovich, Tanya M.; Thorleifsson, Gudmar; Van den Herik, Evita G.; Voight, Benjamin F.; Volcik, Kelly A.; Waite, Lindsay L.; Wong, Andrew; Wu, Ying; Zhang, Weihua; Absher, Devin; Asiki, Gershim; Barroso, Inês; Been, Latonya F.; Bolton, Jennifer L.; Bonnycastle, Lori L; Brambilla, Paolo; Burnett, Mary S.; Cesana, Giancarlo; Dimitriou, Maria; Doney, Alex S.F.; Döring, Angela; Elliott, Paul; Epstein, Stephen E.; Eyjolfsson, Gudmundur Ingi; Gigante, Bruna; Goodarzi, Mark O.; Grallert, Harald; Gravito, Martha L.; Groves, Christopher J.; Hallmans, Göran; Hartikainen, Anna-Liisa; Hayward, Caroline; Hernandez, Dena; Hicks, Andrew A.; Holm, Hilma; Hung, Yi-Jen; Illig, Thomas; Jones, Michelle R.; Kaleebu, Pontiano; Kastelein, John J.P.; Khaw, Kay-Tee; Kim, Eric; Klopp, Norman; Komulainen, Pirjo; Kumari, Meena; Langenberg, Claudia; Lehtimäki, Terho; Lin, Shih-Yi; Lindström, Jaana; Loos, Ruth J.F.; Mach, François; McArdle, Wendy L; Meisinger, Christa; Mitchell, Braxton D.; Müller, Gabrielle; Nagaraja, Ramaiah; Narisu, Narisu; Nieminen, Tuomo V.M.; Nsubuga, Rebecca N.; Olafsson, Isleifur; Ong, Ken K.; Palotie, Aarno; Papamarkou, Theodore; Pomilla, Cristina; Pouta, Anneli; Rader, Daniel J.; Reilly, Muredach P.; Ridker, Paul M.; Rivadeneira, Fernando; Rudan, Igor; Ruokonen, Aimo; Samani, Nilesh; Scharnagl, Hubert; Seeley, Janet; Silander, Kaisa; Stančáková, Alena; Stirrups, Kathleen; Swift, Amy J.; Tiret, Laurence; Uitterlinden, Andre G.; van Pelt, L. Joost; Vedantam, Sailaja; Wainwright, Nicholas; Wijmenga, Cisca; Wild, Sarah H.; Willemsen, Gonneke; Wilsgaard, Tom; Wilson, James F.; Young, Elizabeth H.; Zhao, Jing Hua; Adair, Linda S.; Arveiler, Dominique; Assimes, Themistocles L.; Bandinelli, Stefania; Bennett, Franklyn; Bochud, Murielle; Boehm, Bernhard O.; Boomsma, Dorret I.; Borecki, Ingrid B.; Bornstein, Stefan R.; Bovet, Pascal; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chambers, John C.; Chen, Yii-Der Ida; Collins, Francis S.; Cooper, Richard S.; Danesh, John; Dedoussis, George; de Faire, Ulf; Feranil, Alan B.; Ferrières, Jean; Ferrucci, Luigi; Freimer, Nelson B.; Gieger, Christian; Groop, Leif C.; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hingorani, Aroon; Hirschhorn, Joel N.; Hofman, Albert; Hovingh, G. Kees; Hsiung, Chao Agnes; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Iribarren, Carlos; Järvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kaprio, Jaakko; Kesäniemi, Antero; Kivimaki, Mika; Kooner, Jaspal S.; Koudstaal, Peter J.; Krauss, Ronald M.; Kuh, Diana; Kuusisto, Johanna; Kyvik, Kirsten O.; Laakso, Markku; Lakka, Timo A.; Lind, Lars; Lindgren, Cecilia M.; Martin, Nicholas G.; März, Winfried; McCarthy, Mark I.; McKenzie, Colin A.; Meneton, Pierre; Metspalu, Andres; Moilanen, Leena; Morris, Andrew D.; Munroe, Patricia B.; Njølstad, Inger; Pedersen, Nancy L.; Power, Chris; Pramstaller, Peter P.; Price, Jackie F.; Psaty, Bruce M.; Quertermous, Thomas; Rauramaa, Rainer; Saleheen, Danish; Salomaa, Veikko; Sanghera, Dharambir K.; Saramies, Jouko; Schwarz, Peter E.H.; Sheu, Wayne H-H; Shuldiner, Alan R.; Siegbahn, Agneta; Spector, Tim D.; Stefansson, Kari; Strachan, David P.; Tayo, Bamidele O.; Tremoli, Elena; Tuomilehto, Jaakko; Uusitupa, Matti; van Duijn, Cornelia M.; Vollenweider, Peter; Wallentin, Lars; Wareham, Nicholas J.; Whitfield, John B.; Wolffenbuttel, Bruce H.R.; Altshuler, David; Ordovas, Jose M.; Boerwinkle, Eric; Palmer, Colin N.A.; Thorsteinsdottir, Unnur; Chasman, Daniel I.; Rotter, Jerome I.; Franks, Paul W.; Ripatti, Samuli; Cupples, L. Adrienne; Sandhu, Manjinder S.; Rich, Stephen S.; Boehnke, Michael; Deloukas, Panos; Mohlke, Karen L.; Ingelsson, Erik; Abecasis, Goncalo R.; Daly, Mark J.; Neale, Benjamin M.; Kathiresan, Sekar
2013-01-01
Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiologic studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P<5×10−8 for each) to examine the role of triglycerides on risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglycerides, and show that the direction and magnitude of both are factors in determining CAD risk. Second, we consider loci with only a strong magnitude of association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol, a polymorphism's strength of effect on triglycerides is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD. PMID:24097064
Makoveichuk, Elena; Castel, Susanna; Vilaró, Senen; Olivecrona, Gunilla
2004-11-08
Lipoprotein lipase (LPL) is produced by cells in the artery wall and can mediate binding of lipoproteins to cell surface heparan sulfate proteoglycans (HSPG), resulting in endocytosis (the bridging function). Active, dimeric LPL may dissociate to inactive monomers, the main form found in plasma. We have studied binding/internalization of human low density lipoprotein (LDL), mediated by bovine LPL, using THP-1 monocytes and macrophages. Uptake of (125)I-LDL was similar in monocytes and macrophages and was not affected by the LDL-receptor family antagonist receptor-associated protein (RAP) or by the phagocytosis inhibitor cytochalasin D. In contrast, uptake depended on HSPG and on membrane cholesterol. Incubation in the presence of dexamethasone increased the endogenous production of LPL by the cells and also increased LPL-mediated binding of LDL to the cell surfaces. Monomeric LPL was bound to the cells mostly in a heparin-resistant fashion. We conclude that the uptake of LDL mediated by LPL dimers is receptor-independent and involves cholesterol-enriched membrane areas (lipid rafts). Dimeric and monomeric LPL differ in their ability to mediate binding/uptake of LDL, probably due to different mechanisms for binding/internalization.
Specificity determinants in the interaction of apolipoprotein(a) kringles with tetranectin and LDL.
Caterer, Nigel R; Graversen, Jonas H; Jacobsen, Christian; Moestrup, Søren K; Sigurskjold, Bent W; Etzerodt, Michael; Thøgersen, Hans C
2002-11-01
Lipoprotein(a) is composed of low density lipoprotein and apolipoprotein(a). Apolipoprotein(a) has evolved from plasminogen and contains 10 different plasminogen kringle 4 homologous domains [KIV(1-110)]. Previous studies indicated that lipoprotein(a) non-covalently binds the N-terminal region of lipoprotein B100 and the plasminogen kringle 4 binding plasma protein tetranectin. In this study recombinant KIV(2), KIV(7) and KIV(10) derived from apolipoprotein(a) were produced in E. coli and the binding to tetranectin and low density lipoprotein was examined. Only KIV(10) bound to tetranectin and binding was similar to that of plasminogen kringle 4 to tetranectin. Only KIV(7) bound to LDL. In order to identify the residues responsible for the difference in specificity between KIV(7) and KIV(10), a number of surface-exposed residues located around the lysine binding clefts were exchanged. Ligand binding analysis of these derivatives showed that Y62, and to a minor extent W32 and E56, of KIV(7) are important for LDL binding to KIV(7), whereas R32 and D56 of KIV(10) are required for tetranectin binding of KIV(10).
Prevention by lactic acid bacteria of the oxidation of human LDL.
Terahara, M; Kurama, S; Takemoto, N
2001-08-01
Ether extracts of lactic acid bacteria were analyzed for prevention of the oxidation of erythrocyte membrane and human low-density lipoprotein in vivo. Streptococcus thermophilus 1131 and Lactobacillus delbrueckii subsp. bulgaricus 2038, yogurt starters, were chosen as test-strains, and ether extracts of these cultures were used as samples. Both strain 1131 and strain 2038 produced radical scavengers and inhibited oxidation of erythrocyte membranes and low-density lipoproteins. The antioxidative activity of strain 2038 was higher than that of strain 1131.
Novel nonstatin strategies to lower low-density lipoprotein cholesterol.
Davidson, Michael H
2009-01-01
There remains an unmet need to reduce elevated low-density lipoprotein cholesterol (LDL-C) in patients who are maximized on current therapy or intolerant to statins. Several novel agents have been developed to lower LDL-C, either as monotherapy or in combination with statins. These novel therapies include squalene synthase inhibitors, microsomal triglyceride transfer protein inhibitors, and antisense apolipoprotein B. Although each of these novel therapies effectively lowers LDL-C, challenges remain in the clinical development to assess long-term safety.
von Bauer, Rüdiger; Oikonomou, Dimitrios; Sulaj, Alba; Kopf, Stefan; Fleming, Thomas; Rudofsky, Gottfried; Nawroth, Peter
2018-06-11
Atherosclerosis is an inflammatory disorder in which several converging immune responses modulate and induce lipid accumulation in macrophages. Activated leukocyte cell adhesion molecule (ALCAM) has been described as a structural homologue of HDL-receptor and functions as a pattern recognition receptor (PRR), while its soluble form sALCAM is involved in ALCAM-dependent and -independent immune mechanisms. The aim of this study was to investigate the effect of aggressive removal of low density lipoprotein-cholesterol (LDL-C) and lipoprotein(a) (Lp [a]) by lipoprotein-apheresis (LA) on sALCAM and blood viscosity as well as to evaluate its association with lipoproteins and serum markers of inflammation. © Georg Thieme Verlag KG Stuttgart · New York.
Preparation and Characterization of Stable α-Synuclein Lipoprotein Particles.
Eichmann, Cédric; Campioni, Silvia; Kowal, Julia; Maslennikov, Innokentiy; Gerez, Juan; Liu, Xiaoxia; Verasdonck, Joeri; Nespovitaya, Nadezhda; Choe, Senyon; Meier, Beat H; Picotti, Paola; Rizo, Josep; Stahlberg, Henning; Riek, Roland
2016-04-15
Multiple neurodegenerative diseases are caused by the aggregation of the human α-Synuclein (α-Syn) protein. α-Syn possesses high structural plasticity and the capability of interacting with membranes. Both features are not only essential for its physiological function but also play a role in the aggregation process. Recently it has been proposed that α-Syn is able to form lipid-protein particles reminiscent of high-density lipoproteins. Here, we present a method to obtain a stable and homogeneous population of nanometer-sized particles composed of α-Syn and anionic phospholipids. These particles are called α-Syn lipoprotein (nano)particles to indicate their relationship to high-density lipoproteins formed by human apolipoproteins in vivo and of in vitro self-assembling phospholipid bilayer nanodiscs. Structural investigations of the α-Syn lipoprotein particles by circular dichroism (CD) and magic angle solid-state nuclear magnetic resonance (MAS SS-NMR) spectroscopy establish that α-Syn adopts a helical secondary structure within these particles. Based on cryo-electron microscopy (cryo-EM) and dynamic light scattering (DLS) α-Syn lipoprotein particles have a defined size with a diameter of ∼23 nm. Chemical cross-linking in combination with solution-state NMR and multiangle static light scattering (MALS) of α-Syn particles reveal a high-order protein-lipid entity composed of ∼8-10 α-Syn molecules. The close resemblance in size between cross-linked in vitro-derived α-Syn lipoprotein particles and a cross-linked species of endogenous α-Syn from SH-SY5Y human neuroblastoma cells indicates a potential functional relevance of α-Syn lipoprotein nanoparticles. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Na; Li, Qing; Tian, Xia-Qiu; Qian, Hai-Yan; Yang, Yue-Jin
2014-10-01
By inhibiting apolipoprotein B (ApoB) synthesis, mipomersen can significantly reduce ApoB-containing lipoproteins in hypercholesterolemic patients. This study sought to ascertain both the extent to which mipomersen can decrease ApoB-containing lipoproteins and the safety of mipomersen therapy. Studies were identified through PubMed, CENTRAL, Embase, Clinical Trials, reviews, and reference lists of relevant papers. The efficacy endpoints were the changes in low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), ApoB, and lipoprotein (a) [Lp(a)]. The safety endpoints were the incidence of injection-site reactions, flu-like symptoms, and elevated transaminases. Six randomized controlled trials with 444 patients were included in the analysis. Compared with the placebo group, patients who received mipomersen therapy had a significant reduction in LDL-C (33.13%), as well as a reduction in non-HDL-C (31.70%), ApoB (33.27%), and LP(a) (26.34%). Mipomersen therapy was also associated with an obvious increase in injection-site reactions with an odds ratio (OR) of 14.15, flu-like symptoms with an OR of 2.07, and alanine aminotransferase levels ≥ 3 × the upper limit of normal with an OR of 11.21. Mipomersen therapy is effective for lowering ApoB-containing lipoproteins in patients with severe hypercholesterolemia. Future studies exploring how to minimize side effects of mipomersen therapy are needed.
Antihyperlipidemic effect of Scoparia dulcis (sweet broomweed) in streptozotocin diabetic rats.
Pari, Leelavinothan; Latha, Muniappan
2006-01-01
We have investigated Scoparia dulcis, an indigenous plant used in Ayurvedic medicine in India, for its possible antihyperlipidemic effect in rats with streptozotocin-induced experimental diabetes. Oral administration of an aqueous extract of S. dulcis plant (200 mg/kg of body weight) to streptozotocin diabetic rats for 6 weeks resulted in a significant reduction in blood glucose, serum and tissue cholesterol, triglycerides, free fatty acids, phospholipids, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity, and very low-density lipoprotein and low-density lipoprotein cholesterol levels. The decreased serum high-density lipoprotein cholesterol, anti-atherogenic index, and HMG-CoA reductase activity in diabetic rats were also reversed towards normalization after the treatment. Similarly, the administration of S. dulcis plant extract (SPEt) to normal animals resulted in a hypolipidemic effect. The effect was compared with glibenclamide (600 microg/kg of body weight). The results showed that SPEt had antihyperlipidemic action in normal and experimental diabetic rats in addition to its antidiabetic effect.
Management of dyslipidemia in women in the post-hormone therapy era.
Mosca, Lori
2005-03-01
Cardiovascular disease (CVD) is the leading cause of death for women in the United States and is largely preventable. The American Heart Association has recently released evidence-based guidelines for the prevention of CVD in women; these include gender-specific recommendations for the management of dyslipidemia. This article reviews these recommendations and the evidence supporting them. This was a qualitative review of a systematic literature search related to lipid guidelines for women and discussion of rationale and evidence for new clinical recommendations. Lifestyle modifications are the cornerstone of lipid management. Substantial evidence from randomized clinical trials supports the use of low-density lipoprotein cholesterol-lowering therapy (primarily statins) in all high-risk women and the use of niacin or fibrates when high-density lipoprotein cholesterol is low or non-high-density lipoprotein cholesterol is elevated. Fewer data are available for women at lower or intermediate risk. Encouragement of lifestyle modification and appropriate use of lipid-altering therapy will have a substantial impact on reducing the burden of cardiovascular disease in women.
Vela, Barbara Karin; Alhessi, Alaaeldin Y; Popović, Marko; Al-Shaqra, Maryam A
2008-12-01
The aim of this study is to determine the prevalence of unrecognized dyslipidaemia and a specific correlation between lipid values and age, gender or ethnic origin in the study population. This retrospective cross-sectional study included 311 subjects who had their lipid profiles checked for the first time in a private hospital in Dubai in a six month - period. The analysis shows an increased prevalence of Low Density Lipoprotein (LDL) hypercholesterolemia with relatively higher Low Density Lipoprotein Cholesterol (LDL-c) values in male subjects (p < 0.016) as well as with the Middle East ethnic origin group (p < 0.025), while desirable High Density Lipoprotein (HDL-c) was found among female subjects (p = 0). The discordance between the percentages of elevated LDL-c and Total cholesterol (T-c) signifies the role of the LDL-c/non-HDL-c as the main surrogate for dyslipidaemia as a risk for atherosclerosis, and as a primary target of therapy.
Pietzsch, Jens; Bergmann, Ralf; Rode, Katrin; Hultsch, Christina; Pawelke, Beate; Wuest, Frank; van den Hoff, Joerg
2004-11-01
Oxidative modification of low-density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Assessing the metabolic fate of oxidized LDL (oxLDL) in vivo with radiotracer techniques is hindered by the lack of suitable sensitive and specific radiolabeling methods. We evaluated an improved methodology based on the radiolabeling of native LDL (nLDL) and oxLDL with the positron emitter fluorine-18 ((18)F) by conjugation with N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). We investigated whether radiolabeling of LDL induces adverse structural modifications. Results suggest that radiolabeling of both nLDL and oxLDL using [(18)F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively. Thus, radiolabeling of LDL using [(18)F]SFB could prove to be a promising approach for studying the kinetics of oxLDL in vivo.
Tobina, Takuro; Mori, Yukari; Doi, Yukiko; Nakayama, Fuki; Kiyonaga, Akira; Tanaka, Hiroaki
2017-09-01
Muscle peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1)α gene expression is influenced by the Gly482Ser gene polymorphism, which is a candidate genetic risk factor for diabetes mellitus and obesity. This study investigated the effects of PGC-1 gene Gly482Ser polymorphisms on alterations in glucose and lipid metabolism induced by exercise training. A 12-week intervention study was performed for 119 participants who were more than 65 years of age and completed exercise training at lactate threshold intensity. Total cholesterol and low-density lipoprotein cholesterol were significantly reduced in Gly/Gly but not in Gly/Ser and Ser/Ser participants after exercise. The Gly/Gly genotype of the PGC-1 gene Gly482Ser polymorphism influences the effects of moderate-intensity exercise training on low-density lipoprotein cholesterol and total cholesterol concentrations in older people.
Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica
2009-01-01
The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.
Regulation of PCSK9 by nutraceuticals.
Momtazi, Amir Abbas; Banach, Maciej; Pirro, Matteo; Katsiki, Niki; Sahebkar, Amirhossein
2017-06-01
PCSK9 (proprotein convertase subtilisin kexin type 9) is a liver secretory enzyme that regulates plasma low-density lipoprotein (LDL) cholesterol (LDL-C) levels through modulation of LDL receptor (LDLR) density on the surface of hepatocytes. Inhibition of PCSK9 using monoclonal antibodies can efficiently lower plasma LDL-C, non-high-density lipoprotein cholesterol and lipoprotein (a). PCSK9 inhibition is also an effective adjunct to statin therapy; however, the cost-effectiveness of currently available PCSK9 inhibitors is under question. Nutraceuticals offer a safe and cost-effective option for PCSK9 inhibition. Several nutraceuticals have been reported to modulate PCSK9 levels and exert LDL-lowering activity. Mechanistically, those nutraceuticals that inhibit PCSK9 through a SREBP (sterol-responsive element binding protein)-independent pathway can be more effective in lowering plasma LDL-C levels compared with those inhibiting PCSK9 through the SREBP pathway. The present review aims to collect available data on the nutraceuticals with PCSK9-inhibitory effect and the underlying mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients.
Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M
2010-11-01
Despite the well-established observation that substitution of saturated fats for carbohydrates or unsaturated fats increases low-density lipoprotein (LDL) cholesterol in humans and animal models, the relationship of saturated fat intake to risk for atherosclerotic cardiovascular disease in humans remains controversial. A critical question is what macronutrient should be used to replace saturated fat. Substituting polyunsaturated fat for saturated fat reduces LDL cholesterol and the total cholesterol to high-density lipoprotein cholesterol ratio. However, replacement of saturated fat by carbohydrates, particularly refined carbohydrates and added sugars, increases levels of triglyceride and small LDL particles and reduces high-density lipoprotein cholesterol, effects that are of particular concern in the context of the increased prevalence of obesity and insulin resistance. Epidemiologic studies and randomized clinical trials have provided consistent evidence that replacing saturated fat with polyunsaturated fat, but not carbohydrates, is beneficial for coronary heart disease. Therefore, dietary recommendations should emphasize substitution of polyunsaturated fat and minimally processed grains for saturated fat.
Drugs targeting high-density lipoprotein cholesterol for coronary artery disease management.
Katz, Pamela M; Leiter, Lawrence A
2012-01-01
Many patients remain at high risk for future cardiovascular events despite levels of low-density lipoprotein cholesterol (LDL-C) at, or below, target while taking statin therapy. Much effort is therefore being focused on strategies to reduce this residual risk. High-density lipoprotein cholesterol (HDL-C) is a strong, independent, inverse predictor of coronary heart disease risk and is therefore an attractive therapeutic target. Currently available agents that raise HDL-C have only modest effects and there is limited evidence of additional cardiovascular risk reduction on top of background statin therapy associated with their use. It was hoped that the use of cholesteryl ester transfer protein (CETP) inhibitors would provide additional benefit, but the results of clinical outcome studies to date have been disappointing. The results of ongoing trials with other CETP inhibitors that raise HDL-C to a greater degree and also lower LDL-C, as well as with other emerging therapies are awaited. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Reddy, Rama Manohar I; Latha, Pushpa B; Vijaya, Tartte; Rao, Dattatreya S
2012-01-01
We examined the antiobesity effect of a saponin-rich fraction of a Gymnema sylvestre R. Br. aqueous leaf extract (SGE) using cafeteria and high-fat diet-induced obese rats for a period of eight weeks. SGE was orally administered at a dose of 100 mg/kg body weight once a day to the treatment group. It significantly decreased the body weight, food consumption, visceral organs weight, and the levels of triglycerides, total cholesterol, low-density lipoproteins, very low-density lipoproteins, atherogenic index, glucose, and increased the levels of high-density lipoproteins. There was no significant difference with respect to all parameters of the study in case of normal (N) diet and N diet + SGE rats. In vitro, SGE inhibited the pancreatic lipase activity. The present study gave clear evidence that the SGE has a significant antiobese action, supporting its use in traditional medicine, and can be used as a substitute for synthetic drugs.
[Periodontal treatment for cardiovascular risk factors: a systematic review].
Deng, Linkai; Li, Chunjie; Li, Qian; Zhang, Yukui; Zhao, Hongwei
2013-10-01
To evaluate the efficacy of periodontal treatment for the management of cardiovascular risk factors. Eligible studies in Cochrane Controlled Trials Register/CENTRAL, PubMed, EMBASE, and China Biology Medicine disc (CBMdisc) were searched until October 13, 2011. References of the included studies were hand searched. Two reviewers assessed the risk of bias and extracted the data of the included studies in duplicate. Meta-analysis was conducted with Revman 5.1. Six randomized controlled trials involving 682 participants were included. One case had low risk of bias, another one had moderate risk of bias, and the remaining four had high risk of bias. Meta-analysis showed that periodontal treatment has no significant effect on C-reactive protein, total cholesterol, low-density lipoprotein cholesterol, and triglycerides (P > 0.05). However, the treatment had a significant effect on high-density lipoprotein cholesterol [MD = 0.05, 95% CI (0.00, 0.09), P = 0.04]. Periodontal treatment has good effects on controlling high-density lipoprotein cholesterol although more randomized controlled trials must be conducted to verify its effectiveness.
Marquart, Tyler J; Wu, Judy; Lusis, Aldons J; Baldán, Ángel
2013-03-01
To determine the efficacy of long-term anti-miR-33 therapy on the progression of atherosclerosis in high-fat, high-cholesterol-fed Ldlr(-/-) mice. Ldlr(-/-) mice received saline, or control or anti-miR-33 oligonucleotides once a week for 14 weeks. The treatment was effective, as measured by reduced levels of hepatic miR-33 and increased hepatic expression of miR-33 targets. Analysis of plasma samples revealed an initial elevation in high-density lipoprotein cholesterol after 2 weeks of treatment that was not sustained by the end of the experiment. Additionally, we found a significant increase in circulating triglycerides in anti-miR-33-treated mice, compared with controls. Finally, examination of atheromata revealed no significant changes in the size or composition of lesions between the 3 groups. Prolonged silencing of miR-33 fails to maintain elevated plasma high-density lipoprotein cholesterol and does not prevent the progression of atherosclerosis in Ldlr(-/-) mice.
Liver histology during Mipomersen therapy for severe hypercholesterolemia.
Hashemi, Nikroo; Odze, Robert D; McGowan, Mary P; Santos, Raul D; Stroes, Erik S G; Cohen, David E
2014-01-01
Mipomersen is an antisense oligonucleotide that inhibits apolipoprotein B synthesis and lowers plasma low-density lipoprotein cholesterol even in the absence of low-density lipoprotein receptor function, presumably from inhibition of hepatic production of triglyceride-rich very low-density lipoprotein particles. By virtue of this mechanism, mipomersen therapy commonly results in the development of hepatic steatosis. Because this is frequently accompanied by alanine aminotransferase elevations, concern has arisen that mipomersen could promote the development of steatohepatitis, which could in turn lead to fibrosis and cirrhosis over time. The objective of this study was to assess the liver biopsy findings in patients treated with mipomersen. We describe 7 patients who underwent liver biopsy during the mipomersen clinical development programs. Liver biopsies were reviewed by a single, blinded pathologist. The histopathological features were characterized by simple steatosis, without significant inflammation or fibrosis. These findings suggest that hepatic steatosis resulting from mipomersen is distinct from nonalcoholic steatohepatitis. Copyright © 2014 National Lipid Association. Published by Elsevier Inc. All rights reserved.
[Dyslipidemias : Diagnostics and management].
Sinning, D; Landmesser, U
2017-09-01
For disorders of lipid metabolism the risk-adapted adjustment of low-density lipoprotein (LDL) cholesterol remains the primary treatment target, as a causal role in minimizing the progression of ACVD has been shown. Because of their efficacy in reducing cardiovascular morbidity and mortality, statins are recommended as first-line pharmacological treatment in dyslipidemias. Additionally, ezetimibe and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition have been shown to significantly reduce cardiovascular events in high-risk patients. Life style changes can improve the plasma lipid profile, particularly in the setting of hypertriglyceridemia. Evaluation of high-density lipoprotein (HDL) cholesterol and lipoprotein(a) provides further information when assessing the individual cardiovascular risk, but direct evidence that pharmacologically targeting HDL cholesterol or Lp(a) results in a reduction of cardiovascular events has not yet been shown.
LDL electronegativity index: a potential novel index for predicting cardiovascular disease.
Ivanova, Ekaterina A; Bobryshev, Yuri V; Orekhov, Alexander N
2015-01-01
High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(-)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(-), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk.
LDL electronegativity index: a potential novel index for predicting cardiovascular disease
Ivanova, Ekaterina A; Bobryshev, Yuri V; Orekhov, Alexander N
2015-01-01
High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(–)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(–), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk. PMID:26357481
Ollila, O. H. Samuli; Lamberg, Antti; Lehtivaara, Maria; Koivuniemi, Artturi; Vattulainen, Ilpo
2012-01-01
Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface. Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence of interfacial tension becomes significant for particles with a radius of ∼5 nm, when the area per molecule in the surface region is <1.4 nm2. Further, interfacial tensions in the used HDL and LDL models are essentially unaffected by single apo-proteins at the surface. Finally, interfacial tensions of lipoproteins are higher than in thermodynamically stable droplets, suggesting that HDL and LDL are kinetically trapped into a metastable state. PMID:22995496
Arnedo, Mireia; Taffé, Patrick; Sahli, Roland; Furrer, Hansjakob; Hirschel, Bernard; Elzi, Luigia; Weber, Rainer; Vernazza, Pietro; Bernasconi, Enos; Darioli, Roger; Bergmann, Sven; Beckmann, Jacques S; Telenti, Amalio; Tarr, Philip E
2007-09-01
HIV-1 infected individuals have an increased cardiovascular risk which is partially mediated by dyslipidemia. Single nucleotide polymorphisms in multiple genes involved in lipid transport and metabolism are presumed to modulate the risk of dyslipidemia in response to antiretroviral therapy. The contribution to dyslipidemia of 20 selected single nucleotide polymorphisms of 13 genes reported in the literature to be associated with plasma lipid levels (ABCA1, ADRB2, APOA5, APOC3, APOE, CETP, LIPC, LIPG, LPL, MDR1, MTP, SCARB1, and TNF) was assessed by longitudinally modeling more than 4400 plasma lipid determinations in 438 antiretroviral therapy-treated participants during a median period of 4.8 years. An exploratory genetic score was tested that takes into account the cumulative contribution of multiple gene variants to plasma lipids. Variants of ABCA1, APOA5, APOC3, APOE, and CETP contributed to plasma triglyceride levels, particularly in the setting of ritonavir-containing antiretroviral therapy. Variants of APOA5 and CETP contributed to high-density lipoprotein-cholesterol levels. Variants of CETP and LIPG contributed to non-high-density lipoprotein-cholesterol levels, a finding not reported previously. Sustained hypertriglyceridemia and low high-density lipoprotein-cholesterol during the study period was significantly associated with the genetic score. Single nucleotide polymorphisms of ABCA1, APOA5, APOC3, APOE, and CETP contribute to plasma triglyceride and high-density lipoprotein-cholesterol levels during antiretroviral therapy exposure. Genetic profiling may contribute to the identification of patients at risk for antiretroviral therapy-related dyslipidemia.
Georgopoulos, Angeliki; Aras, Omer; Noutsou, Marina; Tsai, Michael Y
2002-08-01
In type 2 diabetes, the threonine (Thr) for alanine (Ala) codon 54 polymorphism of the fatty acid binding protein 2 gene is associated with elevated fasting and postprandial triglycerides and dyslipidemia when compared with the wild type (Ala-54/Ala-54). To assess whether this is the case in patients with type 1 diabetes, who usually do not manifest the metabolic syndrome, we screened 181 patients with similar glycemic control as the type 2 patients. Thirty percent were heterozygous, and 9% were homozygous for the polymorphism. Mean (+/-SEM) fasting plasma triglyceride levels in patients with the wild type (n = 84), those heterozygous for Ala-54/Thr-54 (n = 44), and those homozygous for the Thr-54 (n = 13) were 1.0 +/- 0.07, 1.1 +/- 0.17, and 1.2 +/- 0.23 mmol/liter, respectively. In addition, there were no differences in total, low-density lipoprotein, high-density lipoprotein, and non-high density lipoprotein cholesterol among the three groups. After a fat load, the postprandial area under the curve of triglyceride in plasma, chylomicrons, and very low-density lipoprotein were similar between the wild type (n = 18) and the Thr-54 homozygotes (n = 12). In conclusion, in contrast to type 2, type 1 diabetes does not interact with the codon 54 polymorphism of the fatty acid binding protein 2 gene to cause hypertriglyceridemia/dyslipidemia. Insulin resistance could account possibly for this difference.
Sezai, Akira; Soma, Masayoshi; Nakata, Kin-ichi; Osaka, Shunji; Ishii, Yusuke; Yaoita, Hiroko; Hata, Hiroaki; Shiono, Motomi
2015-10-01
The NU-FLASH trial demonstrated that febuxostat was more effective for hyperuricemia than allopurinol. This time, we compared these medications in patients with chronic kidney disease (CKD) from the NU-FLASH trial. In the NU-FLASH trial, 141 cardiac surgery patients with hyperuricemia were randomized to a febuxostat group or an allopurinol group. This study analyzed 109 patients with an estimated glomerular filtration rate (eGFR) ≤60 mL/min/1.73 m(2), and also analyzed 87 patients with stage 3 CKD. The primary endpoint was the serum uric acid level. Secondary endpoints included serum creatinine, urinary albumin, cystatin-C, oxidized low-density lipoprotein, eicosapentaenoic acid/arachidonic acid ratio, total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein, and high-sensitivity C-reactive protein. Among patients with an eGFR≤60 mL/min/1.73 m(2), uric acid levels were significantly lower in the febuxostat group than the allopurinol group from 1 month of treatment onward. The serum creatinine, urinary albumin, cystatin-C, oxidized low-density lipoprotein, eicosapentaenoic acid/arachidonic acid ratio, and high-sensitivity C-reactive protein were also significantly lower in the febuxostat group. Similar results were obtained in the patients with stage 3 CKD. In cardiac surgery patients with renal dysfunction, febuxostat reduced uric acid earlier than allopurinol, had a stronger renoprotective effect than allopurinol, and also had superior antioxidant and anti-inflammatory effects. Copyright © 2015. Published by Elsevier Ltd.
Zhu, Hui; Zhao, Teng; Liu, Jingyao
2018-06-01
Paraoxonase1 (PON1) is an antioxidant which confers antioxidant properties to high-density lipoprotein (HDL) and prevents low-density lipoprotein (LDL) oxidation. The purpose of this study was to evaluate the activities of PON1 and oxidative/antioxidative stress markers in acute cerebral infarction. In this study, 161 patients diagnosed with acute cerebral infarction and 161 gender- and age-matched healthy controls were recruited. Based on the clinicoradiological profiles, the patients were further classified into two groups: lacunar infarction group and large-artery atherosclerosis group. We measured the individual lipid status parameters, oxidative and antioxidative stress status parameters, and PON1 activity. Serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and oxidative stress parameters in patients with acute cerebral infarction were significantly higher than those in the normal controls (p < 0.05). High-density lipoprotein cholesterol (HDL-C) level, PON1 activity, superoxide dismutase (SOD) activity, and antioxidative stress parameters in patients were lower than in the normal controls (p < 0.05). Superoxide anion (O2-), malondialdehyde (MDA), and PON1 levels in the lacunar infarction group were lower than in the large-artery atherosclerosis group (p < 0.05). Oxidative stress markers and PON1 activity are sensitive indicators of acute cerebral infarction. Our findings suggest a severely impaired antioxidative protection mechanism in these patients. Our study provides new insights into the pathophysiological mechanisms of acute cerebral infarction, which may also provide new therapeutic targets for ischemic cerebrovascular diseases.
Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans
USDA-ARS?s Scientific Manuscript database
Background: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low density lipoprotein cholesterol (LDL-C) and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lo...
USDA-ARS?s Scientific Manuscript database
VLDL apo B-100 is essential for the secretion of liver fat. It is thought that synthesis of this lipoprotein is impaired in childhood severe acute malnutrition (SAM), especially in the edematous syndromes, and that this contributes to the common occurrence of hepatic steatosis in this condition. How...
Nordmann, Alain J; Nordmann, Abigail; Briel, Matthias; Keller, Ulrich; Yancy, William S; Brehm, Bonnie J; Bucher, Heiner C
2006-02-13
Low-carbohydrate diets have become increasingly popular for weight loss. However, evidence from individual trials about benefits and risks of these diets to achieve weight loss and modify cardiovascular risk factors is preliminary. We used the Cochrane Collaboration search strategy to identify trials comparing the effects of low-carbohydrate diets without restriction of energy intake vs low-fat diets in individuals with a body mass index (calculated as weight in kilograms divided by the square of height in meters) of at least 25. Included trials had to report changes in body weight in intention-to-treat analysis and to have a follow-up of at least 6 months. Two reviewers independently assessed trial eligibility and quality of randomized controlled trials. Five trials including a total of 447 individuals fulfilled our inclusion criteria. After 6 months, individuals assigned to low-carbohydrate diets had lost more weight than individuals randomized to low-fat diets (weighted mean difference, -3.3 kg; 95% confidence interval [CI], -5.3 to -1.4 kg). This difference was no longer obvious after 12 months (weighted mean difference, -1.0 kg; 95% CI, -3.5 to 1.5 kg). There were no differences in blood pressure. Triglyceride and high-density lipoprotein cholesterol values changed more favorably in individuals assigned to low-carbohydrate diets (after 6 months, for triglycerides, weighted mean difference, -22.1 mg/dL [-0.25 mmol/L]; 95% CI, -38.1 to -5.3 mg/dL [-0.43 to -0.06 mmol/L]; and for high-density lipoprotein cholesterol, weighted mean difference, 4.6 mg/dL [0.12 mmol/L]; 95% CI, 1.5-8.1 mg/dL [0.04-0.21 mmol/L]), but total cholesterol and low-density lipoprotein cholesterol values changed more favorably in individuals assigned to low-fat diets (weighted mean difference in low-density lipoprotein cholesterol after 6 months, 5.4 mg/dL [0.14 mmol/L]; 95% CI, 1.2-10.1 mg/dL [0.03-0.26 mmol/L]). Low-carbohydrate, non-energy-restricted diets appear to be at least as effective as low-fat, energy-restricted diets in inducing weight loss for up to 1 year. However, potential favorable changes in triglyceride and high-density lipoprotein cholesterol values should be weighed against potential unfavorable changes in low-density lipoprotein cholesterol values when low-carbohydrate diets to induce weight loss are considered.
Shamim, Abu Ahmed; Ahmed, Abu; Akhtaruzzaman, Mohammad; Kärkkäinen, Merja; Lamberg-Allardt, Christel
2014-01-01
ABSTRACT Elevated total cholesterol and low-density lipoprotein cholesterol in sera are both well-known risk factors of coronary heart disease. Adequate vitamin D status is important for optimal function of many organs and tissues of our body. There is continuing controversy about the effect of adequate vitamin D consumption on serum lipids and lipoproteins. The present study assessed the effect of vitamin D, calcium and multiple micronutrients supplementation on the lipid profile in Bangladeshi young female garment factory workers who have hypovitaminosis D. This placebo-controlled intervention trial conducted over a period of one year randomly assigned a total of 200 apparently healthy subjects aged 16-36 years to 4 groups. The subjects received daily supplements of 400 IU of vitamin D (VD group) or 400 IU of vitamin D+600 mg of calcium lactate (VD-Ca group), or multiple micronutrients with 400 IU of vitamin-D+600 mg of calcium lactate (MMN-VD-Ca group), or the group consuming placebo (PL group). Serum concentrations of lipid and lipoprotein, 25-hydroxyvitamin D (25OHD) and intact parathyroid hormone (iPTH) were measured at baseline and after one year of follow-up. No significant changes in the serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), LDL-C/HDL-C ratio were observed in the supplemented groups compared to the placebo group. Supplementation had a positive effect (p<0.05) on very low-density lipoprotein cholesterol (VLDL-C) and triacylglycerol (TAG). A negative correlation between changes in serum iPTH and HDL-C was observed, which indicated that subjects with the greatest decline in S-iPTH had the greatest increase in HDL-C. The results suggest that consumption of adequate vitamin D with calcium or MMN for one-year may have no impact on serum lipid profile in the subjects studied. Longer-term clinical trials with different doses of supplemental vitamin D are warranted in evaluating the effect of intervention. PMID:25895202
Korolenko, Tatyana A; Johnston, Thomas P; Tuzikov, Fedor V; Tuzikova, Natalia A; Pupyshev, Alexandr B; Spiridonov, Victor K; Goncharova, Natalya V; Maiborodin, Igor V; Zhukova, Natalia A
2016-01-22
The aims of this study were to evaluate the effect of poloxamer 407 administration on atherogenic serum lipoprotein fractions and subfractions associated with cholesterol, triglycerides and phospholipids, as well as the onset of early atherosclerosis, in mice. Mice were administered either sterile saline or poloxamer 407 (to induce a dose-controlled hyperlipidemia) for 1 month and then sacrificed at 1, 4 and 10 days after the last dose of poloxamer 407. Systolic and diastolic blood pressure, the activity of a cysteine protease (cathepsin B) in cardiac and liver tissue, and histological/morphological examination of heart and liver specimens was performed for each group of mice at each time point. Lastly, small angle X-ray scattering was utilized to analyze the lipoprotein fractions and subfractions associated with cholesterol, triglycerides and phospholipids for both groups of mice at each time point. Statistical analysis was performed using one-way, analysis-of-variance with post hoc analysis to determine significantly different mean values, while correlation analysis employed the Spearman test. Poloxamer 407-treated mice revealed significant hyperlipidemia, moderately elevated blood pressure, general lipidosis in liver cells, increased cysteine protease activity in heart tissue, and contractile-type changes in cardiomyocytes. Similar to humans, the onset of atherosclerosis in poloxamer 407-treated mice was characterized by a steady increase in serum low-density, intermediate-density and very-low-density lipoprotein fractions, as well as very-low-density lipoprotein subfractions. We would propose that the sustained elevation of serum atherogenic lipoprotein fractions and subfractions induced by the administration of poloxamer 407 to mice resulted in the morphological changes we observed in both heart and liver cells, which are suggested to precede atherosclerosis, since this is a well-established mouse model of atherosclerosis. Since most of the cellular, biochemical and physiological changes documented in the present study using poloxamer 407-treated mice are related to the symptoms of early atherosclerosis in humans, it is suggested that the poloxamer 407-induced mouse model of hyperlipidemia and atherosclerosis might prove beneficial as an experimental animal model with which to evaluate the pathological features observed in early-stage atherosclerosis.
Ebrahimi-Mamaghani, Mehranghiz; Saghafi-Asl, Maryam; Pirouzpanah, Saeed; Asghari-Jafarabadi, Mohammad
2014-04-01
We aimed to evaluate the effects of raw red onion consumption on metabolic features in overweight and obese women with polycystic ovary syndrome. In this randomized controlled clinical trial, the patients (n=54) were randomly allocated to the intervention group as 'high-onion' (raw red onions: 2 × 40-50 g/day if overweight and 2 × 50-60 g/day if obese) or to the control group as 'low-onion' (raw red onions: 2 × 10-15 g/day) along with limited liliaceous vegetables for 8 weeks. Body mass index, dietary record, and metabolic parameters (fasting blood sugar, triglycerides, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and lipoprotein (a)) were evaluated in the follicular phase of the menstrual cycle at baseline and after 8 weeks. Hormonal variables (progesterone, prolactin, and 17-OH progesterone) were also measured at baseline. Onion significantly decreased the levels of total cholesterol within each group; however, these changes were stronger in the high-onion group (weighted mean differences [WMD]: -5.60 [95% confidence interval [CI]: -9.16, -2.03]; P=0.003) than in the low-onion group (WMD: -6.42 [95%CI: -11.97, -0.87]; P=0.025). Similarly, low-density lipoprotein cholesterol decreased significantly (WMD: -5.13 [95%CI: -9.46, -0.81); P=0.022) in the high-onion group, and (WMD: -2.90 [95%CI -5.57, -0.21]; P=0.035) in the low-onion group after treatment. The levels of fasting blood sugar, triglycerides, high-density lipoprotein cholesterol and lipoprotein (a) did not differ significantly after 8-week onion treatment. Adjustment for confounders did not make any significant changes in any of the parameters in post-treatment levels. Raw red onion consumption appears to be effective as a cholesterol-lowering food agent in women with polycystic ovary syndrome. However, further investigation is warranted. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.
Kristenson, M.; Ziedén, B.; Kucinskienë, Z.; Elinder, L. S.; Bergdahl, B.; Elwing, B.; Abaravicius, A.; Razinkovienë, L.; Calkauskas, H.; Olsson, A. G.
1997-01-01
OBJECTIVE: To investigate possible risk factors and mechanisms behind the four times higher and diverging mortality from coronary heart disease in Lithuanian compared with Swedish middle aged men. DESIGN: Concomitant cross sectional comparison of randomly selected 50 year old men without serious acute or chronic disease. Methods and equipment were identical or highly standardised between the centres. SETTING: Linköping (Sweden) and Vilnius (Lithuania). SUBJECTS: 101 and 109 men aged 50 in Linköping and Vilnius respectively. MAIN OUTCOME MEASURES: Anthropometric data, blood pressure, smoking, plasma lipid and lipoprotein concentrations, susceptibility of low density lipoprotein to oxidation, and plasma concentrations of fat soluble antioxidant vitamins. RESULTS: Systolic blood pressure was higher (141 v 133 mm Hg, P < 0.01), smoking habits were similar, and plasma total cholesterol (5.10 v 5.49 mmol/l, P < 0.01) and low density lipoprotein cholesterol (3.30 v 3.68 mmol/l, P < 0.01) lower in men from Vilnius compared with those from Linköping. Triglyceride, high density lipoprotein cholesterol, and Lp(a) lipoprotein concentrations did not differ between the two groups. The resistance of low density lipoprotein to oxidation was lower in the men from Vilnius; lag phase was 67.6 v 79.5 minutes (P < 0.001). Also lower in the men from Vilnius were mean plasma concentrations of lipid soluble antioxidant vitamins (beta carotene 377 v 510 nmol/l, P < 0.01; lycopene 327 v 615 nmol/l, P < 0.001; and lipid adjusted gamma tocopherol 0.25 v 0.46 mumol/mmol, P < 0.001. alpha Tocopherol concentration did not differ). Regression analysis showed that the lag phase was still significantly shorter by 10 minutes in men from Vilnius when the influence of other known factors was taken into account. CONCLUSIONS: The high mortality from coronary heart disease in Lithuania is not caused by traditional risk factors alone. Mechanisms related to antioxidant state may be important. PMID:9066473
Islam, Md Zahirul; Shamim, Abu Ahmed; Akhtaruzzaman, Mohammad; Kärkkäinen, Merja; Lamberg-Allardt, Christel
2014-12-01
Elevated total cholesterol and low-density lipoprotein cholesterol in sera are both well-known risk factors of coronary heart disease. Adequate vitamin D status is important for optimal function of many organs and tissues of our body. There is continuing controversy about the effect of adequate vitamin D consumption on serum lipids and lipoproteins. The present study assessed the effect of vitamin D, calcium and multiple micronutrients supplementation on the lipid profile in Bangladeshi young female garment factory workers who have hypovitaminosis D. This placebo-controlled intervention trial conducted over a period of one year randomly assigned a total of 200 apparently healthy subjects aged 16-36 years to 4 groups. The subjects received daily supplements of 400 IU of vitamin D (VD group) or 400 IU of vitamin D+600 mg of calcium lactate (VD-Ca group), or multiple micronutrients with 400 IU of vitamin-D+600 mg of calcium lactate (MMN-VD-Ca group), or the group consuming placebo (PL group). Serum concentrations of lipid and lipoprotein, 25-hydroxyvitamin D (25OHD) and intact parathyroid hormone (iPTH) were measured at baseline and after one year of follow-up. No significant changes in the serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), LDL-C/HDL-C ratio were observed in the supplemented groups compared to the placebo group. Supplementation had a positive effect (p<0.05) on very low-density-lipoprotein cholesterol (VLDL-C) and triacylglycerol (TAG). A negative correlation between changes in serum iPTH and HDL-C was observed, which indicated that subjects with the greatest decline in S-iPTH had the greatest increase in HDL-C. The results suggest that consumption of adequate vitamin D with calcium or MMN for one-year may have no impact on serum lipid profile in the subjects studied. Longer-term clinical trials with different doses of supplemental vitamin D are warranted in evaluating the effect of intervention.
Papin, J; Brennand, A; Arbore, G; Hohenstein, B; Kamvissi, V; Kemper, C; Bornstein, S R
2017-11-01
Lipoprotein-apheresis (LA) is a therapeutic approach used against severe forms of dyslipidemia in patients who are non-responders or intolerant to pharmacological treatments. However, little is known about the potential pleiotropic effects of LA, particularly regarding the immune system and its regulation. Thus, in an attempt to analyse the potential effects of dyslipidemia and LA on the regulation of CD4 + T cells activation and lineage differentiation, we compared the CD4 + T cells cytokines secretion profiles of dyslipidemic patients before and after LA with the profiles observed in healthy donors. CD4 + T cells were isolated from 5 LA patients and 5 healthy donors and activated with anti-CD3 or anti-CD3 + anti-CD46 antibodies. The supernatants were collected after 36 h incubation and levels of secreted cytokines analysed by flow cytometry. Our results revealed a deep remodelling of CD4 + T cells cytokines secretion patterns in dyslipidemic patients compared to healthy donors, as reflected by a 15 times higher IFN-γ secretion rate after CD3 + CD46 co-activation in dyslipidemic patients after LA compared to healthy subjects and 8 times higher after CD3 activation alone (p = 0.0187 and p = 0.0118 respectively). Moreover, we demonstrated that LA itself also modifies the phenotype and activation pattern of CD4 + T-cells in dyslipidemic patients. These observations could be of fundamental importance in the improvement of LA columns/systems engineering and in developing new therapeutic approaches regarding dyslipidemia and associated pathologies such as atherosclerosis and type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.